2013年重庆市中考数学模拟试卷(二十九)

合集下载

重庆市初三中考数学第一次模拟试卷

重庆市初三中考数学第一次模拟试卷

重庆市初三中考数学第一次模拟试卷一、选择题(本大题共12小题,共36.0分)1.下列各组数中结果相同的是()A. 与B. 与C. 与D. 与2.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A. B. C. D.3.下列计算中,错误的是()A. B.C. D.4.下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个5.某班班长统计去年1-8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A. 平均数是58B. 众数是42C. 中位数是58D. 每月阅读数量超过40的有4个月6.在半径为R的圆上依次截取等于R的弦,顺次连接各分点得到的多边形是()A. 正三角形B. 正四边形C. 正五边形D. 正六边形7.下列命题错误的是()A. 若一个多边形的内角和与外角和相等,则这个多边形是四边形B. 矩形一定有外接圆C. 对角线相等的菱形是正方形D. 一组对边平行,另一组对边相等的四边形是平行四边形8.如图是某几何体的三视图,则该几何体的表面积为()A. B. C. D.9.在排球训练中,甲、乙、丙三人相互传球,由甲开始发球(记作为第一次传球),则经过三次传球后,球仍回到甲手中的概率是()A. B. C. D.10.运算※按下表定义,例如3※2=1,那么(2※4)※(1※3)=()A. 1B. 2C. 3D. 411.如图,在▱ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为()A. B. C. D.12.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠BQP=;④S四边形=2S△BGE.ECFGA. 4B. 3C. 2D. 1二、填空题(本大题共4小题,共12.0分)13.分解因式:4ax2-ay2=______.14.如图,菱形ABCD的边长为2,∠A=60°,以点B为圆心的圆与AD、DC相切,与AB、CB的延长线分别相交于点E、F,则图中阴影部分的面积为______.15.如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=上,且OA⊥OB,cos A=,则k的值为______.16.如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=______.三、计算题(本大题共2小题,共12.0分)17.先化简,再求值:(-)÷,其中a=.18.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,求线段BE的长.四、解答题(本大题共5小题,共40.0分)19.计算:+tan30°+|1-|-(-)-2.20.将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E 组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.(1)这部分男生有多少人?其中成绩合格的有多少人?(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.21.某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1)该小区新建1个地上停车位和1个地下停车位需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?22.如图,△AOB中,A(-8,0),B(0,),AC平分∠OAB,交y轴于点C,点P是x轴上一点,⊙P经过点A、C,与x轴于点D,过点C作CE⊥AB,垂足为E,EC的延长线交x轴于点F,(1)⊙P的半径为______;(2)求证:EF为⊙P的切线;(3)若点H是上一动点,连接OH、FH,当点P在上运动时,试探究是否为定值?若为定值,求其值;若不是定值,请说明理由.23.如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.答案和解析1.【答案】D【解析】解:A、32=9,23=8,故不相等;B、|-3|3=27(-3)3=-27,故不相等;C、(-3)2=9,-32=-9,故不相等;D、(-3)3=-27,-33=-27,故相等,故选:D.利用有理数乘方法则判定即可.本题主要考查了有理数乘方,解题的关键是注意符号.2.【答案】A【解析】解:14420000=1.442×107,故选:A.根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.本题考查科学记数法-表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.【答案】D【解析】解:A、5a3-a3=4a3,正确,本选项不符合题意;B、(-a)2•a3=a5,正确,本选项不符合题意;C、(a-b)3•(b-a)2=(a-b)5,正确,本选项不符合题意;D、2m•3n≠6m+n,错误,本选项符合题意;故选:D.根据合并同类项法则,同底数幂的乘法法则等知识求解即可求得答案.本题考查的是合并同类项法则,同底数幂的乘法,需注意区别:同底数幂的乘法:底数不变,指数相加;幂的乘方:底数不变,指数相乘.4.【答案】C【解析】解:A是轴对称图形,不是中心对称图形;B,C,D是轴对称图形,也是中心对称图形.故选C.根据轴对称图形与中心对称图形的概念求解.掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.5.【答案】C【解析】解:A、每月阅读数量的平均数是=56.625,故A错误;B、出现次数最多的是58,众数是58,故B错误;C、由小到大顺序排列数据28,36,42,58,58,70,78,83,中位数是58,故C正确;D、由折线统计图看出每月阅读量超过40天的有6个月,故D错误;故选:C.根据平均数的计算方法,可判断A;根据众数的定义,可判断B;根据中位数的定义,可判断C;根据折线统计图中的数据,可判断D.本题考查的是折线统计图、平均数、众数和中位数.要注意,当所给数据有单位时,所求得的平均数、众数和中位数与原数据的单位相同,不要漏单位,关键是根据折线统计图获得有关数据.6.【答案】D【解析】解:由题意这个正n边形的中心角=60°,∴n==6,∴这个多边形是正六边形,故选:D.求出正多边形的中心角即可解决问题.本题考查正多边形与圆,解题的关键是熟练掌握基本知识,属于中考常考题型.7.【答案】D【解析】解:A、一个多边形的外角和为360°,若外角和=内角和=360°,所以这个多边形是四边形,故此选项正确;B、矩形的四个角都是直角,满足对角互补,根据对角互补的四边形四点共圆,则矩形一定有外接圆,故此选项正确;C、对角线相等的菱形是正方形,故此选项正确;D、一组对边平行且相等的四边形是平行四边形;而一对边平行,另一组对边相等的四边形可能是平行四边形或是梯形,故此选项错误;本题选择错误的命题,故选:D.A、任意多边形的外角和为360°,然后利用多边形的内角和公式计算即可;B、判断一个四边形是否有外接圆,要看此四边形的对角是否互补,矩形的对角互补,一定有外接圆;C、根据正方形的判定方法进行判断;D、一组对边平行且相等的四边形是平行四边形.本题主要考查的是多边形的内角和和外角和,四点共圆问题,正方形的判定,平行四边形的判定,掌握这些定理和性质是关键.8.【答案】A【解析】解:观察该几何体的三视图发现该几何体为正六棱柱;该六棱柱的棱长为2,正六边形的半径为2,所以表面积为2×2×6+×2××6×2=24+12,故选:A.首先确定该几何体的形状,然后根据各部分的尺寸得到该几何体的表面积即可.本题考查由三视图求表面积,考查由三视图还原直观图,注意求面积时,由于包含的部分比较多,不要漏掉,本题是一个基础题.9.【答案】B【解析】解:画树状图得:∵共有8种等可能的结果,经过3次传球后,球仍回到甲手中的有2种情况,∴经过3次传球后,球仍回到甲手中的概率是:=.故选:B.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与经过三次传球后,球仍回到甲手中的情况,再利用概率公式即可求得答案.此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.10.【答案】D【解析】解:∵3※2=1,∴运算※就是找到第三列与第二行相结合的数,∴(2※4)=3,(1※3)=3,∴3※3=4.故选:D.根据题目提供的运算找到运算方法,即:3※2=1就是第三列与第二行所对应的数,按此规律计算出(2※4)※(1※3)的结果即可.本题考查了学生们的阅读理解能力,通过观察例子,从中找到规律,进而利用此规律进行进一步的运算.11.【答案】C【解析】解:∵∠ABC的平分线交CD于点F,∴∠ABE=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CBE=∠CFB=∠ABE=∠E,∴CF=BC=AD=8,AE=AB=12,∵AD=8,∴DE=4,∵DC∥AB,∴,∴,∴EB=6,∵CF=CB,CG⊥BF,∴BG=BF=2,在Rt△BCG中,BC=8,BG=2,根据勾股定理得,CG===2,故选:C.先由平行四边形的性质和角平分线的定义,判断出∠CBE=∠CFB=∠ABE=∠E,从而得到CF=BC=8,AE=AB=12,再用平行线分线段成比例定理求出BE,然后用等腰三角形的三线合一求出BG,最后用勾股定理即可.此题是平行四边形的性质,主要考查了角平分线的定义,平行线分线段成比例定理,等腰三角形的性质和判定,勾股定理,解本题的关键是求出AE,记住:题目中出现平行线和角平分线时,极易出现等腰三角形这一特点.12.【答案】B【解析】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x-k)2+4k2,∴x=,∴sin∠BQP==,故③正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S=4S△BGE,故④错误.四边形ECFG故选:B.首先证明△ABE≌△BCF,再利用角的关系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF对折,得到△BPF,利用角的关系求出QF=QB,解出BP,QB,根据正弦的定义即可求解;根据AA可证△BGE与△BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解.本题主要考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.13.【答案】a(2x+y)(2x-y)【解析】解:原式=a(4x2-y2)=a(2x+y)(2x-y),故答案为:a(2x+y)(2x-y).首先提取公因式a,再利用平方差进行分解即可.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.【答案】+【解析】解:设AD与圆的切点为G,连接BG,∴BG⊥AD,∵∠A=60°,BG⊥AD,∴∠ABG=30°,在直角△ABG中,BG=AB=×2=,AG=1,∴圆B的半径为,∴S△ABG=×1×=在菱形ABCD中,∠A=60°,则∠ABC=120°,∴∠EBF=120°,∴S阴影=2(S△ABG-S扇形)+S扇形FBE=2×(-)+=+.故答案为:+.设AD与圆的切点为G,连接BG,通过解直角三角形求得圆的半径,然后根据扇形的面积公式求得三个扇形的面积,进而就可求得阴影的面积.此题主要考查了菱形的性质以及切线的性质以及扇形面积等知识,正确利用菱形的性质和切线的性质求出圆的半径是解题关键.15.【答案】-4【解析】解:作AC⊥x轴于点C,作BD⊥x轴于点D.则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,∵OA⊥OB,cosA=,∴∠BOD+∠AOC=90°,tanA=,∴∠BOD=∠OAC,∴△OBD∽△AOC,∴=()2=(tanA)2=2,又∵S△AOC=×2=1,∴S△OBD=2,∴k=-4.故答案为:-4.作AC⊥x轴于点C,作BD⊥x轴于点D,易证△OBD∽△AOC,则面积的比等于相似比的平方,即tanA的平方,然后根据反比例函数中比例系数k的几何意义即可求解.本题考查了相似三角形的判定与性质,以及反比例函数的比例系数k的几何意义,正确作出辅助线求得两个三角形的面积的比是关键.16.【答案】2+或4+2【解析】解:如图1所示:作AE∥BC,延长AE交CD于点N,过点B作BT⊥EC于点T,当四边形ABCE为平行四边形,∵AB=BC,∴四边形ABCE是菱形,∵∠A=∠C=90°,∠B=150°,BC∥AN,∴∠ADC=30°,∠BAN=∠BCE=30°,则∠NAD=60°,∴∠AND=90°,∵四边形ABCE面积为2,∴设BT=x,则BC=EC=2x,故2x2=2,解得:x=1(负数舍去),则AE=EC=2,EN==,故AN=2+,则AD=DC=4+2;如图2,当四边形BEDF是平行四边形,∵BE=BF,∴平行四边形BEDF是菱形,∵∠A=∠C=90°,∠B=150°,∴∠ADB=∠BDC=15°,∵BE=DE,∴∠AEB=30°,∴设AB=y,则BE=2y,AE=y,∵四边形BEDF面积为2,∴AB×DE=2y2=2,解得:y=1,故AE=,DE=2,则AD=2+,综上所述:CD的值为:2+或4+2.故答案为:2+或4+2.根据题意结合裁剪的方法得出符合题意的图形有两个,分别利用菱形的判定与性质以及勾股定理得出CD的长.此题主要考查了剪纸问题以及勾股定理和平行四边形的性质等知识,根据题意画出正确图形是解题关键.17.【答案】解:原式=[-]÷=•=,当a=时,原式===5-2.【解析】先根据分式混合运算顺序和运算法则化简原式,再将a的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.18.【答案】解:根据作法可知:MN是线段AD的垂直平分线,∴AE=DE,AF=DF,∴∠EAD=∠EDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠EDA=∠CAD,∴DE∥AC,同理DF∥AE,∴四边形AEDF是平行四边形,而EA=ED,∴四边形AEDF为菱形,∴AE=DE=DF=AF=4,∵DE∥AC,∴BE:AE=BD:CD,即BE:4=6:3,∴BE=8.【解析】根据作法得到MN是线段AD的垂直平分线,则AE=DE,AF=DF,所以∠EAD=∠EDA,加上∠BAD=∠CAD,得到∠EDA=∠CAD,则可判断DE∥AC,同理DF∥AE,于是可判断四边形AEDF是平行四边形,加上EA=ED,则可判断四边形AEDF为菱形,所以AE=DE=DF=AF=4,然后利用平行线分线段成比例可计算BE 的长.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了菱形的判定与性质和平行线分线段成比例.19.【答案】解:原式=2+×+-1-4=2+1+-1-4=3-4.【解析】依据二次根式的性质、特殊锐角三角函数值、绝对值的性质、负整数指数幂的性质进行化简,然后再进行计算即可.本题主要考查的是实数的运算,熟练掌握二次根式的性质、特殊锐角三角函数值、绝对值的性质、负整数指数幂的性质是解题的关键.20.【答案】解:(1)∵A组占10%,有5人,∴这部分男生共有:5÷10%=50(人);∵只有A组男人成绩不合格,∴合格人数为:50-5=45(人);(2)∵C组占30%,共有人数:50×30%=15(人),B组有10人,D组有15人,∴这50人男生的成绩由低到高分组排序,A组有5人,B组有10人,C组有15人,D组有15人,E组有5人,∴成绩的中位数落在C组;∵D组有15人,占15÷50=30%,∴对应的圆心角为:360°×30%=108°;(3)成绩优秀的男生在E组,含甲、乙两名男生,记其他三名男生为a,b,c,画树状图得:∵共有20种等可能的结果,他俩至少有1人被选中的有14种情况,∴他俩至少有1人被选中的概率为:=.【解析】(1)根据题意可得:这部分男生共有:5÷10%=50(人);又由只有A组男人成绩不合格,可得:合格人数为:50-5=45(人);(2)由这50人男生的成绩由低到高分组排序,A组有5人,B组有10人,C组有15人,D组有15人,E组有5人,可得:成绩的中位数落在C组;又由D组有15人,占15÷50=30%,即可求得:对应的圆心角为:360°×30%=108°;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他俩至少有1人被选中的情况,再利用概率公式即可求得答案.此题考查了树状图法与列表法求概率以及直方图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】解:(1)设新建1个地上停车位需要x万元,新建1个地下停车位需y万元,根据题意,得,解得:.答:新建1个地上停车位需要0.1万元,新建1个地下停车位需0.5万元.(2)设建m(m为整数)个地上停车位,则建(50-m)个地下停车位,根据题意,得:12<0.1m+0.5(50-m)≤13,解得:30≤m<32.5.∵m为整数,∴m=30,31,32,共有3种建造方案.①建30个地上停车位,20个地下停车位;②建31个地上停车位,19个地下停车位;③建32个地上停车位,18个地下停车位.【解析】(1)设新建1个地上停车位需要x万元,新建1个地下停车位需y万元,根据题意列出方程就可以求出结论;(2)设建m个地上停车位,则建(50-m)个地下停车位,根据题意建立不等式组就可以求出结论本题考查了二元一次方程组的运用及解法,一元一次不等式及不等式组的运用及解法.在解答中要注意实际问题中未知数的取值范围的运用.22.【答案】5【解析】解:(1)连接PC,∵AC平分∠OAB,∴∠BAC=∠OAC,∵PA=PC,∴∠PCA=∠PAC,∴∠BAC=∠ACP,∴PC∥AB,∴△OPC∽△OAB,∴,∵A(-8,0),B(0,),∴OA=8,OB=,∴AB=,∴=,∴PC=5,∴⊙P的半径为5;故答案为:5;(2)证明:连接CP,∵AP=CP,∴∠PAC=∠PCA,∵AC平分∠OAB,∴∠PAC=∠EAC,∴∠PCA=∠EAC,∴PC∥AE,∵CE⊥AB,∴CP⊥EF,即EF是⊙P的切线;(3)是定值,=,连接PH,由(1)得AP=PC=PH=5,∵A(-8,0),∴OA=8,∴OP=OA-AP=3,在Rt△POC中,OC===4,由射影定理可得OC2=OP•OF,∴OF=,∴PF=PO+OF=,∵=,==,∴,又∵∠HPO=∠FPH,∴△POH∽△PHF,∴,当H与D重合时,.(1)连接PC,根据角平分线的定义得到∠BAC=∠OAC,根据等腰三角形的性质得到∠PCA=∠PAC,等量代换得到∠BAC=∠ACP,推出PC∥AB,根据相似三角形的性质即可得到结论;(2)连接CP,根据等腰三角形的性质得到∠PAC=∠PCA,由角平分线的定义得到∠PAC=∠EAC,等量代换得到∠PCA=∠EAC,推出PC∥AE,于是得到结论;(3)连接PH,由(1)得AP=PC=PH=5,根据勾股定理得到OC== =4,根据射影定理得到OF=,根据相似三角形的判定和性质即可得到结论.本题考查了角平分线的定义,平行线的判定和性质,切线的判定,相似三角形的判定和性质,射影定理,正确的作出辅助线是解题的关键.23.【答案】解:(1)由题意可得,解得a=1,b=-5,c=5;∴二次函数的解析式为:y=x2-5x+5,(2)作AM⊥x轴,BN⊥x轴,垂足分别为M,N,设对称轴交x轴于Q.则,∵MQ=,∴NQ=2,B(,);∴ ,解得,∴,D(0,),同理可求,,∵S△BCD=S△BCG,∴①DG∥BC(G在BC下方),,∴=x2-5x+5,解得,,x2=3,∵x>,∴x=3,∴G(3,-1).②G在BC上方时,直线G2G3与DG1关于BC对称,∴=,∴=x2-5x+5,解得,,∵x>,∴x=,∴G(,),综上所述点G的坐标为G(3,-1),G(,).(3)由题意可知:k+m=1,∴m=1-k,∴y l=kx+1-k,∴kx+1-k=x2-5x+5,解得,x1=1,x2=k+4,∴B(k+4,k2+3k+1),设AB中点为O′,∵P点有且只有一个,∴以AB为直径的圆与x轴只有一个交点,且P为切点,∴O′P⊥x轴,∴P为MN的中点,∴P(,0),∵△AMP∽△PNB,∴,∴AM•BN=PN•PM,∴1×(k2+3k+1)=(k+4-)(),∵k>0,∴k==-1+.【解析】(1)根据已知列出方程组求解即可;(2)作AM⊥x轴,BN⊥x轴,垂足分别为M,N,求出直线l的解析式,再分两种情况分别分析出G点坐标即可;(3)根据题意分析得出以AB为直径的圆与x轴只有一个交点,且P为切点,P为MN的中点,运用三角形相似建立等量关系列出方程求解即可.此题主要考查二次函数的综合问题,会中学数学一模模拟试卷一、 选择题( 本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应的位置上) 1. 63a a ÷结果是 ( )A .3aB .2aC . 9aD .3a -2.在函数y =x 的取值范围 ( ) A .1x ≤ B .1x ≥ C .1x < D . 1x >3.江苏省占地面积约为107200平方公里.将107200用科学记数法表示应为( )A .0.1072×106B .1.072×105C .1.072×106D .10.72×1044.如图,∠1=50°,如果AB ∥DE ,那么∠D 的度数为( ) A . 40° B . 50° C . 130° D . 140°5、若一个多边形的内角和与它的外角和相等,则这个多边形是( )A .三角形B .四边形C .五边形D .六边形6. 若1=x 是方程052=+-c x x 的一个根,则这个方程的另一个根是 ( )A .-2B .2C .4D .-57. 已知一个圆锥的侧面积是10πcm 2,它的侧面展开图是一个圆心角为144°的扇形,则这个圆锥的底面半径为 ( )A . 45cm BC . 2 cm D.8. 如图,在楼顶点A 处观察旗杆CD 测得旗杆顶部C 的仰角为30°,旗杆底部D 的俯角为45°.已知楼高9AB = m ,则旗杆CD 的高度为( )A. (9+mB. (9+mC.D.C(第4题)1ABDEADEF第10题9. 如图,在矩形ABCD 中,AB =3,BC =5,以B 为圆心BC 为半径画弧交AD 于点E ,连接CE ,作BF ⊥CE ,垂足为F ,则tan ∠FBC 的值为( )10. 如图,△ABC 是边长为4cm 的等边三角形,动点P 从点A 出发,以2cm /s 的速度沿A →C →B运动,到达B 点即停止运动,过点P 作PD ⊥AB 于点D ,设运动时间为x (s ),△ADP 的面积为y (cm 2),则能够反映y 与x 之间函数关系的图象大致是( )A .B .C .D .二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应的位置上)11.在实数范围内分解因式:1642-m = .12. 已知a -2b =-5,则8-3a +6b 的值为 . 13. 一组数据2、3、4、5、6的方差等于 .14.抛物线241y x x =-+的顶点坐标为 第15题 15.如图,A 、B 、C 是⊙O 上的三点,∠AOB =100°,则∠ACB = 度. 16. 如图,在△ABC 中,AC >AB ,点D 在BC 上,且BD =BA ,∠ABC 的平分线BE 交AD 于点E ,点F 是AC 的中点,连结EF .若四边形DCFE 和 △BDE 的面积都为3,则△ABC 的面积为 .17. 如图,在边长为10 的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是第16题 第17题 第18题18. 如图,一次函数与反比例函数的图像交于A (1,12)和B (6,2)两点,点P 是线段AB 上一动点(不与点A 和B 重合),过P 点分别作x 、y 轴的垂线PC 、PD 交反比例函数图像于点M 、N ,则四边形PMON 面积的最大值是 .三、解答题(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(本题满分5分)计算:101()2cos60(2)2π--︒+-20.(本题满分5分)解不等式组:1123(2)4x x x ⎧-<⎪⎨⎪--≤⎩21.(本题满分6分) 先化简,再求值:121a a a a a --⎛⎫÷- ⎪⎝⎭,其中a.22.(本题满分6分) 如图,在△ABC 中,AD 平分∠BAC ,且BD =CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F .(1)求证:AB =AC ;(2)若AD =,∠DAC =30°,求△ABC 的周长.23.(7分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A 微信、B 支付宝、C 现金、D 其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题: (1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A 种支付方式所对应的圆心角为 度. (3)若该超市这一周内有1600名购买者,请你估计使用A 和B 两种支付方式的购买者共有多少名?ABDCF E24.(本题满分8分)在地铁入口处检票进闸时,3个进闸通道A、B、C中,可随机选择其中的一个通过.(1)如果你经过此进闸口时,选择A通道通过的概率是;(2)求两个人经过此进闸口时,选择不同通道通过的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程.)25. (本题满分8分) 如图1,线段AB=12厘米,动点P从点A出发向点B运动,动点Q从点B出发向点A运中学数学一模模拟试卷一.选择题(满分24分,每小题3分)1.下列计算正确的是()A.﹣=B.()﹣1=﹣C.÷=2 D.3﹣=3 2.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.4.如果关于x的方程(a﹣5)x2﹣4x﹣1=0有两个实数根,则a满足的条件是()A.a≠5 B.a≥1 C.a>1且a≠5 D.a≥1且a≠55.如图,AB是半圆O的直径,C是OB的中点,过点C作CD⊥AB,交半圆于点D,则与的长度的比为()A.1:2 B.1:3 C.1:4 D.1:56.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm7.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍,设男孩有x 人,女孩有y人,则下列方程组正确的是()A.B.C.D.8.如图,一次函数y1=ax+b和反比例函数y2=的图象相交于A,B两点,则使y1>y2成立的x取值范围是()A.﹣2<x<0或0<x<4 B.x<﹣2或0<x<4C.x<﹣2或x>4 D.﹣2<x<0或x>4二.填空题(满分24分,每小题3分)9.分解因式:x2﹣9x=.10.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.11.已知关于x,y的方程组的解满足x+y=5,则k的值为.12.一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是.13.如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O 于D,连接BE.设∠BEC=α,则sinα的值为.14.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是.15.已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是.16.如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,AD为BC边上的高,动点P在AD上,从点A出发,沿A→D方向运动,设AP=x,△ABP的面积为S1,矩形PDFE的面积为S 2,y=S1+S2,则y与x的关系式是.三.解答题17.(6分)解不等式组并写出它的整数解.18.(6分)解分式方程:﹣1=.19.(6分)在边长为1的小正方形组成的网格中建立如图所示的平面直角坐标系,△ABC 为格点三角形(顶点是网格线的交点).(1)画出△ABC先向上平移2个单位长度,再向左平移3个单位长度得到的△A1B1C1;(2)以点O为位似中心,在第一象限画出△ABC的位似图形△A2B2C2,使△A2B2C2与△ABC的位似比为2:1.20.(6分)重庆市物价局发出通知,从2011年2月18日起降低部分抗生素药品和神经系统类药品最高零售价格,共涉及162个品种,某药房对售出的抗生素药品A、B、C、D、E 的销量进行统计,绘制成如下统计图:(1)补全折线统计图;。

【中考数学】2023-2024学年重庆市区域质量检测仿真模拟试卷(2套)(含解析)

【中考数学】2023-2024学年重庆市区域质量检测仿真模拟试卷(2套)(含解析)

2023-2024学年重庆市区域中考数学专项提升仿真模拟试题(4月)一、选一选:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题目要求.)1.据宜宾市旅游局公布的数据,今年“五一”小长假期间,全市实现旅游总收入330000000元.将330000000用科学记数法表示为【】A.3.3×108B.3.3×109C.3.3×107D.0.33×10102.没有等式组131722523(1)x xx x⎧--⎪⎨⎪->+⎩的解集表示在数轴上,正确的是()A.B.C.D.3.已知m,n)A.9B.3±C.3D.54.若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个没有相等的实数根分别为a和b,且a2﹣ab+b2=18,则a bb a+的值是()A.3B.﹣3C.5D.﹣55.一个正方形和两个等边三角形的位置如图所示,则∠1+∠2+∠3的度数为()A.1500 B.1200 C.900 D.18006.如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是()A.B.C.D.7.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数至多有A.4B.5C.6D.78.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是()A.15.5,15.5B.15.5,15C.15,15.5D.15,159.如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D,E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=x,DE=y,下列中图象中,能表示y 与x的函数关系式的图象大致是()A. B. C. D.10.如图,在Rt△AOB中,两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A′O′B.若反比例函数kyx的图象恰好斜边A′B的中点C,S△ABO=4,tan∠BAO=2,则k的值为()A.3B.4C.6D.811.如图,平行四边形ABCD中,AB∶BC=3∶2,∠DAB=60°,E在AB上,且AE∶EB=1∶2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP∶DQ等于()A.3∶4B. C.∶ D.∶12.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90O ,AB=3,AC=4,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为()A.90B.100C.110D.121二、填空题:(本大题共6小题,每小题3分,共18分.)13.分解因式:322x x x -+=_________.14.若关于x 的分式方程32122x a x x =---有非负数解,则a 的取值范围是___.15.如图,在菱形ABCD 中,160AB DAB =∠=︒,,把菱形ABCD 绕点A 顺时针旋转30°得到菱形AB C D ''',其中点C 的运动路径为 'CC,则图中阴影部分的面积为________.16.如图,在Rt ABC ∆中,90ABC ∠= ,3AB =,4BC =,Rt MPN ∆,90MPN ∠= ,点P 在AC 上,PM 交AB 于点E ,PN 交BC 于点F ,当2PE PF =时,AP =________.17.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为(4,0),(8,2),(6,4).已知△A 1B 1C 1的两个顶点坐标分别为(1,3),(2,5).若△ABC 和△A 1B 1C 1位似,则△A 1B 1C 1的第三个顶点的坐标为________.18.二次函数y=223x 的图象如图,点A 0位于坐标原点,点A 1,A 2,A 3…A n 在y 轴的正半轴上,点B 1,B 2,B 3…B n 在二次函数位于象限的图象上,点C 1,C 2,C 3…C n 在二次函数位于第二象限的图象上,四边形A 0B 1A 1C 1,四边形A 1B 2A 2C 2,四边形A 2B 3A 3C 3…四边形A n ﹣1B n A n C n 都是菱形,∠A 0B 1A 1=∠A 1B 2A 1=∠A 2B 3A 3…=∠A n1B n A n =60°,菱形A n ﹣1B n A n C n 的周长为_____.三.解答题(本大题共7小题,共66分)19.先化简再求值:232(1)121x x x x x ---÷--+,其中x 是方程220x x -=的根.20.目前我市“校园手机”现象越来越受到社会关注,针对这种现象,重庆一中初三(1)班数学兴趣小组的同学随机了学校若干名家长对“中学生带手机”现象的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.),并将结果绘制成频数折线统计图1和扇形统计图2(没有完整).请根据图中提供的信息,解答下列问题:(1)此次抽样了多少名中学生家长;(2)求出图2中扇形C所对的圆心角的度数,并将图1补充完整;(3)根据抽样结果,请你估计我校11000名中学生家长中有多少名家长持态度;(4)在此次中,初三(1)班和初三(2)班各有2位家长对中学生带手机持态度,现从中选2位家长参加学校组织的家校,用列表法或画树状图的方法求选出的2人来自没有同班级的概率.21.某商场购进一批30瓦的LED灯泡和普通白炽灯泡进行,其进价与标价如下表:LED灯泡普通白炽灯泡进价(元)4525标价(元)6030(1)该商场购进了LED灯泡与普通白炽灯泡共300个,LED灯泡按标价进行,而普通白炽灯泡打九折,当完这批灯泡后可获利3200元,求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?(2)由于春节期间热销,很快将两种灯泡完,若该商场计划再次购进这两种灯泡120个,在没有打折的情况下,请问如何进货,完这批灯泡时获利至多且没有超过进货价的30%,并求出此时这批灯泡的总利润为多少元?22.太阳能光伏发电因其清洁、、便利、高效等特点,已成为世界各国普遍关注和发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF 的长度各是多少cm(结果保留根号)23.如图,AB、BF分别是⊙O的直径和弦,弦CD与AB、BF分别相交于点E、G,过点F的切线HF与DC的延长线相交于点H,且HF=HG.(1)求证:AB⊥CD;(2)若sin∠HGF=34,BF=3,求⊙O的半径长.24.如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N 分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若没有成立,请说明理由;(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM 与PN的数量关系,并加以证明.25.已知:如图,直线y=-x+2与x轴交于B点,与y轴交于C点,A点坐标为(-1,0)(1)求过A、B、C三点的抛物线的解析式.(2)在直线BC上方的抛物线上有一点D,过D作DE⊥BC于E,作DF∥y轴交BC于F,求△DEF 周长的值.(3)在满足第②问的条件下,在线段BD上是否存在一点P,使∠DFP=∠DBC.若存在,求出点P的坐标;若没有存在,说明理由.2023-2024学年重庆市区域中考数学专项提升仿真模拟试题(4月)一、选一选:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题目要求.)1.据宜宾市旅游局公布的数据,今年“五一”小长假期间,全市实现旅游总收入330000000元.将330000000用科学记数法表示为【】A.3.3×108B.3.3×109C.3.3×107D.0.33×1010【正确答案】A【详解】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它个有效数字前0的个数(含小数点前的1个0).330000000一共9位,从而330000000=3.3×108.故选A.2.没有等式组131722523(1)x xx x⎧--⎪⎨⎪->+⎩的解集表示在数轴上,正确的是()A.B.C.D.【正确答案】A【详解】解没有等式12x-1≤7-32x得x≤4;解没有等式5x-2>3(x+1)得x>5 2,所以52<x≤4.在数轴上表示正确的是A.故选A.3.已知m,n )A.9B.3± C.3D.5【正确答案】C【分析】首先将原式变形,进而利用乘法公式代入求出即可.【详解】解:∵11m n ==-====3.故选:C .此题主要考查了二次根式的化简求值,正确应用乘法公式是解题关键.4.若关于x 的一元二次方程x 2﹣3x +p =0(p ≠0)的两个没有相等的实数根分别为a 和b ,且a 2﹣ab +b 2=18,则a bb a+的值是()A.3B.﹣3C.5D.﹣5【正确答案】D【分析】【详解】解:∵a 、b 为方程230x x p -+=(p ≠0)的两个没有相等的实数根,∴a +b =3,ab =p ,∵2218a ab b -+=,∴2()318a b ab +-=,∴p =﹣3.当p =﹣3时,△=9﹣4p =9+12=21>0,∴p =﹣3符合题意.a b b a +=22a b ab +=2()2a b ab ab +-=232(3)3-⨯--=﹣5.故选D .5.一个正方形和两个等边三角形的位置如图所示,则∠1+∠2+∠3的度数为()A.1500B.1200C.900D.1800【正确答案】A【详解】分析:设围成的小三角形为△ABC ,分别用∠1、∠2、∠3表示出△ABC 的三个内角,再利用三角形的内角和等于180°列式整理即可得解.详解:如图,∠BAC=180°﹣90°﹣∠1=90°﹣∠1,∠ABC=180°﹣60°﹣∠3=120°﹣∠3,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,在△ABC 中,∠BAC+∠ABC+∠ACB=180°,∴90°﹣∠1+120°﹣∠3+120°﹣∠2=180°,∴∠1+∠2+∠3=150°,故选A .点睛:本题考查了三角形的内角和定理,用∠1、∠2、∠3表示出△ABC 的三个内角是解题的关键,也是本题的难点.6.如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是()A.B.C.D.【正确答案】C2cos55°,按键顺序正确的是.故答案选C.7.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数至多有A.4B.5C.6D.7【正确答案】C【详解】试题分析:由主视知这个几何体共有2层,由俯视图易得层有4个小正方体,由主视图可得二层至多有2个小正方体,第那么搭成这个几何体的小正方体至多为4+2=6个.故选C.8.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是()A.15.5,15.5B.15.5,15C.15,15.5D.15,15【正确答案】D 【详解】根据图中信息可知这些队员年龄的平均数为:132146158163172181268321⨯+⨯+⨯+⨯+⨯+⨯+++++=15岁,该足球队共有队员2+6+8+3+2+1=22人,则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁,故选:D .9.如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D ,E 两点,且∠ACD=45°,DF ⊥AB 于点F ,EG ⊥AB 于点G ,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示y 与x 的函数关系式的图象大致是()A. B. C. D.【正确答案】A【分析】注意分析y随x的变化而变化的趋势可得出正确答案.【详解】解:点C从点A运动到点B的过程中,x的值逐渐增大,DE的长度随x值的变化先变大再变小,当C与O重合时,y有值,∵x=0,y=22 ABx=AB4时,DE=ABx=AB,y=22 AB所以,随着x的增大,y先增后降,类抛物线故选A.本题考查动点函数图象的问题.注意分析y随x的变化而变化的趋势.10.如图,在Rt△AOB中,两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A′O′B.若反比例函数kyx的图象恰好斜边A′B的中点C,S△ABO=4,tan∠BAO=2,则k的值为()A.3B.4C.6D.8【正确答案】C【详解】解:设点C坐标为(x,y),作CD⊥BO′交边BO′于点D,∵tan ∠BAO=2,∴2BO AO,∵S △ABO =12•AO•BO=4,∴AO=2,BO=4,∵△ABO ≌△A'O'B ,∴AO=A′O′=2,BO=BO′=4,∵点C 为斜边A′B 的中点,CD ⊥BO′,∴CD=12A′O′=1,BD=12BO′=2,∴x=BO-CD=4-1=3,y=BD=2,∴k=x•y=3×2=6.故选C .本题考查了反比例函数图象上点的坐标特征,解答本题的关键在于读懂题意,作出合适的辅助线,求出点C 的坐标,然后根据点C 的横纵坐标之积等于k 值求解即可.11.如图,平行四边形ABCD 中,AB ∶BC=3∶2,∠DAB=60°,E 在AB 上,且AE ∶EB=1∶2,F 是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,则DP ∶DQ 等于()A.3∶4B.2313C.13∶26D.13∶5【正确答案】B【分析】连接DE 、DF ,过F 作FN ⊥AB 于N ,过C 作CM ⊥AB 于M ,根据三角形的面积是平行四边形面积的一半,可推出AF×DP=CE×DQ ,根据线段比例关系设出AB=3a ,BC=2a ,然后在Rt △AFN 和Rt △CEM 中,利用勾股定理计算出AF 、CE ,再代入AF×DP=CE×DQ 可得结果.【详解】连接DE 、DF ,过F 作FN ⊥AB 于N ,过C 作CM ⊥AB 于M ,∵根据三角形的面积和平行四边形的面积得:DEC DFA ABCD 1S S S 2∆∆==平行四边形,即11AF DP CE DQ 22⋅=⋅.∴AF×DP=CE×DQ ,∵四边形ABCD 是平行四边形,∴AD ∥BC∵∠DAB=60°,∴∠CBN=∠DAB=60°.∴∠BFN=∠MCB=30°∵AB :BC=3:2,∴设AB=3a ,BC=2a∵AE :EB=1:2,F 是BC 的中点,∴BF=a ,BE=2a ,BN=12a ,BM=a由勾股定理得:FN=32a ,∴AF CE 2==,∴DP DQ ⋅=⋅.∴DP :B .本题考查平行四边形中勾股定理的运用,关键是作出正确的辅助线,构造直角三角形,利用勾股定理计算出AF 、CE.12.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90O ,AB=3,AC=4,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为()A.90B.100C.110D.121【正确答案】C 【详解】解:如图,延长AB 交KF 于点O ,延长AC 交GM 于点P ,所以四边形AOLP 是正方形,边长AO=AB+AC=3+4=7,所以KL=3+7=10,LM=4+7=11,因此矩形KLMJ 的面积为10×11=110.故选:C .二、填空题:(本大题共6小题,每小题3分,共18分.)13.分解因式:322x x x -+=_________.【正确答案】()21x x -【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,直接提取公因式x 再应用完全平方公式继续分解即可.【详解】解:()()2322221=1x x x x x x x x -+=-+-故答案为:()21x x -.本题主要考查了因式分解.能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.14.若关于x 的分式方程32122x a x x =---有非负数解,则a 的取值范围是___.【正确答案】43a ≥-且23a ≠【分析】将a 看作已知数,表示出分式方程的解,根据解为非负数列出关于a 的没有等式,求出没有等式的解集即可得到a 的范围.【详解】分式方程去分母得:2x =3a ﹣4(x ﹣1),解得:346a x +=,∵分式方程的解为非负数,∴3406a +≥,解得:43a ≥-,又当x =1时,分式方程无意义,∴把x =1代入346a x +=得23a =,∴要使分式方程有意义,必须23a ≠,∴a 的取值范围是43a ≥-且23a ≠,故43a ≥-且23a ≠.此题考查了分式方程的解,分式方程的解即为能使方程左右两边相等的未知数的值,本题注意x -1≠0这个隐含条件.15.如图,在菱形ABCD 中,160AB DAB =∠=︒,,把菱形ABCD 绕点A 顺时针旋转30°得到菱形AB C D ''',其中点C 的运动路径为 'CC,则图中阴影部分的面积为________.【正确答案】3342π+【详解】如解图,连接CD '和BC ',BC 与C D ''相交于点O .∵四边形ABCD 是菱形,60DAB ∠=︒,30DAC ∠=︒,∴点A ,D ',C 在一条直线上,点A ,B ,C '在一条直线上,30BAC ACB ∴∠=∠=︒,60CBC ∴∠'=︒,又30OC B ∠'=︒ ,90BOC ∴∠'=︒,∵菱形ABCD 的边长为1,60DAB ∠=︒,∴3AC AC '==,∴3-1BC CD ''==,∴312OB OD '==,33'2OC OC ==,COD C OB ∴'' ≌,2123330(3),243604COD BOC CAC S S OB OC S ππ'''=-⨯'∴==⋅== 扇形,3342CAC COD BOC S S S S π'''∴=--= 阴影扇形.16.如图,在Rt ABC ∆中,90ABC ∠= ,3AB =,4BC =,Rt MPN ∆,90MPN ∠= ,点P 在AC 上,PM 交AB 于点E ,PN 交BC 于点F ,当2PE PF =时,AP =________.【正确答案】3【分析】如图作PQ⊥AB于Q,PR⊥BC于R.由△QPE∽△RPF,推出PQPR=PEPF=2,可得PQ=2PR=2BQ,由PQ∥BC,可得AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,可得2x+3x=3,求出x即可解决问题.【详解】如图,作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四边形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴PQPR=PEPF=2,∴PQ=2PR=2BQ.∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,∴2x+3x=3,∴x=35,∴AP=5x=3.故答案为3.本题考查了相似三角形的判定和性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.17.如图,在平面直角坐标系中,△ABC的顶点坐标分别为(4,0),(8,2),(6,4).已知△A1B1C1的两个顶点坐标分别为(1,3),(2,5).若△ABC和△A1B1C1位似,则△A1B1C1的第三个顶点的坐标为________.【正确答案】(3,4)或(0,4)【详解】如图,由题意知已知线段与线段AC 是对应线段,所以点A 和点C 的对应点都有两个,对应点的连线交于一点,这一交点即为位似,连接位似与点B 得到直线,由线段AC 与已知线段的长度之比为2︰1,知相似比为2︰1.在连线上找到相似比为2︰1的点,从而确定第三个顶点的坐标为(3,4)或(0,4).18.二次函数y=223x 的图象如图,点A 0位于坐标原点,点A 1,A 2,A 3…A n 在y 轴的正半轴上,点B 1,B 2,B 3…B n 在二次函数位于象限的图象上,点C 1,C 2,C 3…C n 在二次函数位于第二象限的图象上,四边形A 0B 1A 1C 1,四边形A 1B 2A 2C 2,四边形A 2B 3A 3C 3…四边形A n ﹣1B n A n C n 都是菱形,∠A 0B 1A 1=∠A 1B 2A 1=∠A 2B 3A 3…=∠A n1B n A n =60°,菱形A n ﹣1B n A n C n 的周长为_____.【正确答案】4n【详解】试题解析:∵四边形A 0B 1A 1C 1是菱形,∠A 0B 1A 1=60°,∴△A 0B 1A 1是等边三角形.设△A 0B 1A 1的边长为m 1,则B 1132m 12m ;代入抛物线的解析式中得:21132322m m =,解得m 1=0(舍去),m 1=1;故△A 0B 1A 1的边长为1,同理可求得△A 1B 2A 2的边长为2,…依此类推,等边△A n-1B n A n 的边长为n ,故菱形A n-1B n A n C n 的周长为4n .考点:二次函数综合题.三.解答题(本大题共7小题,共66分)19.先化简再求值:232(1)121x x x x x ---÷--+,其中x 是方程220x x -=的根.【正确答案】-x 2-x+2,2【分析】先利用分式的运算法则进行化简,再解方程求得x 的值,然后代入求值.【详解】原式2242121x x x x x --=÷--+2(2)(2)(1)12x x x x x +--=--- 22x x =--+解220x x -=得:120,2x x ==(分式无意义,舍去)当0x =时,原式2=20.目前我市“校园手机”现象越来越受到社会关注,针对这种现象,重庆一中初三(1)班数学兴趣小组的同学随机了学校若干名家长对“中学生带手机”现象的态度(态度分为:A .无所谓;B .基本赞成;C .赞成;D .),并将结果绘制成频数折线统计图1和扇形统计图2(没有完整).请根据图中提供的信息,解答下列问题:(1)此次抽样了多少名中学生家长;(2)求出图2中扇形C 所对的圆心角的度数,并将图1补充完整;(3)根据抽样结果,请你估计我校11000名中学生家长中有多少名家长持态度;(4)在此次中,初三(1)班和初三(2)班各有2位家长对中学生带手机持态度,现从中选2位家长参加学校组织的家校,用列表法或画树状图的方法求选出的2人来自没有同班级的概率.【正确答案】(1)200人;(2)18°,补图见解析;(3)有6600名家长持态度;(4)23.【详解】分析:(1)由题意得:共中学生家长:40÷20%=200(名);(2)由图可知扇形C 所对的圆心角的度数为:360°×(1-15%-20%-60%)=18°;求得C 类人数为:200-30-40-120=10(名);即可补全统计图;(3)由D 类占60%,即可估计该校10000名中学生家长中持态度的人数;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选出的2人来自没有同班级的情况,再利用概率公式即可求得答案.解:(1)共的中学生家长数是:40÷20%=200(人);(2)扇形C 所对的圆心角的度数是:360°×(1﹣20%﹣15%﹣60%)=18°;C 类的人数是:200×(1﹣20%﹣15%﹣60%)=10(人),补图如下:(3)根据题意得:10000×60%=6000(人),答:10000名中学生家长中有6000名家长持态度;(4)设初三(1)班两名家长为A 1,A 2,初三(2)班两名家长为B 1,B 2,一共有12种等可能结果,其中2人来自没有同班级共有8种∴P(2人来自没有同班级)=812=23.点睛:本题考查了列表法或树状图求概率,以及扇形统计图与条形统计图的有关知识,用到的知识点为:概率=所求情况数与总情况数之比,解题关键是从两种统计图中整理出有关信息.21.某商场购进一批30瓦的LED 灯泡和普通白炽灯泡进行,其进价与标价如下表:LED 灯泡普通白炽灯泡进价(元)4525标价(元)6030(1)该商场购进了LED 灯泡与普通白炽灯泡共300个,LED 灯泡按标价进行,而普通白炽灯泡打九折,当完这批灯泡后可获利3200元,求该商场购进LED 灯泡与普通白炽灯泡的数量分别为多少个?(2)由于春节期间热销,很快将两种灯泡完,若该商场计划再次购进这两种灯泡120个,在没有打折的情况下,请问如何进货,完这批灯泡时获利至多且没有超过进货价的30%,并求出此时这批灯泡的总利润为多少元?【正确答案】(1)LED 灯泡与普通白炽灯泡的数量分别为200个和100个;(2)1350元.【分析】1)设该商场购进LED 灯泡x 个,普通白炽灯泡的数量为y 个,利用该商场购进了LED 灯泡与普通白炽灯泡共300个和完这批灯泡后可以获利3200元列方程组,然后解方程组即可;(2)设该商场购进LED 灯泡a 个,则购进普通白炽灯泡(120-a )个,这批灯泡的总利润为W 元,利用利润的意义得到W=(60-45)a+(30-25)(120-a )=10a+600,再根据完这批灯泡时获利至多且没有超过进货价的30%可确定a 的范围,然后根据函数的性质解决问题.【详解】(1)设该商场购进LED 灯泡x 个,普通白炽灯泡的数量为y 个.根据题意,得300(6045)(0.93025)3200x y x y +=⎧⎨-+⨯-=⎩解得200100x y =⎧⎨=⎩答:该商场购进LED 灯泡与普通白炽灯泡的数量分别为200个和100个.(2)设该商场再次购进LED 灯泡a 个,这批灯泡的总利润为W 元.则购进普通白炽灯泡(120﹣a )个.根据题意得W=(60﹣45)a+(30﹣25)(120﹣a )=10a+600.∵10a+600≤[45a+25(120﹣a )]×30%,解得a≤75,∵k=10>0,∴W 随a 的增大而增大,∴a=75时,W ,值为1350,此时购进普通白炽灯泡(120﹣75)=45个.答:该商场再次购进LED 灯泡75个,购进普通白炽灯泡45个,这批灯泡的总利润为1350元.本题考查了二元方程组和函数的应用,根据实际问题找到等量关系列方程组和建立函数模型,利用函数的性质和自变量的取值范围解决最值问题是解题的关键.22.太阳能光伏发电因其清洁、、便利、高效等特点,已成为世界各国普遍关注和发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB 的长度相同,均为300cm ,AB 的倾斜角为,BE=CA=50cm ,支撑角钢CD ,EF 与底座地基台面接触点分别为D ,F ,CD 垂直于地面,于点E .两个底座地基高度相同(即点D ,F 到地面的垂直距离相同),均为30cm ,点A 到地面的垂直距离为50cm ,求支撑角钢CD 和EF 的长度各是多少cm (结果保留根号)【正确答案】29033cm 【分析】过点A 作AG CD ⊥,垂足为G ,利用三角函数求出CG ,从而求出GD ,继而求出CD .连接FD 并延长与BA 的延长线交于点H ,利用三角函数求出CH ,由图得出EH ,再利用三角函数值求出EF .【详解】过点A 作AG CD ⊥,垂足为G .则30CAG ∠=︒,在Rt ACG 中,()1sin 3050252CG AC cm =︒=⨯= ,由题意,得()GD 503020cm =-=,∴()252045CD CG GD cm =+=+=,连接FD 并延长与BA 的延长线交于点H .由题意,得30H ∠=︒.在Rt CDH 中,()290sin 30CD CH CD cm ===︒,∴()300505090290EH EC CH AB BE AC CH cm =+=--+=--+=.在Rt EFH 中,()tan 3029033EF EH cm =︒=⨯= .答:支角钢CD 的长为45cm ,EF 的长为3cm .考点:三角函数的应用23.如图,AB 、BF 分别是⊙O 的直径和弦,弦CD 与AB 、BF 分别相交于点E 、G ,过点F 的切线HF 与DC 的延长线相交于点H ,且HF =HG .(1)求证:AB ⊥CD ;(2)若sin∠HGF =34,BF =3,求⊙O 的半径长.【正确答案】(1)见解析;(2)2【详解】试题分析:(1)根据切线的性质以及等腰三角形的性质首先求出,BGE HFG ∠=∠进而得出90BEG ∠=︒,可得出AB CD ⊥;(2)连接AF ,首先得出HGF HFG AFO A ∠=∠=∠=∠,利用锐角三角函数得出AB 即可得出半径.试题解析:(1)连接OF .∵OF =OB ,∴∠OFB =∠B ,∵HF 是⊙O 的切线,∴∠OFH =90°∴∠HFB +∠OFB =90°,∴∠B +∠HFB =90°,∵HF=HG,∴∠HFG=∠HGF,又∵∠HGF=∠BGE,∴∠BGE=∠HFG,∴∠BGE+∠B=90°,∴∠GEB=90°,∴AB⊥CD.(2)连接AF.∵AB为⊙O直径,∴∠AFB=90°,∴∠A+∠B=90°,∴∠A=∠BGE,又∵∠BGE=∠HGF,∠A=∠HGF,∵33 sin,sin,44 HGF A∠=∴=∵∠AFB=90°,BF=3,∴AB=4.∴OA=OB=2.即⊙O的半径为2.24.如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N 分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若没有成立,请说明理由;(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM 与PN的数量关系,并加以证明.【正确答案】(1)PM =PN ,PM ⊥PN ,理由见解析;(2)成立,证明见解析;(3)PM =kPN ;理由见解析【分析】(1)由等腰直角三角形的性质易证△ACE ≌△BCD ,由此可得AE =BD ,再根据三角形中位线定理即可得到PM =PN ,由平行线的性质可得PM ⊥PN ;(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;(3)PM =kPN ,由已知条件可证明△BCD ∽△ACE ,所以可得BD =kAE ,因为点P 、M 、N 分别为AD 、AB 、DE 的中点,所以PM =12BD ,PN =12AE ,进而可证明PM =kPN .【详解】解:(1)PM =PN ,PM ⊥PN ,理由如下:∵△ACB 和△ECD 是等腰直角三角形,∴AC =BC ,EC =CD ,∠ACB =∠ECD =90°.在△ACE 和△BCD 中90AC BC ACB ECD CE CD ︒=⎧⎪∠=∠=⎨⎪=⎩,∴△ACE ≌△BCD (SAS ),∴AE =BD ,∠EAC =∠CBD ,∵点M 、N 分别是斜边AB 、DE 的中点,点P 为AD 的中点,∴PM =12BD ,PN =12AE ,∴PM =PM ,∵∠NPD =∠EAC ,∠MPN =∠BDC ,∠EAC +∠BDC =90°,∴∠MPA +∠NPC =90°,∴∠MPN =90°,即PM ⊥PN ;(2)成立,证明:∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM=12BD,PM//BD;PN=12AE,PN//AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.(3)PM=kPN∵△ACB和△ECD是直角三角形,∴∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∵BC=kAC,CD=kCE,∴BC CDCEAC =k.∴△BCD∽△ACE.∴BD=kAE.∵点P、M、N分别为AD、AB、DE的中点,∴PM=12BD,PN=12AE.∴PM=kPN.本题考查的是几何变换综合题,熟知等腰直角三角形的判定与性质、全等三角形的判定与性质以及相似三角形的判定和性质和三角形中位线定理的运用,熟记和三角形有关的各种性质定理是解答此题的关键.25.已知:如图,直线y=-x+2与x轴交于B点,与y轴交于C点,A点坐标为(-1,0)(1)求过A、B、C三点的抛物线的解析式.(2)在直线BC上方的抛物线上有一点D,过D作DE⊥BC于E,作DF∥y轴交BC于F,求△DEF 周长的值.(3)在满足第②问的条件下,在线段BD上是否存在一点P,使∠DFP=∠DBC.若存在,求出点P的坐标;若没有存在,说明理由.【正确答案】(1)y=﹣x2+x+2;(2)△DEF周长的值为;(3)P 658 5.【详解】分析:(1)、根据函数得出点B和点C的坐标,然后利用待定系数法求出函数解析式;(2)、首先设出点D和点F的坐标,然后得出DF的长度,根据函数的行得出DF的值,根据等腰直角三角形的性质得出△DEF的周长值;(3)、延长DF交x轴于H,作PM⊥DF于M,根据题意得出△DFP∽△DBF,然后根据线段之间的比值得出PM和DM的长度,从而得出点P的坐标.详解:(1)直线y=﹣x+2与x轴交于B(2,0),与y轴交于C点(0,2),设过A、B、C的抛物线的解析式为y=ax2+bx+c,把A(﹣1,0)、B(2,0)、C(0,2)的坐标代入,∴a=﹣1,b=1,c=2,∴抛物线的解析式为:y=﹣x2+x+2,(2)设D(x,﹣x2+x+2),F(x,﹣x+2),∴DF=(﹣x2+x+2)﹣(﹣x+2)=﹣x2+2x,所以x=1时,DF=1,∵OB=OC,∴△OBC为等腰直角三角形,∵DE⊥BC,DF∥y轴,∴△DEF 为等腰直角三角形,∴△DEF 周长的值为(3)如图,当△DEF 周长时,D(1,2),F(1,1).延长DF 交x 轴于H,作PM⊥DF 于M,则当∠DFP=∠DBC 时,△DFP∽△DBF,∴DF DB DP DF =,∴DP=5,∴15PM DM DP BH DH DB ===,∴PM=15,DM=25,∴P 点的横坐标为OH+PM=1+15=65,P 点的纵坐标为DH﹣DM=2﹣25=85,∴P 6585.点睛:本题主要考查的是二次函数的综合应用问题,综合性非常强,难度较大.利用好相似三角形的性质是解决这个问题的关键.2023-2024学年重庆市区域中考数学专项提升仿真模拟试题(5月)一、选一选:本大题共8个小题,每小题3分,共24分.1.下列计算中,结果正确的是()A .236a a a ⋅= B.(2)(3)6a a a⋅= C.236()a a = D.623a a a ÷=2.为筹备班级联欢会,班干部对全班同学吃的水果进行了统计,最终决定买哪种水果时,班干部最关心的统计量是()A .平均数B.中位数C.众数D.方差3.已知,x-2y=3,则7-2x+4y 的值为()A.-1B.0C.1D.24.如图所示,四边形ABCD 为矩形,点O 为对角线的交点,∠BOC=120°,AE⊥BO 交BO 于点E,AB=4,则BE 等于()A.1B.2C.3D.45.二次函数y =﹣2x 2+4x +1的图象如何平移可得到y =﹣2x 2的图象()A.向左平移1个单位,向上平移3个单位B.向右平移1个单位,向上平移3个单位C.向左平移1个单位,向下平移3个单位D.向右平移1个单位,向下平移3个单位6.如图,在Rt △ABC 中,∠C=90°,AC=BC=6,D 是AC 上一点,若tan ∠DBC=23,则AD 的长为()。

重庆市2013年中考数学试卷(解析版)

重庆市2013年中考数学试卷(解析版)

∴反比例函数解析式为 y= ,
将 A(2,m)代入 y= 中,得 m=5,∴A(2,5),
∴三角形的相似比是 3:1,
∴△ABC 与△DEF 的面积之比为 9:1.
故答案为:9:1.
-5-
13.(2013 重庆)重庆农村医疗保险已经全面实施.某县七个村中享受了住院医疗费用报
销的人数分别为:20,24,27,28,31,34,38,则这组数据的中位数是

考点:中位数。
解答:解:把这一组数据从小到大依次排列为 20,24,27,28,31,34,38,
科学记数法表示为

考点:科学记数法—表示较大的数。
解答:解:380 000=3.8×105.
故答案为:3.8×105.
12.(2013 重庆)已知△ABC∽△DEF,△ABC 的周长为 3,△DEF 的周长为 1,则 ABC
与△DEF 的面积之比为

考点:相似三角形的性质。
解答:解:∵△ABC∽△DEF,△ABC 的周长为 3,△DEF 的周长为 1,
-7-
即:∠EAD=∠BAC,
在△EAD 和△BAC 中 ∴BC=ED.
19.(2013 重庆)解方程: 2 1 . x 1 x 2
考点:解分式方程。 解答:解:方程两边都乘以(x-1)(x-2)得, 2(x-2)=x-1, 2x-4=x-1, x=3, 经检验,x=3 是原方程的解, 所以,原分式方程的解是 x=3. 20.(2013 重庆)如图,在 Rt△ABC 中,∠BAC=90°,点 D 在 BC 边上,且△ABD 是等 边三角形.若 AB=2,求△ABC 的周长.(结果保留根号)
10.(2013 重庆)已知二次函数 y ax 2 bx c(a 0) 的图象如图所示对称轴为 x 1 .下列结论中,正确的是( ) 2

2024年重庆市渝中区求精中学中考数学二诊模拟试卷(含解析)

2024年重庆市渝中区求精中学中考数学二诊模拟试卷(含解析)

2024年重庆市渝中区求精中学中考数学二诊模拟试卷一、选择题(本大题10个小题,每小题4分,共40分)1.(4分)﹣6的相反数是( )A .﹣6B .C .6D .2.(4分)下列各图形不是轴对称图形的是( )A .B .C .D .3.(4分)如图,直线a ∥b ,Rt △ABC 中,∠ABC =90°,它的顶点A 、B 分别在直线a ,b 上,且∠CAB =∠BAE ,若∠1=50°,则∠2的度数为( )A .75°B .85°C .60°D .65°4.(4分)如图,△ABC 和△A ′B ′C ′是以点O 为位似中心的位似图形,点A 在线段OA ′上.若OA :AA ′=1:2,则△ABC 和△A ′B ′C ′的周长之比为( )A .1:2B .1:4C .4:9D .1:35.(4分)下列图形都是由同样大小的△按一定规律组成的,其中第①个图形中一共有6个△,第②个图形中一共有13个△,第③个图形中一共有22个△,……,按此规律排列,则第⑧个图形中△的个数为( )A.97B.95C.87D.856.(4分)估计×(2)的值在( )A.6和7之间B.7和8之间C.8和9之间D.9和10之间7.(4分)《2024年春节联欢晚会》以匠心独运的歌舞创编、暖心真挚的节目表演、充满科技感和时代感的视觉呈现,为海内外受众奉上了一道心意满满、暖意融融的除夕“文化大餐”.截至2月10日2时,总台春晚全媒体累计触达142亿人次,其中“竖屏看春晚”直播播放量4.2亿次.据统计,2022年首次推出的“竖屏看春晚”累计观看2亿次,设“竖屏看春晚”次数的年平均增长率为x,则可列出关于x的方程( )A.4.2(1+x)2=142B.2(1+x)2=4.2C.2(1+2x)=4.2D.4.2(1﹣x)2=28.(4分)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠D=30°,OD=4,则AC等于( )A.6B.4C.D.39.(4分)如图,在正方形ABCD中,边AB、AD上分别有E、F两点,AE=DF,BP平分∠CBF交CD于点P.若∠CPB=α,则∠CEB的度数为( )A.90°﹣αB.αC.180°﹣2αD.10.(4分)有一列数{﹣1,﹣2,﹣3,﹣4},将这列数中的每个数求其相反数得到{1,2,3,4},再分别求与1的和的倒数,得到,设为{a1,a2,a3,a4},称这为一次操作,第二次操作是将{a1,a2,a3,a4}再进行上述操作,得到{a5,a6,a7,a8};第三次将{a5,a6,a7,a8}重复上述操作,得到{a9,a10,a11,a12}…以此类推,得出下列说法中,正确的有( )个.①a5=2,,,,②a10=﹣2,③a2015=3,④.A.0B.1C.2D.3二、填空题(本大题8个小题,每小题4分,共32分)11.(4分)计算:= .12.(4分)有3个外观完全相同的密封且不透明试剂瓶,分别装有稀硫酸、稀盐酸、氯化钠三种溶液,小星从这3个试剂瓶中任意抽取2个,则抽到的2个都是酸性溶液(稀硫酸溶液、稀盐酸溶液)的概率是 .13.(4分)如图,在五边形ABCDE中,点M、N分别为在AB、AE的边上,∠1+∠2=110°,则∠B+∠C+∠D+∠E= .14.(4分)反比例函数的图象经过A(m,y1),B(m+1,y2),且y1<y2,那么m的取值范围是 .15.(4分)如图,平行四边形ABCD的对角线AC,BD交于点O,且AC⊥AB,B为圆心,OA长为半径画弧交对角线于点E,以O为圆心,OC长为半画弧交对角线BD于点F,若AB=2,,则图中阴影部分的面积为 .(结果保留π)16.(4分)如图,矩形纸片ABCD中,E为BC的中点,连接AE,将△ABE沿AE折叠得到△AFE,连接CF.若AB=4,BC=6,则CF的长为 .17.(4分)若关于x的不等式组的解集为x>4,且关于x的分式方程有整数解,则符合条件的所有整数a有 个.18.(4分)对于一个各个数位上的数字均不相等且均不为零的三位自然数m,若m的十位数字分别小于m的百位数字与个位数字,则称m为“弦月数”,当三位自然数为弦月数时,重新排列m各个数位上的数字可得到一个最大数m1和一个最小数m2,规定,例如:m=524,因为2<5,2<4,所以524是“弦月数”,若m=412.求F(412)= ;若三位自然数n=100x+10y+z是“弦月数”(其中1≤x≤9,1≤y≤9,1≤z≤9,x、y、z均为整数),且n的个位数字小于百位数字,F(n)+3x=15,求满足条件的所有三位自然数n的值是 .三、解答题(本大题8个小题,19题8分,其余每小题8分,共78分)19.(8分)计算:(1)x(4x+3y)﹣(2x+y)(2x﹣y);(2).20.(10分)如图,在△ABC中,点D为BC边上的中点,连接AD.(1)尺规作图:在BC下方作射线BF,使得∠CBF=∠C,且射线BF交AD的延长线于点E(不要求写作法,保留作图痕迹);(2)在(1)所作的图中,连接CE,求证:AB∥CE.(请补全下面的证明过程)证明:∵点D为BC边上的中点,∴DC=DB,( )在△ADC和△EDB中,,∴△ADC≌△EDB,( )∴AD= ,在△ADB和△EDC中,,∴△ADB≌△EDC,( )∴∠ABD=∠ECD,∴AB∥CE( ).21.(10分)2023年8月24日中午12点,日本福岛第一核电站启动核污染水排海,预估排放时间将长达30年.某学校为了解该校学生对此事件的关注与了解程度,对全校学生进行问卷测试,得分采用百分制,得分越高,则对事件的关注与了解程度就越高.现从七、八年级学生中各随机抽取20名学生的测试得分进行整理和分析(得分用x表示,单位:分,且得分为整数,共分为5组,A组:0≤x<60,B组:60≤x<70,C组:70≤x<80,D组:80≤x<90,E组:90≤x≤100),下面给出了部分信息:七年级被抽取的学生测试得分的所有数据为:48,62,79,95,88,70,88,55,74,87,88,93,66,90,74,86,63,68,84,82;八年级被抽取的学生测试得分中,C组包含的所有数据为:72,77,78,79,75.七、八年级被抽取的学生测试得分统计表平均数众数中位数七年级77a80.5八年级778977.5根据以上信息,解答下列问题:(1)上述图表中:a= ,b= ;(2)根据以上数据,你认为该校七、八年级学生在关注与了解日本核污染水排海事件上,哪个年级的学生对事件的关注与了解程度更高?请说明理由(一条理由即可);(3)若该校七年级有学生900人,八年级有学生800人,估计该校这两个年级的学生测试得分在C组的人数一共有多少人?22.(10分)民族要复兴,乡村必振兴!新时代新征程,某县“三农”一定高扬新重庆“敢闯敢干、唯实争先”主旋律,持续奋斗、不辱使命,奋力推动农业农村优先发展.某县去年广柑大获丰收,果农李大爷共售出A、B两种广柑900千克,A种广柑售价是3元/千克,B种广柑售价是4元/千克,全部售出后总销售额为3000元.(1)去年,果农李大爷售出A、B两种广柑各多少千克?(2)今年广柑又获得丰收,李大爷借助直播平台销售广柑,由于更多人喜欢维生素丰富的水果,需求增加,A种广柑单价上浮,其单价比去年增加了,B种广柑的单价比去年上涨了2a%,结果A种广柑的销量是去年销量的2倍,B种广柑的销量比去年销量减少了2a%,总销售额比去年增加了60%.求a的值.23.(10分)如图1,在矩形ABCD中,AB=3,BC=4,动点P从点A出发,沿折线A→B →C运动,当它运动到点C时停止运动,过点D作DQ⊥AP交AP于点Q.若AP=x(x >0),DQ=y.(1)请直接写出y关于x的函数关系式,并注明自变量x的取值范围;(2)如图2,在给定的平面直角坐标系中,画出y关于x的函数图象,并写出y的一条性质;(3)当y=3时,请求出QP的值为多少?24.(10分)仙女山大草原部分景点的道路分布如图所示,其中AE是骑行公路.经测量,点C在点B正南方,点D在点B正东方,∠BCD=60°,CD=500米,点A在点B的北偏西23°方向,AB=300米,点E在点D正北方且在点A正东方.(参考数据:sin23°≈0.39,cos23°≈0.92,tan23°≈0.42,≈1.73)(1)求AE的距离;(结果精确到个位)(2)小华和小亮同时从游客中心点C出发,前往点E处的露营基地,小华沿路线C→D →E步行到达基地,速度为1.2m/s;小亮以1m/s的速度沿C→B→A到达点A后,立即骑行到达点E,骑行速度为6m/s,请计算说明小华和小亮谁先到达E点?25.(10分)已知抛物线y=ax2+bx+3的顶点坐标为(﹣1,4),与x轴交于点A和点B,与y轴交于点C,点P为第二象限内抛物线上的动点.(1)求抛物线的解析式;(2)如图1,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,﹣1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标;26.(10分)在△ABC中,∠BAC=90°,AB=AC,点D为BC边上一动点,连接AD,将AD绕着D点逆时针方向旋转90°得到DE,连接AE.(1)如图1,AH⊥BC,点D恰好为CH中点,AE与BC交于点G,若AB=4,求AE 的长度;(2)如图2,DE与AB交于点F,连接BE,在BA延长线上有一点P,∠PCA=∠EAB,求证:AB=AP+BD;(3)如图3,DE与AB交于点F,且AB平分∠EAD,点M为线段AF上一点,点N为线段AD上一点,连接DM,MN,点K为DM延长线上一点,将△BDK沿直线BK翻折至△BDK所在平面内得到△BQK,连接DQ,在M,N运动过程中,当DM+MN取得最小值,且∠DKQ=45°时,请直接写出的值.2024年重庆市渝中区求精中学中考数学二诊模拟试卷参考答案与试题解析一、选择题(本大题10个小题,每小题4分,共40分)1.(4分)﹣6的相反数是( )A.﹣6B.C.6D.【分析】利用相反数的定义判断即可.【解答】解:﹣6的相反数是6,故选:C.2.(4分)下列各图形不是轴对称图形的是( )A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,由此即可判断.【解答】解:A、选项中的图形是轴对称图形,故A不符合题意;B、选项中的图形是轴对称图形,故B不符合题意;C、选项中的图形是轴对称图形,故C不符合题意;D、选项中的图形不是轴对称图形,故D符合题意;故选:D.3.(4分)如图,直线a∥b,Rt△ABC中,∠ABC=90°,它的顶点A、B分别在直线a,b 上,且∠CAB=∠BAE,若∠1=50°,则∠2的度数为( )A.75°B.85°C.60°D.65°【分析】根据两直线平行,内错角相等得到∠DAE=∠1=50°,再结合已知∠CAB=∠BAE即可求出∠CAB的度数,再根据直角三角形两锐角互余即可求出∠2的度数.【解答】解:∵直线a∥b,∴∠DAE=∠1=50°,∵∠CAB=∠BAE,∴∠CAB=25°,∵∠ABC=90°,∴∠2=90°﹣∠CAB=90°﹣25°=65°,故选:D.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA ′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为( )A.1:2B.1:4C.4:9D.1:3【分析】根据题意求出OA:OA′=1:3,根据相似三角形的性质求出AC:A′C′,根据相似三角形的性质计算即可.【解答】解:∵OA:AA′=1:2,∴OA:OA′=1:3,∵△ABC和△A′B′C′是以点O为位似中心的位似图形,∴AC∥A′C′,∴△AOC∽△A′OC′,∴AC:A′C′=OA:OA′=1:3,∴△ABC和△A′B′C′的周长之比为1:3,故选:D.5.(4分)下列图形都是由同样大小的△按一定规律组成的,其中第①个图形中一共有6个△,第②个图形中一共有13个△,第③个图形中一共有22个△,……,按此规律排列,则第⑧个图形中△的个数为( )A.97B.95C.87D.85【分析】由题中所给图形,依次求出图形中△的个数,发现规律即可解决问题.【解答】解:由题知,第①个图形中△的个数为:6=12+1×4+1;第②个图形中△的个数为:13=22+2×4+1;第③个图形中△的个数为:22=32+3×4+1;…,所以第n个图形中△的个数为(n2+4n+1)个,当n=8时,n2+4n+1=82+4×8+1=97(个),即第⑧个图形中△的个数为97个.故选:A.6.(4分)估计×(2)的值在( )A.6和7之间B.7和8之间C.8和9之间D.9和10之间【分析】根据二次根式混合运算的方法先将原式化简后,再根据算术平方根的定义估算无理数的大小即可.【解答】解:原式=×2+×=2+1=+1,∵<<,即7<<8,∴8<+1<9.故选:C.7.(4分)《2024年春节联欢晚会》以匠心独运的歌舞创编、暖心真挚的节目表演、充满科技感和时代感的视觉呈现,为海内外受众奉上了一道心意满满、暖意融融的除夕“文化大餐”.截至2月10日2时,总台春晚全媒体累计触达142亿人次,其中“竖屏看春晚”直播播放量4.2亿次.据统计,2022年首次推出的“竖屏看春晚”累计观看2亿次,设“竖屏看春晚”次数的年平均增长率为x,则可列出关于x的方程( )A.4.2(1+x)2=142B.2(1+x)2=4.2C.2(1+2x)=4.2D.4.2(1﹣x)2=2【分析】增长率问题中的一般公式为a(1+x)n=b,其中n为共增长了几年,a为第一年的原始数据,b是增长后的数据,x是增长率.【解答】解:设“竖屏看春晚”次数的年平均增长率为x,根据题意得,2(1+x)2=4.2,故选:B.8.(4分)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠D=30°,OD=4,则AC等于( )A.6B.4C.D.3【分析】连接OC,证明OC⊥DC,结合OD=4,∠D=30°,可得OC=2,∠COD=60°,,∠D=∠A=30°,据此可得答案.【解答】解:如图,连接OC,∵DC切⊙O于点C,∴OC⊥DC,∵OD=4,∠D=30°,∴,∠DOC=60°,∴∠A=∠OCA=30°,,∴∠D=∠A=30°,∴,故选:C.9.(4分)如图,在正方形ABCD中,边AB、AD上分别有E、F两点,AE=DF,BP平分∠CBF交CD于点P.若∠CPB=α,则∠CEB的度数为( )A.90°﹣αB.αC.180°﹣2αD.【分析】先证△ABF和△BCE全等,得出∠CEB=∠BFA,由平行线的性质∠BFA=∠CBF,于是得出∠CEB=∠CBF,根据角平分线的定义得出∠CBF=2∠CBP,然后用α表示∠CBP的度数,即可得出∠CEB的度数.【解答】解:∵四边形ABCD是正方形,∴AD=AB=BC,∠DAB=∠ABC=∠BCD=90°,AD∥BC,∵AE=DF,∴AD﹣DF=AB﹣AE,即AF=BE,在△ABF和△BCE中,,∴△ABF≌△BCE(SAS),∴∠CEB=∠BFA,∵AD∥BC,∴∠BFA=∠CBF,∴∠CEB=∠CBF,∵BP平分∠CBF,∴∠CBF=2∠CBP,∴∠CEB=2∠CBP,∵∠BCD=90°,∠CPB=α,∴∠CBP=90°﹣α,∴∠CEB=2∠CBP=2(90°﹣α)=180°﹣2α,故选:C.10.(4分)有一列数{﹣1,﹣2,﹣3,﹣4},将这列数中的每个数求其相反数得到{1,2,3,4},再分别求与1的和的倒数,得到,设为{a1,a2,a3,a4},称这为一次操作,第二次操作是将{a1,a2,a3,a4}再进行上述操作,得到{a5,a6,a7,a8};第三次将{a5,a6,a7,a8}重复上述操作,得到{a9,a10,a11,a12}…以此类推,得出下列说法中,正确的有( )个.①a5=2,,,,②a10=﹣2,③a2015=3,④.A.0B.1C.2D.3【分析】根据所给的操作方式,求出前面的数,再分析得出规律,再进行分析即可.【解答】解:∵{a1,a2,a3,a4}对应为{,,,},∴a5=2,,,,故①说法正确;a9=﹣1,a10=﹣2,a11=﹣3,a12=﹣4,∴经过两次操作后,所给的数重复出现,即每12个数为一组,∵2015÷12=167……11,∴a2015=﹣3,故③说法错误;②说法正确;∵a1+a2+a3+…+a12=﹣,∴a1+a2+a3+…+a49+a50=4×(﹣)+=﹣=﹣,故④说法错误.故正确的说法有1个.故选:C.二、填空题(本大题8个小题,每小题4分,共32分)11.(4分)计算:= 0 .【分析】根据负整数指数幂法则、零指数幂法则和有理数的加减混合运算法则进行解题即可.【解答】解:原式=1﹣3+2=0;故答案为:0.12.(4分)有3个外观完全相同的密封且不透明试剂瓶,分别装有稀硫酸、稀盐酸、氯化钠三种溶液,小星从这3个试剂瓶中任意抽取2个,则抽到的2个都是酸性溶液(稀硫酸溶液、稀盐酸溶液)的概率是 .【分析】画出树状图进行推理即可.【解答】解:画树状图为:由树状图可知共有6种等可能结果,其中抽到的2个都是酸性溶液的为2种,即概率为,故答案为:.13.(4分)如图,在五边形ABCDE中,点M、N分别为在AB、AE的边上,∠1+∠2=110°,则∠B+∠C+∠D+∠E= 470° .【分析】先求出∠BMN+∠ENM=360°﹣(∠1+∠2)=360°﹣110°=250°,再用六边形内角和减去∠BMN+∠ENM得和即可.【解答】解:∠BMN+∠ENM=360°﹣(∠1+∠2)=360°﹣110°=250°,六边形BCDENM的内角和为:(6﹣2)•180°=720°,∠B+∠C+∠D+∠E=720°﹣250°=470°,故答案为:470°.14.(4分)反比例函数的图象经过A(m,y1),B(m+1,y2),且y1<y2,那么m的取值范围是 ﹣1<m<0 .【分析】由于y=的图象在一、三象限,根据反比例函数的性质得出不等式组,解不等式组即可求解.【解答】解:由反比例函数可知图象位于一、三象限,y随x的增大而减小.∵反比例函数的图象经过A(m,y1),B(m+1,y2),且y1<y2,∴点A(m,y1),B(m+1,y2)不在同一象限,则点B(m+1,y2)第一象限,点A(m,y1)在第三象限.∴,∴﹣1<m<0.故答案为:﹣1<m<0.15.(4分)如图,平行四边形ABCD的对角线AC,BD交于点O,且AC⊥AB,B为圆心,OA长为半径画弧交对角线于点E,以O为圆心,OC长为半画弧交对角线BD于点F,若AB=2,,则图中阴影部分的面积为 4﹣π .(结果保留π)【分析】根据勾股定理,可以求得AC的长,再根据等腰三角形的性质可以得到∠AOB 的性质,然后根据图形可知阴影部分的面积=2(△AOB的面积﹣扇形AOE的面积),再代入数据计算即可.【解答】解:∵AC⊥AB,AB=2,,∴AC===4,∠BAO=90°,∵四边形ABCD是平行四边形,∴AO=CO=AC,BO=DO=BD,∴AO=CO=2,∴AO=AB,∴∠AOB=45°,∴图中阴影部分的面积为:2×(OA•AB﹣)=2×(×2×2﹣)=2×(2﹣)=4﹣π,故答案为:4﹣π.16.(4分)如图,矩形纸片ABCD中,E为BC的中点,连接AE,将△ABE沿AE折叠得到△AFE,连接CF.若AB=4,BC=6,则CF的长为 .【分析】连接BF,交AE于点O,由折叠可知:BE=EF,∠AEB=∠AEF,AE垂直平分BF,再证AE∥CF,得到∠AGC=90°,在Rt△ABE中,利用等积法求出BO的长,最后在Rt△BFC中,利用勾股定理即可求出答案.【解答】解:连接BF,交AE于点O,由折叠可知:BE=EF,∠AEB=∠AEF,AE⊥BF,OB=OF,∵点E为BC的中点,∴BE=CE=EF=3,∴∠EFC=∠ECF,∵∠BEF=∠ECF+∠EFC,∴∠AEB=∠ECF,∴AE∥CF,∴∠BFC=∠BOE=90°,在Rt△ABE中,由勾股定理得:AE==5,∴BO===,∴BF=2BO=,在Rt△BCF中,由勾股定理得:CF===,故答案为:.17.(4分)若关于x的不等式组的解集为x>4,且关于x的分式方程有整数解,则符合条件的所有整数a有 4 个.【分析】根据题意先将一元一次不等式组解开,利用x>4求出a≤4,在解分式方程得出x≠2,,继而得到本题答案.【解答】解:∵,整理得:,∵x的不等式组的解集为x>4,∴a≤4,∵,等式两边同时乘以(2﹣x)得:1﹣ax﹣3=2﹣x,整理得:,∵关于x的分式方程有整数解,∴2﹣x≠0,即x≠2,又∵a≤4,∴当a=3时,,当a=2时,,当a=0时,,当a=﹣1时,(舍去),当a=﹣3时,,∴符合条件的所有整数a有:﹣3,0,2,3,故答案为:4.18.(4分)对于一个各个数位上的数字均不相等且均不为零的三位自然数m,若m的十位数字分别小于m的百位数字与个位数字,则称m为“弦月数”,当三位自然数为弦月数时,重新排列m各个数位上的数字可得到一个最大数m1和一个最小数m2,规定,例如:m=524,因为2<5,2<4,所以524是“弦月数”,若m=412.求F(412)= 3 ;若三位自然数n=100x+10y+z是“弦月数”(其中1≤x≤9,1≤y≤9,1≤z≤9,x、y、z均为整数),且n的个位数字小于百位数字,F(n)+3x=15,求满足条件的所有三位自然数n的值是 412或413 .【分析】由“弦月数”得:F(412)==3.由“弦月数”得F(n)==x﹣y,故x=,再依次代入y的值计算即可.当y=1时,x=4,∴n=412或413.当y=5时,x=5,舍去.故答案为:3,412或413.【解答】解:由“弦月数”得:F(412)==3.∵x>z>y,∴F(n)==x﹣y,∴x﹣y+3x=15,∴x=,当y=1时,x=4,∴n=412或413.当y=5时,x=5,舍去.故答案为:3,412或413.三、解答题(本大题8个小题,19题8分,其余每小题8分,共78分)19.(8分)计算:(1)x(4x+3y)﹣(2x+y)(2x﹣y);(2).【分析】(1)根据单项式乘多项式和平方差公式将题目中的式子展开,然后合并同类项即可;(2)先算括号内的式子,同时将括号外的除法转化为乘法,然后约分即可.【解答】解:(1)x(4x+3y)﹣(2x+y)(2x﹣y)=4x2+3xy﹣4x2+y2=3xy+y2;(2)=•===.20.(10分)如图,在△ABC中,点D为BC边上的中点,连接AD.(1)尺规作图:在BC下方作射线BF,使得∠CBF=∠C,且射线BF交AD的延长线于点E(不要求写作法,保留作图痕迹);(2)在(1)所作的图中,连接CE,求证:AB∥CE.(请补全下面的证明过程)证明:∵点D为BC边上的中点,∴DC=DB,( 线段中点的定义 )在△ADC和△EDB中,,∴△ADC≌△EDB,( ASA )∴AD= ED ,在△ADB和△EDC中,,∴△ADB≌△EDC,( SAS )∴∠ABD=∠ECD,∴AB∥CE( 内错角相等,两直线平行 ).【分析】1)根据作与已知角相等的角的尺规作图方法作图即可;(2)先证明△ADC≌△EDB得到AD=ED,再证明△ADB≌△EDC得到∠ABD=∠ECD,由此即可证明AB∥CE.【解答】解:(1)如图所示,即为所求;(2)证明:∵点D为BC边上的中点,∴DC=DB,(线段中点的定义)在△ADC和△EDB中,∴△ADC≌△EDB(ASA)∴AD=ED,在△ADB和△EDC中,∴△ADB≌△EDC(SAS)∴∠ABD=∠ECD,∴AB∥CE(内错角相等,两直线平行).故答案为线段中点的定义;ASA;ED;SAS;内错角相等,两直线平行.21.(10分)2023年8月24日中午12点,日本福岛第一核电站启动核污染水排海,预估排放时间将长达30年.某学校为了解该校学生对此事件的关注与了解程度,对全校学生进行问卷测试,得分采用百分制,得分越高,则对事件的关注与了解程度就越高.现从七、八年级学生中各随机抽取20名学生的测试得分进行整理和分析(得分用x表示,单位:分,且得分为整数,共分为5组,A组:0≤x<60,B组:60≤x<70,C组:70≤x<80,D组:80≤x<90,E组:90≤x≤100),下面给出了部分信息:七年级被抽取的学生测试得分的所有数据为:48,62,79,95,88,70,88,55,74,87,88,93,66,90,74,86,63,68,84,82;八年级被抽取的学生测试得分中,C组包含的所有数据为:72,77,78,79,75.七、八年级被抽取的学生测试得分统计表平均数众数中位数七年级77a80.5八年级778977.5根据以上信息,解答下列问题:(1)上述图表中:a= 88 ,b= 25 ;(2)根据以上数据,你认为该校七、八年级学生在关注与了解日本核污染水排海事件上,哪个年级的学生对事件的关注与了解程度更高?请说明理由(一条理由即可);(3)若该校七年级有学生900人,八年级有学生800人,估计该校这两个年级的学生测试得分在C组的人数一共有多少人?【分析】(1)根据众数的定义确定七年级的众数a;根据八年级C组所占百分比确定b 的值;(2)根据平均数或中位数或众数的意义回答即可;(3)将样本中七年级得分再C组的比例乘以900,将样本中八年级得分再C组的比例乘以800,再相加即可.【解答】解:(1)∵被抽取的学生测试得分的所有数据中,88出现3次是出现次数最多的数据,∴a=88;∵C组占比为:×100%=25%,∴b=25;故答案为:88,25;(2)七年级更高(答案不唯一),理由如下:因为七,八年级成绩的平均数相同,但七年级成绩的中位数80.5分大于八年级成绩的中位数77.5分,所以七年级的学生对事件的关注与了解程度更高;(3)∵七年级处于C组的有4个数据,占比×100%=20%,八处于C组的占比25%,∴估计该校这两个年级的学生测试得分在C组的人数一共有20%×900+25%×800=380(人),答:估计该校这两个年级的学生测试得分在C组的人数一共有380人.22.(10分)民族要复兴,乡村必振兴!新时代新征程,某县“三农”一定高扬新重庆“敢闯敢干、唯实争先”主旋律,持续奋斗、不辱使命,奋力推动农业农村优先发展.某县去年广柑大获丰收,果农李大爷共售出A、B两种广柑900千克,A种广柑售价是3元/千克,B种广柑售价是4元/千克,全部售出后总销售额为3000元.(1)去年,果农李大爷售出A、B两种广柑各多少千克?(2)今年广柑又获得丰收,李大爷借助直播平台销售广柑,由于更多人喜欢维生素丰富的水果,需求增加,A种广柑单价上浮,其单价比去年增加了,B种广柑的单价比去年上涨了2a%,结果A种广柑的销量是去年销量的2倍,B种广柑的销量比去年销量减少了2a%,总销售额比去年增加了60%.求a的值.【分析】(1)设去年果农李大爷售出A种广柑x千克,B种广柑y千克,根据果农李大爷共售出A、B两种广柑900千克,全部售出后总销售额为3000元.列出二元一次方程组,解方程组即可;(2)利用销售总额=销售单价×销售数量,可列出关于a的一元二次方程,解之取其符合题意的值,即可得出结论.【解答】解:(1)设去年果农李大爷售出A种广柑x千克,B种广柑y千克,根据题意得:,解得:,答:去年,果农李大爷售出A种广柑600千克,B种广柑300千克;(2)根据题意得:3(1+a%)×600×2+4(1+2a%)×300(1﹣2a%)=3000×(1+60%),整理得:a2﹣25a=0,解得:a1=0(不符合题意,舍去),a2=25,答:a的值为25.23.(10分)如图1,在矩形ABCD中,AB=3,BC=4,动点P从点A出发,沿折线A→B →C运动,当它运动到点C时停止运动,过点D作DQ⊥AP交AP于点Q.若AP=x(x >0),DQ=y.(1)请直接写出y关于x的函数关系式,并注明自变量x的取值范围;(2)如图2,在给定的平面直角坐标系中,画出y关于x的函数图象,并写出y的一条性质;(3)当y=3时,请求出QP的值为多少?【分析】(1)当0≤x≤3时,y=4;当3<x≤7时,S△ADP=×3×4=x•y,即可求解;(2)取点描点绘制函数图象即可,观察函数图象可得函数性质;(3)首先求得当y=3时,x=4,在Rt△AQD中,∠AQD=90°,AD=4,QD=3,得到AQ=,进而利用QP=AP﹣AQ=4﹣,即可得解.【解答】解:(1)当0≤x≤3时,y=4.当3<x≤7时,S△ADP=×3×4=x•y,∴xy=12,∴y=,综上所述,y=;(2)由(1)可知x=3时,y=4,x=4时,y=3,x=5时,y=.函数图象如图所示:从函数图象看,当0≤x<3时,y为常数,当3≤x≤5时,y随x的增大而减小;(3)当y=3时,y==3,解得x=4,在Rt△AQD中,∠AQD=90°,AD=4,QD=3,∴AQ==,∴QP=AP﹣AQ=4﹣.24.(10分)仙女山大草原部分景点的道路分布如图所示,其中AE是骑行公路.经测量,点C在点B正南方,点D在点B正东方,∠BCD=60°,CD=500米,点A在点B的北偏西23°方向,AB=300米,点E在点D正北方且在点A正东方.(参考数据:sin23°≈0.39,cos23°≈0.92,tan23°≈0.42,≈1.73)(1)求AE的距离;(结果精确到个位)(2)小华和小亮同时从游客中心点C出发,前往点E处的露营基地,小华沿路线C→D →E步行到达基地,速度为1.2m/s;小亮以1m/s的速度沿C→B→A到达点A后,立即骑行到达点E,骑行速度为6m/s,请计算说明小华和小亮谁先到达E点?【分析】(1)设CB的延长线交AE于点F,分别在Rt△CDB中和Rt△ABF中求出BD 和AF,即可求出AE的距离;(2)分别在Rt△CDB中和Rt△ABF中求出CB和BF,即可分别求出小华和小亮到达E 点所花时间,再比较即可作出判断.【解答】解:(1)设CB的延长线交AE于点F,由题意知:△CDB和△ABF都是直角三角形,四边形BDEF是矩形,∠ABF=23°,在Rt△CDB中,∵∠BCD=60°,CD=500米,∴BD=CD•sin∠BCD=500×=250≈432.5(米),∴EF=BD=432.5米,∴在Rt△ABF中,∵∠ABF=23°,AB=300米,∴AF=AB•sin∠ABF=300×sin23°≈300×0.39=117(米),∴AE=AF+EF=117+432.5≈550(米),答:AE的距离约为550米;(2)在Rt△CDB中,∵∠BCD=60°,CD=500米,∴BC=CD•cos∠BCD=500×=250(米),∴在Rt△ABF中,∵∠ABF=23°,AB=300米,∴BF=AB•cos∠ABF=300×cos23°≈300×0.92=276(米),∴DE=BF=276米,∴小华到达E点所花时间为(CD+DE)÷1.2=(500+276)÷1.2≈646.67(s),小亮到达E点所花时间为(CB+AB)÷1+AE÷6=(250+300)÷1+550÷6≈641.67(s),∵646.67>641.67,∴小亮先到达E点.25.(10分)已知抛物线y=ax2+bx+3的顶点坐标为(﹣1,4),与x轴交于点A和点B,与y轴交于点C,点P为第二象限内抛物线上的动点.(1)求抛物线的解析式;(2)如图1,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,﹣1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标;【分析】(1)待定系数法求解析式即可求解;(2)根据抛物线解析式求得A,B的坐标,进而得出∠CBO=45°,根据S△CPD=S△BPD =1:2得出则点D到x轴的距离为2,即可得出点D的坐标;(3)设直线PE交x轴于点H,利用三角形外角的性质得到∠OHE=45°,则OH=OE=1,即H(﹣1,0),求得直线HE的表达式为y=﹣x﹣1,联立并解得(舍去正值),即可求解.【解答】解:(1)∵抛物线y=ax2+bx+3的顶点坐标为(﹣1,4),∴,解得:,∴抛物线解析式为y=﹣x2﹣2x+3;(2)令y=0,得﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,∴A(1,0),B(﹣3,0),令x=0,则y=﹣x2﹣2x+3=3,∴C(0,3),∴OB=OC=3,∴,∠CBO=45°,∵S△CPD:S△BPD=1:2,设点P到BC的距离为h,∴==,∴,过点D作DK⊥x轴于点K,则△BDK是等腰直角三角形,如图1,∴,∴OK=1,∴D(﹣1,2);(3)设直线PE交x轴于点H,∵∠OGE=15°,∠PEG=2∠OGE=30°,∴∠OHE=∠OGE+∠PEG=45°,∴OH=OE=1,∴H(﹣1,0),设直线HE的解析式为y=k′x+b′,∴,∴直线HE的表达式为y=﹣x﹣1,联立,∴P.26.(10分)在△ABC中,∠BAC=90°,AB=AC,点D为BC边上一动点,连接AD,将AD绕着D点逆时针方向旋转90°得到DE,连接AE.(1)如图1,AH⊥BC,点D恰好为CH中点,AE与BC交于点G,若AB=4,求AE 的长度;(2)如图2,DE与AB交于点F,连接BE,在BA延长线上有一点P,∠PCA=∠EAB,求证:AB=AP+BD;(3)如图3,DE与AB交于点F,且AB平分∠EAD,点M为线段AF上一点,点N为线段AD上一点,连接DM,MN,点K为DM延长线上一点,将△BDK沿直线BK翻折至△BDK所在平面内得到△BQK,连接DQ,在M,N运动过程中,当DM+MN取得最小值,且∠DKQ=45°时,请直接写出的值.【分析】(1)由等腰直角三角形的性质和勾股定理可求AD的长,由旋转的性质可得AD =DE,∠ADE=90°,即可求解;(2)由“SAS”可证△ADH≌△EDB,可得AH=BE,∠DBE=∠DHA=135°,由“ASA”可得△BAE≌△ACP,可得AP=BE,可得结论;(3)先证明当点M,点N',点D三点共线,且DM⊥AE时,DM+MN有最小值,再证明点Q,点B,点D三点共线,由等腰直角三角形和折叠的性质可求解.【解答】(1)解:∵∠BAC=90°,AB=AC=4,∴BC=4,∵AH⊥BC,AB=AC,∴BH=CH=2=AH,∵点D为CH中点,∴DH=CD=,∴AD===,∵将AD绕着D点逆时针方向旋转90°得到DE,∴AD=DE,∠ADE=90°,∴AE=AD=2;(2)证明:如图2,过点D作DH⊥BC交AB于点H,∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,BC=AC,∵DH⊥BC,∴∠BHD=∠DBH=45°,∠BDH=90°,∴BD=DH,∠AHD=135°,∴BH=BD,∵将AD绕着D点逆时针方向旋转90°得到DE,∴AD=DE,∠ADE=90°=∠BDH,∴∠ADH=∠EDB,∴△ADH≌△EDB(SAS),∴AH=BE,∠DBE=∠DHA=135°,∴∠ABE=90°=∠CAP,又∵AB=AC,∠BAE=∠ACP,∴△BAE≌△ACP(ASA),∴AP=BE,∴AP=BE=AH,∴AB=AP+BD;(3)解:如图3,在AE上截取AN'=AN,连接MN',∵AB平分∠EAD,∴∠DAB=∠BAE=22.5°,又∵AM=AM,∴△AMN≌△AMN'(SAS),∴MN=MN',∴DM+MN=DM+MN',∴当点M,点N',点D三点共线,且DM⊥AE时,DM+MN有最小值,如图4,∵DM⊥AE,DE=AD,∴∠ADM=∠EDM=45°,∵折叠,∴DQ⊥BK,∠BKD=∠BKQ,∵∠DKQ=45°,∴∠BKD=∠BKQ=22.5°,∵∠AMK=∠ADM+∠BAD=∠BKD+∠KBA,∴∠KBA=∠ADM=45°,∴∠KBD=∠ABK+∠ABC=90°,∴KB⊥BD,又∵DQ⊥BK,∴点B,点Q,点D三点共线,∵折叠,∴DQ=2BD,∵∠BAD=22.5°,∴∠CAD=67.5°,∠ADC=∠ABC+∠BAD=67.5°,∴∠CAD=∠ADC,。

【中考数学】2023-2024学年重庆市区域质量检测仿真模拟试卷合集2套(含解析)

【中考数学】2023-2024学年重庆市区域质量检测仿真模拟试卷合集2套(含解析)

2023-2024学年重庆市区域中考数学专项提升仿真模拟试题(二模)一、选一选:(本大题共6题,每题4分,满分24分)1.计算(-a3)2的结果是()A.-a5B.a5C.a6D.-a62.如果函数y=kx+b(k、b是常数,k≠0)的图像、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0B.k<0,且b>0C.k>0,且b<0D.k<0,且b <03.下列各式中,2-的有理化因式是()A. B.C.2D.2-.4.如图,在△ABC中,∠ACB=90°,CD是AB边上的高.如果BD=4,CD=6,那么BC:AC是()A.3:2B.2:3C.D.2.5.如图,在▱ABCD中,点E在边AD上,射线CE、BA交于点F,下列等式成立的是()A.AE CEED EF= B.AE CDEF AF= C.AE FAED AB= D.AE FEED FC=6.在梯形ABCD中,AD∥BC,下列条件中,没有能判断梯形ABCD是等腰梯形的是()A.∠ABC=∠DCBB.∠DBC=∠ACBC.∠DAC=∠DBCD.∠ACD=∠DAC二、填空题:(本大题共12题,每题4分,满分48分)7.因式分解23a a +=______.8.函数11y x =+的定义域是_____.9.如果关于x 的一元二次方程x 2+2x﹣a=0没有实数根,那么a 的取值范围是__.10.抛物线y =x 2+4的对称轴是________.11.将抛物线y=-x 2平移,使它的顶点移到点P (-2,3),平移后新抛物线的表达式为________.12.如果两个相似三角形周长的比是2:3,那么它们面积的比是_______.13.如图,传送带和地面所成斜坡AB 的坡度为A 处送到坡顶B 处时,物体所的路程是12米,此时物体离地面的高度是_____米.14.如图,在△ABC 中,点D 是边AB 的中点.如果CA a = ,CD b = ,那么CB =_____(结果用含a 、b 的式子表示).15.已知点D 、E 分别在△ABC 的边BA 、CA 的延长线上,且DE ∥BC ,如果BC =3DE ,AC =6,那么AE =_____.16.在△ABC 中,∠C=90°,AC=4,点G 为△ABC 的重心.如果GC=2,那么sin ∠GCB 的值是_____.17.将一个三角形放大后得到另一个三角形,如果所得三角形在原三角形的外部,这两个三角形各对应边平行且距离都相等,那么我们把这样的两个三角形叫做“等距三角形”,它们对应边之间的距离叫做“等距”.如果两个等边三角形是“等距三角形”,它们的“等距”是1,那么它们周长的差是_____.18.如图,在△ABC 中,AB=7,AC=6,∠A=45°,点D 、E 分别在边AB 、BC 上,将△BDE 沿着DE 所在直线翻折,点B 落在点P 处,PD 、PE 分别交边AC 于点M 、N ,如果AD=2,PD ⊥AB ,垂足为点D ,那么MN 的长是_____.三、解答题:(本大题共7题,满分78分)19.27﹣(﹣2)0+|132cos30°.20.解方程:2142242x x x x +-+--=1.21.如图,在平面直角坐标系xOy 中,直线y=kx+b(k≠0)与双曲线y=6x 相交于点A(m,6)和点B(﹣3,n),直线AB 与y 轴交于点C.(1)求直线AB 的表达式;(2)求AC:CB 的值.22.如图,小明的家在某住宅楼AB 的最顶层(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道这座建筑物的高度,于是在自家阳台的A 处测得建筑物CD 的底部C 的俯角是43°,顶部D 的仰角是25°,他又测得两建筑物之间的距离BC 是28米,请你帮助小明求出建筑物CD 的高度(到1米).(参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47;sin43°≈0.68,cos43°≈0.73,tan43°≈0.93.)23.如图,已知点D、E分别在△ABC的边AC、BC上,线段BD与AE交于点F,且CD•CA=CE•CB.(1)求证:∠CAE=∠CBD;(2)若BE ABEC AC,求证:AB•AD=AF•AE.24.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)与x轴相交于点A(﹣1,0)和点B,与y轴交于点C,对称轴为直线x=1.(1)求点C的坐标(用含a的代数式表示);(2)联结AC、BC,若△ABC的面积为6,求此抛物线的表达式;(3)在第(2)小题的条件下,点Q为x轴正半轴上一点,点G与点C,点F与点A关于点Q 成对称,当△CGF为直角三角形时,求点Q的坐标.25.如图,在边长为2的正方形ABCD中,点P是边AD上的动点(点P没有与点A、点D重合),点Q是边CD上一点,联结PB、PQ,且∠PBC=∠BPQ.(1)当QD=QC时,求∠ABP的正切值;(2)设AP=x,CQ=y,求y关于x的函数解析式;(3)联结BQ,在△PBQ中是否存在度数没有变的角?若存在,指出这个角,并求出它的度数;若没有存在,请说明理由.2023-2024学年重庆市区域中考数学专项提升仿真模拟试题(二模)一、选一选:(本大题共6题,每题4分,满分24分)1.计算(-a 3)2的结果是()A.-a 5B.a 5C.a 6D.-a 6【正确答案】C 【分析】根据幂的乘方法则:幂的乘方,底数没有变,指数相乘.即可得出结果【详解】()236a a -=,故选C.本题考查幂的乘方,本题属于基础应用题,只需学生熟练掌握幂的乘方法则,即可完成.2.如果函数y =kx +b (k 、b 是常数,k ≠0)的图像、二、四象限,那么k 、b 应满足的条件是()A.k >0,且b >0B.k <0,且b >0C.k >0,且b <0D.k <0,且b<0【正确答案】B 【详解】解:∵函数y =kx +b (k 、b 是常数,k ≠0)的图像、二、四象限,∴k <0,b >0,故选:B .3.下列各式中,2-的有理化因式是()A. B.C.2D.2-.【正确答案】C2)2+)=)2-22=x-4,22+,故选C.4.如图,在△ABC 中,∠ACB =90°,CD 是AB 边上的高.如果BD =4,CD =6,那么BC :AC 是()A.3:2B.2:3C.13D.213.【正确答案】B【分析】只要证明△ACD∽△CBD,可得BC:AC=BD:CD=4:6=2:3,由此即可解决问题.【详解】∵∠ACB=90°,∴∠B+∠A=90°,∵∠BDC=90°,∴∠B+∠BCD=90°,∴∠A=∠BCD,∵∠ACB=∠CDB=90°,∴△ACB∽△CDB,∴BC:AC=BD:CD=4:6=2:3,故选B.本题考查相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.5.如图,在▱ABCD中,点E在边AD上,射线CE、BA交于点F,下列等式成立的是()A.AE CEED EF= B.AE CDEF AF= C.AE FAED AB= D.AE FE ED FC=【正确答案】C【详解】∵AB//CD,∴AE EFED CE=,故A、D选项错误;∵AB//CD,∴△AEF∽△DEC,∴AE AFED CD=,故B选项错误;∵AB=CD,AE AFED CD=,∴ABAE AFED ,故C选项正确,故选C.6.在梯形ABCD中,AD∥BC,下列条件中,没有能判断梯形ABCD是等腰梯形的是()A.∠ABC=∠DCBB.∠DBC=∠ACBC.∠DAC=∠DBCD.∠ACD=∠DAC【正确答案】D【详解】A、∵∠ABC=∠DCB,∴BD=BC,∴四边形ABCD是等腰梯形,故本选项错误;B、∵∠DAC=∠DBC,AD∥BC,∴∠ADB=∠DBC,∠DAC=∠ACB,∴∠OBC=∠OCB,∠OAD=∠ODA∴OB=OC,OD=OA,∴AC=BD,∴四边形ABCD是等腰梯形,故本选项错误;C、∵∠ADB=∠DAC,AD∥BC,∴∠ADB=∠DAC=∠DBC=∠ACB,∴OA=OD,OB=OC,∴AC=BD,∵AD∥BC,∴四边形ABCD是等腰梯形,故本选项错误;D、根据∠ACD=∠DAC,没有能推出四边形ABCD是等腰梯形,故本选项正确.故选D.点睛:本题考查了对等腰梯形的判定定理的应用,主要考查学生的推理能力和辨析能力,注意:等腰梯形的判定定理有:①有两腰相等的梯形是等腰梯形,②对角线相等的梯形是等腰梯形,③在同一底上的两个角相等的梯形是等腰梯形.二、填空题:(本大题共12题,每题4分,满分48分)7.因式分解23a a +=______.【正确答案】a (3a +1)【详解】3a 2+a =a (3a +1),故答案为a (3a +1).8.函数11y x =+的定义域是_____.【正确答案】x ≠﹣1【详解】由题意得:x+1≠0,解得:x ≠1,故答案为x ≠1.9.如果关于x 的一元二次方程x 2+2x﹣a=0没有实数根,那么a 的取值范围是__.【正确答案】1a <-【详解】∵关于x 的一元二次方程x 2+2x ﹣a =0没有实数根,∴△<0,即22+4a <0,解得a <﹣1,故答案为a <﹣1.点睛:本题考查了一元二次方程ax 2+bx +c =0(a≠0)的根的判别式△=b 2﹣4ac :当△>0时,一元二次方程有两个没有相等的实数根;当△=0时,一元二次方程有两个相等的实数根;当△<0时,一元二次方程没有实数根.10.抛物线y =x 2+4的对称轴是________.【正确答案】直线0x =##y 轴【分析】将抛物线解析式化为顶点式求解.【详解】解:抛物线24y x =+的对称轴是y 轴(或直线x =0),故直线0x =或y 轴.本题考查二次函数的性质,解题的关键是掌握二次函数图象与系数的关系.11.将抛物线y=-x 2平移,使它的顶点移到点P (-2,3),平移后新抛物线的表达式为________.【正确答案】()223=-++y x【详解】∵原抛物线2y x =-,平移后的顶点是P (-2,3),∴平移后的抛物线的表达式为:y ()223x =-++,故答案为y=()223x -++.本题考查了抛物线的平移与解析式变化的关系.关键是明确抛物线的平移实质上是顶点的平移,能用顶点式表示平移后的抛物线解析式.12.如果两个相似三角形周长的比是2:3,那么它们面积的比是_______.【正确答案】4:9.【详解】试题分析:相似三角形的周长比等于相似比,而面积比等于相似比的平方,由此得解∵两个相似三角形周长的比是2:3,∴它们的相似比是2:3;∴它们的面积比为4:9.考点:相似三角形的性质.13.如图,传送带和地面所成斜坡AB 的坡度为A 处送到坡顶B 处时,物体所的路程是12米,此时物体离地面的高度是_____米.【正确答案】6【详解】如图:作BF ⊥AF ,垂足为F .∵tan ∠BAF=BF :AF=1∴∠BAF=30°,∴BF=1AB 2=1122⨯=6(米),故答案为6.14.如图,在△ABC 中,点D 是边AB 的中点.如果CA a = ,CD b = ,那么CB =_____(结果用含a 、b的式子表示).【正确答案】2b a -【详解】∵CA a = ,CD b =,∴AD AC CD a b =-=- ,∴222BA AD a b ==- ,∴222CB AC AB a a b b a =-=-+=-,故答案为2b a - ;15.已知点D 、E 分别在△ABC 的边BA 、CA 的延长线上,且DE ∥BC ,如果BC =3DE ,AC =6,那么AE =_____.【正确答案】2【详解】∵DE//BC ,∴△ADE ∽△ABC ,∴AE :AC=DE :BC ,∵BC=3DE ,∴AE :AC=1:3,∵AC=6,∴AE=2,故答案为2.16.在△ABC中,∠C=90°,AC=4,点G为△ABC的重心.如果GC=2,那么sin∠GCB的值是_____.【正确答案】2 3【详解】由此AG交BC于点M,过点G作GP⊥BC,垂足为P,∵∠MPG=∠BCA=90°,∴PG//AC,∴△MPG∽△MCA,∴MG:MA=PG:AC,∵G为△ABC的重心,∴MG:MA=1:3,∵AC=4,∴PG=4 3,∴sin∠GCB=432PGCG=23,故答案为.23.本题考查了三角形的重心、相似三角形的判定与性质等,熟记三角形重心到顶点的距离与重心到对边中点的距离之比为2:1是解题的关键.17.将一个三角形放大后得到另一个三角形,如果所得三角形在原三角形的外部,这两个三角形各对应边平行且距离都相等,那么我们把这样的两个三角形叫做“等距三角形”,它们对应边之间的距离叫做“等距”.如果两个等边三角形是“等距三角形”,它们的“等距”是1,那么它们周长的差是_____.【详解】如图,由题意可得四边形ABED 是矩形,∴AD=BE ,在Rt △ABC 中,∠ABC=90°,AB=1,∠ACB=30°,∴BC=AB tan 30同理,所以这两个等边三角形的周长差为:3(BC+EF )=6故答案为.18.如图,在△ABC 中,AB=7,AC=6,∠A=45°,点D 、E 分别在边AB 、BC 上,将△BDE 沿着DE 所在直线翻折,点B 落在点P 处,PD 、PE 分别交边AC 于点M 、N ,如果AD=2,PD ⊥AB ,垂足为点D ,那么MN 的长是_____.【正确答案】187【详解】∵∠A=45°,∠ADM=90°,∴∠AMD=45°=∠A ,∴DM=AD=2,∵AB=7,∴BD=7-AD=5,∵△BDE沿着DE所在直线翻折得到△PDE,∴PD=BD=5,∠PDE=∠BDE,∴PM=PD-DM=3,∵∠PDE+∠BDE=∠BDP=90°,∴∠BDE=45°=∠A,∴DE//AC,∴△BDE∽△BAC,∴BD:BA=DE:AC,即5:7=DE:6,∴DE=30 7,∵DE//AC,∴△PMN∽△PDE,∴MN:DE=PM:PD,即:MN:307=3:5,∴MN=18 7,故答案为18 7.本题考查了折叠的性质,相似三角形的判定与性质等,能根据已知证明出DE//AC是解题的关键.三、解答题:(本大题共7题,满分78分)19.﹣(﹣2)0+|12cos30°.【正确答案】2-.【分析】(1)原式利用二次根式的性质,零指数幂法则,值的代数意义,以及角的三角函数值进行化简即可得到结果.【详解】原式1122=+-+⨯,11=-+,2=.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.解方程:2142242x x x x +-+--=1.【正确答案】x=1【分析】方程两边同乘()()22x x +-转化为整式方程,解整式方程后进行检验即可得.【详解】解:方程两边同乘()()22x x +-得:()224224x x x x -+-+=-,整理,得2320x x -+=,解这个方程得11x =,22x =,经检验,22x =是增根,舍去,所以,原方程的根是1x =.本题考查了解分式方程,解分式方程的关键是方程两边同乘分母的最简公分母化为整式方程然后求解,注意要进行检验.21.如图,在平面直角坐标系xOy 中,直线y=kx+b(k≠0)与双曲线y=6x相交于点A(m,6)和点B(﹣3,n),直线AB 与y 轴交于点C.(1)求直线AB 的表达式;(2)求AC:CB 的值.【正确答案】(1)y=2x +4;(2)13【详解】试题分析:(1)先确定A、B 的坐标,然后再利用待定系数法进行求解即可;(2)分别过点A 、B 作AM ⊥y 轴,BN ⊥y 轴,垂足分别为点M 、N ,证明△ACM ∽△BCN ,根据相似三角形的性质即可得.试题解析:(1)∵点A (m ,6)和点B (-3,n )在双曲线6y x =,∴m =1,n =-2,∴点A (1,6),点B (-3,-2),将点A 、B 代入直线y kx b =+,得=632k b k b +⎧⎨-+=-⎩,解得=24k b ⎧⎨=⎩,∴直线AB 的表达式为:24y x =+;(2)分别过点A 、B 作AM ⊥y 轴,BN ⊥y 轴,垂足分别为点M 、N ,则∠AMO =∠BNO =90°,AM =1,BN =3,∴AM //BN ,∴△ACM ∽△BCN ,∴1=3AC AM CB BN =.22.如图,小明的家在某住宅楼AB 的最顶层(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道这座建筑物的高度,于是在自家阳台的A 处测得建筑物CD 的底部C 的俯角是43°,顶部D 的仰角是25°,他又测得两建筑物之间的距离BC 是28米,请你帮助小明求出建筑物CD 的高度(到1米).(参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47;sin43°≈0.68,cos43°≈0.73,tan43°≈0.93.)【正确答案】39米【分析】过点A 作AE ⊥CD ,垂足为点E ,在Rt △ADE 中,利用三角函数求出 DE 的长,在Rt △ACE 中,求出 C E 的长即可得.【详解】解:过点A 作AE ⊥CD ,垂足为点E ,由题意得,AE =BC =28,∠EAD =25°,∠EAC =43°,在Rt △ADE 中,∵tan DE EAD AE ∠=,∴tan25280.472813.2DE =︒⨯=⨯≈,在Rt △ACE 中,∵tan CE EAC AE∠=,∴tan43280.932826CE =︒⨯=⨯≈,∴13.22639DC DE CE =+=+≈(米),答:建筑物CD 的高度约为39米.23.如图,已知点D 、E 分别在△ABC 的边AC 、BC 上,线段BD 与AE 交于点F ,且CD•CA=CE•CB .(1)求证:∠CAE=∠CBD ;(2)若BE AB EC AC=,求证:AB•AD=AF•AE .【正确答案】(1)见解析;(2)见解析【分析】(1)证明△CAE∽△CBD即可得;(2)过点C作CG//AB,交AE的延长线于点G,证明△ADF∽△AEB即可得.【详解】试题分析:(1)∵CD CA CE CB⋅=⋅,∴CE CA CD CB=,∵∠ECA=∠DCB,∴△CAE∽△CBD,∴∠CAE=∠CBD.(2)过点C作CG//AB,交AE的延长线于点G.∴BE AB EC CG=,∵BE AB EC AC=,∴AB AB CG AC=,∴CG=CA,∴∠G=∠CAG,∵∠G=∠BAG,∴∠CAG=∠BAG.∵∠CAE=∠CBD,∠AFD=∠BFE,∴∠ADF=∠BEF.∴△ADF∽△AEB,∴AD AF AE AB=,∴AB AD AF AE ⋅=⋅.24.如图,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c (a >0)与x 轴相交于点A (﹣1,0)和点B ,与y 轴交于点C ,对称轴为直线x =1.(1)求点C 的坐标(用含a 的代数式表示);(2)联结AC 、BC ,若△ABC 的面积为6,求此抛物线的表达式;(3)在第(2)小题的条件下,点Q 为x 轴正半轴上一点,点G 与点C ,点F 与点A 关于点Q 成对称,当△CGF 为直角三角形时,求点Q 的坐标.【正确答案】(1)C(0,-3a);(2)223y x x =--;(3)点Q 的坐标为(4,0)或(9,0).【详解】试题分析:(1)由A 点坐标和二次函数的对称性可求出B 点的坐标为(3,0),根据两点式写出二次函数解析式,再令y =0,求出y 的值,即可的点C 的坐标;(2)由A (﹣1,0),B (3,0),C (0,﹣3a ),求出AB 、OC 的长,然后根据△ABC 的面积为6,列方程求出a 的值;(3)设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,如图,分两种情况求解:当Rt△QGH∽Rt△GFH时,求得m的一个值;当Rt△GFH∽Rt△FCO时,求得m的另一个值.解:(1)∵抛物线y=ax2+bx+c(a>0)的对称轴为直线x=1,而抛物线与x轴的一个交点A的坐标为(﹣1,0)∴抛物线与x轴的另一个交点B的坐标为(3,0)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,当x=0时,y=﹣3a,∴C(0,﹣3a);(2)∵A(﹣1,0),B(3,0),C(0,﹣3a),∴AB=4,OC=3a,=AB•OC=6,∴S△ACB∴6a=6,解得a=1,∴抛物线解析式为y=x2﹣2x﹣3;(3)设点Q的坐标为(m,0).过点G作GH⊥x轴,垂足为点H,如图,∵点G与点C,点F与点A关于点Q成对称,∴QC=QG,QA=QF=m+1,QO=QH=m,OC=GH=3,∴OF=2m+1,HF=1,当∠CGF=90°时,∵∠QGH+∠FGH=90°,∠QGH+∠GQH=90°,∴∠GQH=∠HGF,∴Rt△QGH∽Rt△GFH,∴=,即=,解得m=9,∴Q的坐标为(9,0);当∠CFG=90°时,∵∠GFH+∠CFO=90°,∠GFH+∠FGH=90°,∴∠CFO=∠FGH,∴Rt△GFH∽Rt△FCO,∴=,即=,解得m=4,∴Q的坐标为(4,0);∠GCF=90°没有存在,综上所述,点Q 的坐标为(4,0)或(9,0).点睛:本题考查了二次函数与几何综合,用到的知识点有:二次函数的对称性,图形与坐标,对称的性质,相似三角形的判定与性质,解答本题的关键是熟练掌握二次函数的对称性和相似三角形的判定与性质.25.如图,在边长为2的正方形ABCD 中,点P 是边AD 上的动点(点P 没有与点A 、点D 重合),点Q 是边CD 上一点,联结PB 、PQ ,且∠PBC=∠BPQ .(1)当QD=QC 时,求∠ABP 的正切值;(2)设AP=x ,CQ=y ,求y 关于x 的函数解析式;(3)联结BQ ,在△PBQ 中是否存在度数没有变的角?若存在,指出这个角,并求出它的度数;若没有存在,请说明理由.【正确答案】(1)13;(2)422x y x -=+(0<x <2);(3)见解析【分析】(1)延长PQ 交BC 延长线于点E .设PD=x ,由∠PBC =∠BPQ 可得EB=EP ,再根据AD//BC ,QD =QC 可得PD =CE ,PQ =QE ,从而得BE =EP=x+2,QP =()122x +,在Rt △PDQ 中,根据勾股定理可得43x =,从而求得AP 的长,再根据正切的定义即可求得;(2)过点B 作BH ⊥PQ ,垂足为点H ,联结BQ ,通过证明Rt △PAB ≅Rt △PHB ,得到AP =PH =x ,通过证明Rt △BHQ ≅Rt △BCQ ,得到QH =QC=y ,在Rt △PDQ 中,根据勾股定理可得PD2+QD2=PQ2,代入即可求得;(3)存在,根据(2)中的两对全等三角形即可得.【详解】(1)延长PQ 交BC 延长线于点E ,设PD=x ,∵∠PBC =∠BPQ ,∴EB=EP ,∵四边形ABCD 是正方形,∴AD//BC ,∴PD ∶CE=QD ∶QC=PQ ∶QE ,∵QD =QC ,∴PD =CE ,PQ =QE ,∴BE =EP=x+2,∴QP =()122x +,在Rt △PDQ 中,∵222PD QD PQ +=,∴2221112x x ⎛⎫+=+ ⎪⎝⎭,解得43x =,∴23AP AD PD =-=,∴211tan 323AP ABP AB ∠==⨯=;(2)过点B 作BH ⊥PQ ,垂足为点H ,联结BQ ,∵AD//BC ,∴∠CBP =∠APB ,∵∠PBC =∠BPQ ,∴∠APB =∠HPB ,∵∠A =∠PHB =90°,∴BH =AB =2,∵PB =PB ,∴Rt △PAB ≅Rt △PHB ,∴AP =PH =x ,∵BC =BH=2,BQ =BQ ,∠C =∠BHQ =90°,∴Rt △BHQ ≅Rt △BCQ ,∴QH =QC=y ,在Rt △PDQ 中,∵222PD QD PQ +=,∴()()()22222x y x y -+-=+,∴422xy x -=+;(3)存在,∠PBQ =45°.由(2)可得,12PBH ABH ∠=∠,12HBQ HBC ∠=∠,∴()11904522PBQ ABH HBC ∠=∠+∠=︒=︒.本题考查了正方形的性质、相似三角形的判定与性质,全等三角形的判定与性质、勾股定理等,正确添加辅助线是解题的关键.2023-2024学年重庆市区域中考数学专项提升仿真模拟试题(三模)一、选一选(本大题共8小题,每小题3分,共24分)1.13-的相反数是()A.13 B.13- C.3 D.-32.下列运算正确的是()A.236x x x ⋅= B.224(2)4x x -=- C.326()x x = D.55x x x ÷=3.下列图形中,既是轴对称图形又是对称图形的是()A. B. C. D.4.在下列中,是必然的是()A.买一张电影票,座位号一定是偶数B.随时打开电视机,正在播新闻C.通常情况下,抛出的篮球会下落D.阴天就一定会下雨5.用4个小立方块搭成如图所示的几何体,该几何体的左视图是()A. B. C. D.正面6.如图,a∥b,点B 在直线b 上,且AB⊥BC,若∠1=36°,则∠2的大小为()A.34°B.54°C.56°D.66°7.对于反比例函数y=3x,下列说确的是()A.图象分布在第二、四象限B.图象过点(-6,-2)C.图象与y轴的交点是(0,3)D.当x<0时,y随x的增大而减小8.如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的长度是25,则矩形ABCD的面积是()A.235 B.5 C.6 D.254二、填空题(每小题3分,共24分)9.3x 有意义的x的取值范围是___.10.荷兰花海,风景如画,引得众多游客流连忘返.据统计今年清明小长假前往花海踏青赏花游客超过人次,把用科学记数法表示为_______.11.甲、乙两名同学参加“古诗词大赛”,五次比赛成绩的平均分都是85分,如果甲比赛成绩的方差为S甲2=16.7,乙比赛成绩的方差为S乙2=28.3,那么成绩比较稳定的是_____(填甲或乙)12.已知二次函数y=ax2+bx+c中,自变量x与函数y的部分对应值如下表:x…-2023…y…8003…当x=-1时,y=__________.13.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线分别交边BC、AB于点D、E如果BC=8,4tanA ,那么BD=_____.314.如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为________.15.如图,在直角坐标系中,点A、B的坐标分别为(4,0),(0,2),将线段AB向上平移m 个单位得到A′B′,连接OA′.如果△OA′B′是以OB′为腰的等腰三角形,那么m的值为_______.16.如图,已知正方形ABCD的边长为2,以点A为圆心,1为半径作圆,点E是⊙A上的任意一点,点E绕点D按逆时针方向转转90°,得到点F,接AF,则AF的值是______________三、解答题(本大题共11小题,共102分)17.计算012152018()3)2---+-18.化简:2463393a a a -÷+--19.解没有等式组:()52365142x x x x ⎧-≤+⎪⎨-<+⎪⎩.20.三张完全相同的卡片正面分别标有数字1,3,5,将它们洗匀后,背面朝上放在桌上.(1)随机抽取一张,求抽到数字恰好为3的概率;(2)随机抽取一张作为十位上的数字(没有放回),再抽取一张作为个位上的数字,通过列表或画树状图求所组成的两位数恰好是“51”的概率.21.某学校为了解本校八年级学生生物考试测试情况,随机抽取了本校八年级部分学生的生物测试成绩为样本,按A ()、B (良好)、C (合格)、D (没有合格)四个等级进行统计,并将统计结果绘制成如下统计图表.请你图表中所给信息解答下列问题:等级人数A ()40B (良好)80C (合格)70D (没有合格)(1)请将上面表格中缺少的数据补充完整;(2)扇形统计图中“A”部分所对应的圆心角的度数是;(3)该校八年级共有1200名学生参加了身体素质测试,试估计测试成绩合格以上(含合格)的人数.22.已知:如图,线段AB和射线BM交于点B.(1)利用尺规完成以下作图,并保留作图痕迹(没有写作法)①在射线BM上作一点C,使AC=AB,连接AC;②作∠ABM的角平分线交AC于D点;③在射线CM上作一点E,使CE=CD,连接DE.(2)在(1)所作的图形中,猜想线段BD与DE的数量关系,并证明之.23.某市举行“迷你马拉松”长跑比赛,运动员从起点甲地出发,跑到乙地后,沿原路线再跑回点甲地.设该运动员离开起点甲地的路程s(km)与跑步时间t(min)之间的函数关系如图所示.已知该运动员从甲地跑到乙地时的平均速度是0.2km/min,根据图像提供的信息,解答下列问题:(1)a=km;(2)组委会在距离起点甲地3km处设立一个拍摄点P,该运动员从次过P点到第二次过P 点所用的时间为24min.①求AB所在直线的函数表达式;②该运动员跑完全程用时多少min?24.某商场购进一批30瓦的LED 灯泡和普通白炽灯泡进行,其进价与标价如下表:LED 灯泡普通白炽灯泡进价(元)4525标价(元)6030(1)该商场购进了LED 灯泡与普通白炽灯泡共300个,LED 灯泡按标价进行,而普通白炽灯泡打九折,当完这批灯泡后可获利3200元,求该商场购进LED 灯泡与普通白炽灯泡的数量分别为多少个?(2)由于春节期间热销,很快将两种灯泡完,若该商场计划再次购进这两种灯泡120个,在没有打折的情况下,请问如何进货,完这批灯泡时获利至多且没有超过进货价的30%,并求出此时这批灯泡的总利润为多少元?25.四边形ABCD 的对角线交于点E ,且AE =EC ,BE =ED ,以AD 为直径的半圆过点E ,圆心为O .(1)如图①,求证:四边形ABCD 为菱形;(2)如图②,若BC 的延长线与半圆相切于点F ,且直径AD =6,求弧AE 的长.26.倍的三角形叫做智慧三角形,这两边中较长边称为智慧边,这两边的夹角叫做智慧角.(1)在Rt△ABC 中,∠ACB =90°,若∠A 为智慧角,则∠B 的度数为;(2)如图①,在△ABC 中,∠A =45°,∠B =30°,求证:△ABC 是智慧三角形;(3)如图②,△ABC 是智慧三角形,BC 为智慧边,∠B 为智慧角,A (3,0),点B ,C 在函数y =kx(x >0)的图像上,点C 在点B 的上方,且点B .当△ABC 是直角三角形时,求k的值.27.如图①,函数y=12x﹣2的图象交x轴于点A,交y轴于点B,二次函数y=12-x2+bx+c的图象A、B两点,与x轴交于另一点C.(1)求二次函数的关系式及点C的坐标;(2)如图②,若点P是直线AB上方的抛物线上一点,过点P作PD∥x轴交AB于点D,PE∥y 轴交AB于点E,求PD+PE的值;(3)如图③,若点M在抛物线的对称轴上,且∠AMB=∠ACB,求出所有满足条件的点M的坐标.2023-2024学年重庆市区域中考数学专项提升仿真模拟试题(三模)一、选一选(本大题共8小题,每小题3分,共24分)1.13-的相反数是()A.13 B.13- C.3 D.-3【正确答案】A【详解】试题分析:根据相反数的意义知:13-的相反数是13.故选:A .【考点】相反数.2.下列运算正确的是()A.236x x x ⋅= B.224(2)4x x-=- C.326()x x = D.55x x x ÷=【正确答案】C【详解】解:A .x 2⋅x 3=x 5,故A 错误;B .(-2x 2)2=4x 4,故B 错误;C .(x 3)2=x 6,正确;D .x 5÷x =x 4,故D 错误.故选C .3.下列图形中,既是轴对称图形又是对称图形的是()A. B. C. D.【正确答案】D【分析】根据轴对称图形和对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.是轴对称图形,但没有是对称图形,故没有符合题意;B.没有是轴对称图形,是对称图形,故没有符合题意;C.是轴对称图形,但没有是对称图形,故没有符合题意;D.既是轴对称图形又是对称图形,故符合题意.故选D .本题考查了轴对称图形和对称图形的识别,熟练掌握轴对称图形和对称图形的定义是解答本题的关键.4.在下列中,是必然的是()A.买一张电影票,座位号一定是偶数B.随时打开电视机,正在播新闻C.通常情况下,抛出的篮球会下落D.阴天就一定会下雨【正确答案】C【分析】根据必然指在一定条件下一定发生的,利用这个定义即可判定.【详解】解:A.买一张电影票,座位号一定是偶数,是随机;B.随时打开电视机,正在播新闻,是随机;C.通常情况下,抛出的篮球会下落,是必然;D.阴天就会下雨,是随机.故选C.5.用4个小立方块搭成如图所示的几何体,该几何体的左视图是()A. B. C. D.【正确答案】A【详解】试题分析:从几何体左面看得到一列正方形的个数为2,故选A.考点:简单组合体的三视图.正面6.如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=36°,则∠2的大小为()A.34°B.54°C.56°D.66°【正确答案】B【详解】分析:根据a∥b求出∠3的度数,然后根据平角的定义求出∠2的度数.详解:∵a∥b,∴∠3=∠1=36°,∵∠ABC=90°,∴∠2+∠3=90°,∴∠2=90°-36°=54°,故选B.点睛:本题主要考查的是平行线的性质以及平角的性质,属于基础题型.明白平行线的性质是解决这个问题的关键.7.对于反比例函数y=3x,下列说确的是()A.图象分布在第二、四象限B.图象过点(-6,-2)C.图象与y轴的交点是(0,3)D.当x<0时,y随x的增大而减小【正确答案】D【详解】解:A.因为反比例函数y=3x的k=3>0,所以它的图象分布在、三象限,故本选项错误;B.当x=﹣6时,y=﹣12,即反比例函数y=3x的图象没有过点(﹣6,﹣2),故本选项错误;C.反比例函数y=3x的图象与坐标轴没有交点,故本选项错误;D.因为反比例函数y=3x的k=3>0,所以在每一象限内,y的值随x的增大而减小,故本选项正确.故选D.8.如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的长度是25,则矩形ABCD的面积是()A.235B.5C.6D.254【正确答案】B【分析】易证△CFE ∽△BEA ,可得CF CEBE AB=,根据二次函数图象对称性可得E 在BC 中点时,CF 有值,列出方程式即可解题.【详解】若点E 在BC上时,如图∵∠EFC +∠AEB =90°,∠FEC +∠EFC =90°,∴∠CFE =∠AEB ,∵在△CFE 和△BEA 中,90CFE AEB C B ︒∠=∠⎧⎨∠=∠=⎩,∴△CFE ∽△BEA ,由二次函数图象对称性可得E 在BC 中点时,CF 有值,此时CF CEBE AB =,BE =CE =x ﹣52,即525522x yx -=-,∴225()52y x =-,当y =25时,代入方程式解得:x 1=32(舍去),x 2=72,∴BE =CE =1,∴BC =2,AB =52,∴矩形ABCD 的面积为2×52=5;故选B .本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E 为BC 中点是解题的关键.二、填空题(每小题3分,共24分)9.有意义的x 的取值范围是___.【正确答案】3x ≤在实数范围内有意义,必须30x -≥,解得:3x ≤,故3x ≤.10.荷兰花海,风景如画,引得众多游客流连忘返.据统计今年清明小长假前往花海踏青赏花游客超过人次,把用科学记数法表示为_______.【正确答案】1.3×105.【详解】解:=1.3×105.故答案为1.3×105.11.甲、乙两名同学参加“古诗词大赛”,五次比赛成绩的平均分都是85分,如果甲比赛成绩的方差为S 甲2=16.7,乙比赛成绩的方差为S 乙2=28.3,那么成绩比较稳定的是_____(填甲或乙)【正确答案】甲【分析】【详解】∵S 甲2=16.7,S 乙2=28.3,∴S 甲2<S 乙2,∴甲的成绩比较稳定,故答案为甲.12.已知二次函数y =ax 2+bx +c 中,自变量x 与函数y 的部分对应值如下表:。

重庆市中考数学模拟试卷(B卷)含答案解析

重庆市中考数学模拟试卷(B卷)含答案解析

重庆市中考数学模拟试卷(B卷)一、选择题:本大题共12小题,每小题4分,共48分.1.在﹣1,0,﹣2,1四个数中,最小的数是()A.﹣1B.0C.﹣2D.12.计算8a3÷(﹣2a)的结果是()A.4aB.﹣4aC.4a2D.﹣4a23.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.下列调查中,适合采用全面调查(普查)方式的是()A.了解某班同学“立定跳远”的成绩B.了解全国中学生的心理健康状况C.了解外地游客对我市旅游景点“磁器口”的满意程度D.了解端午节期间重庆市场上的粽子质量情况5.如图所示,AB∥CD,AF与CD交于点E,BE⊥AF,∠B=65°,则∠DEF的度数是()A.15°B.25°C.30°D.35°6.一个多边形内角和是1080°,则这个多边形是()A.六边形B.七边形C.八边形D.九边形7.计算sin245°+tan60°•cos30°值为()A.2B. C.1D.8.若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=1,则m的值是()A.1B.0C.﹣1D.29.如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠ACB=110°,则∠P的度数是()A.55°B.30°C.35°D.40°10.某星期六上午,小明从家出发跑步去公园,在公园停留了一会儿打车回家.图中折线表示小明离开家的路程y(米)和所用时间x(分)之间的函数关系,则下列说法中错误的是()A.小明在公园休息了5分钟B.小明乘出租车用了17分C.小明跑步的速度为180米/分D.出租车的平均速度是900米/分11.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是()A.56B.58C.63D.7212.如图,在▱ABCD中,∠ABC,∠BCD的平分线BE,CF分别与AD相交于点E、F,BE与CF相交于点G,若AB=3,BC=5,CF=2,则BE的长为()A.2B.4C.4D.5二、填空题:本大题共6小题,每小题4分,共24分.13.化简:1﹣|1﹣|=.14.方程的解是.15.如果△ABC∽△DEF,且对应高之比为2:3,那么△ABC和△DEF的面积之比是.16.如图,△ABC是边长为4个等边三角形,D为AB边的中点,以CD为直径画圆,则图中阴影部分的面积为(结果保留π).17.把三张形状、大小相同但画面不同的风景图片,都按同样的方式剪成相同的两片,然后堆放到一起混合洗匀,从这堆图片中随机抽出两张,这两张图片恰好能组成一张原风景图片的概率是.18.如图,四边形OABC是边长为2的正方形,函数y=的图象经过点B,将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′,NA′BC.设线段MC′,NA′分别与函数y=的图象交于点E、F,则直线EF与x轴的交点坐标为.三、解答题:本大题共2小题,每小题7分,共14分.19.解不等式组:.20.为调查七年级某班学生每天完成家庭作业所需的时间,在该班随机抽查了8名学生,他们每天完成作业所需时间(单位:分)分别为:60,55,75,55,55,43,65,40.(1)求这组数据的众数、中位数;(2)求这8名学生每天完成家庭作业的平均时间;如果按照学校要求,学生每天完成家庭作业时间不能超过60分钟,问该班学生每天完成家庭作业的平均时间是否符合学校的要求?四、解答题:本大题共4个小题,每小题10分,共40分.21.化简:(1)(a+b)2+(a﹣b)(2a+b)﹣3a2;(2)(x+1﹣).22.如图,在东西方向的海岸线l上有一长为1千米的码头MN,在码头西端M的正西方向30 千米处有一观察站O.某时刻测得一艘匀速直线航行的轮船位于O的北偏西30°方向,且与O相距千米的A处;经过40分钟,又测得该轮船位于O的正北方向,且与O相距20千米的B处.(1)求该轮船航行的速度;(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.(参考数据:,)23.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?24.阅读材料,解答问题:我们可以利用解二元一次方程组的代入消元法解形如的二元二次方程组,实质是将二元二次方程组转化为一元一次方程或一元二次方程来求解.其解法如下:解:由②得:y=2x﹣5 ③将③代入①得:x2+(2x﹣5)2=10整理得:x2﹣4x+3=0,解得x1=1,x2=3将x1=1,x2=3代入③得y1=1×2﹣5=﹣3,y2=2×3﹣5=1∴原方程组的解为,.(1)请你用代入消元法解二元二次方程组:;(2)若关x,y的二元二次方程组有两组不同的实数解,求实数a 的取信范围.五、解答题:本大题共2个小题,每小题12分,共24分.25.如图1,△ABC中,BE⊥AC于点E,AD⊥BC于点D,连接DE.(1)若AB=BC,DE=1,BE=3,求△ABC的周长;(2)如图2,若AB=BC,AD=BD,∠ADB的角平分线DF交BE于点F,求证:BF=DE;(3)如图3,若AB≠BC,AD=BD,将△ADC沿着AC翻折得到△AGC,连接DG、EG,请猜想线段AE、BE、DG之间的数量关系,并证明你的结论.26.如图,已知抛物线y=ax2+bx﹣3(a≠0)与x轴交于A,B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,﹣3).(1)求抛物线解析式;(2)点M是(1)中抛物线上一个动点,且位于直线AC的上方,试求△ACM的最大面积以及此时点M的坐标;(3)抛物线上是否存在点P,使得△PAC是以AC为直角边的直角三角形?如果存在,求出P点的坐标;如果不存在,请说明理由.重庆市中考数学模拟试卷(B卷)参考答案与试题解析一、选择题:本大题共12小题,每小题4分,共48分.1.在﹣1,0,﹣2,1四个数中,最小的数是()A.﹣1B.0C.﹣2D.1【考点】有理数大小比较.【分析】根据在有理数中:负数<0<正数;两个负数,绝对值大的反而小;据此可求得最小的数.【解答】解:在﹣1,0.﹣2,1四个数中,最小的数是﹣2;故选C.2.计算8a3÷(﹣2a)的结果是()A.4aB.﹣4aC.4a2D.﹣4a2【考点】整式的除法.【分析】原式利用单项式除以单项式法则计算即可得到结果.【解答】解:原式=﹣4a2,故选D3.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】结合选项根据轴对称图形与中心对称图形的概念求解即可.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选B.4.下列调查中,适合采用全面调查(普查)方式的是()A.了解某班同学“立定跳远”的成绩B.了解全国中学生的心理健康状况C.了解外地游客对我市旅游景点“磁器口”的满意程度D.了解端午节期间重庆市场上的粽子质量情况【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解某班同学“立定跳远”的成绩,适合普查,故A正确;B、了解全国中学生的心理健康状况,调查范围广,适合抽样调查,故B错误;C、了解外地游客对我市旅游景点“磁器口”的满意程度,无法普查,故C错误;D、了解端午节期间重庆市场上的粽子质量情况,调查具有破坏性,适合抽样调查,故D 错误;故选:A.5.如图所示,AB∥CD,AF与CD交于点E,BE⊥AF,∠B=65°,则∠DEF的度数是()A.15°B.25°C.30°D.35°【考点】平行线的性质.【分析】直接利用平行线的性质得出∠BED=65°,进而利用平角的定义得出答案.【解答】解:∵AB∥CD,∠B=65°,∴∠BED=65°,∵BE⊥AF,∴∠DEF=180°﹣65°﹣90°=25°.故选:B.6.一个多边形内角和是1080°,则这个多边形是()A.六边形B.七边形C.八边形D.九边形【考点】多边形内角与外角.【分析】设这个多边形是n(n≥3)边形,则它的内角和是(n﹣2)180°,得到关于n的方程组,就可以求出边数n.【解答】解:设这个多边形是n边形,由题意知,(n﹣2)×180°=1080°,∴n=8,所以该多边形的边数是八边形.故选C.7.计算sin245°+tan60°•cos30°值为()A.2B. C.1D.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.【解答】解:原式=()2+×=+=2,故选:A.8.若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=1,则m的值是()A.1B.0C.﹣1D.2【考点】一元二次方程的解.【分析】根据一元二次方程的解的定义,把x=1代入一元二次方程可得到关于m的一元一次方程,然后解一次方程即可.【解答】解:把x=1代入x2﹣x﹣m=0得1﹣1﹣m=0,解得m=0.故选B.9.如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠ACB=110°,则∠P的度数是()A.55°B.30°C.35°D.40°【考点】切线的性质.【分析】首先在优弧AB上取点D,连接BD,AD,OB,OA,由圆的内接四边形的性质与圆周角定理,可求得∠AOB的度数,然后由PA、PB是⊙O的切线,求得∠OAP与∠OBP的度数,继而求得答案.【解答】解:在优弧AB上取点D,连接BD,AD,OB,OA,∵∠ACB=110°,∴∠D=180°﹣∠ACB=70°,∴∠AOB=2∠D=140°,∵PA、PB是⊙O的切线,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠A=360°﹣∠OAP﹣∠AOB﹣∠OBP=40°.故选D.10.某星期六上午,小明从家出发跑步去公园,在公园停留了一会儿打车回家.图中折线表示小明离开家的路程y(米)和所用时间x(分)之间的函数关系,则下列说法中错误的是()A.小明在公园休息了5分钟B.小明乘出租车用了17分C.小明跑步的速度为180米/分D.出租车的平均速度是900米/分【考点】函数的图象.【分析】根据情境的叙述,结合图象,逐一分析得出答案即可.【解答】解:A、在公园停留的时间为15﹣10=5分钟,也就是在公园休息了5分钟,此选项正确,不合题意;B、小明乘出租车的时间是17﹣15=2分钟,此选项错误,符合题意;C、小明1800米用了10分钟,跑步的速度为180米/分,此选项正确,不合题意;D、出租车1800米用了2分钟,速度为900米/分,此选项正确,不合题意.故选:B.11.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是()A.56B.58C.63D.72【考点】规律型:图形的变化类.【分析】由题意可知:第一个图形有2+1×2=4个小圆,第二个图形有2+2×3=8个小圆,第三个图形有2+3×4=14个小圆,第四个图形有2+4×5=22个小圆…由此得出,第7个图形的小圆个数为2+7×8=58,由此得出答案即可.【解答】解:∵第一个图形有2+1×2=4个小圆,第二个图形有2+2×3=8个小圆,第三个图形有2+3×4=14个小圆,第四个图形有2+4×5=22个小圆,…∴第七个图形的小圆个数为2+7×8=58,故选B.12.如图,在▱ABCD中,∠ABC,∠BCD的平分线BE,CF分别与AD相交于点E、F,BE与CF相交于点G,若AB=3,BC=5,CF=2,则BE的长为()A.2B.4C.4D.5【考点】平行四边形的性质.【分析】根据平行四边形两组对边分别平行可得∠ABC+∠BCD=180°,再根据角平分线的性质可得∠EBC+∠FCB=90°,可得BE⊥CF;过A作AM∥FC,∠BC于M,证明△ABE 是等腰三角形,进而得到BO=EO,再利用勾股定理计算出EO的长,进而可得答案.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABC+∠BCD=180°,∵∠ABC、∠BCD的平分线BE、CF分别与AD相交于点E、F,∴∠EBC+∠FCB=∠ABC+∠DCB=90°∴EB⊥FC;过A作AM∥FC,交BC于M,如图所示:∵AM∥FC,∴∠AOB=∠FGB,∵EB⊥FC,∴∠FGB=90°,∴∠AOB=90°,∵BE平分∠ABC,∴∠ABE=∠EBC,∵AD∥BC,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∴AB=AE=3,∵AO⊥BE,∴BO=EO,在△AOE和△MOB中,,∴△AOE≌△MOB(ASA),∴AO=MO,∵AF∥CM,AM∥FC,∴四边形AMCF是平行四边形,∴AM=FC=2,∴AO=1,∴EO==2,∴BE=4;故选:C.二、填空题:本大题共6小题,每小题4分,共24分.13.化简:1﹣|1﹣|=2﹣\sqrt{2}.【考点】实数的运算.【分析】先根据绝对值性质去绝对值符号,再去括号,最后合并可得答案.【解答】解:原式=1﹣(﹣1)=1﹣+1=2﹣,故答案为:2﹣.14.方程的解是x=1.【考点】解分式方程.【分析】观察方程可得最简公分母是:2(x+1),两边同时乘最简公分母可把分式方程化为整式方程来解答.【解答】解:方程两边同乘以2(x+1),得2x=x+1,解得x=1.经检验:x=1是原方程的解.故答案为:x=1.15.如果△ABC∽△DEF,且对应高之比为2:3,那么△ABC和△DEF的面积之比是4:9.【考点】相似三角形的性质.【分析】根据相似三角形的性质求出两个三角形的相似比,根据相似三角形面积的比等于相似比的平方得到答案.【解答】解:∵△ABC∽△DEF,对应高之比为2:3,∴△ABC和△DEF的相似比为2:3,∴△ABC和△DEF的面积之比是4:9,故答案为:4:9.16.如图,△ABC是边长为4个等边三角形,D为AB边的中点,以CD为直径画圆,则图中阴影部分的面积为 2.5\sqrt{3}﹣π(结果保留π).【考点】扇形面积的计算.【分析】根据等边三角形的性质以及勾股定理得出△COF,△COM,△ABC以及扇形FOM的面积,进而得出答案.【解答】解:过点O作OE⊥AC于点E,连接FO,MO,∵△ABC是边长为4的等边三角形,D为AB边的中点,以CD为直径画圆,∴CD⊥AB,∠ACD=∠BCD=30°,AC=BC=AB=4,∴∠FOD=∠DOM=60°,AD=BD=2,∴CD=2,则CO=DO=,∴EO=,EC=EF=,则FC=3,∴S△COF=S△COM=××3=,==π,S扇形OFMS△ABC=×CD×4=4,∴图中影阴部分的面积为:4﹣2×﹣π=2.5﹣π.故答案为:2.5﹣π.17.把三张形状、大小相同但画面不同的风景图片,都按同样的方式剪成相同的两片,然后堆放到一起混合洗匀,从这堆图片中随机抽出两张,这两张图片恰好能组成一张原风景图片的概率是\frac{1}{5}.【考点】列表法与树状图法.【分析】把三张风景图片剪成相同的两片后用A1,A2,B1,B2,C1,C2来表示,根据题意画树形图,数出可能出现的结果利用概率公式即可得出答案.【解答】解:设三张风景图片分别剪成相同的两片为:A1,A2,B1,B2,C1,C2;如图所示:,所有的情况有30种,符合题意的有6种,故这两张图片恰好能组成一张原风景图片的概率是:.故答案为:.18.如图,四边形OABC是边长为2的正方形,函数y=的图象经过点B,将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′,NA′BC.设线段MC′,NA′分别与函数y=的图象交于点E、F,则直线EF与x轴的交点坐标为(5,0).【考点】反比例函数图象上点的坐标特征;正方形的性质.【分析】根据正方形的性质可得出点B的坐标,由点B的坐标结合反比例函数图象上点的坐标特征可求出反比例函数的解析式,由翻折的性质可得出线段MC′所在的直线的解析式为x=4,线段NA′所在的直线的解析式为y=4,令反比例函数解析式中x=4或y=4,即可求出点E、F的坐标,再由点E、F的坐标利用待定系数法即可求出直线EF的解析式,令其中的y=0求出x值,即可得出结论.【解答】解:补充完整图形,如下图所示.∵四边形OABC是边长为2的正方形,∴点B的坐标为(2,2),∵函数y=的图象经过点B,∴k=2×2=4,∴反比例函数解析式为y=.∵将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′,NA′BC,∴线段MC′所在的直线的解析式为x=4,线段NA′所在的直线的解析式为y=4,令y=中x=4,则y=1,∴点E的坐标为(4,1);令y=中y=4,则=4,解得:x=1,∴点F的坐标为(1,4).设直线EF的解析式为y=ax+b,∴,解得:,∴直线EF的解析式为y=﹣x+5,令y=﹣x+5中y=0,则﹣x+5=0,解得:x=5,∴直线EF与x轴的交点坐标为(5,0).故答案为:(5,0).三、解答题:本大题共2小题,每小题7分,共14分.19.解不等式组:.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x>1;由②得,x>3,故此不等式组的解集为:x>3.20.为调查七年级某班学生每天完成家庭作业所需的时间,在该班随机抽查了8名学生,他们每天完成作业所需时间(单位:分)分别为:60,55,75,55,55,43,65,40.(1)求这组数据的众数、中位数;(2)求这8名学生每天完成家庭作业的平均时间;如果按照学校要求,学生每天完成家庭作业时间不能超过60分钟,问该班学生每天完成家庭作业的平均时间是否符合学校的要求?【考点】众数;算术平均数;中位数.【分析】(1)用众数、中位数、平均数的定义去解.(2)求出这8名学生每天完成家庭作业的平均时间.把这个样本的平均数与60分钟进行比较就可以.【解答】解:(1)在这8个数据中,55出现了3次,出现的次数最多,即这组数据的众数是55;将这8个数据按从小到大的顺序排列,其中最中间的两个数据都是55,即这组数据的中位数是55.(2)这8个数据的平均数是=(60+55×3+75+43+65+40)=56(分).∴这8名学生完成家庭作业的平均时间为56分钟,因为56<60,因此估计该班学生每天完成家庭作业的平均时间符合学校的要求.四、解答题:本大题共4个小题,每小题10分,共40分.21.化简:(1)(a+b)2+(a﹣b)(2a+b)﹣3a2;(2)(x+1﹣).【考点】分式的混合运算;多项式乘多项式;完全平方公式.【分析】(1)先利用乘法公式展开,然后合并即可;(2)先把括号内通分和除法运算化为乘法运算,然后把分子分母因式分解后约分即可.【解答】解:(1)原式=a2+2ab+b2+2a2+ab﹣2ab﹣b2﹣3a2=ab;(2)原式=•=﹣•=﹣.22.如图,在东西方向的海岸线l上有一长为1千米的码头MN,在码头西端M的正西方向30 千米处有一观察站O.某时刻测得一艘匀速直线航行的轮船位于O的北偏西30°方向,且与O相距千米的A处;经过40分钟,又测得该轮船位于O的正北方向,且与O相距20千米的B处.(1)求该轮船航行的速度;(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.(参考数据:,)【考点】解直角三角形的应用-方向角问题.【分析】(1))过点A作AC⊥OB于点C.可知△ABC为直角三角形.根据勾股定理解答.(2)延长AB交l于D,比较OD与AM、AN的大小即可得出结论.【解答】解(1)过点A作AC⊥OB于点C.由题意,得OA=千米,OB=20千米,∠AOC=30°.∴(千米).∵在Rt△AOC中,OC=OA•cos∠AOC==30(千米).∴BC=OC﹣OB=30﹣20=10(千米).∴在Rt△ABC中, ==20(千米).∴轮船航行的速度为:(千米/时).(2)如果该轮船不改变航向继续航行,不能行至码头MN靠岸.理由:延长AB交l于点D.∵AB=OB=20(千米),∠AOC=30°.∴∠OAB=∠AOC=30°,∴∠OBD=∠OAB+∠AOC=60°.∴在Rt△BOD中,OD=OB•tan∠OBD=20×tan60°=(千米).∵>30+1,∴该轮船不改变航向继续航行,不能行至码头MN靠岸.23.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?【考点】二元一次方程组的应用;一元一次不等式的应用.【分析】(1)题中有两个等量关系:购买A种商品进价+购买B种商品进价=36000,出售甲种商品利润+出售乙种商品利润=6000,由此可以列出二元一次方程组解决问题.(2)根据不等关系:出售甲种商品利润+出售乙种商品利润≥8160,可以列出一元一次不等式解决问题.【解答】解:(1)设商场购进甲种商品x件,乙种商品y件,根据题意得:,解得:.答:该商场购进甲种商品200件,乙种商品120件.(2)设乙种商品每件售价z元,根据题意,得120(z﹣100)+2×200×≥8160,解得:z≥108.答:乙种商品最低售价为每件108元.24.阅读材料,解答问题:我们可以利用解二元一次方程组的代入消元法解形如的二元二次方程组,实质是将二元二次方程组转化为一元一次方程或一元二次方程来求解.其解法如下:解:由②得:y=2x﹣5 ③将③代入①得:x2+(2x﹣5)2=10整理得:x2﹣4x+3=0,解得x1=1,x2=3将x1=1,x2=3代入③得y1=1×2﹣5=﹣3,y2=2×3﹣5=1∴原方程组的解为,.(1)请你用代入消元法解二元二次方程组:;(2)若关x,y的二元二次方程组有两组不同的实数解,求实数a的取信范围.【考点】高次方程.【分析】(1)先消去一个未知数再解关于另一个未知数的次方程,把求得结果代入一个较简单的方程中即可;(2)先消去一个未知数,得到关于另一个未知数的一元二次方程,根据一元二次方程根的判别式解答即可.【解答】解:(1)由①得,y=2x﹣3③,把③代入②得,(2x﹣3)2﹣4x2+6x﹣3=0,整理的,6x=6,解得x=1,把x=1代入③得,y=﹣1,故原方程组的解为;(2)由①得,y=1﹣2x③,把③代入②得,ax2+(1﹣2x)2+2x+1=0,整理得,(a+4)x2﹣2x+2=0,由题意得,4﹣4×2×(a+4)>0,解得a<﹣,∵a+4≠0,∴a≠﹣4,∴a<﹣且a≠﹣4.五、解答题:本大题共2个小题,每小题12分,共24分.25.如图1,△ABC中,BE⊥AC于点E,AD⊥BC于点D,连接DE.(1)若AB=BC,DE=1,BE=3,求△ABC的周长;(2)如图2,若AB=BC,AD=BD,∠ADB的角平分线DF交BE于点F,求证:BF=DE;(3)如图3,若AB≠BC,AD=BD,将△ADC沿着AC翻折得到△AGC,连接DG、EG,请猜想线段AE、BE、DG之间的数量关系,并证明你的结论.【考点】全等三角形的判定与性质;直角三角形斜边上的中线;平行四边形的判定与性质.【分析】(1)由直角三角形斜边上的中线性质得出DE=AC=AE,AC=2DE=2,AE=1,由勾股定理求出AB,得出BC,即可得出结果;(2)连接AF,由等腰三角形的性质得出∠3=∠4,证出△ABD是等腰直角三角形,得出∠DAB=∠DBA=45°,∠3=22.5°,由ASA证明△ADF≌△BDF,得出AF=BF,∠2=∠3=22.5°,证出△AEF是等腰直角三角形,得出AF=AE,即可得出结论;(3)作DH⊥DE交BE于H,先证明△ADE≌△BDH,得出DH=DE,AE=BH,证出△DHE是等腰直角三角形,得出∠DEH=45°,∠3=45°,由翻折的性质得出DE=GE,∠3=∠4=45°,证出DH=GE,DH∥GE,证出四边形DHEG是平行四边形,得出DG=EH,即可得出结论.【解答】(1)解:如图1所示:∵AB=BC,BE⊥AC,∴AE=CE,∠AEB=90°,∵AD⊥BC,∴∠ADC=90°,∴DE=AC=AE,∴AC=2DE=2,AE=1,∴AB==,∴BC=,∴△ABC的周长=AB+BC+AC=2+2;(2)证明:连接AF,如图2所示:∵AB=BC,BE⊥AC,∴∠3=∠4,∵∠ADC=90°,AD=BD,∴△ABD是等腰直角三角形,∴∠DAB=∠DBA=45°,∴∠3=22.5°,∵∠1+∠C=∠3+∠C=90°,∴∠1=∠3=22.5°,∵DF平分∠ABD,∴∠ADF=∠BDF,在△ADF和△BDF中,,∴△ADF≌△BDF(SAS),∴AF=BF,∠2=∠3=22.5°,∴∠EAF=∠1+∠2=45°,∴△AEF是等腰直角三角形,∴AF=AE,∵DE=AE,∴BF=DE;(3)解:BE=DG+AE;理由如下:作DH⊥DE交BE于H,如图3所示:∵BE⊥AC,AD⊥BC,∴∠1+∠ACD=∠2+∠ACD=90°,∴∠1=∠2,∴∠ADE=90°﹣∠ADH=∠BDH,在△ADE和△BDH中,,∴△ADE≌△BDH(ASA),∴DH=DE,AE=BH,∴△DHE是等腰直角三角形,∴∠DEH=45°,∴∠3=90°﹣∠DEH=45°,∵△ACD翻折至△ACG,∴DE=GE,∠3=∠4=45°,∴∠DEG=∠EDH=90°,DH=GE,∴DH∥GE,∴四边形DHEG是平行四边形,∴DG=EH,∴BE=EH+BH=DG+AE.26.如图,已知抛物线y=ax2+bx﹣3(a≠0)与x轴交于A,B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,﹣3).(1)求抛物线解析式;(2)点M是(1)中抛物线上一个动点,且位于直线AC的上方,试求△ACM的最大面积以及此时点M的坐标;(3)抛物线上是否存在点P,使得△PAC是以AC为直角边的直角三角形?如果存在,求出P点的坐标;如果不存在,请说明理由.【考点】二次函数综合题.【分析】(1)代入A,C两点,列出方程,解得a,b即可;(2)设M(a,﹣a2+4a﹣3),求出直线直线AC的解析式为:y=1﹣x,过M作x轴的垂线交AC于N,则N(a,1﹣a),即有三角形ACM的面积为△AMN和△CMN的面积之和,化简运用二次函数的最值,即可得到;(3)讨论当∠ACP=90°,当∠CAP=90°,运用直线方程和抛物线方程求交点即可.【解答】解:(1)由于A点的坐标是(1,0),C点坐标是(4,﹣3),则a+b﹣3=0,且16a+4b﹣3=﹣3,解得,a=﹣1,b=4,即抛物线的解析式为:y=﹣x2+4x﹣3;(2)设M(a,﹣a2+4a﹣3),设直线AC的解析式为y=kx+b,根据题意得:,解得:,∴直线AC的解析式为:y=1﹣x,过M作x轴的垂线交AC于N,如图所示:则N(a,1﹣a),即有三角形ACM的面积为△AMN与△CMN的面积之和,即为(a﹣1+4﹣a)(﹣a2+4a﹣3﹣1+a)=(﹣a2+5a﹣4),当a=时,面积取得最大,且为,此时M(,);(3)存在,理由如下:当∠ACP=90°,即有此时CP:y=x﹣7,由CP解析式和抛物线解析式得:,解得:,或(不合题意舍去),∴P(﹣1,﹣8);当∠CAP=90°,由AC的斜率为﹣1,即有AP的斜率为1,此时AP:y=x﹣1,由AP解析式和抛物线解析式得:,解得:,或,(不合题意舍去),∴P(2,1).故存在点P,且为(﹣1,﹣8)或(2,1),使得△PAC是以AC为直角边的直角三角形.7月13日。

重庆市数学中考23题-应用题(1)

重庆市数学中考23题-应用题(1)

2015年数学中考预测-23题 应用题一、工程问题: 1.(13A 23.)随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站从去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元。

在保证工程质量的前提下,为了缩短工期,拟安排甲乙两队分工合作完成这项工程。

在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲乙两队的施工时间按月取整数).2.(13B 23、)4.20雅安地震后,某商家为支援灾区人民,计划捐赠帐篷16800顶,该商家备有2辆大货车、8辆小车运送,计划大货车比小货车每辆每次多运帐篷200顶,大、小货车每天均运送一次,两天恰好运完.(1)求大、小货车原计划每辆每次各运送帐篷多少顶?(2)因地震导致路基受损,实际运送过程中,每辆大货车每次比原计划少运m 200顶,每辆小货车每次比原计划少运300顶.为了尽快将帐篷运送到灾区,大货车每天比原计划多跑m 21次,小货车每天比原计划多跑m 次,一天刚好运送了帐篷14400顶,求m 的值. 3.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?4.“端午节”是我国的传统佳节,历来有吃“粽子”的习俗。

2024年重庆市中考数学模拟试题

2024年重庆市中考数学模拟试题

2024年重庆市中考数学模拟试题一、单选题1.2-的相反数是( ) A .2-B .2C .12D .12-2.如图是由5个完全相同的小正方体搭成的几何体,则从上面观察这个几何体得到的平面图形是( )A .B .C .D .3.如图,已知直线c 与直线a ,b 都相交,若a b ∥,175∠=︒,则2∠的度数为( )A .75︒B .105︒C .115︒D .125︒4.如图,在平面直角坐标系中,ABC V 与DFE △是以点O 为位似中心的位似图形,2OA OD =,若6AB =,则DF 的值为( )A .3B .2C .32D .235.若点()3,4-在反比例函数()0ky k x=≠的图象上,则该图象也过点( ) A .()2,6 B .()3,4C .()4,3--D .()6,2-6的值应在( )A .7和8之间B .8和9之间C .9和10之间D .10和11之间7.用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是( )A .39B .44C .49D .548.如图,四边形ABCD 内接于O e ,AB BC =,75BAO ∠=︒,则D ∠=( )A .60︒B .30︒C .45︒D .无法确定9.如图,在正方形ABCD 中,4AB =,E ,F 分别为边,AB BC 的中点,连接,AF DE ,点G ,H 分别为,DE AF 的中点,连接GH ,则GH 的长为( )A B .1C D .210.对于多项式a b c d e --++,在任意一个字母前加负号,称为“加负运算”,例如:对b 和d 进行“加负运算”,得到:()()a b c d e a b c d e ---+-+=+--+.规定甲同学每次对三个字母进行“加负运算”,乙同学每次对两个字母进行“加负运算”,下列说法正确的个数为( ) ①乙同学连续两次“加负运算”后可以得到a b c d e ----;②对于乙同学“加负运算”后得到的任何代数式,甲同学都可以通过“加负运算”后得到与之相反的代数式;③乙同学通过“加负运算”后可以得到16个不同的代数式A .0B .1C .2D .3二、填空题11.计算:sin302-=︒+.12.3月,我市某校举行春季田径运动会,“体育达人”小明从“跳高”“跳远”“100米”“400米”四个项目中,随机选择两项,则他选择“100米”与“400米”两个项目的概率是. 13.若一个n 边形每一个内角都等于135°,则n =.14.如图,在Rt ABC △中,9086C AC BC ∠=︒==,,,D 为AC 上一点,若BD 是ABC ∠的角平分线,则AD =.15.近年来,由于新能源汽车的崛起,燃油汽车的销量出现了不同程度的下滑,经销商纷纷开展降价促销活动.某款燃油汽车今年3月份售价为23万元,5月份售价为16万元.设该款汽车这两个月售价的月均下降率是x ,则所列方程为.16.如图,AB 为半圆O 的直径,CD 垂直平分半径OA ,EF 垂直平分半径OB ,若4AB =,则图中阴影部分的面积等于.17.若关于x 的一元一次不等式组34222x x a +⎧≤⎪⎨⎪-≥⎩至少有2个整数解,且关于y 的分式方程14222a y y-+=--有非负整数解,则所有满足条件的整数a 为. 18.定义:对于一个两位自然数,如果它的个位和十位上的数字均不为零,且它正好等于其个位和十位上的数字的和的n 倍(n 为正整数),我们就说这个自然数是一个“n 喜数”. 例如:24就是一个“4喜数”,因为()24424=⨯+;25就不是一个“n 喜数”,因为()2525n ≠+.44(填“是”或“不是”)“n 喜数”;最大的“7喜数”是.三、解答题 19.计算:(1)()()(2)x y x y y y +-+-;(2)213 121a aa a ⎛⎫+÷⎪+-⎝-⎭. 20.如图,在Rt ABC △中,90BAC ∠=︒,30C ∠=︒,AC 的垂直平分线交AC 于点D ,交BC 于点E .(1)尺规作图(保留作图痕迹,不写作法):过点A 作BC 的垂线,交BC 于点F ,连接AE . (2)猜想(1)中BF 与EF 的数量关系,完成下列证明: ∵DE 是AC 的垂直平分线, ∴AE =. ∴EAC ∠=∠.∵30C ∠=︒, ∴30EAC ∠=︒.∴60AEB C ∠=∠+∠=︒.又∵在Rt ABC △中,90BAC ∠=︒, ∴9060B C ∠=︒-∠=︒. ∴AEB B ∠=∠. ∴AB =. 又∵AF BC ⊥, ∴BF = .21.夏季来临,溺水事故进入高发季,为了增强学生的安全意识,把校园防溺水教育落到实处,某中学组织开展了“珍爱生命,预防溺水”安全教育专题讲座,邀请预防溺水宣讲员来校宣讲,并在讲座活动之后请同学们完成了“防溺水安全教育知识问卷”,现从该校七、八年级中各随机抽取了20名学生填写的问卷,进行整理和分析(问卷得分均为整数,满分为10分),相关数据统计、整理如下:抽取的七年级学生的问卷得分:5,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10,10.抽取的七、八年级学生的问卷得分统计表根据以上信息,解答下列问题:(1)直接写出上述表中a 、b 的值,并补全条形统计图;(2)根据以上数据分析,请从一个方面评价该校七、八年级中哪个年级抽取的学生填写的问卷成绩更好;(3)该校七年级有600名学生填写了问卷,八年级有500名学生填写了问卷,请估计两个年级本次问卷成绩大于等于9分的学生总人数. 22.【发现问题】小明在学习过程中发现:周长为定值的矩形中面积最大的是正方形.那么,面积为定值的矩形中,其周长的取值范围如何呢? 【解决问题】小明尝试从函数图像的角度进行探究: (1)建立函数模型设一矩形的面积为4,周长为m ,相邻的两边长为 x 、y ,则 4xy =,()2x y m +=,即4y x=,2m y x =-+,那么满足要求的(x ,y )应该是函数4y x = 与2m y x =-+的图像在第_______象限内的公共点坐标. (2)画出函数图像 ①画函数4y x=(x >0)的图像; ②在同一直角坐标系中直接画出y x =-的图象,则2my x =-+的图像可以看成是y x =-的图像向上平移_____个单位长度到.(3)研究函数图像平移直线y x =-,观察两函数的图像;①当直线平移到与函数4yx=(x>0)的图像有唯一公共点的位置时,公共点的坐标为_____,周长m的值为______;②在直线平移的过程中,两函数图像公共点的个数还有什么情况?请直接写出公共点的个数及对应周长m的取值范围.【结论运用】(4)面积为10 的矩形的周长m 的取值范围为__________.23.某品牌同时在A,B两个直播平台进行推广.去年在A,B两个平台各签约了5位主播,B平台每位主播的平均销售额比A平台每位主播的平均销售额多10万元,A,B两个平台的总销售额为300万元.(1)请求出A,B两个平台去年每位主播的平均销售额是多少?(2)今年,品牌方加大了推广力度,在A平台签约了12位主播,B平台签约了3a位主播,预计A平台每位主播的平均销售额将在去年的基础上增加a%,B平台每位主播的平均销售额将在去年的基础上增加2a万元.今年两个平台的总销售额将在去年的基础上增加48a%.求a的值.24.如图,在南北方向的海岸线MN上,有A,B两艘巡逻船,现均收到故障船C的求救信号,已知A,B两船相距)1001海里,船C在船A的北偏东60︒方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75︒方向上.(1)求出A与C之间的距离AC.(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营1.41≈ 1.73≈)25.将抛物线2(0)y ax a=≠向左平移1个单位,再向上平移4个单位后,得到抛物线2:()H y a x h k =-+.抛物线H 与x 轴交于点A ,B ,与y 轴交于点C .已知(3,0)A -,点P是抛物线H 上的一个动点.(1)求抛物线H 的表达式;(2)如图1,点P 在线段AC 上方的抛物线H 上运动(不与A ,C 重合),过点P 作PD AB ⊥,垂足为D ,PD 交AC 于点E .作PF AC ⊥,垂足为F ,求PEF !的面积的最大值; (3)如图,点M 是抛物线H 的对称轴L 上的一个动点,是否存在点M ,使得以点A ,M ,C 为顶点的三角形是直角三角形?若存在,求出所有符合条件的点M 的坐标;若不存在,说明理由.26.如图1,ABC V 和ADE V 均为等边三角形,连接BD ,CE .(1)直接写出BD 与CE 的数量关系为_________,直线BD 与CE 所夹锐角为__________度; (2)将ADE V 绕点A 逆时针旋转至如图2,取BC ,DE 的中点M ,N ,连接MN ,试问:MNBD的值是否随图形的旋转而变化?若不变,请求出该值;若变化,请说明理由;(3)若14,6AB AD ==,当图形旋转至B ,D ,E 三点在一条直线上时,请画出图形,并直接写出MN 的值为_______。

人教版中考模拟考试数学试卷及答案(共七套)

人教版中考模拟考试数学试卷及答案(共七套)
∴ME=MC+EC= 。
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号

√ቤተ መጻሕፍቲ ባይዱ

由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,

重庆市南开中学2024-2025学年九年级上学期数学开学考试模拟试卷(含答案)

重庆市南开中学2024-2025学年九年级上学期数学开学考试模拟试卷(含答案)

重庆市南开中学2024-2025学年九年级上学期数学开学考试模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,既是中心对称图形又是轴对称图形的为( )A.B.C.D.2.(4分)下列方程中,有两个相等实数根的是( )A.x2=x B.C.x2﹣4=0D.x2+2x+4=03.(4分)在反比例函数图象的每一支曲线上,y都随x的增大而减小,则k的取值范围是( )A.k>3B.k>0C.k<3D.k<04.(4分)如图,在平面直角坐标系中,△ABC与△ADE是以点A为位似中心的位似图形,相似比为1:3,点A 在x轴上,点A的坐标是(﹣1,0),点B的坐标是(﹣2,2),则点D的坐标是( )A.(﹣3,4)B.(﹣4,6)C.(﹣4,5)D.(﹣3,5)5.(4分)某厂今年一月份新产品的研发资金为10万元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年一季度新产品的研发资金y(元)关于x的函数关系式为( )A.y=10(1+x)3B.y=10+10(1+x)+10(1+x)2C.y=10+10x+x2D.y=10(1+x)26.(4分)估计的值应在( )A.8和9之间B.9和10之间C.10和11之间D.11和12之间7.(4分)若,则的值为( )A.B.1C.1.5D.38.(4分)下列按照一定规律排列一组图形,其中图形①中共有2个小三角形,图形②中共有6个小三角形,图形③中共有11个小三角形,图形④中共有17个小三角形,…….按此规律,图形⑩中共有n个小三角形,这里的n=( )A.87B.74C.62D.539.(4分)如图,正方形ABCD的对角线AC与BD的交于点O,点E为边AB上一动点,连接DE,作CF⊥DE 于点F,连接OF,若∠BDE=α,则∠DOF的度数为( )A.2αB.30°+αC.45°﹣αD.60°﹣2α10.(4分)给定一列数,我们把这列数中第一个数记为a1,第二个数记为a2,第三个数记为a3,以此类推,第n 个数记为a n(n为正整数),已知a1=x.并规定:a n+1=,T n=a1•a2•a3…a n,S n=a1+a2+a3+…+a n.则:①a2=a5;②T1+T2+T3+…+T1000=;③对于任意正整数k,T3k+3(S3k﹣S3k+2)=T3k﹣T3k﹣1﹣T3k﹣2成立,以上结论中正确的有( )A.0个B.1个C.2个D.3个二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:()﹣1+(π﹣2)0= .12.(4分)已知关于x的一元二次方程x2﹣x+2m=0的一个根是2,则m2= .13.(4分)一个不透明的箱子里装有a个球,其中红球有5个,这些球除颜色外都相同.每次将箱子里的球搅拌均匀后,任意摸出一个球记下颜色后再放回,大量重复试验后发现,摸到红球的频率稳定在0.25,那么可以估算出a的值为 .14.(4分)若一个多边形的内角和为720°,则从该多边形一个顶点出发可画的对角线条数是 .15.(4分)如图,矩形ABCD的顶点A、B分别在反比例函数y=(x>0)与y=﹣(x<0)的图象上,点C、D在x轴上,AB、BD分别交y轴于点E、F,则阴影部分的面积为 .16.(4分)若关于x的不等式组的解集为x>0,且关于y的分式方程有非负整数解,则所有满足条件的整数m的值的和是 .17.(4分)如图,菱形ABCD的边长为4,∠BAD=60°,过点B作BE⊥AB交CD于点E,连接AE,F为AE 的中点,H为BE的中点,连接FH和CF,CF交BE于点G,则GF的长为 .18.(4分)若一个四位自然数A,满足百位数字与千位数字的平方差恰好是A去掉千位与百位数字后得的两位数,则称这个四位数A为“活泼数”,例如A=2521,因为52﹣22=21,故2521是一个“活泼数”;若一个四位自然数B,各个数位上的数字互不相等且满足十位数字比千位数字大1,个位数字比百位数字大1,则称这个四位数B为“可爱数”,例如1425,因为2﹣1=1,5﹣4=1,故1425是一个“可爱数”,对于一个“活次数”,规定:,对于一个“可爱数”B=,规定:G(B)=p﹣n,则F(5611)×G(3142)= ;当B的百位数字为4时,若是整数,则所有满足条件的奇数四位数A 的和是 .三.解答题(共8小题,满分78分)19.(8分)(1)解方程:(2)解不等式组:.20.(10分)先化简,再求值:,其中x满足x2﹣x﹣1=0.21.(10分)学习了平行四边形的知识后,同学们进行了拓展性研究.他们发现作平行四边形一组对角的角平分线与另一组对角的顶点所连对角线相交,则这两个交点与这条对角线两侧的对角顶点的连线所围成的封闭图形是一个特殊四边形.他的解决思路是通过证明对应线段平行且相等得出结论.请根据她的思路完成以下作图和填空:用直尺和圆规,过点B作∠ABC的角平分线,交AC于点F,连接BE、DF.(只保留作图痕迹)已知:如图,四边形ABCD是平行四边形,AC是对角线,DE平分∠ADC,交AC于点E.求证:四边形BEDF 是平行四边形.证明:∵四边形ABCD是平行四边形,∴AD=CB,① ,∴∠DAC=∠BCA.∵DE平分∠ADC,BF平分∠CBA,∴,.∵∠ADC=∠CBA,∴② ,∴△ADE≌△CBF(ASA).∴DE=BF,∠DEA=∠BFC.∴③ ,∴四边形BEDF是平行四边形.同学们再进一步研究发现,过平行四边形任意一组对角的顶点作平行线与另一组对角顶点所连对角线相交,均具有此特征.请你依照题意完成下面命题:过平行四边形一组对角的顶点作平行线与另一组对角顶点所连对角线相交,则④ .22.(10分)教育部制定了独立的《义务教育劳动课程标准》,其中规定:以劳动项目为载体,以孩子经历体验劳动过程为基本要求,培养学生的核心劳动素养.某校分别从该校七、八年级学生中各随机调查了100名学生,统计他们上周的劳动时间,劳动时间记为x分钟,将所得数据分为5个组别(A组:90≤x≤100;B组:80≤x<90;C组:70≤x<80;D组:60≤x<70;E组:0≤x<60),将数据进行分析,得到如下统计:①八年级B组学生上周劳动时间从高到低排列,排在最后的10个数据分别是:82,82,81,81,81,81,80,80,80,80.②八年级100名学生上周劳动时间频数分布统计表:分组A B C D E频数14b28136③七、八年级各100名学生上周带动时间的平均数、中位数、众数如表:年级平均数中位数众数七年级81.379.582八年级81.3c83请你根据以上信息,回答下列问题:(1)a= ,b= ,c= ;(2)根据以上数据分析,你认为七、八年级哪个年级学生上周劳动情况更好,请说明理由;(写出一条理由即可)(3)已知七年级有800名学生,八年级有600名学生,请估计两个年级上周劳动时间在80分钟以上(含80分钟)的学生一共有多少人?23.(10分)四边形ABCD中,AB∥CD,BC⊥AB,AB=12,DC=6,BC=8.动点P从A点出发,沿A→B方向以每秒1个单位的速度运动,同时,动点Q从点A出发,沿折线A→D→C方向以每秒2个单位的速度运动,当Q点到达C点时,P、Q两点都停止运动.设动点P运动的时间为x秒,y1=AP+DQ.(1)请直接写出y1关于x的函数关系式并注明自变量x的取值范围;(2)在给定的平面直角坐标系中画出函数y1的图象,并写出函数y1的一条性质;(3)若函数y2=x+b的图象跟函数y1的图象有两个交点,请直接写出b的取值范围.24.(10分)新学期学校门口开了一家文具店,为了更好的迎接同学们,商家购进了一批笔记本和签字笔.商家用1600元购买笔记本,800元购买签字笔,每本笔记本比每支签字笔的进价贵6元,且购进签字笔的数量是笔记本的2倍.(1)求商家购买每本笔记本和每支签字笔的进价?(2)商家在销售过程中发现,当笔记本的售价为每本14元,签字笔的售价为每支5元时,平均每天可售出20本笔记本,40支签字笔.据调查,笔记本的售价每降低0.5元平均每天可多售出5本,且开学活动力度大,降价幅度不低于10%.商家在保证签字笔的售价和销量不变且不考虑其他因素的情况下,想使笔记本和签字笔平均每天的总获利为270元,则每本笔记本的售价为多少元?25.(10分)如图,直线y=x+2分别与x轴,y轴交于点A,点C,点P是反比例函数y=(k≠0)图象与直线AC在第一象限内的交点,过点P作PB⊥x轴于点B,且AB=6.(1)求反比例函数的表达式;(2)点D是直线PB右侧反比例函数图象上一点,且S△APD=,直线PD交y轴于点E,点M,N是直线AC 上两点,点M在点N的左侧且MN=AP,求EM+DN的最小值及此时点N的坐标;(3)在(2)的条件下,点F为反比例函数图象上一点,若∠PEF﹣∠PAB=45°,请直接写出所有符合条件的点F的横坐标.26.(10分)在△ABC中,∠BAC=90°,AB=AC,D为线段BC上一点(点D不与B,C重合),连接AD.(1)如图1,∠ADB=105°,CD=,求BD的长度;(2)如图2,D为BC中点,E为平面内一点,连接DE,CE,AE,BE,将线段DE绕D顺时针旋转90°得到线段DF,连接AF,∠FAC+∠ECB=90°,G为线段EC上一点,AG⊥CE,求证:CE=AF+2AG;(3)如图3,P,H为射线AD上两个点,∠BHA=90°,AP=2BH,将△BNP沿直线BP翻折至△BHP所在平面内得到△BKP,直线PK与直线AB交于点T.若,当线段BP取得最小值时,请直接写出△APT的面积.重庆市南开中学2024-2025学年九年级上学期数学开学考试模拟试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,既是中心对称图形又是轴对称图形的为( )A.B.C.D.【答案】D2.(4分)下列方程中,有两个相等实数根的是( )A.x2=x B.C.x2﹣4=0D.x2+2x+4=0【答案】B3.(4分)在反比例函数图象的每一支曲线上,y都随x的增大而减小,则k的取值范围是( )A.k>3B.k>0C.k<3D.k<0【答案】A4.(4分)如图,在平面直角坐标系中,△ABC与△ADE是以点A为位似中心的位似图形,相似比为1:3,点A 在x轴上,点A的坐标是(﹣1,0),点B的坐标是(﹣2,2),则点D的坐标是( )A.(﹣3,4)B.(﹣4,6)C.(﹣4,5)D.(﹣3,5)【答案】B5.(4分)某厂今年一月份新产品的研发资金为10万元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年一季度新产品的研发资金y(元)关于x的函数关系式为( )A.y=10(1+x)3B.y=10+10(1+x)+10(1+x)2C.y=10+10x+x2D.y=10(1+x)2【答案】B6.(4分)估计的值应在( )A.8和9之间B.9和10之间C.10和11之间D.11和12之间【答案】B7.(4分)若,则的值为( )A.B.1C.1.5D.3【答案】A8.(4分)下列按照一定规律排列一组图形,其中图形①中共有2个小三角形,图形②中共有6个小三角形,图形③中共有11个小三角形,图形④中共有17个小三角形,…….按此规律,图形⑩中共有n个小三角形,这里的n=( )A.87B.74C.62D.53【答案】B9.(4分)如图,正方形ABCD的对角线AC与BD的交于点O,点E为边AB上一动点,连接DE,作CF⊥DE 于点F,连接OF,若∠BDE=α,则∠DOF的度数为( )A.2αB.30°+αC.45°﹣αD.60°﹣2α【答案】C10.(4分)给定一列数,我们把这列数中第一个数记为a1,第二个数记为a2,第三个数记为a3,以此类推,第n 个数记为a n(n为正整数),已知a1=x.并规定:a n+1=,T n=a1•a2•a3…a n,S n=a1+a2+a3+…+a n.则:①a2=a5;②T1+T2+T3+…+T1000=;③对于任意正整数k,T3k+3(S3k﹣S3k+2)=T3k﹣T3k﹣1﹣T3k﹣2成立,以上结论中正确的有( )A.0个B.1个C.2个D.3个【答案】D二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:()﹣1+(π﹣2)0= 3 .【答案】3.12.(4分)已知关于x的一元二次方程x2﹣x+2m=0的一个根是2,则m2= 1 .【答案】1.13.(4分)一个不透明的箱子里装有a个球,其中红球有5个,这些球除颜色外都相同.每次将箱子里的球搅拌均匀后,任意摸出一个球记下颜色后再放回,大量重复试验后发现,摸到红球的频率稳定在0.25,那么可以估算出a的值为 20 .【答案】20.14.(4分)若一个多边形的内角和为720°,则从该多边形一个顶点出发可画的对角线条数是 3 .【答案】3.15.(4分)如图,矩形ABCD的顶点A、B分别在反比例函数y=(x>0)与y=﹣(x<0)的图象上,点C、D在x轴上,AB、BD分别交y轴于点E、F,则阴影部分的面积为 .【答案】.16.(4分)若关于x的不等式组的解集为x>0,且关于y的分式方程有非负整数解,则所有满足条件的整数m的值的和是 ﹣8 .【答案】﹣8.17.(4分)如图,菱形ABCD的边长为4,∠BAD=60°,过点B作BE⊥AB交CD于点E,连接AE,F为AE 的中点,H为BE的中点,连接FH和CF,CF交BE于点G,则GF的长为 .【答案】.18.(4分)若一个四位自然数A,满足百位数字与千位数字的平方差恰好是A去掉千位与百位数字后得的两位数,则称这个四位数A为“活泼数”,例如A=2521,因为52﹣22=21,故2521是一个“活泼数”;若一个四位自然数B,各个数位上的数字互不相等且满足十位数字比千位数字大1,个位数字比百位数字大1,则称这个四位数B为“可爱数”,例如1425,因为2﹣1=1,5﹣4=1,故1425是一个“可爱数”,对于一个“活次数”,规定:,对于一个“可爱数”B=,规定:G(B)=p﹣n,则F(5611)×G(3142)= ;当B的百位数字为4时,若是整数,则所有满足条件的奇数四位数A的和是 83600 .【答案】;83600.三.解答题(共8小题,满分78分)19.(8分)(1)解方程:(2)解不等式组:.【答案】见试题解答内容20.(10分)先化简,再求值:,其中x满足x2﹣x﹣1=0.【答案】,1.21.(10分)学习了平行四边形的知识后,同学们进行了拓展性研究.他们发现作平行四边形一组对角的角平分线与另一组对角的顶点所连对角线相交,则这两个交点与这条对角线两侧的对角顶点的连线所围成的封闭图形是一个特殊四边形.他的解决思路是通过证明对应线段平行且相等得出结论.请根据她的思路完成以下作图和填空:用直尺和圆规,过点B作∠ABC的角平分线,交AC于点F,连接BE、DF.(只保留作图痕迹)已知:如图,四边形ABCD是平行四边形,AC是对角线,DE平分∠ADC,交AC于点E.求证:四边形BEDF 是平行四边形.证明:∵四边形ABCD是平行四边形,∴AD=CB,① AD∥BC ,∴∠DAC=∠BCA.∵DE平分∠ADC,BF平分∠CBA,∴,.∵∠ADC=∠CBA,∴② ∠ADE=∠CBF ,∴△ADE≌△CBF(ASA).∴DE=BF,∠DEA=∠BFC.∴③ ∠DEA=∠BFC ,∴四边形BEDF是平行四边形.同学们再进一步研究发现,过平行四边形任意一组对角的顶点作平行线与另一组对角顶点所连对角线相交,均具有此特征.请你依照题意完成下面命题:过平行四边形一组对角的顶点作平行线与另一组对角顶点所连对角线相交,则④ 这两个交点与这条对角线两侧的对角顶点的连线所围成的四边形是平行四边形 .【答案】AD∥BC,∠ADE=∠CBF,∠DEA=∠BFC;这两个交点与这条对角线两侧的对角顶点的连线所围成的四边形是平行四边形.22.(10分)教育部制定了独立的《义务教育劳动课程标准》,其中规定:以劳动项目为载体,以孩子经历体验劳动过程为基本要求,培养学生的核心劳动素养.某校分别从该校七、八年级学生中各随机调查了100名学生,统计他们上周的劳动时间,劳动时间记为x分钟,将所得数据分为5个组别(A组:90≤x≤100;B组:80≤x<90;C组:70≤x<80;D组:60≤x<70;E组:0≤x<60),将数据进行分析,得到如下统计:①八年级B组学生上周劳动时间从高到低排列,排在最后的10个数据分别是:82,82,81,81,81,81,80,80,80,80.②八年级100名学生上周劳动时间频数分布统计表:分组A B C D E频数14b28136③七、八年级各100名学生上周带动时间的平均数、中位数、众数如表:年级平均数中位数众数七年级81.379.582八年级81.3c83请你根据以上信息,回答下列问题:(1)a= 10 ,b= 39 ,c= 80 ;(2)根据以上数据分析,你认为七、八年级哪个年级学生上周劳动情况更好,请说明理由;(写出一条理由即可)(3)已知七年级有800名学生,八年级有600名学生,请估计两个年级上周劳动时间在80分钟以上(含80分钟)的学生一共有多少人?【答案】(1)10,39,80;(2)八年级的较好,理由:八年级学生参加劳动的时间的中位数、众数均比七年级的大;(3)七、八年级上周劳动时间在80分钟以上(含80分钟)的学生大约有718人.23.(10分)四边形ABCD中,AB∥CD,BC⊥AB,AB=12,DC=6,BC=8.动点P从A点出发,沿A→B方向以每秒1个单位的速度运动,同时,动点Q从点A出发,沿折线A→D→C方向以每秒2个单位的速度运动,当Q点到达C点时,P、Q两点都停止运动.设动点P运动的时间为x秒,y1=AP+DQ.(1)请直接写出y1关于x的函数关系式并注明自变量x的取值范围;(2)在给定的平面直角坐标系中画出函数y1的图象,并写出函数y1的一条性质;(3)若函数y2=x+b的图象跟函数y1的图象有两个交点,请直接写出b的取值范围.【答案】(1)y1=;(2)作图见解答过程;当0≤x≤5时,函数值随x的增大而减小;当5<x≤8时,函数值随x的增大而增大(答案不唯一);(3)0<b≤6.24.(10分)新学期学校门口开了一家文具店,为了更好的迎接同学们,商家购进了一批笔记本和签字笔.商家用1600元购买笔记本,800元购买签字笔,每本笔记本比每支签字笔的进价贵6元,且购进签字笔的数量是笔记本的2倍.(1)求商家购买每本笔记本和每支签字笔的进价?(2)商家在销售过程中发现,当笔记本的售价为每本14元,签字笔的售价为每支5元时,平均每天可售出20本笔记本,40支签字笔.据调查,笔记本的售价每降低0.5元平均每天可多售出5本,且开学活动力度大,降价幅度不低于10%.商家在保证签字笔的售价和销量不变且不考虑其他因素的情况下,想使笔记本和签字笔平均每天的总获利为270元,则每本笔记本的售价为多少元?【答案】(1)商家购买每本笔记本的进价是8元,每支签字笔的进价是2元;(2)每本笔记本的售价为11元.25.(10分)如图,直线y=x+2分别与x轴,y轴交于点A,点C,点P是反比例函数y=(k≠0)图象与直线AC在第一象限内的交点,过点P作PB⊥x轴于点B,且AB=6.(1)求反比例函数的表达式;(2)点D是直线PB右侧反比例函数图象上一点,且S△APD=,直线PD交y轴于点E,点M,N是直线AC 上两点,点M在点N的左侧且MN=AP,求EM+DN的最小值及此时点N的坐标;(3)在(2)的条件下,点F为反比例函数图象上一点,若∠PEF﹣∠PAB=45°,请直接写出所有符合条件的点F的横坐标.【答案】(1)反比例函数解析式为y=;(2)EM+DN的最小值为3,此时N(4,4);(3)符合条件的点F的横坐标为或﹣5+.26.(10分)在△ABC中,∠BAC=90°,AB=AC,D为线段BC上一点(点D不与B,C重合),连接AD.(1)如图1,∠ADB=105°,CD=,求BD的长度;(2)如图2,D为BC中点,E为平面内一点,连接DE,CE,AE,BE,将线段DE绕D顺时针旋转90°得到线段DF,连接AF,∠FAC+∠ECB=90°,G为线段EC上一点,AG⊥CE,求证:CE=AF+2AG;(3)如图3,P,H为射线AD上两个点,∠BHA=90°,AP=2BH,将△BNP沿直线BP翻折至△BHP所在平面内得到△BKP,直线PK与直线AB交于点T.若,当线段BP取得最小值时,请直接写出△APT的面积.【答案】(1);(2)证明过程详见解答;(3).。

2013年重庆市中考数学诊断模拟试卷

2013年重庆市中考数学诊断模拟试卷

-22(8题图)2013年重庆市中考数学诊断模拟试卷一、选择题:(每小题4分,共48分)23A B C D4、二元一次方程组的解是()A6.下列调查中,适合用普查的是()①要了解某厂生产的一批灯泡的使用寿命;②要了解某个球队的队员的身高;7、计算28-的结果是()A、6B、6C、2D、28.如图,A、C、B是⊙O上三点,若∠AOC=40°,则∠ABC的度数是()A.10° B 20° C 40° D 80°9、某班九名同学在篮球场进行定点投篮测试,每人投篮五次,投中的次数统计如下:4,3,2,4,4,1,5,0,3,则这组数据的中位数、众数分别为()A.3 4 B.4. 3 C.3. 3 D.4. 422又从乙地逆流而上航行返回到甲地(轮船在静水中的航行速度始终保持不变).设轮船从甲地出发后所用时间为t (h),轮船离甲地的距离为s(km),则s与t的函数图象大致是()17题图(15题图)(12题图)13、将抛物线y=﹣(x ﹣1)2﹣2向左平移1个单位,再向上平移1个单位,则平移后抛物线的表达式 14、若单项式3x 2y n与-2x my 3是同类项,则m+n=15.在平面内,⊙O 的半径为5cm ,点P 到圆心O 的距离为3cm ,则点P 与⊙O 的位置关系是 如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0), (2, 0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2013个点的横坐标为17.把一个转盘平均分成三等份,依次标上数字2、6、8.用力转动转盘两次,将第一次转动停止后指针指向的数字记作x ,第二次转动停止后指针指向的数字的一半记作y 以长度为x 、y 、4的三条线段为边长能构成三角形的概率为_____________.18某商人经营甲、乙两种商品,每件甲种商品的利润率为40%,每件乙种商品的利润率为60%,当售出的乙种商品的件数比甲种商品的件数多50%时,这个商人得到的总利润率是50%;当售出的乙种商品的件数比甲种商品的件数少50%时,这个商人得到的总利润率为_____ ____.(利润率=利润÷成本) 三、解答题: 19.计算:2sin45_20.如图,两条国道OA 、OB 在我市交汇于O ,在∠AOB 的内部C 、D 处各有一个工厂。

重庆市育才中学校2023-2024学年九年级下学期中考模拟数学试题

重庆市育才中学校2023-2024学年九年级下学期中考模拟数学试题

重庆市育才中学校2023-2024学年九年级下学期中考模拟数学试题一、单选题1.在实数2,3 )个 A .0B .1C .2D .32.下列图形中既是中心对称图形又是轴对称图形的是( )A .B .C .D .3.如图,下列条件不能判定AD BC ∥的是( )A .3E ∠=∠B .2B ∠=∠C .13∠=∠D .180BCD D ∠+∠=︒4.函数y x 的取值范围是( ) A .x≠3B .x≥﹣1C .x≥﹣1且x≠3D .x≤﹣1或x≠35.如图,AOB V 与CDB △位似,点B 为位似中心,AOB V 与CDB △的周长之比为1:2,若点B 坐标为()1,1,则点D 的坐标是( )A .()3,3B .()4,4C .()5,5D .()6,66.观察下列一组图案,每个图案都是若干个“·”组成,其中图①中共有7个“·”,图②中共有13个“·”,图③中共有21个“·”,图④中共有31个“·”…,按此规律,图形⑩中的“·”个数是( )A .113B .117C .125D .1337.估计(6- ) A .0和1之间B .1和2之间C .2和3之间D .3和4之间8.如图,在ABC V 中,30B ∠=︒,点O 是边AB 上一点,以点O 为圆心,以OA 为半径作圆,O e 恰好与BC 相切于点D ,连接AD .若AD 平分CAB ∠,BD =AC 的长是( )A .2 BC .32D 9.如图,E 是正方形ABCD 的边CD 上的一点,连接AE ,点F 为AE 的中点,过点F 作AE 的垂线分别交AD ,BC 于点M ,N ,连接AN ,若36AB DE ==,则A M N △的面积为( )A .8B .10C .12D .2010.有一列数{}1,2,3,4----,将这列数中的每个数求其相反数得到{}1,2,3,4,再分别求与1的和的倒数,得到1111,,,2345⎧⎫⎨⎬⎩⎭,设为{}1234,,,a a a a ,称这为一次操作,第二次操作是将{}1234,,,a a a a 再进行上述操作,得到{}5678,,,a a a a ;第三次将{}5678,,,a a a a 重复上述操作,得到{}9101112,,,a a a a ……以此类推,得出下列说法中,正确的有( )个 ①52a =,632a =,743a =,854a =;②102a =-; ③20153a =;④123495011310a a a a a +++⋅⋅⋅⋅⋅⋅++=-. A .0B .1C .2D .3二、填空题11.计算:)13212-++-=. 12.太阳中心的温度可达15500000℃,数据15500000用科学记数法表示为.13.现有三张正面分别标有数字1-,0,2的卡片,它们除数字不同外其余完全相同,将卡片背面朝上洗匀后,从中随机抽取一张,将卡片上的数字记为a ,放回洗匀后再随机抽取一张,将卡片上的数字记为b ,则满足0⋅=a b 的概率为. 14.如图,点M 是反比例函数()0ky x x=<图像上的一点,过点M 作MN x ⊥轴于点N ,点P 在y 轴上,若MNP △的面积是2,则k =.15.如图,在等腰梯形ABCD 中,AD BC ∥,AB CD =,45A ∠=︒,6AD =,2BC =,以点C 为圆心,CB 长为半径画弧交CD 于点E ,则图中阴影部分面积为.16.如图,D 、E 分别是ABC △外部的两点,连接AD ,AE ,有AB AD =,AC AE =,BAD CAE α∠=∠=.连接CD 、BE 交于点F ,则DFE ∠的度数为.17.若关于y 的不等式组()2513102y y y a -⎧-≥⎪⎪⎨⎪-->⎪⎩有解且最多4个整数解,且关于x 的分式方程2311a x ax x-+=--的解为非负数,则所有满足条件的整数a 的值之和是. 18.对任意一个四位数m ,如果m 各个数位上的数字都不为零且互不相同,满足个位与千位上的数字的和等于十位与百位上的数字和,那么称这个数为“同和数”,将一个“同和数”m 的个位与千位两个数位上的数字对调后得到一个新的四位数1m ,将m 的十位与百位两个数位上的数字对调后得到另一个新四位数2m ,记()121111m m m F +=.若s ,t 都是“同和数”,其中540010s y x =++,100010076t f e =++(1x ≤,y ,e ,9f ≤),且x ,y ,e ,f 都是正整数,规定:()()s t F k F =,用含“x ,f ”的代数式表示k =,当()()s t F F +能被20整除时,k 的所有取值之积为.三、解答题 19.计算:(1)()()242y x y x y +-+;(2)219422a a a a -⎛⎫++÷⎪++⎝⎭. 20.在学习矩形的过程中,小明发现将矩形ABCD 折叠,使得点B 与点D 重合,所得折痕在BD 的垂直平分线上,折痕平分矩形的面积.他想对此折痕平分矩形的面积进行证明.他的思路是首先作出线段BD 的垂直平分线,通过三角形全等的证明,将折痕左侧的四边形的面积转化为三角形的面积,使问题得到解决.请根据小明的思路完成下面的作图与填空:用直尺和圆规,作BD 的垂直平分线MN ,MN 交AD 于点M ,交BC 于点N ,垂足为点O .∵四边形ABCD 是矩形, ∴①,∴ADB CBD ∠=∠,DMO BNO ∠=∠, ∵②, ∴③,∴()AAS BON DOM V V ≌,BON BON ABNM ABOM S S S S =++四边形四边形V V ,DOM ABOM S S =+四边形V , ABD S =△,又∵12ABD ABCDS S =矩形V , ∴④,即MN 平分矩形ABCD 的面积.21.12月2日是“全国交通安全日”,为了解七、八年级学生对交通安全知识的掌握情况,某学校举行了交通安全知识竞赛活动.现从七、八年级中各随机抽取20名学生的竞赛成绩(百分制)进行整理、描述和分析(得分用x 表示,80分及以上为优秀,共分成四组:A :70x <,B :7080x ≤<,C :8090x ≤<,D :90100)x ≤≤,下面给出了部分信息:七年级抽取的学生竞赛成绩在C 组的数量是D 组数量的一半,在C 组中的数据为:84,86,87,89;八年级抽取的学生竞赛成绩为:68,69,76,78,81,84,85,86,87,87,87,89,95,97,98,98,98,98,99,100.七、八年级抽取的学生竞赛成绩统计表根据以上信息,解答下列问题:(1)填空:a = ,b = ,m = .(2)该校;七、八年级共600人参加了此次竞赛活动,请你估计该校七、八年级参加此次竞赛活动成绩达到优秀的学生总数.(3)根据以上数据,你认为哪一个年级参加竞赛活动的学生成绩更好?请说明理由(写出一条理由即可).22.为了共同做好九龙坡区文明创建工作(创建全国文明城区和创建全国未成年人思想道德建设工作先进城区),九龙坡区建委决定对九龙坡区石坪桥街道一条长6400米步道展开整改,承担此任务的承包商在整改了1600米后,发现不能按时完成任务,于是安排工人每天加班,每天的工作量比原来提高了25%,共用68天完成了全部任务. (1)原来每天整改了多少米步道?(2)若承包商安排工人加班后每天支付给工人的工资增加了30%,完成整个工程后承包商共支付工人工资329600元,请问安排工人加班前每天需支付工人工资多少元?23.如图,在梯形ABCD 中,其中底边8BC =,90BAD ∠=︒,连接对角线BD ,BCD △为等边三角形,动点P 从C 点出发,沿折线C D A →→方向以1个单位长度每秒匀速运动,同时Q 点从B 点出发,沿折线B D C →→方向以1个单位长度每秒匀速运动,当点P 到达终点时,P ,Q 同时停止运动.设运动时间为x 秒,P 、Q 两点间的距离为y ;(1)请直接写出y 与x 的函数关系式,并注明x 的取值范围;(2)在给定的平面直角坐标系中画出函数图象,并写出该函数的一条性质;(3)已知y '图象如图所示,若y y ≤'时,请直接写出x 的取值范围. 24.三月是草长莺飞的好时节,某高校组织学生春游,出发点位于点C 处,集合点位于点E 处,现有两条路线可以选择:①C E →,②C A D E →→→.已知B 位于C 的正西方,A位于B 的北偏西30︒方向C 的北偏西53︒方向处.D 位于A 的正西方向E 位于C 的西南方向,且正好位于D 的正南方向.1.414≈ 1.732≈,sin370.60︒≈,cos370.80︒≈)(1)求A 与C 之间的距离(结果保留整数);(2)已知路线①的步行速度为40米/分钟,路线②的步行速度为75米/分钟,请计算说明:走哪条线路用时更短?(结果保留一位小数)25.如图,抛物线()20y ax bx c a =++≠与x 轴交于点()A -、()B 两点,与y 轴交于点C ,连接AC 、BC ,已知1tan 2ACO ∠=.(1)求该抛物线的函数解析式;(2)P 是直线BC 上方抛物线上一个动点,过点P 作PF AC ∥交BC 于点F ,过点P 作PE y P 轴交BC 于点E ,求PE 的最大值及此时点P 的坐标;(3)如图2,在平面直角坐标系内,将原抛物线沿射线CA 抛物线y ',y '上有一动点M ,连接BM ,当ACO ABM BCO ∠+∠=∠时,写出所有符合条件的点M 的横坐标,并写出求解点M 的其中一种情况过程.26.在ABC △中,AB AC =,AD 是边BC 上的高,点E 是线段AC 上一点,点F 是直线BC 上的一点,连接BE 、AF ,直线AF 交直线BE 于点G .(1)如图1,点F 在线段BC 延长线上,若AB BG =,AC BG ⊥,证明45CFG ∠=︒; (2)如图2,点F 在线段BC 上,连接GD 并延长至点H ,满足DH DG =,连接BH ,若60AEB AFB ∠=∠=︒)BF AG BH -=; (3)如图3,点F 在线段BC 延长线上,若6AB BC AC ===,AD FD =,点Q 为AD 上一点,2AQ DQ =,连接FQ ,点I 在AF 的下方,且AQ AI =,AQ AI ⊥,连接QI ,点M 为FQ 的中点,连接DM ,点N 为线段DF 上一动点,连接MN ,将DMN △沿直线MN 翻着得到D MN '△,连接QD ',点P 为QD '的中点,连接AP ,BP .当AP AI +最大时,请直接写出△的面积.ABP。

2013年重庆市中考数学试题(B卷)

2013年重庆市中考数学试题(B卷)

重庆市2013年初中毕业生学业暨高中招生考试数 学 试 卷(B 卷)(本卷共四个大题 满分150分 考试时间120分钟)参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标为)44,2(2ab ac a b --,对称轴公式为abx 2-= 一、选择题:(本大题12个小题,每小题4分,共48分) 1、在-2,0,1,-4这四个数中,最大的数是A.-4B.-2C.0D.12、如图,直线a 、b 、c 、d,已知b c a c ⊥⊥,,直线b 、c 、d 交于一点,若0501=∠,则2∠等于A.60°B.50°C.40°D.30°3、计算233x x ÷的结果是A.22xB.23x C.x 3 D.34、已知ABC ∆∽DEF ∆,若ABC ∆与DEF ∆的相似比为3:4,则ABC ∆与DEF ∆的面积之比为A.4:3B.3:4C.16:9D.9:16 5、已知正比例函数y=kx(0≠k )的图象经过点(1,-2),则正比例函数的解析式为 A.x y 2= B.x y 2-= C.x y 21=D.x y 21-= 6、为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽出50株,分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙的方差分别是3.5、10.9,则下列说法正确的是A.甲秧苗出苗更整齐B. 乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定甲、乙出苗谁更整齐7、如图,矩形纸片ABCD 中,AB=6cm,BC=8cm,现将其沿AE 对折,使得点B 落在边AD 上的点1B 处,折痕与边BC 交于点E ,则CE 的长为A.6cmB.4cmC.2cmD.1cm8、如图,AB 是⊙O 的切线,B 为切点,AO 与⊙O 交于点C ,若040=∠BAO ,则OCB ∠的度数为A.40°B.50°C.65°D.75° 9、如图,在ABC ∆中,045=∠A ,030=∠B ,AB CD ⊥,垂足为D ,CD=1,则AB 的长为 A.2 B.32 C.133+ D.13+ 10、2013年“中国好声音”全国巡演重庆站在奥体中心举行.童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x 表示童童从家出发后所用时间,y 表示童童离家的距离.下图能反映y 与x 的函数关系式的大致图象是11、下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑥个图形中棋子的颗数为A.51B.70C.76D.81 12、如图,在平面直角坐标系中,正方形OABC 的顶点O 与原点重合,顶点A,C 分别在x 轴、y 轴上,反比例函数)0,0(>≠=x k xky 的图象与正方形的两边AB 、BC 分别交于点M 、N,轴x ND ⊥,垂足为D ,连接OM 、ON 、MN. 下列结论:①OAM OCN ∆≅∆; ②ON=MN;③四边形DAMN 与MON ∆面积相等;④若045=∠MON ,MN=2,则点C 的坐标为(0,12+).其中正确结论的个数是( )A.1B.2C.3D.4二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡(卷)中对应的横线上13、实数“-3”的倒数是 ; 14、分式方程121=-x 的解为 ;15、某届青年歌手大奖赛上,七位评委为甲选手打出的分数分别是:96.5,97.1,97.5,98.1,98.1,98.3,98.5.则组数据的众数是 ; 16、如图,一个圆心角为090的扇形,半径OA=2,那么图中阴影部分的面积为 ;(结果保留π)17、在平面直角坐标系中,作OAB ∆,其中三个顶点分别是O(0,0),B(1,1),A(x,y)(,22-22-≤≤≤≤y x ,x,y 均为整数),则所作OAB ∆为直角三角形的概率是 ;18、如图,平面直角坐标系中,已知直线y=x 上一点P (1,1),C 为y 轴上一点,连接PC ,线段PC 绕点P 顺时针旋转90°至线段PD ,过点D 作直线轴x AB ⊥,垂足为B ,直线AB 与直线y=x 交于点A ,且BD=2AD ,连接CD ,直线CD 与直线y=x 交于点Q ,则点Q 的坐标 为 .三、解答题:(本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上. 19、计算:()13201341832)1(-⎪⎭⎫⎝⎛+⨯-+---π20、如图,在边长为1的小正方形组成的1010⨯网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD 在直线l 的左侧,其四个顶点A 、B 、C 、D 分别在网格的顶点上. (1)请你在所给的网格中画出四边形''''D C B A ,使四边形''''D C B A 和四边形ABCD 关于直线l 对称,其中,点''''D C B A 、、、分别是点A 、B 、C 、D 的对称点;(2)在(1)的条件下,结合你所画的图形,直接写出线段''B A 的长度.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上. 21、先化简,再求值:444)212(2+--÷---+x x x x x x x ,其中x 是不等式173>+x 的负整数解.22、为了贯彻落实国家关于增强青少年体质的计划,重庆市全面实施了义务教育学段中小学学生“饮用奶计划”的营养工程.某牛奶供应商拟提供A (原味)、B (草莓味)、C (核桃味)、D (菠萝味)、E (香橙味)等五种口味的学生奶供学生选择(所有学生奶盒性状、大小相同),为了了解对学生奶口味的喜好情况,某初中学九年级(1)班张老师对全班同学进行了调查统计,制成了如下两幅不完整的统计图:(1)该班五种口味的学生奶喜好人数组成一组统计数据,直接写出这组数据的平均数,并将折线统计图补充完整;(2)在进行调查统计的第二天,张老师为班上每位同学发放一盒学生奶.喜好B 味的小明和喜好C 味的小刚等四位同学最后领取,剩余的学生奶放在同一纸箱里,分别有B 味2盒,C 味和D 味各1盒,张老师从该纸箱里随机取出两盒学生奶.请你用列表法或画树状图的方法,求出这两盒牛奶恰好同时是小明和小刚喜好的学生奶的概率.23、4.20雅安地震后,某商家为支援灾区人民,计划捐赠帐篷16800顶,该商家备有2辆大货车、8辆小车运送,计划大货车比小货车每辆每次多运帐篷200顶,大、小货车每天均运送一次,两天恰好运完.(1)求大、小货车原计划每辆每次各运送帐篷多少顶?(2)因地震导致路基受损,实际运送过程中,每辆大货车每次比原计划少运m 200顶,每辆小货车每次比原计划少运300顶.为了尽快将帐篷运送到灾区,大货车每天比原计划多跑m 21次,小货车每天比原计划多跑m 次,一天刚好运送了帐篷14400顶,求m 的值.24、已知:在平行四边形ABCD 中,BC AE ,垂足为E ,CE=CD,点F 为C E 的中点,点G为CD 上的一点,连接DF 、EG 、AG,21∠=∠. (1)若CF=2,AE=3,求BE 的长; (2)求证:AGE CEG ∠=∠21.五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)中对应的位置上.25、如图,已知抛物线c bx x y ++=2的图像与x 轴的一个交点为B (5,0),另一个交点为A ,且与y 轴交于点C(0,5). (1)求直线BC 与抛物线的解析式;(2)若点M 是抛物线在x 轴下方图像上的一动点,过点M 作MN//y 轴交直线BC 于点N ,求MN 的最大值;(3)在(2)的条件下,MN 取得最大值时,若点P 是抛物线在x 轴下方图像上任意一点,以BC 为边作平行四边形CBPQ,设平行四边形CBPQ 的面积为1S ,△ABN 的面积为2S ,且216S S =,求点P 的坐标.26、已知,在矩形ABCD 中,E 为BC 边上一点,DE AE ⊥,AB=12,BE=16,F 为线段BE 上一点,EF=7,连接AF.如图1,现有一张硬质纸片GMN ∆,090=∠NGM ,NG=6,MG=8,斜边MN 与边BC 在同一直线上,点N 与点E 重合,点G 在线段DE 上.如图2,GMN ∆从图1的位置出发,以每秒1个单位的速度沿EB 向点B 匀速移动,同时,点P 从A 点出发,以每秒1个单位的速度沿AD 向点D 匀速移动,点Q 为直线GN 与线段AE 的交点,连接PQ.当点N 到达终点B 时,GMN ∆和点P 同时停止运动.设运动时间为t 秒,解答下列问题: (1)在整个运动过程中,当点G 在线段AE 上时,求t 的值;(2)在整个运动过程中,是否存在点P ,使APQ ∆是等腰三角形,若存在,求出t 的值;若不存在,说明理由;(3)在整个运动过程中,设GMN ∆与AEF ∆重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式以及自变量t 的取值范围.附加:(A 卷)如图,在矩形ABCD 中,E,F 为AD,BC 上的点,且ED=BF ,连接EF 交对角线BD 于点O ,连接CE ,且CE=CF,DBC EFC ∠=∠2.(1)求证:FO=EO.(2)若CD=32,求BC 的长.。

2024届重庆市第110中学中考数学对点突破模拟试卷含解析

2024届重庆市第110中学中考数学对点突破模拟试卷含解析

2024届重庆市第110中学中考数学对点突破模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,PB切⊙O于点B,PO交⊙O于点E,延长PO交⊙O于点A,连结AB,⊙O的半径OD⊥AB于点C,BP=6,∠P=30°,则CD的长度是()A 3B3C3D.32.某校九年级(1)班全体学生实验考试的成绩统计如下表:成绩(分)24 25 26 27 28 29 30人数(人) 2 5 6 6 8 7 6根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班考试成绩的众数是28分C.该班考试成绩的中位数是28分D.该班考试成绩的平均数是28分3.抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的()A.中位数B.众数C.平均数D.方差4.某市2017年实现生产总值达280亿的目标,用科学记数法表示“280亿”为()A.28×109B.2.8×108C.2.8×109D.2.8×10105.下列手机手势解锁图案中,是轴对称图形的是( )A .B .C .D .6.已知在四边形ABCD 中,AD//BC ,对角线AC 、BD 交于点O ,且AC=BD ,下列四个命题中真命题是( ) A .若AB=CD ,则四边形ABCD 一定是等腰梯形; B .若∠DBC=∠ACB ,则四边形ABCD 一定是等腰梯形; C .若AO COOB OD=,则四边形ABCD 一定是矩形; D .若AC ⊥BD 且AO=OD ,则四边形ABCD 一定是正方形.7.下列图形中,线段MN 的长度表示点M 到直线l 的距离的是( )A .B .C .D .8.计算36÷(﹣6)的结果等于( ) A .﹣6B .﹣9C .﹣30D .69.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-10.一、单选题小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x 个/分钟,则列方程正确的是( ) A .1201806x x=+ B .1201806x x =- C .1201806x x =+ D .1201806x x=- 二、填空题(共7小题,每小题3分,满分21分)11.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原则》《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程. 证明:S 矩形NFGD =S △ADC -(S △ANF +S △FGC ),S 矩形EBMF =S △ABC -(______________+______________).易知,S △ADC =S △ABC ,______________=______________,______________=______________. 可得S 矩形NFGD =S 矩形EBMF .12.以矩形ABCD 两条对角线的交点O 为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE ⊥AC ,垂足为E .若双曲线y=(x >0)经过点D ,则OB•BE 的值为_____.13.已知x 1、x 2是一元二次方程x 2﹣2x ﹣1=0的两实数根,则的值是______.14.已知,则=_______.15.计算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,归纳各计算结果中的个位数字规律,猜测22019﹣1的个位数字是_____. 16.计算:﹣22÷(﹣14)=_____. 17.已知整数k <5,若△ABC 的边长均满足关于x 的方程2x 3x 80k -+=,则△ABC 的周长是 . 三、解答题(共7小题,满分69分)18.(10分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y (件)与时间x (时)之间的函数图象如下图所示. (1)求甲组加工零件的数量y 与时间x 之间的函数关系式. (2)求乙组加工零件总量a 的值.19.(5分)已知,如图所示直线y=kx+2(k≠0)与反比例函数y=mx(m≠0)分别交于点P ,与y 轴、x 轴分别交于点A 和点B ,且cos ∠ABO=55,过P 点作x 轴的垂线交于点C ,连接AC , (1)求一次函数的解析式.(2)若AC 是△PCB 的中线,求反比例函数的关系式.20.(8分)计算:201()(π7)3---+3〡-2〡+6tan30︒21.(10分)桌面上放有4张卡片,正面分别标有数字1,2,3,4,这些卡片除数字外完全相同.把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍放反面朝上放回洗匀,乙从中任意抽出一张,记下卡片上的数字,然后将这两数相加.(1)请用列表或画树状图的方法求两数和为5的概率;(2)若甲与乙按上述方式做游戏,当两数之和为5时,甲胜;反之则乙胜;若甲胜一次得12分,那么乙胜一次得多少分,才能使这个游戏对双方公平?22.(10分)如图,已知矩形 OABC 的顶点A 、C 分别在 x 轴的正半轴上与y 轴的负半轴上,二次函数228255y x x =--的图像经过点B 和点C .(1)求点 A 的坐标;(2)结合函数的图象,求当 y<0 时,x 的取值范围.23.(12分)2019年我市在“展销会”期间,对周边道路进行限速行驶.道路AB 段为监测区,C 、D 为监测点(如图).已知C 、D 、B 在同一条直线上,且AC BC ⊥,CD=400米,tan 2ADC ∠=,35ABC ∠=︒.求道路AB 段的长;(精确到1米)如果AB 段限速为60千米/时,一辆车通过AB 段的时间为90秒,请判断该车是否超速,并说明理由.(参考数据:sin350.57358︒≈,cos350.8195︒≈,tan350.7︒≈)24.(14分)如图,在平面直角坐标系xOy 中,△ABC 的三个顶点坐标分别为A (1,1),B (4,0),C (4,4).按下列要求作图:①将△ABC 向左平移4个单位,得到△A 1B 1C 1;②将△A 1B 1C 1绕点B 1逆时针旋转90°,得到△A 1B 1C 1.求点C 1在旋转过程中所经过的路径长.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1、C 【解题分析】连接OB ,根据切线的性质与三角函数得到∠POB=60°,3再根据等腰三角形的性质与三角函数得到OC 的长,即可得到CD 的长. 【题目详解】 解:如图,连接OB ,∵PB切⊙O于点B,∴∠OBP=90°,∵BP=6,∠P=30°,∴∠POB=60°,OD=OB=BPtan30°=6×333∵OA=OB,∴∠OAB=∠OBA=30°,∵OD⊥AB,∴∠OCB=90°,∴∠OBC=30°,则OC=123∴3.故选:C.【题目点拨】本题主要考查切线的性质与锐角的三角函数,解此题的关键在于利用切线的性质得到相关线段与角度的值,再根据圆和等腰三角形的性质求解即可.2、D【解题分析】直接利用众数、中位数、平均数的求法分别分析得出答案.【题目详解】解:A、该班一共有2+5+6+6+8+7+6=40名同学,故此选项正确,不合题意;B、该班考试成绩的众数是28分,此选项正确,不合题意;C、该班考试成绩的中位数是:第20和21个数据的平均数,为28分,此选项正确,不合题意;D、该班考试成绩的平均数是:(24×2+25×5+26×6+27×6+28×8+29×7+30×6)÷40=27.45(分),故选项D错误,符合题意.故选D.【题目点拨】此题主要考查了众数、中位数、平均数的求法,正确把握相关定义是解题关键.3、A【解题分析】7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【题目详解】由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,故选A.【题目点拨】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键. 4、D【解题分析】根据科学计数法的定义来表示数字,选出正确答案.【题目详解】解:把一个数表示成a(1≤a<10,n为整数)与10的幂相乘的形式,这种记数法叫做科学记数法,280亿用科学计数法表示为2.8×1010,所以答案选D.【题目点拨】本题考查学生对科学计数法的概念的掌握和将数字用科学计数法表示的能力.5、D【解题分析】根据轴对称图形与中心对称图形的定义进行判断.【题目详解】A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.【题目点拨】本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键.6、C【解题分析】A、因为满足本选项条件的四边形ABCD有可能是矩形,因此A中命题不一定成立;B、因为满足本选项条件的四边形ABCD有可能是矩形,因此B中命题不一定成立;C、因为由AO COBO OD结合AO+CO=AC=BD=BO+OD可证得AO=CO,BO=DO,由此即可证得此时四边形ABCD是矩形,因此C中命题一定成立;D、因为满足本选项条件的四边形ABCD有可能是等腰梯形,由此D中命题不一定成立.故选C.7、A【解题分析】解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离.故选A.8、A【解题分析】分析:根据有理数的除法法则计算可得.详解:31÷(﹣1)=﹣(31÷1)=﹣1.故选A.点睛:本题主要考查了有理数的除法,解题的关键是掌握有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.2除以任何一个不等于2的数,都得2.9、D【解题分析】分析:详解:如图,∵AB⊥CD,CE⊥AD,∴∠1=∠2,又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3,即∠A=∠C.∴∠CED=∠BFD=90°,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,ED=BF=b,又∵EF=c,∴AD=a+b-c.故选:D.点睛:本题主要考查全等三角形的判定与性质,证明△ABF≌△CDE是关键.10、C【解题分析】解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,可列方程得1201806x x=+,故选C.【题目点拨】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.二、填空题(共7小题,每小题3分,满分21分)11、S△AEF S△FMC S△ANF S△AEF S△FGC S△FMC【解题分析】根据矩形的性质:矩形的对角线把矩形分成面积相等的两部分,由此即可证明结论.【题目详解】S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(S△ANF+S△FCM).易知,S△ADC=S△ABC,S△ANF=S△AEF,S△FG C=S△FMC,可得S矩形NFGD=S矩形EBMF.故答案分别为S△AEF,S△FCM,S△ANF,S△AEF,S△FGC,S△FMC.【题目点拨】本题考查矩形的性质,解题的关键是灵活运用矩形的对角线把矩形分成面积相等的两部分这个性质,属于中考常考题型.12、1由双曲线y=(x>0)经过点D知S△ODF=k=,由矩形性质知S△AOB=2S△ODF=,据此可得OA•BE=1,根据OA=OB 可得答案.【题目详解】如图,∵双曲线y=(x>0)经过点D,∴S△ODF=k=,则S△AOB=2S△ODF=,即OA•BE=,∴OA•BE=1,∵四边形ABCD是矩形,∴OA=OB,∴OB•BE=1,故答案为:1.【题目点拨】本题主要考查反比例函数图象上的点的坐标特征,解题的关键是掌握反比例函数系数k的几何意义及矩形的性质.13、6【解题分析】已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,根据方程解的定义及根与系数的关系可得x12﹣2 x1﹣1=0,x22﹣2 x2﹣1=0,x1+x2=2,x1·x2=-1,即x12=2 x1+1,x22=2 x2+1,代入所给的代数式,再利用完全平方公式变形,整体代入求值即可.【题目详解】∵x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,∴x12﹣2 x1﹣1=0,x22﹣2 x2﹣1=0,x1+x2=2,x1·x2=-1,即x12=2 x1+1,x22=2 x2+1,∴=故答案为6.【题目点拨】本题考查了一元二次方程解的定义及根与系数的关系,会熟练运用整体思想是解决本题的关键.14、3【解题分析】依据可设a=3k,b=2k,代入化简即可.【题目详解】∵,∴可设a=3k,b=2k,∴=3故答案为3.【题目点拨】本题主要考查了比例的性质及见比设参的数学思想,组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.15、1【解题分析】观察给出的数,发现个位数是循环的,然后再看2019÷4的余数,即可求解.【题目详解】由给出的这组数21﹣1=1,22﹣1=3,23﹣1=1,24﹣1=15,25﹣1=31,…,个位数字1,3,1,5循环出现,四个一组,2019÷4=504…3,∴22019﹣1的个位数是1.故答案为1.【题目点拨】本题考查数的循环规律,确定循环规律,找准余数是解题的关键.16、1【解题分析】-⨯-=1.故答案为1.解:原式=4(4)17、6或12或1.【解题分析】根据题意得k≥0且(2﹣4×8≥0,解得k≥32 9.∵整数k<5,∴k=4.∴方程变形为x2﹣6x+8=0,解得x1=2,x2=4.∵△ABC的边长均满足关于x的方程x2﹣6x+8=0,∴△ABC的边长为2、2、2或4、4、4或4、4、2.∴△ABC的周长为6或12或1.考点:一元二次方程根的判别式,因式分解法解一元二次方程,三角形三边关系,分类思想的应用. 【题目详解】请在此输入详解!三、解答题(共7小题,满分69分)18、(1)y=60x;(2)300【解题分析】(1)由题图可知,甲组的y是x的正比例函数.设甲组加工的零件数量y与时间x的函数关系式为y=kx.根据题意,得6k=360,解得k=60.所以,甲组加工的零件数量y与时间x之间的关系式为y=60x.(2)当x=2时,y=100.因为更换设备后,乙组工作效率是原来的2倍.所以a-100100=24.8-2.82,解得a=300.19、(2)y=2x+2;(2)y=4x.【解题分析】(2)由cos∠ABO=5tan∠ABO=2,从而可得到k=2;(2)先求得A、B的坐标,然后依据中点坐标公式可求得点P的坐标,将点P的坐标代入反比例函数的解析式可求得m的值.【题目详解】(2)∵cos∠∴tan∠ABO=2.又∵OA=2∴OB=2.B(-2,0)代入y=kx+2得k=2 ∴一次函数的解析式为y=2x+2.(2)当x=0时,y=2,∴A(0,2).当y=0时,2x+2=0,解得:x=﹣2.∴B(﹣2,0).∵AC是△PCB的中线,∴P(2,4).∴m=xy=2×4=4,∴反例函数的解析式为y=4x.【题目点拨】本题主要考查的是反比例函数与一次函数的交点、锐角三角函数的定义、中点坐标公式的应用,确定一次函数系数k =tan∠ABO是解题的关键.20、10【解题分析】根据实数的性质进行化简即可计算.【题目详解】原式+6×3=10【题目点拨】此题主要考查实数的计算,解题的关键是熟知实数的性质.21、(1)详见解析;(2)4分.【解题分析】(1)根据题意用列表法求出答案;(2)算出甲乙获胜的概率,从而求出乙胜一次的得分.【题目详解】(1)列表如下:由列表可得:P (数字之和为5)=14, (2)因为P (甲胜)=14,P (乙胜)=34,∴甲胜一次得12分,要使这个游戏对双方公平,乙胜一次得分应为:12÷3=4分.【题目点拨】 本题考查概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可.22、(1)(40),;(2)15x -<<【解题分析】(1)当0x =时,求出点C 的坐标,根据四边形OABC 为矩形,得出点B 的坐标,进而求出点A 即可; (2)先求出抛物线图象与x 轴的两个交点,结合图象即可得出.【题目详解】解:(1)当0x =时,函数228255y x x =--的值为-2, ∴点C 的坐标为(0,2)-∵四边形OABC 为矩形, ,2OA CB AB CO ∴=== 解方程2282255x x --=-,得120,4x x ==. ∴点B 的坐标为(4)2-,. ∴点A 的坐标为(40),. (2)解方程2282055x x --=,得121,5x x =-=. 由图象可知,当0y <时,x 的取值范围是15x -<<.【题目点拨】本题考查了二次函数与几何问题,以及二次函数与不等式问题,解题的关键是灵活运用几何知识,并熟悉二次函数的图象与性质.23、 (1)AB ≈1395 米;(2)没有超速.【解题分析】(1)先根据tan ∠ADC =2求出AC ,再根据∠ABC =35°结合正弦值求解即可(2)根据速度的计算公式求解即可.【题目详解】解:(1)∵AC ⊥BC ,∴∠C =90°,∵tan ∠ADC =AC CD =2, ∵CD =400,∴AC =800,在Rt △ABC 中,∵∠ABC =35°,AC =800,∴AB =sin 35AC =8000.57358≈1395 米; (2)∵AB =1395, ∴该车的速度=139590=55.8km /h <60千米/时, 故没有超速.【题目点拨】此题重点考察学生对三角函数值的实际应用,熟练掌握三角函数值的实际应用是解题的关键.24、(1)①见解析;②见解析;(1)1π.【解题分析】(1)①利用点平移的坐标规律,分别画出点A 、B 、C 的对应点A 1、B 1、C 1的坐标,然后描点可得△A 1B 1C 1; ②利用网格特点和旋转的性质,分别画出点A 1、B 1、C 1的对应点A 1、B 1、C 1即可;(1)根据弧长公式计算.【题目详解】(1)①如图,△A 1B 1C 1为所作;②如图,△A 1B 1C 1为所作;(1)点C1在旋转过程中所经过的路径长=9042 180ππ⨯=【题目点拨】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移的性质.。

重庆市北碚区中考数学春招模拟试卷(含解析)

重庆市北碚区中考数学春招模拟试卷(含解析)

重庆市北碚区中考数学春招模拟试卷一、选择题(共12小题).1.实数a,b在数轴上对应点的位置如图所示,则下列判断正确的是()A.a>0 B.b<1 C.a<b D.a>﹣22.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.3.下列计算正确的是()A.(x3)4=x7B.x3•x2=x5C.x+2x=3x2D.x﹣2=﹣4.下列命题正确的是()A.过线段中点的直线上任意一点到线段两端的距离相等B.垂直于线段的直线上任意一点到线段两端的距离相等C.线段垂直平分线上任意一点到线段两端的距离相等D.线段垂直平分线上的点到线段上任意两点的距离相等5.按如图所示的运算程序,能使输出m的值为1的是()A.x=1,y=1 B.x=2,y=0 C.x=1,y=2 D.x=3,y=2 6.估计×+÷的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间7.如图,AB是⊙O的直径,点P在BA的延长线上,PA=AO,PD与⊙O相切于点D,BC⊥AB交PD的延长线于点C,若⊙O的半径为1,则BC的长是()A.1.5 B.2 C.D.8.如图,在平面直角坐标系中,等腰Rt△ABC与等腰Rt△CDE关于原点O成位似关系,相似比为1:3,∠ACB=∠CED=90°,A、C、E是x轴正半轴上的点,B、D是第一象限的点,BC=2,则点D的坐标是()A.(9,6)B.(8,6)C.(6,9)D.(6,8)9.如图,为加快5G网络建设,某通信公司在一个坡度i=1:2.4的山坡AB上建了一座信号塔CD,信号塔底端C到山脚A的距离AC=13米,在距山脚A水平距离18米的E处,有一高度为10米的建筑物EF,在建筑物顶端F处测得信号塔顶端D的仰角为37°(信号塔及山坡的剖面和建筑物的剖面在同一平面上),则信号塔CD的高度约是()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.22.5米B.27.5米C.32.5米D.45.0米10.如图,在平面直角坐标系中,菱形ABCD的顶点B、D在反比例函数y═(k>0)的图象上,对角线AC与BD相交于坐标原点O,若点A(﹣1,2),菱形的边长为5,则k的值是()A.4 B.8 C.12 D.1611.若数a使关于x 的分式方程+=1有非负整数解,且使关于y 的不等式组至少有3个整数解,则符合条件的所有整数a的和是()A.﹣5 B.﹣3 C.0 D.212.二次函数y=ax2+bx+c(a,b,c为常数,a≠0,c>0)的自变量x与函数值y的部分对应值如表:x…﹣1 0 1 2 3 …y=…p t n t0 …ax2+bx+c有下列结论:①b>0;②关于x的方程ax2+bx+c=0的两个根是0和3;③p+2t<0;④m (am+b)≤﹣4a﹣c(m为任意实数).其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题:(本大题6个小题,每小题4分,共24分)13.计算:(3﹣π)0﹣=.14.代数式有意义,则x的取值范围是.15.如图,在Rt△ABC中,∠ACB=90°,∠A=50°,AB=10,D是AB的中点,以点C为圆心,CD长为半径画弧,交BC于点E,则图中阴影部分的面积是.(结果保留π)16.点A的坐标是A(x,y),从1、2、3这三个数中任取一个数作为x的值,再从余下的两个数中任取一个数作为y的值.则点A落在直线y=﹣x+5与直线y=x及y轴所围成的封闭区域内(含边界)的概率是.17.如图,在等腰△ABC中,AB=AC=2,∠ABC=30°,AD为BC边上的高,E、F分别为AB、AC边上的点,将△ABC分别沿DE、DF折叠,使点B落在DA的延长线上点M处,点C落在点N处,连接MN,若MN∥AC,则AF的长是.18.如图,在平行四边形ABCD中,AB=2,∠ABC=45°,点E为射线AD上一动点,连接BE,将BE绕点B逆时针旋转60°得到BF,连接AF,则AF的最小值是.三.解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(1)解方程组.(2)计算:(x+)÷.20.如图,在平行四边形ABCD中,E、F分别是DA、BC延长线上的点,且∠ABE=∠CDF.求证:(1)△ABE≌△CDF;(2)四边形EBFD是平行四边形.21.某校为提高学生体考成绩,对全校300名九年级学生进行一分种跳绳训练.为了解学生训练效果,学校体育组在九年级上学期开学初和学期末分别对九年级学生进行一分种跳绳测试,学生成绩均为整数,满分20分,大于18分为优秀.现随机抽取了同一部分学生的两次成绩进行整理、描述和分析.(成绩得分用x表示,共分成五组:A.x<13,B.13≤x<15,C.15≤x<17,D.17≤x<19,E.19≤x≤20)开学初抽取学生的成绩在D组中的数据是:17,17,17,17,17,18,18.学期末抽取学生成绩统计表学生成绩A组B组C组D组E组人数0 1 4 5 a 分析数据:平均数中位数众数开学初抽取学生成绩16 b17学期末抽取学生成绩18 18.5 19根据以上信息,解答下列问题:(1)直接写出图表中a、b的值,并补全条形统计图;(2)假设该校九年级学生都参加了两次测试,估计该校学期末成绩优秀的学生人数比开学初成绩优秀的学生人数增加了多少?(3)小莉开学初测试成绩16分,学期末测试成绩19分,根据抽查的相关数据,请选择一个合适的统计量评价小莉的训练效果.22.某数学小组对函数y1=图象和性质进行探究.当x=4时,y1=0.(1)当x=5时,求y1的值;(2)在给出的平面直角坐标系中,补全这个函数的图象,并写出这个函数的一条性质;(3)进一步探究函数图象并解决问题:已知函数y2=﹣的图象如图所示,结合函数y1的图象,直接写出不等式y1≥y2的解集.23.某商场销售A、B两种新型小家电,A型每台进价40元,售价50元,B型每台进价32元,售价40元,4月份售出A型40台,且销售这两种小家电共获利不少于800元.(1)求4月份售出B型小家电至少多少台?(2)经市场调查,5月份A型售价每降低1元,销量将增加10台;B型售价每降低1元,销量将在4月份最低销量的基础上增加15台.为尽可能让消费者获得实惠,商场计划5月份A、B两种小家电都降低相同价格,且希望销售这两种小家电共获利965元,则这两种小家电都应降低多少元?24.对任意一个两位数m,如果m等于两个正整数的平方和,那么称这个两位数m为“平方和数”,若m=a2+b2(a、b为正整数),记A(m)=ab.例如:29=22+52,29就是一个“平方和数”,则A(29)=2×5=10.(1)判断25是否是“平方和数”,若是,请计算A(25)的值;若不是,请说明理由;(2)若k是一个“平方和数”,且A(k)=,求k的值.25.如图,一个二次函数的图象经过点A(0,1),它的顶点为B(1,3).(1)求这个二次函数的表达式;(2)过点A作AC⊥AB交抛物线于点C,点P是直线AC上方抛物线上的一点,当△APC 面积最大时,求点P的坐标和△APC的面积最大值.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.26.如图1,在正方形ABCD中,对角线AC、BD相交于点O,点E为线段BO上一点,连接CE,将CE绕点C顺时针旋转90°得到CF,连接EF交CD于点G.(1)若AB=4,BE=,求△CEF的面积.(2)如图2,线段FE的延长线交AB于点H,过点F作FM⊥CD于点M,求证:BH+MG=BE;(3)如图3,点E为射线OD上一点,线段FE的延长线交直线CD于点G,交直线AB于点H,过点F作FM垂直直线CD于点M,请直接写出线段BH、MG、BE的数量关系.参考答案一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框浍黑.1.实数a,b在数轴上对应点的位置如图所示,则下列判断正确的是()A.a>0 B.b<1 C.a<b D.a>﹣2【分析】直接利用a,b在数轴上位置进而分别分析得出答案.解:由数轴可得:a<﹣2,故选项A错误;b>1,故选项B错误;a<b,故选项C正确;a<﹣2,故选项D错误;故选:C.2.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解:从正面看有两层,底层两个正方形,上层左边一个正方形,左齐.故选:A.3.下列计算正确的是()A.(x3)4=x7B.x3•x2=x5C.x+2x=3x2D.x﹣2=﹣【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;负整数指数幂a﹣p=(a≠0),对各选项分析判断后利用排除法求解.解:A、(x3)4=x12,故本选项错误;B、x3•x2=x5,故本选项正确;C、x+2x=3x,故本选项错误;D、x﹣2=,故本选项错误;故选:B.4.下列命题正确的是()A.过线段中点的直线上任意一点到线段两端的距离相等B.垂直于线段的直线上任意一点到线段两端的距离相等C.线段垂直平分线上任意一点到线段两端的距离相等D.线段垂直平分线上的点到线段上任意两点的距离相等【分析】根据线段垂直平分线的性质判断即可.解:A、线段垂直平分线上任意一点到线段两端的距离相等,原命题是假命题;B、线段垂直平分线上任意一点到线段两端的距离相等,原命题是假命题;C、线段垂直平分线上任意一点到线段两端的距离相等,是真命题;D、线段垂直平分线上任意一点到线段两端的距离相等,原命题是假命题;故选:C.5.按如图所示的运算程序,能使输出m的值为1的是()A.x=1,y=1 B.x=2,y=0 C.x=1,y=2 D.x=3,y=2 【分析】根据题意一一计算即可判断.解:A、当x=1,y=1时,m=x﹣y=1﹣1=0,不符合题意;B、当x=2,y=0时,m=x﹣y=2﹣0=2,不符合题意;C、当x=1,y=2时,m=﹣2x+y=﹣2+2=0,不符合题意;D、当x=3,y=2时,m=x﹣y=3﹣2=1,符合题意.故选:D.6.估计×+÷的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间【分析】直接利用二次根式的性质化简,进而利用估算无理数的大小的方法得出答案.解:×+÷=+=4+,∵3<<4,∴7<4+<8,∴×+÷的值应在7和8之间;故选:A.7.如图,AB是⊙O的直径,点P在BA的延长线上,PA=AO,PD与⊙O相切于点D,BC⊥AB 交PD的延长线于点C,若⊙O的半径为1,则BC的长是()A.1.5 B.2 C.D.【分析】连接OD,求出BC是⊙O的切线,根据切线长定理得出CD=BC,根据切线的性质求出∠ODP=90°,根据勾股定理求出PD,再根据勾股定理求出BC即可.解:连接OD,∵PC切⊙O于D,∴∠ODP=90°,∵⊙O的半径为1,PA=AO,AB是⊙O的直径,∴PO=1+1=2,PB=1+1+1=3,OD=1,∴由勾股定理得:PD===,∵BC⊥AB,AB过O,∴BC切⊙O于B,∵PC切⊙O于D,∴CD=BC,设CD=CB=x,在Rt△PBC中,由勾股定理得:PC2=PB2+BC2,即(+x)2=32+x2,解得:x=,即BC=,故选:D.8.如图,在平面直角坐标系中,等腰Rt△ABC与等腰Rt△CDE关于原点O成位似关系,相似比为1:3,∠ACB=∠CED=90°,A、C、E是x轴正半轴上的点,B、D是第一象限的点,BC=2,则点D的坐标是()A.(9,6)B.(8,6)C.(6,9)D.(6,8)【分析】根据位似变换的定义得到△ACB∽△CED,根据相似三角形的性质求出DE,根据等腰直角三角形的性质求出CE,根据△OCB∽△OED,列出比例式,代入计算得到答案.解:∵等腰Rt△ABC与等腰Rt△CDE关于原点O成位似关系,∴△ACB∽△CED,∵相似比为1:3,∴=,即=,解得,DE=6,∵△CED为等腰直角三角形,∴CE=DE=6,∵BC∥DE,∴△OCB∽△OED,∴=,即=,解得,OC=3,∴OE=OC+CE=3+6=9,∴点D的坐标为(9,6),故选:A.9.如图,为加快5G网络建设,某通信公司在一个坡度i=1:2.4的山坡AB上建了一座信号塔CD,信号塔底端C到山脚A的距离AC=13米,在距山脚A水平距离18米的E处,有一高度为10米的建筑物EF,在建筑物顶端F处测得信号塔顶端D的仰角为37°(信号塔及山坡的剖面和建筑物的剖面在同一平面上),则信号塔CD的高度约是()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.22.5米B.27.5米C.32.5米D.45.0米【分析】过点F作FH⊥DC于点H,延长DC交EA于点G,可得四边形EFHG是矩形,根据AB的坡度i=1:2.4,AC=13,可得CG=5,AG=12,CH=GH﹣CG=10﹣5=5,再根据锐角三角函数即可求出信号塔CD的高度.解:如图,过点F作FH⊥DC于点H,延长DC交EA于点G,则四边形EFHG是矩形,∴FH=GE,CG=EF,∵AB的坡度i=1:2.4,AC=13,∴CG=5,AG=12,∴CH=GH﹣CG=10﹣5=5,∴GE=AG+AE=12+18=30,∴在Rt△DCF中,∠DFC=37°,FH=GE=30,∴DH=FH•tan37°≈30×0.75≈22.5,∴CD=DH+CH≈22.5+5≈27.5(米).所以信号塔CD的高度约是27.5米.故选:B.10.如图,在平面直角坐标系中,菱形ABCD的顶点B、D在反比例函数y═(k>0)的图象上,对角线AC与BD相交于坐标原点O,若点A(﹣1,2),菱形的边长为5,则k的值是()A.4 B.8 C.12 D.16【分析】根据菱形的性质得到AC⊥BD,根据勾股定理得到OA=,OD==2,求得直线AC的解析式为y=﹣2x,求得BD的解析式为y=2x,设D(a,2a),根据勾股定理即可得到结论.解:∵四边形ABCD是菱形,∴AC⊥BD,∵点A(﹣1,2),∴OA=,∵菱形的边长为5,∴AD=5,∴OD==2,∵对角线AC与BD相交于坐标原点O,∴直线AC的解析式为y=﹣2x,∴BD的解析式为y=2x,设D(a,2a),∴a2+(2a)2=20,∴a=2(负值舍去),∴D(2,4),∵D在反比例函数y═(k>0)的图象上,∴k=2×4=8,故选:B.11.若数a使关于x的分式方程+=1有非负整数解,且使关于y的不等式组至少有3个整数解,则符合条件的所有整数a的和是()A.﹣5 B.﹣3 C.0 D.2【分析】解出分式方程,根据题意确定a的范围,解不等式组,根据题意确定a的范围,根据分式不为0的条件得到a≠﹣2,根据题意计算即可.解:由①得y>﹣8,由②得y≤a,∴不等式组的解集为:﹣8<y≤a,∵关于y的不等式组至少有3个整数解,∴a≥﹣5,解分式方程+=1,得x=,∵关于x的分式方程+=1有非负整数解,且≠3,∴a≤4且a≠﹣2且a为偶数;∴﹣5≤a≤4且a≠﹣2且a为偶数,∴满足条件的整数a为﹣4,0,2,4,∴所有整数a的和=﹣4+0+2+4=2,故选:D.12.二次函数y=ax2+bx+c(a,b,c为常数,a≠0,c>0)的自变量x与函数值y的部分对应值如表:x…﹣1 0 1 2 3 …y=…p t n t0 …ax2+bx+c有下列结论:①b>0;②关于x的方程ax2+bx+c=0的两个根是0和3;③p+2t<0;④m (am+b)≤﹣4a﹣c(m为任意实数).其中正确结论的个数是()A.1 B.2 C.3 D.4【分析】由抛物线的对称性可求对称轴为:x =,可得p=0,即x=﹣1,x=3是方程ax2+bx+c=0的两个根,可判断②;当x=0,y=c=t>0,可得p+2t=0+2t>0,可判断③;由抛物线中在对称轴的右边,y随x的增大而减小,可得的a<0,由对称轴x =1可得b=﹣2a>0,可判断①;由x=3,y=0,可得c=﹣3a,由顶点坐标为(1,n),a<0,可得am2+bm+c≤a+b+c,可得am2+bm≤﹣4a﹣c,可判断④,即可求解.解:∵当x=0和x=2时,y=t,∴对称轴为:x =,∴当x=3和x=﹣1时,y的值相等,∴p=0,∴x=﹣1,x=3是方程ax2+bx+c=0的两个根,故②正确;∵当x=0时,y=t,且c>0,∴t=c>0,∴p+2t=0+2t>0,故③错误;∵x=2,y=t>0,x=3,y=0,∴在对称轴的右边,y随x的增大而减小,∴a<0,∵x =﹣,∴b=﹣2a>0,故①正确;∵当x=3时,y=0,∴9a+3b+c=0,∴3a+c=0,∴c=﹣3a,∴﹣4a﹣c=﹣4a+3a=﹣a,∵顶点坐标为(1,n),a<0,∴am2+bm+c≤a+b+c,∴am2+bm≤a+b,∴am2+bm≤﹣a,∴am2+bm≤﹣4a﹣c,故④正确,故选:C.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的橫线上.13.计算:(3﹣π)0﹣=﹣1 .【分析】本题涉及零指数幂、三次根式化简2个知识点.在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.解:(3﹣π)0﹣=1﹣2=﹣1.故答案为:﹣1.14.代数式有意义,则x的取值范围是x>4 .【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.15.如图,在Rt△ABC中,∠ACB=90°,∠A=50°,AB=10,D是AB的中点,以点C为圆心,CD长为半径画弧,交BC于点E,则图中阴影部分的面积是π.(结果保留π)【分析】利用斜边上的中线性质得到DA=DC=DB=AB=5,再计算出∠B得到∠DCB=40°,然后利用扇形的面积公式计算.解:∵∠ACB=90°,D是AB的中点,∴DA=DC=DB=AB=5,∵∠B=90°﹣∠A=90°﹣50°=40°,∴∠DCB=∠B=40°,∴图中阴影部分的面积==π.故答案为π.16.点A的坐标是A(x,y),从1、2、3这三个数中任取一个数作为x的值,再从余下的两个数中任取一个数作为y的值.则点A落在直线y=﹣x+5与直线y=x及y轴所围成的封闭区域内(含边界)的概率是.【分析】先解方程组得直线y=﹣x+5与直线y=x的交点坐标,画出图象,再画树状图展示所有6种等可能的结果数,找出其中点A落在直线y=﹣x+5与直线y=x及y轴所围成的封闭区域内(含边界)的点的个数,然后根据概率公式求解.解:解方程组得,∴直线y=﹣x+5与直线y=x的交点坐标为(3,2),如图,画树状图为:共有6种等可能的结果数,其中点A落在直线y=﹣x+5与直线y=x及y轴所围成的封闭区域内(含边界)的点为(1,2),(1,3),(2,3),(3,2),所以点A落在直线y=﹣x+5与直线y=x及y轴所围成的封闭区域内(含边界)的概率==.故答案为.17.如图,在等腰△ABC中,AB=AC=2,∠ABC=30°,AD为BC边上的高,E、F分别为AB、AC边上的点,将△ABC分别沿DE、DF折叠,使点B落在DA的延长线上点M处,点C落在点N处,连接MN,若MN∥AC,则AF的长是.【分析】过点D作DH⊥AC于H,由等腰三角形的性质和直角三角形的性质可求∠C=30°,AD=AC=1,∠DAC=60°,BD=CD,由折叠的性质可得DN=DC,DB=DM,∠CDF=∠NDF,可证△DMN是等边三角形,可得∠MDN=60°,由折叠的性质可求∠HDF=∠HFD=45°,由直角三角形的性质可求解.解:如图,过点D作DH⊥AC于H,∵AB=AC=2,∠ABC=30°,AD为BC边上的高,∴∠C=30°,AD=AC=1,∠DAC=60°,BD=CD,∵MN∥AC,∴∠DAC=∠DMN=60°,∵DH⊥AF,∴∠ADH=30°,∴AH=AD=,DH=AH=,∵将△ABC分别沿DE、DF折叠,∴DN=DC,DB=DM,∠CDF=∠NDF,∴DM=DN,∴△DMN是等边三角形,∴∠MDN=60°,∴∠CDN=30°,∴∠CDF=15°,∴∠DFH=∠C+∠CDF=45°,∵DH⊥AF,∴∠HDF=∠HFD=45°,∴DH=HF=,∴AF=AH+HF=,故答案为:.18.如图,在平行四边形ABCD中,AB=2,∠ABC=45°,点E为射线AD上一动点,连接BE,将BE绕点B逆时针旋转60°得到BF,连接AF,则AF的最小值是.【分析】如图,以AB为边向下作等边△ABK,连接EK,在EK上取一点T,使得AT=TK.证明△ABF≌△KBE(SAS),推出AF=EK,根据垂线段最短可知,当KE⊥AD时,KE的值最小,解直角三角形求出EK即可解决问题.解:如图,以AB为边向下作等边△ABK,连接EK,在EK上取一点T,使得AT=TK.∵BE=BF,BK=BA,∠EBF=∠ABK=60°,∴∠ABF=∠KBE,∴△ABF≌△KBE(SAS),∴AF=EK,根据垂线段最短可知,当KE⊥AD时,KE的值最小,∵四边形ABCD是平行四边形,∴AD∥BC,∵∠ABC=45°,∴∠BAD=180°﹣∠ABC=135°,∵∠BAK=60°,∴∠EAK=75°,∵∠AEK=90°,∴∠AKE=15°,∵TA=TK,∴∠TAK=∠AKT=15°,∴∠ATE=∠TAK+∠AKT=30°,设AE=a,则AT=TK=2a,ET=a,在Rt△AEK中,∵AK2=AE2+EK2,∴a2+(2a+a)2=2,∴a=,∴EK=2a+a=,∴AF的最小值为.故答案为.三.解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(1)解方程组.(2)计算:(x+)÷.【分析】(1)根据加减消元法可以解答此方程组;(2)根据分式的加法和除法可以解答本题.解:(1),①+②,得4x=12,解得,x=3,将x=3代入①,得y=﹣1,故原方程组的解为;(2)(x+)÷====.20.如图,在平行四边形ABCD中,E、F分别是DA、BC延长线上的点,且∠ABE=∠CDF.求证:(1)△ABE≌△CDF;(2)四边形EBFD是平行四边形.【分析】(1)由ASA即可得出△ABE≌△CDF;(2)由全等三角形的性质得出AE=CF,由平行四边形的性质得出AD∥BC,AD=BC,证出DE=BF,即可得出四边形EBFD是平行四边形.【解答】证明:(1)∵四边形ABD是平行四边形,∴AB=CD,∠BAD=∠DCB,∴∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA);(2)∵△ABE≌△CDF,∴AE=CF,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD+AE=BC+CF,即DE=BF,∴四边形EBFD是平行四边形.21.某校为提高学生体考成绩,对全校300名九年级学生进行一分种跳绳训练.为了解学生训练效果,学校体育组在九年级上学期开学初和学期末分别对九年级学生进行一分种跳绳测试,学生成绩均为整数,满分20分,大于18分为优秀.现随机抽取了同一部分学生的两次成绩进行整理、描述和分析.(成绩得分用x表示,共分成五组:A.x<13,B.13≤x<15,C.15≤x<17,D.17≤x<19,E.19≤x≤20)开学初抽取学生的成绩在D组中的数据是:17,17,17,17,17,18,18.学期末抽取学生成绩统计表学生成绩A组B组C组D组E组人数0 1 4 5 a分析数据:平均数中位数众数开学初抽取学生成绩16 b17学期末抽取学生成绩18 18.5 19根据以上信息,解答下列问题:(1)直接写出图表中a、b的值,并补全条形统计图;(2)假设该校九年级学生都参加了两次测试,估计该校学期末成绩优秀的学生人数比开学初成绩优秀的学生人数增加了多少?(3)小莉开学初测试成绩16分,学期末测试成绩19分,根据抽查的相关数据,请选择一个合适的统计量评价小莉的训练效果.【分析】(1)由A的两个统计图上的数据得抽取的学生人数,再用求得的总数减去学期末抽取学生成绩统计表中A、B、C、D的人数便可得E组的人数a的值,求出开学初抽取人数中成绩由小到大位于最中间的数据或中间两个数据的平均数便为中位数b的值;(2)用总人数300乘以学期末优秀学生数的百分比与开学初优秀学生数的百分比之差,便可得该校学期末成绩优秀的学生人数比开学初成绩优秀的学生人数增加的人数;(3)可比较再次测试成绩的中位数或平均数,进而得出小莉成绩上升情况的总结.解:(1)开学初抽取的学生总数为:2=20,∴a=20﹣0﹣1﹣4﹣5=10,开学初抽取学生中B组人数为:20﹣2﹣3﹣4﹣7=4,由此可知开学初所抽取学生的成绩A、B、C组共有2+3+4=9人,则将所抽取的20人的成绩由小到大排列,位于第10位和第11位的成绩都位于D组,∵D组中的数据是:17,17,17,17,17,18,18.∴中位数b==17,补全统计图如下:(2)根据题意得,300×=90,答:该校学期末成绩优秀的学生人数比开学初成绩优秀的学生人数增加了90人;(3)从平均数看,小莉开学初测试成绩等于开学初抽取学生成绩的平均数16分,学期末测试成绩19分高于学期末所抽取学生成绩的平均数18分,因此小莉一分钟跳绳练习达到郎的效果;从中位数来看,小莉开学初测试成绩16分低于开学初抽取学生成绩的中位数17分,学期末测试成绩19分高于学期末抽取学生成绩的中位数18,5分,因此小莉一分钟跳绳练习达到郎的效果.22.某数学小组对函数y1=图象和性质进行探究.当x=4时,y1=0.(1)当x=5时,求y1的值;(2)在给出的平面直角坐标系中,补全这个函数的图象,并写出这个函数的一条性质;(3)进一步探究函数图象并解决问题:已知函数y2=﹣的图象如图所示,结合函数y1的图象,直接写出不等式y1≥y2的解集.【分析】(1)思想利用待定系数法确定b的值,再求出x=5时,y1的值即可.(2)画出x<2时,y=﹣x+2的图形即可.(3)利用图象法写出y1的图象在y2的上方时x的值即可.解:(1)由题意x=0时,y1=0,∴16+4b+8=0,∴b=﹣6,∴x=5时,y1=25﹣6×5+8=3.(2)函数图象如图所示:性质:x<3时,y随x的增大而减小,x>3时,y随x的增大而增大.(3)观察图形可知:不等式y1≥y2的解集为:x<﹣2或x>0.23.某商场销售A、B两种新型小家电,A型每台进价40元,售价50元,B型每台进价32元,售价40元,4月份售出A型40台,且销售这两种小家电共获利不少于800元.(1)求4月份售出B型小家电至少多少台?(2)经市场调查,5月份A型售价每降低1元,销量将增加10台;B型售价每降低1元,销量将在4月份最低销量的基础上增加15台.为尽可能让消费者获得实惠,商场计划5月份A、B两种小家电都降低相同价格,且希望销售这两种小家电共获利965元,则这两种小家电都应降低多少元?【分析】(1)设4月份售出B型小家电x台,根据“销售这两种小家电共获利不少于800元”列出不等式并解答;(2)设两种型号的小家电都降价y元,根据“销售利润=(售价﹣进价)×销售数量”列出方程并解答.解:(1)设4月份售出B型小家电x台,根据题意,得(50﹣40)×40﹣(40﹣32)x ≥800.解得x≥50.答:4月份售出B型小家电至少50台;(2)设两种型号的小家电都降价y元,根据题意得:(50﹣y﹣40)(40+10y)+(40﹣y﹣32)(50+15y)=965.整理,得5y2﹣26y+33=0.解得y1=3,y2=2.2.为了让消费者得到更多的实惠,所以y=3符合题意.答:两种型号的小家电都降价3元.24.对任意一个两位数m,如果m等于两个正整数的平方和,那么称这个两位数m为“平方和数”,若m=a2+b2(a、b为正整数),记A(m)=ab.例如:29=22+52,29就是一个“平方和数”,则A(29)=2×5=10.(1)判断25是否是“平方和数”,若是,请计算A(25)的值;若不是,请说明理由;(2)若k是一个“平方和数”,且A(k)=,求k的值.【分析】(1)把25写成两个正整数的平方和,再根据A(m)=ab求出A(25)便可;(2)设k=a2+b2,则A(k)=ab,根据(k)=,得a、b的方程,求得a与b的关系式,进而由a、b、k满足的条件求得k的值便可.解:(1)25是“平方和数”.∵25=32+42,∴A(25)=3×4=12;(2)设k=a2+b2,则A(k)=ab,∵A(k)=,∴ab=,∴2ab=a2+b2﹣4,∴a2﹣2ab+b2=4,∴(a﹣b)2=4,∴a﹣b=±2,即a=b+2或b=a+2,∵a、b为正整数,k为两位数,∴当a=1,b=3或a=3,b=1时,k=10;当a=2,b=4或a=4,b=2时,k=20;当a=3,b=5或a=5,b=3时,k=34;当a=4,b=6或a=6,b=4时,k=52;当a=5,b=7或a=7,b=5时,k=74;综上,k的值为:10或20或34或52或74.25.如图,一个二次函数的图象经过点A(0,1),它的顶点为B(1,3).(1)求这个二次函数的表达式;(2)过点A作AC⊥AB交抛物线于点C,点P是直线AC上方抛物线上的一点,当△APC 面积最大时,求点P的坐标和△APC的面积最大值.【分析】(1)根据题意设这个二次函数的表达式为y=a(x﹣1)2+3,解方程即可得到结论;(2)根据已知条件得到直线AC的解析式为y=﹣x+1,解方程组得到C(,﹣),得到PQ=(﹣2t2+4t+1)﹣(﹣t+1)=﹣2t2+t,根据三角形的面积公式和二次函数的性质即可得到结论.解:(1)∵抛物线的顶点为B(1,3),∴设这个二次函数的表达式为y=a(x﹣1)2+3,∵二次函数的图象经过点A(0,1),∴a(0﹣3)2+3=1,解得:a=﹣2,∴这个二次函数的表达式为y=﹣2(x﹣1)2+3,即y=﹣2x2+4x+1;(2)∵AC⊥AB,A(0,1),∴直线AC的解析式为y=﹣x+1,由,解得:或,∴C(,﹣),过P作PQ∥y轴交AC于Q,设P(t,﹣2t2+4t+1),则Q(t,﹣t+1),∴PQ=(﹣2t2+4t+1)﹣(﹣t+1)=﹣2t2+t,∴S△APC=PQ|x C﹣x A|=(﹣2t2+t)(﹣0)=﹣(t﹣)2+,∴当t=时,S△APC有最大值,此时,P(,).四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.26.如图1,在正方形ABCD中,对角线AC、BD相交于点O,点E为线段BO上一点,连接CE,将CE绕点C顺时针旋转90°得到CF,连接EF交CD于点G.(1)若AB=4,BE=,求△CEF的面积.(2)如图2,线段FE的延长线交AB于点H,过点F作FM⊥CD于点M,求证:BH+MG=BE;(3)如图3,点E为射线OD上一点,线段FE的延长线交直线CD于点G,交直线AB于点H,过点F作FM垂直直线CD于点M,请直接写出线段BH、MG、BE的数量关系.【分析】(1)如图1中,利用勾股定理计算CE的长,由旋转可知△CEF是等腰直角三角形,可得结论;(2)如图2,过E作EN⊥AB于N,作EP⊥BC于P,证明△CPE≌△CMF(AAS),得EP=FM,由角平分线的性质得EP=EN=FM,证明△NHE≌△MGF(AAS),得NH=MG,由△BEN 是等腰直角三角形,得BN=BE,最后由线段的和可得结论;(3)如图3,构建辅助线,构建全等三角形,证明△CPE≌△FMC(AAS),得EP=CM,PC=FM,由△DPE是等腰直角三角形,得PE=PD,证明△HNE≌△GMF(AAS),由△BEN 是等腰直角三角形,得BN=BE,同理可得结论.【解答】(1)解:在正方形ABCD中,AB=4,∴AO=CO=OB=2,∵BE=,∴OE=,∵AC⊥BD,∴∠COE=90°,∴CE===,由旋转得:CE=CF,∠ECF=90°,∴△CEF的面积===5;(2)证明:如图2,过E作EN⊥AB于N,作EP⊥BC于P,∵EP⊥BC,FM⊥CD,∴∠EPC=∠FMC=90°,∵∠BCD=∠ECF=90°,∴∠PCE=∠MCF,∵CE=CF,∴△CPE≌△CMF(AAS),∴EP=FM,∵EP⊥BC,EN⊥AB,BE平分∠ABC,∴EP=EN,∴EN=FM,∵FM⊥CD,∴∠FMG=∠ENH=90°,∵AB∥CD,∴∠NHE=∠MGF,∴△NHE≌△MGF(AAS),∴NH=MG,∴BH+MG=BH+NH=BN,∵△BEN是等腰直角三角形,∴BN=BE,∴BH+MG=BE;(3)解:BH﹣MG=BE,理由是:如图3,过E作EN⊥AB于N,交CG于P,∵EP⊥BC,FM⊥CD,AB∥CD,∴EP⊥CD,∴∠EPC=∠FMC=90°,∵∠M=∠ECF=90°,∴∠ECP+∠FCM=∠FCM+∠CFM=90°,∴∠ECP=∠CFM,∵CE=CF,∴△CPE≌△FMC(AAS),∴PC=FM,∵△DPE是等腰直角三角形,∴PE=PD,∴EN=BN=PN+PE=BC+PE=CD+PD=PC=FM,∵AB∥CD,∴∠H=∠FGM,∵∠ENH=∠M=90°,∴△HNE≌△GMF(AAS),∴NH=MG,∴BH﹣MG=BH﹣NH=BN,∵△BEN是等腰直角三角形,∴BN=BE,∴BH﹣MG=BE.。

重庆市09-13年中考数学试卷分析

重庆市09-13年中考数学试卷分析

重庆市09-13年中考数学试题分析————朱静1、试卷基本结构:全卷均为满分150分,三种题型,26个题,其中选择题10个(13年12个),填空题6个,解答题10个,解答题中第三大题4个小题,每小题6分,第四大题4个小题,每小题10分,第五大题2个小题,共22分。

三种题型的分值比是40:24:86。

占比略为26%、16%、58%。

试卷总体难度安排略为6:2:2,容易题安排在1—7、11—14、17—22小题;中档题安排在8—9、15、23—24小题;较难题为10、16、25、26小题。

2、考察知识点情况:题型题号2013 2012 2011 2010 2009选择题1 有理数的大小比较有理数的大小比较有理数的大小比较倒数相反数2 平行线的判定与性质轴对称图形幂的乘方同底数幂相乘同底数幂相除3 整式的除法幂的乘方与积的乘方中心对称判断解不等式组分式有意义的条件4 相似三角形的性质圆周角定理平行线求角度直线平行求三角形的外角平行线求角度5 求正比例函数解析式全面调查与抽样调查抽样调查应用全面调查的应用全面调查的应用6 方差平行线的性质圆周角与等腰三角形计算圆周角定理的计算圆周角定理的计算7 矩形的性质;翻折变换一元一次方程的解二次函数图像与系数简单几何体的俯视图简单几何体的左视图8 切线的性质实际问题与一次函数图象实际问题与一次函数图象几何图形旋转的规律题由图形个数构成的规律题9 勾股定理,等腰直角规律型:图形的变化类由图形个数构成的规律题实际问题与一次函数图像动点面积与一次函数图像10 实际问题与一次函数图象二次函数图象正方形的全等与计算正方形的全等与计算等腰直角三角形判断计算11 规律型:图形的变化类12 反比例函数综合题填空题11 科学计数法科学计数法科学记数法科学记数法12 相似三角形面积比相似三角形面积比中位数分式方程的解法13 倒数中位数众数三角形相似周长比相似三角形的面积比14 解分式方程扇形面积的计算弧长计算直线与圆的位置关系圆和圆的位置关系15 众数概率公式分式方程的解与概率二次函数和概率函数、概率、几何的综合16 扇形面积的计算应用类问题列方程组模型解实际问题混合的浓度问题,列方程模型解决实际问题17概率公式18一次函数综合题解答题17 实数的运算实数的计算实数的计算实数的计算18 全等三角形的判定与性质解不等式分式方程的解答不等式组的解法19 实数的运算解分式方程三角形全等证明角平分线的尺规作图作等边三角形的尺规作图20 作图-轴对称变换解直角三角形涉及中垂线的尺规作图直角三角形的计算统计的基本知识解答题21 分式的化简求值分式的化简求值分式的化简与求值分式的化简与求值分式的化简与求值22 统计与概率综合计算一次函数和反比例函数一次函数和反比例函数一次函数和反比例函数一次函数与反比例函数23 一元二次方程运用统计与概率综合计算统计与概率综合计算统计与概率综合计算概率,公平性,修改规则24 平行四边形的计算证明平行四边形的计算证明梯形中的计算与证明梯形中的全等证明直角梯形的证明与计算解答题25 二次函数综合题一次函数与二次函数在实际问题中的综合运用一次函数与二次函数在实际问题中的综合运用一次函数与二次函数在实际问题中的综合运用一次函数与二次函数在实际问题中的综合运用26动点问题与相似三角形的判定与性质动点问题与相似三角形的判定与性质点的移动与图形面积的变化分类讨论分段函数,探究等腰三角形的构成情况动点的移动与图形面积的变化考分类讨论分段函数和图形的计算等二次函数,旋转变换,三角形全等,探究等腰三角形的构成情况三、试卷主要特点:1、突出对基本知识、基础技能及基本数学思考方法的考查,有较好的教学导向性。

重庆市第八中学2024-2025学年九年级上学期数学第一阶段月考模拟试卷

重庆市第八中学2024-2025学年九年级上学期数学第一阶段月考模拟试卷

重庆市第八中学2024-2025学年九年级上学期数学第一阶段月考模拟试卷一、单选题1.15-的相反数是( ) A .5 B .5- C .15 D .15- 2.下列音符中,是中心对称图形的是( )A .B .C .D . 3.已知反比例函数k y x =的图象经过点(2,-2),则k 的值为 A .4 B .12- C .-4 D .-24.4月23日为世界读书日,为了解八年级1000学生的阅读时间,从中抽取100名学生进行调查,下列说法正确的是( )A .样本容量是100名B .每个学生是个体C .100名学生是总体的一个样本D .1000名学生的阅读时间是总体 5.如图,ABC V 和A B C '''V 是以点O 为位似中心的位似图形,点A 在线段OA '上.若:1:2OA AA '=,则ABC V 和A B C '''V 的周长之比为( )A .1:2B .1:4C .4:9D .1:36.下列图形都是用同样大小的梅花图案按一定规律组成,其中第①个图形中有4朵梅花,第②个图形中有8朵梅花,第③个图形中有14朵梅花,第④个图形中有22朵梅花.按此规律摆放下去,则第⑦个图形中梅花朵数为( )A .44B .58C .74D .927.二次函数y =2x 2﹣1的图象的顶点坐标是( )A .(﹣1,0)B .(1,0)C .(0,1)D .(0,﹣1) 8.设m m 的值应在( )A .7-和6-之间B .6-和5-之间C .5-和4-之间D .4-和3-之间 9.如图,已知四边形ABCD 为正方形,E 为对角线AC 上一点,连接BE , 过 点E 作EF BE ⊥,交DA 的延长线于点F,AE =2AF =, 则BE 的长为( )A.B.C .6 D.10.给定一列数,我们把这列数中第一个数记为1a ,第二个数记为2a ,第三个数记为3a ,以此类推,第n 个数记为n a (n 为正整数).已知1,)0(1a x x x =≠≠,并规定:11n n n a a a +-=,123n n T a a a a =⋅⋅K ,123n n S a a a a =++++L ,下列说法:①215a a =;②123202421T T T T x +++⋯+=+;③对于任意正整数k ,都有()31332323132k k k k k k T S S T T T ++-++-=⋅-成立.其中正确的个数是( )A .0个B .1个C .2个D .3个二、填空题11.计算:01cos60()2+o =. 12.正八边形的一个内角的度数是 度.13.在Rt ABC △中,90C ∠=︒,5tan 12A =,则cos A 的值是. 14.某学校组织学生到社区开展公益宣传活动,成立了“垃圾分类”“文明出行”“低碳环保”三个宣传队,如果小华和小丽每人随机选择参加其中一个宣传队,则她们恰好选到同一个宣传队的概率是.15.如图,在Rt ABC △中, 90ACB ∠=︒,点D 为AB 的中点,连接CD ,过点B 作BE CD ⊥于点E ,点F 为AC 上一点,CDF CBA ∠=∠,若1BC =,2AB =,则EF 的长为 .16.若关于x 的不等式组341227x x a x +⎧-≥⎪⎨⎪->⎩无解,且关于y 的分式方程3122y a y y y +=---的解为非负整数,则符合条件的所有整数a 的和为.17.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,将矩形ABCD 沿对角线BD 折叠,点C 的对应点为点E ,BE 分别交AD ,AC 于点P ,Q .若4AB =,BE AC ⊥,则PQ 的长为 .18.如果一个四位自然数abcd 的各数位上的数字互不相等且均不为0,满足2a b c d ++=,那么称这个四位数为“和方数”.例如:四位数2613,因为22613++=,所以2613是“和方数”;四位数2514,因为22514++≠,所以2514不是“和方数”.若354a 是“和方数”,则这个数是;若四位数M 是“和方数”,将“和方数”M的千位数字与百位数字对调,十位数字与个位数字对调,得到新数N ,若M N +能被33整除,则满足条件的M 的最大值是.三、解答题19.化简:(1)()()()2223x y y x x y -+--; (2)2542111--⎛⎫++÷ ⎪--⎝⎭x x x x x x . 20.重庆实验外国语学校举行了“书香文化节”知识竞赛,从中随机抽取男生、女生各20名同学的竞赛成绩(满分50分)进行整理和分析,得分用x 表示.共分成四组: A :4244x <≤;B :4446x <<;C :4648x <≤;D :4850x <≤;下面给出了部分信息:男生在C 组的数据个数为5个,20名女生的竞赛成绩为: 50,50,48,44,46,50,46,49,50,48,45,50,50,50,49,48,50,46,50,50.根据以上信息,解答下列问题:(1)填空:a =,b =,m =;(2)根据以上数据,你认为该校女生与男生的竞赛成绩谁更好?请说明理由;(3)若该校有3000名男生和3200名女生,估计该校竞赛成绩为满分的人数.21.在ABC V 中 ,AB AC =,AD BC ⊥ 于点D ,点 E 为线段AD 上一点,连接BE ,CE .用直尺和圆规,在BC 的下方作CBF ∠,使得B CBF E C =∠∠,交AD 的延长线于点F ,连接CF .小明想要研究两底角顶点B 、,C 底边高线上的点E ,及该点关于底边的对称点F 所形成的四边形BFCE 的形状,请根据他的思路完成以下填空:证明:AB AC =Q ,AD BC ⊥,BD ∴= ,又CBF BCE ∠=∠Q ,BDF CDE =∠∠,BDF CDE ∴V ≌,BF ∴= ,CBF BCE ∠=∠Q ,∴,∴四边形BFCE 是平行四边形.又EF BC ⊥Q ,∴四边形BFCE 是菱形.小明进一步研究发现,任意等腰三角形均有此特征.请你依照题意完成下面命题:在等腰三角形中, .22.中秋节,又称祭月节、月光诞、月夕、秋节、团圆节等,是中国民间传统节日.中秋节这天人们都要吃月饼以示“团圆”.商家购甲,乙两种月饼礼盒,已知每盒乙月饼礼盒进价比甲月饼礼盒进价多40元,用8000元购进甲月饼礼盒和用10000元购进乙月饼礼盒的数量相同.(1)求甲、乙月饼礼盒的进价各为多少元?(2)甲月饼礼盒每盒售价为210元,每天可卖出30盒;乙月饼礼盒每盒售价为260元,每天可卖出15盒.在销售过程中为了增大甲月饼礼盒的销量,商家决定对甲月饼礼盒进行降价销售,在现有售价的基础上,每降价1元,可多售出2盒.为更大程度让利顾客,每盒甲月饼礼盒售价多少元时,商家日盈利可达到3000元?23.如图,在ABC V 中,6AB =,8BC =,点P 为AB 上一点,AP x =,过点P 作PQ BC ∥交AC 于点Q .点P ,Q 的距离为1y ,ABC V 的周长与APQ △的周长之比为2y .(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质;(3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2) 24.如图,甲、乙两艘货轮同时从A 港出发,分别向B ,D 两港运送物资,最后到达A 港正东方向的C 港装运新的物资.甲货轮沿A 港的东南方向航行40海里后到达B 港,再沿北偏东60︒方向航行一定距离到达C 港.乙货轮沿A 港的北偏东60︒方向航行一定距离到达D 港,再沿南偏东30︒方向航行一定距离到达C 港. 1.41≈ 1.73≈ 2.45≈)(1)求A ,C 两港之间的距离(结果保留小数点后一位);(2)若甲、乙两艘货轮的速度相同(停靠B 、D 两港的时间相同),哪艘货轮先到达C 港?请通过计算说明.25.如图,在平面直角坐标系中,抛物线22y ax bx =+-与x 轴交于点()40A ,和点()10B -,,与y 轴交于点C ,连接AC BC 、.(1)求抛物线的表达式;(2)如图1,点P 是直线AC 下方抛物线上的一动点,过点P 作直线PD AC ∥交x 轴于点D ,过点P 作PE AC ⊥于点E ,求出PE AD +的最大值及此时点P 的坐标;(3)如图2,在(2)的条件下,连接OP 交AC 于点Q ,将原抛物线沿射线CA单位得到新抛物线1y ,在新抛物线1y 上存在一点M ,使OQC MAC BCO ∠-∠=∠,请直接写出所有符合条件的点M 的横坐标.26.如图,在ABC V 中,45BAC ∠=︒,CD AB ⊥于点D ,E 为AD 上一点,连接CE .(1)如图1,若CE 平分ACD ∠,3CD =,求线段AE 的长;(2)如图2,过点E 作FE CE ⊥交CB 的延长线于点F ,连接AF ,G 为AF 的中点,连接GE ,若EF EC =,猜想线段GE ,AE ,AC 之间的数量关系,并证明你的猜想;(3)如图3,过点D 作AC 的垂线交AC 于点H ,点P 是直线DH 上一动点,连接AP ,将AP 绕A 点顺时针旋转60︒得'AP ,连接DP ',CP ',CP '与直线AP 交于点Q ,当AQ 最小时,请直接写出ADP PAHS S '△△的值.。

重庆南开中学2024年九年级上学期数学期中模拟试卷

重庆南开中学2024年九年级上学期数学期中模拟试卷

重庆市南开中学2024-2025学年九年级上学期数学期中模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列各式中是分式的是()A.B.C.D.22.(4分)大学校徽是学校的一种标志、一种形象,诠释了大学特有的历史、理念和追求,是大学文化的一个重要组成部分.如图是北京大学、中国人民大学、浙江大学、南京邮电大学的校徽图案,其中是轴对称图形的是()A.B.C.D.3.(4分)反比例函数y=经过点(﹣1,﹣4),则反比例函数的解析式为()A.y=﹣4x B.y=C.y=﹣D.y=4x4.(4分)估计2×(2﹣)的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间5.(4分)如图,△ABC和△DEF是以点O为位似中心的位似图形,OA:AD=1:2,△ABC的周长为8,则△DEF的周长为()A.8B.16C.24D.326.(4分)∠BAC放在正方形网格纸的位置如图,则tan∠BAC的值为()A.B.C.D.7.(4分)已知实数m,n(m≠n)满足2m2﹣3m﹣1=0,2n2﹣3n﹣1=0,则的值为()A.B.C.D.8.(4分)下列图形都是用同样大小的●按一定规律组成的,其中第①个图形中共有3个●,第②个图形中共有8个●,…,则第⑧个图形中●的个数为()A.63B.64C.80D.819.(4分)如图,在正方形ABCD中,点E在边BC上,点F在边CD上,连接AE、AF、EF,有EF=BE+DF,∠BAE=∠EFC,若DF=2的长为()A.8B.C.D.10.(4分)如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c过(﹣1,﹣4),则下列结论:①abc<0;②对于任意的m,均有am2+bm+c+6>0;③﹣5a+c=﹣4;④若ax2+bx+c≥﹣4,则x≥﹣1;⑤;其中正确的个数为()A.2B.3C.4D.5二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:tan45°﹣sin30°=.12.(4分)一个多边形的内角和与外角和的差为540°,则它的边数为.13.(4分)已知一元二次方程(k+3)x2﹣4x+2=0有实数解,则k的取值范围是.14.(4分)若二次函数y=2x2﹣4x+7,当0<x≤3时,y的取值范围是.15.(4分)如图,点A在反比例函数图象的第一象限的那一支上,AB垂直于y轴于点B,点C在x 轴正半轴上,且OC=2AB,点D为OB的三等分点(DB<OD),若△ADC的面积为5,则k的值为.16.(4分)若数a使得关于x的分式方程有正整数解,且使关于x的二次函数y=x2+(a﹣2)x+1在直线x=1右侧,y随x增大而增大,那么满足以上所有条件的整数a的和为.17.(4分)如图,在矩形ABCD中,E为AD边的四等分点(AE>ED),连接BE,将矩形沿BE折叠,点C落在点C′处,点D落在点D′处,BC′与AD交于点F,连接C′E.若BC=4,AB=2,则EF =,点F到C′E的距离为.18.(4分)如果一个四位自然数M的各数位上的数字互不相同,且千位上的数字与个位上的数字之和等于10,则称M为“国泰民安数”.将M的百位上的数字与个位上的数字对调,得到一个新的四位数M′.并规定D(M)=M﹣M′.四位自然数M=1000a+100b+10c+d(1≤a≤9,0≤b,c,d≤9且a,b,c,d 为整数)为“国泰民安数”,且为正整数),D(M)=k2﹣693(k为正整数),则a+b=,在此条件下,若M除以6余4,则满足条件的M的最大值与最小值的差为.三.解答题(共8小题,满分78分)19.(8分)计算:(1)(a﹣2b)(a+2b)﹣a(a﹣2b);(2)(x+1﹣)÷.20.(10分)2024年3月28日是第29个全国中小学生安全教育日,为提高学生安全防范意识和自我防护能力,某校八、九年级进行了校园安全知识竞赛,并从八、九年级各随机抽取了20名学生的竞赛成绩,进行了整理和分析(竞赛成绩用x表示,总分100分,80分及以上为优秀,共分为四个等级:A:90≤x≤100,B:80≤x<90,C:70≤x<80,D:0≤x<70),部分信息如下:八年级20名学生的竞赛成绩为:30,40,50,55,60,60,65,70,70,70,70,72,75,78,85,87,90,93,100,100.九年级20名学生的竞赛成绩中B等级包含的所有数据为:80,80,80,80,82.根据以上信息,解答下列问题:八九年级抽取学生竞赛成绩统计表年级平均数众数中位数优秀率八年级71a7030%九年级7180b c%(1)请填空:a=,b=,c=;(2)根据上述数据,你认为该校八、九年级的校园安全知识竞赛哪个年级的学生成绩更好?请说明理由(写出一条理由即可);(3)若该校八、九年级参加本次竞赛活动的共有1000人,请估计该校八、九两个年级共有多少人成绩为优秀.21.(10分)如图,在平行四边形ABCD中,连接对角线AC,∠ABC的角平分线交AC于点E.(1)用尺规完成以下基本作图:作∠ADC的角平分线,交AC于点F.(保留作图痕迹,不写作法)(2)在(1)问所作的图形中,连接BF、DE,求证:四边形BEDF是平行四边形.证明:∵四边形ABCD是平行四边形,∴AB CD,∠ABC=,∴∠BAE=∠DCF.又∵BE、DF分别平分∠ABC、∠CDA.∴,.∴∠ABE=∠CDF,在△BAE和△DCF中:,∴△BAE≌△DCF(ASA),∴BE=DF,∠AEB=,∴180°﹣∠AEB=180°﹣∠CFD,∴,∵BE∥DF,∴BE=DF,BE∥DF.∴四边形BEDF是平行四边形()(填依据).22.(10分)博物馆是一座城市重要的公共文化窗口,“博物馆热”背后是人们对精神文化多样化的需求、对中华优秀传统文化的认同.一学习小组计划到某博物馆参观学习.(1)为达到更佳的参观学习效果,他们原计划花360元组私家讲解团,后又临时增加3名同学,实际的团费虽然增加了60元,但实际的人均费用只为原来的人均费用的,求该学习小组实际参观博物馆的同学人数;(2)该博物馆的参观路线全长3.6千米,分为“经典讲解”和“特色数字化体验”两个部分,他们参观“经典讲解”部分的平均速度是1米/秒,是参观“特色数字化体验”部分的平均速度的3倍,加上在“特色数字化体验”部分排队的10分钟,整个参观学习过程共1.5小时,求“经典讲解”部分参观路线的长度为多少千米?23.(10分)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点D是AC的中点,动点P以每秒1个单位长度的速度从点D出发沿折线D→A→B方向运动,到达点B时停止运动,设点P的运动时间为x秒,△BCP的面积记为y.(1)请直接写出y关于x的函数表达式,并注明自变量x的取值范围;(2(3)结合函数图象,若直线与该函数图象有且仅有两个交点,则b的取值范围是.24.(10分)小明和小玲游览一处景点,如图,两人同时从景区大门A出发,小明沿正东方向步行60米到一处小山B处,再沿着BC前往寺庙C处,在B处测得亭台D在北偏东15°方向上,而寺庙C在B的北偏东30°方向上,小玲沿着A的东北方向上步行一段时间到达亭台D处,再步行至正东方向的寺庙C处.(1)求小山B与亭台D之间的距离;(结果保留根号)(2)若两人步行速度一样,则谁先到达寺庙C处.(结果精确到个位,参考数据:,,)25.(10分)如图,抛物线y=ax2+5ax+b经过点D(﹣1,﹣5),且交x轴于A(﹣6,0),B两点(点A 在点B的左侧),交y轴于点C.(1)求抛物线的解析式.(2)如图1,过点D作DM⊥x轴,垂足为M,点P在直线AD下方抛物线上运动,过点P作PE⊥AD,PF⊥DM,求PE+PF的最大值,以及此时点P的坐标.(3)将原抛物线沿射线CA方向平移个单位长度,在平移后的抛物线上存在点G,使得∠CAG=45°,请写出所有符合条件的点G的横坐标,并写出其中一个的求解过程.26.(10分)在△ABC中,∠BAC=90°,AB=AC,D为线段BC上一点(点D不与B,C重合),连接AD.(1)如图1,∠ADB=105°,CD=,求BD的长度;(2)如图2,D为BC中点,E为平面内一点,连接DE,CE,AE,BE,将线段DE绕D顺时针旋转90°得到线段DF,连接AF,∠F AC+∠ECB=90°,G为线段EC上一点,AG⊥CE,求证:CE=AF+2AG;(3)如图3,P,H为射线AD上两个点,∠BHA=90°,AP=2BH,将△BNP沿直线BP翻折至△BHP 所在平面内得到△BKP,直线PK与直线AB交于点T.若,当线段BP取得最小值时,请直接写出△APT的面积.重庆市南开中学2024-2025学年九年级上学期数学期中模拟试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列各式中是分式的是()A.B.C.D.2【解答】解:,和2都是整式,为分式.故选:C.2.(4分)大学校徽是学校的一种标志、一种形象,诠释了大学特有的历史、理念和追求,是大学文化的一个重要组成部分.如图是北京大学、中国人民大学、浙江大学、南京邮电大学的校徽图案,其中是轴对称图形的是()A.B.C.D.【解答】解:A、图形是轴对称图形,故A符合题意;B、C、D中的图形不是轴对称图形,故B、C、D不符合题意故选:A.3.(4分)反比例函数y=经过点(﹣1,﹣4),则反比例函数的解析式为()A.y=﹣4x B.y=C.y=﹣D.y=4x【解答】解:由题意,将点(﹣1,﹣4)代入反比例函数解析式y=,∴﹣4=.∴k=4.∴反比例函数的解析式为y=.故选:B.4.(4分)估计2×(2﹣)的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【解答】解:2×(2﹣)=2×2﹣2×=4﹣2,∵36<48<49,∴6<<7,∴6<4<7,∴4<4﹣2<5,∴估计2×(2﹣)的值应在4和5之间,故选:B.5.(4分)如图,△ABC和△DEF是以点O为位似中心的位似图形,OA:AD=1:2,△ABC的周长为8,则△DEF的周长为()A.8B.16C.24D.32【解答】解:∵OA:AD=1:2,∴OA:OD=1:3,∵△ABC和△DEF是以点O为位似中心的位似图形,∴△ABC∽△DEF,AB∥DE,∴△AOB∽△DOE,∴==,∴△ABC的周长:△DEF的周长1:3,∵△ABC的周长为8,∴△DEF的周长为24,故选:C.6.(4分)∠BAC放在正方形网格纸的位置如图,则tan∠BAC的值为()A.B.C.D.【解答】解:连接CD,如图:,CD=,AC=,∵∴∠ADC=90°,∴tan∠BAC==.故选:D.7.(4分)已知实数m,n(m≠n)满足2m2﹣3m﹣1=0,2n2﹣3n﹣1=0,则的值为()A.B.C.D.【解答】解:∵实数m,n(m≠n)满足2m2﹣3m﹣1=0,2n2﹣3n﹣1=0,∴m,n是方程2x2﹣3x﹣1=0的两根,∴m+n=,mn=﹣,∴+====﹣.故选:B.8.(4分)下列图形都是用同样大小的●按一定规律组成的,其中第①个图形中共有3个●,第②个图形中共有8个●,…,则第⑧个图形中●的个数为()A.63B.64C.80D.81【解答】解:由所给图形可知,第①个图形中●的个数为:3=22﹣1;第②个图形中●的个数为:8=32﹣1;第③个图形中●的个数为:15=42﹣1;…,所以第n个图形中●的个数为(n+1)2﹣1.当n=8时,(n+1)2﹣1=92﹣80(个),即第⑧个图形中●的个数为80个.故选:C.9.(4分)如图,在正方形ABCD中,点E在边BC上,点F在边CD上,连接AE、AF、EF,有EF=BE+DF,∠BAE=∠EFC,若DF=2,求AB的长为()A.8B.C.D.【解答】解:如图,延长CB到G,使得BG=DF,连接AG,过点A作AH⊥EF于点H.∵四边形ABCD是正方形,∴AB=AD,∠D=∠ABC=∠ABG=90°,在△ABG和△ADF中,,∴△ABG≌△ADF(SAS),∴AG=AF,∠BAG=∠DAF,∴∠GAF=∠BAD=90°,∵EF=EB+DF.∴EF=BE+BG=EG,在△AEG和△AEF中,,∴△AEG≌△AEF(SSS),∴∠EAG=∠EAF=45°,∵AB⊥EG,AH⊥EF,∴AB=AH,在Rt△AEB和Rt△AEH中,,∴△AEB≌△AEH(HL),∴∠BAE=∠EAH,∵∠DAH+∠DFH=180°,∠EFC+∠DFH=180°,∴∠EFC=∠DFH,∵∠BAE=∠EFC,∴∠BAE=∠EAH=∠DAH=30°,∴∠BAG=∠EAG﹣∠BAE=45°﹣30°=15°,在AB上取一点T,使得GT=AT,连接GT.∵TA=TG,∴∠TGA=∠TAG=15°,∴∠GTB=∠AGT+∠TAG=30°,∵BG=DF=2,∴GT=AT=4,TB=2,∴AB=AT+TB=4+2.故选:C.10.(4分)如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c过(﹣1,﹣4),则下列结论:①abc<0;②对于任意的m,均有am2+bm+c+6>0;③﹣5a+c=﹣4;④若ax2+bx+c≥﹣4,则x≥﹣1;⑤;其中正确的个数为()A.2B.3C.4D.5【解答】解:由题知,令抛物线的解析式为y=a(x+3)2﹣6,将点(﹣1,﹣4)代入函数解析式得,4a﹣6=﹣4,解得a=,所以抛物线的函数解析式为y=(x+3)2﹣6=,所以a=,b=3,c=,则abc<0.故①正确.因为抛物线的顶点纵坐标为﹣6,且开口向上,所以对于抛物线上的任意一点(横坐标为m),其纵坐标不小于﹣6,即am2+bm+c≥﹣6,所以am2+bm+c+6≥0.故②错误.由①中的过程可知,﹣5a+c=﹣5×+()=﹣4.故③正确.因为抛物线经过点(﹣1,﹣4),且对称轴为直线x=﹣3,所以点(﹣5,﹣4)也在抛物线上,又因为抛物线开口向上,所以当ax2+bx+c≥﹣4时,x≥﹣1或x≤﹣5.故④错误.因为a=,所以a<.故⑤正确.故选:B.二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:tan45°﹣sin30°=.【解答】解:原式=1﹣=.故答案为:.12.(4分)一个多边形的内角和与外角和的差为540°,则它的边数为7.【解答】解:设这是一个n边形,则180°(n﹣2)﹣360°=540°,解得n=7,答:它的边数是7.故答案为:7.13.(4分)已知一元二次方程(k+3)x2﹣4x+2=0有实数解,则k的取值范围是k≤﹣1且k≠﹣3.【解答】解:∵一元二次方程(k+3)x2﹣4x+2=0有实数解,∴k+3≠0且Δ≥0,即Δ=16﹣8(k+3)≥0,解得k≤﹣1,∴k的取值范围为k≤﹣1且k≠﹣3.故答案为:k≤﹣1且k≠﹣3.14.(4分)若二次函数y=2x2﹣4x+7,当0<x≤3时,y的取值范围是5≤y≤13.【解答】解:y=2x2﹣4x+7=2(x﹣1)2+5,∴对称轴是直线x=1,且当x=1时,y取最小值是5.又当x=0时,函数值为7,当x=3时,函数值为13,∴5≤y≤13,故答案为:5≤y≤13.15.(4分)如图,点A在反比例函数图象的第一象限的那一支上,AB垂直于y轴于点B,点C在x 轴正半轴上,且OC=2AB,点D为OB的三等分点(DB<OD),若△ADC的面积为5,则k的值为.【解答】解:设A点坐标为(a,b),则AB=a,OC=2AB=2a,点D为OB的三等分点(DB<),∴BD=b,OD=b,∵S梯形OBAC=S△ABD+S△ADC+S△ODC,∴(a+2a)×b=a×b+5+×2a×b,∴ab=,把A(a,b)代入双曲线y=,∴k=ab=.故答案为:.16.(4分)若数a使得关于x的分式方程有正整数解,且使关于x的二次函数y=x2+(a﹣2)x+1在直线x=1右侧,y随x增大而增大,那么满足以上所有条件的整数a的和为3.【解答】解:由分式方程得x=4﹣a,∵分式方程有正整数解,∴a=0,1,2,∵关于x的二次函数y=x2+(a﹣2)x+1在直线x=1右侧,y随x增大而增大,∴﹣≤1,解得a≥0,∴a=0,1,2,∴满足以上所有条件的整数a的和为3,故答案为:3.17.(4分)如图,在矩形ABCD中,E为AD边的四等分点(AE>ED),连接BE,将矩形沿BE折叠,点C落在点C′处,点D落在点D′处,BC′与AD交于点F,连接C′E.若BC=4,AB=2,则EF=,点F到C′E的距离为.【解答】解:∵四边形ABCD是矩形,∴AD=BC=4,∠A=90°,∵E为AD边的四等分点,∴DE=×4=1,∴AE=3,∵AD∥BC,∴∠AEB=∠CBE,∵将矩形沿BE折叠,点C落在点C′处,点D落在点D′处,∴∠CBE=∠FBE,∴∠FBE=∠BEF,∴BF=EF,∵AB2+AF2=BF2,∴22+(3﹣EF)2=EF2,∴EF=;∴C′F=4﹣=,∵将矩形沿BE折叠,点C落在点C′处,点D落在点D′处,∴C′D′=CD=2,∠D′=∠D=∠C=∠D′C′F=90°,D′E=DE=1,∴EC′==,过F作FH⊥C′E于H,∴∠FHC′=∠D′=90°,∵∠C′FH+∠FC′H=∠FC′H+∠D′C′E=90°,∴∠C′FH=∠D′C′E,∴△C′FH∽△EC′D′,∴=,∴=,∴FH=.故答案为:,.18.(4分)如果一个四位自然数M的各数位上的数字互不相同,且千位上的数字与个位上的数字之和等于10,则称M为“国泰民安数”.将M的百位上的数字与个位上的数字对调,得到一个新的四位数M′.并规定D(M)=M﹣M′.四位自然数M=1000a+100b+10c+d(1≤a≤9,0≤b,c,d≤9且a,b,c,d 为整数)为“国泰民安数”,且为正整数),D(M)=k2﹣693(k为正整数),则a+b=14,在此条件下,若M除以6余4,则满足条件的M的最大值与最小值的差为1878.【解答】解:∵M=1000a+100b+10c+d,千位上的数字与个位上的数字之和等于10,∴M=1000a+100b+10c+10﹣a=999a+100b+10c+10,∴M′=1000a+100(10﹣a)+10c+b=900a+10c+b+1000,∴D(M)=M﹣M′=99a+99b﹣990;∵D(M)=k2﹣693,∴99a+99b﹣990=k2﹣693,∴k2=99a+99b﹣297=9×11×(a+b﹣3),∵1≤a≤9,0≤b,c,d≤9且a,b,c,d为整数,∴﹣2≤a+b﹣3≤15,∴a+b﹣3=11,∴a+b=14,∴b=14﹣a,且5≤a≤9,5≤b≤9,∴M=1000a+100b+10c+10﹣a=999a+100b+10c+10=999a+100(14﹣a)+10c+10=899a+10c+1410=149a×6+6c+235×6+5a+4c=6×(149a+c+235)+5a+4c;∵M除以6余4,而25≤5a+4≤81,∴5a+4c=28或34或40或46或52或58或64或70或76;当5a+4c=28时,不符合题意,舍去,当5a+4c=34时,解得,此时b=8,d=4,∴M=6814,当5a+4c=40时,解得,此时b=6,d=2,∴M=8602,当5a+4c=46时,解得:,此时b=8,d=4,不符合题意;当5a+4c=52时,解得:,此时b=6,d=2,∴M=8632,当5a+4c=58时,解得:,此时b=8,d=4,∴M=6874,当5a+4c=64时,解得:,此时b=6,d=2,不符合题意;当5a+4c=70时,不符合题意;当5a+4c=76时,解得:,此时b=6,d=2,∴M=8692,∴8692﹣6814=1878;故答案为:14,1878.三.解答题(共8小题,满分78分)19.(8分)计算:(1)(a﹣2b)(a+2b)﹣a(a﹣2b);(2)(x+1﹣)÷.【解答】解:(1)a2﹣4b2﹣a2+2ab=﹣4b2+2ab;(2)原式=[﹣]÷=•=.20.(10分)2024年3月28日是第29个全国中小学生安全教育日,为提高学生安全防范意识和自我防护能力,某校八、九年级进行了校园安全知识竞赛,并从八、九年级各随机抽取了20名学生的竞赛成绩,进行了整理和分析(竞赛成绩用x表示,总分100分,80分及以上为优秀,共分为四个等级:A:90≤x≤100,B:80≤x<90,C:70≤x<80,D:0≤x<70),部分信息如下:八年级20名学生的竞赛成绩为:30,40,50,55,60,60,65,70,70,70,70,72,75,78,85,87,90,93,100,100.九年级20名学生的竞赛成绩中B等级包含的所有数据为:80,80,80,80,82.根据以上信息,解答下列问题:八九年级抽取学生竞赛成绩统计表年级平均数众数中位数优秀率八年级71a7030%九年级7180b c%(1)请填空:a=70,b=80,c=55;(2)根据上述数据,你认为该校八、九年级的校园安全知识竞赛哪个年级的学生成绩更好?请说明理由(写出一条理由即可);(3)若该校八、九年级参加本次竞赛活动的共有1000人,请估计该校八、九两个年级共有多少人成绩为优秀.【解答】解:(1)八年级抽取的学生竞赛成绩出现最多的是70分,故众数a=70;九年级20名学生的成绩从小到大排列,排在中间的两个数分别为80、80,故中位数为,九年级的优秀率为.故答案为:70,80,55.(2)九年级成绩相对更好,理由如下:九年级测试成绩的众数、中位数和优秀率大于八年级.(3)(人),答:估计该校八、九两个年级大约共有425人成绩为优秀.21.(10分)如图,在平行四边形ABCD中,连接对角线AC,∠ABC的角平分线交AC于点E.(1)用尺规完成以下基本作图:作∠ADC的角平分线,交AC于点F.(保留作图痕迹,不写作法)(2)在(1)问所作的图形中,连接BF、DE,求证:四边形BEDF是平行四边形.证明:∵四边形ABCD是平行四边形,∴AB CD,∠ABC=∠CAD,∴∠BAE=∠DCF.又∵BE、DF分别平分∠ABC、∠CDA.∴,.∴∠ABE=∠CDF,在△BAE和△DCF中:,∴△BAE≌△DCF(ASA),∴BE=DF,∠AEB=∠CFD,∴180°﹣∠AEB=180°﹣∠CFD,∴∠BEF=∠DFE,∵BE∥DF,∴BE=DF,BE∥DF.∴四边形BEDF是平行四边形(一组对边平行且相等的四边形是平行四边形)(填依据).【解答】解:(1)图形如图所示:(2)证明:∵四边形ABCD是平行四边形,∴AB CD,∠ABC=∠CAD,∴∠BAE=∠DCF.又∵BE、DF分别平分∠ABC、∠CDA.∴,.∴∠ABE=∠CDF,在△BAE和△DCF中:,∴△BAE≌△DCF(ASA),∴BE=DF,∠AEB=∠CFD,∴180°﹣∠AEB=180°﹣∠CFD,∴∠BEF=∠DFE,∵BE∥DF,∴BE=DF,BE∥DF.∴四边形BEDF是平行四边形(一组对边平行且相等的四边形是平行四边形)(填依据).故答案为:∠CDA,∠ABE=∠CDF,∠CFD.∠BEF=∠DFE,一组对边平行且相等的四边形是平行四边形.22.(10分)博物馆是一座城市重要的公共文化窗口,“博物馆热”背后是人们对精神文化多样化的需求、对中华优秀传统文化的认同.一学习小组计划到某博物馆参观学习.(1)为达到更佳的参观学习效果,他们原计划花360元组私家讲解团,后又临时增加3名同学,实际的团费虽然增加了60元,但实际的人均费用只为原来的人均费用的,求该学习小组实际参观博物馆的同学人数;(2)该博物馆的参观路线全长3.6千米,分为“经典讲解”和“特色数字化体验”两个部分,他们参观“经典讲解”部分的平均速度是1米/秒,是参观“特色数字化体验”部分的平均速度的3倍,加上在“特色数字化体验”部分排队的10分钟,整个参观学习过程共1.5小时,求“经典讲解”部分参观路线的长度为多少千米?【解答】解:(1)设该学习小组实际参观博物馆的同学有x人,根据题意得:=×,解得x=15,经检验,x=15是原方程的解,且符合题意,答:该学习小组实际参观博物馆的同学有15人;(2)设“经典讲解”部分参观路线的长度为y千米,1米/秒=36千米/小时,根据题意得:++=,解得y=3,答:“经典讲解”部分参观路线的长度为3千米.23.(10分)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点D是AC的中点,动点P以每秒1个单位长度的速度从点D出发沿折线D→A→B方向运动,到达点B时停止运动,设点P的运动时间为x秒,△BCP的面积记为y.(1)请直接写出y关于x的函数表达式,并注明自变量x的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,若直线与该函数图象有且仅有两个交点,则b的取值范围是3≤b <5.【解答】解:(1)∵在Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB==5,∵点D是AC的中点,∴AD==2,当0≤x≤2时,∵PD=x,∴CP=2+x,∴y==(2+x)×3=x+3;当2<x≤7时,如图1,过P作PH⊥BC于H,则PH∥AC,∴△PBH∽△ABC,∴,∴,∴PH=,∵y==×3×=﹣x+;综上所述,y=;(2)如图2,函数的图象如图所示;当0≤x≤2是y随x的增大而增大;(3)如图,当直线与经过点(0,3)时,3=b,则b=3,当直线经过点(2,6)时,6=×2+b,则b=5,结合图象可知,直线与该函数图象有两个交点时,b的取值范围是3≤b<5,故答案为:3≤b<5.24.(10分)小明和小玲游览一处景点,如图,两人同时从景区大门A出发,小明沿正东方向步行60米到一处小山B处,再沿着BC前往寺庙C处,在B处测得亭台D在北偏东15°方向上,而寺庙C在B的北偏东30°方向上,小玲沿着A的东北方向上步行一段时间到达亭台D处,再步行至正东方向的寺庙C处.(1)求小山B与亭台D之间的距离;(结果保留根号)(2)若两人步行速度一样,则谁先到达寺庙C处.(结果精确到个位,参考数据:,,)【解答】解:(1)如图1,作BE⊥AD于点E,由题意得,∠A=45°,∠ABD=∠ABW+∠WBD=90°+15°=105°,∴∠D=180°﹣∠A﹣∠ABD=30°,在Rt△ABE中,AB=60,∠A=45°,∴BE=AB=30,在Rt△BDE中,∠D=30°,∴BD=2BE=60,∴小山B与亭台D之间的距离米;(2)如图2,作DF⊥BA于点F,交AB的延长线于点F,作CG⊥BA,交AB的延长线于点G,由(1)知,BD=60,∠BED=90°,∠ADB=30°,∴DE=60•cos30°=60=30,∴AD=AE+DE=30,由题意得,∠ABC=∠ABW+∠WBC=90°+30°=120°,∴∠CBG=180°﹣∠CBA=60°,则在Rt△AFD中,∠A=45°,AD=30+30,∴DF=(30=(30=30+30,在Rt△BCG中,∠CBG=60°,CG=DF=30+30,∴BG==10,BC=2BG=20+60,∴米,米,∵141.2<154.6且两人速度一致,∴小玲先到.答:小玲先到达寺庙C处.25.(10分)如图,抛物线y=ax2+5ax+b经过点D(﹣1,﹣5),且交x轴于A(﹣6,0),B两点(点A 在点B的左侧),交y轴于点C.(1)求抛物线的解析式.(2)如图1,过点D作DM⊥x轴,垂足为M,点P在直线AD下方抛物线上运动,过点P作PE⊥AD,PF⊥DM,求PE+PF的最大值,以及此时点P的坐标.(3)将原抛物线沿射线CA方向平移个单位长度,在平移后的抛物线上存在点G,使得∠CAG=45°,请写出所有符合条件的点G的横坐标,并写出其中一个的求解过程.【解答】解:(1)由题意得:,解得:,则抛物线的表达式为:y=x2+x﹣3;(2)过点P作PH∥y轴交AD于点H,如图1,由点A、D的坐标得,直线AD和x轴正半轴的夹角为45°,直线AD的表达式为:y=﹣x﹣6,则∠MDA=∠PHE=45°,则PH=PE,设点P(x,x2+x﹣3),则点(x,﹣x﹣6),则PE+PF=PH+(x F﹣x P)=(﹣x﹣6﹣x2﹣x+3)+(﹣1﹣x)=﹣x2﹣x﹣4,∵,故PE+PF有最大值为,此时点P的坐标为:(﹣,﹣);(3)原抛物线沿射线CA方向平移个单位长度,相当于将抛物线向左平移1个单位、向上平移个单位,如图2,则新抛物线的表达式为:y=x2+x+①,当点G在x轴下方时,设直线AG交y轴于点N,过点N作NT⊥AC于点T,由点A、C(0,﹣3)的坐标得:AC=,在△ACN中,tan∠ACO=tan∠TCN,∠CAN=45°,AC=,设CT=x,则NT=2x,则AT=NT,即2x=x+,则x=,则CN=x=15,则点N(0,﹣18),由点A、N的坐标得,直线AN的表达式为:y=﹣3x﹣18②,联立①②得:x2+x+=﹣3x﹣18,解得:x=(不合题意的值已舍去);当点G在x轴上方时,同理可得:直线AG的表达式为:y=x+2③,联立①③得:x2+x+=x+2,解得:x=(不合题意的值已舍去);综上,符合条件的点G的横坐标为:或.26.(10分)在△ABC中,∠BAC=90°,AB=AC,D为线段BC上一点(点D不与B,C重合),连接AD.(1)如图1,∠ADB=105CD=,求BD的长度;(2)如图2,D为BC中点,E为平面内一点,连接DE,CE,AE,BE,将线段DE绕D顺时针旋转90°得到线段DF,连接AF,∠F AC+∠ECB=90°,G为线段EC上一点,AG⊥CE,求证:CE=AF+2AG;(3)如图3,P,H为射线AD上两个点,∠BHA=90°,AP=2BH,将△BNP沿直线BP翻折至△BHP 所在平面内得到△BKP,直线PK与直线AB交于点T.若,当线段BP取得最小值时,请直接写出△APT的面积.【解答】(1)解:如图1,作DE⊥AC于E,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,在Rt△CDE中,CD=,∠C=45°,∴DE=CE=,在Rt△ADE中,∠DAC=∠ADB﹣∠C=105°﹣45°=60°,DE=,∴AE=,∴AC=AE+CE=,在Rt△ABC中,AC=,∠C=45°,∴BC==,∴BD=BC﹣CD=;(2)证明:如图2,设AD和CE交于点O,∴AB=AC,D是BC的中点,∴AD⊥BC,∵∠BAC=90°,∴AD=BD=CD=BC,∵线段DE绕D顺时针旋转90°得到线段DF,∴∠EFD=90°,DE=DF,∴∠ADB=EDF=90°,∴∠ADF=∠BDE,∴△ADF≌△BDE(SAS),∴∠EBD=∠F AB,BE=AF,CAF+∠CAD,∴∠EBA+45°=∠CAF+45°,∴∠EAB=∠CAF,∵∠ADC=90°,∴∠BCE+∠COD=90°,∵∠AOE=∠COD,∴∠BCE+∠AOE=90°,∵∠BCE+∠CAF=90°,∴∠CAF=∠AOE,∴∠EBA=∠AOE,∴点E、B、O、A共圆,∴∠BEC=∠BAD=45°,∴∠BEC=,EH=,EH=BH,AB=AC,∴点E在以A为圆心,AB为半径的圆上,∴AE=AC=AB,∵AG⊥CE,∴EG=CG=CE,∵EH=BH,AE=AB,∴AH是BE的垂直平分线,∴∠EAH=∠BAH,∠AEH=∠ABH,∵BH∥AG,∴∠BAG=∠ABH,∴∠GAH=∠BAH+∠BAG=∠EAH+∠AEH,∵∠AHG=∠EAH+∠AEH,∴∠GAH=∠AHG,∴AG=GH,∴EG=EH+GH=AF+AG,∴2EG=AF+2AG,∴CE=;(3)如图3,作CE⊥AD于E,∴∠AEC=90°,∴∠EAC+∠ACE=90°,∵∠BAC=90°,∴∠BAH+∠CAE=90°,∴∠BAH=∠ACE,∵AB=AC,∠AEC=∠AHB=∴△ACE≌△BAH(AAS),∴AE=BH,∵AP=2BH,∴AP=2AE,∴CP=CA=,∴点P在以C为圆心,为半径的圆上运动,设BC交⊙C于点P′,∴当点P运动在P′处时,BP最小,如图4,作AH⊥BC于H,∵BC=AC=,∴AH=BC=,BP=BC﹣PC=,∴S△APC==,∵∠ABP=∠C=45°,∠BPT=∠BPH=∠APC,∴△BPT∽△CP A,∴,∴,∴S△BPT=,∵S△ABC=AC2=,∴S△APT==.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年重庆市中考数学模拟试卷(二十九)2013年重庆市中考数学模拟试卷(二十九)一、选择题(本大题12个小题,每小题4分,共48分)1.(4分)在0,﹣2,1,3这四数中,最小的数是()A.﹣2 B.0C.1D.32.(4分)(2009•太原)下列计算中,结果正确的是()C.(a2)3=a6D.a6÷a2=a3A.a2•a3=a6B.(2a)•(3a)=6a3.(4分)将一副三角板如图放置,使点A在DE上,∠B=45°,∠E=30°,BC∥DE,则∠AFC的度数为()A.45°B.50°C.60°D.75°4.(4分)函数y=中自变量x的取值范围是()A.x≠2 B.x≠0 C.x≠0且x≠2 D.x>25.(4分)(2010•潼南县)如图,已知AB为⊙O的直径,点C在⊙O上,∠C=15°,则∠BOC的度数为()A.15°B.30°C.45°D.60°6.(4分)下列调查最适合普查的是()A.为了了解重庆2011年初三学生体育考试成绩B.为了了解一批节能灯泡使用寿命C.为了了解我校初三某班每个学生某天睡眠时间D.为了了解我市中学老师的健康状况7.(4分)下列四个图形中,不是轴对称图形的是()A.B.C.D.8.(4分)已知k1<0<k2,则函数y=k 1x和的图象大致是()A.B.C.D.9.(4分)下列是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,第3个图形由10个基础图形组成…,第5个图形中基础图形的个数为()A.13 B.14 C.15 D.1610.(4分)已知一直角三角形的两直角边的比为3:7,则最小角的正弦值是()A.B.C.D.11.(4分)(2008•梅州)一列货运火车从南安站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站停下,装完货以后,火车又匀加速行驶,一段时间后再次开始匀速行驶,可以近似地刻画出火车在这段时间内的速度变化情况的是()A.B.C.D.12.(4分)已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a ﹣2b+c<0;⑤c﹣a>1.其中结论正确的个数是()A.2B.3C.4D.5二、填空题(本大题6个小题,每小题4分,共24分)13.(4分)重庆每年煤炭生产量约4800万吨,将4800万用科学记数法表示为_________万.14.(4分)某中学篮球队12名篮球队队员的年龄分布情况如下:年龄(单位:岁)14 15 16 17 18人数 1 4 3 2 2则这个队队员年龄的中位数是_________岁.15.(4分)(2009•铁岭)小丽想用一张半径为5cm的扇形纸片围成一个底面半径为4cm的圆锥,接缝忽略不计,则扇形纸片的面积是_________cm2.(结果用π表示)16.(4分)在▱ABCD中,E在DC上,DE:EC=1:2,则S△CEF:S△ABF=_________.17.(4分)已知一个口袋中装有四个完全相同的小球,小球上分别标有﹣1,0,1,2四个数,搅匀后一次从中摸出两个小球,将小球上的数分别用a,b表示,将a、b代入方程组,则方程组有解的概率是_________.18.(4分)已知AB是一段只有3米长的窄道路,由于一辆小汽车与一辆大卡车在AB段相遇,必须倒车才能继续通过.如果小汽车在AB段正常行驶需10分钟,大卡车在AB段正常行驶需20分钟,小汽车在AB段倒车的速度是它正常行驶速度的,大卡车在AB段倒车的速度是它正常行驶的,小汽车需倒车的路程是大卡车的4倍.问两车都通过AB这段狭窄路面的最短时间是_________分钟.三、解答题(本大题2个小题,每小题7分,共14分)19.(7分)计算:+5tan45°.20.(7分)如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点均在格点上,在建立平面直角坐标系后,点C的坐标为(4,﹣1).(1)画出△ABC以y轴为对称轴的对称图形△A1B1C1,并写出点C1的坐标;(2)以原点O为对称中心,画出△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标;(3)以A2为旋转中心,把△A2B2C2顺时针旋转90°,得到△A2B3C3,并写出点C3的坐标.四、解答题(本大题3个小题,每小题10分,共40分)21.(10分)先化简,再求值:(﹣)÷,其中a是方程﹣=1的解.22.(10分)(2010•连云港)在一次数学测验中,甲、乙两校各有100名同学参加测试,测试结果显示,甲校男生的优分率为60%,女生的优分率为40%,全校的优分率为49.6%;乙校男生的优分率为57%,女生的优分率为37%.(男(女)生优分率=×100%,全校优分率=×100%)(1)求甲校参加测试的男、女生人数各是多少?(2)从已知数据中不难发现甲校男、女生的优分率都相应高于乙校男、女生的优分率,但最终的统计结果却显示甲校的全校优分率比乙校的全校的优分率低,请举例说明原因.23.(10分)重庆市公租房备受社会关注,2010年竣工的公租房有A、B、C、D四种型号共500套,B型号的公租房的入住率为40%,A、B、C、D四种型号竣工的套数及入住的情况绘制了图1和图2两幅尚不完整的统计图.(1)2010年竣工的A型号公租房套数是多少套;(2)请你将图1、图2的统计图补充完整;(3)在安置中,由于D型号的公租房很受欢迎,入住率很高,2010年竣工的D型公租房中,仅有5套没有入住,其中有两套在同一单元同一层楼,其余3套在不同的单元不同的楼层.老王和老张分别从5套中任抽一套,用树状图或列表法求出老王和老张住在同一单元同一层楼的概率.24.(10分)(2013•鹤壁二模)如图,在梯形ABCD中,AD∥BC,∠ABC=90°,DG⊥BC于G,BH⊥DC于H,CH=DH,点E在AB上,点F在BC上,并且EF∥DC.(1)若AD=3,CG=2,求CD;(2)若CF=AD+BF,求证:EF=CD.五、解答题:(本大题2个小题,每小题12分共24分)25.(12分)(2009•株洲)如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.(1)求点A的坐标(用m表示);(2)求抛物线的解析式;(3)设点Q为抛物线上点P至点B之间的一动点,连接PQ并延长交BC于点E,连接BQ并延长交AC于点F,试证明:FC(AC+EC)为定值.26.(12分)已知,把Rt△ABC和Rt△DEF按图1摆放,(点C与E点重合),点B、C、E、F始终在同一条直线上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8,BC=6,EF=10,如图2,△DEF从图1出发,以每秒1个单位的速度沿CB向△ABC匀速运动,同时,点P从A出发,沿AB以每秒1个单位向点B匀速移动,AC与△DEF的直角边相交于Q,当P到达终点B时,△DEF同时停止运动,连接PQ,设移动的时间为t(s).解答下列问题:(1)△DEF在平移的过程中,当点D在Rt△ABC的边AC上时,求t的值;(2)在移动过程中,是否存在△APQ为等腰三角形?若存在,求出t的值;若不存在,说明理由.(3)在移动过程中,当0<t≤5时,连接PE,是否存在△PQE为直角三角形?若存在,求出t的值;若不存在,说明理由.2013年重庆市中考数学模拟试卷(二十九)参考答案与试题解析一、选择题(本大题12个小题,每小题4分,共48分)1.(4分)(2009•南昌)在0,﹣2,1,3这四数中,最小的数是()A.﹣2 B.0C.1D.3考点:有理数大小比较.分析:根据正数都大于0,负数都小于0,正数大于一切负数,可知负数最小.这四个数中,只有一个负数﹣2,所以﹣2最小.解答:解:因为在0,﹣2,1,3这四个选项中,只有﹣2小于0,故最小的数是﹣2.故选A.点评:本题比较简单,考查了有理数大小比较的方法.2.(4分)(2009•太原)下列计算中,结果正确的是()A.a2•a3=a6B.(2a)•(3a)C.(a2)3=a6D.a6÷a2=a3=6a考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;单项式乘单项式.分析:分别根据同底数幂的乘法的性质,单项式乘单项式的法则,幂的乘方的性质,同底数幂的除法的法则,对各选项分析判断后利用排除法求解.解答:解:A、错误,应为a2•a3=a2+3=a5;B、错误,应为(2a)•(3a)=6a2;C、(a2)3=a2×3=a6,正确;D、错误,应为a6÷a2=a6﹣2=a4.故选C.点评:本题主要考查同底数幂的乘法,单项式乘单项式,幂的乘方的性质,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.3.(4分)将一副三角板如图放置,使点A在DE上,∠B=45°,∠E=30°,BC∥DE,则∠AFC的度数为()A.45°B.50°C.60°D.75°考点:平行线的性质;三角形的外角性质.分析:首先根据平行线的性质可得∠E=∠ECB=30°,再计算出∠ACE的度数,然后利用三角形内角和即可算出∠AFC的度数.解答:解:∵BC∥DE,∴∠E=∠ECB=30°,∵∠ABC=45°,∴∠ACE=45°﹣30°=15°,∵∠FAC=90°,∴∠AFC=180°﹣90°﹣15°=75°.故选:D.点评:此题主要考查了平行线的性质,关键是熟练掌握平行线的性质定理:定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.4.(4分)函数y=中自变量x的取值范围是()A.x≠2 B.x≠0 C.x≠0且x≠2 D.x>2考点:函数自变量的取值范围.专题:计算题.分析:让分母不为0列式求值即可.解答:解:由题意得x﹣2≠0,解得x≠2.故选A.点评:考查函数自变量的取值;用到的知识点为:函数为分式,分式的分母不为0.5.(4分)(2010•潼南县)如图,已知AB为⊙O的直径,点C在⊙O上,∠C=15°,则∠BOC的度数为()A.15°B.30°C.45°D.60°考点:圆周角定理.分析:由于OA、OC都是⊙O的半径,由等边对等角,可求出∠A的度数;进而可根据圆周角定理求出∠BOC的度数.解答:解:∵OA=OC,∴∠A=∠C=15°;∴∠BOC=2∠A=30°;故选B.点评:此题主要考查的是圆周角定理:同弧所对的圆周角是圆心角的一半.6.(4分)下列调查最适合普查的是()A.为了了解重庆2011年初三学生体育考试成绩B.为了了解一批节能灯泡使用寿命C.为了了解我校初三某班每个学生某天睡眠时间D.为了了解我市中学老师的健康状况考点:全面调查与抽样调查.专题:推理填空题.分析:根据普查和抽样调查的定义,根据实际情况进行选择即可.解答:解:A、实行抽样调查较好,因为人数较多,故本选项错误;B、此问题只能实行抽样调查,故本选项错误;C、因为我校初三某班每个学生数目不多,检查学生的睡眠时间可以采取普查,故本选项正确;D、我市教师较多,可采用抽样调查,故本选项错误.故选C.点评:本题考查了对全面调查和抽样调查的定义的应用,能根据实际问题进行分析是解此题的关键.7.(4分)(2009•株洲)下列四个图形中,不是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:观察图形可知A、B、C都是轴对称图形;D、不是轴对称图形.故选D.点评:此题主要考查了轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.8.(4分)(2007•兰州)已知k1<0<k2,则函数y=k1x和的图象大致是()A.B.C.D.考点:反比例函数的图象;正比例函数的图象.专题:压轴题.分析:根据反比例函数的图象性质及正比例函数的图象性质可作出判断.解答:解:∵k1<0<k2,∴直线过二、四象限,并且经过原点;双曲线位于一、三象限.故选D.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.9.(4分)下列是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,第3个图形由10个基础图形组成…,第5个图形中基础图形的个数为()A.13 B.14 C.15 D.16考点:规律型:图形的变化类.专题:规律型.分析:观察发现,后一个图案的基础图案比前一个图案多3个基础图案,然后根据此规律解答即可.解答:解:第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,7=4+3,第3个图形由10个基础图形组成,10=7+3,…,第n个图案由3n+1个基础图案组成.当n=5时,3n+1=3×5+1=16.故选D.点评:本题考查了图形变化规律的问题,观察出后一个图案比前一个图案多3个基础图案是解题的关键.10.(4分)已知一直角三角形的两直角边的比为3:7,则最小角的正弦值是()A.B.C.D.考点:锐角三角函数的定义;勾股定理.专题:计算题.分析:设BC=3x,则AC=7x,再利用勾股定理计算出AB,然后根据正弦的定义求解.解答:解:如图,BC:AC=3:7,设BC=3x,则AC=7x,所以AB==x,所以sinA===.故选B.点评:本题考查了锐角三角函数的定义:在直角三角形中,一锐角的正弦等于它的对边与斜边的比值.也考查了勾股定理.11.(4分)(2008•梅州)一列货运火车从南安站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站停下,装完货以后,火车又匀加速行驶,一段时间后再次开始匀速行驶,可以近似地刻画出火车在这段时间内的速度变化情况的是()考点:函数的图象.专题:压轴题.分析:由于图象是速度随时间变换的图象,而火车从南安站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站停下,装完货以后,火车又匀加速行驶,一段时间后再次开始匀速行驶,注意分析其中的“关键点”,由此得到答案.解答:解:抓住关键词语:“匀加速行驶一段时间﹣﹣﹣匀速行驶﹣﹣﹣停下(速度为0)﹣﹣﹣匀加速﹣﹣﹣匀速”.故选B.点评:此题首先正确理解题意,然后根据题意把握好函数图象的特点,并且善于分析各图象的变化趋势.12.(4分)已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a ﹣2b+c<0;⑤c﹣a>1.其中结论正确的个数是()考点:二次函数图象与系数的关系.专题:压轴题.分析:由二次函数的图象可得:a<0,b<0,c=1>0,对称轴x=﹣1,则再结合图象判断各结论.解答:解:由图象可得:a<0,b<0,c=1>0,对称轴x=﹣1,①x=1时,a+b+c<0,正确;②x=﹣1时,a﹣b+c>1,正确;③abc>0,正确;④4a﹣2b+c<0,错误,x=﹣2时,4a﹣2b+c>0;⑤x=﹣1时,a﹣b+c>1,又=﹣1,b=2a,c﹣a>1,正确.故选C.点评:本题主要考查图象与二次函数系数之间的关系,重点是从图象中找出重要信息.二、填空题(本大题6个小题,每小题4分,共24分)13.(4分)重庆每年煤炭生产量约4800万吨,将4800万用科学记数法表示为 4.8×103万.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4800有4位,所以可以确定n=4﹣1=3.解答:解:4800=4.8×103.故答案为:4.8×103.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.14.(4分)某中学篮球队12名篮球队队员的年龄分布情况如下:年龄(单位:岁)14 15 16 17 18 人数 1 4 3 2 2 则这个队队员年龄的中位数是16岁.考点:中位数.分析:根据中位数的定义求解.解答:解:从小到大排列此数据,16和16处在第5位和第六位,它两个数的平均数为16为中位数.故答案为16,点评:本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.15.(4分)(2009•铁岭)小丽想用一张半径为5cm的扇形纸片围成一个底面半径为4cm的圆锥,接缝忽略不计,则扇形纸片的面积是20πcm2.(结果用π表示)考点:圆锥的计算.分析:圆锥的侧面积=底面周长×母线长÷2.解答:解:底面半径为4cm,则底面周长=8πcm,扇形纸片的面积=×8π×5=20πcm2.点评:本题利用了圆的周长公式和扇形面积公式求解.16.(4分)在▱ABCD中,E在DC上,DE:EC=1:2,则S△CEF:S△ABF=4:9.考点:相似三角形的判定与性质;平行四边形的性质.分析:由DE、EC的比例关系式,可求出EC、DC的比例关系;由于平行四边形的对边相等,即可得出EC、AB的比例关系,易证得△EFC∽△BFA,可根据相似三角形的对应边成比例求出BF、EF的比例关系,再利用相似三角形面积比等于相似比的配方即可求出问题的答案.解答:解:∵DE:EC=1:2,∴CE:CD=2:3,∵四边形ABCD是平行四边形,∴AB=CD;∴CE:AB=2:3,∵AB∥CD,∴△ABF∽△CEF;∴S△CEF:S△ABF=CE2:AB2=4:9.故答案为:4:9.点评:此题主要考查的是平行四边形的性质以及相似三角形的判定和性质:相似三角形面积比等于相似比的配方.17.(4分)已知一个口袋中装有四个完全相同的小球,小球上分别标有﹣1,0,1,2四个数,搅匀后一次从中摸出两个小球,将小球上的数分别用a,b表示,将a、b代入方程组,则方程组有解的概率是.考点:列表法与树状图法;二元一次方程组的解.分析:因为是一次从中摸出两个小球,相当于摸一次,不放回再摸一次小球,所以利用列表法或树状图法求出a,b的值,再代入方程组检验是否有解,把满足题意的a,b找全,即可求出方程组有解的概率是.解答:解:∵一次从中摸出两个小球,相当于摸一次,不放回再摸一次小球,画出树状图得:∴a,b的不同组合为:(﹣1,0),(﹣1,1),(﹣1,2),(0,﹣1),(0,1),(0.2),(1,0),(1,﹣1),(1,2),(2,0)(2,﹣1),(2,1),或(0,﹣1),(1,﹣1)(2,﹣1),(﹣1,0),(1,0),(2,0),(0,1),(﹣1,1),(2,1),(0,2),(﹣1,2),(1,2);解方程组得:,若方程组有解则:ab≠﹣1,即可,∴(﹣1,1),(1,﹣1),(1,﹣1),(﹣1,1)不满足题意,∴将a、b代入方程组,则方程组有解的概率是:P==,故答案为:.点评:本题考查利用分类计数原理求完成事件的方法数、考查如何判断方程组有解、考查古典概型的概率公式.18.(4分)已知AB是一段只有3米长的窄道路,由于一辆小汽车与一辆大卡车在AB段相遇,必须倒车才能继续通过.如果小汽车在AB段正常行驶需10分钟,大卡车在AB段正常行驶需20分钟,小汽车在AB段倒车的速度是它正常行驶速度的,大卡车在AB段倒车的速度是它正常行驶的,小汽车需倒车的路程是大卡车的4倍.问两车都通过AB这段狭窄路面的最短时间是50分钟.考点:一元一次方程的应用.专题:计算题;压轴题.分析:先根据题意求出小汽车和大卡车倒车的时间分别为50min和160min,然后分别讨论大卡车和小汽车分别倒车,两车都通过AB这段狭窄路面所用的时间,最后进行比较即可.解答:解:小汽车X通过AB段正常行驶需要10分钟,小汽车在AB段倒车的速度是它正常行驶速度的,由此得出倒车时间AB段X=10÷=50分钟,卡车Y通过AB段正常行驶需20分钟,大卡车在AB段倒车的速度是它正常行驶速度的,由此得出倒车时间AB段Y=20÷=160分钟,又因为:小汽车需要倒车的路程是大卡车需倒车的路程的4倍,得到小车进入AB段,大车进入AB段,由此得出实际Y倒车时间=160×=32分钟,实际X倒车时间=50×=40分钟.若Y倒X进则是32+20=52分钟两车都通过AB路段,若X倒Y进则是40+10=50分钟两车都通过AB路段,所以两车都通过AB路段的最短时间是50分钟.故答案为:50.点评:本题属于应用题,有一定难度,解题时注意分别讨论小汽车和大卡车分别倒车所用的时间.三、解答题(本大题2个小题,每小题7分,共14分)19.(7分)计算:+5tan45°.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:分别进行二次根式的化简、绝对值、零指数幂及负整数指数幂的运算,然后代入特殊角的三角函数值即可.解答:解:原式=﹣9+3﹣1+4+5×1+1=3.点评:本题考查了实数的运算,涉及了零指数幂、负整数指数幂、绝对值及特殊角的三角函数值,掌握各部分的运算法则是关键.20.(7分)如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点均在格点上,在建立平面直角坐标系后,点C的坐标为(4,﹣1).(1)画出△ABC以y轴为对称轴的对称图形△A1B1C1,并写出点C1的坐标;(2)以原点O为对称中心,画出△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标;(3)以A2为旋转中心,把△A2B2C2顺时针旋转90°,得到△A2B3C3,并写出点C3的坐标.考点:作图-旋转变换;作图-轴对称变换.专题:压轴题.分析:(1)分别作出A,B,C的对称点,然后顺次连接即可作出图形;(2)分别作出A1,B1,C1的对称点,然后顺次连接即可作出图形;(3)把B2,C2顺时针旋转90°即可得到B3,C3,然后连接即可.解答:(1)C1的坐标是(﹣4,1);(2)C2的坐标是:(4,1);(3)C3的坐标是(﹣2,1).点评:本题考查旋转变换作图,在找旋转中心时,要抓住“动”与“不动”,看图是关键.四、解答题(本大题3个小题,每小题10分,共40分)21.(10分)先化简,再求值:(﹣)÷,其中a是方程﹣=1的解.考点:分式的化简求值;分式方程的解.分析:首先把括号里分式进行通分,然后把除法运算转化成乘法运算,进行约分化简,再解分式方程﹣=1求出a的值,最后代值计算.解答:解:原式=,=﹣,解分式方程﹣=1得:x=2,经检验可知x=2是分式方程的解,∴a=2,当a=2时,原式=﹣=﹣1.点评:主要考查了分式的化简求值问题.分式的四则运算是整式四则运算的进一步发展,是有理式恒等变形的重要内容之一.在计算时,首先要弄清楚运算顺序,先去括号,再进行分式的乘除运算.22.(10分)(2010•连云港)在一次数学测验中,甲、乙两校各有100名同学参加测试,测试结果显示,甲校男生的优分率为60%,女生的优分率为40%,全校的优分率为49.6%;乙校男生的优分率为57%,女生的优分率为37%.(男(女)生优分率=×100%,全校优分率=×100%)(1)求甲校参加测试的男、女生人数各是多少?(2)从已知数据中不难发现甲校男、女生的优分率都相应高于乙校男、女生的优分率,但最终的统计结果却显示甲校的全校优分率比乙校的全校的优分率低,请举例说明原因.考点:二元一次方程组的应用.专题:应用题.分析:(1)设甲校参加测试的男生人数是x人,女生人数是y人.根据“甲、乙两校各有100名”“男生的优秀人数+女生的优秀人数=全校的优秀人数”作为相等关系列方程组即可求解;(2)这与乙校的男生人数和女生人数有关,可设乙校男生有70人,女生有30人,计算出优分率比较即可.解答:解:(1)设甲校男生x人,则女生(100﹣x),60%x+40%(100﹣x)=100×49.6%,解得x=48,100﹣x=52,答:男生48人,女生52人;(2)设乙校男生y人,则女生(100﹣y)人,乙校优分率=[57%y+37%(100﹣y)]÷100=(0.2y+37)÷100①,甲校优分率=[60%x+40%(100﹣x)]÷100=(0.2x+40)÷100②,①﹣②得:[0.2(y﹣x)﹣3]÷100>0,0.2(y﹣x)>3,y﹣x>15y>x+15即当乙校男生比甲校男生多15人以上时,乙校优分率大于甲校.例如:乙校男生68人,女生32人,∴甲校的全校优分率比乙校的全校的优分率低.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.23.(10分)重庆市公租房备受社会关注,2010年竣工的公租房有A、B、C、D四种型号共500套,B型号的公租房的入住率为40%,A、B、C、D四种型号竣工的套数及入住的情况绘制了图1和图2两幅尚不完整的统计图.(1)2010年竣工的A型号公租房套数是多少套;(2)请你将图1、图2的统计图补充完整;(3)在安置中,由于D型号的公租房很受欢迎,入住率很高,2010年竣工的D型公租房中,仅有5套没有入住,其中有两套在同一单元同一层楼,其余3套在不同的单元不同的楼层.老王和老张分别从5套中任抽一套,用树状图或列表法求出老王和老张住在同一单元同一层楼的概率.考点:扇形统计图;条形统计图;列表法与树状图法.分析:(1)用500套×A型号公租房所占的百分比即可;(2)首先根据扇形图计算出B型公租房的套数,再乘以入住率即可知道已入住的B型公租房的套数;(3)根据已知列出所有可能的图表即可得出答案.解答:解:(1)500×40%=200;(2)500×20%=100,100×40%=40,如图所示:(3)设5套房子分别编号为:1,2,3,4,5,只有1,2在同一楼层,∴列表为:1 2 3老张老王1 (1,2)(1,112 (2,1)(2,223 (3,1)(3,2)334 (4,1)(4,2)(4,45 (5,1)(5,2)(5,5∴老王和老张住在同一单元同一层楼只有(1,2),(2,1),∴老王和老张住在同一单元同一层楼的概率是:=.点评:此题主要考查了扇形统计图与条形图和概率求法,根据已知正确列出所有结果是解题关键.24.(10分)(2013•鹤壁二模)如图,在梯形ABCD中,AD∥BC,∠ABC=90°,DG⊥BC于G,BH⊥DC于H,CH=DH,点E在AB上,点F在BC上,并且EF∥DC.(1)若AD=3,CG=2,求CD;(2)若CF=AD+BF,求证:EF=CD.考点:直角梯形;勾股定理;矩形的性质;相似三角形的判定与性质.专题:几何综合题;压轴题.分析:(1)由AD∥BC,∠ABC=90°,DG⊥BC得到四边形ABGD为矩形,利用矩形的性质有AD=BG=3,AB=DG,而BH⊥DC,CH=DH,根据等腰三角形的判定得到△BDC为等腰三角形,即有BD=BG+GC=3+2=5,先在Rt△ABD中求出AB,然后在Rt△DGC中求出DC;(2)由CF=AD+BF,AD=BG,经过线段代换易得GC=2BF,再由EF∥DC得到∠BFE=∠GCD,根据三角形相似的判定易得Rt△BEF∽Rt△GDC,利用相似比即可得到结论.解答:(1)解:连BD,如图,∵在梯形ABCD中,AD∥BC,∠ABC=90°,DG⊥BC,∴四边形ABGD为矩形,∴AD=BG=3,AB=DG,又∵BH⊥DC,CH=DH,∴△BDC为等腰三角形,∴BD=BG+GC=3+2=5,在Rt△ABD中,AB===4,∴DG=4,在Rt△DGC中,∴DC===2.(2)证明:∵CF=AD+BF,∴CF=BG+BF,∴FG+GC=BF+FG+BF,即GC=2BF,∵EF∥DC,∴∠BFE=∠GCD,∴Rt△BEF∽Rt△GDC,∴EF:DC=BF:GC=1:2,∴EF=DC.点评:本题考查了直角梯形的性质:有一组对边平行,另一组对边不平行,且有一个直角.也考查了矩形的性质、勾股定理、等腰三角形的判定以及相似三角形的判定与性质.五、解答题:(本大题2个小题,每小题12分共24分)25.(12分)(2009•株洲)如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.(1)求点A的坐标(用m表示);(2)求抛物线的解析式;(3)设点Q为抛物线上点P至点B之间的一动点,连接PQ并延长交BC于点E,连接BQ并延长交AC于点F,试证明:FC(AC+EC)为定值.考点:二次函数综合题.专题:压轴题;动点型.分析:(1)AO=AC﹣OC=m﹣3,用线段的长度表示点A的坐标;(2)∵△ABC是等腰直角三角形,∴△AOD也是等腰直角三角形,∴OD=OA,∴D(0,m﹣3),又P(1,0)为抛物线顶点,可设顶点式,求解析。

相关文档
最新文档