复数的四则运算

合集下载

复数的四则运算公式

复数的四则运算公式

复数的四则运算公式复数是数学中的一个概念,它可以表示为实部与虚部的和。

在复数的四则运算中,包括加法、减法、乘法和除法。

下面将分别介绍这四种运算。

一、复数的加法复数的加法是指将两个复数相加的操作。

假设有两个复数a+bi和c+di,其中a、b、c、d分别为实数部分和虚数部分。

则两个复数的加法可以表示为:(a+bi) + (c+di) = (a+c) + (b+d)i即实部相加,虚部相加。

二、复数的减法复数的减法是指将两个复数相减的操作。

假设有两个复数a+bi和c+di,其中a、b、c、d分别为实数部分和虚数部分。

则两个复数的减法可以表示为:(a+bi) - (c+di) = (a-c) + (b-d)i即实部相减,虚部相减。

三、复数的乘法复数的乘法是指将两个复数相乘的操作。

假设有两个复数a+bi和c+di,其中a、b、c、d分别为实数部分和虚数部分。

则两个复数的乘法可以表示为:(a+bi) × (c+di) = (ac-bd) + (ad+bc)i即实部相乘减虚部相乘,并将结果相加。

四、复数的除法复数的除法是指将两个复数相除的操作。

假设有两个复数a+bi和c+di,其中a、b、c、d分别为实数部分和虚数部分。

则两个复数的除法可以表示为:(a+bi) ÷ (c+di) = [(ac+bd)÷(c^2+d^2)] + [(bc-ad)÷(c^2+d^2)]i即将实部和虚部分别除以除数的实部和虚部的平方和。

通过以上介绍,我们了解了复数的四则运算公式。

在实际应用中,复数的四则运算常常用于电路分析、信号处理等领域。

对于复数的运算要求掌握加减法的运算规则,以及乘法和除法的计算方法。

复数的四则运算在解决实际问题中起到了重要的作用,对于深入理解复数的概念和应用具有重要意义。

因此,掌握复数的四则运算公式对于数学学习和实际应用都是非常重要的。

希望通过本文的介绍,读者能够对复数的四则运算有更深入的了解,并能够熟练运用于实际问题的解决中。

复数的运算

复数的运算
的虚部减虚部减去它的得的差是 3, 求复数ω. 2 3 + 3i 2
回顾总结
1.复数的四则运算; 2.复数运算的乘方形式; 3.共轭复数的相关运算性质; 4.复数运算中的常用结论。
如你看后满意,请把此页面删掉,以免打扰你正常使用,我们万分感谢!
本站敬告: 一、本课件由“半岛教学资源( :// 228668 )”提供下载, 官网是 :// zjbandao ,网站创办人杨影,真名实姓,绝不虚假,系广东 省徐闻县徐城中学语文教师,兼任电脑课,拥有多年网站和课件制作经验,欢迎查实。 二、此课件为作者原作,如你看后有不满意的地方,我们提供专业技术修改,具体如下: 1、修改最低起点15元,负责给你修改4个以内页面,24小时内完成,不完成全额退款; 2、修改4个页面以上的,每加1个页面收5元,插入你发来图片并制作动画特效每张1元; 3、帮你制作一个动画或一个FLASH按钮并插入你指定的页面内收10元; 4、帮你把一个音频或视频文件剪成一个或几个并插入你指定的页面内并制特效收10元。 三、成交方法: 1、根据上面第二点的4个小点,算下你的修改要多少钱,然后付款,付款方法有二: 1)网上在线付款:在我们的网站 :// 228668 或 :// zjbandao 里注册会员后登录进会员中心在线付款到我们网站里; 2)银行汇款:到银行柜台转账或汇款,开户行:工商银行,账号:9558 8220 1500 0448136 收款人:杨影 2、把你要修改的课件发到我们的邮箱228668338@qq 或mmzwzy@139 里,并 在邮件里写明你在我们网站里的会员账号和付款是多少钱,以便我们查询。 3、把你要修改的要求写在发来的邮件里,如果需要我们帮剪辑音频或视频文件的,要 把文件一并发来,要插入图片的也要把图片发来(我们不提供找图片服务)。 四、加急请联系: 13030187488,QQ228668338 ,短信:13692343839 五、温馨提示:请在修改要求中尽可能详细的说明你的要求,我们做好发给你后只给你 提供一次重改机会,因你说明不清楚造成要修改第三次的,要补交半数费用。

复数的定义与四则运算法则

复数的定义与四则运算法则

复数的定义与四则运算法则复数是数学中的一种特殊数形式,由实部和虚部组成。

实部通常用实数表示,而虚部通常以虚数单位 i 表示。

复数的一般表示形式为 a + bi,其中 a 表示实部,b 表示虚部。

一、复数的定义复数的定义是通过引入虚数单位 i 而获得的。

虚数单位 i 的定义是i^2 = -1。

根据这个定义,我们可以得出两个重要的结论:i 的平方等于-1,而 -1 的平方根是 i。

二、虚数与实数虚数是指虚部不为零的复数。

当虚部 b 不为零时,复数 a + bi 称为虚数。

实部为零,即虚部 b 不为零时,复数 a + bi 称为纯虚数。

与实数不同的是,虚数和纯虚数在实轴上没有对应的点。

三、四则运算法则1. 加法法则:复数的加法满足交换律和结合律。

对于两个复数 a + bi 和 c + di,它们的和为 (a + c) + (b + d)i。

2. 减法法则:复数的减法也满足交换律和结合律。

对于两个复数 a + bi 和 c + di,它们的差为 (a - c) + (b - d)i。

3. 乘法法则:复数的乘法满足交换律、结合律和分配律。

对于两个复数 a + bi 和 c + di,它们的乘积为 (ac - bd) + (ad + bc)i。

4. 除法法则:复数的除法也满足交换律、结合律和分配律。

对于两个复数 a + bi 和 c + di(其中 c + di 不等于 0),它们的商为 [(ac + bd)/(c^2 + d^2)] + [(bc - ad)/(c^2 + d^2)]i。

四、共轭复数对于复数 a + bi,其中 a 表示实部,b 表示虚部。

那么复数 a - bi 称为其共轭复数。

共轭复数的一个重要性质是,两个复数的乘积的虚部为零。

五、复数的绝对值复数 a + bi 的绝对值等于它的模长,记作 |a + bi|,定义为 |a + bi| = √(a^2 + b^2)。

复数的模长是一个非负实数。

复数的四则运算修改后

复数的四则运算修改后
2. 加法的运算律
1. z1 z2 z2 z1 (交换率 ); 2. ( z1 z2 ) z3 z1 ( z2 z3 )(结合率 )
一.复数的加法与减法
2、复数减法的运算法则 复数减法规定是加法的逆运算 (a+bi )-(c+di) = x+yi , ∴(c+di )+(x+yi) = a+bi , 由复数相等定义,有 c+x=a , d+y=b 由此,x=a-c , y=b-d ∴ (a+bi )-(c+di) = (a-c) + (b-d)i (a+bi )±(c+di) = (a±c) + (b±d)i
求证:
(1) 2 ; (3)1 2 0;
3
( 2) 1(1 0) ( 4) 3 1
在复数集中 , 方程x 1的三个解为: 1, , .
复数的除法
复数的除法是乘法运算的逆运算,即把满足
(c+di)(x+yi)=a+bi (c+di≠0)
2
t 1, tan 1, 45 .
o
x1 1,x2 2 i.
例题选讲
1. 若复数z满足方程 zi i 1 ,则z ?
2. 求8+6i的平方根 .
3、在复平面内,若复数 z 满足 z 1 z 1 4
,则 z 在复平面内对应点的轨迹方程为
.
交换率 结合率
分配率
三.正整数指数幂的复数运算律
z 、 z1、 z2 ∈C,m、n ∈N*有
实数集R中正整数指数幂的运算律在复数 集C中仍成立,即

复数四则运算

复数四则运算
一般地,当两个复数的实部相等,虚部互为相反数 时,这两个复数叫做互为共轭复数.虚部不为0的共 轭复数也叫共轭虚数. 思考:
若 z1, z2 是共轭复数,那么
(1)在复平面内,它们所对应的点有怎样的位置关系?
(2) z1 • z2 是一个怎样的数?
关于共轭复数的运算性质
z1 , z2 ∈C , 则
z z z z
得 a 1,b 3
z 1 3i
综上: Z=4,1+ 3i ,1– 3i .
例3 将下列复数表示为 x iy 的形式.
(1)
1 1
i i
7
;
(2) i 1 i . 1i i
解 (1) 1 i (1 i)2 (1 i)2 i, 1 i (1 i)(1 i) 2
(b
4b a2 b2
)i
z 4R
z
b(1
a2
4
b2
)
0
b 0或a2 b2 4 ①
| z 2 | 2得| a bi 2 | 2
(a 2)2 b2 2 ②
将 b=0代入②得 a=4 或 a=0 ∴ Z=4 或 Z=0 (舍)
将 a2 b2 4 代入② (a 2) Nhomakorabea 4 a2 4, 得 a 1
22
22
1
小结: 2 , ( )2 ,
3 1, ( )3 1.
例4:已知z (4 3i)(1 7i) ,求 z 2 i
解:z (4 3i)(1 7i) 2 i
| 4 3i || 1 7i | | 2 i|
5 8 10 6 .
3
3
例5 计算 (1 3i)3 (1 i)6
设 OZ1 及 OZ2 分别与复数 a bi 及复数 c di对应,则 OZ1, (a,b)

第8讲 复数的四则运算 (解析版)

第8讲 复数的四则运算 (解析版)

第8讲 复数的四则运算一、考点梳理考点1 复数的加减法、乘法运算设z 1=a +bi ,z 2=c +di (a 、b 、c 、d ∈R )是任意两个复数,复数z 1与z 2的加法运算律:z 1+z 2=(a +bi )+(c +di )=(a +c )+(b +d )i .复数z 1与z 2的减法运算律:z 1-z 2=(a +bi )-(c +di )=(a -c )+(b -d )i .复数z 1与z 2的乘法运算律:z 1·z 2= (a +bi )(c +di )=(ac -bd )+(bc +ad )i .几个常用结论(1)()i i 212=+,(2)()i i 212-=-,(3)()()22b a bi a bi a +=-+例1.(1)设i 是虚数单位,复数z 1=1+2i ,z 2=1﹣3i ,那么z 1+z 2=( )A .2﹣iB .2+iC .﹣2﹣iD .﹣2+i【分析】利用复数的加法运算即可求解.【解答】解:∵复数z 1=1+2i ,z 2=1﹣3i ,∴z 1+z 2=2﹣i ,故选:A .(2)复数(2+i )2=( )A .4﹣3iB .3﹣4iC .4+3iD .3+4i【分析】直接利用复数代数形式的乘除运算化简即可.【解答】解:因为(2+i )2=3+4i ,故选:D .(3)设z =i 3+1(i 是虚数单位),是z 的共轭复数,则﹣z 2=( )A .3﹣iB .1+3iC .﹣1﹣iD .1﹣2i【分析】直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案.【解答】解:z =i 3+1=﹣i +1,∴=1+i,∴﹣z2=1+i﹣(1﹣i)2=1+i﹣1+2i﹣i2=1+3i,故选:B.(4)已知复数z1=2+i,z2=﹣1+2i,则z1•z2虚部为()A.﹣4B.4C.3D.3i【分析】利用复数的四则运算求出z1•z2,然后由复数的定义即可得到答案.【解答】解:因为复数z1=2+i,z2=﹣1+2i,所以z1•z2=(2+i)(﹣1+2i)=﹣2+4i﹣i+2i2=﹣2+3i﹣2=﹣4+3i,由复数的定义可知,z1•z2虚部为3.故选:C.(5)已知2+i是关于x的方程x2+ax+5=0的根,则实数a=()A.2﹣i B.﹣4C.2D.4【分析】由题意利用实系数一元二次方程虚根成对定理,韦达定理,求得实数a.【解答】解:∵已知z=2+i是关于x的方程x2+ax+5=0的根,∴2﹣i是关于x的方程x2+ax+5=0的根,∴2+i+(2﹣i)=﹣a,解得a=﹣4,故选:B.【变式训练1】.若(1+i)+(2﹣3i)=a+bi(a,b∈R,i是虚数单位),则a,b的值分别等于()A.3,﹣2B.3,2C.3,﹣3D.﹣1,4【分析】由复数的加法运算化简等式左边,然后由实部等于实部,虚部等于虚部求得a,b的值.【解答】解:由(1+i)+(2﹣3i)=3﹣2i=a+bi,得a=3,b=﹣2.故选:A.【变式训练2】.(1﹣i)(4+i)=()A.3+5i B.3﹣5i C.5+3i D.5﹣3i【分析】根据复数代数形式的运算法则,计算即可.【解答】解:(1﹣i)(4+i)=1×4+1×i﹣i×4﹣i2=5﹣3i.故选:D.【变式训练3】.若Z=1+i,则|Z2﹣Z|=()A.0B.1C.D.2【分析】由Z=1+i,得到Z2﹣Z=(1+i)2﹣(1+i)=﹣1+i,再求出|Z2﹣Z|.【解答】解:∵Z=1+i,∴Z2﹣Z=(1+i)2﹣(1+i)=1+2i+i2﹣1﹣i=i2+i=﹣1+i,∴|Z2﹣Z|==.故选:C.【变式训练4】.若复数z=m(m﹣1)+(m﹣1)i是纯虚数,实数m=()A.1B.0C.0或1D.1或﹣1【分析】利用纯虚数的定义即可得出.【解答】解:∵复数z=m(m﹣1)+(m﹣1)i是纯虚数,∴m(m﹣1)=0,m﹣1≠0,∴m=0,故选:B.【变式训练5】.若2﹣i是关于x的实系数方程x2+ax+b=0的一根,则a+b=()A.1B.﹣1C.9D.﹣9【分析】题目给出的是实系数一元二次方程,2﹣i是该方程的一个虚根,则方程的另一个根为2+i,则根据韦达定理即可求出.【解答】解:因为2﹣i是关于x的实系数方程x2+ax+b=0的一根,根据实系数方程虚根成对原理知,方程x 2+ax +b =0的另一根为2+i ,根据韦达定理得2﹣i +2+i =﹣a ,(2+i )(2﹣i )=b ,∴a =﹣4,b =5,∴a +b =1,故选:A .考点2 复数的除法运算复数z 1与z 2的除法运算律:z 1÷z 2 =(a +bi )÷(c +di )=i dc ad bc d c bd ac 2222+-+++(分母实数化) 几个常用结论(1)i i -=1, (2) i ii =-+11 , (3) i i i -=+-11 例2.(1)复数=( )A .﹣2﹣9iB .C .﹣D . 【分析】利用复数除法的运算法则,分子分母同乘以分母的共轭复数,即可求出所求.【解答】解:=, 故选:C .(2)复数(i 为虚数单位)的共轭复数是( ) A .i B .﹣i C .1+iD .1﹣i 【分析】利用复数的运算法则求出复数=i ,由此能求出复数(i 为虚数单位)的共轭复数. 【解答】解:复数====i ,∴复数(i 为虚数单位)的共轭复数为﹣i . 故选:B .(3)设z =+i ,则|z |=( ) A . B . C . D .2【分析】先求z ,再利用求模的公式求出|z |.【解答】解:z=+i=+i=.故|z|==.故选:B.(4)=()A.B.C.D.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:=.故选:D.【变式训练1】.=()A.1+2i B.1﹣2i C.2+i D.2﹣i【分析】分子和分母同时乘以分母的共轭复数,再利用虚数单位i的幂运算性质,求出结果.【解答】解:===2﹣i,故选:D.【变式训练2】.已知z=,则=()A.﹣1+2i B.﹣1﹣2i C.﹣1+3i D.﹣1﹣3i【分析】先根据复数除法的运算法则进行化简,然后根据复数的共轭复数的定义进行求解即可.【解答】解:z==,所以=﹣1﹣3i,故选:D.【变式训练3】.设i是虚数单位,则复数i3﹣=()A.﹣i B.﹣3i C.i D.3i【分析】通分得出,利用i的性质运算即可.【解答】解:∵i是虚数单位,则复数i3﹣,∴===i,故选:C.【变式训练4】.复数()2=()A.﹣3﹣4i B.﹣3+4i C.3﹣4i D.3+4i【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,把复数整理成整式形式,再进行复数的乘方运算,合并同类项,得到结果.【解答】解:()2=[]2=(1﹣2i)2=﹣3﹣4i.故选:A.考点3 解方程例3.(1)已知=1+i(i为虚数单位),则复数z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【分析】由条件利用两个复数代数形式的乘除法法则,求得z的值.【解答】解:∵已知=1+i(i为虚数单位),∴z===﹣1﹣i,故选:D.(2)已知,则复数z=()A.1﹣3i B.﹣1﹣3i C.﹣1+3i D.1+3i【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解:,∴=(1+i)(2+i)=1+3i.则复数z=1﹣3i.故选:A.(3)若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i【分析】设出复数z,通过复数方程求解即可.【解答】解:复数z满足2z+=3﹣2i,设z=a+bi,可得:2a+2bi+a﹣bi=3﹣2i.解得a=1,b=﹣2.z=1﹣2i.故选:B.(4)已知=b+i(a,b∈R),其中i为虚数单位,则a+b=()A.﹣1B.1C.2D.3【分析】先化简复数,再利用复数相等,解出a、b,可得结果.【解答】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1.故选:B.(5)若i(x+yi)=3+4i,x,y∈R,则复数x+yi的模是()A.2B.3C.4D.5【分析】利用复数的运算法则把i(x+yi)可化为3+4i,利用复数相等即可得出x=4,y=﹣3.再利用模的计算公式可得|x+yi|=|4﹣3i|==5.【解答】解:∵i(x+yi)=xi﹣y=3+4i,x,y∈R,∴x=4,﹣y=3,即x=4,y=﹣3.∴|x+yi|=|4﹣3i|==5.故选:D.【变式训练1】.若z(1+i)=2i,则z=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i【分析】利用复数的运算法则求解即可.【解答】解:由z(1+i)=2i,得z==1+i.故选:D.【变式训练2】.若复数z满足=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i【分析】直接利用复数的乘除运算法则化简求解即可.【解答】解:=i,则=i(1﹣i)=1+i,可得z=1﹣i.故选:A.【变式训练3】.若复数z满足3z+=1+i,其中i是虚数单位,则z=.【分析】设z=a+bi,则=a﹣bi(a,b∈R),利用复数的运算法则、复数相等即可得出.【解答】解:设z=a+bi,则=a﹣bi(a,b∈R),又3z+=1+i,∴3(a+bi)+(a﹣bi)=1+i,化为4a+2bi=1+i,∴4a=1,2b=1,解得a=,b=.∴z=.故答案为:.【变式训练4】.已知a,b∈R,i是虚数单位.若(a+i)(1+i)=bi,则a+bi=1+2i.【分析】利用复数的乘法展开等式的左边,通过复数的相等,求出a,b的值即可得到结果.【解答】解:因为(a+i)(1+i)=bi,所以a﹣1+(a+1)i=bi,所以,解得a=1,b=2,所以a+bi=1+2i.故答案为:1+2i.【变式训练5】.若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.【分析】由题意可得z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z 的虚部.【解答】解:∵复数z满足(3﹣4i)z=|4+3i|,∴z====+i,故z的虚部等于,故选:D.二、课堂检测1.下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)【分析】利用复数的运算法则、纯虚数的定义即可判断出结论.【解答】解:A.i(1+i)2=i•2i=﹣2,是实数.B.i2(1﹣i)=﹣1+i,不是纯虚数.C.(1+i)2=2i为纯虚数.D.i(1+i)=i﹣1不是纯虚数.故选:C.2.设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1B.C.D.2【分析】根据复数相等求出x,y的值,结合复数的模长公式进行计算即可.【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|=,故选:B.3.若z=4+3i,则=()A.1B.﹣1C.+i D.﹣i【分析】利用复数的除法以及复数的模化简求解即可.【解答】解:z=4+3i,则===﹣i.故选:D.4.=()A.i B.C.D.【分析】利用复数的除法的运算法则化简求解即可.【解答】解:==+.故选:D.5.若z=1+2i,则=()A.1B.﹣1C.i D.﹣i【分析】利用复数的乘法运算法则,化简求解即可.【解答】解:z=1+2i,则===i.故选:C.6.(多选)设复数z满足=i,则下列说法错误的是()A.z为纯虚数B.z的虚部为﹣iC.在复平面内,z对应的点位于第二象限D.|z|=【分析】利用复数的运算法则化简z,再利用有关知识即可判断出正误.【解答】解:复数z满足=i,∴z===﹣﹣i,则z不是纯虚数,虚部为﹣,在复平面内,z对应的点位于第三象限,|z|==.故说法错误的是ABC.故选:ABC.7.(多选)设z1,z2,z3为复数,z1≠0.下列命题中正确的是()A.若|z2|=|z3|,则z2=±z3B.若z1z2=z1z3,则z2=z3C.若=z3,则|z1z2|=|z1z3|D.若z1z2=|z1|2,则z1=z2【分析】利用复数的模的有关性质和运算,结合共轭复数的概念对各个选项逐一分析判断即可.【解答】解:由复数的形式可知,选项A错误;当z1z2=z1z3时,有z1z2﹣z1z3=z1(z2﹣z3)=0,又z1≠0,所以z2=z3,故选项B正确;当=z3时,则,所以=,故选项C正确;当z1z2=|z1|2时,则,可得,所以,故选项D错误.故选:BC.8.计算:(2+7i)﹣|﹣3+4i|+|5﹣12i|+3﹣8i=13﹣i.【分析】根据复数的基本运算法则和复数模长的定义进行化简即可.【解答】解:原式=2+7i﹣5+13+3﹣8i=13﹣i,故答案为:13﹣i.9.已知复数z满足1+2zi=i,其中i是虚数单位,则|z|=.【分析】先化简复数z,再直接求模即可.【解答】解:依题意,,故.故答案为:.10.设复数z满足=|1﹣i|+i(i为虚数单位),则复数z=﹣i.【分析】利用复数模的计算公式、共轭复数的定义即可得出结论.【解答】解:复数z满足=|1﹣i|+i=+i=+i,则复数z=﹣i,故答案为:﹣i.11.已知复数在z1=a+i,z2=1﹣i,a∈R.(Ⅰ)当a=1时,求z1•的值:(Ⅱ)若z1﹣z2是纯虚数,求a的值;(Ⅲ)若在复平面上对应的点在第二象限,求a的取值范围.【分析】(Ⅰ)把a=1代入,再由复数代数形式的乘除运算化简得答案;(Ⅱ)利用复数代数形式的减法运算化简,再由实部为0求解;(Ⅲ)利用复数代数形式的乘除运算化简,再由实部小于0且虚部大于0求解.【解答】解:(Ⅰ)当a=1时,z1•=(1+i)(1+i)=1+i+i﹣1=2i;(Ⅱ)由z1﹣z2=(a+i)﹣(1﹣i)=a﹣1+2i是纯虚数,得a﹣1=0,即a=1;(Ⅲ)由=在复平面上对应的点在第二象限,得,即﹣1<a<1.12.已知:复数z=(1+i)2+,其中i为虚数单位.(1)求z及|z|;(2)若z2+a,求实数a,b的值.【分析】(1)利用复数代数形式的乘除运算化简z,再由复数模的计算公式求解;(2)把z代入z2+a,整理后利用复数相等的条件列式求解.【解答】解:(1)∵,∴;(2)由z2+a,得:(﹣1+3i)2+a(﹣1﹣3i)+b=2+3i,即(﹣8﹣a+b)+(﹣6﹣3a)i=2+3i,∴,解得.。

复数四则运算

复数四则运算
複數
棣美弗定理
設 Z Z (cos i sin )
Z Z (cos n i sin n ) ,n為整數
n n
我們稱此公式為棣美弗定理。
複數
複數的n次方根
x Z 的根為
n
xk
n
2 k 2 k Z (cos i sin ) ,( Arg( Z ))
n n
k = 0、1、2、3、……、 n 1
複數
i之運算性質
n為自然數, i 1 (1) i4n = 1 (2) i4n+1 = i (指數除以4餘數為0) (指數除以4餘數為1)
(3) i4n+2 = –1 (指數除以4餘數為2)
(4) i4n+3 = – i (指數除以4餘數為3)
複數


整數(Z ) 有理數(Q ) 分數 正整數( 自然數 ) 零 負整數 有限小數 無限循環小數 無理數( 不循環的無限小數 )
實數(R)
複數(C )
虛數
複數


設a、b為實數,形如 a + bi 的數稱為複數,a 稱為 實部,b 稱為虛部。
複數 Z = a + bi
b
0,Z為純虛數。 a = 0 , b
= 0,Z為實數。
複數
共軛複數
若Z = a + bi,a、b為實數,則 a bi稱為 a + bi的共軛複數,以符號 Z 表之,即
複數
複數的絕對值
設x、y為實數, Z x yi ( Z 0),則在複 數平面上之Z點到原點的距離稱為Z的絕對 值,以 Z 表示之,且規定
Z x y
2 2

复数的四则运算

复数的四则运算

例1、 计算:
• (1) (2-3i)(4+2i) • (2) (1+2i)(3+4i)(-2+i) • (3) (a+bi)(a-bi)
zz | z |2 | z |2 特别地,当| z | 1时, zz 1
例2 、 计算:(1+2i)2
例3、当n N *时,计算i n (i)n 所有可能的取值.
2、减法:设Z1=a+bi(a,b∈R) Z2=c+di(c,d∈R) 则Z1-Z2=(a+bi)-(c+di)=(a-c)+(b-di)
两个复数的差依然是一个复数,它的实部是原来的两个 复数实部的差,它的虚部是原来的两个复数虚部的差
例1、计算(1) (1+3i)+(-4+2i) (2) (5-6i)+(-2-I)-(3+4i) (3) 已知(3-ai)-(b+4i)=2a-bi, 求实数a、b的值。
练习: 1+i1+i2+i3+…+i 2004的值为( A ) (A) 1 (B) -1 (C) 0 (D) i
四、复数的除法
把满足(c+di)(x+yi) =a+bi (c+di≠0) 的复 数 x+yi 叫做复数 a+bi 除以复数c+di的商,
记做(a bi) (c di)或 a bi . c di
复数的四则运算
一、复数的加、减法
1、加法:设Z1=a+bi(a,b∈R) Z2=c+di(c,d∈R) 则Z1+Z2=(a+bi)+(c+di)=(a+c)+(b+di)

复数的四则运算

复数的四则运算
a c e b d f i
z1 z2 z3 a bi c di e fi a bi c e d f i
a c e b d f i
z1 z2 z3 z1 z2 z3 ,即复数的加法满足结合 律
复数加法的几何意义:
z1 a bi, z2 c di(a,b, c, d R)
y
b
Z
.
O1
a
x
复数的加法与减法:
若:z1 a bi,z2 c di (a,b, c, d R)
则:z1 z2 (a c) (b d )i
z1 z2 (a c) (b d )i
两个复数的和(或差)仍是一个复数,两个复数的和(或差)的 实部是它们实部的和(或差),两个复数的和(或差)的虚部是它们 虚部的和(或差).
n个
内正整数幂的运算性质在复数范围内仍然成立,
zm zn zmn , zm n zmn, z1 z2 n z1n z2n
注:i0 1,i1 i,i2 1,i3 i,
一般地,对于任意自然 数n, 有:i4n 1, i4n1 i, i4n2 1, i4n3 i
例7、计算:
(1)1 i4;
(2)2 i22 i2
解:(1)原式 1 i2 2 1 2i i2 2 2i2 4
(2)原式 2 i2 i2 4 12 25
若:z a bi其中a,b R
则:z z a bia bi a2 b2
互为共轭 复数的两个复数的乘积是实 数,等于这个复数 (或其共轭复数)模的 平方.
复数的除法
给定复数z2,若存在复数z,使得z2z 1,则称z是z2的
倒数,记作z 1 . z2
设z2 c di 0和z x yi(c, d, x, y R), 则

§2复数的四则运算

§2复数的四则运算
2 复数的四则运算
复习:
我们引入这样一个数i ,把i 叫做
虚数单位,并且规定: i21;
形如a+bi(a,b∈R)的数叫做复数.
全体复数所形成的集合叫做复数 集,一般用字母C表示 .
复数的代数形式: 通常用字母 z 表示,即
z a bi (a R,b R)
i 实部 虚部 其中 称为虚数单位。
0 i1 i2 i 1
(5)复数的除法法则
先把除式写成分式的形式,再把分子
与分母都乘以分母的共轭复数,化简后
写成代数形式(分母实数化).即
(a bi) (c di) a bi c di
(a bi)(c di) (c di)(c di)
(ac bd) (bc ad)i c2 d 2
(4)实数集R中正整数指数的运
算律,在复数集C中仍然成立.即对
z1,z2,z3∈C及m,n∈N*有:
zmzn=zm+n, (zm)n=zmn, (z1z2)n=z1nz2n.
【探究】 i 的指数变化规律
i1 i , i2 1 , i3 i , i4 1
i5 __ , i6 __ , i7 __ , i8 __
例1.计算 (1)(-5 3i) (2 4i)
(2)( 3 - i) (2 3 - 4i)
解: (1)(-5 3i) (2 4i) (-5 3) (3 4) i -3 1i
(2)( 3 - i) (2 3 - 4i) ( 3 2 3) (1 4)i 3 3 5i
那么:z1±z2=(a±c)+(b±d)i;
即:两个复数和(或差)仍然是一个复 数.它的实部是原来两个复数的实部的 和(或差),它的虚部是原来两个复 数的虚部的和(或差).

复数的四则运算

复数的四则运算

5.有关正整数指数幂的运算结论: (1)i1 =i (2)i4k = 1 i2 = −1 i4k+1 = i i3 = −i i4k+2 = −1 i4 = 1 i4k+3 = −i (k ∈ N) 1+i = i 1−i 1−i = −i 1+i
(3)(1 + i)2 = 2i
6. 复数的除法:
2.复数的乘法: 设z 1 = a + bi,z2 = c + di (a,b,c,d ∈ R) z1 * z2 = (a + bi)(c + di) = ac + adi + bci + bdi2 = (ac − bd) + (ad + bc) i 两个复数的积仍然是一个复数; 复数的乘法与多项式的乘法是类似的(即两个二项式相乘) 其中i2 = −1,要把i2换成-1。
(1 − i)2 = −2i
令z1 = a + bi, z2 = c + di.(a,b,c,d ∈ R) z1 a + bi (a + bi)(c − di) (ac + bd) + (bc − ad) i = = = z2 c + di (c + di)(c − di) c2 + d 2 ac + bd bc − ad = 2 + 2 i (其中c,d不全为0) 2 2 c +d c +d 分式中的分子、分母都乘上分母的共轭复数,使分母实数化, 分子上就成了两复数的相乘。
7. 模与共轭复数的相关性质: (1)zz = z
2
= z
2
≠ z2;
(2) z = z ; (3) z1z2 = z1 z2 ; z1 n z1 n = (z2 ≠ 0); z = z ; z2 z2

复数的四则运算

复数的四则运算

a + bi 记做(a + bi ) ÷ (c + di )或 . c + di
(a + bi) ÷ (c + di) = a + bi ac + bd bc − ad = 2 + 2 i 2 2 c + di c + d c +d
例ห้องสมุดไป่ตู้、计算
1− i (1) 1+ i
13 + 9i (2) 2 (2 + i)
是____________. ____________. 解析:设z=x+yi(x、y∈R),则x2+y2+2x=3表示圆. 答案:以点(-1,0)为圆心,2为半径的圆
【练习】 练习】 1、在复数范围内解方程 、 (1) x2+4=0 (2) z2=2i
2、在复数范围内分解因式 、 (1) x2 + 4 (2) x4 - y4
Cz2-z1 B
z1+z2
2 、 | z 1+ z 2| = | z 1- z 2| 平行四边形OABC OABC是 平行四边形OABC是 矩形
o
z1 A
3、 |z1|= |z2|,| z1+ z2|= | z1- z2| 平行四边形OABC是 平行四边形OABC是 正方形 OABC
三、复数的乘法
o
x
A,说明下列各式所表示的几何意义 例1:已知复数z对应点A,说明下列各式所表示的几何意义. 1:已知复数z对应点A,说明下列各式所表示的几何意义. 已知复数
(1)|z- (1)|z-(1+2i)| (2)|z+(1+2i)| (3)|z- (3)|z-1| (4)|z+2i|

复数的四则运算

复数的四则运算
2 2 2 2
先把除式写成分式的形式,再把分子与分母 都乘以分母的共轭复数,化简后写成代数形式 (分母实数化).
例4.计算
1 2 i 解: (1 2i ) (3 4i ) 3 4i (1 2i)(3 4i) (3 4i )(3 4i ) 3 8 6 i 4 i 5 10 i 2 2 3 4 25 1 2 i 5 5
1.对虚数单位i 的规定
① i 2= -1; ②i 可以与实数一起进行四则运算,并且加、 乘法运算律不变.
2. 我们把形如a+b i(其中 a、b R )的数 称为 复数,
记作: z=a+bi, 其中a叫做复数 z的 虚部 实部 b叫做复数 的 . z 全体复数集记 C 为 .

2 3. 由于i2= (-i) = -1,知 i为-1的一个 平方根 、-1的另一个 平方根为-i
→ 练习.在复平面内,点 A 对应的复数为 2+3i,向量OB对 → 应的复数为-1+2i,则向量BA对应的复数为( A.1+5i C.-3-i B.3+i D.1+i )
→ → → 【解析】 ∵BA=OA-OB,
→ 对应的复数为(2+3i) -( -1+2i) =(2+1) +(3-2)i ∴BA =3+i.故选 B.
;
一般地,a(a>0)的平方根为 a 、 - a (a>0)的平方根为 a i
小数 实数 (b=0) 有理数 分数 正分数 零
负分数
无理数 不循环小数
4. 复数z=a+bi
(a、bR) 虚数 (b0)
特别的当 a=0 时 纯虚数
a=0是z=a+bi(a、bR)为纯虚数的 必要但不充分 条件.

《复数的四则运算》复数(复数的乘、除运算)

《复数的四则运算》复数(复数的乘、除运算)

2023-11-10contents •复数的基本概念•复数的乘法运算•复数的除法运算•复数乘除法的应用•复数乘除法在实数域的扩展•复数乘除法在复数域的扩展目录01复数的基本概念复数的定义定义:一个复数通常表示为 `a + bi`,其中 `a` 和 `b` 是实数,`i` 是虚数单位,满足 `i^2 = -1`。

实部:`a`虚部:`b`几何表示在平面上,一个复数可以用一个点 `(a, b)` 表示。

三角表示利用复数的三角形式,可以将一个复数表示为 `r(cosθ + isinθ)`,其中 `r` 是模长,θ 是辐角。

复数的表示方法复数的性质两个复数 `a + bi` 和 `c + di` 相等当且仅当它们的实部和虚部分别相等,即 `a = c` 和 `b = d`。

复数的相等两个复数相加,其实部和虚部分别相加。

复数的加法两个复数相减,其实部和虚部分别相减。

复数的减法两个复数相乘,其实部和虚部分别相乘。

复数的乘法02复数的乘法运算复数乘法定义为:设z1=a+bi,z2=c+di(a,b,c,d∈R),则z1·z2=(ac-bd)+(bc+ad)i。

两个复数相乘,按照多项式乘多项式法则进行,对应项相乘,然后再合并同类项。

复数乘法的定义两个复数相乘,应该满足以下规则 1. 复数的乘法满足结合律。

2. 复数的乘法满足分配律。

复数乘法的运算规则复数乘法的例子例如设z1=2+3i,z2=4+5i,则z1·z2=(2×4-3×5)+(2×5+3×4)i=10-15i+20i+12=22-5i。

再例如设z1=3+4i,z2=1-2i,则z1·z2=(3×1-4×(-2))+(3×(-2)+4×1)i=11+(-2)i。

03复数的除法运算复数除法的定义定义设 z1、z2 为任意两个复数,那么由 z2 的共轭复数与 z1 的比值 z2/z1 称为复数 z1 对 z2 的除法。

5.2.1复数的四则运算

5.2.1复数的四则运算
2
3
13 3 1 3 2 1 3 3 i ) ( 证明:(1 ) 1 1 ( i) ( 2 ) ( 2 i2 ) 2 2 2 2 1 3 1 2 3 1 3 3 3 2 1 2 i ( ) 2 i ) ( i ( i ) i ) 2 2 2 2 2 2 2 2 2 1 3 3 3 1 3 1 3 1 i )( i) i ( 2 i 2 2 4 2 2 4 2 2 1 2 3 2 1 3 ( ) ( i ) 1 0; 2 2 4 4
类似于多项式的乘法
3、复数的乘方 (复数的乘方是相同复数的积)
C 对任何 z, z1 , z2 及
m n
m n
m , n N ,有
(z ) z n n n ( z1 z2 ) z1 z2 特殊的有:i 1 i i 2 1
mn
z z z
mn
一般地,如果 n N ,有 i 幂的周期性:
2
例6求 i i i i i 解:根据 i 的性质,
0 1 2 3
2006
的值等于______
i i i i 0 0 1 2 3 2004 2005 2006 则有i i i i i i i 0 1 2 3 2004 2005 2006 i (i i i i ) i i 0 1 2 1 0 i 1 i i 0 i i
1.复数加减法的运算法则 2、复数的乘法法则 3、复数的乘法运算律 4、复数的除法法则
5、一些常用的计算结果:
①如果n∈N*有:i4n=1;i4n+1=i,i4n+2=-1;i4n+3=-i. (事实上可以把它推广到n∈Z.)

【数学知识点】复数的定义和四则运算公式

【数学知识点】复数的定义和四则运算公式

【数学知识点】复数的定义和四则运算公式我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i 称为虚数单位。

接下来分享复数的定义和四则运算公式。

复数是形如a+bi的数。

式中a,b为实数,i是一个满足i^2=-1的数,因为任何实数的平方不等于-1,所以i不是实数,而是实数以外的新的数。

在复数a+bi中,a称为复数的实部,b称为复数的虚部,i称为虚数单位。

当虚部等于零时,这个复数就是实数;当虚部不等于零时,这个复数称为虚数,虚数的实部如果等于零,则称为纯虚数。

由上可知,复数集包含了实数集,因而是实数集的扩张。

复数常用形式z=a+bi叫做代数式。

(1)加法运算设z1=a+bi,z2=c+di是任意两个复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和:(a+bi)±(c+di)=(a±c)+(b±d)i。

(2)乘法运算设z1=a+bi,z2=c+di是任意两个复数,则:(a+bi)(c+di)=(ac-bd)+(bc+ad)i。

其实就是把两个复数相乘,类似两个多项式相乘,结果中i2=-1,把实部与虚部分别合并。

两个复数的积仍然是一个复数。

(3)除法运算复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商。

运算方法:可以把除法换算成乘法做,将分子分母同时乘上分母的共轭复数,再用乘法运算。

(1)共轭复数所对应的点关于实轴对称。

(2)两个复数:x+yi与x-yi称为共轭复数,它们的实部相等,虚部互为相反数。

(3)在复平面上,表示两个共轭复数的点关于X轴对称。

感谢您的阅读,祝您生活愉快。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.复数加减法的运算法则: 复数加减法的运算法则: 复数加减法的运算法则 (1)运算法则:设复数z (1)运算法则:设复数z1=a+bi,z2=c+di, 运算法则 那么: 那么:z1+z2=(a+c)+(b+d)i;
z1-z2=(a-c)+(b-d)i. =(a-c)+(b即: 两个复数相加( 两个复数相加(减)就是实部与实部, 就是实部与实部, 虚部与虚部分别相加(减). 虚部与虚部分别相加(
z1z2=z2z1; (z1z2)z3=z1(z2z3); z1(z2+z3)=z1z2+z1z3.
四、例题应用: 例题应用:
例1.计算 (5 − 6i) + (−2 −i) − (3+ 4i) 1.计算
解: (5 − 6i) + (−2 − i) − (3 + 4i)
= (5 − 2 − 3) + (−6 −1− 4) i = −11i
复数的四则运算
一、复习回顾: 复习回顾: 1.虚数单位 的引入; 虚数单位i的引入 1.虚数单位 的引入; 2.复数有关概念 复数有关概念: 2.复数有关概念: 复数的代数形式: 复数的代数形式: z = a + bi (a ∈ R, b ∈ R)
复数的实部 a ,虚部 实数: 实数: b = 0(a ∈R); 虚数: 虚数: b ≠ 0(a ∈R);
2
+ i +LL+ i
3
2 3 4
2009
解:原式 = i + i + i + i + i ) ... + +
5 6 7 8
(i
2005
+i
1
2006
+i
2007
+i
2008
)i +
2009
= 0+i =i
常用结论: 常用结论:
(1 ± i ) = ±2i;
2
1 1+ i = −i; = i; i 1− i
注意到 i 2 = −1 ,虚数单位 i 可以和实数进行运 算且运算律仍成立,所以复数的加 复数的加、 算且运算律仍成立,所以复数的加、减、乘运算我 们已经是自然而然地在进行着, 们已经是自然而然地在进行着, 只要把这些零散的 操作整理成法则即可了! 操作整理成法则即可了!
三、知识新授: 知识新授:
例1
3 例 、下列命题中正确的是 (1)如果 1 + Z2是实数,则 1、Z2互为共轭复数 Z 是实数, Z (2)纯虚数 的共轭复数是 Z。 Z − (3)两个纯虚数的差还是纯 虚数 (4)两个虚数的差还是虚数 。
(2)
4 例 、下列命题中的真命题 : 为 (A)若Z1 + Z2 = 0, 则Z1与Z2互为共轭复数。 互为共轭复数。 (B)若Z1 + Z2 = 0,则Z1与 2互为共轭复数。 Z 互为共轭复数。 (C)若Z1 − Z2 = 0,则Z1与Z2互为共轭复数。 互为共轭复数。 (D)若Z1 − Z2 = 0,则Z1与 2互为共轭复数。 Z 互为共轭复数。
解:原式= a − (bi ) = a + b 原式=
2 2
2
2
一步到位! 一步到位!
注意 a+bi 与 a-bi 两复数的特点 - 两复数的特点.
3. 共轭复数的概念、性质: 共轭复数的概念、性质:
(1)定义 定义: 定义 实部相等,虚部互为相反数的两个复数 实部相等,虚部互为相反数的两个复数 互为共轭复数 共轭复数. 互为共轭复数.
解:因为 4 − 20i 的共轭复数是 4 + 20i 根据复数相等的定义, ,根据复数相等的定义, 可得 x 2 + x − 2 = 4, x = −3或x = 2 解得 2 x = −3或x = 6 x − 3 x + 2 = 20. 所以 x = −3 .
【例3】求值: i + i 】求值:
我们知道,两个向量的和满足平行四边形 我们知道 两个向量的和满足平行四边形 法则, 复数可以表示平面上的向量, 法则 复数可以表示平面上的向量,那么复数 的加法与向量的加法是否具有一致性呢? 的加法与向量的加法是否具有一致性呢? 设z1=a+bi z2=c+di,则z1+z2=(a+c)+(b+d)i uuuu则 r uuuu r
b
.
a = 0 纯虚数: 纯虚数: b ≠ 0 复数相等 a + bi = c + di ⇔
特别地, =0⇔ 特别地,a+bi=0⇔
a=b=0
a = c b = d
.
问题1: 问题 :
a=0是z=a+bi(a、 R)为 a=0是z=a+bi(a、b∈R)为 纯虚数的
必要不充分
条件
问题2:一般地, 问题2:一般地,两个复数只能说相等或不相 2:一般地 等,而不能比较大小. 而不能比较大小.
1 3 6.已知 的值. 6.已知 z = − + i ,求 2 z 3 + 3 z 2 + 3 z + 9 的值. 2 2
7.在复数集 内 7.在复数集C内,你能将 x2 在复数集
3
(x+yi)(x-yi) -
+y
2 分解因式吗? 分解因式吗?
8
() 例2:计算 1 (a + bi )(a − bi )
= a − abi + abi − b i
2
2 2
= a +b
2
2
复数的乘法与多项 式的乘法是类似的. 式的乘法是类似的. 我们知道多项式的乘法用 乘法公式可迅速展开, 运算, 乘法公式可迅速展开, 运算, 类似地, 类似地,复数的乘法也可大胆 运用乘法公式来展开运算. 运用乘法公式来展开运算.
如图, 如图, z1 对应向量 OZ1 , z2 对应向量 OZ 2 ,根据向量 uuu uuuu uuuu r r r 加法可知 OZ = OZ1 + OZ 2 uuuu r uuuu r y ∵ OZ1 = (a, b) , OZ2 = (c, d ) Z Z2(c,d) 根据向量加法的坐标运算 的坐标运算可知 根据向量加法的坐标运算可知 uuu uuuu uuuu r r r OZ = OZ1 + OZ2 = (a, b) + (c, d ) Z1(a,b) = (a + c , b + d )
4 4 ∴ x1 + x2 = (1 + i )4 + (1 − i )4 = (2i )2 + (−2i )2 = −8.
注:在复数范围内方程的根与系数的关系仍适用. 在复数范围内方程的根与系数的关系仍适用. 3.已知复数 x2 + x − 2 + ( x2 − 3x + 2)i( x ∈R) 是 4 − 20i 3.已知复数 的共轭复数, 的值. 的共轭复数,求x的值. 的值
1− i = 1+ i
−i.
求证: 设 ω = − 1 + 3 i ,求证: 2 2 ;(2) (1) + ω + ω 2 = 0 ;( ) ω 3 = 1. ) 1 1 3 1 3 2 3 1 + ω ( − 12+= 13 i( − + i ) + (− + i) +ω + )3 ) 证明: (1) 证明:(2) ω = ) 2 2 2 2 2 2 1 3 1 1 + 3 i ) 2 ( −1 + 3 i )1 3 3 2 2 ( = =− + 2 2 2 i + ( − 2 ) −2 × 2 × 2 i + ( 2 i ) 2 2 2 1 3 1 1 3 (1 i ) == − +− 3 i +)( −− +3 i −i3 = ( − 1 ) 2 − ( 3 i ) 2 2 2 2 2 22 4 2 2 2 4 1 = 0; + 3 = 1 = 4 4
(2)复数的加法满足交换律、结合律, (2)复数的加法满足交换律、结合律, 复数的加法满足交换律 即对任何z1,z2,z3∈C,有: ∈C,有
z1+z2=z2+z1, (z1+z2)+z3=z1+(z2+z3).
2.复数的乘法: 复数的乘法: 复数的乘法
(1)复数乘法的法则 (1)复数乘法的法则 复数的乘法与多项式的乘法是类似 的,但必须在所得的结果中把i2换成-1, 但必须在所得的结果中把i 换成并且把实部合并.即: 并且把实部合并.
复数 z=a+bi 的共轭复数记作 z,
即 z = a − bi
(2)共轭复数的性质 共轭复数的性质: 共轭复数的性质
思考: ),那么 思考:设z=a+bi (a,b∈R ),那么 z + z = ?
z −z =?
z + z = 2a;z - z = 2bi.
另外不难证明: 另外不难证明 z
1
+ z2 = z1 + z2 , z1 − z2 = z1 − z2
2 2
(2)a + bi ) = a + 2abi + b i (
2 2
= a − b + 2abi
2 2
(3) − 2i )(3 + 4i )(−2 + i ) (1
(1− 2i)(3+ 4i)(−2 + i) = (11− 2i)(−2 + i) = −20 +15i
(1)计算 计算(a+bi)(a-bi) 计算 -
相关文档
最新文档