第4章 集成运算放大器
第4章-掌握集成运算放大器ppt课件(全)全篇
2 B
B1 B2
☆ 输入偏置电流IB是衡量差动管输入电流绝对值大小的标志
4.1.3 集成运放大器的主要参数
1. 输入误差特性
➢ 输入失调电流IOS
定义:零输入时,两输入偏置电流IB1、IB2之差称为输入失调电流, 即IOS =|IB1IB2|。
IOS反映了输入级差动管输入电流的对称性,一般希望IOS越小越好。 普通运放的IOS约为1nA0.1A。
✓UIO = 0、IIO = 0、 UIO = IIO = 0;
✓输入偏置电流 IIB = 0; ✓- 3 dB 带宽 fH = ∞ ,等等
4.1.4 集成运放的理想化模型
2. 理想运放的工作特性
理想运放的电压传输特性如图10-5所示。它分为线性区和非线
性区。
➢线性区
当理想运放工作于线性区时,VO=Ad(VPVN), 而Ad,因此VP VN) =0、VP=VN,又由输入电阻 Rid可知,流进运放同相输入端和反相输入端的
uO
+UOP
P
理想特 性
电流IP、IN为IP = IN =0;可见,当理想运放工作于线 性区时,同相输入端与反相输入端的电位相等,流 进同相输入端和反相输入端的电流为0。 IP = IN =0就 是VP和VN两个电位点短路,但是由于没有电流, 所以称为虚短路,简称虚短;而IP = IN =0表示流过 电流IP 、 IN的电路断开了,但是实际上没有断开, 所以称为虚断路,简称虚断。
4.1.3 集成运放大器的主要参数
2. 开环差模特性参数
➢-3dB带宽
定义:输入正弦小信号时, Aod是频率的函数,随着频率的增 加而下降。当下降3dB时所对应的信号频率称为-3dB带宽。一般运 放的-3dB带宽为几Hz几kHz,宽带运放可达到几MHz。
电子技术基础(恩施职业技术学院第4章 集成运算放大器的应用
- ui +
∞
+ uo
电压跟随器
Δ
,这时输出电压跟随输入电
压作相同的变化,称为电压跟随器。
例 在图示电路中,已知R1=100kΩ, Rf=200kΩ ,ui=1V,求输 出电压uo,并说明输入级的作用。
Rf - ui +
∞
+ R1 uo1 R2 - +
解 输入级为电压跟随器,由于是电压串联负反馈,因 而具有极高的输入电阻,起到减轻信号源负担的作用。且 u o1 u i 1 V ,作为第二级的输入。 第二级为反相输入比例运算电路,因而其输出电压为: Rf 200 uo u o1 1 2 (V) R1 100
学习要点
第4章 集成运算放大器的应用
模拟运算电路 4.2 信号处理电路 4.3 波形发生电路 4.4 使用运算放大器 应注意的几个问题
4.1
4.1 模拟运算电路
4.1.1 比例运算电路
1、反相输入比例运算电路
根据运放工作在线性区的两条 分析依据可知:i1 i f ,u u 0 而
4.1.2 加法和减法运算电路
1、加法运算电路
根据运放工作在线性区的两条分析依据可知:
i f i1 i 2
i1
u i1 ui2 uo i i ,2 ,f R1 R2 RF RF RF u o ( u i1 ui2 ) R1 R2
- +
∞
+ uo
输入电阻为:
u i R1i1 ri R1 100 k i1 i1
平衡电阻为:
R 2 R1 // R f1 R f2 // R f3 100 //200 50 // 1 66.8 k
电子技术基础-第4章
整理得 uO1R Rf 13uI1uI2
图4-18 同相加法运算电路
28
【例4-1】 电路如图4-19所示。设A为理想集成运放, R1=10kΩ,Rf=100kΩ。试求:输出电压uO与输入电压uI之 间的关系,并说明该电路实现了什么运算功能。
解 根据理想集成运放的两条结论,利用“虚短”和“虚断” 的概念,有:uN=up=uI, iI=0
( a)
( b)
( c)
非线性集成电路
3
( d)
( e)
(a)为圆壳式
(b)为双列直插式 (c)为扁平式 (d)为单列直插式 (e)为菱形式
( a)
( b)
( c)
( d)
( e)
4
4.1 直接耦合放大电路
两级直接耦合放大电路如图4-1所示
图4 –1 两级直接耦合放大器电路
5
4.1.1 直接耦合放大器和组成及其零点漂移现 象
③输出级 输出级具有输出电压线性范围宽,输出电阻小(即带负载 能力强),非线性失真小等优点。多采用互补对称发射极输 出电路。
17
Байду номын сангаас
④偏置电路 偏置电路用于设置集成运放各级放大电路的静态工作点。与 分立元件不同,集成运放多采用电流源电路为各级提供合适 的集电极(或发射极、漏极)静态工作电流,从而确定了合 适的静态工作点。 集成运放的电路符号如图4-10所示。图(a)为国外常用符号, 图(b)为我国常用符号。
19
(2)直流参数 ①输入失调电压UIO及其温漂dUIO/dT 理想集成运放,当输入为零时,输出也为零。但实际集成运放的 差分输入级不易做到完全对称,在输入为零时,输出电压可能不 为零。为使其输出为零,人为的在输入端加一补偿电压,称此补 偿电压为输入失调电压,用UIO表示。 ②输入失调电流IIO及其温漂dIIO/dT 集成运放在常温下,当输出电压为零时,两输入端的静态电流之 差,称为输入失调电流,用IIO表示,
第4章 集成运算放大器的结构及特性
4.输入失调电压温漂 dVio /dT
在规定工作温度范围内,输入失调 电压随温度的变化量与温度变化量 之比值。
5.输入失调电流温漂dIio /dT
在规定工作温度范围内,输入失调电 流随温度的变化量与温度变化量之比 值。
6.最大差模输入电压Vidmax
(maximum differential mode input voltage) 运放两输入端能承受的最大差模输入电压, 超过此电压时,差分管将出现反向击穿现象。
五、运算放大器的符号和型号
运算放大器的符号中有三个引线端,两个 输入端,一个输出端。一个称为同相输入端, 即该端输入信号变化的极性与输出端相同,用 符号‘+’或‘IN+’表示;另一个称为反相输入 端,即该端输入信号变化的极性与输出端相异, 用符号“-”或“IN-”表示。输出端一般画在输 入端的另一侧,在符号边框内标有‘+’号。实 际的运算放大器通常必须有正、负电源端,有 的品种还有补偿端和调零端。
7.最大共模输入电压Vicmax
(maximum common mode input voltage) 在保证运放正常工作条件下,共模输入 电压的允许范围。共模电压超过此值时, 输入差分对管出现饱和,放大器失去共 模抑制能力。
二、运算放大器的动态技术指标
1.开环差模电压放大倍数 Avd :(open loop voltage gain)运放在无外加反馈条件下,输出电 压的变化量与输入电压的变化量之比。 2.差模输入电阻rid :(input resistance)输入差模 信号时,运放的输入电阻。 3.共模抑制比 KCMR :(common mode rejection ratio)与差分放大电路中的定义相同,是差模电压 增益 Avd 与共模电压增益 Avc 之比,常用分贝数 来表示。 KCMR=20lg(Avd / Avc ) (dB)
集成运算放大电路
多路电流源电路如图所示,已知所有晶体管的特性均相同, UBE均为0.7V。试求IC1、IC2各为多少。:
因为T1、T2、T3的特性均相同, 且UBE均相同,所以它们的基极、 集电极电流均相等, 设集电极电流为IC。 先求出R中电流,再求解IC1、IC2
IR
VCC U BE3 U BE 0 100μA R
偏置电路:用于设置各级放大电路的静态工作点,采用电流源电路
4.1.3 集成运放的符号和电压传输特性
非线性区
线性区
从外部看,可认为集成运放是一个双端输入、单端输 出、具有高差模放大倍数、高输入电阻、低输出电阻、能 较好抑制温漂的差分放大电路。 uo=Aod(uP-uN) 差模开环放大倍数Aod,通常非常高可达几十 万倍。对理想运放:Aod→∞ Rid →∞ Ro=0
集成运放的选择: 1 信号源的性质 根据信号源是电压源还是电流源,内阻大小、输入信号幅 值及频率的变化范围等,选择运放的rid、-3dB带宽、转换 速率SR等参数 2 负载的性质 根据负载电阻大小,确定所需运放的输出电压和输出电流 幅值。 3 精度要求 根据精度要求选择运放的Aod、UIO、IIO、SR等参数 4 环境条件 根据环境温度变化范围,选择运放失调电压及失调电流的 温漂dUIO/dT dIIO/dT
供偏置电流,又可以作为放大器的有源负载使用。
3.集成运放的主要品种是BJT集成运放、FET集成运放
以及由这两种工艺结合而得到的BiMOS和BiCMOS集成 运放。集成运放的参数有几十个之多,正确掌握了它的 主要参数的物理意义,才能在使用中恰当地选择元器件。 4.除了通用集成运放以外,还有大量特殊类型的运放。
输入级:一般是双端输入的差分放大电路,它的好坏直接影响集成运放 的性能参数(如输入电阻、共模抑制比等)。一般要求输入电阻大、差模 放大倍数高,抑制共模信号能力强。 中间级:主要是放大作用,多采用共射或共源放大电路,经常用复合管 做放大管,以恒流源作集电极负载,Au可达千倍以上。 输出级:应具有输出电阻小、输出电压线性范围宽,非线性失真小等特 点。多采用互补对称输出电路。
集成运算放大电路
电极经RC接VCC,发射极经电阻RE接VEE。电路中两管集电极负载电
阻的阻值相等,两基极电阻阻值相等,输入信号ui1和ui2分别加在两
管的基极上,输出电压u0从两管的集电极输出。这种连接方式称为
双端输入、双端输出方式。
下一页 返回
4.2 差分放大电路
2. 抑制零点漂移的原理
(1)依靠电路的对称性
上一页 下一页 返回
第一节 心脏除颤仪
2. 病人准备 ①卧硬板床,解开衣领、裤带,去除身上
的金属物品。 ②择期电复律者术晨禁食,术前排空大小
便。 ③给予吸氧,建立静脉通路。 3. 护士准备 衣帽整洁,仪表端庄,熟练
操作除颤仪。 4. 物品准备 除颤仪、导电糊(或浸湿生
理盐水的纱布)、治疗碗(清洁上一纱页布下1一页 返回
1
u i1 u i2 2 u id
或
uid 2ui1
图4-4电路中,在输入差模信号uid时,由于电路的对称性,使
得V1和V2两管的集电极电流为一增一减的状态,而且增减的幅度相
同。如果V1的集电极电流增大,则V2的集电极电流减小,即iC1=-iC2。
显然,此时RE上的电流没有变化,说明RE对差模信号没有作用,在RE
4.1.1 前级、后级静态工作点相互影响
前级的集电极电位恒等于后级的基极电位,前级的集电极电阻
RC1同时又是后级的偏流电阻,前、后级的静态工作点就互相影响,
互相牵制。
下一页 返回
4.1 直接耦合放大电路及问题
因此,在直接耦合放大电路中必须采取一定的措施,必须全面 考虑各级的静态工作点的合理配置,当放大电路的级数增多时,这 个问题显得更加复杂。常用的办法之一是提高后级的发射极电位。 在图4-1中是利用V2的发射极电阻RE2上的压降来提高发射极的电位。 这一方面能提高V1的集电极电位,增大其输出电压的幅度,另一方 面又能使V2获得合适的工作点。在工程中还有其他方法可以实现前、 后级静态工作点的配合。
第4章 集成电路运算放大电路
④动态时ΔiO约为多少?
4.3 集成运放电路简介
•电压放大倍数高 集成运放的特点: •输入电阻大 •输出电阻小 已知电路图,分析其原理和功能、性能。 (1)了解用途:了解要分析的电路的应用场合、用途和技术 指标。 (2)化整为零:将整个电路图分为各自具有一定功能的基本 电路。 (3)分析功能:定性分析每一部分电路的基本功能和性能。 (4)统观整体:电路相互连接关系以及连接后电路实现的功 能和性能。 (5)定量计算:必要时可估算或利用计算机计算电路的主要 参数。
4.2.1 基本电流源电路
一、镜像电流源
T0 和 T1 特性完全相同。
U BE0 = U BE1 U BE I B0 = I B1 I B I C0 = I C1 I C
I R IC 2I B IC 2 IC IC
2
I R 即I C1
当β>>2时, I C1
学习指导 4.1 集成运算放大电路概述 4.2 集成运放中的电流源 4.3 集成运放电路的简介 4.4 集成运放的性能指标及低频等效电路
4.5 集成运放的种类及选择(自学) 4.6 集成运放的使用(自学) 小结
作 业
• 4.3
学习指导
在半导体制造工艺的基础上,将整个电路中的元 器件制作在一块硅基片上,构成特定功能的电子电路, 称为集成电路。 其体积小,而性能却很好。 集成电路按其功能分,有模拟集成电路和数字集 成电路。模拟集成电路的种类繁多,其中集成运算放 大器(简称集成运放)是应用极为广泛的一种。 主要内容:(1)集成运放中的电流源;(2)集成运放 电路的分析;(3)集成运放及主要性能指标。 基本要求:(1)熟悉运放的组成及各部分的作用, 理解主要性能指标及其使用注意事项;(2)了解镜 像电流源、微电流源的工作原理、特点和主要用途; (3)了解运放F007的基本组成和工作原理。(4)熟悉 LM324集成运放的引脚分布及其应用。
第4章集成运算放大电路
2020年4月8日星期三
Shandong University
第3页
模拟电路
二、集成运放电路的组成
两个 输入端
一个 输出端
若将集成运放看成为一个“黑盒子”,则可等效为一个 双端输入、单端输出的差分放大电路。
2020年4月8日星期三
Shandong University
第4页
模拟电路
集成运放电路四个组成部分的作用
模拟电路
第四章 集成运算放大电路
§4.1 概述 §4.2 集成运放中的电流源 §4.3 电路分析及其性能指标
2020年4月8日星期三
Shandong University
第1页
模拟电路
§4.1 概述
一、集成运放的特点 二、集成运放电路的组成 三、集成运放的电压传输特性
2020年4月8日星期三
Shandong University
2020年4月8日星期三
Shandong University
第5页
模拟电路
三、集成运放的电压传输特性 uO=f(uP-uN)
在线性区:
uO=Aod(uP-uN) Aod是差模开环放大倍数。
非线 性区
由于Aod高达几十万倍,所以集成运放工作在线性区时的 最大输入电压(uP-uN)的数值仅为几十~一百多微伏。
特点:IC1具有更高的稳定性。
2020年4月8日星期三
Shandong University
第9页
三、微电流源
模拟电路
要求提供很小的静态电流,又不能用大电阻。
IE1 (UBE0 UBE1) Re
U BE
I UT
I I e , I e E
S
E0 E1
模电课件第四章集成运算放大电路
§4.1集成运算放大电路概述 一、集成运放的电路结构特点
集成运算放大电路:高电压放大倍数的直接耦合多级放大电路。
2019/7/28
模电课件
二、集成运放的电路组成
1、输入级:运算放大器的输入级通常是差分放大电路,其主 要功能是抑制共模干扰和温漂,双极型运放中差分管通常采 用CC-CB复合管,以便拓展通频带。 2、中间级:电压放大,要求:放大倍数要尽可能大,通常采 用共201射9/7/2或8 共源电路,并采用恒模电流课源件 负载和复合管以增加电压 放大倍数。
工作在放大状态。
当T0与 T1特性参数完全一致时,由U BE0 = U BE1可推得
IB0 = IB1 = IB IC0 = IC1 = Io 由基极输入回路得,
Io
IR
VCC
U BE R
I0 2IB
I0
2
I0
所以,I0
1 1 2
IR
基准电流
输出电流
当
时,I0 IR 。
在集成运放电路中通常只能制作小容量(几十pF)电容,不能 制作大201容9/7/量28 电解电容,级间通常模采电课用件 直接耦合。
四、以电流源为有源负载的放大电路
在集成运放的共射(共源)放大电路中,为了提高电压放大 倍数,常用电流源电路取代Rc (或Rd ),这样在电源电压不 变的情况下,既获得合适的静态电流,又可以得到很大的等效 的Rc(或 Rd )。
(1) 运放电路的结构分解 输入级是一个差动放大电路,主要由T1、T3(共集-共基组合)
和T2、T4组成。中间放大级由T16、T17、T13组成共集—共射电路; 输出级由T14、T18 、 T19组成互补输出电路。
集成运算放大器电路 模拟电子电路-PPT
IE2
1 R2
(U BE1
UBE2 )
UT R2
ln
I E1 IE2
当β1>>时,IE1≈Ir,IE2≈IC2,由此可得
R2
UT IC2
ln
Ir IC2
(4―10)
UCC
Ir
Rr
V1
第4章 集成运算放大器电路
IC2 V2
R2
图4―7微电流电流源
第4章 集成运算放大器电路
此式表明,当Ir和所需要的小电流一定时,可计算
UCC
Rr
Ir
IC1 IC2
IC3
第4章 集成运算放大器电路
V1
V2
Rr Ir
UCC V3
IC2
IC3
(a)
(b)
图4―5 (a)三集电极横向PNP管电路;(b)等价电路
第4章 集成运算放大器电路
三、比例电流源
如果希望电流源的电流与参考电流成某一比例关 系,可采用图4―6所示的比例电流源电路。由图可知
利用交流等效电路可求出威尔逊电流源的动态内阻
Ro为
Ro 2 rce
(4―13)
可见,威尔逊电流源不仅有较大的动态内阻,而且 输出电流受β的影响也大大减小。
图4―9给出了另一种反馈型电流源电路。它由两 个镜像电流源串接在一起组成,故称串接电流源。关 于它的稳流原理留给读者自行分析。
UCC
Ir
Rr
集成运放是一种多级放大电路, 性能理想的运放 应该具有电压增益高、 输入电阻大、 输出电阻小、 工 作点漂移小等特点。 与此同时, 在电路的选择及构成 形式上又要受到集成工艺条件的严格制约。 因此, 集 成运放在电路设计上具有许多特点, 主要有:
第四章 集成运算放大电路
2. 最大输出电压 op-p 最大输出电压U
Uo / V - 10 Uid + ∞ +
-0.4
-0.2 -0.1
0 0.1 0.2 0.3 0.4 Uid / mV
-0.3
-10 线性区
集成运放的传输特性
3. 差模输入电阻 id 差模输入电阻r rid的大小反映了集成运放输入端向差模输入信号 源索取电流的大小。要求rid愈大愈好, 一般集成运放 rid为几百千欧至几兆欧, 故输入级常采用场效应管来 提高输入电阻rid。 F007的rid=2 M 。认为理想集成运 放的rid为无穷大。
动态时,加入差模信号uid,根据差分放大电路的特点, T1 管的集电极电流在静态电流IC1的基础上增加了∆iC1,T2管的集 电极电流在静态电流IC2的基础上减小了∆iC2,∆iC1=-∆iC2。 由于 iC4 和 iC1 是 镜 像 关 系 , ∆iC4=∆iC1 , 因 此 ∆io=∆iC4-∆iC2=∆iC1-(∆iC1)=2∆iC1。 可见这个电流值是单端输出电流的两倍, 即等于 差分放大电路双端输出时的电流值。因此,用电流源作为差分 放大电路的有源负载,可将双端输出信号“无损失”地转换成 单端输出信号。
若电路中有共模信号输入,T3 管和T4 管的集电极电流相等 (忽略T7管的基极电流),T3管和T5管的集电极电流相等,又由于 R1=R3,因此T6管的集电极电流和T5管的集电极电流相等, 如此 推来,T6管和T4管的集电极电流相等,而T16管的基极电流为T4 管和T6管的集电极电流之差,所以T16管的基极电流近似为零, 可见共模信号输出为零,电路具有较高的抑制共模信号的能力。
2. 偏置电路 偏置电路由T8~T13、电阻R4和R5组成。其中T10、T11、 T12 和R4、R5构成主偏置电路,该电路中R5上的电流是F007偏置电 路的基准电流,由图可知
第四章集成运算放大电路
( R L // rce 2 // rce 4 )
rbe
若RL<<(rce1∥rce2), 则
Au
RL
rbe
返回
4.3 集成运放电路简介
图4.3.1 F007电路原理图
图4.3.2 F007电路中的放大电路部分
1. 输入级 在输入级中,T1 、T3 和T2 、T4 组成共集-共基差分放大电 路, T5~T7和电阻R1~R3构成改进型电流源电路,作为差放的有
号变化速度的适应能力,是衡量运放在大幅值信号作用时工作
速度的参数,单位为V/μs。在实际工作中,输入信号的变化律
一定不要大于集成运放的SR。信号幅值越大、频率越高,要求 集成运放的SR就越大。
理想运算放大器
理想运放的技术指标
在分析集成运放的各种应用电路时,常常将集成运放看成 是理想运算放大器。所谓理想运放, 就是将集成运放的各项技术
图4.2.2 比例电流源
图4.2.3 微电流源
二、 改进型的镜像电流源(获得稳定输出的电流)
1. 加射极输出器的电流源
2. 威尔逊电流源
三、 多路电流源电路
IR IE0 I C1 I E1 IC 2 IE2 IC3 IE3 Re0 R e1 Re0 Re2 Re0 Re3 IR
IR I c1 V CC U R
BE
2
IR IR
2. 比例电流源
IR V cc U
BE 0
3. 微电流源
Re0 R e1 IR
I C1 I E1 U BE 0 U BE 1 Re
IC1 UT Re 1n IR IC1
R Re0
, I c1
(完整版)第4章集成运算放大电路课后习题及答案(最新整理)
第4章 集成运算放大电路一 填空题1、集成运放内部电路通常包括四个基本组成部分,即、、和。
2、为提高输入电阻,减小零点漂移,通用集成运放的输入级大多采用_________________电路;为了减小输出电阻,输出级大多采用_________________ 电路。
3、在差分放大电路发射极接入长尾电阻或恒流三极管后,它的差模放大倍数ud A 将 ,而共模放大倍数将 ,共模抑制比将 。
uc A CMR K 4、差动放大电路的两个输入端的输入电压分别为和,则差模mV 8i1-=U mV 10i2=U 输入电压为 ,共模输入电压为 。
5、差分放大电路中,常常利用有源负载代替发射极电阻,从而可以提高差分放大电e R 路的 。
6、工作在线性区的理想运放,两个输入端的输入电流均为零,称为虚______;两个输入端的电位相等称为虚_________;若集成运放在反相输入情况下,同相端接地,反相端又称虚___________;即使理想运放器在非线性工作区,虚_____ 结论也是成立的。
7、共模抑制比K CMR 等于_________________之比,电路的K CMR 越大,表明电路__________越强。
答案:1、输入级、中间级、输出级、偏置电路;2、差分放大电路、互补对称电路;3、不变、减小、增大;4、-18mV, 1mV ;5、共模抑制比;6、断、短、地、断;7、差模电压放大倍数与共模电压放大倍数,抑制温漂的能力。
二 选择题1、集成运放电路采用直接耦合方式是因为_______。
A .可获得很大的放大倍数B .可使温漂小C .集成工艺难以制造大容量电容2、为增大电压放大倍数,集成运放中间级多采用_______。
A . 共射放大电路 B. 共集放大电路 C. 共基放大电路3、输入失调电压U IO 是_______。
A .两个输入端电压之差B .输入端都为零时的输出电压C .输出端为零时输入端的等效补偿电压。
电子教案-《模拟电子技术》(王连英)电子教案、习题解答-第04章080729 电子课件
第4章集成运算放大器本章基本内容、教学要点及能力培养目标本章简要地介绍了集成运算放大电路的组成、基本特性、主要参数及多级直接耦合放大电路的基本单元电路--差分放大电路。
通过本章的学习,要求能掌握差分放大电路的基本构成,能分析常用的几种基本差分放大单元电路;能讲述集成运算放大器的结构、组成,能分析集成运算放大器的基本特性和主要参数。
本章要讨论的问题●差分放大电路与其它基本放大电路有什么区别?为什么它能抑制零点漂移?●差分放大电路的基本构成及几种常用的基本单元电路?●集成运放由哪几部分组成?各部分的作用是什么?●集成运放的电压传输特性有什么特点?为什么?●集成运放有哪些主要技术指标?如何评价集成运放的性能?4.1 差分放大电路重点内容1、差分放大电路的组成及基本单元电路;2、差模信号、共模信号;3、带恒流源的改进型差分放大电路。
难点内容差分放大电路的分析、计算。
例题详解【案例分析4.1.1】在图4.1.1所示电路中,已知三极管β1=β2=50,r be≈2kΩ,R e=2kΩ,R c=10kΩ,R L=20kΩ。
试求:该电路的差模输入电阻、差模输出电阻和差模电压放大倍数。
分析、求解:本案例分析试图通过具体电路的分析计算,来说明差分放大电路差模输入电阻、差模输出电阻和差模电压放大倍数的求取。
由于整个差分放大电路双端输出时的差模放大倍图4.1.1基本差分放大电路数A vd 等于单管放大电路的电压放大倍数,故可通过单管,对称的一半电路(简称半边电路)的微变等效电路求出A vd 。
在差模输入时,两管集电极电流变化量大小相等、方向相反,负载R L 的中点电位是不随信号变化的零电位,即中点可等效看作交流地,于是有差模信号的交流通路,如图4.1.2(a )所示。
因为半边电路的负载为R L /2,于是有半边电路的差模交流小信号微变等效电路如图4.1.2(b )所示。
从图4.1.2(a )中可以看出,从电路的两个输入端看进去的等效电阻,即电路的差模输入电阻R id 为R id =2r be此处, R id ≈2×2k Ω=4k Ω从电路的两个输出端看进去的等效电阻,即电路的差模输出电阻R od 为R od =2R c此处, R od =2×10k Ω=20k Ω从图4.1.2(b )中可以看出双端输出时的差模电压放大倍数A vd 为be Lc Id1Od1vd1vd 2//ΔΔr R R βv v A A -=== 此处, 2210//1050vd ⨯-=A =-125【案例分析4.1.2】在图4.1.1所示电路中,若电路参数同案例分析4.1.1,且输入信号v I1=5.25V ,v I2=5V ,试求:该电路的差模输入信号,共模输入信号;双端输出和单端输出时的共模电压增益,共模输入电阻和共模输出电阻。
第四章差动与集成运算放大电路
其中R′L=Rc∥(1/2RL)。这里R′L≠Rc∥RL,其原因是由于两 管对称,集电极电位的变化等值反相, 而与两集电极相连的
RL的中点电位不变,这点相当于交流地电位。因而对每个单管 来说, 负载电阻(输出端对地间的电阻)应是RL的一半,即
RL/2,而不是RL。
差动放大器对共模信号无放大,对差模信号有放大,这意 味着差动放大器是针对两输入端的输入信号之差来进行放大的,
第4章 差动放大电路与集成运算放大器
如图4.1.1(b)所示。不过,若采用图4.1.1(b)所示电路, 后级的集电极电位逐级高于前级的集电极电位,经过几级耦合 之后, 末级的集电极电位便会接近电源电压,这实际上也是限 制了放大器的级数。
所谓零点漂移,就是当输入信号为零时,输出信号不为零, 而是一个随时间漂移不定的信号。零点漂移简称为零漂。产生 零漂的原因有很多,如温度变化、电源电压波动、晶体管参数 变化等。其中温度变化是主要的,因此零漂也称为温漂。 在阻 容耦合放大器中,由于电容有隔直作用,因而零漂不会造成严 重影响。但是,在直接耦合放大器中,由于前级的零漂会被后 级放大,因而将会严重干扰正常信号的放大和传输。比如,图 4.1.1所示直接耦合电路中,输入信号为零时(即ΔUi=0),输 出端应有固定不变的直流电压Uo = UCE2。
所示。
第4章 差动放大电路与集成运算放大器
第4章 差动放大电路与集成运算放大器
由图4.1.4(a)可以看出,当差动放大器输入共模信号时, 由于电路对称,其输出端的电位Uc1和Uc2的变化也是大小相等、 极性相同,因而输出电压Uoc保持为零。可见,在理想情况下 (电路完全对称),差动放大器在输入共模信号时不产生输出 电压,也就是说,理想差动放大器的共模电压放大倍数为零, 或者说,差动放大器对共模信号没有放大作用,而是有抑制作 用。实际上,上述差动放大器对零漂的抑制作用就是它抑制共 模信号的结果。因为当温度升高时,两个晶体管的电流都要增 大,这相当于在两个输入端加上了大小相等、 极性相同的共模 信号。换句话说,产生零漂的因素可以等效为输入端的共模信 号。显然,Ac越小,对零漂的抑制作用越强。
第四章 集成运算放大电路
(输出级偏臵的一部分;中间级的有源负载。)
34
§4-3.集成运放电路简介
F007简介 输入级
T1—T4:CC-CB差动放大
偏置电路
各部分的作用: 1.输入级:KCMR↑,Ri↑,IQ↓, 一般采用双端输入的差放电路。
5
§4-1.集成运算放大电路概述
三、集成运放的电压传输特性
集成运放符号: 电压传输特性:
uo f (uP uN )
同(反)相输入端是指运放的输入电 压与输出电压的相位关系。 可以认为集成运放是双端输入、单 端输出的差放电路。
10
集成运算放大器的符号和基本特点
3. 理想运放工作在线性区的两个特点 证:uo = Aud (u+ – u–) = Aud uid u+ – u– = uo/Aud 0 2) i+ i– 0 (虚断) 证: i+ = uid / Rid 0 同理 i – 0 1) u+ u–(虚短)
32
§4-3.集成运放电路简介
33
§4-3.集成运放电路简介
F007简介 偏臵电路 T12、R5、T11:主偏臵—R5中电流为基准电流
Im 2VCC U EB12 U BE11 0.73mA R5
T10、T11:微电流源
T8、T9:镜像电流源
T12、T13:镜像电流源
(输入级偏臵)
21
IR
Re2的作用:增大IE2,提高β。
§4-2.集成运放中的电流源电路
二、改进型电流源电路 2.威尔逊电流源 工作点稳定,输出电阻大。
I C2
2 (1 2 )IR IR 2 2
22
§4-2.集成运放中的电流源电路
第4章集成运算放大器习题解答
第4章集成运算放⼤器习题解答第四章习题参考答案4-1 什么叫“虚短”和“虚断”?答虚短:由于理想集成运放的开环电压放⼤倍数⽆穷⼤,使得两输⼊端之间的电压近似相等,即-+≈u u 。
虚断:由于理想集成运放的开环输⼊电阻⽆穷⼤,流⼊理想集成运放的两个输⼊端的电流近似等于零,即0≈=-+i i 。
4-2 理想运放⼯作在线性区和⾮线性区时各有什么特点?分析⽅法有何不同?答理想运放⼯作在线性区,通常输出与输⼊之间引⼊深度负反馈,输⼊电压与输出电压成线性关系,且这种线性关系只取决于外部电路的连接,⽽与运放本⾝的参数没有直接关系。
此时,利⽤运放“虚短”和“虚断”的特点分析电路。
理想运放⼯作在⾮线性去(饱和区),放⼤器通常处于开环状态,两个输⼊端之间只要有很⼩的差值电压,输出电压就接近正、负电压饱和值,此时,运放仍具有“虚断”的特点。
4-3 要使运算放⼤器⼯作在线性区,为什么通常要引⼊负反馈?答由于理想运放开环电压放⼤倍数∞=uo A ,只有引⼊深度负反馈,才能使闭环电压放⼤倍数FA 1u =,保证输出电压与输⼊电压成线性关系,即运放⼯作在线性区。
4-4 已知F007运算放⼤器的开环放⼤倍数dB A uo 100=,差模输⼊电阻Ω=M r id 2,最⼤输出电压V U sat o 12)(±=。
为了保证⼯作在线性区,试求:(1)+u 和-u 的最⼤允许值;(2)输⼊端电流的最⼤允许值。
解(1)由运放的传输特性5o uo 1012===++u u u A 则V 102.1101245--+?===u u(2)输⼊端电流的最⼤允许值为A 106102102.11164id --+?=??==r u I 4-5 图4-29所⽰电路,设集成运放为理想元件。
试计算电路的输出电压o u 和平衡电阻R 的值。
解由图根据“虚地”特点可得0==+-u u图中各电流为601.01--=u i 305.02---=u i 180o f u u i -=- 由“虚断”得f 21i i i =+以上⼏式联⽴,可得V 7.2o =u平衡电阻为Ω==k R 18180//60//30图4-29 题4-5图4-6 图4-30所⽰是⼀个电压放⼤倍数连续可调的电路,试问电压放⼤倍数uf A 的可调范围是多少?图4-30 题4-6图解设滑线变阻器P R 被分为x R 和x P R R -上下两部分。
第四章 集成运算放大器各种运用
的R1对应于当具用有R1内+R阻s代Rs替的,信为号了源不,使上电面压公增式益中 受Rs的太大影响,R1应该取大一些。但为了 保运证 放输 的入 内电 阻流,远对大于于通偏用置型电运流放,,RR11应 不宜远小超于过 数十千欧,反馈电阻RF越大则电压增益越大, 但要求反馈电流也应远大于偏置电流,所以 RF也不能取得过大,通常不宜超过兆欧。因 此,当Rs达到数千欧时,这个电路难以获得 高增益。另外,反相放大器是并联负反馈电
集成运放的基本组成
右图是运算放大器
的电路符号。它有两个 输入端和一个输出端。 反相输入端标“-”号, 同相输入端标“+”号。 输出电压与反相输入电 压相位相反,与同相输 入电压相位相同。此外 还有两个端分别接正、 负电源,有些集成运放 还有调零端和相位补偿 端。在电路中不画出。
二. 集成运算放大器的使用
由于集成运放具有性能稳定、可靠性高、寿命 长、体积小、重量轻、耗电量少等优点得到了广泛 应用。可完成放大、振荡、调制、解调及模拟信号 的各种运算和脉冲信号的产生等。
本章将介绍集成运放的基本知识、基本电路及 其主要应用。
主要内容
第一节 运算放大器的基本知识 第二节 运算放大器的基本电路 第三节 运算放大器的应用
因Ii=0,故i1≈if,因此 又因u+≈u-,因此
uo与ui之间的比例 关系也与运放本身
的参数无关,电路
精度和稳定度都很 高。KF为正表示uo 与ui同相,并且KF 总是大于或等于1, 这一点与反相放大 器不同。
当RF=0时KF=1,电路就变成电压 跟随器。
同相放大器实际上是一个电压串 联负反馈放大器,因此其输入阻抗高、 输出阻抗低,而且增益不受信号源内 阻的影响。该电路的不足是其共模抑 制比CMRR不太大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章集成运算放大器
模拟电子技术基础
一、基本差动放大器
各级静态工作点之间互相影响、互相牵制
零点漂移问题
输入端短接(
u I =0),其输出端电压有忽大忽小缓慢地、无规则地变化的输出电压.
这种现象就称为零点漂移。
产生零点漂移的因素:温度变化、任何元器件参数的变化,
电源的波动。
在多级直接耦合放大电路中,又以第一级漂移的影响最为严重。
抑制零点漂移的具体措施:
(1)选用温漂小的元器件;
(2)电路元件在安装前要经过认真筛选和“老化”处理,以确保质量和参数的稳定性。
(3)为了减小电源电压波动引起的漂移,要采用稳定度高的稳压电源。
(4)采用温度补偿电路。
(5)采用调制型直流放大器。
(6)采用差动放大电路。
双端输出双端输入
基本差动电路利用电路的对称性,具有抑制零点漂移的能力。
温度T
ΔUo=( Uc 1-Uc 2)不变
(U BE β)
射极耦合差动放大电路温度T
(U
BE β)
I C1I C2
I E
U BE U BE
ΔUo=( Uc
1
-Uc2)不变
长尾
在差动电路中,这种左右两边输入端所获得的对地大小相等,极性相反的信号电压就称为差模信号
差模信号
调零电位器
R E 的存在并不影响对差
模信号的放大
ΔU O =ΔU O1-ΔU O2=ΔU C1-ΔU C2
减小
增大
V EE =I BQ R B+U BEQ+2I EQ R E 可得Q点为(忽略I
BQ
时)⎪
⎪
⎪
⎩
⎪⎪
⎪
⎨
⎧
+
-
≈
+
=
≈
-
≈
BEQ
C
CQ
CC
CEQ
EQ
BQ
CQ
E
BEQ
EE
EQ
U
R
I
V
U
I
I
I
R
U
V
I
)
1(
2
β
电路的差模电压放大倍数A uD
uD1
U U U U U U U U uD A A I1
O1I2
I1O2O1ID
O ==
=
=
∆∆∆-∆∆-∆∆∆2
2R B >>RP 时
当在两个集电极之间接有负载电阻R 时:
be B L uD R R R A +-='β差模输入电阻:R iD ≈2(R B +R be ) 差模输出电阻:R O =2R C
2
L C L R R R //='差模地端
两个大小相等,极性相同的信号称为共模输入信号。
共模信号是反映温漂干扰或噪声等无用的信号。
如果电路完全对称,则在共模信号作用下,两管电流同时等量增大,结果输出电压ΔU O C =0
若电路完全对称,则A uC =0, K CMR →∞共模信号
K CMR =A uD /A uC
模拟电子技术基础习题
双端输入、单端输出图差动放大电路
be
B C L R R R R uD A +=)//(β21
单端输入、双端输出差动放大电路
反相输出
单端输入、单端输出
be B C I1O1I O
R R R U U U U uD A +∆∆∆∆-===β21
同相输出
单端输入、单端输出
be B c I2O I O
R R R U U U U uD A +∆∆∆∆===β21
具有恒流源的差动放大电路
a)电路b)用恒流源表示V
3的电路
I C3的恒流特性,大大提高了抑制零漂的效果。
集成运放组成框图
+电源端
-电源端集成运放的符号和管脚图
a) 图形符号b) μA741的管脚图
μA741内部电路
LN324
2、集成运放的特点
3、集成运放的分类( 器件手册P 69 )
4、集成运放的电压传输特性和参数1 )电压传输特性
理想运算放大器的条件主要是:
♦开环差模电压放大倍数A uD→∞;♦开环输入电阻R iD→∞;
♦开环输出电阻R o→0;
♦共模抑制比K C M R→∞。
理想运放的图形符号
a)旧国标b)新国标反相输入端同相输入端
输出端
非线性区
U O受正、负电源电压限制
线性区
U O=A uD(U P-U N)
运放的传输特性
2)主要参数( 器件手册P76 ) LM324典型值理想值♦开环差模放大电压倍数A uD 100dB ∞♦输入失调电压U IO2mV 0♦输入失调电流I IO5nA 0♦输入偏置电流I IB45nA 0♦输入失调电压温度漂移d U I/dt 几μV/℃ 0♦开环差模输入电阻R iD1MΩ∞♦最大差模输入电压UIDM 32V
♦最大共模输入电压UICM Vcc-1.5V
♦-3db带宽f h和单位增益带宽f c
♦最大输出电压UOPP Vcc-1.5V
♦转换速率S R 几V/μS ∞
模拟电子技术基础习题。