纳滤反渗透膜分离

合集下载

反渗透和纳滤的的工艺过程设计ppt

反渗透和纳滤的的工艺过程设计ppt
截留的有机物和多价离子在浓水侧累积,需定期排放 或回收。
纳滤的设备选型
根据处理水量、水质和处理要求选择合适的纳滤膜型 号和规格。
选择合适的纳滤高压泵,满足系统压力和流量需求, 并确保泵的稳定性和可靠性。
选择高品质的纳滤膜组件,确保膜通量和分离效率高 、抗污染能力强。
考虑设备占地面积和安装方便性,选择合适的设备结 构和材质,以满足工艺流程设计要求。
纳滤膜具有高孔隙率和高透水性,且耐酸、碱、有机溶剂 ,对盐的分离效果较好,纳滤膜分离过程中无二次污染。
纳滤的工艺流程设计
原水进入纳滤系统前需进行预处理,去除悬浮物、硬 度、有机物等杂质,保护纳滤膜不受污染。
透过水透过纳滤膜进入产水罐,可直接使用或排放。
预处理后的原水进入纳滤高压泵,通过压力差推动水 分子透过纳滤膜,截留有机物和多价离子。
工业废水处理
针对工业废水中的不同污染物和有害物质,反渗透和纳 滤技术能够进行有效的分离和纯化,实现废水回收再利 用,降低工业废水对环境的污染。
海水淡化
面对全球水资源短缺的问题,海水淡化成为解决人类用 水需求的重要途径,反渗透和纳滤技术是海水淡化过程 中的关键技术之一。
反渗透和纳滤的发展趋势展望
拓展应用领域
反渗透和纳滤技术的应用领域不断拓展,未来将应用于更为广泛 的领域,如能源、化工、医药等。
绿色环保
在可持续发展成为全球共识的背景下,反渗透和纳滤技术的发展 将更加注重环保和节能,降低对环境的影响。
全球化发展
反渗透和纳滤技术将随着全球化的发展而不断推广和应用,促进全 球水资源的合理利用和保护。
THANKS
脱盐率高、产水品质高、运行压力高、膜 寿命长
纳滤优点
产水流量较高、浓水排放量小、需要高压 泵能量消耗较低

微滤、超滤、纳滤、反渗透的孔径

微滤、超滤、纳滤、反渗透的孔径

微滤、超滤、纳滤、反渗透的孔径微滤、超滤、纳滤、反渗透是四种常见的膜分离技术,主要是通过膜的不同孔径大小,对溶质进行筛选和分离。

这四种膜分离技术在工业生产和生活中都有广泛的应用,下面就来详细介绍一下它们的孔径特性。

微滤膜的孔径一般在0.1微米至10微米之间,主要用于固体颗粒和大分子的分离。

微滤膜的孔径较大,能够有效滤除悬浮物、细菌、藻类等颗粒物质,广泛应用于饮用水净化、药品制造、食品加工等领域。

微滤技术通常是物理分离,不需要加入化学药剂,操作简单、成本低廉。

超滤膜的孔径介于0.001微米至0.1微米之间,主要用于大分子的分离和浓缩。

超滤膜的孔径较小,能够滤除溶液中的胶体颗粒、蛋白质、高分子聚合物等物质。

超滤技术在饮料、乳制品、果汁等食品加工中得到了广泛应用,能够保留营养成分,提高产品质量。

纳滤膜的孔径在0.001微米至0.01微米之间,主要用于小分子的分离和浓缩。

纳滤膜的孔径更小,能够滤除颗粒物质和高分子聚合物,同时保留小分子溶质和溶剂。

纳滤技术在化工、制药、生物医药等领域有着重要的应用,能够实现对有机物、无机盐、离子等不同溶质的精确分离和浓缩。

反渗透膜的孔径在0.0001微米至0.001微米之间,主要用于水分离和纯化。

反渗透膜的孔径远小于微滤、超滤和纳滤膜,能够有效去除水中的溶解性固体、重金属离子、细菌、病毒等有害物质。

反渗透技术广泛应用于海水淡化、废水处理、饮用水净化等领域,可以获得高纯度的水。

综上所述,微滤、超滤、纳滤、反渗透膜的孔径大小不同,能够实现不同范围物质的分离和纯化。

它们在工业和生活中发挥着重要的作用,为我们提供了清洁健康的环境和优质的产品。

随着科技的不断进步,膜分离技术将会得到更广泛的应用和发展,为人类创造更美好的生活。

膜分离技术

膜分离技术

膜分离技术简介膜分离技术是一种通过膜进行物质分离和纯化的技术。

它广泛应用于制备纯化工业和生物制药中,其原理是利用特定的膜,通过选择性透过、排除或吸附的方式将混合物中的目标物质与其他组分分离开来。

膜分离技术具有高效、节能、环保等优点,因此在各个领域得到了广泛应用,并成为一个重要的物质分离技术。

原理膜分离技术的基本原理是利用膜的选择性透过性来实现分离。

根据分离机制的不同,膜分离技术可以分为几种不同的类型,包括微滤、超滤、纳滤、反渗透和气体分离等。

每种类型的膜分离技术都有其特定的分离机制和应用范围。

•微滤:微滤膜具有较大的孔径,一般用于分离固体颗粒和大分子物质,如悬浮固体和细菌等。

•超滤:超滤膜的孔径较小,可以分离分子量较大的物质,如蛋白质和胶体等。

•纳滤:纳滤膜的孔径更小,可以分离分子量更小的物质,如盐和有机物等。

•反渗透:反渗透膜是一种半透膜,其孔径非常小,可以有效地分离溶质和溶剂。

这种技术常被用于海水淡化和废水处理等领域。

•气体分离:气体分离膜是一种特殊的膜,可以分离不同气体的混合物。

这种技术在天然气加工和二氧化碳捕获等领域有广泛应用。

应用膜分离技术在许多领域都有广泛的应用。

以下是其中几个应用领域的简要介绍:生物制药在生物制药中,膜分离技术被广泛用于分离和纯化蛋白质、细胞因子和其他生物分子。

通过使用超滤和纳滤等技术,可以将目标蛋白质从细胞培养液中分离出来,并去除其他杂质。

这种技术不仅能够提高产品纯度,还可以减少后续步骤的处理量,提高生产效率。

医药膜分离技术在医药领域有着广泛的应用。

例如,在血液透析和血液净化中,通过使用半透膜将废物和多余的物质从血液中分离出来,达到治疗和净化的目的。

此外,膜分离技术还可以用于药物传递系统中,通过控制药物在膜上的透过性实现持续释放和控制释放。

环境工程膜分离技术在环境工程中的应用也非常广泛。

例如,在水处理中,可以使用反渗透膜将盐和有机物等溶质从海水或废水中分离出来,实现水的淡化和净化。

进口反渗透、纳滤的基础知识

进口反渗透、纳滤的基础知识

反渗透、纳滤基础知识1 分离膜与膜过程膜分离物质世界是由原子、分子和细胞等微观单元构成的,然而这些微小的物质单元总是杂居共生,热力学第二定律揭示了微观粒子都会倾向于无序的混合状态。

人们发明了过滤、蒸馏、萃取、电泳、层析和膜分离等分离技术来获取纯净的物质。

膜分离技术的基础是分离膜。

分离膜是具有选择性透过性能的薄膜,某些分子(或微粒)可以透过薄膜,而其它的则被阻隔。

这种分离总是要依赖于不同的分子(或微粒)之间的某种区别,最简单的区别是尺寸,三维空间之中,什么都有大小巨细,而膜有孔径。

当然分子(或微粒)还有其它的特性差别可以利用,比如荷电性(正、负电),亲合性(亲油、亲水),深解性,等等。

按照阻留微粒的尺寸大小,液体分离膜技术有反渗透(亚纳米级)、纳滤(纳米级)、超滤(10纳米级)和微滤(微米和亚微米级),另外还有气体分离、渗透蒸发、电渗析、液膜技术、膜萃取、膜催化、膜蒸馏等膜分离过程。

表-1 主要的膜分离过程气体分离气体、气体与蒸汽分离浓度差易透过气体不易透过气体薄膜复合膜薄膜复合膜由超薄皮层(活性分离层)和多孔基膜构成。

基膜一般是在多孔织物支撑体上浇筑的微孔聚砜膜(即0.2mm厚),超薄皮层是由聚酰胺和聚脲通过界面缩合反应技术形成的。

薄膜复合膜的优点与它们的化学性质有关,其最主要的特点是化学稳定性,在中等压力下操作就具有高水通量和盐截留率及抗生物侵蚀。

它们能在温度0-40℃及pH2-l2间连续操作。

像芳香聚酰胺一样,这些材料的抗氯及其他氧化性物质的性能差。

过滤图谱平膜结构图-1 非对称膜与复合膜结构比较美国海德能公司的RO/NF膜(CPA, ESPA, SWC, ESNA, LFC)均是复合膜。

CPA3的断面结构如图-2所示。

可以看出在支撑层上形成褶皱状的表面致密层。

原水以与皮层平行方向进入,通过加压使其透过密致分离层,产水从支撑层流出。

图-2 CPA3的断面结构表面致密层构造根据膜种类不同,制作平膜的表面致密层材质也有差异。

水处理膜技术(超滤、纳滤、反渗透)深度解析其优缺点

水处理膜技术(超滤、纳滤、反渗透)深度解析其优缺点

纳滤膜、反渗透膜、超滤膜对比纳滤膜:能截留纳米级(0.001微米)的物质。

纳滤膜的操作区间介于超滤和反渗透之间,其截留有机物的分子量约为200-800左右,截留溶解盐类的能力为20%-98%之间,对可溶性单价离子的去除率低于高价离子,纳滤一般用于去除地表水中的有机物和色素、地下水中的硬度及镭,且部分去除溶解盐,在食品和医药生产中有用物质的提取、浓缩。

纳滤膜的运行压力一般3.5-30bar。

反渗透膜:是最精细的一种膜分离产品,其能有效截留所有溶解盐份及分子量大于100的有机物,同时允许水分子通过。

反渗透膜广泛应用于海水及苦咸水淡化、锅炉补给水、工业纯水及电子级高纯水制备、饮用纯净水生产、废水处理和特种分离等过程。

超滤膜:能截留1-20nm之间的大分子物质和蛋白质。

超滤膜允许小分子物质和溶解性固体(无机盐)等通过,同时将截留下胶体、蛋白质、微生物和大分子有机物,超滤膜的运行压力一般1-5bar。

►►►超滤膜及纳滤和反渗透的区别超滤膜:超滤膜是一种加压膜分离技术,即在一定的压力下,使小分子溶质和溶剂穿过一定孔径的特制的薄膜,而使大分子溶质不能透过,留在膜的一边,从而使大分子物质得到了部分的纯化。

纳滤:纳滤,介于超滤与反渗透之间。

现在主要用作水厂或工业脱盐。

脱盐率达百分之90以上。

反渗透脱盐率达99%以上但若对水质要求不是特别高,利用纳滤可以节约很大的成本。

反渗透:反渗透,是利用压力表差为动力的膜分离过滤技术,目前已广泛运用于科研、医药、食品、饮料、海水淡化等领域。

用作太空水、纯净水、蒸馏水等制备;酒类制造及降度用水;医药、电子等行业用水的前期制备;化工工艺的浓缩、分离、提纯及配水制备;锅炉补给水除盐软水;海水、苦咸水淡化;造纸、电镀、印染等行业用水及废水处理。

反渗透膜与超滤膜的优劣对比反渗透膜的孔径只有超滤膜的1/100比例大小,因此反渗透水处理设备能够有效去除水质当中的重金属、农药、三氯甲烷等化学污染物,超滤净水器对此则是无能为力的。

微滤,钠滤,超滤,反渗透等四种膜分离技术的异同点

微滤,钠滤,超滤,反渗透等四种膜分离技术的异同点
比较说明微滤,钠滤,超滤,反渗透等四种膜分离技术的异同点
(1)微滤(MF):又称微孔过滤,它属于精密过滤,其基本原理是筛孔分离过程。微滤适用于细胞、细菌和微粒子的分离,在生物分离中,广泛用于菌体的分离和浓缩,目标物质的大小范围为0.01-10 μm,一般用于预处理;
也可作为一般料液的澄清、保安过滤、空气除菌。微孔滤膜的应用范围主要是从气相和液相中截留微粒、细菌以及其他污染物,以达到净化、分离、浓缩的目的。微滤(MF)微滤膜的材质分为有机和无机两大类,有机聚合物有醋酸纤维素、聚丙稀、聚碳酸酯、聚砜、聚酰胺等。无反渗透膜只能透过溶剂(通常是水)而截留离子物质或小分子物质的选择透过性,以膜两侧静压为推动力,而实现的对液体混合物分离的膜过程。反渗透的截留对象是所有的离子,仅让水透过膜,对NaCl的截留率在98%以上,出水为无离子水。反渗透法能够去除可溶性的金属盐、有机物、细菌、胶体粒子、发热物质,也即能截留所有的离子,在生产纯净水、软化水、无离子水、产品浓缩、废水处理方面。目前反渗透膜已经广泛应用于医药、电子、化工、食品、海水淡化等诸多行业。反渗透技术已成为现代工业中首选的水处理技术。
(2)超滤(UF)是介于微滤和纳滤之间的一种膜过程,膜孔径在0.001~0.1微米。超滤是一种能够将溶液进行净化、分离、浓缩的膜分离技术,超滤过程通常可以理解成与膜孔径大小相关的筛分过程。以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当水流过膜表面时,只允许水及比膜孔径小的小分子物质通过,达到溶液的净化、分离、浓缩的目的。通常截留分子量范围在1000~300000,故超滤膜能对大分子有机物(如蛋白质、细菌)、胶体、悬浮固体等进行分离,广泛应用于料液的澄清、大分子有机物的分离纯化。
(5)电渗析的特点时可以同时对电解质水溶液起淡化、浓缩、分离、提纯作用、可以用于蔗糖等非电解质的提纯,以除去其中的电解质、在原理上,电渗析器是一个带有隔膜的电解池,可以利用电极上的氧化还原效率高;

纳滤膜和反渗透膜孔径

纳滤膜和反渗透膜孔径

纳滤膜和反渗透膜孔径纳滤膜和反渗透膜是两种常用的膜分离技术,它们在水处理、生物医药、食品加工等领域被广泛应用。

本文将从孔径、工作原理和应用领域等方面介绍纳滤膜和反渗透膜的特点和应用。

一、纳滤膜孔径纳滤膜是一种具有特定孔径的薄膜,能够根据溶质的分子大小和电荷选择性地分离溶液中的物质。

纳滤膜的孔径通常在1纳米到100纳米之间,可以将溶液中的大分子、胶体和悬浮物截留在膜外,而让水和小分子通过。

纳滤膜的孔径大小对其分离性能有重要影响。

孔径越小,纳滤膜的截留能力越强,可以截留更小的溶质。

常见的纳滤膜孔径有超滤膜(孔径范围为1-100纳米)和微滤膜(孔径范围为0.1-10微米)等。

二、反渗透膜孔径反渗透膜是一种通过压力驱动使溶质逆向渗透的薄膜,其孔径通常在0.1纳米到1纳米之间。

反渗透膜具有高选择性,可以有效去除水中的溶解性离子、有机物、微生物等。

反渗透膜的孔径比纳滤膜更小,因此其分离效果更好。

在反渗透过程中,水分子可以通过膜孔径,而溶质则被截留在膜外。

这使得反渗透膜在海水淡化、饮用水处理、工业废水处理等方面具有广泛应用。

三、纳滤膜和反渗透膜的工作原理纳滤膜的分离机制主要包括筛分、拦截和吸附三种方式。

当液体通过纳滤膜时,溶质分子受到膜孔径的限制,分子尺寸较大的物质被截留在膜外,分子尺寸较小的物质则通过膜孔径进入滤液。

反渗透膜的分离机制主要是通过半透膜的渗透作用实现的。

当给予反渗透膜一定的压力时,溶液中的水分子会逆向通过膜孔径流向低浓度的一侧,而溶质则被截留在膜外,从而实现对溶质的分离。

四、纳滤膜和反渗透膜的应用领域纳滤膜和反渗透膜在水处理领域具有广泛的应用。

纳滤膜可以用于海水淡化、饮用水处理、工业废水处理等。

例如,海水淡化中使用反渗透膜可以将海水中的盐分和杂质去除,得到高纯净的淡水。

饮用水处理中的纳滤膜可以去除水中的微生物、胶体等有害物质。

工业废水处理中的纳滤膜可以回收和净化水资源。

纳滤膜和反渗透膜还在生物医药、食品加工等领域得到了广泛应用。

膜分离技术分类

膜分离技术分类

膜分离技术分类
膜分离技术是一种通过膜对物质进行分离的技术。

根据不同的分离机理和应用领域,膜分离技术可以分为微滤、超滤、纳滤和反渗透四大类。

微滤是一种利用孔径在0.1-10微米之间的微孔膜对悬浮物颗粒、胶体和细菌等进行过滤分离的技术。

微滤膜的孔径比较大,可以有效去除水中的悬浮物和浑浊物质,广泛应用于饮用水处理、污水处理、食品加工等领域。

超滤是一种利用孔径在0.001-0.1微米之间的超滤膜对胶体、大分子有机物、胶体颗粒等进行分离的技术。

超滤膜相对于微滤膜来说,孔径更小,可以有效去除水中的有机物质和胶体颗粒,广泛应用于饮用水净化、工业废水处理、蛋白质分离纯化等领域。

纳滤是一种利用孔径在1-100纳米之间的纳滤膜对溶质、小分子有机物、离子等进行选择性分离的技术。

纳滤膜孔径比超滤膜更小,可以有效去除水中的微量离子和有机物,广泛应用于海水淡化、废水处理、药物分离等领域。

反渗透是一种利用孔径在0.1-1纳米之间的反渗透膜对盐类、溶解物、微生物等进行高效分离的技术。

反渗透膜具有极小的孔径,可以有效去除水中的离子、微生物和有机物,广泛应用于海水淡化、饮用水净化、工业废水处理等领域。

总的来说,膜分离技术在水处理、废水处理、食品加工、药物制备等领域发挥着重要作用,为人类提供了高效、环保的分离工艺。

随着科技的不断进步和创新,膜分离技术将会在更多领域得到应用,为人类的生活带来更多便利和福祉。

常用的膜分离方法

常用的膜分离方法

常用的膜分离方法
常用的膜分离方法包括以下六种:
1. 微滤(Microfiltration,简称MF):微滤是一种以机械筛网为基础的膜分离技术,其孔径大小为0.1-10微米。

微滤适用于去除悬浮物、细菌、真菌、酵母等微生物,同时也可以用于分离和浓缩溶液中的大分子物质。

2. 超滤(Ultrafiltration,简称UF):超滤是一种以半透膜为基础的膜分离技术,其孔径大小为0.001-0.01微米。

超滤适用于分离和浓缩溶液中的小分子物质,如水、氨基酸、葡萄糖等。

3. 纳滤(Nanofiltration,简称NF):纳滤是一种以半透膜为基础的膜分离技术,其孔径大小为0.001-0.01微米。

纳滤适用于分离和浓缩溶液中的小分子物质,如水、氨基酸、葡萄糖等。

4. 反渗透(Reverse Osmosis,简称RO):反渗透是一种以高压为推动力的膜分离技术,其孔径大小为0.0001-0.001微米。

反渗透适用于分离和浓缩溶液中的小分子物质,如水、氨基酸、葡萄糖等。

5. 正渗透(Forward Osmosis,简称FO):正渗透是一种以渗透压差为推动力的膜分离技术,其半透膜具有高渗透性能。

正渗透适用于分离和浓缩溶液中的小分子物质,如水、
氨基酸、葡萄糖等。

6. 膜渗析(Permeation):膜渗析是一种以半透膜为基础的膜分离技术,其孔径大小为0.0001-0.001微米。

膜渗析适用于分离和浓缩溶液中的小分子物质,如水、氨基酸、葡萄糖等。

微滤超滤纳滤反渗透等膜分离技术介绍.

微滤超滤纳滤反渗透等膜分离技术介绍.

微滤超滤纳滤反渗透等膜分离技术一、微滤超滤纳滤反渗透等膜分离技术发展史微滤超滤纳滤反渗透等膜分离是在20世纪初出现,20世纪60年代后迅速崛起的一门分离新技术。

膜分离技术由于兼有分离、浓缩、纯化和精制的功能,又有高效、节能、环保、分子级过滤及过滤过程简单、易于控制等特征,因此,目前已广泛应用于食品、医药、生物、环保、化工、冶金、能源、石油、水处理、电子、仿生等领域,产生了巨大的经济效益和社会效益,已成为当今分离科学中最重要的手段之一。

膜可以是固相、液相、甚至是气相的。

用各种天然或人工材料制造出来的膜品种繁多,在物理、化学、生物性质上呈现出各种各样的特性。

大多数人会认为,膜离我们的生活非常遥远。

其实不然,膜分离技术非常贴近我们的日常生活。

如水、果汁、牛奶、保健品、中药、茶食品、饮料、调味品等我们随时可能接触到的,都会用到膜分离技术。

二、微滤超滤纳滤反渗透等膜分离原理膜分离过程是以选择性透过膜为分离介质,当膜两侧存在某种推动力(如压力差、浓度差、电位差、温度差等时,原料侧组分选择性地透过膜,以达到分离、提纯的目的。

不同的膜过程使用不同的膜,推动力也不同。

目前已经工业化应用的膜分离过程有微滤(MF、超滤(UF、反渗透(RO、渗析(D、电渗析(ED、气体分离(GS、渗透汽化(PV、乳化液膜(ELM等。

三、微滤超滤纳滤反渗透等分离技术反渗透、超滤、微滤、电渗析这四大过程在技术上已经相当成熟,已有大规模的工业应用,形成了相当规模的产业,有许多商品化的产品可供不同用途使用。

这里主要以反渗透膜和超滤膜为代表介绍一下。

3.1 反渗透膜(RO反渗透膜使用的材料,最初是醋酸纤维素(CA,1966年开发出聚酰胺膜,后来又开发出各种各样的合成复合膜。

CA 膜耐氯性强,但抗菌性较差。

合成复合膜具有较高的透水性和有机物截留性能,但对次氯酸等酸性物质抗性较弱。

这两种材料耐热性较差,最高温度约是60℃左右,这使其在食品加工领域的应用中受到限制。

纳滤膜和反渗透膜材质

纳滤膜和反渗透膜材质

纳滤膜和反渗透膜材质纳滤膜和反渗透膜是水处理领域常用的膜分离技术。

它们的材质决定了其应用范围和性能特点。

本文将介绍纳滤膜和反渗透膜的材质以及其在水处理中的应用。

一、纳滤膜材质纳滤膜的材质一般分为有机膜和无机膜两类。

有机膜主要包括聚醚砜(PES)、聚酮亚胺(PPI)、聚氨酯(PU)等。

无机膜主要包括陶瓷膜和金属膜。

1. 有机膜聚醚砜(PES)是一种常用的纳滤膜材料,具有良好的耐化学性和耐温性。

它能够有效去除溶解性盐类、有机物和胶体颗粒,广泛应用于饮用水净化、工业废水处理以及食品和药品生产中。

聚酮亚胺(PPI)是一种高分子材料,具有良好的耐温性和抗污染性能。

它可以有效去除微生物、大分子有机物和胶体颗粒,被广泛应用于生物医药、饮用水净化和海水淡化等领域。

聚氨酯(PU)是一种具有弹性的纳滤膜材料,具有较高的机械强度和耐化学性。

它在饮用水净化、食品加工和医药制造等方面有着广泛的应用。

2. 无机膜陶瓷膜是一种以陶瓷材料为基础制成的纳滤膜,具有良好的耐酸碱性和耐高温性能。

它可以有效去除微生物、胶体颗粒和重金属离子,被广泛应用于海水淡化、工业废水处理和环境保护等领域。

金属膜是一种以金属材料为基础制成的纳滤膜,具有良好的耐腐蚀性和高温耐受性。

它可以有效去除微生物、悬浮物和溶解性物质,被广泛应用于工业废水处理、海水淡化和电子行业等领域。

二、反渗透膜材质反渗透膜的材质多为聚醚砜(PES)、聚酯(PET)和聚丙烯(PP)等。

这些材料具有良好的耐化学性和耐高温性能,可以有效去除溶解性盐类、有机物和微生物。

聚醚砜(PES)是反渗透膜最常用的材质之一,具有良好的阻隔性能和耐腐蚀性。

它被广泛应用于海水淡化、饮用水净化和工业废水处理等领域。

聚酯(PET)是一种透明的聚合物材料,具有良好的机械强度和耐温性。

它在反渗透膜中被广泛使用,可以有效去除微生物、有机物和溶解性盐类。

聚丙烯(PP)是一种常用的工程塑料,具有良好的耐化学性和高温耐受性。

超滤纳滤反渗透膜分离实验报告

超滤纳滤反渗透膜分离实验报告

超滤纳滤反渗透膜分离实验报告超滤纳滤反渗透膜分离实验报告一、实验目的本实验旨在通过超滤、纳滤和反渗透膜分离技术,掌握不同类型膜的特点和应用,了解分离技术在工业生产中的应用。

二、实验原理1. 超滤膜:利用超滤膜孔径的大小选择性地过滤大分子物质,从而实现对水溶液中高分子物质的去除。

2. 纳滤膜:利用纳滤膜对溶液中的小分子物质进行筛选,从而实现对水溶液中小分子物质的去除。

3. 反渗透膜:利用反渗透膜对水溶液进行筛选,从而实现去除水中杂质和盐类等离子体。

三、实验步骤1. 实验前准备:准备好所需材料和设备,包括超滤、纳滤和反渗透膜等。

2. 超滤实验:将高分子物质加入到水溶液中,在超滤装置中进行过滤。

根据孔径大小选择合适的超滤膜,将水溶液通过超滤膜进行过滤,筛选出高分子物质。

3. 纳滤实验:将小分子物质加入到水溶液中,在纳滤装置中进行过滤。

根据孔径大小选择合适的纳滤膜,将水溶液通过纳滤膜进行过滤,筛选出小分子物质。

4. 反渗透实验:将含有盐类等离子体的水溶液加入到反渗透装置中进行过滤。

根据反渗透膜的特性,通过高压力使得水分子穿过反渗透膜而去除杂质和盐类等离子体。

四、实验结果1. 超滤实验结果:经过超滤后,高分子物质被成功地筛选出来。

2. 纳滤实验结果:经过纳滤后,小分子物质被成功地筛选出来。

3. 反渗透实验结果:经过反渗透后,含有盐类等离子体的水溶液被成功地去除了杂质和盐类等离子体。

五、实验结论本次实验通过超滤、纳滤和反渗透技术对不同类型的膜进行了分离,成功地筛选出了高分子物质、小分子物质和去除了水中的杂质和盐类等离子体。

这些技术在工业生产中具有广泛的应用前景,可以提高产品纯度和品质。

六、实验注意事项1. 实验过程中要注意安全,避免对人体造成伤害。

2. 实验前要检查设备是否正常,避免设备故障影响实验进程。

3. 实验过程中要严格按照实验步骤进行操作,避免误操作导致实验失败。

4. 实验后要及时清洗设备和材料,保持干净卫生。

反渗透膜,纳滤膜,超滤膜原理及应用解析

反渗透膜,纳滤膜,超滤膜原理及应用解析

反渗透膜,纳滤膜,超滤膜原理及应用反渗透过程:反渗透是利用反渗透膜选择性的只能通过溶剂(通常是水而截留离子物质的性质,以膜两侧静压差为推动力克服溶剂渗透压使溶剂通过反渗透膜而实现对液体混合物进行分离的膜过程。

反渗透同NF 、UF 一样均属于压力驱动型膜分离技术,其操作压差一般为15~105MPa ,截留组分为(110X10—10m 小分子物质。

除此之外还可以从液体混合物中去处全部悬浮物、溶解物和胶体,例如从水溶液中将水分离出来以达到分离、纯化等目的。

一.反渗透基本原理1随着超低压反渗透膜的开发已可在小于1MPa 压力下进行部分脱盐适用于水的软化和选择性分离。

2.分离机反渗透膜的选择透过性与组分在膜中的溶解、吸附和扩散有关因此除与膜孔的大小、结构有关外还与膜的化学、物理性质有密切关系即与组分和膜之间的相互作用密切相关。

由此可见,反渗透分离过程中化学因素(膜及其表面特性起主导作用。

3.反渗透的应用反渗透技术的大规模应用主要是苦咸水和海水淡化此外被大量用于纯水制备及生活用水处理以及难于用其他方法分离混合物。

反渗透工业应用包括(1海水脱盐;(2饮用水生产(3纯水生产。

二.纳滤基本原理纳滤技术是反渗透膜过程为适应工业软化水的需求及降低成本的经济性不断发展的新膜品种,以适应在较低操作压力下运行,进而实现降低成本演变发展而来的。

我国于二十世纪90年代初期开始研制纳滤膜.与国外相比,我国纳滤技术整体上只能说是刚刚开始膜的研制、组器技术和应用开发等都刚起步。

1.纳滤过程:纳滤(NF是介于反渗透很超滤之间的一种压力驱动型膜分离技术。

它具有两个特性:①对水中的分子量为数百的有机小分子成分具有分离性能;②对于不同价态的阴离子存在Donnan 效应。

物料的荷电性.离子价数荷浓度对膜的分离效应有很大影响。

(道(Donnan模型一道南(Donnan效应Donnan 模型以Donnan 平衡为基础用来描述荷电膜的脱盐过程一般纳滤膜多为荷电膜,所以该模型更多用来描述纳滤过程要用于饮用水和工业用水的纯化,废水净化处理,工艺流体中有价值成分的浓缩等方面,其操作压差为05~2OMPa(或0345~1035MPa 截留分子量界限为200~1000(或200~500 ,分子大小为1nm 的溶解组分的分离。

微滤、超滤、纳滤、反渗透的孔径

微滤、超滤、纳滤、反渗透的孔径

微滤、超滤、纳滤、反渗透的孔径微滤、超滤、纳滤、反渗透是常用于液体或气体分离与净化的膜分离技术。

这四种技术的主要区别在于对溶质的截留机制和孔径大小的不同。

下面我将详细介绍这四种技术的原理、应用和孔径范围。

微滤是一种通过物理过滤机制将液体中的大分子量溶质、浮游生物、微生物和悬浮颗粒物截留在膜表面上的分离技术。

通常,微滤膜的孔径大小范围从0.1微米到10微米之间。

微滤膜具有一定的通量,可以用于分离悬浮物、泥沙、大颗粒物、细菌和微生物等。

微滤广泛应用于饮用水处理、污水处理、食品加工、医药工业等领域。

超滤是一种通过物理过滤和一定程度的筛分作用将溶质和悬浮物截留在膜表面上的分离技术。

与微滤膜相比,超滤膜的孔径更小,一般在0.001微米到0.1微米之间。

超滤膜可以截留溶质中的大分子有机物、胶体物质、蛋白质、细菌和病毒等。

超滤广泛应用于饮用水净化、酿酒、乳制品工业、制药工业等领域,也有用于废水处理和脱盐等特殊领域。

纳滤是一种通过物理过滤和一定程度的电荷作用将溶质截留在膜表面上的分离技术。

纳滤膜的孔径范围较小,一般在0.001微米到0.01微米之间。

纳滤膜可以截留水溶液中的高分子有机物、溶解性无机盐、胶体颗粒和微生物等。

纳滤广泛应用于饮用水制备、海水淡化、废水回用和杂质去除等领域。

反渗透是一种通过物理过滤、渗透和浓缩作用将溶质截留在膜表面上的分离技术。

反渗透膜的孔径最小,一般在0.001微米以下。

反渗透膜可以截留溶质中的无机盐、重金属、挥发性有机物和微生物等,同时保留溶剂和溶质中的小分子物质。

反渗透广泛应用于海水淡化、饮用水制备、废水处理和工业分离等领域。

综上所述,微滤、超滤、纳滤和反渗透是四种常用的膜分离技术,它们分别通过物理过滤和截留机制将溶质和悬浮物从液体或气体中分离出来。

这四种技术的孔径范围分别为0.1微米到10微米、0.001微米到0.1微米、0.001微米到0.01微米和小于0.001微米。

它们在饮用水处理、废水处理、食品加工、酿酒、制药工业等领域都有广泛的应用。

纳滤的分离机理

纳滤的分离机理

纳滤(nanofiltration)是一种膜分离技术,具有介于超滤和反渗透之间的分离范围。

其分离机理主要涉及物质的大小排斥效应、电荷作用以及溶质与膜的亲疏水性等因素。

纳滤膜通常由多孔的聚合物材料构成,具有较小的孔径,可有效分离溶质和溶剂之间的物质传递。

纳滤过程中的分离机理主要包括以下几个方面:
1. 大小排斥效应:纳滤膜具有相对较小的孔径,可以选择性地阻止较大分子或颗粒通过,而允许较小分子通过。

这是纳滤的主要分离机制之一。

2. 电荷作用:纳滤膜表面通常带有电荷,可以通过电荷作用来排斥或吸引不同电荷的溶质。

带电的溶质分子会与带电的膜表面发生相互作用,因而产生分离效果。

3. 亲疏水性:纳滤膜表面通常具有一定的亲疏水性,能够选择性地吸附或阻止亲疏水性溶质的传递。

这种亲疏水性的差异会导致溶质在膜表面的吸附或浸润,从而实现分离效果。

总的来说,纳滤的分离机理是通过选择性地排斥较大分子、利用电荷作用和调控亲疏水性等多种因素,实现对不同大小、电荷和亲疏水性的溶质的分离与富集。

这使得纳滤广泛应用于水处理、食品加工、化学工艺等领域中的溶质分离和浓缩操作。

纳滤、超滤、反渗

纳滤、超滤、反渗

纳滤( NF,Nanofiltration)是一种介于反渗透和超滤之间的压力驱动膜分离过程,纳滤膜的孔径范围在几个纳米左右。

与其他压力驱动型膜分离过程相比,出现较晚。

它的出现可追溯到70年代末J.E. Cadotte的NS-3 0 0膜的研究,之后,纳滤发展得很快,膜组器于80年代中期商品化。

纳滤膜大多从反渗透膜衍化而来,如CA、CT A膜、芳族聚酰胺复合膜和磺化聚醚砜膜等。

但与反渗透相比,其操作压力更低,因此纳滤又被称作“低压反渗透”或“疏松反渗透”( Loose RO )。

纳滤-详情纳滤分离作为一项新型的膜分离技术,技术原理近似机械筛分。

但是纳滤膜本体带有电荷性。

这是它在很低压力下仍具有较高脱盐性能和截留分子量为数百的膜也可脱除无机盐的重要原因。

纳滤分离愈来愈广泛地应用于电子、食品和医药等行业,诸如超纯水制备、果汁高度浓缩、多肽和氨基酸分离、抗生素浓缩与纯化、乳清蛋白浓缩、纳滤膜-生化反应器耦合等实际分离过程中。

与超滤或反渗透相比,纳滤过程对单价离子和分子量低于200的有机物截留较差,而对二价或多价离子及分子量介于200~500之间的有机物有较高脱除率, 基于这一特性,纳滤过程主要应用于水的软化、净化以及相对分子质量在百级的物质的分离、分级和浓缩(如染料、抗生素、多肽、多醣等化工和生物工程产物的分级和浓缩)、脱色和去异味等。

主要用于饮用水中脱除Ca、Mg离子等硬度成分、三卤甲烷中间体、异味、色度、农药、合成洗涤剂,可溶性有机物,及蒸发残留物质。

随着对环境保护和资源综合利用认识的不断提高,人们希望在治理废水的同时实现有价物质的回收,比如:大豆乳清废液中含有1%左右的低聚糖和少量的盐,亚硫酸盐法制备化纤浆和造纸浆过程出现的亚硫酸钙废液中含有2%~2.5%的六碳糖和五碳糖,制糖工业中出现的废糖蜜中含有少量的盐等等。

超滤目录[隐藏]概述原理分类优点&缺点超滤膜超滤装置应用概述原理分类优点&缺点超滤膜超滤装置应用超滤膜组件[编辑本段]概述超滤是以压力为推动力的膜分离技术之一。

反渗透与纳滤

反渗透与纳滤
② 处理能力高,占地面积小,操作方便。
缺点:
① 不能处理含有悬浮物的液体,原水流程短,压力 损失大 ② 浓水难于循环以及密封长度大,清洗、维修不方 便,易堵塞。
(4)中空纤维式反渗透膜组件
特点: ①单位体积膜表面积大 ②制造和安装简单,不需要支撑物 缺点: ①不能用于处理含有悬浮物的废水 ②难以发现损坏的膜
• 应用范围 太空水、纯净水、蒸馏水等制备; 酒类制造及降度用水; 医药、电子等行业用水的前期制备; 化工工艺的浓缩、分离、提纯及配水制备; 锅炉补给水除盐软水; 海水、苦咸水淡化; 造纸、电镀、印染等行业用水及废水处理。
纳滤(NF)
是一种介于反渗透和超滤之间的新型膜分离技术,早 期称为“低压反渗透”或“疏松反渗透”。纳滤膜的截留 相对 分 子 质 量 200~2000之间 ,膜孔径约为 1nm,故称为 “纳滤”。
• 电荷效应(Donnan效应):离子与膜所带电荷的 静电相互作用。
①对不同价态离子截留效果不同,对二 价和高价离子的截留率明显高于单价离 子。 ②对离子的截留受离子半径的影响。 ③截留相对分子质量在200~1000之间, 适用于分子大小为1nm的溶解组分的分离。
其分离原理与反渗透分离原理一致
纳滤装置 与反渗透装置一样,纳滤膜组件有4种形式: ①卷式(最常见,主要用于脱盐及超纯水的制备) ②中空纤维式(水的软化) ③板框式(处理粘度较大的料液) ④管式(处理含悬浮物、高粘度的料液)
反渗透(RO)
一种以压力差为推动力,从溶液中分离出溶剂 的膜分离操作,与自然渗透的方向相反,故称反 渗透。
• 特点 常温条件下,可以对溶质和水进行分离或浓缩,
因而能耗低; 杂质去除范围广,可去除无渗透的原理
在浓水边加压,当压

水处理技术中的膜分离方法与材料选择指南

水处理技术中的膜分离方法与材料选择指南

水处理技术中的膜分离方法与材料选择指南膜分离方法是当前广泛应用于水处理技术中的一种有效方法。

通过选择合适的膜材料和优化操作条件,膜分离可以高效地去除水中的悬浮固体、溶解性有机物、离子等污染物,使水质得到有效提升。

本文将详细介绍水处理技术中的膜分离方法以及膜材料的选择指南。

一、膜分离方法的分类及原理膜分离方法可以分为微滤、超滤、纳滤和反渗透四种主要类型。

微滤膜孔径一般在0.1-10μm之间,主要用于去除水中的大颗粒悬浮物、胶体等;超滤膜孔径在0.001-0.1μm之间,可以有效去除水中的细菌、病毒、蛋白质等有机物;纳滤膜孔径在0.001-0.01μm之间,除去有机物外,还可以去除部分溶解性无机盐;反渗透膜孔径在0.0001-0.001μm之间,具有特别好的分离性能,可以去除几乎所有的溶解性离子和有机物。

膜分离的原理是基于薄膜的选择透过性原则,将水中的污染物通过压力或浓度差驱使向膜的一侧通过,从而实现水的净化。

在膜分离过程中,有两种常见方式:一种是压力驱动,应用压力差使得高浓度溶液通过较低浓度溶液,从而实现物质的分离;另一种则是浓度驱动,利用浓度差来驱使物质通过膜,常用于淡化处理等方面。

二、膜材料的选择指南在进行膜分离技术时,膜材料的选择对于水处理的效果至关重要。

以下是根据不同的污染物选择膜材料的一些指南:1. 适用于微滤的膜材料微滤主要用于去除悬浮物和胶体等大颗粒物质。

常用的微滤膜材料主要有聚丙烯、聚酯等。

聚丙烯膜具有良好的机械强度和抗污染性能,在水处理中广泛应用。

2. 适用于超滤的膜材料超滤主要用于去除有机物和微生物。

常用的超滤膜材料包括聚酰胺、聚砜等。

聚酰胺膜具有良好的分离效果和抗污染性能,在水处理中得到广泛应用。

3. 适用于纳滤的膜材料纳滤主要用于去除溶解性有机物和部分无机盐。

常用的纳滤膜材料有聚酯、聚氯丙烯等。

这些材料具有较高的去除率和抗溶剂性能,适合应用于饮用水处理、废水回收等领域。

4. 适用于反渗透的膜材料反渗透膜是目前最先进的膜分离技术之一,可以去除水中的几乎所有溶解性离子和有机物。

海水处理流程

海水处理流程

海水处理流程海水处理的流程可以分为几个步骤:预处理、膜分离、混凝沉淀、反渗透脱盐和消毒等。

下面将分别介绍这些步骤的具体流程。

预处理是指在海水处理开始之前对海水进行的简单初步处理。

预处理主要是为了去除海水中的大颗粒杂质,减少对后续的处理设备的损害。

预处理包括过滤、调节pH值、消毒等步骤。

首先,海水经过机械过滤器,去除大颗粒的杂质,例如海草、沙子等。

然后,通过添加化学药剂来调节海水的pH值,以消除对后续处理设备的腐蚀或结垢。

最后,对海水进行消毒处理,去除海水中的细菌和病原体。

膜分离是海水处理中最关键的一步,主要是通过膜技术将海水中的盐分和杂质去除。

膜分离包括微滤、超滤、纳滤和反渗透四种技术。

微滤是利用微孔膜来过滤海水中的大颗粒杂质,超滤是利用超滤膜来过滤更小的颗粒,纳滤则是利用纳滤膜来过滤分子级的颗粒。

而反渗透则是将海水通过高压驱动,将海水中的盐分和有机物质通过反渗透膜分离出去。

混凝沉淀是为了去除海水中的胶体和悬浮物,以减少对后续处理设备的影响。

在混凝沉淀过程中,通常会添加混凝剂和絮凝剂,使胶体和悬浮物凝聚成较大的颗粒,然后通过重力沉降分离出去。

反渗透脱盐是海水处理的关键步骤,也是最耗能的一步。

在反渗透脱盐过程中,海水通过高压泵施加高压,使海水通过反渗透膜,盐分和有机物质则被截留在膜外,纯净水则通过膜孔流出。

这样就实现了海水中盐分的去除,得到了淡水。

最后,为了确保水质符合饮用水标准,还需要对处理后的水进行消毒。

消毒通常采用氯、臭氧等消毒剂,杀死水中的细菌和病原体,确保水质安全。

除了上述步骤之外,海水处理还需要考虑能源消耗、废弃物处理等问题。

目前,随着技术的进步和科学的发展,海水处理技术已经越来越成熟,能够更高效地将海水处理成为可以使用的淡水资源。

总的来说,海水处理是一项非常重要的技术,可以为那些没有淡水资源的地方提供补充水源。

通过合理的处理流程,海水可以被处理成为可以使用的淡水资源,为社会和经济的发展提供支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳滤反渗透膜分离实验指导书
纳滤反渗透膜分离实验
一、实验目的
1.了解膜的结构和影响膜分离效果的因素,包括膜材质、压力和流量等。

2.了解膜分离的主要工艺参数,掌握膜组件性能的表征方法。

二、基本原理
2.1膜分离简介
膜分离是以对组分具有选择性透过功能的膜为分离介质,通过在膜两侧施加(或存在)一种或多种推动力,使原料中的某组分选择性地优先透过膜,从而达到混合物的分离,并实现产物的提取、浓缩、纯化等目的的一种新型分离过程。

其推动力可以为压力差(也称跨膜压差)、浓度差、电位差、温度差等。

膜分离过程有多种,不同的过程所采用的膜及施加的推动力不同,通常称进料液流侧为膜上游、透过液流侧为膜下游。

微滤(MF)、超滤(UF)、纳滤(NF)与反渗透(RO)都是以压力差为推动力的膜分离过程,当膜两侧施加一定的压差时,可使一部分溶剂及小于膜孔径的组分透过膜,而微粒、大分子、盐等被膜截留下来,从而达到分离的目的。

四个过程的主要区别在于被分离物粒子或分子的大小和所采用膜的结构与性能。

微滤膜的孔径范围为0.05~10μm,所施加的压力差为0.015~0.2MPa;超滤分离的组分是大分子或直径不大于0.1μm 的微粒,其压差范围约为0.1~0.5MPa;反渗透常被用于截留溶液中的盐或其他小分子物质,所施加的压差与溶液中溶质的相对分子质量及浓度有关,通常的压差在2MPa左右,也有高达10MPa的;介于反渗透与超滤之间的为纳滤过程,膜的脱盐率及操作压力通常比反渗透低,一般用于分离溶液中相对分子质量为几百至几千的物质。

2.2纳滤和反渗透机理
对于纳滤,筛分理论被广泛用来分析其分离机理。

该理论认为,膜表面具有无数个微孔,这些实际存在的不同孔径的孔眼像筛子一样,截留住分子直径大于孔径的溶质和颗粒,从而达到分离的目的。

应当指出的是,在有些情况下,孔径大小是物料分离的决定因数;但对另一些情况,膜材料表面的化学特性却起到了决定性的截留作用。

如有些膜的孔径既比溶剂分子大,又比溶质分子大,本不应具有截留功能,但令人意外的是,它却仍具有明显的分离效果。

由此可见,膜的孔径大小和膜表面的化学
性质将分别起着不同的截留作用。

反渗透是一种依靠外界压力使溶剂从高浓度侧向低浓度侧渗透的膜分离过程,其基本机理为Sourirajan 在Gibbs 吸附方程基础上提出的优先吸附-毛细孔流动机理,而后又按此机理发展为定量的表面力-孔流动模型(详见教材)。

2.3膜性能的表征
一般而言,膜组件的性能可用截留率(R )、透过液通量(J )和溶质浓缩倍数(N )来表示。

100R =
⨯0P 0c -c %c (1—1)
式中, R -截流率; 0c -原料液的浓度,kmol/m 3;
P c -透过液的浓度,kmol/m 3。

对于不同溶质成分,在膜的正常工作压力和工作温度下,截留率不尽相同,因此这也是工业上选择膜组件的基本参数之一。

()2P V S t J L m h =
⋅⋅ (1—2)
式中, J -透过液通量,L/(m 2⋅h) P V -透过液的体积,L ;
S -膜面积,m 2;
t -分离时间,h 。

其中,t V Q p
=,即透过液的体积流量,在把透过液作为产品侧的某些膜分离过程中(如污水净
化、海水淡化等),该值用来表征膜组件的工作能力。

一般膜组件出厂,均有纯水通量这个参数,即用日常自来水(显然钙离子、镁离子等成为溶质成分)通过膜组件而得出的透过液通量。

P
R c c N =
(1—3) 式中, N —溶质浓缩倍数; R c -浓缩液的浓度,kmol/m 3;
P c -透过液的浓度,kmol/m 3。

该值比较了浓缩液和透过液的分离程度,在某些以获取浓缩液为产品的膜分离过程中(如大分子提纯、生物酶浓缩等),是重要的表征参数。

三、实验装置与流程
本实验装置均为科研用膜,透过液通量和最大工作压力均低于工业现场实际使用情况,实验中不可将膜组件在超压状态下工作。

主要工艺参数如表1-1
表1-1膜分离装置主要工艺参数
反渗透可分离分子量为100级别的离子,学生实验常取0.5%浓度的硫酸钠水溶液为料液,浓度分析采用电导率仪,即分别取各样品测取电导率值,然后比较相对数值即可(也可根据实验前做得的浓度-电导率值标准曲线获取浓度值)。

图1-1膜分离流程示意图
1-料液灌;2-低压泵;3-高压泵;4-预过滤器;5-预过滤液灌;6-配液灌;7-清液灌;
8-浓液灌;9-清液流量计;10-浓液流量计;11-膜组件;12-压力表;13-排水阀
四、实验步骤和注意事项
1.实验步骤
(1)用清水清洗管路,通电检测高低压泵,温度、压力仪表是否正常工作。

(2)在配料槽中配置实验所需料液,打开低压泵,料液经预过滤器进入预过滤液槽。

(3)低压预过滤5-10min后,开启高压泵,分别将清液、浓液转子流量计打到一定的开度,实验过程中可分别取样。

(4)若采用大流量物料(与实验量产有关),可在底部料槽中配好相应浓度料液。

(5)实验结束,可在配料槽中配置消毒液(常用1%甲醛,根据物料特性)打入各膜芯中。

(6)对于不同膜分离过程实验,可采用安装不同膜组件实现。

2.注意事项
(1)每个单元分离过程前,均应用清水彻底清洗该段回路,方可进行料液实验。

清水清洗管路可仍旧按实验单元回路,对于微滤组件则可拆开膜外壳,直接清洗滤芯,对于另一个膜组
件则不可打开,否则膜组件和管路重新连接后可能造成漏水情况发生。

(2)整个单元操作结束后,先用清水洗完管路,之后在储槽中配置0.5-1%浓度的甲醛溶液,用水泵逐个将保护液打入各膜组件中,使膜组件浸泡在保护液中。

以反渗透膜加保护液为例,说明该步操作如下:
打开高压泵,控制保护液进入膜组件压力也在膜正常工作下;调节清液流量计开度,可观察到保护液通过清液排空软管溢流回保护液储槽中;调节浓液流量计开度,可观察到保护液通过浓液排空软管溢流回保护液储槽中;则说明反渗透膜浸泡在保护液中;。

(3)对于长期使用的膜组件,其吸附杂质较多,或者浓差极化明显,则膜分离性能显著下降。

对于预过滤和微滤组件,采取更换新内芯的手段;对于超滤、纳滤和反渗透组件,一般先采
取反清洗手段,即将低浓度的料液溶液逆向进入膜组件,同时关闭浓液出口阀,使料液反向
通过膜内芯而从物料进口侧出液,在这个过程中,料液可溶解部分溶质而减少膜的吸附。


反清洗后膜组件仍无法回复分离性能(如基本的截留率显著下降),则表面膜组件使用寿命已
到尽头,需更换新内芯。

附:膜组件工作性能与维护要求
本装置中的所有膜组件均为科研用膜(工业上膜组件的使用寿命因分离物系不同而受影响),为使其能较长时间的保持正常分离性能,请注意其正常工作压力、工作温度,并选取合适浓度的物料,并作好保养工作。

(1)系统要求
最高工作温度:50℃
正常工作温度:5-45℃
正常工作压力:反渗透进口压力 0.6MPa
最大工作压力:反渗透进口压力 0.7MPa
(2)膜组件性能
预滤组件:
滤芯材料为聚丙稀混纤,孔径5μm
纳滤组件:
膜材料:芳香聚纤胺
膜组件形式:卷式
有效膜面积:0.4 m2
纯水通量(0.6MPa,25℃):6-8 L/h
脱盐率:Na2SO4, >50%
原料液溶质浓度: <2%
反渗透组件:
膜材料:芳香聚纤胺
膜组件形式:卷式
有效膜面积:0.4 m2
纯水通量(0.6MPa,25℃):2.5-25 L/h
脱盐率:Na2SO4, >95%
原料液溶质浓度: <1%
(3)维修与保养
a.实验前请仔细阅读“实验指导书”和系统流程,特别要注意各种膜组件的正常工作压力与温度。

b.新装置首次使用前,先用清水进料10-20分钟,洗去膜组件内的保护剂(为一些表面活性剂
或高分子物质,对膜组件孔径定型用)。

c.实验原料液必须经过5μm微孔膜预过滤(即本实验装置中的预过滤器),防止硬颗粒混入而划
破膜组件。

d.使用不同料液实验时,必须对膜组件及相关管路进行彻底清洗。

e.暂时不使用时,须保持膜组件湿润状态(因为膜组件干燥后,又失去了定型的保护剂,孔径可
能发生变化,从而影响分离性能),可通过膜组件进出口阀门,将一定量清水或消毒液封在膜组件内。

f.较长时间不用时,要防止系统生菌,可以加入少量防腐剂,例如甲醛、双氧水等(浓度均不高
于0.5%)。

在下次使用前,则必须将这些保护液冲洗干净,才能进行料液实验。

相关文档
最新文档