(数学分析教案)第八章

合集下载

第八章 反常积分

第八章 反常积分

∫ ∫ b
t =1/(b− x) +∞
1) 设函数 f (x) 连续, b 为奇点, 有 f (x)dx =
f (b − 1) dt .
a
1 /( b − a )
t t2
∫ ∫ 2) 设 a > 0 , 有
+∞
t =1/ x
f (x)dx =
1/ a f (1) dt 把无穷区间反常积分化成了无界函数的反常积分.
定义 1 假设函数 f (x) 定义在无限区间 [a,+∞) 上并且在任意有限区间 [a,b] ⊂ [a,+∞) 上可积. 如果极限
b
+∞
b
∫ ∫ ∫ lim f (x)dx = I 存在, 则称 I 为函数 f (x) 在 [a,+∞) 上的反常积分,记作 f (x)dx = lim f (x)dx. 同时,
b
∫ ∫ ∫ 显然, 无界函数的反常积分 f (x)dx 收敛的充分必要条件是无界函数的反常积分 f (x)dx 和 f (x)dx 同
a
a
c
时收敛.
∫ 例 3 计算无界函数的反常积分
1
1/
1 − x 2 dx .
−1
∫ ∫ ∫ ∫ ∫ 1

1
0
dx =
1
1
dx +
1
0
dx = lim
1
1− β
dx + lim
h
桶里水面降低的高度为 ∆x ,则有下面关系:π R2∆x = vπ r2∆t ,由此得
∆t =
R2
∆x , x ∈[0, h]
r2 2g(h − x)
1
《数学分析》教案 ---- 反常积分

中山大学数学分析教案

中山大学数学分析教案

中山大学数学分析教案第一章:函数与极限1.1 函数的概念与性质定义函数的概念讨论函数的性质,如单调性、奇偶性、周期性等。

1.2 极限的概念与性质引入极限的概念,讨论极限的存在性与不存在的条件。

探讨极限的性质,如保号性、保不等式性等。

1.3 极限的计算方法介绍常见极限的计算方法,如直接计算、有理化、代数法、三角法等。

1.4 无穷小与无穷大定义无穷小的概念,讨论无穷小的性质与比较。

引入无穷大的概念,讨论无穷大的性质与比较。

第二章:微分学2.1 导数的概念与性质引入导数的定义,讨论导数的性质,如导数的单调性、连续性等。

2.2 导数的计算方法介绍常见函数的导数计算方法,如幂函数、指数函数、对数函数等。

探讨高阶导数的计算方法。

2.3 微分学的基本定理介绍微分学的基本定理,如费马定理、链式法则、乘积法则等。

2.4 微分学的应用探讨微分学在实际问题中的应用,如最优化问题、曲线的切线与法线等。

第三章:积分学3.1 不定积分的基本概念与性质引入不定积分的概念,讨论不定积分的性质,如线性性质、保号性等。

3.2 不定积分的计算方法介绍常见的不定积分计算方法,如基本积分表、换元积分、分部积分等。

3.3 定积分的基本概念与性质引入定积分的概念,讨论定积分的性质,如可积性、保号性等。

3.4 定积分的计算方法介绍常见的定积分计算方法,如牛顿-莱布尼茨公式、换元积分、分部积分等。

第四章:级数4.1 级数的基本概念与性质引入级数的概念,讨论级数收敛与发散的条件。

4.2 幂级数的基本概念与性质介绍幂级数的概念,讨论幂级数的收敛半径与收敛区间。

4.3 幂级数的展开与应用探讨幂级数的泰勒展开与麦克劳林展开,讨论级数展开的实际应用。

4.4 傅里叶级数的基本概念与性质引入傅里叶级数的概念,讨论傅里叶级数的收敛条件与应用。

第五章:常微分方程5.1 微分方程的基本概念与性质引入微分方程的概念,讨论微分方程的解的存在性与唯一性。

5.2 常微分方程的解法介绍常见的常微分方程解法,如分离变量法、积分因子法、变量替换法等。

经济学中的数学分析方法——8_不完全竞争市场——垄断

经济学中的数学分析方法——8_不完全竞争市场——垄断

max p( y) ⋅ y − c ⋅ y y
(8.5)
PDF 文件使用 "pdfFactory Pro" 试用版本创建
一阶必要条件: p( y) + p'( y) ⋅ y − c = 0
Q dp = dp dy , dy < 0 , dp < 0 , ∴ dp > 0 。
c = c( y) ,市场的需求函数 x = D( p) ,该厂商的生产量都能销售出去,即 y = x = D( p) ,
则他的最优行为还是追求利润极大化,即
max p ⋅ y − c( y)
s.t.
y = D( p)
(8.1)
其中,约束条件是需求函数,反映他的生产和销售受市场需求曲线的制约。将约束条件解出
厂商的收益为 R=p ⋅ y ,其中 y 为产出品, p 为产出品的价格;成本函数为 C=r ⋅ x ,
则厂商的最大化利润:
max π=p ⋅ y( x) − g( x)⋅ x
(8.19)
一阶必要条件:
dπ=p ⋅ y′( x) − ( g( x)+g′( x)⋅ x)=0 g′( x)>0 dx

图 8.2
PDF 文件使用 "pdfFactory Pro" 试用版本创建
当逆时针转动时,消费者剩余会减少;当顺时针转动时,消费者剩余会增加。
∂2 p > 0 ⇒ ∂W < 0 (Q ∂(CS ) < 0, ∂π=0)
∂x∂q
∂q
∂q
∂q
∂2 p < 0 ⇒ ∂W > 0 (Q ∂(CS ) > 0, ∂π=0)
∂x
∂x

《数学分析》第八章_不定积分

《数学分析》第八章_不定积分

则有换元公式
f(x)dx
f[(t)] (t)dt t(x)
其 中 (x)是 x(t)的 反 函 数 .
证 设 (t)为f[(t) ](t)的原函数,
1six n1si5n xC. 2 10
.
例13 求cscxdx.
解(一)
cscxdx
1 dx sinx
1 2sinxcosx
dx
22
1 tan2xcos2x2
d
2x
1 tanx
2
d
tanx 2
lntanxC lnx (c c x o )s C t c . 2
(使用了三角函数恒等变形)
.
说明 当被积函数是三角函数相乘时,拆开奇 次项去凑微分.
.
例12 求co3sxco2sxd.x
解 cA o cs B o 1 s [cA o B )s c (o A B s)(], 2
co 3xc so 2x s1(cxo cso 5x )s, 2
c3 o x cs2 o xs d 1 2 x (cx o cs 5 o x )d sx
§2 换元积分法和分部积分法
.
一、第一类换元法
问题 cos2xdxsi2n xC ,
解决方法 利用复合函数,设置中间变量.
过程 令 t2xdx 1dt, 2
cos2xdx
12costdt
1sint 2
C1sin2xC. 2
.
在一般情况下:
设 F (u)f(u),则 f(u )d u F (u )C .
.
例3

1 dx. x(12lnx)
解 x(112lnx)dx121lnxd(lnx)
1 212 1ln xd(12ln x)

数学分析 不定积分概念与基本积分公式

数学分析       不定积分概念与基本积分公式
1

xdx x1 C . 1
( 1)
启示 能否根据求导公式得出积分公式?
结论 既然积分运算和微分运算是互逆的, 因此可以根据求导公式得出积分公式.
基 (1) kdx kx C (k是常数);


(2)
xdx x1 C ( 1); 1
分 表
(3)

dx x

说明:
ln x x 0,
C;

dx x

ln
x

C
,
x 0, [ln( x)] 1 ( x) 1 ,
x
x


dx x

ln(

x
)

C
,


dx x

ln
|
x
|
C
,
简写为

dx x

ln
x

C.
(4)

1
1 x
2
dx

arctan
x

C;
(11) csc x cot xdx csc x C;
(12) e xdx e x C;
(13)

a
xdx

ax ln a

C;
(14) sinh xdx cosh x C;
(15) cosh xdx sinh x C;
例 求积分 x2 xdx.
(5)

1 dx arcsin x C; 1 x2
(6) cos xdx sin x C;
(7) sin xdx cos x C;

《数学分析1》知识点总结:第八章-不定积分

《数学分析1》知识点总结:第八章-不定积分

第八章不定积分一、不定积分概念与基本积分公式1.原函数与不定积分①定义1:设函数f 与F 在区间I 上都有定义,若F’(x)=f(x),x ∈I ,则称F 为f 在区间I 上的一个原函数。

②定理8.1:若函数f 在区间I 上连续,则f 在I 上存在原函数F ,即F’(x)=f(x),x ∈I 。

·不连续的函数也可以有原函数③定理8.2:设F 是f 在区间I 上的一个原函数,则(i)F+C 也是f 在I 上的原函数,其中C 为任意常量函数;(ii)f 在I 上的任意两个原函数之间,只可能相差一个常数。

④定义2:函数f 在区间I 上的全体原函数称为f 在I 上的不定积分,记作∫f(x)dx 。

·[∫f(x)dx]’=[F(x)+C]’=f(x);·d ∫f(x)dx=d[F(x)+C];⑤不定积分的几何意义:积分曲线2.基本积分表①∫0dx=C ;②∫1dx=∫dx=x+C ;③)0,1(11>-≠++=⎰+x C x dx x αααα;④)0(||ln 1≠+=⎰x C x dx x ;⑤∫e x dx=e x +C ;⑥)0,1(ln >≠+=⎰a C aa dx a xx α;⑦)0(sin 1cos ≠+=⎰αC ax a axdx ;⑧)0(cos 1sin ≠+-=⎰αC ax a axdx ;⑨∫sec 2xdx=tanx+C ;⑩∫csc 2xd1=-cotx+C ;⑪∫secx ·tanxdx=secx+C ;⑫∫cscx ·cotxdx=-cscx+C ;⑬12arccos arcsin 1C x C x x dx+-=+=-⎰;⑭12cot arctan 1C x arc C x x dx +-=+=+⎰。

⑮定理8.3:若函数f 与g 在区间I 上都存在原函数,k 1,k 2为两个任意常数,则k 1f+k 2g 在I 上也存在原函数,且当k 1和k 2不同时为零时,有∫[k 1f(x)+k 2g(x)]dx=k 1∫f(x)dx +k 2∫g(x)dx二、换元积分法与分部积分法1.换元积分法①定理8.4(第一换元积分法/凑微分法):设函数f(x)在区间I 上有定义,φ(t)在区间J 上可导,且φ(J)⊆I 。

数学分析第八章 不定积分

数学分析第八章 不定积分
(2) f '(x)dx f (x) C,先导后积需加上一个任常数
或 df (x) f (x) C.
精品文档
3 不定积分的几何意义 函数f(x)的原函数的图形称 为f(x)的积分曲线。 函数f(x)的积分曲线有无限 多条。函数f(x)的不定积分 表示f(x)的一簇积分曲线, 而f(x)正是积分曲线的斜率。
结论: 若函数F为f 在区间I上的一个原函数,则 {F(x) c | c R}为f 在I上的原函数全体.
精品文档
(二) 不定积分
1. 定义2:函数f (x)在区间I上的全体原函数, 称 为f 在I上的不定积分,记作
f (x)dx
(3)
积分号 被积函数 积分变量
注1. 符号 f (x)dx 是一个整体记号.
1 (102x 102x ) 2x c 2 ln 10
精品文档
8) sec2 xdx tanx C
8 (tanx)' sec2 x
9) csc2 xdx cotx C 9 (cotx)' csc2 x
10) dx arcsin x C 10 (arcsin x)' 1
1 x2
1 x2
11)
dx 1 x2
arctanx C
11
(f g) = f g + f g ,
(f [ ]) = f [ ] 这些计算方法加上基本初等函数的导数公式, 我们可以解决初等函数的求导问题,即是,若 f 为 初等函数, f 的表达式能求出.
精品文档
我们现在来研究第五章求导问题的逆问题。
问题:在已知 f 的表达式时,f 的表 达式是什么形式呢?
1 (arctanx)' 1 x2
精品文档

数学分析第八章不定积分

数学分析第八章不定积分

数 , 则 k1 f + k2 g 在 I 上也存在原函数 , 且
∫ ∫ ∫ [ k1 f ( x ) + k2 g( x) ] d x = k1 f ( x) d x + k2 g( x ) d x .
( 5)
证 这是因为
∫ ∫ ∫ ∫ k1 f ( x )d x + k 2 g( x) d x ′= k1 f ( x )d x ′+ k 2 g( x) d x ′
知函数 .提出这个逆问题 , 首先是因为它出现在许多实际问题之中
.例如 : 已知速
度求路程 ; 已知加速度求速度 ; 已知曲线 上每一 点处 的切线 斜率 ( 或斜率 所满 足
的某一规律 ) , 求曲线方程等等 .本章与 其后两 章 ( 定 积分与 定积 分的 应用 ) 构 成
一元函数积分学 .一 原函数与不定积分源自(2 , 5) .3 . 验证
y=
x
2
sgn
x

| x| 在
∫ v( t) = ad t = at + C .
若已知 v( t0 ) = v0 , 代入上式后确定积分常数 C = v0 - at0 , 于是就有
v( t ) = a( t - t0 ) + v 0 . 又因 s′( t) = v( t ) , 所以又有
∫ s( t) = [ a( t - t 0 ) + v 0] d t
2 (-
1 cos 2x
都是 )′=
sin 2 x 在 ( - ∞ , + ∞ ) 上的原函数 ( - 1 cos 2 x + 1)′= sin 2 x .
, 因为
2
2
如果这些简单的例子都可从基本求导公式反推而得的话

华东师范大学数学系编数学分析第三版上册教案

华东师范大学数学系编数学分析第三版上册教案

§3 几类可积的初等函数教学目的:会计算有理函数和可化为有理函数的不定积分.教学内容:有理函数的不定积分;三角函数有理式的不定积分;某些无理根式的不定积分.(1) 基本要求:有理函数的不定积分;三角函数有理式的不定积分;某些无理根式的不定积分.(2) 较高要求:利用欧拉代换求某些无理根式的不定积分.教学建议:(1) 适当布置有理函数的不定积分,三角函数有理式的不定积分,某些无理根式的不定积分的习题.(2) 本节的难点是利用欧拉代换求某些无理根式的不定积分,可要求较好学生掌握. 教学程序:1.有理函数的积分法称形如(3.1)101()n n n P x a x a x a -=+++ n 的函数为多项式函数.其中,用表示多项式的关于变量,0,1,,k a R k ∈= deg ()P x ()P x x 的次数.设与是任意两个互质的多项式函数,称形如()P x ()Q x ()()P x Q x ((3.2) )()()0Q x ≠x =()()P x Q x ,当R deg ()deg ()P x Q x R ()<时,称的函数为有理函数,记作x 为有理真分式,当时,称deg ()deg ()P x Q x ≥()R x 为有理假分式.显然任何一个有理假分式()x =()()P x Q x ,用多项式函数除以多项式函数,总能将R ()P x ()Q x ()R x 表示成为一个多项式函数与一个有理真分式之和.即()()()()()P x S x P x Q x Q x =+ R ()x =其中与均为多项式函数,且()Px ()S x deg ()deg ()S x Q x <.例如 3221111x x x x x +-=-++ 所以讨论有理函数的积分,由于多项式函数是可积的,故只须讨论有理真分式是否可积.我们首先考虑如下最简分式 ⑴A x a-;⑵,2,3,()n A n x a =- ;⑶2Ax B x px q +++;⑷2,2,3,()n Ax B n x px q +=++ . 的积分方法.其中,,,A B p q 皆为实常数,二次三项式2x px q ++不能分解为实一次多项式之积,即.240p q -<显然⑴ln dx A x a C A x a =-+-⎰ ⑵11()1()n n A A dx C x a n x a -=+---⎰ 而 ⑶222()()22()()24p Ap A x B Ax B dx dx p p x px q x q ++-+=+++++⎰⎰ 设2p u x =+,a =,有 2Ax B dx x px q +=++⎰2222(2udu Ap du A B u a u a +-++⎰⎰= 221ln()(arctan 22A Ap u a B C a a++-+u =2ln()2A x px q C ++ 又2()n Ax B dx x px q +=++⎰222()1(2()2()n A x px q Ap B dx x px q x px q '⎡⎤+++-=⎢⎥''++++⎣⎦⎰ 21221()(212()()24n n A Ap x px q B n p p x q -+++--⎡⎤++-⎢⎥⎣⎦⎰dx (3.3) 在式(3.3)右端积分中,令2p u x =+,a = 22()()24n dx p p x q =⎡⎤++-⎢⎥⎣⎦⎰22()n n du I u a =+⎰根据式(2.7),积分n I 有如下递推公式n I =122212122(1)()2(1)n n u n 3I a n u a a n ---+-+-,2,3,n = (3.4) 且1221arctan du u I C u a a a ==+⎰+ 从1I 出发,重复应用n I 的递推公式(3.4),再代回原变量2p u x =+及a =,即可求出类型(4)的最简分式的不定积分.关于有理真分式的分解,我们有如下定理.【定理3.1】设()=()()P x Q x 是一个有理真分式,且分母多项式函数 R x 1122111()()()()()s t r l r l s t Q x x a x a x p x q x p x q =--++++ t t R其中,,111,,;,,,,s t a a p q p q ∈ 240k k p q -<1,2,,k t = ,则()R x 有下列最简分式分解式()=11111111()()s s s s r r r r s s A A A A x a x a x a x +++++++--- R x a - 111111111221111()l l l B x C B x C x p x q x p x q ++++++++++ 1122()t tt t t t t l l l t t t tB xC B x C x p x q x p x q ++++++++ 其中11111111111111,,;;,,;,,;,;;,,,,s t t s s t t t t r r l l l l 1A A A A B C B C B C B C R ∈ . 定理3.1说明任何有理真分式一定可以分解为若干个最简分式之和,而上面的讨论展示了⑴~⑷种类型的最简分式的可积性.从而可知有理函数一定是可积的.【例3.1】把函数()()()21322xx x x x -+++分解为最简分式之和,并求其不定积分.【解】由定理3.1知,给定函数的最简分式分解式应为()()()21322x x x x x -+++=21322A B Cx D x x x x +++-+++消去分母,有22(3)(22)(1)(22)()(1)(3)x A x x x B x x x Cx D x x =++++-++++-+比较上式两端同次幂系数,有586A A AA ⎧⎪⎪⎨⎪⎪⎩2B B B ++-23C C C ++-23D D D ++-0010==== 解此代数方程,有131,,,20205A B C D 0===-= 于是 ()()()21322xx x x x -+++=211311*********x x x x x +--+++ 从而()()()21322xdx x x x x =-+++⎰2131201203522dx dx xdx x x x x +--++⎰⎰⎰+=22131(2ln 1ln 320201022d x x x x x x ++-++-+++⎰2) 21(1)5(1)1d x x +++⎰=3221(1)(3)ln 20(22)x x x x -++++ 1arctan(1)5x C ++ 【例3.2】计算()()22211xdx x x++⎰. 【解】设()()()22222211111x A Bx C Dx E x x x x x ++=+++++++消去分母,有()()()()()(2222111x A x Bx C x x Dx E x =++++++++)11x =-24(3.6) 在式(3.6)中令,有A -=,即12A =-;令x i =,有2()(1)i Di E i =++)= ()(D E i E D ++-,于是1D E ==20D E D E +=⎧⎨-+=⎩将1,2A D E =-==10x 代入式(3.6),并令=,有 1101,22C C =-++=- 再令1x =,有1124()44,22B B =-⋅+-⋅+=12于是()()22211xdx x x ++⎰=2222121(1)dx dx x x x 1111dx x x -+=-+++++⎰⎰⎰ 221121ln 12412x d x dx 1x x x -++-+++⎰⎰ 22122(1)x dx x +⎰+22(1)dx x +⎰= 22211111ln arctan 4(1)221x x x x +--+++ 11arctan 212x x C x +++(利用公式3.4)= 222111ln 4(1)2(1)x x C x x +-++++ 从例3.1和例3.2可见,用求有理真分式的最简分式分解式的方法求其积分往往很麻烦,况且有些有理函数的分母多项式根本就无法分解因式,所以,当我们求有理函数的积分时,应尽可能地考虑是否有其它更简便的解法.【例3.3】计算()101dx x x +⎰. 【解】在实数域内,要将分解因式,是相当困难的,故此题不宜用求最简分式分解式的方法来计算,然而101x +()101dx x x +⎰=()91010101010111(1011x dx dx x x x x =-++⎰⎰=10101ln 101x C x ++ 2.三角有理函数的积分法称由函数sin ,cos x x 与常数经过有限次四则运算而成的代数有理式为三角有理函数,记作(sin ,cos )R x x .由于tan ,cot ,sec x x x 与csc x 都是由sin ,cos x x 与常数所构成,所以六个三角函数有理式都可化为(sin ,cos )R x x 的形式.关于三角有理函数的积分,我们在前面已进行了一些讨论,现总结一下,得到以下规律: (I )()sin cos R x xd ⎰x =,令;sin u x ()cos sin R x xd ⎰x cos =,令u x ;()2tan sec R x x ⎰dx tan =,令u x .【例3.4】(1)334sin cos5sin cos sin x xdx x xd x ==⎰⎰322357sin (1sin )sin (sin 2sin sin )x x d x x x x dx -=-+⎰⎰=448sin sin sin 438111x x x C -++ (2)()()4222sec sec 1tan 1tan tan xdx x x dx x d x =+=+⎰⎰⎰=3tan tan 31x x C ++ (Ⅱ)(sin ,cos )(sin ,cos )R x x R x x =--由于(sin ,cos )(tan cos ,cos )R x x R x x x ==1(tan ,cos )R x x ,且1(tan ,cos )R x x -=(tan (cos ),cos )R x x --x (sin ,cos )=R x x --=(sin ,cos )R x x =1(tan ,cos )R x x知,1R 必为tan x 与2cos x 的有理函数,即可设(sin ,cos )R x x =1(tan ,cos )R x x =22(tan ,cos )R x x于是,令u x ,则tan =arctan x u =,21du dx u =+,从而积分 222(sin ,cos )(,)11R x x dx R u u u =++⎰⎰1du 转化为有理函数的积分,根据上一小节的讨论,它是可积的.【例3.5】计算22cos 2sin x dx x-⎰. 【解】令2222222211tan tan ,cos ,sin 1tan 11tan 1x u u x x x x u x u =====++++,21du dx u =+,于是 ()()222222221cos 12sin 11221x du du u dx u x u u u u +==-+++-=+⎰⎰⎰2211(arctan 12du u C u u -=++⎰=x C + (Ⅲ)对任意的三角有理函数(sin ,cos )R x x ,可作万能代换tan2x u =,将其变为有理函数,事实上令tan 2x u =,2arctan u =,21dx u =2+,而 x 2222sin cos 222sin 1sin cos 22x x u x x x u =22tan 21tan 2x x == +++22222222cos sin 1tan 1222cos 1sin cos 1tan 222x x x u x x x x u ---===+++ 于是2222212(sin ,cos )(,111u u u R x x dx R d u u u-=+++⎰⎰u 【例3.6】⑴12sin dx x +⎰tan2x u ==22121121du u u +++⎰= ()()2222(22412du d u u u u +==+++-⎰⎰)C +=C + ⑵tan 2sin 22sin 2sin (cos 1)xu dx dx x x x x ===++⎰⎰ 22221211()21142(1)11du u du u u u u u u =+-++++⎰⎰= 22111(ln )[ln tan (tan ]424222u x u C ++=++x C3.某些无理函数的积分法一些无理函数的不定积分,通过适当的变量代换,可以化为有理函数的不定积分.(Ⅰ)(R x d ⎰x . 其中,,,,0R αβγδαδβγ∈-≠,.,m n N ∈p 是的最小公倍数,设u ,m n=,则 设1,(p pp x u u x x u αβδβγδγα+-+===+-)R u于是(R x dx ⎰=11[(),,]()m n p p R R u u u R u du '⎰ 由于1()R t 1(),t '均为有理函数,,N m n p p ∈,所以上式右端为有理函数的不定积分. R 【例3.7】(1)114112772131151********u xx xu u dx u du u u x x =++==++⎰⎰ 543211414(1)1u du u u u u du u +=-+-++⎰⎰= 543214()5432u u u u u C -+-++= 21517714141471414523x x x x u -+++C (2)=令u =3311u x u +=-,2326(1)u dx du u -=-,代入原式,有⎰2332331631(1)111u d u du u u u u -u =-=+--+-⎰⎰ 2212121()ln 1112u u du u du u u u u u +=-+-++++⎰⎰1+++21221311ln 212(1)2u du u u C u u u +++=++-⎰+= 31311ln 2(1)u C u -+-=3111ln (1)1)21x C x +--+-=3ln 2C -+ 其中1ln 22C C =+. (Ⅱ)某些最简无理函数的不定积分可直接利用基本积分表求.【例3.8】⑴===C C +=+⑵11()u x d ===-⎰=-=-⎰=11arcsin arcsin 22u x C C x+++-+=-⑶134=-=12212(245)4x x ⋅++=1221(245)1)2x x x ++++C。

8-2——华东师范大学数学分析课件PPT

8-2——华东师范大学数学分析课件PPT

(3)
xdx
1
1
d(x 1
);
(4)
cos xdx d(sin x);
(5)
sin xdx d(cos x);
(6)
1 x
dx
d( ln
x
);
(7) sec2 x dx d( tan x); (8)
dx 1 x2 d(arctan x).
数学分析 第八章 不定积分
高等教育出版社
§2 换元积分法与分部积分法
|
t
1 |
C
2 x 33 x 66 x 6 ln | 6 x 1 | C.
高等教育出版社
§2 换元积分法与分部积分法
换换元元积积分分法法
分部积分法
证 (i) 用复合函数求导法则验证:因对任何t J ,

d F (t) F(t)(t) f (t)(t).
dt
(ii)设 f ( x)dx F( x) C.对任何t J ,有
F (t) G(t) F(t)(t) G(t)
dx
1 2a
d( x a) xa
1 2a
d( x a) xa
1 2a
ln
|
x
a
|
1 2a
ln
|
x
a
|
1 ln x a C. 2a x a
数学分析 第八章 不定积分
高等教育出版社
§2 换元积分法与分部积分法
换元积分法
分部积分法
例3 求 x 1 x2dx.

x 1 x2dx 1
f (t)(t) f (t)(t) 0.
所以存在常数C,使F (t) G(t) C,

G( 1( x)) F(x) f (x).

数学分析专题选讲教案

数学分析专题选讲教案

数学分析专题选讲教案一、第一章:极限与连续性1.1 极限的概念定义:函数f(x)当x趋近于某一值a时,如果存在一个实数L,使得f(x)趋近于L,称f(x)在x=a处极限为L。

性质:保号性、传递性、三角不等式性质。

1.2 极限的计算极限的基本性质:0.9^n→0(n→∞)、(1+1/n)^n→e(n→∞)。

极限的运算法则:lim (f(x)+g(x)) = lim f(x) + lim g(x)、lim (cf(x)) = c lim f(x)、lim (f(g(x))) = lim f(t) lim g(x)。

1.3 连续性的概念定义:函数f(x)在点x=a处连续,如果满足f(a)=lim f(x)(x→a)且对于任意ε>0,存在δ>0,使得当0<|x-a|<δ时,有|f(x)-f(a)|<ε。

1.4 连续性的性质与判定连续函数的基本性质:保号性、可积性、可微性。

连续函数的判定:函数在某一点的极限存在且等于函数在该点的函数值,则函数在该点连续。

二、第二章:导数与微分2.1 导数的定义定义:函数f(x)在点x=a处的导数,记为f'(a)或df/dx|_{x=a},表示函数在x=a 处的瞬时变化率。

导数的几何意义:函数图像在点x=a处的切线斜率。

2.2 导数的计算基本求导法则:常数倍法则、幂函数求导、指数函数求导、对数函数求导、三角函数求导。

高阶导数:f''(x)、f'''(x)等。

2.3 微分的概念与计算概念:微分表示函数在某一点的切线与x轴之间的距离,记为df(x)/dx|_{x=a}。

微分的计算:dx表示自变量的增量,微分的结果为切线的斜率乘以dx的值。

三、第三章:泰勒公式与微分中值定理3.1 泰勒公式的概念与计算概念:泰勒公式是一种将函数在某一点展开成多项式的公式,用于逼近函数在某一点的值。

泰勒公式:f(x)在某一点a处的泰勒公式为f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2++f^n(a)(x-a)^n+R_n(x)。

【精品】数学分析教案_(华东师大版)上册全集_1-10章

【精品】数学分析教案_(华东师大版)上册全集_1-10章

数学分析教案_(华东师大版)上册全集_1-10章第一章实数集与函数导言数学分析课程简介( 2 学时 )一、数学分析(mathematical analysis)简介:1.背景: 从切线、面积、计算 32sin、实数定义等问题引入.2.极限 ( limit ) ——变量数学的基本运算:3.数学分析的基本内容:数学分析以极限为基本思想和基本运算研究变实值函数.主要研究微分(differential)和积分(integration)两种特殊的极限运算,利用这两种运算从微观和宏观两个方面研究函数, 并依据这些运算引进并研究一些非初等函数. 数学分析基本上是连续函数的微积分理论.微积运算是高等数学的基本运算.数学分析与微积分(calculus)的区别.二、数学分析的形成过程:1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三世纪, Archimedes就有了积分思想.2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累时期.3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期.4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时期:三、数学分析课的特点:逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的), 后面的学习就会容易一些; 只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务.有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯.四、课堂讲授方法:1.关于教材及参考书:这是大学与中学教学不同的地方, 本课程主要从以下教科书中取材:[1]华东师范大学数学系编,数学分析,高等教育出版社,2001;[2]刘玉琏傅沛仁编,数学分析讲义,高等教育出版社,1992;[3]谢惠民,恽自求等数学分析习题课讲义,高等教育出版社,2003;[4]马振民,数学分析的方法与技巧选讲,兰州大学出版社,1999;[5]林源渠,方企勤数学分析解题指南,北京大学出版社,2003.2.本课程按[1]的逻辑顺序并在其中取材.本课程为适应教学改革的要求,只介绍数学分析最基本的内容,并加强实践环节,注重学生的创新能力的培养。

高中数学第八章教案模板

高中数学第八章教案模板

高中数学第八章教案模板
一、教学目标:
1. 理解正弦、余弦、正切的定义,掌握它们在直角三角形中的性质;
2. 能够用三角函数解决实际问题;
3. 掌握三角函数的图像和性质;
4. 理解三角函数的周期性和奇偶性;
5. 能够灵活运用三角函数解决相关的综合性问题。

二、教学重点与难点:
1. 了解三角函数的定义和性质;
2. 掌握三角函数的应用技巧。

三、教学内容与教学步骤:
1. 理解正弦、余弦、正切的定义,了解它们在直角三角形中的表示方法;
2. 导出正弦、余弦、正切的性质;
3. 学习三角函数在单位圆上的表示方法;
4. 探讨三角函数的周期性和奇偶性;
5. 讲解如何用三角函数解决实际问题;
6. 利用习题让学生巩固知识点。

四、教学手段:
1. 知识讲解与示范;
2. 示意图和实例分析;
3. 互动讨论和答疑。

五、教学资源:
1. 教科书;
2. 习题册;
3. 多媒体课件。

六、教学评价:
1. 课堂表现评价;
2. 作业完成情况评价。

七、教学总结与展望:
通过本章的学习,学生们应该能够熟练掌握三角函数的定义、性质和应用技巧,为今后的学习打下坚实的基础。

在以后的学习中,我们将进一步深入探讨三角函数的各种应用,帮助学生更全面地理解和运用三角函数。

数学分析课本(华师大三版)

数学分析课本(华师大三版)

数学分析课本(华师大三版)篇一:数学分析课本(华师大三版)-习题及答案第八章第八章不定积分一. 填空题x1.若f?(e)?1?x,则f(x)?___________2.设f(x)的一个原函数为xe,则?xf?(x)dx?_____________ 3.若e?xx是f(x)的一个原函数,则?xf(x)dx?________________4.若f(x)?1,则f(x)?____________ 5.?max(x,x)dx?___________________6.若f(x)有原函数xlnx,则?xf??(x)dx?_______________ 7.?ln(sinx)sin2?3??2xdx?________________8.若?dx(1?2cosx)2?Asinx1?2cosx?B?dx1?2cosx,则A?__________,B?__________ 9.设?xf(x)dx?arcsinx?C,则? dxx(4?x)lnx?1x2dxf(x)?_________10.??_________________11.?dx?_________________12.?13.?14.??a?sin(lnx)?cos(lnx)nx?________________?f(x)?xf?(x)?dxdx1?ex?________________?_____________15.?16.?xex2(1?x)dx?_____________________4sinx?3cosxsinx?2cosxdx?______________217.已知f?(2?cosx)?sinx?tan 2x,则f(x)?_______________ 18.?f?(x)1??f(x)?2dx?______________19. 若?f(x)dx?F(x)?C,而u??(x),则?f(u)du?___________. 20设函数f(x)的二阶导数f??(x)连续,那么?xf??(x)dx?__________. 21设f(x)的原函数是sinxx,则?xf?(x)dx?__________.11222已知曲线y?f(x)上任一点的切线斜率为3x2?3x?6,且x??1时,y?则f(x)?__________;f(x)的极小值是__________.1?x2是极大值,23已知一个函数的导数为f(x)?,并且当x?1时,这个函数值等于32?,则这个函数为F(x)?__________. 24 设f?(sin2x)?cosx(x?1),则f(x)?__________.225 若f(x)为连续函数,且f?(x)?f(x),则?f(x)dx?__________.26 若(?f(x)dx)??lnx,则f(x)?__________. 27 已知e28?x2是f(x)的一个原函数,则?f(tanx)secxdx?__________.22?f()dx?__________. 2xx1?x29 设f(x)dx??C,则f(x)?__________.1?x?1?30 在积分曲线族?二、选择填空题 1.设I?1xxdx中,过(1,1)点的积分曲线是y?__________.?xe?1e?1xx,则I?()(1?e)?C (1?e)?x?C ?2ln(1?e)?C (e?1)?C2.设f(x)是连续的偶函数,则期原函数F(x)一定是() A.偶函数B.奇函数C.非奇非偶函数 D.有一个是奇函数xxx3.设I1??1?xdx,I2??du,则存在函数u?u(x),使()x(1?xex)u(1?u)?I2?x ?I2?x ??I1 ?I1 4.当n??1时,?xn lnxdx?() nn?1n(lnx?1n)?C B.xn?1(lnx?1n?1)?Cn?1?1xn?1xn(lnx?1n?1)?CD.n?1lnx?C 7.?(cosx2 ?sinx2)dx?() (sinx?cos x)?C (cos xx222?sin 2)?C?cosxxx22?C?sin2?C8.?x?sinx1?cosxdx?()??2cotx??C9.若f(x)的导函数是e?x?cosx,则f(x)的一个原函数为()?x?cosxB.?e?x?sinxC.?e?x??x?sinx10.若f(x)是以l为周期的连续函数,则其原函数()。

华东师范大学数学分析第8章习题答案

华东师范大学数学分析第8章习题答案

华东师范⼤学数学分析第8章习题答案第⼋章⼀:不定积分概念与基本积分公式(教材上册P181) 1. 验证下列(1)、(2)等式并与(3)、(4)两试相⽐照: (1)'()()f x dx f x c =+?; (2) ()()df x f x c =+?; (3) [()]'()f x dx f x =?; (4) ()()()d f x d x f x dx =?;解: (1)'0(())''()'()'()()c f x c f x c f x f x dx f x c=∴+=+=∴=+? 与(3)相⽐(1)试求不定积分运算,(2)是求导运算,(1) (3)互为逆运算,不定积分相差⼀个常数但仍为原不定积分,该常数⽤c 表⽰,称为积分常数.(2)()'()()'()()df x f x dxdf x f x dx f x c===+??与(4)相⽐: (2)是先求导再积分,因此包含了⼀个积分常数,(4)是先积分再求导,因此右侧不含积分常数.2. 求⼀曲线y=f (x),使得在曲线上的每⼀点(x,y)处的切线斜率为2x,且通过点(2,5). 解:222dy xdxy dy xdx x c====+??将(x,y)=(2,5)代⼊得: 5=22+cC=1该曲线为21y x =+3. 验证2sgn 2x y x =是|x|在(,)+∞-∞上的⼀个原函数. 解:x>0时,y ’=2()'||2x x x ==x<0时,2'()'||2x y x x =-=-=x=0时,22000sgn 022'lim lim lim 002x x x x x x x y x x ++++→→→-====- 2200sgn 02'lim lim()0||02x x x x x y x x --→→-==-==- 因此'''0||y y y x +-====综上得2'(sgn )'||,(,)2x y x x x ==?∈+∞-∞2sgn 2x y x =是|x|在(,)+∞-∞上的⼀个原函数.4. 据理说明为什么每⼀个含有第⼀类间断点的函数都没有原函数?解: 设0x 是 f (x)的第⼀类间断点,且 f (x)在0()U x 上有原函数 F (x),则0'()(),()F x f x x U x =∈.从⽽由导数极限定理得00lim ()lim '()'()()x x x x f x F x F x f x +++→→=== 同理 000lim ()'()()x x f x F x f x -→==.可见0()f x x 点连续,推出⽭盾.⼆: 换元积分法与部分积分法(教材上册P188) 1. 应⽤换元积分法求下列积分 (1) cos(34)x dx +?; (2) 22xxe dx ?;(3) 21dx x +?; (4) (1)n x dx +?;(5)dx ?; (6) 232x dx +?;(7);(8)(9)2sin x x dx ?; (10) 2sin (2)4dxxx +?;(11) 1cos dx x +?; (12) 1sin dx x+?;(13)csc xdx ?;(14);(15)44xdx x +?; (16)ln dx x x ?;(17) 453(1)x dx x +?; (18) 382x dx x -?;(19)(1)dxx x +?; (20) cot xdx ?; (21) 5cos xdx ?; (22)sin cos dxx x ?;(23)x xdx e e -+?; (24) 22338x dx x x --+?; (25) 252(1)x dx x ++?;(26) (a>0);(27) 223/2(0)()dxa x a >+?;(28) 5;(29)(30).解: (1)34cos(34)cos 3t x t x dx d =++=11sin sin(34)33t c x c =+=++ (2) 22112222()'()22t x x t txe dx e d ==??112211()()()22224t t t t t ed e dt ==?? 221144t x e c e c =+=+ (3)21111ln ||ln |21|21222t x dx t d t c x c x t =+==+=+++??(4)①当1n ≠-时,111(1)(1)11n n t x nnt x x dx t dt c c n n ++=+++== +=+++?? ②当1n =-时,(1)ln |1|n x dx x c +=++?(5)dx =?c =+ (6)232323231212122222ln22ln 22ln2t x x t x x tt dx d c c c ++=++==+=+=+?(7)332222222()(83)3399t t td t dt t c x c -=-=-+=--+?(8)322/31333()(75)551010t t d tdt t c x c t -=-=-+=--+? (9)211112222211sin sin sin sin 22t x x x dx t tdt t t t dt tdt =-===211cos cos 22t c x c =-+=-+ (10)2422111cot cot(2)224sin (2)sin 42t x dxt c x c x t x tdππ=+==-+=-+++?? (11)222(2)12sec tan tan()1cos 1cos 22cos 2t x dx d t x dt tdt t c c x t t =====+=+++ (12) 22 1sin (sec sec tan )tan sec 1sin dx xdx x x x dx x x c x cos x-==-=-++ (13)2111csc sin sin cos tan cos2222xdx dx dx x x x x x ===?α2ln |tan |2tan 2x d x c x ==+? (14)21(1)2x c =--=(15)22242111()arctan()442421()2x x x dx d c x x ==+++??(16)ln 11ln ||ln |ln |ln t x t t dx de dt t c x c x x e t t====+=+ (17)4555253535311111(1)(1)(1)5(1)5(1)10x dx dx d x x c x x x -==--=-++--(18)4344888111|242816112x dx dx d c x x x ===-+----(19)11()ln ||ln |1|ln ||(1)11dx xdx x x c c x x x x x=-=-++=++++?? (20)cos cot ln ||ln |sin |sin xxdx dx t c x c x ==+=+??(21)52224cos (1sin )sin (12sin sin )sin xdx x d x x x d x =-=-+?sin 2sin sin 53x x x c =-++ (22)2cos tan ln |tan |sin cos sin cos tan dx xdx d x x c x x x x x ===+ (23)22arctan 1()1()x xx x x x x dx e de dx e c e e e e -===++++ (24)222223(38)ln(38)3838x d x x dx x x c x x x x --+==-++-+-+?? (25)2221533232(1)223123()(1)t x x t t t dx dt dt dt x t t t t t =++-+-+===-++ 222323 ln ||ln |1|(1)212t t c x x c t x --=+-+=++-+++(26)1()ln |x t ax t c a====+?1ln |ln |x c x c a =+=+(27)令tan x a θ=,sec 22t a tdt ππ-<<223/23322s e c 11c o t s i n ()s e c d xa t d t t d t tx a a t a a ===++??c =+ (28)55sin 42sin sin (cos 2cos 1)cos x d d cos θθθθθθθ===--+??35322121cos cos cos (1)535c xc θθθ=-+-+=--(29)32256642226666111t t t t dt t dt t dt t dt t t t ===-+--- 6 42266661tt t dt t dt t dt dt dt t =---+-?75366126ln ||751t t t t t c t+=----++- 165116661263ln ||751x x x x x c x +=----++- (30)1121t t tdt t -→=+?222(2)44ln |1|1t t dt t t tc t =-+=-++++?14ln |1|x c =+-+ 4ln |1|'x c =-+ 2. 应⽤分部积分法求下列不定积分 (1) arcsin xdx ?; (2) ln xdx ?;(3) 2cos x xdx ?; (4)3ln xdx x ?;(5) 2(ln )x dx ?; (6)tan xarc xdx ?;(7) 1[ln(ln )]ln x dx x+?;(8) 2(arcsin )x dx ? (9)3secxdx ?; (10)(0)a >.解 (1)arcsin arcsin arcsin arcsinxdx x x xd x x x =-=-122arcsin (1)x x x c =+++ (2)1ln ln ln ln ln xdx x x xd x x x xdx x x x c x=-=-=-+(3)222cos sin 2sin sin 2cos x xdx x x x xdx x x xd x =-=+?2sin 2cos 2cos x x x x xdx =+-?2sin 2cos 2sin x x x x x c =+-+(4)2223ln 11ln [ln (ln )]22x dx xdx x x x d x x ---=-=-- 222ln 11(ln 1)244x c x c x x x=--+=-++(5)2221(ln )(ln )2ln (ln )2ln x dx x x x x dx x x xdx x=-=-(参考(2)结果)2(ln )2ln 2x x x x x c =-++(6)2222111tan tan arctan 2221x xarc xdx arc xdx x x dx x ==-+ 221111arctan 2221x x dx dx x =-++?? 2111arctan arctan 222x x x x c =-++(7)11111[ln(ln )]ln(ln )ln(ln )ln ln ln ln x dx x dx dx x x x dx dx x x x x x +=+=-+ ln(ln )x x c =+ (8)12222(arcsin )(arcsin)2arcsin (1)x dx x x x x dx -=--??12222(sin )arcsin (1)(1)x arx x x x d x -=+--?1222(arcsin )2arcsin (1)x x xd x =+-?1222(arcsin )2(1)arcsin 2x x x x dx =+--?1222(arcsin )2(1)arcsin 2x x x x x c =+--+(9) 令3sec I xdx =?s e c t a ns e ct a nt a n s e c I x d x x x x x x d x==-?23sec tan (1cos )sec sec tan sec x x x xdx x x I xdx =--=-+??11sec tan sec 22I x x xdx =+?1(sec tan ln |sec tan |)2x x x x c =+++(10)11222222222(0)()2()I a x x a xdx x a x -=>=±=+-1122222222()()()x x x a I ax x a I a a =±-±=±-±则122222111()()(ln ||)222x I x x a a a x c a =±±=+ 3. 求下列不定积分(1)[()]()'(1)f x f x dx αα≠?; (2)2'()1[()]f x dx f x +?;(3)'()()f x dx f x ?; (4)()'()f x e f x dx ?. 解: (1)11[()]()'[()]()[()]1f x f x dx f x df x f x c αααα+==++?(2)122'()1()arctan[()](arccot[()])1[()]1[()]f x dx df x f x c f x c f x f x ==+=-+++??(3)'()1()ln |()|()()f x dx df x f x c f x f x ==+?? (4)()()()'()()f x f x f x ef x dx e df x e c ==+?三. 有理函数和可化为有理函数的不定积分(教材上册P198) 1. 求下列不定积分(1)31x dx x -?; (2)22712x dx x x --+?;(3)31dx x +?; (4)41dxx +?;(5)22(1)(1)dx x x -+?; (6)222(221)x dx x x -++?;解: (1)3321111111x x x x x x x -+==+++--- 3232111(1)ln |1|1132x dx x x dx x x x x c x x =+++=+++-+--?? (2)2223111712(3)(4)(3)(4)4(3)(4)x x x x x x x x x x x x ---+===+-+-------22211(4)7124712x dx d x dx x x x x x -=-+-+--+211(4)2(27)4(27)d x d x x x =-+---??2ln |4|ln |3|x x c =---+ (3)设321111A Bx Cx x x x +=+++-+ 则21(1)()(1)A x x Bx C x =-++++ 2()()A B x B C A x A C =+++-++, 则⽐较两端系数,得1 21,,333B C A =-== 321121311dx x dx x x x x -??=-++-+221111(1)31311d x d d x =+-+++?221(1)ln 61x c x x +=+-+(4)22422221111()11()21x d x x x x dx dx x x x x x x -+-+===++-+-+11x c -=+2224222211111||1()2x x xdx dx c x x x x x---===++++-则234441111112121x x dx dx dx x x x +-=-+++|c =++ (5)设1122222221(1)(1)11(1)B xC B x C A x x x x x ++=++-+-++ 则22211221(1)()(1)(1)()(1)A x B x C x x B x C x =+++-+++-432111112121212()()(2)()()A B x C B x AC B B x C C B B x A C C=++-+-++++--+-- ⽐较两边系数得到12211111,,,,44422A B C B C ==-=-=-=- 22222111111(1)(1)(1)(1)418141dx d x d x dx x x x x x =--+--+-++ 222221111(1)4(1)2(1) d x dx x x -+-++?? 2222111(1)2(1)21x dx dx x x x =++++?? 222111ln |1|ln(1)arctan (1)(1)482dx x x x x x ∴=--+--+?211(1)4x -++ 211(1)4x x c --++。

第八章_拉格朗日乘子法

第八章_拉格朗日乘子法
பைடு நூலகம்
系统为完整系统。
应用力学研究所 李永强
第9页
§8.1 Lagrange第一类方程
小球A受到的主动力为重力,沿负x2轴方向,即有 F1 = F3 = 0,F2 = -mg
系统的完整约束的个数 d = 2,
A,i f xi
1,2,L ,d
代入Lagrange第一类方程
d g
F i m i& x & i A ,i 0 1
i 1 ,2 ,L,3 n
可得
mx1
21x1
2b2 l2
x1
l 2
mx2
mg
21x2
2b2 l2
x2
lh/
b2
mx3
21x3
2b2 l2
2 x3
应用力学研究所 李永强
第10页
§8.1 Lagrange第一类方程
例8-2 质量为m1的质点A,放在倾角为α、质量为 y B(x2, y2)
f x 1 ,x 2 , L ,x 3 n , t 0 1 , 2 , L , d
3 n
A ,ix & i D 0
i 1
1 ,2 ,L,g
上述约束方程的变分(约束条件)
3nf
i 1xi
xi0
1 ,2,L,d
3 n
A ,i xi0
1 ,2 ,L,g
i 1
3n
必须满足动力学普遍方程 Fi mi xixi 0
m1g
m2的三角形楔块的斜边上,楔块又可在水平面上 滑动。不计摩擦,适用Lagrange第一类方程求质 h
A( x1, y1)
m2 g
R1
点和楔块的加速度以及它们所受的约束力。

高中数学选修三第八章教案

高中数学选修三第八章教案

高中数学选修三第八章教案
课时安排:本章共分为4课时完成
第一课时:点的坐标和向量的概念
1. 学习点的坐标表示方法,了解二维平面直角坐标系和三维空间直角坐标系的概念;
2. 理解向量的概念,掌握向量的表示方法和运算规则;
3. 进行相关例题和练习,巩固所学知识。

第二课时:向量的线性运算
1. 学习向量的线性组合、数乘和加法运算;
2. 掌握向量的共线和共面判定方法;
3. 进行相关例题和练习,提高解题能力。

第三课时:直线的方程
1. 学习直线的一般方程和点斜式方程的表示方法;
2. 理解点和直线的位置关系,掌握直线的垂直和平行关系;
3. 进行相关例题和练习,培养分析问题的能力。

第四课时:直线的交点和位置关系
1. 学习两条直线的位置关系及其交点的求解方法;
2. 掌握直线与平面的交点和位置关系;
3. 进行相关例题和练习,提高解题技能。

教学方法:理论教学、例题演练、课堂讨论
教学手段:教师讲解、黑板书写、多媒体辅助教学
教学目标:通过本章的学习,学生能够掌握点、向量和直线的基本概念,理解它们之间的位置关系,提高数学分析和解决问题的能力。

布置作业:完成课后习题,并预习下一章内容。

评价方式:课堂表现、作业完成情况、考试成绩等综合评价。

中山大学数学分析教案

中山大学数学分析教案

中山大学数学分析教案第一章:极限与连续1.1 极限的概念引入极限的直观意义讲解极限的定义及性质举例说明极限的存在与不存在情况1.2 极限的计算讲解极限的基本计算方法无穷小与无穷大的概念及比较极限的运算法则1.3 连续函数引入连续函数的定义讲解连续函数的性质及判定条件举例说明连续函数的性质及应用第二章:导数与微分2.1 导数的概念引入导数的定义及直观意义讲解导数的计算方法举例说明导数的应用2.2 导数的计算讲解基本函数的导数公式高阶导数的概念及计算方法隐函数与参数方程函数的导数计算2.3 微分及其应用引入微分的概念及意义讲解微分的计算方法举例说明微分在实际问题中的应用第三章:积分与面积3.1 积分的基本概念引入积分的定义及直观意义讲解积分的性质及计算方法举例说明积分的应用3.2 定积分的计算讲解定积分的计算方法定积分的换元法与分部积分法定积分的应用3.3 面积与体积的计算举例说明定积分在几何图形面积计算中的应用讲解定积分在旋转体体积计算中的应用第四章:微分方程4.1 微分方程的基本概念引入微分方程的定义及意义讲解微分方程的分类及解法4.2 线性微分方程讲解线性微分方程的解法及性质举例说明线性微分方程的应用4.3 非线性微分方程讲解非线性微分方程的解法及性质举例说明非线性微分方程的应用第五章:级数5.1 级数的基本概念引入级数的定义及直观意义讲解级数的性质及收敛性判定5.2 幂级数讲解幂级数的定义及性质幂级数的展开及应用5.3 傅里叶级数讲解傅里叶级数的定义及性质举例说明傅里叶级数在信号处理中的应用第六章:多元函数微分学6.1 多元函数的基本概念引入多元函数的定义及图形表示讲解多元函数的极限与连续性6.2 多元函数的导数讲解多元函数的导数概念及计算法则举例说明多元函数导数的应用6.3 多元函数的微分引入多元函数的微分概念讲解微分的计算及应用第七章:重积分7.1 重积分的基本概念引入重积分的定义及直观意义讲解重积分的性质及计算方法7.2 一重积分讲解一重积分的计算方法举例说明一重积分在几何与物理中的应用7.3 二重积分讲解二重积分的计算方法举例说明二重积分在几何与物理中的应用第八章:向量分析8.1 向量及其运算引入向量的定义及其几何表示讲解向量的运算规则及性质8.2 空间解析几何讲解空间解析几何的基本概念及方法举例说明空间解析几何的应用8.3 曲线与曲面的方程讲解曲线与曲面的方程及其性质举例说明曲线与曲面的应用第九章:常微分方程9.1 常微分方程的基本概念引入常微分方程的定义及意义讲解常微分方程的分类及解法9.2 一阶微分方程讲解一阶微分方程的解法及性质举例说明一阶微分方程的应用9.3 高阶微分方程讲解高阶微分方程的解法及性质举例说明高阶微分方程的应用第十章:数值分析10.1 数值分析的基本概念引入数值分析的意义及方法讲解数值分析的基本原则及方法10.2 数值计算误差讲解数值计算的误差来源及影响举例说明误差估计及控制的方法10.3 数值方法的应用举例说明数值方法在微积分学中的应用讲解数值方法在其他领域的应用重点和难点解析重点一:极限的概念与性质极限的定义及其直观意义是教学重点,需要学生充分理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 不定积分(14学时)§1 不定积分概念与基本积分公式教学目的要求: 掌握不定积分的概念和性质,会用初等数学中的公式和基本积分公式计算不定积分.教学重点、难点:重点不定积分的定义,用初等数学中的公式和基本积分公式计算不定积分.难点不定积分定义的理解. 学时安排: (2学时) 教学方法: 讲授法. 教学过程:微分法的基本问题——从已知函数求出它的导数;但在某些实际问题中,往往需要考虑与之相反的问题——求一个已知函数,使其导数恰好是某一已知函数——这就是所谓的积分问题。

一 原函数与不定积分 (一) 原函数定义1 设函数)(x f 与)(x F 在区间I 上有定义。

若)()(x f x F =', I x ∈,则称)(x F 为)(x f 在区间I 上的一个原函数。

如:331x 是2x 在R 上的一个原函数;x 2cos 21-, 12cos 21+x ,x 2sin ,x 2cos -等都有是x 2sin 在R 上的原函数——若函数)(x f 存在原函数,则其原函数不是唯一的。

问题1 )(x f 在什么条件下必存在原函数?若存在,其个数是否唯一;又若不唯一,则有多少个? 问题2 若函数)(x f 的原函数存在,如何将它求出?(这是本章的重点内容)。

定理1 若)(x f 在区间I 上连续,则)(x f 在I 上存在原函数)(x F 。

证明:在第九章中进行。

说明:(1)由于初等函数在其定义域内都是连续的,故初等函数在其定义域内必存在原函数(但其原函数不一定仍是初等函数)。

(2)连续是存在原函数的充分条件,并非必要条件。

定理2 设)(x F 是)(x f 在在区间I 上的一个原函数,则(1)设C x F +)(是)(x f 在在区间I 上的原函数,其中C 为任意常量(若)(x f 存在原函数,则其个数必为无穷多个)。

(2))(x f 在I 上的任何两个原函数之间,只可能相差上个常数(揭示了原函数间的关系)。

证明:由定义即可得。

(二) 不定积分定义2 函数)(x f 在区间I 上的原函数的全体称为)(x f 在I 上的不定积分,记作:⎰dx x f )(其中⎰--积分号;--)(x f 被积函数;--dx x f )(被积表达式;--x 积分变量。

注1 ⎰dxx f )(是一个整体记号;注2 不定积分与原函数是总体与个体的关系,即若)(x F 是)(x f 的一个原函数,则)(x f 的不定积分是一个函数族{}C x F +)(,其中C 是任意常数,于是,记为:⎰dx x f )(=C x F +)(。

此时称C 为积分常数,它可取任意实数。

故有⎰=')(])([x f dx x f ——先积后导正好还原;或 ⎰=dxx f dx x f d )()(。

⎰+='C x f dx x f )()(——先导后积还原后需加上一个常数(不能完全还原)。

或 ⎰+=Cx f x df )()(。

如: C x dx x +=⎰332, C x xdx +-=⎰2cos 212sin 。

不定积分的几何意义: 若)(x F 是)(x f 的一个原函数,则称)(x F y =的图象为)(x f 的一条积分曲线。

于是,)(x f 的不定积分在几何上表示)(x f 的某一条积分曲线沿纵轴方向任意平移所得一载积分曲线组成的曲线族,如左图。

结论:若在每一条积分曲线上横坐标相同的点处作切线,则这些切线互相平行。

注: 在求原函数的具体问题中,往往是先求出全体原函数,然后从中确定一个满足条件00)(y x F =(称之为初始条件,一般由具体问题确定)的原函数,它就是积分曲线族中通过点),(00y x 的那条积分曲线。

如:见P179.二 基本积分表由于不定积分的定义不象导数定义那样具有构造性,这就使得求原函数的问题要比求导数难得多,因此,我们只能先按照微分法的已知结果去试探。

首先,我们把基本导数公式注意:上述基本积分公式一定要牢记,因为其它函数的不定积分经运算变形后,最终归结为这些基本不定积分。

另外,还须借助一些积分法则才能求出更多函数的不定积分。

定理3 若函数)(x f 与)(x g 在区间I 上都存在原函数,21,k k 为两个任意常数,则)()(21x g k x f k +也存在原函数,且⎰⎰⎰+=+dx x g k dx x f k dx x g k x f k )()()]()([2121(积分的线性)。

证明:由定义即得。

注:线性法则的一般形式为:⎰∑∑⎰===ni ni i i i idxx f k dx x f k 11)()(。

例 1nn n n a x a x a x a x p ++++=--1110)( ,则C x a x ax n a x n a dx x p n n n n ++++++=-+⎰2111021)( 。

例2 C x x x dx x x dx x x ++-=++-=++⎰⎰arctan 23)121(1132224。

例3 ⎰⎰⎰+=+=dx x x dx x x xx x x dx )sec (csc sin cos sin cos sin cos 22222222C x x ++-=tan cot 。

例4 C x x dx x x xdx x ++-=-=⋅⎰⎰)2cos 214cos 41(21)2sin 4(sin 21sin 3cosCx x +--=)2cos 4(cos 81。

例5⎰⎰⎰-+=-+=----dx dx dx xx x x x x ]2)10()10[()21010()1010(22222C x x +--=-22)1010(10ln 2122。

课后记1.根据以往对本节教学的经验、教训,经反复强掉总有一些学生在求不定积分时忘记加任意常数C ,因此,在再一次组织对本节的教学时,我在整个教学流程中惯穿原函数与不定积分的区别,有一定的效果.2.让同学们自己总结出以下两种方法,加深记忆,提高学习效率:验证所求不定积分是否正确的方法.对所求结果求导,已知一个函数的导数求这个函数,对其导数求不定积分,任意常数由初始条件确定.§2 换元积分法与分部积分法教学目的要求: 能熟练的用换元积分法与分部积分法计算不定积分. 教学重点难点: 换元积分法、分部积分法学时安排: 4学时 教学过程:一 换元积分法定理4 (1)(换元积分法)设)(u g 在],[βα上有定义,)(x u ϕ=在],[b a 上可导,且βϕα≤≤)(x ,],[b a x ∈,记)())(()(x x g x f ϕϕ'=, ],[b a x ∈。

(1)(第一换元积分法)若)(u g 在],[βα上存在原函数)(x G ,则)(x f 在],[b a 上也存在原函数)(x F ,且有C x G x F +=))(()(ϕ,即⎰⎰⎰+=+=='=C x G C u G du u g dx x x g dx x f ))(()()()())(()(ϕϕϕ。

也可写为:=='⎰⎰)())(()())((x d x g dx x x g ϕϕϕϕ(令))(u x =ϕ⎰+==C u G du u g )()(=(代回)(x u ϕ=)C x G +))((ϕ。

(2)(第二换元积分法)又若0)(≠'x ϕ,],[b a x ∈,则上述命题(1)可逆,即当)(x f 在],[b a 存在原函数)(x F 时,)(u g 在],[βα上也存在原函数)(u G ,且)(u G C u F +=-))((1ϕ,即⎰du u g )((令))(x u ϕ=⎰⎰+=='=C x F dx x f dx x x g )()()())((ϕϕ(代回))(1u x -=ϕC u F +-))((1ϕ。

证明:由不定积分的定义及求导法则即得。

注:在第一换元积分法中是将被积函数的某一部分视为一个整体看作一个新的积分变量;在第二换元积分法中是用某一函数来代替其积分变量。

例1 求 ⎰xdx tan 。

解⎰xdx tan C x x d x dx x x +-=-==⎰⎰cos ln cos cos 1cos sin 。

例2 求 ⎰+22x a dx)0(>a 。

【分析】 若令a x u =(第一换元法),或令au x =(第二换元法)均可将积分化为:⎰+21u du;同时也可令u a x tan =(第二换元法),可将积分化为:⎰du 。

例3 求⎰-22x a dx。

【分析】 若令a x u =(第一换元法),或令au x =(第二换元法)均可将积分化为:⎰-21u du ;同时也可令ua x sin =,或u a x cos =(第二换元法)将积分化为:⎰du 。

例4 求 ⎰-22a x dx。

【分析】 因)11(21122a x a x a a x +--=-,故可分别令a x u -=,a x u +=(第一换元法),可将积分化为:⎰u du 。

同时也可令u a x sec =或u a x csc =(第二换元法)将积分化为: du u u ⎰2cos sin 或du u u⎰2sin cos 。

(但此时计算不如前一方法简单!!)例5 求⎰xdx sec 。

解:(方法一)C x xx x d dx x x xdx +-+=-==⎰⎰⎰sin 1sin 1ln 21sin 1sin cos cos sec 22。

(方法二)⎰xdx sec ⎰⎰++=++=x x x x d dx x x x x x tan sec )tan (sec tan sec )tan (sec sec=Cx x ++tan sec ln 。

使用第一换元积分法的关键:在于把被积表达式dx x f )(凑成)())(()())((x d x g dx x x g ϕϕϕϕ='形式,从而作变换)(x u ϕ=,化积分为:⎰du u g )(。

但要注意的是最后要换回原积分变量。

第二换元积分法的目的同第一换元法一样,也是被积函数化为容易求得原函数的形式,但最终同样不要忘记变量还原。

例6 求⎰+3u u du 。

【分析】 为了去掉被积函数中的根号,取根次数2和3的最小公倍数6,并令6x u =,则可化简积分。

例7 求dx x a ⎰-22)0(>a 。

【分析】 为了去掉被积函数中的根号,可令t a x sin =,也可令t a x cos =。

例8 求 )0(22>-⎰a a x dx。

【分析】 为了去掉被积函数中的根号,可令t a x sec =,也可令t a x csc =。

例9 求 ⎰+222)(a x dx)0(>a 。

相关文档
最新文档