2019学年杭四高三上10月月考 (1)
浙江省杭州市四校联考2023-2024学年高一上学期10月月考数学试题答案
高一数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.设全集{}22,3,4U m m =+-,集合{},2A m =,∁u =3,则m =()A .2±B .2C .2-D .4-【答案】C2.命题“20,1x x x ∀>-≤”的否定是()A .20,1x x x ∀≤-≤B .20,1x x x ∀>->C .20,1x x x ∃≤-≤D .20,1x x x ∃>->【答案】D3.已知a ,b ,c ,满足c b a <<,且0ac <,那么下列不等式中一定成立的是()A .ab ac >B .()0c b a -<C .22cb ab <D .ac (a -c )>0【答案】A4.若正数x ,y 满足35x y xy +=,则34x y +的最小值是()A .2B .3C .4D .5【答案】D全部选对的得5分,部分选对的得2分,有选错的得0分.9.若不等式20ax bx c -+>的解集是(1,2)-,则下列选项正确的是()A .0a b c ++=B .a<0C .0b >且0c <D .不等式20ax cx b ++>的解集是R【答案】AB【解析】由于不等式20ax bx c -+>的解集是(1,2)-,所以a<0,B 选项正确,且1212b ac a ⎧-+=⎪⎪⎨⎪-⨯=⎪⎩,即12b a c a ⎧=⎪⎪⎨⎪-=⎪⎩,则,2==-b a c a ,所以20a b c a a a ++=+-=,A 选项正确,0,20b a c a =<=->,C 选项错误,不等式20ax cx b ++>,即220ax ax a -+>,即()222110x x x -+=-<,无解,D 选项错误.故选:AB12.设非空集合={|≤≤}满足:当∈时,有2∈.给出如下命题,其中真命题是()A.若=1,则B.若,则≤≤1C.若,则D.若=1,则【答案】BC【解析】【分析】本题考查了集合的新定义问题.先由非空集合={|≤≤}满足:当∈时,有2∈,判断出≥1或≤0,0≤≤1,对照四个选项分别列不等式组,解出不等式进行一一验证即可.【解答】解:∵非空集合={|≤≤}满足:当∈时,有2∈.∴当∈时,有2∈,即2≥,解得:≥1或≤0;同理:当∈时,有2∈,即2≤,解得:0≤≤1.对于:=1,必有2=1∈,故必有≥0≤≤1解得:==1,所以={1},故A 错误;对于:=−12,必有2=14∈,故必有≥20≤≤1,解得:14≤≤1,故B 正确;对于:若=12,有≤12≤2,解得:−22≤≤0,故正确;2≤12对于:若=1,有≤1≤22≤1,解得:−1≤≤0或=1,故D 错误.故选:B三、填空题:本题共4小题,每小题5分,共20分14.对于集合A,B ,用card(A)表示有限集合A 中元素的个数,已知card(A)=M,card(B)=N(M<N),集合C 满足A ⊆C ⊆B,则符合条件的集合C 的个数是____________.【答案】2N-M 15.已知集合={|K1r1<0},={|(−)2<},若“=1”是“∩≠⌀”的充分条件,则实数的取值范围是.【答案】(−2,2)【解答】解:由={|K1r1<0}={|(−1)·(+1)<0}={|−1<<1},当=1时,={|(−)2<1}={|−1<<+1},此时,∩≠⌀,所以+1>−1−1<1,解得−2<<2.故答案为:(−2,2).三、解答题17.设全集R U =,集合{}|15A x x =≤≤,集合{|122}B x a x a =--≤≤-.(1)若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围;(2)若B A ⊆,求实数a 的取值范围.【详解】(1)由“x A ∈”是“x B ∈”的充分不必要条件,得A B ,又{}|15A x x =≤≤,{|122}B x a x a =--≤≤-,A=-∞,求B(2)若(),120.为宣传2023年杭州亚运会,某公益广告公司用一条长度为1m的铁丝,首尾相连做成一个直角三角形的海报纸,求:(1)海报纸的斜边最短是多少?(2)若在该海报纸画一个内切圆,则直角三角形内切圆半径最大值是多少?【答案】解:(1)假设直角三角形两条直角边为,,(0<<1,0<<1),斜边长为2+2,++2+2=1,∵(+)2≤2(2+2),∴1=++2+2⩽(2+1)2+2,∴2+2≥2+1=2−1当且仅当==2−22时等号成立,所以斜边2+2最短是2−1;(2)由直角三角形的内切圆半径=2又++2+2=1,∴=2(rp−12=+−12,∵2(2+2)≥(+)2,∴2+2≥2(rp2∴++2+2≥++22(+)=(1+22)(+),即1≥(1++),=2−2,∴+≤当且仅当==∴=+−12≤32−2,该直角三角形内切圆半径最大值是32−2.21.设函数JB2+K AR,AR.(1)若J1,且集合UJ0中有且只有一个元素,求实数的取值集合;(2)解关于的不等式I K12+r2K2;(3)当K0,K1时,记不等式K0的解集为,集合J{U−2−II−2+V.若对于任意正数shk∅,求1−1的最大值.【解答过程】(1)由题设JB2+K1AR,又UJ0有且只有一个元素,所以B2+K1=0有且仅有一个根,当J0时,K1=0,即J1,则UJ0={1},满足题设;当k0时,Δ=1+4J0,即J−14,则UJ0={2},满足题设;所以的取值集合为{−14,0}.(2)由题设B2+KI K12+r2K2,整理得2−(r1)rJ(Kp(K1)<0,当I1时,解集为{UII1};当J1时,解集为∅;当K1时,解集为{U1<IV;(3)由K0,恒有K2>−K2,故k∅,Jop=B2+KK0且K0,K1,故op开口向上且o0)=−I0,故对应一元二次方程恒有两个不等实根,且在y轴两侧,因为hk∅,即op>0在(−2−s−2+p上有解,且∀A(0,+∞),又区间(−2−s−2+p关于J−2对称,且区间长度2A(0,+∞),综上,只需保证o−2)=4K2−J0,则4KJ2,且J4K2>1,即K34,所以1−1=12(2−2)=12(4K−4K)=52−12(+4)≤5212,当且仅当J2,即J1>34,J2>1时等号成立,故1−1的最大值为12.22.已知二次函数=B2+B+2(,为实数)(1)若=1时,=1且对∀∈(2,5),>0恒成立,求实数的取值范围;(2)若=1时,=1且对∀∈−2,−1,>0恒成立,求实数的取值范围;(3)对∀∈,>0时,≥0恒成立,求r2的最小值.【答案】解:(1)∵=1时=1,∴++2=1,即=−1−,∵∀∈(2,5),>0恒成立,即B2−(1+)+2>∴B(−1)>−2恒成立,∵∈(2,5),∴>K2oK1)对∀∈(2,5)恒成立,∴>.令=−2,则∈(0,3),则K2oK1)=(r2)(r1)=2+3r2=1r2+3≤2=3−22,当且仅当=2,即=2,此时=2+2时取“=”,所以实数的取值范围时(3−22,+∞).(2)∵=1时=1,∴++2=1,即=−1−,∵∀∈−2,−1,>0恒成立,即B2−(1+)+2>0对∀∈−2,−1恒成立,∴(2−)−+2>0对∀∈−2,−1恒成立.−2++2>0−2+2>0,∴1−174<<1+174,所以实数(3)对∀∈,>0时,≥0恒成立,∴>0=2−8≤0,则≥28.∴r2≥28+2=8+2≥=1,当且仅当8=2且=28,即=4,=2时取等号,所以r2最小值是1.。
2019年11月杭四中(吴山校区)高三上期中卷
杭州四中(吴山)2019学年高三(上)期中考试卷满分:150分 时间:120分钟一.选择题(共10小题,每小题4分,共40分).1. 设集合{}8,6,4=M ,集合{}8,7,3=N ,那么N M 等于( )A. {}8,7,6,4,3B.{}8C.{}8,73,D.{}8,64, 2. 下列曲线中实轴长为22的是( )A. 14822=-y xB.12422=-y xC.18422=-y xD.14222=-y x 3. 设R a ∈,则“0=a ”是“直线054:1=-+y ax l 与直线02:2=-+a ay x l 垂直”的( ) A. 充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 4. 已知复数z 满足()52=+z i ,则z 等于( ) A.21B.1C.2D.4 5. 函数[]ππ,,cos 22sin -∈+=x x x y 的图象大致是( )A.B.B.D.6. 已知向量()()2,1,,1--==n m λ,则m 与n 的夹角θ为钝角时,λ的取值范围为( ) A. 21>λ B.21-<λ C.21->λ且2≠λ D.无法确定 7. 已知函数()⎪⎭⎫⎝⎛+=22sin 3x x f π,若对于任意的R x ∈,都有()()()21x f x f x f ≤≤成立,则21x x -的最小值为( )A.4B.1C.21D.2 8. 设10<<p ,随机变量ξ的分布列为那么,当P 在()1,0内增大时,()ξD 的变化是( )A. 减小B.增大C.先减小后增大D.先增大后减小 9. 若()()()013ln 12≥++-⋅--a x x a x x 在R 上始终成立,则a 的值为( )A.0B.1C.2D.310. 已知()()131,121+=-=x x f x x f ,()()()221x f x f x g +=+()()221x f x f -,若[]5,1,-∈b a ,且当[]b a x x ,,21∈时,()()02121>--x x x g x g 恒成立,则a b -的最大值为( )A.2B.3C.4D.5二.填空题(共7小题,多空题每空3分,单空题每空4分,共36分).11. 已知89,32==ba,则a =_____________,ab =____________.12. 已知a 终边落在()02019:>=x x y l 上,则αtan =___________,⎪⎭⎫⎝⎛+4tan πα=__________. 13. 若双曲线122=-y mx 的渐近线为x y 2±=,则m =________;焦点F 到渐近线的距离为_______.14. 已知某几何体的三视图如图所示,则该几何体的体积为_________,最长棱长为___________.15. 实数y x ,满足不等式组⎪⎩⎪⎨⎧≥-+≤--≥+-0405202y x y x y x ,则y x Z 24--=的最大值为_____________.16. 在ABC ∆中,4,22,4π===B BC AB ,动点P 在以点B 为圆心,半径为1的圆上,则⋅的最大值为___________.17. 若4,0≤+>>b a b a ,则ba b a -++2144的最小值为_____________. 三. 解答题(共5题,共74分).18. (14分)已知函数()()ππ+-⎪⎭⎫⎝⎛+=x x x x x f cos sin 32sin cos . (1)求()x f 的最小正周期; (2)当⎥⎦⎤⎢⎣⎡∈2,0πx 时,求函数()x f 的单调递减区间.19. (15分)已知函数()bax x x f +=2(b a ,为常数),且方程()012=+-x x f 有两个实根为4,321==x x .(1)求函数()x f 的解析式;(2)设1>k ,解关于x 的不等式()()xk x k x f --+<21.20. (15分)如图,D 是ABC ∆边BC 上一点,BAD CAD BD AC AB ∠=∠==sin 2sin ,3,32.(1)求DC 的长;(2)若2=AD ,求ABC ∆的面积.21. (15分)已知数列{}n a 满足n n n a a a 2121,2111+==-,数列{}n b 满足n n n a b 2=. (1)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式; (2)设()()()1121+-+-+=n n nn a n a n n n c ,数列{}n c 的前n 项和为n T ,求满足()*63124N n T n ∈<的n 的最大值.22. (15分)已知函数()()R a ax x x a x f ∈-+=3ln 22.(1)若1=a ,求()x f 的单调区间;(2)若对于任意的2e x ≥(e 为自然对数的底数),()0≥xf 恒成立,求a 的取值范围.杭四中(吴山校区)高三上期中卷答案一.选择题.二.填空题.11 .3log 2,23 12. 2019,10091010- 13. 4, 114. 8,41 15. 21 16. 1029+ 17.43三.解答题.18. (1)()x f =2162sin +⎪⎭⎫ ⎝⎛+πx ,最小正周期为π; (2)函数()x f 的单调递减区间为⎥⎦⎤⎢⎣⎡26ππ,. 19. (1)()22+-=x x x f20. (1)DC=4; (2)357 21. (1)n n na 2= (2)n c =()()1212211--++n nn ,n 的最大值为4. 22. (1)()x f 的单调增区间为⎪⎭⎫ ⎝⎛210,和()∞+,1;单调减区间为⎪⎭⎫ ⎝⎛1,21.。
2019届 浙江省杭州市西湖区杭师大附中高三第一学期阶段考试(10月)
2019年杭师大附中2019学年第一学期10月阶段考试第一部分听力略第二部分阅读理解第一节AHello, I'm Tony. I'm afraid of a lot of things: dogs, spiders, eye contact---- and once for an entire decade I didn't dare to set foot on a plane. I gave up a couple of job offers in other states, and missed out on quite a few free trips to Europe.A year ago, I was tired of missing out so much on life, so I decided I would fix my problem. A friend introduced me to Tom, an experienced airline captain and licensed doctor. He specialized in treating the fear of flying. I ended up asking him every single question floating around in my head. He helped me get over some of my ridiculous fears.Actually, if you have a specific motivation, it helps to overcome fear. For me,that motivation came when I landed a girlfriend who moved to Wisconsin shortly after we started dating. Every time I went to visit her, I had to take a 22-hour train ride, lying wide awake all the way. Fed up with it, I decided I would have to take the 2-hour plane ride to Wisconsin instead.I watched hours of YouTube videos of planes taking of to picture how my coming trip would be before I finally booked my first plane ticket. The moment I got to the airport, I took medicine to keep myself from feeling sick. As the minutes ticked down before boarding. I spent some time watching some more YouTube videos. I also turned on music on my earphones to drown out the sounds of the airplane, and breathed deeply whenever I felt any signs of fear.I was proud that I made it. Yes, courage is the key that will open many doors of opportunity, while moving you through seemingly impossible obstacles that are standing in your way.1.What did Tony fear?A.Job offers.B. Train journeys.C. Free trips.D. Plane rides.2.How did Tony find his meeting with Tom?A.Fruitless.B. Helpful.C. Ridiculous.D. Astonishing.3.Why did Tony watch YouTube videos at the airport?A.His pilot friend asked him to.B. He had too much tome to kill.B.He wanted to ease his pain. D. They could drown out noises.4.What does Tony think matters most when overcoming fear?A.Courage.B. Opportunity.C. Experience.D. Medicine.BSinging in groups can help people recover from mental illness, making them feel valued and increasing their confidence, according to research. A University of East Anglia study of singers involved in free weekly workshops in Norfolk found benefits to mood and social skills. Researchers said the Sing Your Heart Out project had stopped some people from relapsing (病情复发). They urged other areas to consider running community singing groups.The Sing Your Heart Out (SYHO)project started in 2005 at a hospital in Norwich before branching out into the community. It is aimed at people with mental health conditions as well as the general public, and regularly attracts hundreds of people to four weekly sing-alongs. One of them is Penny Holden, 67, who has lived with mental health all her life. She credits the singing group with turning her life around 13 years ago when she was at her lowest. She claimed it was the best thing she'd ever done.Researchers from UEA's Norwich Medical School said a study of 20 members of the group over six months found singing and mixing socially had helped those who had had serious mental healthissues to function better in day-to-day life. Lead researcher Professor Tom Shakespeare said it was a low-commitment, low-cost tool for mental health recovery within the community because it gave participants a feeling of belonging and well-being. He said the breathing involved in singing had also been shown to be good for the body."The participants are not practicing for a performance," he added, "and this means the singing groups are very relaxed and fun."1. What's the main idea of the passage?A. Sing Your Heart Out beats hospitals.B. Group singing benefits mental health.C. Community projects make a difference.D. Mental health worries the general public.2. What's Penny Holden's attitude towards the project?A. Reserved.B. Ambiguous.C. Disapproving.D. Favorable.3. The underlined sentence suggests that group singing is___.A. popular and costs littleB. short of financial supportC. full of excitement and funD. easy and practical to conductCDo you have a summer firefly(萤火虫)memory? I have many. I knew it was finally summer when I would be outside playing after dinner and those little flying lights appeared. I imagined each light was a fairy with long hair. But fireflies are disappearing. While the exact reason isn't known, several factors are suspected: habitat (栖息地)loss, light pollution and harmful chemicals.As the human population continues to grow, more and more wild habitats will be developed for our use. The more we destroy forest land, the fewer fireflies there will be - unless we start living in some totally different ways. Another part of the problem is light pollution. Both female and male fireflies use their glowing lights to communicate with one another to find mates. Research has shown that lights - both streetlights or lights from a house, and temporary, like car headlights - make it harder for fireflies to communicate. If mom and dad fireflies can't find each other to mate (交配)because they're thrown off by car headlights, young fireflies never get created.While firefly number will continue to decline in some places, in others they're becoming an attraction. In China, firefly pupae(蛹)were brought into some special parks. One of the first of these parks, in the city of Wuhan in Hubei province, ope. The response was so positive that the park planned to open annually.Kids who grow up without fireflies will never know what they're missing. The little lovely bugs are a magical addition to the landscape, but once they die out, they will exist only in the memories of older people. If you'd like to keep fireflies around in real life, you can help create firefly habitats in and around your own home.1. What might cause the number of fireflies to decrease?A. The effect of air pollution.B. The loss of natural habitats.C. The growth of population.D. The over-use of chemicals.2. According to the passage,car headlights make fireflies___.A. likely to get lostB. find mates easilyC. lose sight temporarilyD. unable to produce young3. What might be discussed in the following paragraph?A. How to keep fireflies around.B. How chemicals harm fireflies.C. How to stop fireflies dying out.D. How fireflies struggle to live on.第二节If you are looking to improve your relationship with your parents, you are not alone. 1 ___ There are a number of steps that can be taken to make a better relationship with your parents.● Be grateful. Consider all that your parents have done for you. You may find yourself feeling thankful to your parents. You will be more willing to improve the relationship. Let your parents know that you are appreciative for all they have done for you. 2___ For example, get them a nice gift. If you live with your parents, do some extra housework without being asked.●3___ Often, people do not get along because they fail to take others' perspective. Accept that your parents are different. Think about the ways that their lives may have been different from your life, and how these different histories may be contributing to issues in the relationship.● Avoid unnecessary arguments. Sometimes arguments are unavoidable, but do your best to avoid unnecessary quarrels. This may mean that you have to bite your tongue when one of your parents says something controversial. 4___ If it is, make the point clearly and modestly in order to avoid an overly emotional argument.● Don't ask for their advice unless you really want it. Sometimes problems arise in relationships between parents and children, particularly at the teenage years and beyond, because parents can try to give advice that might hurt your sense of independence. 5___ Otherwise, you may be opening the door to frustration on your part..A. Put yourself in their shoes.B. Be happy with them for this.C. Show your appreciation with your actions.D. It can hurt to feel taken for granted, even for parents.E. Problems between parents and children are common.F. So try only asking for their advice when you really want it.G. Determine whether the need to respond is really necessary.第三部分语言运用第一节完形填空On thanksgiving weekend, the family gathered for a meal in their three-storey house. After 1___ , Charlotte, her mum and little brother went down to the basement to rest. Charlotte's dad headed for the garage to 2___his truck.Around 8p. m. , Charlotte decided to 3___ her dad. She went upstairs and walked through the kitchen. When she 4___ the side door to the garage, black smoke blew into the kitchen. She could barely 5___ her father lying on hisback, 6___under the truck. He'd raised the truck on a jack(千斤顶)and 7__ the front tire. The truck had slipped 8___ the jack.Charlotte ran to the 9___ of the truck and struggled to lift it. Her dad was still 10___ , and he yelled, "One more try!" She tried 11___and was able to tip the truck backward. She grabbed her dad by the shirt with both hands and 12___ him from under the truck to a safe place. Then she ran back to the 13___, which had burst into flames. It was on fire! She was afraid the truck was going to 14___ so she climbed into the truck, 15___ the key, and pressed the gas pedal(踏板). The truck 16___ rolled out, the metal wheel rubbing roughly and loudly against the ground. Charlotte 17___ the truck safely outside the garage and then rushed down to the basement. "There's a 18___. Everybody, get out!" She shouted to her family members.They19___ her out of the back basement door quickly. The garage was destroyed, but the family 20___.第二节A bobcat amazingly survived a 50-mile journey while it was stuck in the gr (汽车护栅) of a Virginia woman's car. The driver was heading 1___ (work) at around 7 a.m. when she 2___(feel) a strange sound-but didn't stop. An hour 3___ (late), she pulled into Virginia University and spotted the 4___ ( frighten) cat in the grill, according to the local station.Peter, a worker from Richmond Animal Care, rushed to 5___ scene and was astonished to find the animal in good shape. "The cat was 6___ (complete)fine. It's unbelievable," he told the station. "The only thing holding it up was a wire around its stomach and one plastic piece under its chest.”The cat "hissed”(发嘶嘶声)at Peter, so he calmed it and removed it 7___ the car. Then he and the other 8___ (colleague) transported it to he animal wildlife cen ter, 9___ it was examined for injury. “The lucky cat suffered only one minor cut on 10___ (it) back and it was just wonderful to know the cat made it through such a crazy situation,” Peter said.第四部分写作第一节应用文写作假定你是李华,你代表学生会邀请外籍教师Mr. Smith参加高三年级于下周五下午5点在学校报告厅举行的成人仪式。
2019学年高三杭四(下沙、吴山)第一次月考好题解析精选
当
a
0 时,
f
(x)
|
4 x
a|
x
a
x
4 x, x 4
x
a
4 2a, x
4
x
a
若1 4 4 即1 a 4 ,必满足 f (x) 在区间[1,4] 上先减再增,故有 2a 3 5 ,即 a 1 a
若 0 4 1 时,即 a 4 , f (x) 在区间 [1,4] 上递增,故有 2a 3 5 , a 1不符题意 a
ln x ln x (x2 1)2
x2
1
令 h(x) x2 ln x ln x
x2
1, h'(x)
2x ln x
x
1 x
, (h' (x))'
2 ln x 1
1 x2
0(x
1)
可知 h' (x) 递减,h' (x) h' (1) 0 ,即 h(x) 递减,h(x) h(1) 0 ,可知 g(x) 递减,g(x) g(1)
x ln x 1 ,所以 (x 1)2
f (1)
1. 2
(Ⅱ)由于定义域为 (0, ) ,令 g(x) x ln x 1 ,
函数 g(x) x ln x 1 在 (0, ) 上单调递增,
因为
g(
1 e2
)
1 e2
1 0 , g(1) e
1 e
4 (将 a 看成主元,后同法一)
【题 2】(2019 学年杭州第四中学下沙校区第一次月考卷,21)
2019届浙江杭州地区四校高三上学期联考数学试卷【含答案及解析】
2019届浙江杭州地区四校高三上学期联考数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 设集合,,则()A .B .C .D .2. 是虚数单位,则复数的虚部为()A . ______________________________B .C . ____________________________D .3. 已知直线,,则“ ”是“ ”的()A . 充分不必要条件______________________________________B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件4. 已知,,则的值为(________ )A . ____________________________B . ____________________________C . _______________________________D .5. 已知实数,满足,则的最小值为(_________ )A . ______________________________B . ______________________________C . ________________________D .6. 设点为有公共焦点,的椭圆和双曲线的一个交点,且,椭圆的离心率为,双曲线的离心率为,若,则()A .B .C . ____________________________D .7. 已知向量,,满足,,若,则的最小值是(________ )A . ________________________B . ______________________________C . 1______________________________________D . 28. 已知函数,则方程的实根个数不可能为()A . 个B . 个 ___________________________________C . 个 ___________D . 个二、填空题9. 若的二项展开式中,所以二项式系数之和为64,则;该展开式中的常数项为 _________ (用数字作答) .10. 已知等比数列的公比,前项和为,若,,成等差数列,,则 ________ ,_________ .11. 函数(且)的图象恒过定点A,若点A在直线(,)上,则 = ________ ;的最小值为 ________ .12. 已知曲线与曲线:,则曲线恒过定点;若曲线与曲线有4个不同的交点,则实数的取值范围是 ________ .13. 袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量,则 _________ . (用分数表示结果)14. 函数的值域为 ________ .15. 记,设,若对一切实数,,恒成立,则实数的取值范围是 .三、解答题16. 在中,内角,,的对边分别为,,,已知.(1)求角的大小;(2)若,求的周长的取值范围 .17. 如图,已知为的外心,角,,的对边分别为,, .(1)若,求的值;(2)若,求的值 .18. 已知数列的各项均为正数,满足, .(1)求证:;(2)若是等比数列,求数列的通项公式;(3)设数列的前项和为,求证: .19. 已知椭圆过直线上一点作椭圆的切线,切点为,当点在轴上时,切线的斜率为 .(1)求椭圆的方程;(2)设为坐标原点,求面积的最小值 .20. 已知函数,其中为非零实数 .(1)讨论函数的单调性;(2)若有两个极值点,,且,求证:参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】。
1911杭四中(吴山校区)高三上期中卷 (1)
林老师编辑整理杭州四中(吴山)2019学年高三(上)期中考试卷满分:150分 时间:120分钟一.选择题(共10小题,每小题4分,共40分).1. 设集合{}8,6,4=M ,集合{}8,7,3=N ,那么N M 等于( )A. {}8,7,6,4,3B.{}8C.{}8,73,D.{}8,64, 2. 下列曲线中实轴长为22的是( )A. 14822=-y xB.12422=-y xC.18422=-y xD.14222=-y x 3. 设R a ∈,则“0=a ”是“直线054:1=-+y ax l 与直线02:2=-+a ay x l 垂直”的( ) A. 充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 4. 已知复数z 满足()52=+z i ,则z 等于( ) A.21B.1C.2D.4 5. 函数[]ππ,,cos 22sin -∈+=x x x y 的图象大致是( )A.B.B.D.6. 已知向量()()2,1,,1--==n m λ,则m 与n 的夹角θ为钝角时,λ的取值范围为( ) A. 21>λ B.21-<λ C.21->λ且2≠λ D.无法确定 7. 已知函数()⎪⎭⎫⎝⎛+=22sin 3x n x f ,若对于任意的R x ∈,都有()()()21x f x f x f ≤≤成立,则21x x -的最小值为( )A.4B.1C.21D.2 8. 设10<<p ,随机变量ξ的分布列为那么,当P 在()1,0内增大时,()ξD 的变化是( )A. 减小B.增大C.先减小后增大D.先增大后减小 9. 若()()()013ln 12≥++-⋅--a x x a x x 在R 上始终成立,则a 的值为( )A.0B.1C.2D.310. 已知()()131,121+=-=x x f x x f ,()()()221x f x f x g +=+()()221x f x f -,若[]5,1,-∈b a ,且当[]b a x x ,,21∈时,()()02121>--x x x g x g 恒成立,则a b -的最大值为( )A.2B.3C.4D.5二.填空题(共7小题,多空题每空3分,单空题每空4分,共36分).11. 已知89,32==ba,则a =_____________,ab =____________.12. 已知a 终边落在()02019:>=x x y l 上,则αtan =___________,⎪⎭⎫⎝⎛+4tan πα=__________. 13. 若双曲线122=-y mx 的渐近线为x y 2±=,则m =________;焦点F 到渐近线的距离为_______.林老师编辑整理14. 已知某几何体的三视图如图所示,则该几何体的体积为_________,最长棱长为___________.15. 实数y x ,满足不等式组⎪⎩⎪⎨⎧≥-+≤--≥+-0405202y x y x y x ,则y x Z 24--=的最大值为_____________.16. 在ABC ∆中,4,22,4π===B BC AB ,动点P 在以点B 为圆心,半径为1的圆上,则⋅的最大值为___________.17. 若4,0≤+>>b a b a ,则ba b a -++2144的最小值为_____________. 三. 解答题(共5题,共74分).18. (14分)已知函数()()ππ+-⎪⎭⎫⎝⎛+=x x x x x f cos sin 32sin cos . (1)求()x f 的最小正周期; (2)当⎥⎦⎤⎢⎣⎡∈2,0πx 时,求函数()x f 的单调递减区间.19. (15分)已知函数()bax x x f +=2(b a ,为常数),且方程()012=+-x x f 有两个实根为4,321==x x .(1)求函数()x f 的解析式;(2)设1>k ,解关于x 的不等式()()xk x k x f --+<21.20. (15分)如图,D 是ABC ∆边BC 上一点,BAD CAD BD AC AB ∠=∠==sin 2sin ,3,32.(1)求DC 的长;(2)若2=AD ,求ABC ∆的面积.林老师编辑整理21. (15分)已知数列{}n a 满足n n n a a a 2121,2111+==-,数列{}n b 满足n n n a b 2=. (1)求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式; (2)设()()()1121+-+-+=n n nn a n a n n n c ,数列{}n c 的前n 项和为n T ,求满足()*63124N n T n ∈<的n 的最大值.22. (15分)已知函数()()R a ax x x a x f ∈-+=3ln 22.(1)若1=a ,求()x f 的单调区间;(2)若对于任意的2e x ≥(e 为自然对数的底数),()0≥xf 恒成立,求a 的取值范围.。
浙江大学附属中学2019-2020学年高三上学期10月月考英语试卷(有答案)
2019-2020学年杭州市浙大附中高三上学期10月月考英语试卷第I卷第一部分听力部分(略)第二部分阅读理解(共两节,满分35分)第一节:(共10小题;每小题2.5分,满分25分)阅读下列短文,从每题所给的A、B、C和D四个选项中,选出最佳选项,并在答题卡上将该项涂黑。
ABill Gates said his three children understand why he has promised to leave his £70 billion fortune to charity when he dies.In a revealing insight into his private life, the Microsoft founder, 60, said his children are “proud” of his decision to devote his money to helping the world's poorest.Gates said that instead of billion-dollar trust funds, his two daughters and son will be given a “great education” to help kick-start their own careers.But the business mogul (大亨) did say there would still be a financial safety net in place, adding, “They are never going to be poorly off”.Gates and his wife Melinda, 52, have three children together, Jennifer, 20, Rory, 17, and Phoebe, 14.Jennifer is in her second year at prestigious Stanford University, California, where her father donated £5million to the construction of a computer science building in his name. She is also an accomplished equestrian (马术骑手), riding in national competitions.The Gates will only pass on a fraction of their vast wealth to their children. The rest will goto their charity, the Bill and Melinda Gates Foundation, which funds health and education projects around the world.He said, “This money is dedicated to helping the poorest. They know that, they are proud of that, they go on trips with us to see the work that's being done.”21. What will Bill Gates' children be given?A. billion-dollar trust fundsB.good educationC. vast wealthD. nothing22. What may be the name of the computer science building Bill Gates donated £5 million to construct?A. Bill GatesB. JenniferC. RoryD. Phoebe23. What's the main idea of this passage?A. Bill Gates' experienceB. How Bill Gates allocates his wealthC. Bill Gates and his childrenD. Bill Gates fortune【答案】21. B 22. A 23. BBStanding in line for the latest iPhone at the Apple store,queuing for tickets to Wimbledon or even just waiting at the post office might just have got a lot easier.Japanese car-maker Nissan claims to have just the thing to relieve the sore legs of weary queuers.The new system of “self-driving” chairs is designed to detect when someone at the front of the queue is summoned, and automatically move everyone else one step forward in line.The new invention is shown off in a company video, which re-enacts (重视) a busy restaurantwith customers waiting outside. In the video, diners are sitting in a row of chairs, but will not have to stand when the next hungry diner is called to a table. Instead the chairs, equipped with autonomous technology that detects the seat ahead, slide along a path toward the front of the line. When the person at the front of the queue is summoned, the empty chair at the front can sense it is empty and so moves out of pole position. Cameras on the remaining chairs then sense the movement and follow automatically.The system, which is similar to the kind used in Nissan's autonomous vehicle technology, will be tested at select restaurants in Japan this year, Nissan said.Although Tokyo has some 160,000 restaurants, long queues are not uncommon. Therefore this system appeals to anyone who has queued for hours outside a crowded restaurant: it reduces the physical stress of standing in line, Nissan added.Nissan also released a short video showing the chairs being used in an art gallery, moving slowly in front of the various paintings to let viewers appreciate the art without the need to stand up.24. What's the meaning of"summoned"underlined in paragraph 3?-A. detectedB. calledC. shownD. tested25. “Self-driving”chairs have already been used in a(an) .A. restaurantB. Apple storeC. post officeD. art gallery26. According to the passage, which of the following statement is true?A. With “self-driving” chairs, people will be released of queuing.B. The new invention is shown off in a busy restaurant.C. When the person at the front is summoned, all the chairs move out of pole position.D. Long queues are common in Tokyo’s restaurants.【答案】24. B 25.D 26.DCUNICEF is calling on world leaders to reduce air pollution, saying it leads to the deaths of more children yearly than malaria (疟疾) and HIV/AIDS combined.Around 600,000 children under age 5 die every year from diseases caused by or worsened by outdoor and indoor air pollution, especially in poor nations, UNICEF Executive Director Anthony Lake said in the introduction to a report titled “Clear the Air for Children.”“Pollutants don't only harm children’s developing lungs, they can actually cross the blood brain barrier and permanently damage their developing brains, and, thus, their futures. No society can afford to ignore air pollution.”UNICEF is asking world leaders to take four steps:●Reduce pollution by cutting back on fossil fuel burn and investing in energy efficiency.●Increase children's access to health care, including more immunization (免疫) programsand information programs about pneumonia, a leading killer of children under 5.●Minimize children's exposure to air pollution by keeping schools away from factoriesand other pollution sources and using cleaner cookstoves in homes.●Improve monitoring of air pollution.UNICEF said its air pollution report uses satellite imagery to show the global scope of the air pollution problem.Around 2 billion children live in places with outdoor pollution exceeding (超过) World Health Organization air quality guidelines, the report said. Most of these children live in low and middle income countries.That includes 620 million in South Asia, 520 million in Africa and 450 million in East Asia and the Pacific, UNICEF said.The outdoor air pollution is most common in low-income, urban areas and is caused byvehicle emissions, heavy use of fossil fuels, dust and burning of waste, the report said.The satellite map doesn't take into account the dangers of indoor pollution, primarily a problem in lower-income, rural areas where people use solid fuels like coal and wood for cooking and heating.More than 1 billion children live in homes where solid fuels are used in this way, UNICEF said, For example, 81% of rural households, in India use this kind of fuiel because it's cheap and Air pollution is an especially serious threat for children because their lungs and immune systems are developing, the report said.Unborn children are also at risk. Studies show long-time exposure to high levels of dust matter is associated with high rates of fetal loss, premature births and lower birthrates.27. UNICEF calls on the following steps except .A. Reduce fossil fuel combustionB. Give children more access to health careC. Stop Children's exposure to air pollution.D. Strengthen monitoring of air pollution28. According to the passage, which country's children are less likely to die from air pollution than the others?A. AmericaB. South AfricaC. East Asian and the PacificD. India29.The.author's attitude towards the steps that UNICEF calls on world leaders to take is .A. positiveB. negativeC. supportiveD. not mentioned30. This passage is probably taken fromA. a storyB. an advertisement.C. a geography magazineD. a news report【答案】27. C 28.A 29. D 30. D第二节:(共5个小题;每小题2分,满分10分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。
2019届浙江省杭州市高三上学期10月月考语文试卷【含答案及解析】
2019届浙江省杭州市高三上学期10月月考语文试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 下列词语中加点的字,每对读音完全相同的一组是()A .插空办理 / 唱空暗自猜度 / 年度酌情裁处 / 查处___________B .黑咕隆咚 / 轰隆________ 长袖善舞 / 长物直截了当 / 了了C .抄没家产 / 湮没不肖子孙 / 生肖________ 钻营取巧 / 钻床D .成宿不睡 / 星宿擂鼓一通 / 通稿济济一堂 / 济阳2. 下列词语中,没有错别字的一组是()A .在我看来,他睿智的讲话,不仅向我们传达了人生的真谛,而且让我们见证了什么是勤能补拙。
B .在那艰苦的日子里,她递过来的那一瓢水如同甘霖,滋润了我的心田,此后我面对任何磨砺都没皱过一下眉头,我决心像她那样去帮助别人,积腋成裘,绝不因善小而不为。
C .杨子荣气冲宵汉的英雄气概深深地震撼了我,我终于明白了谁才是中国革命的中流砥柱。
D .有人说,作为新中国第一代高铁女司机,她飒爽英姿地驾驶着风弛电掣的高铁列车,让很多女性羡慕不已。
3. 下列各句中,加点的词语运用不正确的一项是()A .在席卷全球的金融危机中,连那些长袖善舞的科班出身的经济学博士都被赶出华尔街,到地铁卖热狗去了,何况他这个半路出家的?B .在外打拼数十年后,他回到了家乡,用省吃俭用的体己钱捐建了一所希望小学,为发展当地的教育事业奉献了拳拳爱心。
C .新闻发布会上,他讲话仅用了八分钟,简洁明了,新闻性、针对性强,没有一句穿靴戴帽的空话套话。
D .在热心公益蔚然成风的今天,百名青年在某市首届成人礼活动中,以无偿献血作为自己成长的见证,体现了当代青年的责任感。
4. 下列各句中没有语病的一句是()A .除了驾驶员要有熟练的驾驶技术、丰富的驾驶经验之外,汽车本身的状况,也是保证行车安全的重要条件之一。
B .我国重新修订《食品安全法》,目的是用更严格的监管、更严厉的处罚、更严肃的问责,切实保障“舌尖上的安全”,被称为“最严食品安全法”。
2019-2020学年浙江省杭州四中高三(上)10月月考数学试卷(解析版)
2019-2020学年浙江省杭州四中高三(上)10月月考数学试卷一、选择题:每小题4分,共40分1.已知全集U={1,2,3,4,5,6},集合A={2,3,5},B={1,3,4},则A∩(∁U B)=()A.{3}B.{2,5}C.{1,4,6}D.{2,3,5}2.已知复数z=2+i,则z•=()A.B.C.3D.53.在△ABC中,“sin A=”是“A=”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件4.双曲线的一条渐近线的倾斜角为50°,则C的离心率为()A.2sin40°B.2cos40°C.D.5.△ABC的内角A,B,C的对边分别为a,b,c,已知a sin A﹣b sin B=4c sin C,A=120°,则=()A.4B.3C.2D.16.若x,y满足|x|≤1﹣y,且y≥﹣1,则3x+y的最大值为()A.﹣7B.1C.5D.77.随机变量X的取值为0,1,2,若P(X=0)=,E(X)=1,则D(X)=()A.B.C.D.8.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M 是线段ED的中点,则下列结论正确的是()A.二面角D﹣BC﹣E是直二面角B.直线BM,EN是异面直线C.CM⊥END.直线EN与平面MCB所成角的正弦值为9.某校的A,B,C,D四位同学准备从三门选修课中各选一门,若要求每门选修课至少有一人选修,且A,B不选修同一门课,则不同的选法有()A.36种B.72种C.30种D.66种10.设函数f(x)的定义域为R,满足,且当x∈(0,1]时,f(x)=x(x ﹣1).若对任意x∈[m,+∞),都有,则m的最小值是()A.B.C.D.二、填空题:单空题每题4分,多空题每题6分11.已知,,则cosα=,sin(2π﹣α)=.12.设函数f(x)=2e x+ae﹣x(a为常数).若f(x)为奇函数,则a=;若f(x)是R上的增函数,则a的取值范围是.13.在的展开式中,只有第5项的二项式系数最大,则n=;展开式中常数项是.14.记S n为正项等比数列{a n}的前n项和.若S4=4,S6﹣S2=1,则公比q=;S8=.15.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于cm3.16.已知直线y=a交抛物线y=x2于A,B两点,若该抛物线上存在点C,使得∠ACB为直角,则a的取值范围为.17.已知向量,,||=1,||=2,θ为,的夹角,若对任意单位向量,均有|•|+|•|≤,则θ的取值范围是.三、解答题:5小题,共74分18.在平面直角坐标系xOy中,设点集.从集合M n中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1时,求X得概率分布;(2)对给定的正整数n(n≥3),求概率P(X<n)(用n表示).19.如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求AM与平面A1MD所成角的正弦值.20.已知数列{a n}和{b n}满足a1=1,b1=0,4a n+1=3a n﹣b n+4,4b n+1=3b n﹣a n﹣4.(1)求{a n}的通项公式;(2)我们知道,对的放缩需因题制宜,如;;.若记{a n}的前n项和为S n,试证:.21.已知椭圆的右焦点为(1,0),且经过点A(0,1).(1)求椭圆C的方程;(2)设O为原点,直线l:y=kx+t(t≠±1)与椭圆C交于两个不同点P,Q,直线AP 与x轴交于点M,直线AQ与x轴交于点N,若.求证:直线l经过定点.22.已知函数.(1)证明:f(x)恰有两个零点x1,x2且x1x2=1;(2)设x0是f(x)的一个零点,证明:是曲线y=lnx和曲线y=e x的公切线.2019-2020学年浙江省杭州四中高三(上)10月月考数学试卷参考答案与试题解析一、选择题:每小题4分,共40分1.已知全集U={1,2,3,4,5,6},集合A={2,3,5},B={1,3,4},则A∩(∁U B)=()A.{3}B.{2,5}C.{1,4,6}D.{2,3,5}【解答】解:∵全集U={1,2,3,4,5,6},集合A={2,3,5},B={1,3,4},∴∁U B={2,5,6},则A∩(∁U B)={2,5},故选:B.2.已知复数z=2+i,则z•=()A.B.C.3D.5【解答】解:∵z=2+i,∴z•=.故选:D.3.在△ABC中,“sin A=”是“A=”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【解答】解:在△ABC中,由sin A=⇔A=,或.∴“sin A=”是“A=”的必要非充分条件,故选:B.4.双曲线的一条渐近线的倾斜角为50°,则C的离心率为()A.2sin40°B.2cos40°C.D.【解答】解:双曲线的渐近线方程为y=±x,由双曲线的一条渐近线的倾斜角为50°,得=tan50°=,则,得,∴e=.故选:D.5.△ABC的内角A,B,C的对边分别为a,b,c,已知a sin A﹣b sin B=4c sin C,A=120°,则=()A.4B.3C.2D.1【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c,a sin A﹣b sin B=4c sin C,cos A=﹣,∴由正弦定理可得a2﹣b2=4c2,①由余弦定理可得cos A=﹣=,②∴联立①②解得b=3c,∴=3.故选:B.6.若x,y满足|x|≤1﹣y,且y≥﹣1,则3x+y的最大值为()A.﹣7B.1C.5D.7【解答】解:由作出可行域如图,联立,解得A(2,﹣1),令z=3x+y,化为y=﹣3x+z,由图可知,当直线y=﹣3x+z过点A时,z有最大值为3×2﹣1=5.故选:C.7.随机变量X的取值为0,1,2,若P(X=0)=,E(X)=1,则D(X)=()A.B.C.D.【解答】解:设P(X=1)=p,P(X=2)=q,∵E(X)=0×+p+2q=1①,又+p+q=1,②由①②得,p=,q=,∴D(X)=(0﹣1)2+=,故选:B.8.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M 是线段ED的中点,则下列结论正确的是()A.二面角D﹣BC﹣E是直二面角B.直线BM,EN是异面直线C.CM⊥END.直线EN与平面MCB所成角的正弦值为【解答】解:点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,如图,构造长方体ABCD﹣PQGH,则E是GH中点,在A中,∵二面角D﹣BC﹣G是直二面角,∴二面角D﹣BC﹣E是锐二面角,故A错误;在B中,连结BD,MN,则N是BD中点,∴MN∥BE,∴BM与EN是相交线,故B错误;在C中,以C为原点,CD为x轴,CB为y轴,CG为z轴,建立空间直角坐标系,设AB=2,则B(0,2,0),C(0,0,0),D(2,0,0),E(1,0,),M(,0,),E(1,0,),N(1,1,0),=(),=(0,1,﹣),=﹣≠0,∴CM与EN不垂直,故C错误;在D中,=(0,1,﹣),=(),=(0,2,0),设平面MCB的法向量=(x,y,z),则,取x=1,得=(1,﹣,0),设直线EN与平面MCB所成角为θ,则sinθ==.∴直线EN与平面MCB所成角的正弦值为.故D正确.故选:D.9.某校的A,B,C,D四位同学准备从三门选修课中各选一门,若要求每门选修课至少有一人选修,且A,B不选修同一门课,则不同的选法有()A.36种B.72种C.30种D.66种【解答】解:从A,B,C,D四位同学中选出2个作为一个整体,4个人就变成了三个,所有的选法有C42=6种,从中去掉A,B作为一个整体的情况,还有5种情况.这三人从三门选修课中各选一门,共有A33=6种方法.根据分步计数原理,不同的选法有5×6=30 种,故选:C.10.设函数f(x)的定义域为R,满足,且当x∈(0,1]时,f(x)=x(x ﹣1).若对任意x∈[m,+∞),都有,则m的最小值是()A.B.C.D.【解答】解:∵,∴f(x)=2f(x+1)当x∈(0,1]时,f(x)=x(x﹣1)∈[,0],x∈(﹣1,0]时,x+1∈(0,1],f(x)=2f(x+1)=2(x+1)x∈[,0],x∈(﹣2,﹣1]时,x+1∈(﹣1,0],f(x)=2f(x+1)=4(x+2)(x+1)∈[﹣1,0],将函数大致图象在数值上画出,如图x∈(﹣2,﹣1]时,令4(x+2)(x+1)=﹣,解得:x1=,x2=﹣,若对任意x∈[m,+∞),都有f(x)≥﹣,所以m≥﹣,故选:A.二、填空题:单空题每题4分,多空题每题6分11.已知,,则cosα=,sin(2π﹣α)=.【解答】解:由,得﹣cosα=﹣,则cosα=;又,∴sin(2π﹣α)=﹣sinα=.故答案为:;.12.设函数f(x)=2e x+ae﹣x(a为常数).若f(x)为奇函数,则a=﹣2;若f(x)是R上的增函数,则a的取值范围是(﹣∞,0].【解答】解:f(x)的定义域为R,∴若f(x)为奇函数,则f(0)=2+a=0,∴a=﹣2;f′(x)=2e x﹣ae﹣x,若f(x)是R上的增函数,则2e x﹣ae﹣x>0,∴a<2e2x,∴a≤0,∴a的取值范围是(﹣∞,0].故答案为:﹣2,(﹣∞,0].13.在的展开式中,只有第5项的二项式系数最大,则n=8;展开式中常数项是7.【解答】解:在的展开式中,只有第5项的二项式系数最大,则展开式共有9项,∴n=8.展开式的通项公式为T r+1=(﹣1)r••,令8﹣=0,求得r=6,可得展开式中常数项是•=7,故答案为:8;7.14.记S n为正项等比数列{a n}的前n项和.若S4=4,S6﹣S2=1,则公比q=;S8=.【解答】解:∵S4=4,S6﹣S2=1,q>0.∴a1(1+q+q2+q3)=4,a1q2(1+q+q2+q3)=1,解得a1=,q=,则公比q=;S8==.故答案为:,.15.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于6+1.5πcm3.【解答】解:根据几何体的三视图知,该几何体是三棱柱与半圆柱体的组合体,结合图中数据,计算它的体积为:V=V三棱柱+V半圆柱=×2×2×3+•π•12×3=(6+1.5π)cm3.故答案为:6+1.5π.16.已知直线y=a交抛物线y=x2于A,B两点,若该抛物线上存在点C,使得∠ACB为直角,则a的取值范围为[1,+∞).【解答】解:如图所示,可知A,B,设C(m,m2),,.∵该抛物线上存在点C,使得∠ACB为直角,∴=.化为m2﹣a+(m2﹣a)2=0.∵m,∴m2=a﹣1≥0,解得a≥1.∴a的取值范围为[1,+∞).故答案为[1,+∞).17.已知向量,,||=1,||=2,θ为,的夹角,若对任意单位向量,均有|•|+|•|≤,则θ的取值范围是[arccos,π].【解答】解:向量,,||=1,||=2,θ为,的夹角,若对任意单位向量,均有|•|+|•|≤,∴+≤,即在上投影的模与在上投影的模的和小于或等于,∴当∥时,取等号,∴|+|≤,故有+2•+≤6,即1+2•+4≤6,∴1+2•1•2•cosθ+4≤6,求得cosθ≤,则θ的取值范围为[arccos,π],故答案为:[arccos,π].三、解答题:5小题,共74分18.在平面直角坐标系xOy中,设点集.从集合M n中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1时,求X得概率分布;(2)对给定的正整数n(n≥3),求概率P(X<n)(用n表示).【解答】解:(1)当n=1时,X的所有可能取值为1,,2,,X的概率分布为P(X=1)==,P(X=)==,P(X=2)==,P(X=)==.(2)设A(a,b)和B(c,d)是从M n中取出的两个点,因为P(X≤n)=1﹣P(X>n),所以只需考虑X>n的情况,①若b=d,则AB≤n,不存在X>n的取法;②若b=0,d=1,则AB=≤,所以X>n当且仅当AB=,此时a=0.c=n或a=n,c=0,有两种情况;③若b=0,d=2,则AB=≤,所以X>n当且仅当AB=,此时a=0.c=n或a=n,c=0,有两种情况;④若b=1,d=2,则AB=≤,所以X>n当且仅当AB=,此时a=0.c=n或a=n,c=0,有两种情况;综上可得当X>n,X的所有值是或,且P(X=)=,P(X=)=,可得P(X≤n)=1﹣P(X=)﹣P(X=)=1﹣.19.如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求AM与平面A1MD所成角的正弦值.【解答】解:(1)证明:如图所示,过点N作NH⊥AD,则NH∥AA1,且NH=AA1,又MB∥AA1,且MB=AA1,∴四边形NMBH为平行四边形,则NM∥BH,由NH∥AA1,N为A1D中点,得H为AD中点,而E为BC中点,∴BE∥DH,且BE=DH,∴四边形BEDH为平行四边形,则BH∥DE,∴NM∥DE,∵NM⊄平面C1DE,DE⊂平面C1DE,∴MN∥平面C1DE;(2)以D为坐标原点,DA所在直线为x轴,DE所在直线为y轴,DD1所在直线为z轴建立空间直角坐标系,则A(2,0,0),A1(2,0,4),M(1,,2),设平面A1MD的一个法向量为=(x,y,z),由,∴,取x=2,y=0,z=﹣1,得=(2,0,﹣1),=(﹣1,,2),∴cos<,>===﹣.∴AM与平面A1MD所成角的正弦值为﹣.20.已知数列{a n}和{b n}满足a1=1,b1=0,4a n+1=3a n﹣b n+4,4b n+1=3b n﹣a n﹣4.(1)求{a n}的通项公式;(2)我们知道,对的放缩需因题制宜,如;;.若记{a n}的前n项和为S n,试证:.【解答】解:(1)数列{a n}和{b n}满足a1=1,b1=0,4a n+1=3a n﹣b n+4,①4b n+1=3b n ﹣a n﹣4.②由①+②得:所以4(a n+1+b n+1)=2(a n+b n),整理得,所以数列{a n+b n}是以a1+b1=1为首项,为公比的等比数列.所以③.同理①﹣②得(a n+1﹣b n+1)=(a n﹣b n)+2,即(a n+1﹣b n+1)﹣(a n﹣b n)=2(常数),所以数列{a n﹣b n}是以a1﹣b1=1为首项,2位公差的等差数列.所以a n﹣b n=2n﹣1.④③+④得,所以.证明:(2)由于数列{a n}的前n项和为S n,所以==.=,则<,所以=.所以成立.21.已知椭圆的右焦点为(1,0),且经过点A(0,1).(1)求椭圆C的方程;(2)设O为原点,直线l:y=kx+t(t≠±1)与椭圆C交于两个不同点P,Q,直线AP 与x轴交于点M,直线AQ与x轴交于点N,若.求证:直线l经过定点.【解答】解:(1)设椭圆的焦距为2c,则,解得,∴椭圆C的方程为;(2)证明:设P(x1,y1),Q(x1,x2),由消去y得:(2k2+1)x2+4ktx+2t2﹣2=0,由韦达定理得x1+x2=,……①由A(0,1)与P(x1,y1)可得直线AP的方程为:,∴M(,0),同理:N(,0),又,∴,化简得x1x2﹣y1y2+(y1+y2)﹣1=0,∴,将①代入并化简有:t2+2t﹣3=0,∴t=﹣3或t=1(舍)∴直线l的方程为:y=kx﹣3,经过定点(0,﹣3).22.已知函数.(1)证明:f(x)恰有两个零点x1,x2且x1x2=1;(2)设x0是f(x)的一个零点,证明:是曲线y=lnx和曲线y=e x的公切线.【解答】解:(1)函数,定义域为(0,1)∪(1,+∞);f′(x)=+>0,(x>0且x≠1),∴f(x)在(0,1)∪(1,+∞)上单调递增;因为,所以f(x)在(1,+∞)上存在唯一零点x1,即f(x1)=0,x1>1;所以,且;所以f(x)在(0,1)上有唯一零点.所以f(x)恰有两个零点x1,x2且x1x2=1;(2)因为x0为f(x)的零点,则;由y=lnx,在x=x0处;所以曲线y=lnx在(x0,lnx0)处的切线为l1:;由化简得切线l1为:;当曲线y=e x切线斜率为时,即,则x=﹣lnx0;所以切点为;则过切点曲线y=e x的切线为l2:;由,切线为l2的方程化简为:;所以l1和l2相同;故是曲线y=lnx和曲线y=e x的公切线;。
浙江省杭州第四中学2019学年高三年级上第三次月考数学试题
22.(15 分)已知实数 a 0 ,设函数 f x 1 a ln x x 1 .
2
(1)当 a 1 时,求函数 f x 的单调区间;
(2)对任意
x
1 e2
, 均有
f x
x 2a
,求 a 的取值范围.
的不同实根个数是( )
A.3
B.4
C.5
D.6
6.中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠,牛,虎,兔,龙,蛇,马,羊,猴,
第Ⅱ卷 (非选择题,共 110 分)
鸡,狗,猪)的一种,现有十二生肖的吉祥物各一个,甲,乙,丙三位同学依次选一个作为礼物,甲同学喜欢牛和
马,乙同学喜欢牛,兔,狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取的礼物都满意,那么不同的选法
B. Dx 是偶函数
C. Dx 不是周期函数
D. Dx 不是单调函数
D.-10
2x y 1 0
7.
设关于
ቤተ መጻሕፍቲ ባይዱx,
y
的不等式组
ym0
表示的平面区域存在点 Px0 , y0 满足 x0 2 y0 2 ,则 m 的取值范围是
y m 0
()
A. , 4 3
B. , 1 3
C. , 2
3
D. , 5
3
8. 设 0 a 1,已知随机变量 X 的分布列是
X
0
a
1
P
1
3
若 DX 1 ,则 a =(
)
6
A. 1
2019年杭高届高三第四次月考语文试卷.doc
注意事项:本试卷满分150分。
考试时间150分钟。
答案一律做在答卷上。
一、语言文字运用(共24分,其中选择题每小题3分)1.下列词语中加点的字的读音全都正确的一组是A.粘贴(zhān)玷污(zhān)龌龊(wò)运筹帷幄(wò)B.蹉跎(cuō)磋商(cuō)遭殃(yāng)怏怏不乐(yāng)C.飞镖(biāo)剽悍(biāo)绯红(fēi)妄自菲薄(fēi)D.蜿蜒(yán)筵席(yán)市侩(kuài)脍炙人口(kuài)2.下列各句中没有错别字的一句是:A.这块表是爷爷留传下来的,虽说款式陈旧,但走时还挺准的,你就凑和着用吧。
B.刚一落座,他就跷起大拇指称赞起来,听着他滔滔不绝的赞美还真让人有点受不了。
C.人无信不立,一诺千斤是中华民族的传统美德。
与朋友交往当坚守一个信字,即使是赴汤蹈火也要实现自己的诺言。
D.去年八月,承蒙大家鼎立相助,让我渡过了人生中的一大难关,感激之情无以附加。
3.下列各句中,加点词语运用正确的是:A.这个案子可能会比较复杂,如果大家知道举证人死了,涉嫌受贿渎职的问题可能就查不下去,有些关键人物就会一退六二五。
B.退场——威胁裁判——电话威胁主管部门——要求重赛——暂时退出!当现代队沿着这个清晰的战术亦步亦趋时,我对中国足球认识的幼稚再次被印证。
C.几百元甚至不名一文的石头,一旦经了你的发现因了你的品位,有可能成为价值成千上万的奇石。
D.1978年,文学开始复苏,当《班主任》《哥德巴赫猜想》等一批文艺作品刚刚露头的时候,一向沉稳的严文井兴奋得拍案而起,激动得大喊大叫。
4.下列各句中没有语病的一项是:A.在当今这个法治社会中,执法人员是为民保平安的,可是部分执法者法治观念淡薄,动辄就出手伤人,令人担忧。
B.“甲流”期间,卫生部门建议广大市民及早治疗,一旦出现发热、咳嗽等症状应及时到就近医院发热门诊就医。
C. 在这部作品中,并没有给人们多少正面的鼓励和积极的启示,相反,其中一些情节的负面作用倒是不少。
2020届浙江省杭州市第四中学高三上学期10月月考数学试题(解析版)
【答案】B
【解析】
【分析】
设 , ,则由 , ,列出方程组,求出 , ,由此能求出 .
【详解】设 , ,
①,
又 ,②
由①②得, , ,
,
故选:B.
【点睛】本题考查离散型随机变量的方差的求法,考查离散型随机变量的分布列、数学期望的求法等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想,是中档题.
8.如图,点 为正方形 的中心, 为正三角形,平面 平面 , 是线段 的中点,则下列结论正确的是()
A. 二面角 是直二面角B. 直线 , 是异面直线
C. D. 直线 与平面 所成角的正弦值为
【答案】D
【解析】
【分析】
构造长方体 ,则 是 中点.在 中,二面角 是锐二面角;在 中,连结 , ,则 是 中点, ,从而 与 是相交线;在 中,以 为原点, 为 轴, 为 轴, 为 轴,建立空间直角坐标系,利用向量法推导出 与 不垂直;在 中,求出平面 的法向量,利用向量法能求出直线 与平面 所成角的正弦值.
2019-2020学年浙江省杭州四中高三(上)10月月考
数学试卷
一、选择题:每小题4分,共40分
1.已知全集 ,集合 , ,则 ()
A. B. C. D.
【答案】B
【解析】
【分析】
根据集合的基本运算进行求解即可.
【详解】 全集 ,集合 , ,
,
则 ,
故选:B.
【点睛】本题主要考查集合的基本运算,比较基础.
【详解】 的内角 , , 的对边分别为 , , , , ,
由正弦定理可得 ,①
由余弦定理可得 ,②
联立①②解得 ,
.
故选:B
高中数学2019学年杭四高三上第一次月考
2019学年杭四高三上第一次月考一、选择题:每小题4分,共40分1. 已知集合{}1,0,1A =-,{}21,B y y x x A ==-∈,则A B =I ( )A .{}1,0,1-B .{}1,1-C .{}0D .∅2. 设i 是虚数单位,若复数z 满足()12z +=i i ,则z =( )A .1+iB .1-iC .1-+iD .1--i3.n S 为等差数列{}n a 的前n 项和,若1717S =,则9a =( )A .1B .2C .3D .44. 已知函数()y f x x =+是偶函数,且()21f =,则()2f -=( )A .1-B .1C .5-D .55. 当0x >,0y >时,“2x y +≤”是“1xy ≤”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件6. 将函数sin2y x π=的图象向右平移2个单位后,得到函数()f x 的图象,则函数()f x 的单调递减区间是( )A .[]12,12,k k k -++∈ZB .[]14,34,k k k ++∈ZC .[]14,14,k k k -++∈ZD .4414,14,k k k ππ⎡⎤-++++∈⎢⎥⎣⎦Z7. 已知两个平面,αβ和三条直线,,m a b ,若m αβ=I ,a α⊂且a m ⊥,b β⊂,设α和β所成的一个二面角的大小为1θ,直线a 和平面β所成的角的大小为2θ,直线a ,b 所成的角的大小为3θ,则( ) A .123θθθ=≥ B .312θθθ≥=C .13θθ≥,23θθ≥D .12θθ≥,32θθ≥8. 若双曲线22:1C x y -=的右顶点为A ,过A 的直线l 与双曲线C 的两条渐近线交于,P Q 两点,且2PA AQ =u u u r u u u r,则直线l 的斜率为( )A .13B .23C .2D .39. 某外商计划在4个候选城市中投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有( ) A .16种B .36种C .42种D .60种10. 已知非零向量,,a b c 满足()():220--=a c b c ,且不等式||||||λ+-≥a +b a b c 恒成立,则实数λ的最大值为( ) A .2 B .3C .4D .5二、填空题:7小题,共36分11. 设直线()1:3453l m x y m ++=-与()2:258l x m y ++=,若12l l ∥,则m = ;若12l l ⊥,则m = .12. 若α的终边在射线()20y x x =<上,则sin cos αα-= ;tan2α= .13. 已知直角坐标系中,()2,0A -,()2,0B ,动点P满足PA PB =,则点P 的轨迹方程是 ;轨迹为 . 14.()()621x x ++展开式中,3x 项的系数为 ;所有项系数的和为 .15. 某几何体的三视图如图所示,每个小方格的边长为1,则该几何体的表面积为 .16. 已知()()()()2301log 113xx f x x x ⎧<≤⎪=⎨-<≤⎪⎩,若()()[]0,1f f t ∈,则实数t 的取值范围是 .17. 若关于x 的方程20x ax b ++=(a ,b ∈R )在区间[]0,1上有实根,则()222a b +-的最小值是 .三、解答题:5小题,共74分18. (14分)在ABC △中,A ,B ,C 所对边分别为a ,b ,c ,已知(),2m a c b =-u r ,()cos ,cos n C A =r,且m n ⊥u r r .(1)求角A 的大小;(2)若123AB AC -=u u u r u u u r,求ABC △面积的最大值.俯视图侧视图正视图19. (15分)如图,四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,侧面PCD 为正三角形且二面角P CD A --为60︒.(1)设侧面P AD 与PBC 的交线为m ,求证:m BC ∥; (2)设底边AB 与侧面PBC 所成角为θ,求sin θ的值.20. (15分)已知正项数列{}n a ,其前n 项和为n S ,且对任意*n ∈N ,n a 与1的等差中项等于n S 与1的等比中项;数列{}n b 满足11b =且1n n b b n +=. (1)求数列{}n a 的通项公式; (2)求证:12311111nb b b b ++++≥L .DC BAP21. (15分)已知()11,A x y ,()22,B x y 是抛物线22y x =上任意异于原点O 的不同两点,F 是焦点,直线AB 与x 轴交于点(),0M m . (1)求证:212x x m =;(2)当OA OB ⊥时,求AOB △面积的最小值.22. (15分)已知函数()ln 1x xf x x =+,()f x '为()f x 的导函数.e 为自然对数的底数. (1)求()1f '的值; (2)求证:()e 10f x +>;(3)若()()1f x m x ≤-对[)1,x ∈+∞恒成立,求实数m 的取值范围.。
2019-2020学年杭州第四中学高三语文月考试卷及答案
2019-2020学年杭州第四中学高三语文月考试卷及答案一、现代文阅读(36分)(一)现代文阅读I(9分)阅读下面的文字,完成各小题。
“忘言得意”是玄学在认识方法上提出的一个主要观点,也是中国传统哲学的重要思维方式之一。
玄学大家王弼在《老子指略》里说;“夫欲定物之本者,则虽近必自远以证其始。
夫欲明物之所由者,则虽显而必自幽以叙其本。
”这里的“本”“始”即他所谓无形无象、无称无名的“道”。
郭象也同样强调,欲求圣人之道,不应停留在有形之“迹”上,而应当进而把握其“无迹”之“所以迹”。
因此,“忘言得意”的实质,就是认识事物不要停留在迹象上,而要深入内部去把握其根本。
就这方面而言,“忘言得意”反映了人们深化对宇宙、社会认识的要求。
对于“得意”,王弼认为要通过言象获得,而郭象不仅仅讲“寄言以出意”,还更多地强调通过“超言绝象”的“冥合”去获得。
无论哪一种,都强调要充分发挥认识主体的能动作用,而“得意”之深浅,又与认识主体的素质有着密切的关系。
就此而言,这种认识方法包含了由外而内、由内而外、得之于外、证之于内、内外合一、主客通明的过程。
这也正是中国传统哲学思维方法中的一些最重要的特点。
“忘言得意”论不仅在中国传统哲学的思维方式上有着重要的意义,而且对中国传统文学艺术的创作论,尤其是欣赏论也有着巨大的影响。
中国人最注重得意于言外,喜欢那些“意犹未尽”“韵味无穷”的文学艺术作品。
对于只能就眼前呈现的形象来评论文学艺术的人,则认为他根本不够一个真正欣赏者的资格。
苏轼就在一首论画诗中写道:“论画以形似,见与儿童邻。
赋诗必此诗,定非知诗人。
”中国这种传统的欣赏论,给文学艺术欣赏者带来了极大的自由。
同一对象,不同的欣赏者从不同角度、以不同心情去欣赏,往往各有所得。
即使是同一欣赏者,在不同的环境和心情下,对同一欣赏对象也往往有不同的体会。
欣赏者可以充分发挥其主观能动性,以至可以完全离开创作者的原意,体会出另一种新意来。
玄学的“忘言得意”论,无论在思维方式上,还是在文学艺术的欣赏上,都表现出一定的主观随意性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019学年杭四高三上10月月考
一、选择题:每小题4分,共40分
1. 已知全集{}1,2,3,4,5,6U =,{}2,3,5A =,{}1,3,4B =,则()U A C B =( )
A .{}3
B .{}2,5
C .{}1,4,6
D .{}2,3,5
2. 已知复数2z i =+,则z z ⋅=( )
A
B
C .3
D .5
3. 在ABC △中,“1sinA 2=”是 “6
A π
=”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
4. 双曲线()22
22:10,0x y C a b a b
-=>>的一条渐近线的倾斜角为50︒,则C 的离心率为( )
A .2sin40︒
B .2cos40︒
C .1sin50︒
D .1
cos50︒
5.
ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 4sin a A b B c C -=,120A =︒,则b
c
=
( )
A .4
B .3
C .2
D .1
6. 若x ,y 满足1x y ≤-,且1y ≥-,则3x y +的最大值为( )
A .5
B .1
C .4
D .6
7. 随机变量X 的取值为0,1,2,若()1
=0=5
P X ,()=1E X ,则()D X =( )
A .15
B .2
5 C
D
8. 如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的
中点,则下列结论正确的是( ) A .二面角D BC E --是直二面角 B .直线BM ,EN 是异面直线
C .CM EN ⊥
D .直线EN 与平面MCB 所成角的正弦值为34
9. 某校A ,B ,C ,D 四位同学准备从三门选修课中各选一门,若要求每门选修课至少有一人选修,且A ,
B 不选修同一门课,则不同的选法有( ) A .30种
B .36种
C .66种
D .72种
A
B
C
D
N
M
E
10. 设函数()f x 的定义域为R ,满足()()1
12
f x f x +=
,且当(]0,1x ∈时,()()1f x x x =-.若对任意[),x m ∈+∞,都有()9
8
f x ≥-,则m 的最小值是( )
A .43-
B .53
- C .54-
D .6
5
-
二、填空题:单空题每题4分,多空题每题6分
11. 已知()1cos 3πα+=-,322
π
απ<<,则cos α= ,()sin 2πα-= .
12. 设函数()2e e x x f x a -=+(a 为常数).若()f x 为奇函数,则a = ;若()f x 是R 上的增函数,
则a 的取值范围是 .
13.
在2
n
x ⎛ ⎝的展开式中,只有第5项的二项式系数最大,则n = ;展开式中常数项
是 .
14. 记n S 为正项等比数列{}n a 的前n 项和.若44S =,621S S -=,则公比q = ;
8S = .
15. 某几何体的三视图如图所示(单位:cm ),则该几何体的体积等于 3cm .
16. 已知直线y a =交抛物线2y x =于A ,B 两点.若该抛物线上存在点C ,使得ACB ∠为直角,则a 的取
值范围为 .
17. 已知向量a ,b ,1=a ,2=b ,θ为a ,b 的夹角,若对任意单位向量e
,均有⋅+⋅≤a e b e 则θ的取值范围是 . 三、解答题:5小题,共74分
18. 在平面直角坐标系xOy 中,设点集(){},0,1,2
;0,1,2.n M i j i n j n *===∈Ν.从集合n M 中任取两个不
同的点,用随机变量X 表示它们之间的距离. (1)当1n =时,求X 得概率分布;
(2)对给定的正整数()3n n ≥,求概率()P X n <(用n 表示).
俯视图
侧视图
正视图
19. 如图,直四棱柱1111ABCD A B C D -的底面是菱形,14AA =,2AB =,60BAD ︒∠=,E ,M ,N 分别
是BC ,1BB ,1A D 的中点. (1)证明:MN ∥平面1C DE ;
(2)求AM 与平面1A MN 所成角的正弦值.
20. 已知数列{}n a 和{}n b 满足11a =,10b =,1434n n n a a b +=-+,1434n n n b b a +=--.
(1)求{}n a 的通项公式;
(2)我们知道,对21
n
的放缩需因题制宜,如()()21111121n n n n n n <
=---≥; ()()()221111*********n n n n n n n ⎛⎫<==- ⎪
--+-+⎭≥⎝ ;2221441
124412121n n n n n ⎛⎫=<=- ⎪--+⎝⎭. 若记{}n a 的前n 项和为n S ,试证:112233
14
11
3
1n n S a S a S a S a +
<+++++++.
21. 已知椭圆22
22:1x y C a b
+=的右焦点为()1,0,且经过点()0,1A .
(1)求椭圆C 的方程;
(2)设O 为原点,直线():1l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若1OM ON ⋅=.求证:直线l 经过定点.
22. 已知函数()1
ln 1
x f x x x +=-
-. (1)证明:()f x 恰有两个零点1x ,2x 且121x x =;
(2)设0x 是()f x 的一个零点,证明:00
1
ln 1y x x x =+-是曲线ln y x =和曲线e x y =的公切线.。