空间几何体的表面积和体积 说课稿 教案 教学设计
空间几何体的表面积与体积教案
空间几何体的表面积与体积教案一、教学目标:1. 让学生掌握空间几何体的表面积和体积的计算公式。
2. 培养学生运用空间几何知识解决实际问题的能力。
3. 提高学生的空间想象能力和逻辑思维能力。
二、教学内容:1. 空间几何体的表面积和体积的定义。
2. 常见空间几何体的表面积和体积计算公式。
3. 空间几何体表面积和体积的求解方法。
4. 空间几何体表面积和体积在实际问题中的应用。
三、教学重点与难点:1. 教学重点:空间几何体的表面积和体积的计算公式,求解方法及实际应用。
2. 教学难点:空间几何体表面积和体积的求解方法,实际问题的解决。
四、教学方法:1. 采用讲解法,引导学生掌握空间几何体的表面积和体积的计算公式。
2. 采用案例分析法,让学生通过实际问题,运用空间几何知识解决问题。
3. 采用讨论法,激发学生思考,提高学生的空间想象能力和逻辑思维能力。
五、教学过程:1. 导入:通过展示生活中常见空间几何体,引导学生思考空间几何体的表面积和体积的计算方法。
2. 新课导入:讲解空间几何体的表面积和体积的定义及计算公式。
3. 案例分析:分析实际问题,运用空间几何体的表面积和体积计算公式解决问4. 课堂练习:让学生独立完成练习题,巩固所学知识。
6. 课后作业:布置作业,让学生进一步巩固空间几何体的表面积和体积的计算方法。
7. 课后反思:教师反思教学过程,针对学生的掌握情况,调整教学策略。
六、教学评价:1. 评价学生对空间几何体表面积和体积计算公式的掌握程度。
2. 评价学生运用空间几何知识解决实际问题的能力。
3. 评价学生的空间想象能力和逻辑思维能力。
七、教学拓展:1. 引导学生研究空间几何体的表面积和体积在实际工程中的应用。
2. 引导学生探索空间几何体表面积和体积的求解方法的创新。
八、教学资源:1. 教学课件:制作课件,展示空间几何体的表面积和体积的计算公式及实际问题。
2. 练习题库:整理空间几何体表面积和体积的练习题,供学生课堂练习及课后巩固。
空间几何体的表面积和体积说课稿 教案 教学设计
空间几何体的表面积与体积教学内容球的体积和表面积教学目标知识与技能1.球的表面积和体积公式的应用.2.通过对球体的研究,掌握球的表面积和体积的求法。
3.培养学生空间想象能力和思维能力。
过程与方法通过对球的表面积及体积的研究,培养学生学会观察、分析、推理、论证的思维方法,培养学生空间想象能力,领悟数形结合的数学思想。
情感、态度与价值观通过对生活中事物联系课本知识,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯.教学重点球的表面积和体积公式的应用.教学难点关于球的组合体的计算教学方法自主学习、分组讨论法、师生互动法。
教学准备导学、课件。
教学步骤教什么怎样教如何组织教学一、温故(情境导入)(5分钟)复习球的相关概念新课引入,通过对球及球的相关概念的回顾,引出球的表面积及体积公式。
(出示《课件1》)1. 球的概念(1)球面:半圆以它的直径为旋转轴,旋转一周所形的曲面。
(2)球体:球面所围成的几何体注意:球面和球体的区别:球面仅仅是指球的表面,而球体不仅包括球的表面,而且还包括球面所围成的几何空间。
(3)球面的另一种定义:(类似于圆的定义)到一定点距离等于定长的所有点的集合。
球心:大圆的圆心.球的半径:连接球心与球面上任一点的线段。
(如OA、OB)球的直径:连接球面上两点,且过球心的线段.(如AB)球的表示:用它的球心字母来表示。
(球O)同学们,我们已经学习了球面、球体、及球的相关知识,要求大家掌握求得概念、加深对球心、截面、半径的理解,利用转化为直角三角形的方法找到它们之间的关系,看多媒体(出示《课件1》)大家从所给的球的图形上能得到什么启发呢?二、知新(自主学习合作探究展示能力)(35分钟)球心到截面的距离看书两分钟,掌握球半径、球心到截面的距离、截面半径之间的关系。
出示课件2-1球的性质:(1)球心和截面圆心的连线垂直于截面。
(如上左图)(2)22dRr-=讨论:(1)若d=0则r=R.这时截得的圆叫大圆;(2)若0<d<R,则这时截得的圆叫小圆;(3)若d=R,则r=0,和球只有一个公共点,此平面与球相切。
关于空间几何体的表面积和体积数学教案
关于空间几何体的表面积和体积一、教学目标:1. 让学生掌握常见空间几何体的表面积和体积的计算公式。
2. 培养学生运用空间几何知识解决实际问题的能力。
3. 提高学生对数学知识的兴趣,培养学生的空间想象力。
二、教学内容:1. 立方体、立方体的表面积和体积计算。
2. 圆柱体、圆柱体的表面积和体积计算。
3. 球体、球体的表面积和体积计算。
4. 锥体、锥体的表面积和体积计算。
5. 空间几何体表面积和体积在实际问题中的应用。
三、教学重点与难点:重点:掌握常见空间几何体的表面积和体积计算公式。
难点:空间几何体表面积和体积在实际问题中的应用。
四、教学方法:1. 采用问题驱动法,引导学生主动探究空间几何体的表面积和体积计算方法。
2. 利用多媒体课件,展示空间几何体的形状,增强学生的空间想象力。
3. 通过实例分析,让学生学会将空间几何知识应用于实际问题。
五、教学过程:1. 导入新课:回顾平面几何知识,引出空间几何体的概念。
2. 讲解立方体的表面积和体积计算公式,让学生动手计算实例。
3. 讲解圆柱体的表面积和体积计算公式,让学生动手计算实例。
4. 讲解球体的表面积和体积计算公式,让学生动手计算实例。
5. 讲解锥体的表面积和体积计算公式,让学生动手计算实例。
6. 分析空间几何体表面积和体积在实际问题中的应用,让学生尝试解决实际问题。
7. 课堂练习:布置练习题,让学生巩固所学知识。
9. 布置课后作业,要求学生运用所学知识解决实际问题。
六、教学评价:1. 通过课堂问答、练习题和课后作业,评估学生对空间几何体表面积和体积计算公式的掌握情况。
2. 观察学生在解决实际问题时是否能灵活运用所学知识,评价其运用能力。
3. 结合学生的课堂表现和作业完成情况,对学生的学习态度、合作精神和创新能力进行评价。
七、教学资源:1. 多媒体课件:用于展示空间几何体的形状,增强学生的空间想象力。
2. 练习题:用于巩固学生对空间几何体表面积和体积计算公式的掌握。
空间几何体的表面积与体积 优秀教案
《空间几何体的表面积与体积》教学设计
【教学目标】
一、知识技能:
1.通过对柱、锥、台体的研究,掌握柱、锥、台的表面积的求法
2.能运用公式求解柱体、锥体和台体表面积,并且熟悉台体与柱体和锥体之间的转换关系
3.培养学生空间想象能力和思维能力
二、教学方法:
1.通过展开空间几何体来让同学感知几何体的形状
2.通过比较来联系柱体、锥体和台体之间表面积的关系
三、解决问题:
空间想象能力联系立体几何表面积公式的证明
四、态度情感:
通过学习加强学生的空间想象能力,并且加强同学们对空间图形的感知力和思考能力
【教学对象】
高二学生
【教学重点】
柱体、锥体、台体的表面积
【教学难点】
柱体、椎体、台体表面积公式的推导
【教学策略】
将讲课与现实以及课题练习相结合
【教学资源与工具】
纸制立体图形,PPT投影仪
【教学过程设计】1、教学流程
2.教学过程
将提前准备好的空间几何体的实物给同
学们展示,并将其展开来
根据上图来引导同学对该直棱柱的表面
积进行分析和讲解
对正棱锥和正棱台的概念进行讲解
让同学们根据之前对正棱柱的分析来自
【板书设计】。
关于空间几何体的表面积和体积数学教案
关于空间几何体的表面积和体积数学教案一、教学目标:1. 知识与技能:使学生掌握空间几何体的表面积和体积的计算方法,能够熟练运用这些方法解决实际问题。
2. 过程与方法:通过观察、操作、推理等过程,培养学生空间想象能力和逻辑思维能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的创新精神和合作意识。
二、教学内容:1. 立方体的表面积和体积计算。
2. 圆柱体的表面积和体积计算。
3. 圆锥体的表面积和体积计算。
4. 球的表面积和体积计算。
5. 空间几何体表面积和体积的综合应用。
三、教学重点与难点:1. 教学重点:空间几何体的表面积和体积的计算方法。
2. 教学难点:空间几何体表面积和体积的综合应用。
四、教学方法:1. 采用问题驱动法,引导学生主动探究空间几何体的表面积和体积计算方法。
2. 利用实物模型和多媒体辅助教学,帮助学生直观理解空间几何体的特点和计算方法。
3. 组织小组讨论和动手实践,培养学生的合作意识和解决问题的能力。
五、教学过程:1. 导入新课:通过展示各种空间几何体模型,引导学生观察和思考空间几何体的特点。
2. 讲解与示范:讲解立方体、圆柱体、圆锥体、球体的表面积和体积计算方法,并进行示范。
3. 练习与讨论:学生独立完成练习题,小组内讨论解题思路和方法。
4. 拓展与应用:引导学生运用所学知识解决实际问题,如计算实际物体的表面积和体积。
6. 作业布置:布置相关练习题,巩固所学知识。
六、教学评价:1. 课堂参与度:观察学生在课堂上的积极参与情况,包括提问、回答问题、小组讨论等。
2. 练习完成情况:检查学生完成练习题的情况,评估学生对知识点的理解和掌握程度。
3. 作业质量:评估学生作业的完成质量,包括解题的正确性、步骤的清晰性等。
4. 学生互评:组织学生进行互相评价,鼓励学生相互学习、相互帮助。
七、教学反思:2. 学生反馈:收集学生的反馈意见,了解学生的学习需求和困惑。
3. 教学内容:评估教学内容的难易程度,根据学生的实际情况进行调整。
高中数学必修2《空间几何体的表面积与体积》教案
⾼中数学必修2《空间⼏何体的表⾯积与体积》教案 ⾼中数学必修2《空间⼏何体的表⾯积与体积》教案 1教学⺫标 1.知道柱体、锥体、台体侧⾯展开图,弄懂柱体、锥体、台体的表⾯积的求法. 2.能运⽤公式求解柱体、锥体和台体的表⾯积,并知道柱体、锥体和台体表⾯积之间的关系. 2学情分析 通过学习空间⼏何体的结构特征,空间⼏何体的三视图和直观图,了解了空间⼏何体和平⾯图形之间的关系,从中反映出⼀个思想⽅法,即平⾯图形和空间⼏何体的互化,尤其是空间⼏何问题向平⾯问题的转化。
该部分内容中有些是学⽣已经熟悉的,在解决这些问题的过程中,⾸先要对学⽣已有的知识进⾏再认识,提炼出解决问题的⼀般思想——化归的思想,总结出⼀般的求解⽅法,在此基础上通过类⽐获得解决新问题的思路,通过化归解决问题,深化对化归、类⽐等思想⽅法的应⽤。
3重点难点 重点:知道柱体、锥体、台体侧⾯展开图,弄懂柱体、锥体、台体的表⾯积公式。
难点:会求柱体、锥体和台体的表⾯积,并知道柱体、锥体和台体表⾯积之间的关系. 4教学过程 4.1 第⼀学时教学活动活动1【导⼊】第1课时 柱体、锥体、台体的表⾯积 (⼀)、基础⾃测: 1.棱⻓为a的正⽅体表⾯积为__________. 2.⻓、宽、⾼分别为a、b、c的⻓⽅体,其表⾯积为___________________. 3.⻓⽅体、正⽅体的侧⾯展开图为__________. 4.圆柱的侧⾯展开图为__________. 5.圆锥的侧⾯展开图为__________. (⼆).尝试学习 1.柱体的表⾯积 (1)侧⾯展开图:棱柱的侧⾯展开图是____________,⼀边是棱柱的侧棱,另⼀边等于棱柱的__________,如图①所⽰;圆柱的侧⾯展开图是_______,其中⼀边是圆柱的⺟线,另⼀边等于圆柱的底⾯周⻓,如图②所⽰. (2)⾯积:柱体的表⾯积S表=S侧+2S底.特别地,圆柱的底⾯半径为r,⺟线⻓为l,则圆柱的侧⾯积S侧=__________,表⾯积S表=__________. 2.锥体的表⾯积 (1)侧⾯展开图:棱锥的侧⾯展开图是由若干个__________拼成的,则侧⾯积为各个三⾓形⾯积的_____,如图①所⽰;圆锥的侧⾯展开图是_______,扇形的半径是圆锥的______,扇形的弧⻓等于圆锥的__________,如图②所⽰. (2)⾯积:锥体的表⾯积S表=S侧+S底.特别地,圆锥的底⾯半径为r,⺟线⻓为l,则圆锥的侧⾯积S侧=__________,表⾯积S表=__________. 3.台体的表⾯积 (1)侧⾯展开图:棱台的侧⾯展开图是由若干个__________拼接⽽成的,则侧⾯积为各个梯形⾯积的______,如图①所⽰;圆台的侧⾯展开图是扇环,其侧⾯积可由⼤扇形的⾯积减去⼩扇形的⾯积⽽得到,如图②所⽰. (2)⾯积:台体的表⾯积S表=S侧+S上底+S下底.特别地,圆台的上、下底⾯半径分别为r′,r,⺟线⻓为l,则侧⾯积S侧=____________,表⾯积S表=________________________. (三).互动课堂 例1:在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,∠AA1B1=∠AA1C1=60°,∠BB1C1=90°,侧棱⻓为b,则其侧⾯积为( ) A. B.ab C.(+)ab D.ab 例2:(1)若⼀个圆锥的轴截⾯是等边三⾓形,其⾯积为,则这个圆锥的侧⾯积是( )A.2πB.C.6πD.9π (2)已知棱⻓均为5,底⾯为正⽅形的四棱锥S-ABCD,如图,求它的侧⾯积、表⾯积. 例3:⼀个四棱台的上、下底⾯都为正⽅形,且上底⾯的中⼼在下底⾯的投影为下底⾯中⼼(正四棱台)两底⾯边⻓分别为1,2,侧⾯积等于两个底⾯积之和,则这个棱台的⾼为( ) A. B.2 C. D. (四).巩固练习: 1.⼀个棱柱的侧⾯展开图是三个全等的矩形,矩形的⻓和宽分别为6 cm,4 cm,则该棱柱的侧⾯积为________. 2.已知⼀个四棱锥底⾯为正⽅形且顶点在底⾯正⽅形射影为底⾯正⽅形的中⼼(正四棱锥),底⾯正⽅形的边⻓为4 cm,⾼与斜⾼的夹⾓为30°,如图所⽰,求正四棱锥的侧⾯积________和表⾯积________(单位:cm2). 3.如图所⽰,圆台的上、下底半径和⾼的⽐为1:4:4,⺟线⻓为10,则圆台的侧⾯积为( )A.81πB.100πC.14πD.169π (五)、课堂⼩结: 求柱体表⾯积的⽅法 (1)直棱柱的侧⾯积等于它的底⾯周⻓和⾼的乘积;表⾯积等于它的侧⾯积与上、下两个底⾯的⾯积之和. (2)求斜棱柱的侧⾯积⼀般有两种⽅法:⼀是定义法;⼆是公式法.所谓定义法就是利⽤侧⾯积为各侧⾯⾯积之和来求,公式法即直接⽤公式求解. (3)求圆柱的侧⾯积只需利⽤公式即可求解. (4)求棱锥侧⾯积的⼀般⽅法:定义法. (5)求圆锥侧⾯积的⼀般⽅法:公式法:S侧=πrl. (6)求棱台侧⾯积的⼀般⽅法:定义法. (7)求圆台侧⾯积的⼀般⽅法:公式法S侧=2(r+r′)l. 五、当堂检测 1.(2011·北京)某四棱锥的三视图如图所⽰,该四棱锥的表⾯积是( )A.32B.16+16C.48D.16+32 ⺴] 2.(2013·重庆)某⼏何体的三视图如图所⽰,则该⼏何体的表⾯积为( )A.180B.200C.220D.240 3.(2013⼲东)若⼀个圆台的正视图如图所⽰,则其侧⾯积等于( )A.6B.6πC.3πD.6π 六、作业:(1)课时闯关(今晚交) 七、课后反思:本节课你会哪些?还存在哪些问题? 1.3 空间⼏何体的表⾯积与体积 课时设计课堂实录 1.3 空间⼏何体的表⾯积与体积 1第⼀学时教学活动活动1【导⼊】第1课时 柱体、锥体、台体的表⾯积 (⼀)、基础⾃测: 1.棱⻓为a的正⽅体表⾯积为__________. 2.⻓、宽、⾼分别为a、b、c的⻓⽅体,其表⾯积为___________________. 3.⻓⽅体、正⽅体的侧⾯展开图为__________. 4.圆柱的侧⾯展开图为__________. 5.圆锥的侧⾯展开图为__________. (⼆).尝试学习 1.柱体的表⾯积 (1)侧⾯展开图:棱柱的侧⾯展开图是____________,⼀边是棱柱的侧棱,另⼀边等于棱柱的__________,如图①所⽰;圆柱的侧⾯展开图是_______,其中⼀边是圆柱的⺟线,另⼀边等于圆柱的底⾯周⻓,如图②所⽰. (2)⾯积:柱体的表⾯积S表=S侧+2S底.特别地,圆柱的底⾯半径为r,⺟线⻓为l,则圆柱的侧⾯积S侧=__________,表⾯积S表=__________. 2.锥体的表⾯积 (1)侧⾯展开图:棱锥的侧⾯展开图是由若干个__________拼成的,则侧⾯积为各个三⾓形⾯积的_____,如图①所⽰;圆锥的侧⾯展开图是_______,扇形的半径是圆锥的______,扇形的弧⻓等于圆锥的__________,如图②所⽰. (2)⾯积:锥体的表⾯积S表=S侧+S底.特别地,圆锥的底⾯半径为r,⺟线⻓为l,则圆锥的侧⾯积S侧=__________,表⾯积S表=__________. 3.台体的表⾯积 (1)侧⾯展开图:棱台的侧⾯展开图是由若干个__________拼接⽽成的,则侧⾯积为各个梯形⾯积的______,如图①所⽰;圆台的侧⾯展开图是扇环,其侧⾯积可由⼤扇形的⾯积减去⼩扇形的⾯积⽽得到,如图②所⽰. (2)⾯积:台体的表⾯积S表=S侧+S上底+S下底.特别地,圆台的上、下底⾯半径分别为r′,r,⺟线⻓为l,则侧⾯积S侧=____________,表⾯积S表=________________________. (三).互动课堂 例1:在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,∠AA1B1=∠AA1C1=60°,∠BB1C1=90°,侧棱⻓为b,则其侧⾯积为( ) A. B.ab C.(+)ab D.ab 例2:(1)若⼀个圆锥的轴截⾯是等边三⾓形,其⾯积为,则这个圆锥的侧⾯积是( )A.2πB.C.6πD.9π (2)已知棱⻓均为5,底⾯为正⽅形的四棱锥S-ABCD,如图,求它的侧⾯积、表⾯积. 例3:⼀个四棱台的上、下底⾯都为正⽅形,且上底⾯的中⼼在下底⾯的投影为下底⾯中⼼(正四棱台)两底⾯边⻓分别为1,2,侧⾯积等于两个底⾯积之和,则这个棱台的⾼为( ) A. B.2 C. D. (四).巩固练习: 1.⼀个棱柱的侧⾯展开图是三个全等的矩形,矩形的⻓和宽分别为6 cm,4 cm,则该棱柱的侧⾯积为________. 2.已知⼀个四棱锥底⾯为正⽅形且顶点在底⾯正⽅形射影为底⾯正⽅形的中⼼(正四棱锥),底⾯正⽅形的边⻓为4 cm,⾼与斜⾼的夹⾓为30°,如图所⽰,求正四棱锥的侧⾯积________和表⾯积________(单位:cm2). 3.如图所⽰,圆台的上、下底半径和⾼的⽐为1:4:4,⺟线⻓为10,则圆台的侧⾯积为( )A.81πB.100πC.14πD.169π (五)、课堂⼩结: 求柱体表⾯积的⽅法 (1)直棱柱的侧⾯积等于它的底⾯周⻓和⾼的乘积;表⾯积等于它的侧⾯积与上、下两个底⾯的⾯积之和. (2)求斜棱柱的侧⾯积⼀般有两种⽅法:⼀是定义法;⼆是公式法.所谓定义法就是利⽤侧⾯积为各侧⾯⾯积之和来求,公式法即直接⽤公式求解. (3)求圆柱的侧⾯积只需利⽤公式即可求解. (4)求棱锥侧⾯积的⼀般⽅法:定义法. (5)求圆锥侧⾯积的⼀般⽅法:公式法:S侧=πrl. (6)求棱台侧⾯积的⼀般⽅法:定义法. (7)求圆台侧⾯积的⼀般⽅法:公式法S侧=2(r+r′)l. 五、当堂检测 1.(2011·北京)某四棱锥的三视图如图所⽰,该四棱锥的表⾯积是( )A.32B.16+16C.48D.16+32 ⺴] 2.(2013·重庆)某⼏何体的三视图如图所⽰,则该⼏何体的表⾯积为( )A.180B.200C.220D.240 3.(2013⼲东)若⼀个圆台的正视图如图所⽰,则其侧⾯积等于( )A.6B.6πC.3πD.6π 六、作业:(1)课时闯关(今晚交) 七、课后反思:本节课你会哪些?还存在哪些问题? ⼩编推荐各科教学设计: 、、、、、、、、、、、、 ⼩编推荐各科教学设计: 、、、、、、、、、、、、。
关于空间几何体的表面积和体积数学教案
关于空间几何体的表面积和体积数学教案教案章节一:引言与立方体教学目标:1. 让学生了解空间几何体的概念。
2. 引导学生通过观察立方体来理解表面积和体积的定义。
教学内容:1. 介绍空间几何体的基本概念,如立方体、球体、圆柱体等。
2. 通过观察立方体的实物或模型,让学生理解表面积和体积的定义。
教学步骤:1. 引入空间几何体的概念,展示立方体的实物或模型。
2. 引导学生观察立方体的特征,如六个面、八个顶点等。
3. 解释表面积和体积的定义,让学生理解它们是描述空间几何体大小的重要指标。
作业布置:1. 让学生绘制一个立方体,并标注出它的表面积和体积。
教案章节二:立方体的表面积和体积计算教学目标:1. 让学生掌握立方体的表面积和体积的计算方法。
2. 培养学生运用数学知识解决实际问题的能力。
教学内容:1. 介绍立方体的表面积和体积的计算公式。
2. 通过实例讲解如何运用公式计算立方体的表面积和体积。
1. 回顾立方体的特征,引导学生理解表面积和体积的计算方法。
2. 介绍立方体的表面积和体积的计算公式,如表面积=6a²,体积=a³。
3. 通过实例讲解如何运用公式计算立方体的表面积和体积,如给定边长a,计算表面积和体积。
作业布置:1. 让学生运用公式计算不同边长的立方体的表面积和体积,并进行比较。
教案章节三:球体的表面积和体积计算教学目标:1. 让学生掌握球体的表面积和体积的计算方法。
2. 培养学生运用数学知识解决实际问题的能力。
教学内容:1. 介绍球体的表面积和体积的计算公式。
2. 通过实例讲解如何运用公式计算球体的表面积和体积。
教学步骤:1. 引导学生回顾立方体的表面积和体积计算方法,引出球体的概念。
2. 介绍球体的表面积和体积的计算公式,如表面积=4πr²,体积=4/3πr³。
3. 通过实例讲解如何运用公式计算球体的表面积和体积,如给定半径r,计算表面积和体积。
作业布置:1. 让学生运用公式计算不同半径的球体的表面积和体积,并进行比较。
《空间几何体的表面积与体积》教学设计
《空间几何体的表面积与体积》教学设计授课人:陈泽宇学号:1307010310 【教学目标】一、知识技能:1. 通过对柱、锥、台体的研究,掌握柱、锥、台的表面积的求法2. 能运用公式求解柱体、锥体和台体表面积,并且熟悉台体与柱体和锥体之间的转换关系3. 培养学生空间想象能力和思维能力二、教学方法:1.通过展开空间几何体来让同学感知几何体的形状2.通过比较来联系柱体、锥体和台体之间表面积的关系三、解决问题:空间想象能力联系立体几何表面积公式的证明四、态度情感:通过学习加强学生的空间想象能力,并且加强同学们对空间图形的感知力和思考能力【教学对象】高二学生【教学重点】柱体、锥体、台体的表面积【教学难点】柱体、椎体、台体表面积公式的推导【教学策略】将讲课与现实以及课题练习相结合【教学资源与工具】纸制立体图形,PPT投影仪【教学过程设计】1、教学流程2.教学过程教学流程教学内容设计意图1.回顾棱柱、棱台等空间几何体的概念, 并回顾之前的知识,进行巩带入约2分钟引出直棱柱和正棱柱的概念2. 由平面几何的面积引出空间几何体的表面积3. 由易拉罐表面镀锌的量引出空间几何体的表面积在日常生活中的等等作用1•将提前准备好的空间几何体的实物给同学们展示,并将其展开来知识探究约3分钟2.根据上图来引导同学对该直棱柱的表面积进行分析和讲解解难1.对正棱锥和正棱台的概念进行讲解拓展2.让同学们根据之前对正棱柱的分析来自己进行分解并求面积固并使新知识不是特别陌生。
生活中的事例可以让新知识的引入不再生硬抽象,让表面积这一概念更加具象化直观地面对实体比简单而抽象的概念更加深入学生的心。
引导学生求面积而不是直接告诉同学们公式,这样可以让学生知道"为什么”而不仅仅知道“是什么”让同学们自己进行分析可以让其自行感受一个概念产生的过程,并且让【板书设计】。
空间几何体的表面积与体积教案
空间几何体的表面积与体积教案一、教学目标:1. 让学生掌握空间几何体的表面积和体积的计算方法。
2. 培养学生空间想象能力和思维能力。
3. 培养学生解决实际问题的能力。
二、教学内容:1. 空间几何体的表面积和体积的定义。
2. 常见空间几何体的表面积和体积的计算公式。
3. 空间几何体表面积和体积的计算方法。
三、教学重点与难点:1. 教学重点:空间几何体的表面积和体积的计算方法。
2. 教学难点:空间几何体的表面积和体积的计算公式的推导和应用。
四、教学方法:1. 采用讲解法,讲解空间几何体的表面积和体积的定义及计算方法。
2. 采用案例分析法,分析常见空间几何体的表面积和体积的计算。
3. 采用练习法,巩固所学知识。
五、教学过程:1. 导入新课:通过生活中的实例,引入空间几何体的表面积和体积的概念。
2. 讲解新课:讲解空间几何体的表面积和体积的定义,介绍常见空间几何体的表面积和体积的计算公式,讲解计算方法。
3. 案例分析:分析常见空间几何体的表面积和体积的计算,如正方体、长方体、圆柱体等。
4. 课堂练习:布置练习题,让学生巩固所学知识。
5. 总结与拓展:总结本节课的主要内容,布置课后作业,引导学生进行拓展学习。
六、课后作业:1. 复习本节课所学内容,整理笔记。
2. 完成课后练习题,巩固所学知识。
3. 探索空间几何体表面积和体积的计算规律,进行拓展学习。
七、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 课后作业:检查学生作业完成情况,评估学生对知识的掌握程度。
3. 单元测试:进行单元测试,了解学生对本节课知识的掌握情况。
八、教学资源:1. 教案、课件、教学素材。
2. 练习题、测试题。
3. 空间几何体模型、图片等。
九、教学时间安排:1. 课时:本节课计划用2课时完成。
2. 教学时间安排:第一课时讲解空间几何体的表面积和体积的定义及计算方法,分析常见空间几何体的表面积和体积的计算;第二课时进行案例分析、课堂练习、总结与拓展。
空间几何体的表面积与体积教案
空间几何体的表面积与体积教案第一章:引言1.1 教学目标让学生了解空间几何体的概念让学生理解表面积与体积的意义让学生掌握空间几何体的表面积与体积的计算方法1.2 教学内容空间几何体的定义与分类表面积与体积的概念空间几何体的表面积与体积的计算方法1.3 教学方法采用多媒体课件进行讲解配合实物模型进行演示引导学生进行分组讨论与实践1.4 教学步骤引入空间几何体的概念,分类介绍常见的空间几何体讲解表面积与体积的定义,引导学生理解其意义演示空间几何体的表面积与体积的计算方法引导学生进行分组讨论与实践,巩固所学知识第二章:立方体2.1 教学目标让学生掌握立方体的表面积与体积的计算方法让学生能够应用立方体的表面积与体积解决实际问题2.2 教学内容立方体的定义与性质立方体的表面积与体积的计算公式立方体表面积与体积的应用实例2.3 教学方法采用多媒体课件进行讲解配合实物模型进行演示引导学生进行分组讨论与实践2.4 教学步骤引入立方体的定义与性质,讲解立方体的特点讲解立方体的表面积与体积的计算公式给出立方体表面积与体积的应用实例,引导学生进行实践引导学生进行分组讨论与练习,巩固所学知识第三章:球体3.1 教学目标让学生掌握球体的表面积与体积的计算方法让学生能够应用球体的表面积与体积解决实际问题3.2 教学内容球体的定义与性质球体的表面积与体积的计算公式球体表面积与体积的应用实例3.3 教学方法采用多媒体课件进行讲解配合实物模型进行演示引导学生进行分组讨论与实践3.4 教学步骤引入球体的定义与性质,讲解球体的特点讲解球体的表面积与体积的计算公式给出球体表面积与体积的应用实例,引导学生进行实践引导学生进行分组讨论与练习,巩固所学知识第四章:圆柱体4.1 教学目标让学生掌握圆柱体的表面积与体积的计算方法让学生能够应用圆柱体的表面积与体积解决实际问题4.2 教学内容圆柱体的定义与性质圆柱体的表面积与体积的计算公式圆柱体表面积与体积的应用实例4.3 教学方法采用多媒体课件进行讲解配合实物模型进行演示引导学生进行分组讨论与实践4.4 教学步骤引入圆柱体的定义与性质,讲解圆柱体的特点讲解圆柱体的表面积与体积的计算公式给出圆柱体表面积与体积的应用实例,引导学生进行实践引导学生进行分组讨论与练习,巩固所学知识第五章:圆锥体5.1 教学目标让学生掌握圆锥体的表面积与体积的计算方法让学生能够应用圆锥体的表面积与体积解决实际问题5.2 教学内容圆锥体的定义与性质圆锥体的表面积与体积的计算公式圆锥体表面积与体积的应用实例5.3 教学方法采用多媒体课件进行讲解配合实物模型进行演示引导学生进行分组讨论与实践5.4 教学步骤引入圆锥体的定义与性质,讲解圆锥体的特点讲解圆锥体的表面积与体积的计算公式给出圆锥体表面积与体积的应用实例,引导学生进行实践引导学生进行分组讨论与练习,巩固所学知识第六章:圆台体6.1 教学目标让学生掌握圆台体的表面积与体积的计算方法让学生能够应用圆台体的表面积与体积解决实际问题6.2 教学内容圆台体的定义与性质圆台体的表面积与体积的计算公式圆台体表面积与体积的应用实例6.3 教学方法采用多媒体课件进行讲解配合实物模型进行演示引导学生进行分组讨论与实践6.4 教学步骤引入圆台体的定义与性质,讲解圆台体的特点讲解圆台体的表面积与体积的计算公式给出圆台体表面积与体积的应用实例,引导学生进行实践引导学生进行分组讨论与练习,巩固所学知识第七章:椭球体7.1 教学目标让学生掌握椭球体的表面积与体积的计算方法让学生能够应用椭球体的表面积与体积解决实际问题7.2 教学内容椭球体的定义与性质椭球体的表面积与体积的计算公式椭球体表面积与体积的应用实例7.3 教学方法采用多媒体课件进行讲解配合实物模型进行演示引导学生进行分组讨论与实践7.4 教学步骤引入椭球体的定义与性质,讲解椭球体的特点讲解椭球体的表面积与体积的计算公式给出椭球体表面积与体积的应用实例,引导学生进行实践引导学生进行分组讨论与练习,巩固所学知识第八章:锥台的表面积与体积8.1 教学目标让学生掌握锥台的表面积与体积的计算方法让学生能够应用锥台的表面积与体积解决实际问题8.2 教学内容锥台的定义与性质锥台的表面积与体积的计算公式锥台表面积与体积的应用实例8.3 教学方法采用多媒体课件进行讲解配合实物模型进行演示引导学生进行分组讨论与实践8.4 教学步骤引入锥台的定义与性质,讲解锥台的特点讲解锥台的表面积与体积的计算公式给出锥台表面积与体积的应用实例,引导学生进行实践引导学生进行分组讨论与练习,巩固所学知识第九章:空间多面体的表面积与体积9.1 教学目标让学生掌握空间多面体的表面积与体积的计算方法让学生能够应用空间多面体的表面积与体积解决实际问题9.2 教学内容空间多面体的定义与性质空间多面体的表面积与体积的计算方法空间多面体表面积与体积的应用实例9.3 教学方法采用多媒体课件进行讲解配合实物模型进行演示引导学生进行分组讨论与实践9.4 教学步骤引入空间多面体的定义与性质,讲解空间多面体的特点讲解空间多面体的表面积与体积的计算方法给出空间多面体表面积与体积的应用实例,引导学生进行实践引导学生进行分组讨论与练习,巩固所学知识第十章:空间几何体的表面积与体积的综合应用10.1 教学目标让学生能够综合运用空间几何体的表面积与体积解决实际问题培养学生解决复杂问题的能力10.2 教学内容空间几何体表面积与体积在实际问题中的应用空间几何体表面积与体积的综合练习题10.3 教学方法采用多媒体课件进行讲解配合实物模型进行演示引导学生进行分组讨论与实践10.4 教学步骤讲解空间几何体表面积与体积在实际问题中的应用实例给出空间几何体表面积与体积的综合练习题,引导学生进行实践引导学生进行分组讨论与练习,巩固所学知识第十一章:空间几何体的表面积与体积的数学理论基础11.1 教学目标让学生了解空间几何体表面积与体积的数学理论基础让学生理解空间几何体表面积与体积的公式的推导过程11.2 教学内容空间几何体表面积与体积的数学理论基础空间几何体表面积与体积公式的推导过程11.3 教学方法采用多媒体课件进行讲解配合实物模型进行演示引导学生进行分组讨论与实践11.4 教学步骤讲解空间几何体表面积与体积的数学理论基础推导空间几何体表面积与体积的公式的过程引导学生进行分组讨论与练习,巩固所学知识第十二章:空间几何体的表面积与体积在工程中的应用12.1 教学目标让学生了解空间几何体表面积与体积在工程中的应用培养学生解决实际问题的能力12.2 教学内容空间几何体表面积与体积在工程中的应用实例12.3 教学方法采用多媒体课件进行讲解配合实物模型进行演示引导学生进行分组讨论与实践12.4 教学步骤讲解空间几何体表面积与体积在工程中的应用实例引导学生进行分组讨论与实践,巩固所学知识第十三章:空间几何体的表面积与体积在建筑设计中的应用13.1 教学目标让学生了解空间几何体表面积与体积在建筑设计中的应用培养学生解决实际问题的能力13.2 教学内容空间几何体表面积与体积在建筑设计中的应用实例13.3 教学方法采用多媒体课件进行讲解配合实物模型进行演示引导学生进行分组讨论与实践13.4 教学步骤讲解空间几何体表面积与体积在建筑设计中的应用实例引导学生进行分组讨论与实践,巩固所学知识第十四章:空间几何体的表面积与体积在物理中的应用14.1 教学目标让学生了解空间几何体表面积与体积在物理中的应用培养学生解决实际问题的能力14.2 教学内容空间几何体表面积与体积在物理中的应用实例14.3 教学方法采用多媒体课件进行讲解配合实物模型进行演示引导学生进行分组讨论与实践14.4 教学步骤讲解空间几何体表面积与体积在物理中的应用实例引导学生进行分组讨论与实践,巩固所学知识第十五章:空间几何体的表面积与体积的拓展与研究15.1 教学目标激发学生对空间几何体表面积与体积的拓展与研究的兴趣培养学生创新思维与研究能力15.2 教学内容空间几何体表面积与体积的拓展与研究实例15.3 教学方法采用多媒体课件进行讲解配合实物模型进行演示引导学生进行分组讨论与实践15.4 教学步骤讲解空间几何体表面积与体积的拓展与研究实例引导学生进行分组讨论与实践,巩固所学知识鼓励学生进行创新思维与研究重点和难点解析本文主要介绍了空间几何体的表面积与体积的概念、计算方法以及在各个领域的应用。
高中数学_空间几何体的表面积与体积教学设计学情分析教材分析课后反思
《空间几何体的表面积和体积》教学设计教学过程教学环节教学活动设计意图课前补偿(1)已知圆的半径为r,则周长C= 面积S=(2)半径为r,弧长为a的扇形面积S=师生活动:学生课前完成,老师对(2)进行点拨。
复习前面学过的与本节知识有关的内容,为学好本节知识做好铺垫。
表面积公式推导及应用(一)棱柱、棱锥、棱台的表面积:棱柱、棱锥、棱台的表面积就是各个面的,也就是。
例1.求各面都是边长为a的等边三角形的正四面体S-ABC的表面积。
师生活动:多面体和圆柱、圆锥的表面积公式的推导有学生自己完成,师生共同完成圆台的表面积公式的推导。
1、自主推导活动体现学生的自主性和调动学生的学习积极性。
2、圆台的推导过程让学生体会重要的数学方法“割补法。
”3、观察1的设计有助于学生对公式的记忆。
体积公式推导及应用师生活动:老师引导学生通过祖暅原理推导柱体和椎体的体积公式。
台体的体积公式的推导作为课后拓展学习内容。
通过几何画板展示椎体的体积与相应的柱体的体积之间的关系。
师生共同分析例2和变式中的几何体的结构特征,强调挖去和重叠的部分的表面积和体积的计算问题。
利用公式计算过程有学生自己完成。
1、台体的体积公式的过程复杂所以作为课后拓展学习内容。
拓展学生的知识视野。
2、例2和变式加强学生对体积和表面积公式的记忆。
3、通过几何画板展示椎体的体积公式的推导,提高学生的兴趣和注意力。
自我检测1.圆锥的底面直径为4,高为3,则其体积为:2.圆台的上、下底面半径3r'=,4r=,高h=6,则其体积为:3.直角三角形ABC的两直角边AB=3, AC=4 ,求AB为轴旋转所得几何体的表面积。
师生活动:学生自己完成。
老师对3题简单点拨。
通过3个小题对本节课的公式的加强记忆。
课堂小结以表格的形式复习几何体的表面积和体积公式。
师生活动:学习自己完成公式表格的填写,老师与学生一起分析公式之间的联系。
让学生们感受到公式不仅仅是枯燥的公式,同时还有蕴含在其中的概念和道理,让同学感受数学并不是枯燥单调的记公式。
人教版高中必修21.3空间几何体的表面积与体积课程设计
人教版高中必修21.3空间几何体的表面积与体积课程设计一、教学背景本次课程设计针对高中必修课程《数学》中的21.3节“空间几何体的表面积与体积”进行。
在教学中,学生已经学习了空间直角坐标系、向量及其运算以及立体几何中的面、体概念等基础知识。
本节课程的主要目标是,通过学习,使学生掌握空间几何体的表面积和体积的计算方法,并能够灵活应用到实际问题当中。
二、教学目标1.了解空间几何体的表面积和体积的定义和计算方法;2.掌握空间几何体的表面积和体积的计算方法;3.理解表面积和体积与实际问题的应用,并能够熟练运用到实际问题解决中。
三、教学重难点重点1.空间几何体的表面积的计算方法;2.空间几何体的体积的计算方法。
难点1.空间几何体的计算方法的公式推导;2.如何将计算方法应用到实际问题中。
四、教学方法1.课堂讲授:通过讲解理论知识,让学生明确问题,编写相关案例进行讲解。
2.实验教学:运用计算机辅助教学及实验教学的方式,更好地展示题目及其解答过程。
3.互动教学:在课堂中安排互动与讨论环节,增强学生的学习兴趣,提高互动的质量。
五、教学内容及安排1. 理论知识讲解空间几何体的表面积•球的表面积:$S=4\\pi r^2$•圆锥的侧面积:$S_L=\\dfrac{1}{2}ls$•圆锥的全面积:$S=\\pi r^2+\\dfrac{1}{2}ls$•圆柱的侧面积:$S_L=2\\pi rh$•圆柱的全面积:$S=2\\pi r(h+r)$•正棱锥的侧面积:$S_L=\\dfrac{1}{2}pl$•正棱锥的全面积:$S=\\dfrac{1}{2}pl+AB$•正四面体的一侧面积:$S_L=\\dfrac{\\sqrt{3}}{4}a^2$•正四面体的全面积:S=4S L空间几何体的体积•球的体积:$V=\\dfrac{4}{3}\\pi r^3$•圆锥的体积:$V=\\dfrac{1}{3}\\pi r^2h$•圆柱的体积:$V=\\pi r^2h$•正棱锥的体积:$V=\\dfrac{1}{3}Sh$•正四面体的体积:$V=\\dfrac{1}{3}S_Gh$2. 计算题目讲解讲解一些实例,涵盖以上内容。
《空间几何体的表面积和体积》教学设计
《空间几何体的表面积和体积》教学设计《空间几何体的表面积和体积》教学设计教材的地位和作用几何学是研究现实世界中物体的形状、大小与位置关系的数学学科。
通常采用直观感知、操作确认、思辨论证、度量计算等方法和探索几何图形及其性质。
三维空间是人类生存的现实空间,认识空间图形,培养和发展学生的几何直观能力、运用图形语言进行交流的能力空间想象能力在本章,学生将从对空间几何体的整体入手,认知空间图形;了解简单几何体的表面积和体积的计算方法。
学情分析学生是在义务教育阶段学习的基础上展开的,具有一定的直观感知、操作确认、度量计算等方法。
他们的思维正从属于经验性的逻辑思维向抽象思维发展,但仍需要依赖一定的具体形象的经验材料来理解抽象的逻辑关系。
同时思维的严密性还有待加强。
学习目标1、认识柱体、锥体、台体及其简单组合体的结构特征,认真了解它们的几何特征。
2、推导柱体、锥体、台体表面积和体积公式,会利用这些公式解决一些简单的实际问题。
3、认识球的结构特征,了解它的有关概念。
4、知道球的表面积和体积公式,并能解决一些简单的实际问题。
5、通过对柱体、锥体、台体及球的侧(表)面积公式和体积公式之间的关系,体验数学发现和创造的过程。
教学过程一、课题引入在初中我们学习了正方体和长方体的表面积,以及它们的展开图,问:你知道①正方体和长方体的表面积与它们的展开图的面积的关系吗?②其他几何体的展开图与其表面积的关系吗?③棱柱、棱锥、棱台都是多面体,它们的展开图是什么?④如何计算棱柱、棱锥、棱台的表面积?二、自学检测1、几何体的表面积,它表示___________________________;求多面体的表面积时,可以把多面体展成平面图形,利用__________________________的方法来求。
2、棱长为1的正四面体S-ABC的表面积为_______。
3、圆柱的侧面展开图是_________,若圆柱的底面半径为r,母线长为l,则圆柱的底面积为___,侧面积为_________,全面积为______。
最新1.3-空间几何体的表面积与体积-教学设计-教案
教学准备1. 教学目标1、知识与技能(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法。
(2)能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系。
(3)培养学生空间想象能力和思维能力。
2、过程与方法(1)让学生经历几何全的侧面展一过程,感知几何体的形状。
(2)让学生通对照比较,理顺柱体、锥体、台体三间的面积和体积的关系。
3、情感与价值通过学习,使学生感受到几何体面积和体积的求解过程,对自己空间思维能力影响。
从而增强学习的积极性。
2. 教学重点/难点重点:柱体、锥体、台体的表面积和体积计算难点:台体体积公式的推导3. 教学用具投影仪等.4. 标签数学,立体几何教学过程1、创设情境(1)教师提出问题:在过去的学习中,我们已经接触过一些几何体的面积和体积的求法及公式,哪些几何体可以求出表面积和体积?引导学生回忆,互相交流,教师归类。
(2)教师设疑:几何体的表面积等于它的展开圈的面积,那么,柱体,锥体,台体的侧面展开图是怎样的?你能否计算?引入本节内容。
2、探究新知(1)利用多媒体设备向学生投放正棱柱、正三棱锥和正三棱台的侧面展开图(2)组织学生分组讨论:这三个图形的表面由哪些平面图形构成?表面积如何求?(3)教师对学生讨论归纳的结果进行点评。
3、质疑答辩、排难解惑、发展思维(1)教师引导学生探究圆柱、圆锥、圆台的侧面展开图的结构,并归纳出其表面积的计算公式:(2)组织学生思考圆台的表面积公式与圆柱及圆锥表面积公式之间的变化关系。
(3)教师引导学生探究:如何把一个三棱柱分割成三个等体积的棱锥?由此加深学生对等底、等高的锥体与柱体体积之间的关系的了解。
如图:(4)教师指导学生思考,比较柱体、锥体,台体的体积公式之间存在的关系。
(s’,s分别我上下底面面积,h为台柱高)4、例题分析讲解(课本)例1、例2、例35、巩固深化、反馈矫正教师投影练习1、已知圆锥的表面积为 a ㎡,且它的侧面展开图是一个半圆,则这个圆锥的底面直径为。
几何体的表面积与体积教学案
几何体的表面积与体积教学案本教学案旨在帮助学生了解几何体的表面积与体积的概念,并学会计算不同几何体的表面积与体积。
通过本教学案的学习,学生将具备计算几何体表面积与体积的能力,培养他们的几何思维和解决问题的能力。
一、教学目标1. 了解几何体的表面积与体积的概念。
2. 认识不同几何体的特征,区分不同几何体。
3. 学会计算不同几何体的表面积与体积。
4. 发展几何思维和解决问题的能力。
二、教学重难点1. 计算不同几何体的表面积与体积。
2. 理解几何体的特征及其与表面积与体积的关系。
三、教学准备1. 教师准备:相关课件、几何体模型、计算表面积与体积的公式、实例对应的解答。
2. 学生准备:学生笔记本、练习题、测量工具(尺子、量角器等)。
四、教学过程1. 导入(10分钟)通过展示几何体模型,引导学生回忆几何体的特征,并让学生描述几何体的特点。
2. 概念讲解(20分钟)a) 表面积的概念:引导学生思考什么是表面积,并通过公式展示如何计算几何体的表面积。
b) 体积的概念:引导学生思考什么是体积,并通过公式展示如何计算几何体的体积。
3. 实例演示(30分钟)通过几个实际的例子,演示如何计算不同几何体的表面积与体积。
在演示过程中,重点讲解计算公式的应用和步骤。
4. 练习与讨论(30分钟)让学生进行练习题,巩固对表面积与体积计算的理解和应用。
在练习过程中,鼓励学生相互讨论,并提供指导。
5. 拓展应用(20分钟)在实际生活中找到与几何体表面积与体积相关的例子,如建筑物的体积、包装盒的表面积等,并鼓励学生应用所学知识解决问题。
六、课堂总结(10分钟)回顾课堂内容,强调几何体的表面积与体积的重要性,以及如何计算各种几何体的表面积与体积。
七、作业布置布置相关的作业,包括计算几何体表面积与体积的题目,以及拓展应用题目。
八、教学反思通过教学案的实施,学生能够理解几何体的表面积与体积的概念,并学会计算不同几何体的表面积与体积。
教师针对学生的学习情况进行巩固训练,引导学生进行思考和讨论,激发学生的兴趣和动力。
几何体的表面积与体积教案
几何体的表面积与体积教案一、引言在几何学中,几何体是常见的一个概念,它是由一组面、边和顶点组成的三维物体。
学生在初中数学中学习几何体时,通常需要了解如何计算几何体的表面积和体积。
本教案将介绍如何教学生计算几何体的表面积和体积,并提供相应的活动和实例。
二、教学目标1. 理解几何体的表面积和体积的概念;2. 掌握计算常见几何体(如长方体、正方体、圆柱体、圆锥体等)的表面积和体积的方法;3. 能够应用所学知识解决与几何体表面积和体积相关的问题。
三、教学步骤1. 引入概念引导学生回顾二维几何图形的面积和三维几何体的体积的概念,并让他们思考如何计算几何体的表面积和体积。
2. 计算表面积针对不同的几何体,依次介绍如何计算其表面积,并使用示意图和具体的计算公式进行讲解。
例如:- 长方体:表面积 = 2(长×宽 + 长×高 + 宽×高)- 正方体:表面积 = 6×边长的平方- 圆柱体:表面积= 2π×半径×(半径+高)- 圆锥体:表面积= π×半径×(半径+斜高)3. 计算体积类似地,针对不同的几何体,逐步介绍如何计算其体积,并给出计算公式和相应的示例。
例如:- 长方体:体积 = 长×宽×高- 正方体:体积 = 边长的立方- 圆柱体:体积= π×半径的平方×高- 圆锥体:体积= 1/3×π×半径的平方×高4. 练习活动提供一些练习题,让学生通过实际计算,巩固所学知识。
例如: - 一个长方体的长、宽、高分别为5cm、4cm、3cm,请计算其表面积和体积。
- 一个正方体的边长为6cm,请计算其表面积和体积。
- 一个圆柱体的底面半径为2cm,高为8cm,请计算其表面积和体积。
5. 拓展应用引导学生思考如何应用几何体的表面积和体积相关的知识解决实际问题。
例如:- 如果一个长方体的体积为1000cm³,长和宽的比是3:2,求其高的长度。
空间几何体体积与表面积说课稿教学文稿
《空间几何体体积与表面积》教案一、教材地位分析本节是在学生已从几何体的结构特征和视图两个方面认识空间几何体的基础上进一步从度量的角度认识空间几何体。
二、教学内容空间几何体的表面积与体积;三、教学目标了解棱柱,棱锥,球体的体积公式。
四、教学过程要求1.了解棱柱,棱锥,棱台,球体的体积计算公式,并能计算简单几何体的体积;2.根据柱,锥,台,球的空间几何体几何特征与展开图的关系,推导出表面积的计算公式,能够计算一些简单组合体的表面积;要求:从柱锥台球图形的展开图进行分析,了解表面积与展开图的关系,帮助学生从表面积计算公式之间的联系认识空间立体几何,更加准确把握空间几何体的结构特征,掌握推导计算表面积的计算公式,而不仅仅是套公式计算;3.了解柱,锥,台的变化关系。
五、教学重点柱,锥,台,球的表面积与体积公式。
六、教学难点台体体积公式推导。
七、教学设计1.引入新知:对于空间几何体,我们分别从结构特征和视图两个方面进行研究,接着从度量的角度对空间几何体进行研究,柱,锥,台,球是最基本的空间几何体,对空间几何体的表面积与体积研究,都应从柱,锥,台,球开始。
2.构建新知:探究问题1:1)长方体,正方体展开图与表面积的关系;2)柱,锥,台,球的展开图与表面积的关系;3)圆柱,圆锥,圆台的展开图与表面积的关系。
探究问题2:1)长方体与正方体的体积公式;2)推广到棱柱,圆柱体积公式;3)推广到棱锥,圆锥的体积公式。
3.巩固新知通过例题,让学生在知识的运用中掌握新知,本节将选用书上的例题,这样有助于学生课前的预习与课后的复习。
4.归纳小结本节学习了①柱锥台球的几何特征与体积表面积计算公式,②应用运动变化的观点看待之间的练习,更加方便我们对空间几何体的掌握;5.布置作业。
数学教案立体几何中的体积与表面积
数学教案立体几何中的体积与表面积教案立体几何中的体积与表面积【引言】立体几何是数学中的一个重要分支,它研究的是三维空间中的几何图形。
其中,体积和表面积是立体几何中的两个基本概念。
本教案将介绍体积和表面积的定义、计算方法以及它们在实际问题中的应用。
【第一部分:体积的概念与计算】【小节1】体积的定义在几何学中,三维物体所占据的空间大小被称为体积。
体积可以用单位立方体的个数来度量,常用的单位有立方米、立方厘米等。
【小节2】体积的计算方法2.1 直角棱柱的体积计算直角棱柱是一种底面为矩形、侧面为矩形的立体。
其体积可以通过底面积乘以高来计算。
2.2 直角三棱柱的体积计算直角三棱柱是一种底面为直角三角形、侧面为直角三角形的立体。
其体积可以通过底面积乘以高再除以2来计算。
2.3 圆柱的体积计算圆柱是一种底面为圆的立体。
其体积可以通过底面积乘以高来计算。
球是一种由点到球心的距离都相等的立体。
其体积可以通过4/3乘以π乘以半径的立方来计算。
2.5 其他几何体的体积计算除了上述几何体,还有许多其他的几何体,如圆锥、棱台、球台等。
它们的体积计算方法略有不同,需要具体情况具体分析。
【第二部分:表面积的概念与计算】【小节1】表面积的定义除了研究体积,立体几何中还需要研究表面积。
表面积是指几何体外侧的总面积。
【小节2】表面积的计算方法2.1 直角棱柱的表面积计算直角棱柱的表面积可以通过底面积加上侧面积的和来计算。
2.2 直角三棱柱的表面积计算直角三棱柱的表面积可以通过底面积加上两个侧面积的和来计算。
2.3 圆柱的表面积计算圆柱的表面积可以通过底面积加上两个底面与高相乘的矩形的面积的和来计算。
球的表面积可以通过4乘以π乘以半径的平方来计算。
2.5 其他几何体的表面积计算类似于计算体积的情况,其他几何体的表面积计算方法也需要具体情况具体分析。
【第三部分:体积与表面积的应用】【小节1】体积与容量的关系体积在物理中有着广泛的应用,例如计算容器容量、液体体积以及物体的质量等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
柱体、椎体、台体的表面积与体积
钟)
也是
(S为底面面积,h为柱体的高)
其实,我们以前已经学习了特殊的棱柱——正方体、长方体,以及圆柱的体积公式.它们的体积公式可以统一为:V Sh
=(S为底面面积,h为高)请同学们分析下,一般柱体的体积能统一成一个公式吗?
也是V Sh
=
(S为底面面积,h为柱体的高)(学生讨论并回答)
请同学们再思考下,这个结论对一般的锥体、台体成立吗?
二、知新(合作探究展示能力)(35分钟)1.三棱
锥的
体积
公式
推导
考查三棱锥的体积公式的推导出示(课件
2-3)
1
3
V Sh
=
锥体的体积公式是什么?
1
3
V Sh
=。
(学生回答)
同学们,我们已经知道三棱柱
的体积V Sh
=,你们能推导出三棱
锥的体积公式吗?
问题的关键是把三棱柱切割
成三个体积相同的三棱锥。
那么,锥体的体积公式也能这
样表示吗?
答案是肯定的。
(S为底面面积,h为柱体的高)
一般地,锥体的高是指从顶点向底面做垂线,顶点与垂足之间的距离。
2.锥体、台体的体积公式考查台体的体积公式与锥体、柱体的体积
公式的关系(课件2-4)
''
1
()
3
V S S S S h
=++
台
同学们,我们得到了三棱锥的
体积公式,下面来思考运能否用类
比的方法得到台体的体积公式?
(小组进行讨论后回答)
对了,我们可以运用类比的方法得
到台体的体积公式。
这样,我们就得到了柱体、锥体、
台体的体积公式
同学们比较一下柱体、锥体、台体
的体积公式,你能发现三者之间的
关系吗?
3.运用定理,解决实例
上面是我们对锥体、台体、柱体公式的推导,下面呢,我们来试试它们在解题中的简单应用。
请大家看例题1.
(一个学生起立分析,可以由其他同学补充)
同学们,我们求解三视图的题目首先要分析清楚它是什么样的几何体。
例题分析:本题属于三视图与几何体体积的综合应用,它是由正方体挖去一个圆锥。
例2注意使用长方体的各个面的面积公式,分别求出长、宽、高再求对角线.
出示课件3(例题分析)
例1.某几何体的三视图如图所示,则它的体积是( A )
A .
283π-
B
83π
-
C .82π-
D .23π
例 2.已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个 长方体的对角线长是___6___;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___15__.
三、总结 (归纳总结课堂检测) (4分钟)
总结课时内容,布置课堂检测
出示(课件4) 内容回顾: 1.柱体的体积公式; 2. 锥体体积公式的推导; 3. 台体体积公式及简单应用. 【当堂检测】
1. 在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,
(该部分由学生总结,让学生能形成知识网络结构。
)
回顾本节课中的公式及其推导,注意立体几何中经常使用的切割、补形的手段求体积。
总结:1.柱体的体积公式; 2. 锥体体积公式的推导; 3. 台体体积公式及简单应用. 4.切割补形在求几何体体积时的
则截去8个三棱锥后,剩下的几何体的体积是( D )
A. 2
3 B.
7
6 C.
4
5
D. 5 6
2.如图,网格上小正方形的边长为1,粗线
画出的是某几何体的三视图,则几何体的
体积为( B )
A.6
B.9
C.12
D.18
应用.。