专题:圆锥曲线中的最值、范围、定点和定值问题(二合一版)
高考数学专题复习圆锥曲线定点定值和最值问题
圆锥曲线的定点、定值问题1、已知平面内的动点P 到定直线l :22x =的距离与点P 到定点()2,0F 之比为2.(1)求动点P 的轨迹C 的方程;(2)若点N 为轨迹C 上任意一点(不在x 轴上),过原点O 作直线AB 交(1)中轨迹C 于点A 、B ,且直线AN 、BN 的斜率都存在,分别为1k 、2k ,问21k k •是否为定值?(3)若点M 为圆O :422=+y x 上任意一点(不在x 轴上),过M 作圆O 的切线,交直线l 于点Q ,问MF 与OQ 是否始终保持垂直关系?2、已知椭圆2222:1x y C a b +=(0)a b >>的离心率为12,一条准线为:4l x =,若椭圆C 与x 轴交于,A B 两点,P 是椭圆C 上异于,A B 的任意一点,直线PA 交直线l 于点M ,直线PB 交直线l 于点N ,记直线,PA PB 的斜率分别为12,k k .(1)求椭圆C 的方程;(2)求12,k k 的值;(3)求证:以MN 为直径的圆过x 轴上的定点,并求出定点的坐标.3、已知圆22:9C x y +=,点(5,0)A -,直线:20l x y -=.⑴求与圆C 相切,且与直线l 垂直的直线方程;⑵在直线OA 上(O 为坐标原点),存在定点B (不同于点A ),满足:对于圆C 上任一点P ,都有PAPB为一常数,试求所有满足条件的点B 的坐标.4、已知椭圆E :22184x y +=的左焦点为F ,左准线l 与x 轴的交点是圆C 的圆心,圆C 恰好经过坐标原点O ,设G 是圆C 上任意一点. (1)求圆C 的方程;(2)若直线FG 与直线l 交于点T ,且G 为线段FT 的中点,求直线FG 被圆C 所截得的弦长; (3)在平面上是否存在定点P ,使得12GF GP =?若存在,求出点P 坐标;若不存在,请说明理由.5、已知221(5)5(13)C x y A ++=-e :,点,. (Ⅰ)求过点A 与1C e 相切的直线l 的方程;(Ⅱ)设21C C e e 为关于直线l 对称的圆,则在x 轴上是否存在点P ,使得P 到两圆的切?荐存在,求出点P 的坐标;若不存在,试说明理由.6、已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别为21F F 、,其半焦距为c ,圆M 的方程为.916)35(222c y c x =+-(Ⅰ)若P 是圆M 上的任意一点,求证:21PF PF 为定值;(Ⅱ)若椭圆经过圆上一点Q ,且1611cos 21=∠QF F ,求椭圆的离心率;(Ⅲ)在(Ⅱ)的条件下,若O OQ (331=为坐标原点),求圆M 的方程。
圆锥曲线的定点、定值、范围和最值问题
课题:圆锥曲线的定点、定值、范围和最值问题教学目标:会处理动曲线(含直线)过定点的问题;会证明与曲线上动点有关的定值问题;会按条件建立目标函数,研究变量的最值问题及变量的取值范围问题,注意运用“数形结合”“几何法”求某些量的最值.(一) 主要知识及主要方法:1.在几何问题中,有些几何量与参数无关,这就构成了定值问题,解决这类问题一种思路是进行一般计算推理求出其结果;另一种是通过考查极端位置,探索出“定值”是多少,然后再进行一般性证明或计算,即将该问题涉及的几何式转化为代数式或三角形式,证明该式是恒定的.如果试题以客观题形式出现,特殊方法往往比较奏效.2.对满足一定条件曲线上两点连结所得直线过定点或满足一定条件的曲线过定点问题,设该直线(曲线)上两点的坐标,利用坐标在直线(或曲线)上,建立点的坐标满足的方程(组),求出相应的直线(或曲线),然后再利用直线(或曲线)过定点的知识加以解决.3.解析几何的最值和范围问题,一般先根据条件列出所求目标的函数关系式,然后根据函数关系式的特征选用参数法、配方法、判别式法、不等式法、单调性法、导数法以及三角函数最值法等求出它的最大值和最小值.(二)典例分析:问题1.在平面直角坐标系xOy 中,抛物线2y x =上异于坐标原点O 的两不同动点A 、B 满足AO(Ⅰ)求AOB △得重心G 的轨迹方程;(Ⅱ)AOB △若不存在,请说明理由.问题2.已知椭圆22142x y +=上的两个动点,P Q 及定点M ⎛ ⎝,MF ,QF 成等差数列.()1求证:线段PQ 的垂直平分线经过一个定点A ;()2设点A 关于原点O 的对称点是B ,求PB 的最小值及相应的P 点坐标.问题3.已知抛物线24x y =的焦点为F ,A 、B 是抛物线上的两动点,且AF FB λ=(0λ>).过A 、B 两点分别作抛物线的切线,设其交点为M .(Ⅰ)证明FM AB ⋅为定值;(Ⅱ)设ABM △的面积为S ,写出()S f λ=的表达式,并求S 的最小值.问题4.直线m :1y kx =+和双曲线221x y -=的左支交于A 、B 两点,直线l 过点()2,0P -和线段AB的中点M ,求l 在y 轴上的截距b 的取值范围.(四)课后作业:1.已知椭圆22221x y a b+=(0a b >>)的右焦点为F ,过F 作直线与椭圆相交于A 、B 两点,若有2BF AF =,求椭圆离心率的取值范围.2.过抛物线22y px =的顶点任意作两条互相垂直的弦OA 、OB 求证:AB 交抛物线的对称轴上一定点.3.如图,在双曲线2211213y x -=的上支上有三点()11,A x y ,()2,6B x ,()33,C x y ,它们与点()0,5F 的距离成等差数列.()1求13y y +的值;()2证明:线段AC 的垂直平分线经过某一定点,并求此点坐标.4.已知椭圆1C 的方程为1422=+y x ,双曲线2C 的左、右焦点分别为1C 的左、右顶点,而2C 的左、右顶点分别是1C 的左、右焦点.(Ⅰ)求双曲线2C 的方程;(Ⅱ)若直线l :y kx =1C 及双曲线2C 都恒有两个不同的交点,且l 与2C 的两个交点A 和B 满足6<⋅(其中O 为原点),求k 的取值范围.5.P 是双曲线221916x y -=的右支上一点,,M N 分别是圆()2254x y ++=和()2251x y -+=上的点,则PM PN -的最大值为 .A 6 .B 7 .C 8 .D 96.如图,中心在原点O 的椭圆的右焦点为()3,0F ,右准线l 的方程为:12x =.()1求椭圆的方程;()2在椭圆上任取三个不同点321,,P P P ,使133221FP P FP P FP P ∠=∠=∠证明:123111FP FP FP ++为定值,并求此定值.7.已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OA OB + 与(3,1)a =-共线。
专题:圆锥曲线中的最值、范围、定点和定值问题(二合一版)
专题:圆锥曲线中的最值、范围、定点、定值问题题型一:定点问题解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决.例1、已知椭圆C :22221(0)x y a b a b +=>>,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -=相切.(1)求椭圆C 的方程;(2)设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围;(3)在(2)的条件下,证明直线ME 与x 轴相交于定点.解析:(1)2214x y +=;(2)0k <<或0k <<(3)(1,0)例2、在直角坐标系xOy 中,点M 到点()1,0F ,)2,0F 的距离之和是4,点M 的轨迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . (1)求轨迹C 的方程;(2)当0AP AQ ⋅=时,求k 与b 的关系,并证明直线l 过定点.解析:(1)2214x y +=;(2)k 与b 的关系是:65b k =,且直线l 经过定点6,05⎛⎫- ⎪⎝⎭点例3、已知椭圆C 中心在原点,焦点在x 轴上,焦距为2,短轴长为 (1)求椭圆C 的标准方程;(2)若直线l :()0y kx m k =+≠与椭圆交于不同的两点M N 、(M N 、不是椭圆的左、右顶点),且以MN 为直径的圆经过椭圆的右顶点A .求证:直线l 过定点,并求出定点的坐标.解析: (1)22143x y +=(2)直线l 的方程为 27y k x ⎛⎫=- ⎪⎝⎭,过定点2(,0)7题型二:定值问题在解析几何中,有些几何量与参数无关,这就构成了定值问题,解决这类问题时,一种思路是进行一般计算推理求出其结果,选定一个适合该题设的参变量,用题中已知量和参变量表示题中所涉及的定义,方程,几何性质,再用韦达定理,点差法等导出所求定值关系所需要的表达式,并将其代入定值关系式,化简整理求出结果;另一种思路是通过考查极端位置,探索出“定值”是多少,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,这样可将盲目的探索问题转化为有方向有目标的一般性证明题,从而找到解决问题的突破口,将该问题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的.同时有许多定值问题,通过特殊探索法不但能够确定出定值,还可以为我们提供解题的线索. 例1、已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点的直线交椭圆于A 、B 两点,)1,3(-=+与共线.(1)求椭圆的离心率;(2)设M 为椭圆上任意一点,且),(R ∈+=μλμλ,证明22μλ+为定值. 解析:(1)36=e (2)122=+μλ例2、已知,椭圆C 过点A 3(1,)2,两个焦点为(-1,0),(1,0).(1)求椭圆C 的方程;(2)E,F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.解析:(1)22143x y += (2)12例3、已知椭圆的中心在原点,焦点F 在y 轴的非负半轴上,点F 到短轴端点的距离是4,椭圆上的点到焦点F 距离的最大值是6.(1)求椭圆的标准方程和离心率e ;(2)若F '为焦点F 关于直线32y =的对称点,动点M 满足MF e MF ||='||,问是否存在一个定点A ,使M 到点A 的距离为定值?若存在,求出点A 的坐标及此定值;若不存在,请说明理由.解析:(1)椭圆的标准方程为2211612y x +=. 离心率21.42e ==(2)存在一个定点7(0,)3A ,使M 到A 点的距离为定值,其定值为2.3题型三:最值、范围问题例1、设椭圆E :x a y ba b 222210+=>>()的左、右焦点分别为F F 12、,如果椭圆上存在点M ,使∠=︒F PF 1290(1)求离心率e 的取值范围;(2)当离心率取最小值是,点N (0,3)到椭圆上的点的最远距离为 ①求椭圆E 的方程;②设斜率为(0)k k ≠的直线与椭圆E 交于不同的两点A 、B ,Q 为AB 的中点,问A 、B 两点能否关于过点(0,3P -、Q 的直线对称. 解析:(1)1e ∈) 解法1:利用椭圆自身的范围求解 解法2:利用根的判别式求解 解法3:利用三角函数有界性求解 解法4:利用焦半径公式求解 解法5:利用基本不等式求解 解法6:利用平面几何知识求解解法7:利用椭圆中的焦点三角形求解 解法8:利用椭圆中的焦点三角形面积公式(2)①2213216x y +=②((0,22-⋃例2、设椭圆:x a y ba b 222210+=>>()的左顶点为A 、上顶点为D ,点P 是线段AD 上任一点,左、右焦点分别为F F 12、,且12PF PF 的最大值为1,最小值为115- (1)求椭圆方程;(2)设椭圆右顶点为B ,点S 是椭圆上位于x 轴上方的一点,直线AS 、BS 与直线34:15l x =分别交于M 、N 两点,求|MN|的最小值.解析:(1)2214x y +=(2)1615例3、已知椭圆22221x y a b+=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b+=+(2)|OP|2+|OQ|2的最小值为22224a b a b +(3)OPQ S ∆的最小值是2222a b a b +.专题:椭圆中的最值、范围、定点、定值问题题型一:定点问题解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。
圆锥曲线中的最值、范围专题
圆锥曲线中的最值、范围学习目标:了解以圆锥曲线为背景下求最值、范围的方法,体会数学思想的运用。
学习重点、难点:在圆锥曲线中求最值、范围的几种常见方法。
一、定义法利用圆锥曲线的第一定义、第二定义相互转化,再利用几何或代数法求最值,可使题目 中数量关系更直观,解法更简捷。
例1、已知椭圆221259x y +=,A (4,0),B (2,2)是椭圆内的两点,P 是椭圆上任一点, 求:(1)求5||||4PA PB +的最小值; (2)求PB PA +的最小值和最大值。
变式练习:已知抛物线x y 42=,定点)1,3(A ,F 是抛物线的焦点 ,在抛物线上求一点P ,使PF AP +取最小值 ,并求的最小值 。
二、几何法数形结合是解决最值、范围问题的常用方法,利用几何法会让问题更加的明晰和直观。
例2、已知椭圆 221123x y += 和直线 09:=+-y x l ,在l 上取一点M ,经过点M 且以椭圆的焦点21,F F 为焦点作椭圆 ,求M 在何处时所作椭圆的长轴最短,并求此椭圆方程 。
变式练习: 已知双曲线12222=-by a x )0,0(>>b a 的右焦点为F ,若过点F 且倾斜角为60°的直线与 双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A.( 1,2)B. (1,2)C.[2,)+∞D.(2,+∞)三、参数法利用椭圆、双曲线的参数方程转化为三角函数问题,或利用直线、抛物线参数方程转化为函数问题求解。
例3、椭圆22221x y a b+=的切线l 与两坐标轴分别交于B A ,两点 , 求OAB ∆面积的最小值。
变式练习:已知P 点在圆1)2(22=-+y x 上移动,Q 点在椭圆2219x y +=上移动,试求PQ 的最大值。
三、圆锥曲线坐标的有界性圆锥曲线上的点的坐标是有界的,利用坐标的有界性建立不等式求离心率或参数的范围是常用的方法。
例4、设椭圆222:12x y M a +=(a >的右焦点为1F ,直线2:22-=a a x l 与x 轴交于点A ,若211=+OF (其中O 为坐标原点). (1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆()12:22=-+y x N 的任意一条直径(E 、F 为直径的两个端点),求⋅的最大值.变式练习: 已知双曲线22221,(0,0)x y a b a b-=>>的左、右焦点分别为21,F F ,点P 在双曲线的右支上,且214PF PF =,则此双曲线的离心率e 的最大值为:( ) A. 43 B. 53 C. 2 D. 73若点O 和点F (-2,0)分别是双曲线2221x y a-=(0a >)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP FP ∙ 的取值范围为 ( )A.[3-,+∞)B.[3+∞)C.[-74,+∞)D.[74,+ ∞) 已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12(,0),(,0)F c F c -,若椭圆上存在一点P 使1221sin sin a c PF F PF F =,则该椭圆的离心率的取值范围为 四、利用函数、不等式求最值、范围的方法利用函数、不等式求圆锥曲线中的最值、范围问题是最常用的方法,体现了圆锥曲线 中用代数方法解决几何问题的思想。
专题圆锥曲线中的最值及范围问题
高三数学专题复习圆锥曲线中的最值问题和范围的求解策略最值问题是圆锥曲线中的典型问题,它是教学的重点也是历年高考的热点。
解决这类问题不仅要紧紧把握圆锥曲线的定义,而且要善于综合应用代数、平几、三角等相关知识。
以下从五个方面予以阐述。
一.求距离的最值或范围:例1.设AB 为抛物线y=x 2的一条弦,若AB=4,则AB 的中点M 到直线y+1=0的最短距离为 ,解析:抛物线y=x 2的焦点为F (0 ,41),准线为y=41-,过A 、B 、M 准线y=41-的垂线,垂足分别是A 1、B 1、M 1,则所求的距离d=MM 1+43=21(AA 1+BB 1) +43=21(AF+BF) +43≥21AB+43=21×4+43=411,当且仅当弦AB 过焦点F 时,d 取最小值411, 评注:灵活运用抛物线的定义和性质,结合平面几何的相关知识,使解题简洁明快,得心应手。
练习:1、(2008海南、宁夏理)已知点P 在抛物线y 2= 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A )A. (41,-1) B. (41,1) C. (1,2) D. (1,-2) 2、(2008安徽文)设椭圆2222:1(0)x y C a b a b+=>>其相应于焦点(2,0)F 的准线方程为4x =.(Ⅰ)求椭圆C 的方程;(Ⅱ)已知过点1(2,0)F -倾斜角为θ的直线交椭圆C 于,A B两点,求证:22AB COS θ=-;(Ⅲ)过点1(2,0)F -作两条互相垂直的直线分别交椭圆C 于,A B 和,D E ,求AB DE + 的最小值解 :(1)由题意得:2222222844c a a c b a b c=⎧⎪⎧=⎪⎪=⎨⎨=⎪⎩⎪⎪=+⎩∴ ∴椭圆C 的方程为22184x y += (2)方法一:由(1)知1(2,0)F -是椭圆C的左焦点,离心率2e =设l 为椭圆的左准线。
高考圆锥曲线中的最值和范围问题的专题
高考专题圆锥曲线中的最值和范围问题★★★高考要考什么1 圆锥曲线的最值与范围问题(1)圆锥曲线上本身存在的最值问题:①椭圆上两点间最大距离为2a(长轴长).②双曲线上不同支的两点间最小距离为2a(实轴长).③椭圆焦半径的取值范围为[a-c,a+c],a-c与a+c别离表示椭圆核心到椭圆上的点的最小距离与最大距离.④抛物线上的点中极点与抛物线的准线距离最近.(2)圆锥曲线上的点到定点的距离的最值问题,经常使用两点间的距离公式转化为区间上的二次函数的最值问题解决,有时也用圆锥曲线的参数方程,化为三角函数的最值问题或用三角形的两边之和(或差)与第三边的不等关系求解.(3)圆锥曲线上的点到定直线的距离的最值问题解法同上或用平行切线法.(4)点在圆锥曲线上(非线性约束条件)的条件下,求相关式子(目标函数)的取值范围问题,经常使用参数方程代入转化为三角函数的最值问题,或依照平面几何知识或引入一个参数(有几何意义)化为函数进行处置.(5)由直线(系)和圆锥曲线(系)的位置关系,求直线或圆锥曲线中某个参数(系数)的范围问题,常把所求参数作为函数,另一个元作为自变量求解.与圆锥曲线有关的最值和范围问题的讨论经常使用以下方式解决:(1)结合概念利用图形中几何量之间的大小关系;(2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的转变范围;(3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示那个函数,通过讨论函数的值域来求参数的转变范围。
(4)利用代数大体不等式。
代数大体不等式的应用,往往需要制造条件,并进行巧妙的构思;(5)结合参数方程,利用三角函数的有界性。
直线、圆或椭圆的参数方程,它们的一个一起特点是均含有三角式。
因此,它们的应用价值在于:①通过参数θ简明地表示曲线上点的坐标;②利用三角函数的有界性及其变形公式来帮忙求解诸如最值、范围等问题;(6)构造一个二次方程,利用判别式0。
圆锥曲线中的最值、定值和范围问题
圆锥曲线中的最值、定值和范围问题与圆锥曲线有关的最值、定值和范围问题,因其考查的知识容量大、分析能力要求高、区分度高而成为高考命题者青睐的一个热点。
下面我们探讨与圆锥曲线有关的最值、定值和范围问题的常用方法。
一. 最值问题求解的基本策略有二:一是从几何角度考虑,当题目中的条件和结论明显体现几何特征及意义时,可用图形性质来解;二是从代数角度考虑,通过建立目标函数,求其目标函数的最值,求函数最值的常用方法有:二次函数法、基本不等式法、判别式法、定义法、函数单调性法等。
例1:如图所示,设点1F ,2F 是22132xy+=的两个焦点,过2F 的直线与椭圆相交于A 、B两点,求△1F AB 的面积的最大值,并求出此时直线的方程。
分析:12112F F B F AB F FAS S S =+ ,设11(,)A x y ,22(,)B x y ,则11212121||||||(1)2F AB F F y y y y c S =⋅-=- =设直线A B 的方程为1x ky =+代入椭圆方程得22(23)440k y ky ++-=12122244,2323k y y y y k k --⇒+==++即122||123y y k - ==+令1t =≥,∴12FA Bt tS +=12t t+(1t ≥)利用均值不等式不能区取“=”∴利用1()2f t t t=+(1t ≥)的单调性易得在1t =时取最小值1F AB S 在1t =即0k =时取最大值为3,此时直线A B 的方程为1x =例2.设椭圆方程为1422=+yx ,过点M (0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足OP (21=OA + )O B ,点N 的坐标为)21,21(,当l 绕点M 旋转时,求(1)动点P 的轨迹方程;(2)||N P的最小值与最大值.解(1)法1:直线l 过点M (0,1)设其斜率为k ,则l 的方程为y=kx+1.记A (x 1,y 1),B (x 2,y 2),由题设可得点A 、B 的坐标 (x 1,y 1)、 (x 2,y 2)是方程组⎪⎩⎪⎨⎧=++=14122yx kx y 的解. 将①代入②并化简得(4+k 2)x 2+2kx -3=0, 所以⎪⎪⎩⎪⎪⎨⎧+=++-=+.48,42221221k y y k k x x于是).44,4()2,2()(21222121kkk y y x x OB OA OP ++-=++=+=设点P 的坐标为(x,y ), 则⎪⎪⎩⎪⎪⎨⎧+=+-=.44,422k y kk x 消去参数k 得4x 2+y 2-y =0 ③ 当k 不存在时,A 、B 中点为坐标原点(0,0),也满足方程③,所以点P 的轨迹方程为4x 2+y 2-y =0解法二:设点P 的坐标为(x ,y ),因A (x 1,y 1),B (x 2,y 2)在椭圆上,所以,142121=+y x ④ .142222=+y x ⑤④—⑤得0)(4122212221=-+-y y x x ,所以.0))((41))((21212121=+-++-y y y y x x x x 当21x x ≠时,有.0)(4121212121=--⋅+++x x y y y y x x ⑥并且⎪⎪⎪⎩⎪⎪⎪⎨⎧--=-+=+=.1,2,221212121x x y y xy y y y x x x ⑦ 将⑦代入⑥并整理得 4x 2+y 2-y =0 ⑧ 当x 1=x 2时,点A 、B 的坐标为(0,2)、(0,-2),这时点P 的坐标为 (0,0)也满足⑧,所以点P 的轨迹方程为.141)21(16122=-+y x(2)由点P 的轨迹方程知.4141,1612≤≤-≤x x 即所以 127)61(3441)21()21()21(||222222++-=-+-=-+-=x xx y x NP故当41=x ,||NP 取得最小值,最小值为1;4① ②当16x =-时,||NP 取得最大值,最大值为.621对于()*,有∆=m 2+4b =10-m 2>0,所以m <<。
专题:圆锥曲线中 定点、定值、最值探索性问题
知识回扣 大题规范
解题绝招
限时速解训练
首页
上页 下页
尾页
知识 回扣
必记知识 重要结论
(3)最值(范围)问题 在解析几何中,有些量或表达式因参数的变化或位置的变化而变化.
(4)探索性问题 解析几何中的探索性问题,从类型上看,主要是存在类型的相关题 型.
知识回扣 大题规范
解题绝招
限时速解训练
首页
上页 下页
a2-b2 2 4 2 由题意有 = , 2+ 2=1, a 2 a b 解得a2=8,b2=4.(3分 ) x2 y2 所以C的方程为 + =1.(4分 ) 8 4
知识回扣 大题规范 解题绝招 限时速解训练
首页 上页 下页 尾页
大题 规范
类型一
有关圆锥曲线的定值问题
设直线l:y=kx+b(k≠0,b≠0),A(x1, y1),B(x2,y2), M(xM, yM). (5 分) x2 y2 将 y=kx+b代入 + =1,得 8 4 (2k2+1)x2+4kbx+2b2-8=0.(7分 ) x1+ x2 -2kb b 故 xM= = 2 , yM= k· xM+ b= 2 .(9分 ) 2 2k +1 2k +1 yM 1 于是直线OM的斜率kOM= =- , (10分 ) xM 2k 1 即 kOM· k=- .(11分) 2 所以直线OM的斜率与直线l的斜率的乘积为定值.(12分)
知识回扣 大题规范
解题绝招
限时速解训练
首页
知识回扣 大题规范
解题绝招
限时速解训练
首页
上页 下页
尾页
大题 规范
类型一
有关圆锥曲线的定值问题
解析几何中的定值问题的证明可运用函数的思想方法来解决.证明过程 可总结为“变量⇒函数⇒定值”,具体操作程序如下:
专题01 圆锥曲线中的定点、定值问题
高中数学 ︵ 圆锥曲线 ︶培优篇定点、定值问题曲线过定点某个量为定值用参数表示曲线方程 用参数表示该量令参数系数为0或某值,解出相应的x 、y 的值 令参数系数为0或某值化简使该量为定值选参、用参、消参,求出定点或定值高中数学 ︵ 圆锥曲线 ︶培优篇高中数学 ︵ 圆锥曲线 ︶培优篇高中数学 ︵ 圆锥曲线 ︶培优篇高中数学 ︵ 圆锥曲线 ︶培优篇高中数学 ︵ 圆锥曲线 ︶培优篇高中数学︵ 圆锥曲线 ︶培优篇 2|||1AF .高中数学 ︵ 圆锥曲线 ︶培优篇 方法联立,第一种,假设直线AB 的方程,第二种假设直线P 2A 和P 2B . 满分解答(1) 根据椭圆对称性可得,P 1(1,1),P 4(1,)不可能同时在椭圆上,P 3(–1,),P 4(1,)一定同时在椭圆上,因此可得椭圆经过P 2(0,1),P 3(–1,),P 4(1,). 把P 2,P 3坐标代入椭圆方程得2221=13141b a b,,解得224,1a b ,故椭圆C 的方程为2214x y ;(2)解1 ①当直线l 的斜率不存在时,设:l x m ,(,),(,)A A A m y B m y ,此时221121A A P A P B y y k k m m m,解得2m ,此时直线l 过椭圆右顶点,不存在两个交点,故不满足.②当直线l 的斜率存在时,设:(1)l y kx t t ,1122(,),(,)A x y B x y ,则2214y kx t x y ,,消去y 得 222(14)8440k x tkx t , 2216(41)k t ,2121222841,1414tk t x x x x k k,此时 22121211P A P B y y k k x x21212112()()x kx t x x kx t x x x21212(1)()(1)(8)224(1)t x x t kt k k x x t. 由于1t ,所以22222111P A P B kt kk k k t t ,即21t k ,此时32(1)t ,存在1t ,使得0 成立,22222高中数学 ︵ 圆锥曲线 ︶培优篇所以直线l 的方程为(2)1y k x ,直线l 必过定点(2,1) .解2 由题意可得直线2P A 与直线2P B 的斜率一定存在,不妨设直线2P A 为1y kx , 则直线2P B 为 11y k x .由22114y kx x y ,,得224180k x kx ,设 11,A x y , 22,B x y 此时可得:222814,4141k k A k k,同理可得 22281141,411411k k B k k.此时可求得直线l 的斜率为:2222212122141144141181841411ABk k k k y y k k x x k k k ,化简可得2112AB k k,此时满足12k .当12k 时,,A B 两点重合,不合题意.当12k 时,直线方程为: 22221814414112k k y x k k k, 即2244112k k x y k,当2x 时,1y ,因此直线恒过定点 2,1 .思路点拨第(1)题只需证明0AC BC.第(2)题要先求圆的方程,令y=0即可求出在y 轴上弦长.求圆方程可以用标准式方程,也可以用一般式方程.当然,本题还可以利用相交弦定理来解.高中数学 ︵ 圆锥曲线 ︶培优篇 满分解答(1)设 12,0,,0A x B x ,则12,x x 是方程220x mx 的根,所以1212,2x x m x x ,则 1212,1,112110AC BC x x x x.所以不会能否出现AC ⊥BC 的情况.(2)解1 由于过A ,B ,C 三点的圆的圆心必在线段AB 垂直平分线上,设圆心 00,E x y ,则12022x x mx. 由EA EC得 22221212100+122x x x x x y y,化简得 1201122x x y ,所以圆E 的方程为22221112222m m x y.令0x 得121,2y y ,所以过A ,B ,C 三点的圆在y 轴上截得的弦长为 123 .所以,过A ,B ,C 三点的圆在y 轴上截得的弦长为定值解2 由于BC 的中点坐标为21(.22x ,可得BC 的中垂线方程为221()22xy x x . 由(1)可得12x x m ,所以AB 的中垂线方程为2mx .联立2221(22m x x y x x ,,又22220x mx , 可得212m x y ,,所以过,,A B C 三点的圆的圆心坐标为1(,)22m,半径2r ,故圆在y 轴上截得的弦长为3 ,即过A B C ,,三点的圆在y 轴上的截得的弦长为定值.解3 设圆的方程为220x y Dx Ey F , 令0y ,得20x Dx F ,由题意,2D m F ,把0,1x y 代入圆的方程,得10E F ,即1E .故圆的方程为:2220x y mx y .高中数学 ︵ 圆锥曲线 ︶培优篇 11令0x ,得220y y ,所以121,2y y ,故12|||1(2)|3y y .所以过,,A B C 三点的圆在y 轴上截得的弦长为定值3.解4设过A ,B ,C 三点的圆与y 轴的另一个交点为D ,由122x x 可知原点O 在圆内,由相交弦定理可得122OD OC OA OB x x ,又1OC ,所以2OD ,所以,过A ,B ,C 三点的圆在y 轴上截得的弦长为3OC OD ,为定值.思路点拨第(1)题可以直接求出a、b;第(2)题用参数表示AN BM ,可以设 00,P x y ,用00x y 、做参数,也可以设 2cos ,sin P , 用做参数. 满分解答(1)由已知,1,122c ab a ,又222a b c ,解得2,1,a b c 所以椭圆的方程为2214x y .(2)解1 设椭圆上一点 00,P x y ,则220014x y .由于直线PA 的方程: 0022y y x x ,令0x ,得0022M y y x, 所以00212y BM x; 直线PB 的方程:0011y y x x ,令0y ,得001N x x y, 所以0021x AN y. 因为220014x y ,所以220044x y ,从而高中数学 ︵ 圆锥曲线 ︶培优篇 120000002200000000002222214448422x y x y x y x y x y x y x y x y2200000000004444484=422y y x y x y x y x y .故AN BM 为定值.解2 设椭圆 上一点 2cos ,sin P ,则直线P A 的方程: sin 22cos 2y x,令0x ,得sin 1cos M y, 所以sin cos 11cos BM;直线PB 的方程:sin 112cos y x,令 0y ,得2cos 1sin N x, 所以2sin 2cos 21sin AN.2sin 2cos 2sin cos 11sin 1cos 22sin 2cos 2sin cos 21sin cos sin cos 4AN BM。
高考数学专题复习:圆锥曲线中的最值(范围)问题
[解] (1)由题意知 M(0,-4),F0,p2 ,圆 M 的半径 r=1,所以|MF|-r=4,即
p 2
+4-1=4,解得 p=2.
(2)由(1)知,抛物线方程为 x2=4y,
由题意可知直线 AB 的斜率存在,设 Ax1,x421
,Bx2,x422
,直线 AB 的方程为
y=kx+b,
联立得yx=2=k4xy+,b, 消去 y 得 x2-4kx-4b=0, 则 Δ=16k2+16b>0 (※),x1+x2=4k,x1x2=-4b,
寻找不等关系的突破口 (1)利用判别式来构造不等式,从而确定所求范围; (2)利用已知参数的取值范围,求新参数的范围,解这类问题的核心是在两个参数 之间建立相等关系; (3)利用隐含的不等关系,从而求出所求范围; (4)利用已知不等关系构造不等式,从而求出所求范围; (5)利用函数值域的求法,确定所求范围.
联立方程x42+y2=1, 得(m2+4)y2+8my+12=0. 由 Δ=64m2-48(m2+4)>0,得 m2>12, 所以 y1y2=m21+2 4 .
λ=|MA|·|MB|= m2+1 |y1|· m2+1 |y2|
=(m2+1)·|y1y2|=12(mm2+2+41) =121-m23+4 . 由 m2>12,得 0<m23+4 <136 ,所以349 <λ<12.
已知椭圆 C:xa22
+by22
=1(a>b>0)的离心率 e=
3 2
,直线 x+
3
y-1=0 被以椭圆 C
的短轴为直径的圆截得的弦长为 3 .
(1)求椭圆 C 的方程;
(2)过点 M(4,0)的直线 l 交椭圆于 A,B 两个不同的点,且 λ=|MA|·|MB|,求 λ 的取值
圆锥曲线的定值、最值与定点问题和圆锥曲线中的“定值”问题
探讨圆锥曲线的定值、最值与定点问题圆锥曲线中的最值与定值问题,是解析几何中的综合问题,是一种典型题型,将函数与解析融为一体,要求有较强的综合能力,例析如下。
一、 定值问题解决定值问题的方法:将问题涉及的几何式转化为代数式或三角式,证明该式的值与参数无关。
例1 A 、B 是抛物线22y px =(p >0)上的两点,且OA ⊥OB ,求证: (1)A 、B 两点的横坐标之积,纵坐标之积分别都是定值; (2)直线AB 经过一个定点。
证明:(1)设A (11,x y )、B (22,x y ),则2112y px =,2222y px =。
∵22121222y y px px ⋅=⋅=22121244p x x p y y =-,∴2124y y p =-为定值,212124x x y y p =-=也为定值。
(2)∵2221212112()()2()y y y y y y p x x -=+-=-,∵12x x ≠,∴2121122y y px x y y -=-+ ∴直线AB 的方程为:211112122y p y y x y y y y y -=-+++2121224p p x y y y y =-++ 122(2)px p y y =-+,∴直线AB 过定点(2p ,0)。
例2 已知抛物线方程为212y x h =-+,点A 、B 及点P(2,4)都在抛物线上,直线PA 与PB 的倾斜角互补。
(1)试证明直线AB 的斜率为定值;(2)当直线AB 的纵截距为m (m >0)时,求△PAB 的面积的最大值。
分析:这类问题一般运算量大,要注意函数与方程、数形结合、分类讨论等思想方法的灵活运用。
解析:(1)证明:把P(2,4)代入212y x h =-+,得h=6。
所以抛物线方程为:y -4=k(x -2),由24(2)162y k x y x -=-⎧⎪⎨=-+⎪⎩,消去y ,得22440x kx k +--=。
(圆锥曲线)范围、最值、定值、定点、定直线问题
圆锥曲线专题(一)范围、最值问题1.已知(4,0),(2,2)A B 是椭圆221259x y +=内的两个点,M 是椭圆上的动点,则a 的最大值为 ,最小值为 .2.已知动点P (x ,y )在椭圆1162522=+y x 上,若A (3,0),0,1=⋅=AM PM AM ,的最小值为3.已知抛物线C :22(0)y px p =>的焦点为F ,过点F 垂直于x 轴的直线与抛物线C 相交于A ,B 两点,抛物线C 在A ,B 两点处的切线及直线AB 所围成的三角形面积为4.(1)求抛物线C 的方程.(2)设M ,N 是抛物线C 上异于原点O 的两个动点,且满足OM ON OA OB k k k k ⋅=⋅,求OMN ∆面积的取值范围.4.在平面直角坐标系中,过椭圆C :22221(0)x y a b a b+=>>右焦点的直线03=-+y x 交椭圆C 与A ,B 两点,P 为AB 的中点,且OP 的斜率为21. (1)求椭圆C 的方程.(2)C ,D 为椭圆C 上两点,若四边形ACBD 的对角线AB CD ⊥,求四边形ACBD 面积的最大值.5.设圆015222=-++x y x 的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(1)证明:EB EA +为定值,并写出点E 的轨迹方程.(2)设点E 的轨迹为曲线1C ,直线l 交1C 于M ,N 两点,过B 且与l 垂直的直线与圆A交于P ,Q 两点,求四边形MNPQ 面积的取值范围.6.已知F 为椭圆E :22221(0)x y a b a b+=>>的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线024=+y x 与椭圆E 有且仅有一个交点M . (1)求椭圆E 的方程.(2)设直线024=+y x 与y 轴交于P ,过点P 的直线l 与椭圆E 交于两个不同点A,B ,若PB PA PM =2λ,求实数λ的取值范围.(二)定值问题7.已知椭圆C :22221(0)x y a b a b +=>>的离心率为12,以原点为圆心,椭圆的短半轴长为半径的圆与直线-0x y +=相切.(1)求椭圆C 的标准方程.(2)若直线:l y kx m =+与椭圆C 相交于A ,B 两点,且22=-OA OB b k k a⋅,求证: AOB ∆的面积为定值.8.已知椭圆C :22221(0)x y a b a b+=>>经过点A (0,-1),且离心率为2,经过点(1,1),且斜率为k 的直线与椭圆C 交于不同的两点P ,Q (均异于点A ),求证:直线AP 与AQ 的斜率之和为定值.9.已知椭圆C :22221(0)x y a b a b+=>>的离心率为23,A (a ,0),B (0,b ),O (0,0).OAB ∆的面积为1.设P 是椭圆C 上一点,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N.(1)求证:BM AN ⋅为定值.(2)求四边形ABMN 面积的最小值.10.已知离心率为22的椭圆C :22221(0)x y a b a b+=>>,过点M ),(16. (1)求椭圆C 的方程.(2)已知圆3822=+y x 相切的直线l 与椭圆C 交于A,B 两点,证明:OB OA ⋅为定值.11.已知椭圆C :22221(0)x y a b a b+=>>的离心率为23,过点A (2,1). (1)求椭圆C 的方程;(2)若P ,Q 是C 上的两个动点,且使PAQ ∠的角平分线总是垂直于x 轴,试判断直线PQ 的斜率是否为定值.12.已知抛物线关于x 轴对称,顶点在原点,P (2,4)在抛物线上.(1)求抛物线的标准方程及准线方程;(2)过点P 作两条倾斜角互补的直线与抛物线分别交于不同点A ,B ,求证:直线AB 的斜率为定值.13.已知椭圆C :22221(0)x y a b a b+=>>的离心率为23,过点M (2,1),O 为原点,平行于OM 的直线l 交C 于不同的两点A ,B .(1)求椭圆C 的方程;(2)证明:MA ,MB 的斜率之和为定值.14.(2018·合肥二模)已知点A (1,0)和动点B ,以线段AB 为直径的圆内切于圆4:22=+y x O .(1)求动点B 的轨迹方程;(2)已知点P (2,0),Q (2,-1),经过点Q 的直线l 与动点B 的轨迹交于M ,N ,求证:直线PM 和直线PN 的斜率之和为定值.15.已知椭圆C :22221(0)x y a b a b+=>>的离心率为22,且以焦点为直径的圆的内接正方形面积为2.(1)求椭圆C 的方程;(2)若直线2:+=kx y l 与椭圆C 相交于A,B ,在y 轴上是否存在点D ,使直线AD 与BD的斜率之和为定值?若存在,求出点D 的坐标及定值;若不存在,请说明理由.16.已知圆C :422=+y x 与x 轴交于21,F F (2F 在原点右侧),动点P 到21,F F 的距离之和为定值)2(2>a a ,且21cos PF F ∠的最小值为31-. (1)求动点P 的轨迹方程;(2)过2F 且斜率不为0的直线l 与点P 的轨迹交于A ,B ,若存在点E ,使得AB EA EA ⋅+2是与直线l 的斜率无关的定值,则称E 为“恒点”,问在x 轴上是否存在这样的“恒点”?若存在,求出该点坐标;若不存在,请说明理由.(三)定点问题17. 已知椭圆C :22221(0)x y a b a b+=>>过点M e =. (1)求椭圆C 的标准方程.(2)已知点0)P ,若AB 为椭圆上的两个动点,且2PA PB ⋅=-,求证:直线AB 恒过定点.18.已知椭圆C :22221(0)x y a b a b+=>>的离心率为22,左右焦点分别为21,F F ,点P )3,2(,点2F 在线段1PF 的中垂线上.(1)求椭圆C 的标准方程.(2)设直线m kx y l +=:与C 交于M ,N ,直线M F 2与N F 2的倾斜角互补,求证:直线l 过定点.19.(2018·合肥三模)已知抛物线)0(2:2>=p px y C 的焦点为F ,以抛物线上动点M 为圆心的圆过点F ,若圆M 的面积最小值为π.(1)求p 的值;(2)当点M 的横坐标为1且位于第一象限时,过M 作抛物线的两条弦MA ,MB ,且满足BMF AMF ∠=∠,若直线AB 恰好与圆M 相切,求直线AB 的方程.20. 已知离心率为e 的椭圆M : 22221(0)x y a b a b+=>>,过点A (-2,0)和(1,)P e . (1)求椭圆M 的标准方程.(2)设点B 是椭圆M 的右顶点,直线1l 过点B 且垂直于x 轴,点Q 是椭圆上异于A ,B 的任意一点,直线AQ 交1l 于点N ,设经过N 且垂直于BQ 的直线为2l ,求证:直线2l 过定点.21.在平面直角坐标系中,直线02=+-m y x 不过原点,且与椭圆12422=+x y 有两个不同的公共点A ,B .(1)求m 的取值集合M .(2)是否存在定点P 使得M m ∈∀,都有直线P A ,PB 的倾斜角互补,若存在,求出所有定点P的坐标;若不存在,请说明理由.(四)定直线问题22.已知)0,1(),0,1(21F F -,动点M 到点2F 的距离是22,线段1MF 的中垂线交线段2MF 于点P .(1)当点M 变化时,求动点P 的轨迹G 的方程;(2)直线l 与曲线G 相切于点N ,过2F 作2NF 的垂线与直线l 相交于点Q ,求证:点Q 落在一条定直线m 上,并求直线m 的方程.23.设点P 是抛物线y x E 2:2=上的动点,且位于第一象限,E 在点P 处的切线l 与椭圆14:22=+y x C 交于不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M .(1)求证:点M 在定直线;(2)直线l 与y 轴交于点G ,求PDMPFG S S ∆∆的最大值及取得最大值时点P 的坐标.24.已知椭圆C :22221(0)x y a b a b+=>>的左右顶点分别为21,A A ,左右焦点分别为21,F F ,离心率为21,2F 为线段B A 1的中点. (1)求椭圆C 的标准方程.(2)若过点B 且斜率不为0的直线l 与椭圆C 交于M ,N 两点,已知直线M A 1与N A 2相交于点G ,试判断点G 是否在定直线上?若是,求出定直线的方程;若不是,请说明理由.。
圆锥曲线最值范围定值(总结)
l
与椭圆x2+ 2
y2=1 有两个不同的交点 P 和 Q.
(1)求 k 的取值范围;
(2)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数m,使得
向量O→P+O→Q与A→B共线?如果存在,求m值;如果不存在,请说明理由.
解 (1)由已知条件,知直线 l 的方程为 y=kx+ 2, 代入椭圆方程,得x22+(kx+ 2)2=1,整理得12+k2x2+2 2kx+1=0.① 由直线 l 与椭圆有两个不同的交点 P 和 Q,得 Δ=8k2-412+k2=4k2-2>0,
a
2
思路二:利用二次方程有实根
由椭圆定义知 | PF1 | | PF2 | 2a ,又由 F1PF2 90 知 PF1 |2 | PF2 |2 | F1F2 |2 4c2 , 则可得 | PF1 || PF2 | 2(a 2 c2 ) ,这样| PF1 | 与| PF2 | 是方程 u 2 2au 2(a 2 c2 ) 0 的两个
证明 由题意,知 F1(-1,0),F2(1,0), 设 B(x1,y1),E(x2,y2),C(x3,y3),D(x4,y4), 直线 y=k(x-1),代入x92+y82=1, 得 8yk+12+9y2-72=0,即(8+9k2)y2+16ky-64k2=0, 则 y1+y2=-8+169kk2,y1y2=-8+649k2k2. 同理,将 y=k(x-1)代入 y2=4x,得 ky2-4y-4k=0, 则y3+y4=4k,y3y4=-4,
a2 ,即 0
2c 2 a 2 e2
a 2 ,所以 e [
2 ,1). 2
思路五:利用基本不等式
由椭圆定义,有 2a | PF1|| PF2 | ,平方后得
圆锥曲线中的最值、范围问题2
则 x0=x1+2 x2=1-+33kkt2,y0=kx0+t=1+t3k2, ∴H-1+3k3tk2,1+t3k2. ∵|DP|=|DQ|,∴DH⊥PQ,即 kDH=-1k. ∴-1+1+t33kk3t2k+2-20=-1k,化简得 t=1+3k2,② 由①②得,1<t<4.综上,t∈(-2,4).
F,
离心率为 2 ,过点 F 且垂直于长轴的弦长为 2 .
2
(I)求椭圆 C 的标准方程;
(II)设点 A,B 分别是椭圆的左、右顶点,若过点 P2,0的直线与椭圆相交于不同两点 M,N.
(i)求证: AFM BFN ;
(ii)求 MNF 面积的最大值.
解:(1) e c 2 , 又 2b2 2 ,所以 a 2,b 1.所以椭圆的标准方程为 x2 y2 1…………(4 分)
5.定值问题 解析几何中的定值问题是指某些几何量(线段的长度、 图形的面积、角的度数、直线的斜率等)的大小或某些代数 表达式的值等和题目中的参数无关,不随参数的变化而变 化,而始终是一个确定的值.
6.最值问题 圆锥曲线中的最值问题类型较多,解法灵活多变,但 总体上主要有两种方法:一是利用几何方法,即利用曲线 的定义、几何性质以及平面几何中的定理、性质等进行求 解;二是利用代数方法,即把要求最值的几何量或代数表 达式表示为某个(些)参数的函数,然后利用函数方法、不等 式方法等进行求解.
解决圆锥曲线中最值、范围问题的基本思想是建立目标函数 和建立不等关系,根据目标函数不等式求最值、范围.因此这类 问题的难点,就是如何建立目标函数和不等关系.建立目标函数 或不等关系的关键是选用一个合适变量,其原则是这个变量能够 表达要解决的问题,这个变量可以是直线的斜率、直线的截距、 点的坐标等,要根据问题的实际情况灵活处理.
专题--圆锥曲线中的定点与定值问题
感悟真题
(2015·高考全国卷Ⅱ, 12 分)已知椭圆 C :9x 2+y 2=m 2 (m >0), 直线 l 不过原点 O 且不平行于坐标轴,l 与 C 有两个交点 A , B,线段 AB 的中点为 M. (1)证明:直线 OM 的斜率与 l 的斜率的乘积为定值; m ,m (2)若 l 过点 3 ,延长线段 OM 与 C 交于点 P ,四边形 OAPB 能否为平行四边形?若能,求此时 l 的斜率;若不能, 说明理由.
圆锥曲线中的定点与定值问题
沿河民族中学:阚辉
2017考向导航
历届高考考什么? 2016 四年真题统计 2015 2014 2013
1.圆锥曲线中的定点问 题 2.圆锥曲线中的定值问 卷Ⅱ, 题 T20(1) 3.圆锥曲线中的范围(最 卷ⅠT20(2) 值)问题 卷ⅡT20(2)
卷Ⅰ, 卷I T20 T20(2) (2)卷 ⅡT20(2)
4.圆锥曲线中的存在性 问题
卷I, T20(2)卷 Ⅱ, T20(2)
2017可能会怎样考?
圆锥曲线中定点与定值、最值与范围、存在
性问题、证明问题是考试的热点,理清元素 之间的关系,是有效、快速求解的关键
必记概念与定理 ①定点:是在变化中所表现出来的不变的点, 那么就可以用变量 表示问题中的直线方程、数量积、比例关系等,这些直线方程、 数量积、 比例关系中不受变量所影响的某个点, 就是要求的定点.
课堂练习
练习 1. 已知动点 E 在直线 l : y 2 上, 过点
E 分别作曲线 C : x2 4 y 的切线 EA, EB ,
切点
为 A 、B , 求证:直线 AB 恒过一定点,并求 出该定点的坐标。
课堂练习
练习 2.已知椭圆 C 的中心在坐标原点,焦点
模块复习课 第3课时 圆锥曲线中的最值、范围、定点、定值问题
课堂篇专题整合
专题归纳
高考体验
跟踪训练 1 设 F1,F2 分别是椭圆 C:������������22 + ������������22=1(a>b>0)的左、右
焦点,椭圆 C 上的点 A
1,
3 2
到 F1,F2 两点的距离之和等于 4.
(1)求椭圆 C 的方程;
(2)设点 P 是椭圆 C 上的动点,Q
综上所述直线 MN 经过点 -23,0 .
课堂篇专题整合
课堂篇专题整合
专题归纳
高考体验
专题三 圆锥曲线与平面向量的交汇问题
例 3 已知椭圆的中心在原点,焦点在 x 轴上,离心率为 23,过点 M(-1,0)的直线 l 与椭圆交于 P,Q 两点.
(1)若直线 l 的斜率为 1,且������������=-35 ������������,求椭圆的标准方程; (2)若(1)中椭圆的右顶点为 A,直线 l 的倾斜角为 α,问 α 为何值 时,������������ ·������������取得最大值,并求出这个最大值.
课堂篇专题整合
专题归纳
高考体验
专题二 圆锥曲线中的定点与定值问题
例2 已知椭圆C:
������2 ������2
+
������2 ������2
=1(a>b>0)的左顶点A(-2,0),过右焦点F
且垂直于长轴的弦长为3.
(1)求椭圆C的方程;
(2)若过点A的直线l与椭圆交于点Q,与y轴交于点R,过原点与l平
课堂篇专题整合
专题归纳
高考体验
解(1)由左顶点A(-2,0)易知a=2,设过右焦点F且垂直于长轴的弦
为MN, 将 M(c,yM)代入椭圆方程������������22
专题 圆锥曲线的综合性质(定点、定值、最值、范围)(知识点串讲)高二上学期数学期末考点(人教A版)
专题07 圆锥曲线的综合性质(理)(定点、定值、最值、范围)知识网络重难点突破知识点一 定点问题例1.已知抛物线C :()220y px p =>的焦点为F ,点A 为C 上异于顶点的任意一点,过A 的直线l 交C于另一点B ,交x 轴正半轴于点D ,且有FA FD =,当点A 的横坐标为3时,ADF ∆为正三角形. (1)求C 的方程;(2)若直线1//l l ,且1l 和C 相切于点E ,试问直线AE 是否过定点,若过定点,求出定点坐标;若不过定点,说明理由.【答案】(1) 24y x = (2) 直线AE 过定点()1,0.【解析】(1)抛物线的焦点,02p F ⎛⎫⎪⎝⎭,设(),0D t ,则FD 的中点坐标为2,04p t +⎛⎫⎪⎝⎭, ∵FA FD =,∴322p pt +=-,解得3t p =+,或3t =-(舍), ∵234p t +=,∴3634p +=,解得2p =,∴抛物线方程为24y x =. (2)由(1)知,()1,0F ,设()00,A x y ,(),0D D x ,∵FA FD =,则011D x x -=+,由0D x >得02D x x =+,即()02,0D x +, ∴直线l的斜率02AD y k =-,∵1//l l ,故设直线1l 的方程为02y y x b =-+, 联立方程组2042y xy y x b⎧=⎪⎨=-+⎪⎩,得2000880b y y y y +-=, ∵直线1l 与抛物线相切,∴20064320b y y ∆=+=,02b y =-, 设(),E E E x y ,则04E y y =-,204E x y =, 当24y ≠时,02044AE y k y =-,直线AE 的方程为()0002044y y y x x y -=--, ∵2004y x =,∴直线AE 的方程为()020414y y x y =--,∴直线AE 过定点()1,0, 当204y =时,直线AE 方程为1x =,经过定点()1,0,综上,直线AE 过定点()1,0.【变式训练1-1】、(2020·黑龙江哈尔滨师大附中高三模拟)已知以动点P 为圆心的P 与直线l :12x =-相切,与定圆F :221(1)4x y -+=相外切. (Ⅰ)求动圆圆心P 的轨迹方程C ;(Ⅱ)过曲线C 上位于x 轴两侧的点M 、N (MN 不与x 轴垂直)分别作直线l 的垂线,垂足记为1M 、1N ,直线l 交x 轴于点A ,记1AMM ∆、AMN ∆、1ANN ∆的面积分别为1S 、2S 、3S ,且22134S S S =,证明:直线MN 过定点.【答案】(Ⅰ)24y x =;(Ⅱ)详见解析. 【解析】(Ⅰ)设(,)P x y ,P 半径为R ,则12R x =+,1||2PF R =+,所以点P 到直线1x =-的距离与到(1,0)F 的距离相等,故点P 的轨迹方程C 为24y x =. (Ⅱ)设()11,M x y ,()22,N x y ,则111,2M y ⎛⎫-⎪⎝⎭、21,2N y ⎛⎫- ⎪⎝⎭设直线MN :x ty n =+(0t ≠)代入24y x =中得2440y ty n --=124y y t +=,1240y y n =-<∵1111122S x y =+⋅、3221122S x y =+⋅ ∴131********S S x x y y ⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭12121122ty n ty n y y ⎛⎫⎛⎫=++++ ⎪⎪⎝⎭⎝⎭()22121211422t y y n t y y n n ⎡⎤⎛⎫⎛⎫=+++++⋅-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦2221144422nt t n n n ⎡⎤⎛⎫⎛⎫=-++++⋅⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦221242t n n ⎡⎤⎛⎫=++⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦又21211112222S n y y n =+⋅-=+∴()()22222211116164422S n t n n t n ⎛⎫⎛⎫=+⋅+=+⋅+ ⎪ ⎪⎝⎭⎝⎭222222131114842222S S S nt n t n n n ⎛⎫⎛⎫=⇔=+⇔=+⇒= ⎪ ⎪⎝⎭⎝⎭∴直线MN 恒过1,02⎛⎫⎪⎝⎭。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题:圆锥曲线中的最值、范围、定点、定值问题题型一:定点问题解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决.例1、已知椭圆C :22221(0)x y a b a b +=>>,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -=相切.(1)求椭圆C 的方程;(2)设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围;(3)在(2)的条件下,证明直线ME 与x 轴相交于定点.解析:(1)2214x y +=;(2)0k <<或0k <<(3)(1,0)例2、在直角坐标系xOy 中,点M 到点()1,0F ,)2,0F 的距离之和是4,点M 的轨迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . (1)求轨迹C 的方程;(2)当0AP AQ ⋅=时,求k 与b 的关系,并证明直线l 过定点.解析:(1)2214x y +=;(2)k 与b 的关系是:65b k =,且直线l 经过定点6,05⎛⎫- ⎪⎝⎭点例3、已知椭圆C 中心在原点,焦点在x 轴上,焦距为2,短轴长为 (1)求椭圆C 的标准方程;(2)若直线l :()0y kx m k =+≠与椭圆交于不同的两点M N 、(M N 、不是椭圆的左、右顶点),且以MN 为直径的圆经过椭圆的右顶点A .求证:直线l 过定点,并求出定点的坐标.解析: (1)22143x y +=(2)直线l 的方程为 27y k x ⎛⎫=- ⎪⎝⎭,过定点2(,0)7题型二:定值问题在解析几何中,有些几何量与参数无关,这就构成了定值问题,解决这类问题时,一种思路是进行一般计算推理求出其结果,选定一个适合该题设的参变量,用题中已知量和参变量表示题中所涉及的定义,方程,几何性质,再用韦达定理,点差法等导出所求定值关系所需要的表达式,并将其代入定值关系式,化简整理求出结果;另一种思路是通过考查极端位置,探索出“定值”是多少,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,这样可将盲目的探索问题转化为有方向有目标的一般性证明题,从而找到解决问题的突破口,将该问题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的.同时有许多定值问题,通过特殊探索法不但能够确定出定值,还可以为我们提供解题的线索. 例1、已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点的直线交椭圆于A 、B 两点,)1,3(-=+与共线.(1)求椭圆的离心率;(2)设M 为椭圆上任意一点,且),(R ∈+=μλμλ,证明22μλ+为定值. 解析:(1)36=e (2)122=+μλ例2、已知,椭圆C 过点A 3(1,)2,两个焦点为(-1,0),(1,0).(1)求椭圆C 的方程;(2)E,F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.解析:(1)22143x y += (2)12例3、已知椭圆的中心在原点,焦点F 在y 轴的非负半轴上,点F 到短轴端点的距离是4,椭圆上的点到焦点F 距离的最大值是6.(1)求椭圆的标准方程和离心率e ;(2)若F '为焦点F 关于直线32y =的对称点,动点M 满足MF e MF ||='||,问是否存在一个定点A ,使M 到点A 的距离为定值?若存在,求出点A 的坐标及此定值;若不存在,请说明理由.解析:(1)椭圆的标准方程为2211612y x +=. 离心率21.42e ==(2)存在一个定点7(0,)3A ,使M 到A 点的距离为定值,其定值为2.3题型三:最值、范围问题例1、设椭圆E :x a y ba b 222210+=>>()的左、右焦点分别为F F 12、,如果椭圆上存在点M ,使∠=︒F PF 1290(1)求离心率e 的取值范围;(2)当离心率取最小值是,点N (0,3)到椭圆上的点的最远距离为 ①求椭圆E 的方程;②设斜率为(0)k k ≠的直线与椭圆E 交于不同的两点A 、B ,Q 为AB 的中点,问A 、B 两点能否关于过点(0,3P -、Q 的直线对称. 解析:(1)1e ∈) 解法1:利用椭圆自身的范围求解 解法2:利用根的判别式求解 解法3:利用三角函数有界性求解 解法4:利用焦半径公式求解 解法5:利用基本不等式求解 解法6:利用平面几何知识求解解法7:利用椭圆中的焦点三角形求解 解法8:利用椭圆中的焦点三角形面积公式(2)①2213216x y +=②((0,22-⋃例2、设椭圆:x a y ba b 222210+=>>()的左顶点为A 、上顶点为D ,点P 是线段AD 上任一点,左、右焦点分别为F F 12、,且12PF PF 的最大值为1,最小值为115- (1)求椭圆方程;(2)设椭圆右顶点为B ,点S 是椭圆上位于x 轴上方的一点,直线AS 、BS 与直线34:15l x =分别交于M 、N 两点,求|MN|的最小值.解析:(1)2214x y +=(2)1615例3、已知椭圆22221x y a b+=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b+=+(2)|OP|2+|OQ|2的最小值为22224a b a b +(3)OPQ S ∆的最小值是2222a b a b +.专题:椭圆中的最值、范围、定点、定值问题题型一:定点问题解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。
例1、已知椭圆C :22221(0)x y a b a b +=>>,以原点为圆心,椭圆的短半轴长为半径的圆与直线0x y -=相切.⑴求椭圆C 的方程;⑵设(4,0)P ,M 、N 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PN 交椭圆C 于另一点E ,求直线PN 的斜率的取值范围;⑶在⑵的条件下,证明直线ME 与x 轴相交于定点.解析:⑴由题意知c e a ==,所以22222234c a b e a a -===,即224a b=,又因为1b ==,所以224,1a b ==,故椭圆C 的方程为C :2214x y +=.⑵由题意知直线PN 的斜率存在,设直线PN 的方程为(4)y k x =- ①联立22(4)14y k x x y =-⎧⎪⎨+=⎪⎩消去y 得:2222(41)324(161)0k x k x k --+-=, 由2222(32)4(41)(644)0k k k ∆=-+->得21210k -<, 又0k =不合题意,所以直线PN的斜率的取值范围是0k <<或0k <<. ⑶设点1122(,),(,)N x y E x y ,则11(,)M x y -,直线ME 的方程为212221()y y y y x x x x +-=--, 令0y =,得221221()y x x x x y y -=-+,将1122(4),(4)y k x y k x =-=-代入整理,得12121224()8x x x x x x x -+=+-. ②由得①2212122232644,4141k k x x x x k k -+==++代入②整理,得1x =,所以直线ME 与x 轴相交于定点(1,0).例2、在直角坐标系xOy 中,点M到点()1,0F,)2,0F 的距离之和是4,点M 的轨迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程;⑵当0AP AQ ⋅=时,求k 与b 的关系,并证明直线l 过定点. 解析:⑴∵点M到(),0,),0的距离之和是4,∴M 的轨迹C 是长轴为4,焦点在x轴上焦中为2214x y +=.⑵将y kx b =+,代入曲线C的方程,整理得22(14)40k x +++= ,因为直线l 与曲线C 交于不同的两点P 和Q ,所以222222644(14)(44)16(41)0k b k b k b ∆=-+-=-+> ①设()11,P x y ,()22,Q x y,则12x x +=,122414x x k =+ ② 且2212121212()()()()y y kx b kx b k x x kb x x b ⋅=++=+++,显然,曲线C 与x 轴的负半轴交于点()2,0A -,所以()112,AP x y =+ ,()222,AQ x y =+ .由0AP AQ ⋅=,得1212(2)(2)0x x y y +++=. 将②、③代入上式,整理得22121650k kb b -+=.所以(2)(65)0k b k b -⋅-=,即2b k =或65b k =.经检验,都符合条件①,当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-点.即直线l 经过点A ,与题意不符.当65b k =时,直线l 的方程为6556y kx k k x ⎛⎫=+=+ ⎪⎝⎭.显然,此时直线l 经过定点6,05⎛⎫- ⎪⎝⎭点,且不过点A .综上,k 与b 的关系是:65b k =,且直线l 经过定点6,05⎛⎫- ⎪⎝⎭点. 例3、已知椭圆C 中心在原点,焦点在x 轴上,焦距为2,短轴长为 (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :()0y kx m k =+≠与椭圆交于不同的两点M N 、(M N 、不是椭圆的左、右顶点),且以MN 为直径的圆经过椭圆的右顶点A .求证:直线l 过定点,并求出定点的坐标. 解析: (Ⅰ)设椭圆的长半轴为a ,短半轴长为b ,半焦距为c ,则22222,2,c b a b c =⎧⎪=⎨⎪=+⎩解得2,a b =⎧⎪⎨=⎪⎩ ∴ 椭圆C 的标准方程为 22143x y +=. …… 4分(Ⅱ)由方程组22143x y y kx m ⎧⎪+=⎨⎪=+⎩ 消去y ,得()2223484120k x kmx m +++-=. …… 6分由题意△()()()22284344120km km=-+->,整理得:22340k m +-> ① ………7分 设()()1122,,M x y N x y 、,则122834km x x k +=-+, 212241234m x x k-=+ . ……… 8分 由已知,AM AN ⊥, 且椭圆的右顶点为A (2,0),∴ ()()1212220x x y y --+=. …… 10分即 ()()()2212121240k x x km x x m ++-+++=,也即 ()()22222412812403434m kmk km m k k--+⋅+-⋅++=++, 整理得2271640m mk k ++=.解得2m k =- 或 27km =-,均满足① ……… 11分当2m k =-时,直线l 的方程为 2y kx k =-,过定点(2,0),不符合题意舍去;当27k m =-时,直线l 的方程为 27y k x ⎛⎫=- ⎪⎝⎭,过定点2(,0)7,故直线l 过定点,且定点的坐标为2(,0)7. ………… 13分题型二:定值问题在解析几何中,有些几何量与参数无关,这就构成了定值问题,解决这类问题时,一种思路是进行一般计算推理求出其结果,选定一个适合该题设的参变量,用题中已知量和参变量表示题中所涉及的定义,方程,几何性质,再用韦达定理,点差法等导出所求定值关系所需要的表达式,并将其代入定值关系式,化简整理求出结果;另一种思路是通过考查极端位置,探索出“定值”是多少,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,这样可将盲目的探索问题转化为有方向有目标的一般性证明题,从而找到解决问题的突破口,将该问题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的。