高中数学 分类计数原理
高中数学完整讲义——排列与组合5.排列组合问题的常见模型1
1思维的开掘 能力的飞跃1.基本计数原理⑴加法原理 分类计数原理:做一件事,完成它有n 类方法,在第一类方法中有1m 种不同的方法,在第二类方法中有2m 种方法,……,在第n 类方法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++种不同的方法.又称加法原理.⑴乘法原理分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =⨯⨯⨯种不同的方法.又称乘法原理.⑴加法原理与乘法原理的综合运用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用.2. 排列与组合⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.〔其中被取的对象叫做元素〕排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A mn 表示.排列数公式:A (1)(2)(1)m n n n n n m =---+,m n +∈N ,,并且m n ≤. 全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=.知识内容排列组合问题的常见模型12 思维的开掘 能力的飞跃⑴组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合.组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C mn 表示. 组合数公式:(1)(2)(1)!C !!()!mn n n n n m n m m n m ---+==-,,m n +∈N ,并且m n ≤. 组合数的两个性质:性质1:C C m n m n n -=;性质2:11C C C m m m n n n -+=+.〔规定0C 1n =〕⑴排列组合综合问题解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法:1.特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.3.排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法.4.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列.5.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空.6.插板法:n 个相同元素,分成()m m n ≤组,每组至少一个的分组问题——把n 个元素排成一排,从1n -个空中选1m -个空,各插一个隔板,有11m n C --.7.分组、分配法:分组问题〔分成几堆,无序〕.有等分、不等分、部分等分之别.一般地平均分成n 堆〔组〕,必须除以n !,如果有m 堆〔组〕元素个数相等,必须除以m !8.错位法:编号为1至n 的n 个小球放入编号为1到n 的n 个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当2n =,3,4,5时的错位数各为1,2,9,44.关于5、6、7个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题.1.排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径: ⑴元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素; ⑴位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;⑴间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,防止“选取”时重复和遗漏;最后列出式子计算作答.2.具体的解题策略有:⑴对特殊元素进行优先安排;⑴理解题意后进行合理和准确分类,分类后要验证是否不重不漏;⑴对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复;⑴对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法;⑴顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理;⑴对于正面考虑太复杂的问题,可以考虑反面.⑴对于一些排列数与组合数的问题,需要构造模型.典例分析排队问题【例1】三个女生和五个男生排成一排⑴如果女生必须全排在一起,可有多少种不同的排法?⑵如果女生必须全分开,可有多少种不同的排法?⑶如果两端都不能排女生,可有多少种不同的排法?【例2】6个人站成一排:⑴其中甲、乙两人必须相邻有多少种不同的排法?⑴其中甲、乙两人不相邻有多少种不同的排法?⑴其中甲、乙两人不站排头和排尾有多少种不同的排法?⑴其中甲不站排头,且乙不站排尾有多少种不同的排法?3思维的开掘能力的飞跃【例3】7名同学排队照相.⑴假设分成两排照,前排3人,后排4人,有多少种不同的排法?⑵假设排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?⑶假设排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?⑷假设排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不同的排法?【例4】6个队员排成一排,⑴共有多少种不同的排法?⑴假设甲必须站在排头,有多少种不同的排法?⑶假设甲不能站排头,也不能站排尾,问有多少种不同的排法?【例5】ABCDE五个字母排成一排,假设ABC的位置关系必须按A在前、B居中、C在后的原则,共有_______种排法〔用数字作答〕.【例6】用1到8组成没有重复数字的八位数,要求1与2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有_ __个〔用数字作答〕.4 思维的开掘能力的飞跃5思维的开掘 能力的飞跃【例7】 记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有〔 〕A .1440种B .960种C .720种D .480种【例8】 12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,假设其他人的相对顺序不变,则不同调整方法的总数是〔 〕A .2283C AB .2686C A C .2286C AD .2285C A【例9】 记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有〔 〕A .1440种B .960种C .720种D .480种【例10】 在数字123,,与符号+-,五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是〔 〕A .6B .12C .18D .24【例11】 计划展出10幅不同的画,其中1幅水彩、4幅油画、5幅国画,排成一列陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有_____种.6 思维的开掘 能力的飞跃【例12】 6人站一排,甲不站在排头,乙不站在排尾,共有_________种不同的排法〔用数字作答〕.【例13】 一条长椅上有7个座位,4人坐,要求3个空位中,有2个空位相邻,另一个空位与2个相邻位不相邻,共有几种坐法?【例14】 3位男生和3位女生共6位同学站成一排,假设男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是〔 〕A .360B .288C .216D .96【例15】 古代“五行”学说认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有 种〔结果用数值表示〕.【例16】 在1234567,,,,,,的任一排列1234567,,,,,,a a a a a a a 中,使相邻两数都互质的排列方式共有〔 〕种.A .288B .576C .864D .11527思维的开掘 能力的飞跃【例17】 从集合{}P Q R S ,,,与{}0123456789,,,,,,,,,中各任取2个元素排成一排〔字母和数字均不能重复〕.每排中字母Q 和数字0至多只能出现一个的不同排法种数是_________.〔用数字作答〕【例18】 从集合{}O P Q R S ,,,,与{0123456789},,,,,,,,,中各任取2个元素排成一排〔字母和数字均不能重复〕.每排中字母O Q ,和数字0至多只能出现一个的不同排法种数是_________.〔用数字作答〕【例19】6个人坐在一排10个座位上,问 ⑴ 空位不相邻的坐法有多少种?⑵ 4个空位只有3个相邻的坐法有多少种?⑶ 4个空位至多有2个相邻的坐法有多少种?【例20】 3位男生和3位女生共6位同学站成一排,假设男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是〔 〕A .360B .288C .216D .968 思维的开掘 能力的飞跃【例21】 12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,其他人的相对顺序不变,则不同调整的方法的总数有〔 〕A .2283C AB .2686C A C .2286C AD .2285C A【例22】 两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是_______.【例23】2007年12月中旬,我国南方一些地区遭遇历史罕见的雪灾,电煤库存吃紧.为了支援南方地区抗灾救灾,国家统一部署,加紧从北方采煤区调运电煤.某铁路货运站对6列电煤货运列车进行编组调度,决定将这6列列车编成两组,每组3列,且甲与乙两列列车不在同一小组.如果甲所在小组3列列车先开出,那么这6列列车先后不同的发车顺序共有〔 〕A .36种B .108种C .216种D .432种数字问题【例24】 给定数字0、1、2、3、5、9,每个数字最多用一次,⑴可能组成多少个四位数?⑴可能组成多少个四位奇数?⑴可能组成多少个四位偶数?⑴可能组成多少个自然数?【例25】 用0到9这10个数字,可组成多少个没有重复数字的四位偶数?9思维的开掘 能力的飞跃【例26】 在1,3,5,7,9中任取3个数字,在0,2,4,6,8中任取两个数字,可组成多少个不同的五位偶数.【例27】 用12345,,,,排成一个数字不重复的五位数12345a a a a a ,,,,,满足12233445a a a a a a a a <><>,,,的五位数有多少个?【例28】 用0129,,,,这十个数字组成无重复数字的四位数,假设千位数字与个位数字之差的绝对值是2,则这样的四位数共有多少个?【例29】 用数字0123456,,,,,,组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有______个〔用数学作答〕.【例30】 有4张分别标有数字1234,,,的红色卡片和4张分别标有数字1234,,,的蓝色卡片,从这810 思维的开掘 能力的飞跃 张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法数一共有 种.432;【例31】 有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有..中间行的两张卡片上的数字之和为5,则不同的排法共有〔 〕 A .1344种 B .1248种 C .1056种 D .960种【例32】 有4张分别标有数字1234,,,的红色卡片和4张分别标有数字1234,,,的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有____种〔用数字作答〕.【例33】 用1,2,3,4,5,6组成六位数〔没有重复数字〕,要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是__________〔用数字作答〕.【例34】 用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有〔 〕A .48个B .36个C .24个D .18个【例35】 从1238910,,,,,这6个数中,取出两个,使其和为偶数,则共可得到 个这样的不同偶数?高中数学讲义 11思维的开掘 能力的飞跃【例36】 求无重复数字的六位数中,能被3整除的数有______个.【例37】 用数字0123456,,,,,,组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有 个〔用数学作答〕.【例38】 从012345,,,,,这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为〔 〕A .300B .216C .180D .162【例39】 从012345,,,,,这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为〔 〕A .300B .216C .180D .162【例40】 从1到9的九个数字中取三个偶数四个奇数,试问:⑴能组成多少个没有重复数字的七位数?其中任意两偶数都不相邻的七位数有几个?⑴上述七位数中三个偶数排在一起的有几个?⑴⑴中的七位数中,偶数排在一起、奇数也排在一起的有几个?高中数学讲义 12 思维的开掘 能力的飞跃⑷⑴其中任意两偶数都不相邻的七位数有几个?【例41】 用0到9这九个数字.可组成多少个没有重复数字的四位偶数?【例42】 有4张分别标有数字1234,,,的红色卡片和4张分别标有数字1234,,,的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有______种〔用数字作答〕.【例43】 在由数字12345,,,,组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有〔 〕个A .56个B .57个C .58个D .60个【例44】 由0,1,2,3,4这五个数字组成的无重复数字的四位偶数,按从小到大的顺序排成一个数列{}n a ,则19a =_____.A .2014B .2034C .1432D .1430高中数学讲义 13 思维的开掘 能力的飞跃【例45】 从数字0、1、3、5、7中取出不同的三个作系数,可组成多少个不同的一元二次方程20ax bx c ++=,其中有实数根的有几个?【例46】 从{}32101234,,,,,,,---中任选三个不同元素作为二次函数2y ax bx c =++的系数,问能组成多少条图像为经过原点且顶点在第一象限或第三象限的抛物线?。
分类计数原理
分类计数原理
分类计数原理是一种处理统计数据的方法,用于确定不同类别的个数。
该原理可以应用于各种问题,例如统计某一事件发生的概率、分析产品销售情况以及研究人口特征等。
通过分类计数原理,我们可以更好地理解数据,找出规律,并支持决策制定。
分类计数原理的核心思想是将数据按照不同的特征或属性进行分类,并计算每个类别的个数。
通过对不同类别进行统计,我们可以获取各个类别的数量,并据此进行进一步分析。
具体而言,分类计数原理通常遵循以下步骤:
1. 确定数据的特征或属性:首先,我们需要确定要统计的数据的特征或属性。
这可以是任何可以区分不同类别的特征,例如产品类型、地区、性别等。
2. 创建分类标准:根据确定的特征或属性,我们可以创建相应的分类标准。
例如,如果我们要统计不同产品类型的销售数量,可以创建以产品类型为标准的分类。
3. 进行分类计数:根据分类标准,我们对数据进行分类,并计算每个类别的个数。
这可以通过手工计数或使用计算机软件进行自动计数完成。
4. 分析和应用结果:根据分类计数的结果,我们可以进行进一步的数据分析和应用。
例如,我们可以比较不同类别之间的数
量差异,分析不同类别的趋势,或者根据统计结果做出相关决策。
总的来说,分类计数原理是一种简单有效的统计方法,可以帮助我们更好地理解和处理数据。
通过应用该原理,我们可以获得对数据的清晰概览,并从中找到有价值的信息,支持我们做出准确的分析和决策。
高中数学排列组合知识点
排列组合复习巩固1.分类计数原理(加法原理)完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,…,在第类办法中有种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,做第步有种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有然后排首位共有最后排其它位置共有由分步计数原理得练习题:7种不同的花种在排成一列的xx,若两种葵花不种在中间,也不种在两端的xx,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有种不同的排法乙甲丁丙三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种不同的方法,由分步计数原理,节目的不同顺序共有种四.定序问题倍缩空位插入策略例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有种方法,其余的三个位置甲乙丙共有 1种坐法,则共有种方法。
1.1 分类计数原理和分步计数原理
(3)有不同颜色的5件上衣与3件不同颜色的长裤,如果一条长裤与一件上衣配 成一套,则不同的配法有多少种? 分步问题 (4)从一个装有4个不同白球的盒子里或装有3个不同黑球的盒子里取1个球, 共有多少种不同的取法? 分类问题 (5)从一个装有4个不同白球的盒子里和装有3个不同黑球的盒子里各取1个 球,共有多少种不同的取法? 分步问题 (6)某商场有6个门,某人从其中的任意一个门进入商场,再从其他的门出去, 共有多少种不同的进出商场的方式? 分步问题
问题剖析
小明要完成的一件事是什么
北京→重庆
完成这件事情要分几步
2步
每步中的任一方法能否独立完成这 件事
不能
每步方案中分别有几种不同的方法 4种 3种
完成这件事共有多少种不同的方法 4✕3=12种
想一想:
(1)用前6个大写英文字母和1~9九个阿拉伯数字,以 A1,A2,···,B1,B2,···的方式给教室里的座 位编号,总共能够编出多少种不同的号码? (2)从班上30名男生、25名女生中选男生、女生各1名 担任数学课代表,一共有多少种不同的选法?
现有5幅不同的国画,2幅不同的油画,7幅不同的水彩画
事件1:从中任选一幅画布置房间 事件2:从这些国画、油画、水彩画中各选一幅布置房间 事件3:从这些画中选出两幅不同种类的画布置房间
问题2:以上三个事件各有多少种不同的选法
1.解决计数问题的基本方法:
列举法、两个计数原理
2.选择两个原理解题的关键是: 根据题目,弄清完成一件事的要求至关重要, 只有这样才能正确区分“分类”和“分步”.
数,只需将各类方法数相加,因此分类计数原理又称加法原理
2)首先要根据具体的问题确定一个分类标准,分类 要做到类类独立,不重不漏。
高中数学《分类计数原理与分步计数原理》说课稿设计
高中数学《分类计数原理与分步计数原理》说课稿设计各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢“分类计数原理与分步计数原理”的说课提纲各位领导、老师,你们好!我说课的内容是“分类计数原理与分步计数原理”。
一、本节内容的地位与重要性“分类计数原理与分步计数原理”是《高中数学》一节独特内容。
这一节课与排列、组合的基本概念有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解分类计数原理与分步计数原理,还为日后排列、组合和二项式定理的教学做好准备,起到奠基的重要作用。
二、关于教学目标的确定根据两个基本原理的地位和作用,我认为本节课的教学目标是:(1)使学生正确理解两个基本原理的概念;(2)使学生能够正确运用两个基本原理分析、解决一些简单问题;(3)提高分析、解决问题的能力(4)使学生树立“由个别到一般,由一般到个别”的认识事物的辩证唯物主义哲学思想观点。
三、关于教学重点、难点的选择和处理中学数学课程中引进的关于排列、组合的计算公式都是以两个计数原理为基础的,而一些较复杂的排列、组合应用题的求解,更是离不开两个基本原理,所以正确理解两个基本原理并能解决实际问题是学习本章的重点内容。
正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件.而原理中提到的分步和分类,学生不是一下子就能理解深刻的,面对复杂的事物和现象学生对分类和分步的选择容易产生错误的认识,所以分类计数原理和分步计数原理的准确应用是本节课的教学难点。
必需使学生认清两个基本原理的实质就是完成一件事需要分类还是分步,才能使学生接受概念并对如何运用这两个基本原理有正确清楚的认识。
教学中两个基本问题的引用及引伸,就是为突破难点做准备。
四、关于教学方法和教学手段的选用根据本节课的内容及学生的实际水平,我采取启发引导式教学方法并充分发挥电脑多媒体的辅助教学作用。
启发引导式作为一种启发式教学方法,体现了认知心理学的基本理论。
符合教学论中的自觉性和积极性、巩固性、可接受性、教学与发展相结合、教师的主导作用与学生的主体地位相统一等原则,教学过程中,教师采用点拨的方法,启发学生通过主动思考、动手操作来达到对知识的“发现”和接受,进而完成知识的内化,使书本的知识成为自己的知识。
高中数学第6章计数原理6-1分类加法计数原理与分步乘法计数原理新人教版选择性必修第三册
第4类,2名既会下象棋又会下围棋的学生分别参加象棋比赛 和围棋比赛有2种选法.
根据分类加法计数原理,共有6+6+4+2=18种选法.
四 涂色与种植问题
典例剖析
4.(1)若将3种作物全部种植在5块试验田中,如图所示,每块
试验田种植一种作物,且相邻的试验田不能种植同一种作物,
则不同的种植方法共有
种.
A.10 B.6
C.8 D.9 答案:D 解析:求xy的值分两步取值:第1步,x的取值有3种;第2步,y的 取值有3种.故有3×3=9个不同的值,且经检验计算结果均不 相同.
课堂•重难突破
一 分类加法计数原理
典例剖析 1.所有的两位数中,个位数字大于十位数字的两位数共有多 少个?
解:(方法一)按十位上的数字分别是1,2,3,4,5,6,7,8分成8类, 在每一类中满足条件的两位数分别有8个、7个、6个、5个、 4个、3个、2个、1个.
二 分步乘法计数原理
典例剖析 2.从-2,-1,0,1,2,3这六个数字中任选3个不重复的数字作为抛 物线y=ax2+bx+c(a≠0)的系数a,b,c,则可以组成多少条不同的抛 物线? 解:第1步选系数a(a不能为0),有5种选法. 第2步选系数b,有5种选法. 第3步选系数c,有4种选法. 根据分步乘法计数原理得组成抛物线的条数为5×5×4=100.
(2)如何区分一个问题是“分类”还是“分步”? 提示:若完成这件事,可以分几种情况,每种情况中任何一种 方法都能完成任务,则是分类;若从其中一种情况中任取一种 方法只能完成任务的一部分,且只有依次完成各种情况,才能 完成这件事,则是分步.
微训练2已知x∈{2,3,7},y∈{-3,-4,8},则xy可表示不同的值的 个数为( )
高中数学 1.1分类加法计数原理与分步乘法计数原理课件(3) 新人教A版必修3
例2.随着人们生活水平的提高,某城市家庭汽车拥有量 迅速增长,汽车牌照号码需要扩容。交通管理部门出台了 一种汽车牌照组成办法,每一个汽车牌照必须有3个不重 复的英文字母和3个不重复的阿拉伯数字,并且3个字母必 须合成一组出现,3个数字也必须合成一组出现。那么这 种办法共能给多少辆汽车上牌照? 解:将汽车牌照分为2类, 一类的字母的组合在左,另一类字母的组合在右 第1位
(3)课本12页
作业
例1.计算机编程人员在编写好程序以后需要对程序进行测试。 程序员需要知道到底有多少条执行路径(即程序从开始到结束 的路线),以便知道需要提供多少个测试数据,一般地,一个 程序模块由许多子模块组成,如图。它是一个具有许多执行路 径的程序模块。问:这个程序模块有多少条执行路径? 另外,为了减少测试 时间,程序员需要设 法减少测试次数。你 能帮助程序员设计一 个测试方法,以减少 测试次数吗?
26
第2位 第3位
25 24
第4位
10
第5位
9
第6位
8
根据分步计数原理,字母组合在左的牌照共有 26×25×24×10×9×8 = 11 232 000(个)
同理,字母组合在右的牌照也有11 232 000个
所以,共能给11232 000+11 232 000=22 464 000 辆汽车上牌照。
例3.同室四人各写一张贺年卡,先集中起来, 然后每人从中拿一张别人送出的贺年卡,则 四张贺年卡不同的分配方式有( B ) (A)6种 (B)9种 (C)11种 (D)23种 练习: (1)在所有的三位数中,又且只有两个数字相同 243 个。 的3位数共有________ (2)某赛季足球比赛的计分规则是:胜一场得3分, 平一场得1分,负一场得0分,一球队打完15场, 积33分,若不考虑顺序,球队胜、负、平的情 形有( A ) (A)3种 (B)4种 (C)5种 (D)6种
数学选修2-3期末复习
排列与组合●本章知识网络一、根本计数原理●1. 分类计数原理(加法原理)分类计数原理的定义:做一件事,完成它有n类方法。
在第一类方法中有m1种不同的方法;在第二类方法中,有m2种不同的方法;……;在第n类方法中,有m n中不同的方法,则完成这件事共有N=_______________种不同的方法。
.●2. 分步计数原理(乘法原理)分步计数原理的定义:做一件事,完成它需要分成n个步骤,做第一个步骤有m1种不同的方法,做第二个步骤有m2种不同的方法,……,做第n个步骤有m n中不同的方法,则完成这件事共有N=______________种不同的方法.二、排列●1. 排列的定义从n个不同的元素中任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列●2. 排列数1〕排列数的定义:从n个不同的元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用______表示2〕排列数公式mnA=_____________________________=___________________________特别的,nnA=_____________________= n!规定0!=______三、组合●1. 组合的定义从n个不同的元素中,任意取出m(m≤n)个元素并成一组,叫做从n个不同元素中任取m个元素的一个组合●2. 组合数1〕组合数的定义:从n个不同的元素中,任取m(m≤n)个元素的所有组合的个数,叫做从n 个不同元素中任意取出m个元素的组合数,用______表示2〕组合数公式mnC=___________=_______________________=______________________特别的,0nC=_______=______3)组合数的性质mnC=___________ mnC1+=______+______解决排列组合问题的根本规律:分类相加,分步相乘,有序排列,无序组合,正难则反,先选后排●前测1.*Nn∈且55n<,则乘积(55)(56)(69)n n n---等于( )A.5569nnA--B.1569nA-C.1555nA-D.1469nA-2.710695847CCCC+++=_______3.*八层大楼一楼电梯上来3名乘客,他们到各自的一层下电梯,下电梯的不同方法有____种4.4人排成一排,其中甲和乙都站在边上的不同站法有_________种5.用0,2,3,4,5五个数字,组成没有重复数字的三位数,其中偶数共有_______种.6.从3台甲型和4台乙型电脑中任意取出3台,其中至少要甲型和乙型电脑各一台,则不同的取法有________种.7.*停车场有8个连在一起的车位,有4辆不同的车要停进去,且恰有3辆车连在一起,则不同的停放方法有_______种.●典型例题1.有4封不同的信和3个信筒.(1)把4封信都寄出,有__________种寄信方法;(2) 把4封信都寄出,且每个信筒不空,有________种寄信方法.2.对*种产品的6件不同正品和4件不同次品,(1) 一件一件的不放回抽取,连续取3次,至少取到1件次品的不同取法有______种.(2)一一进展测试,到区分出所有次品为止,假设所有次品恰好在第五次测试被全部发现,则这样的测试方法有_______种.3.*台小型晚会由6个节目组成,演出顺序有如下要求:(1) 节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有_____种.(2) 原有的节目单保持顺序不变,但删去第一个节目和最后一个节目,添加两个新节目,该台晚会排列应用题根本计数原理排列组合排列数公式组合数公式与性质组合应用题组合数公式与性质节目演出顺序的编排方案共有_____种.〔3〕节目甲、乙、丙必须连排〔顺序不固定〕,且和节目丁不相邻,该台晚会节目演出顺序的编排方案共有___种.4.9个篮球队中有3个强队,平均分三组.(1) 假设3个强队分别作为三个小组的种子队,不同的分组方法有_______种.(2) 假设恰有2个强队分在一组,不同的分组方法有_______种.5.用5种不同的颜色涂色,要求每小格涂一种颜色,有公共边的两格不同颜色,颜色可重复使用(1) 涂在"目〞字形的方格有________种不同的涂法(2) 涂在"田〞字形的方格有________种不同的涂法6.(1) 编号为1,2,3,4,5,6,7的七盏路灯,晚上用时只亮三盏灯,且任意两盏亮灯不相邻,则不同的开灯方案有_______种(2)*仪表显示屏上一排有7个小孔,每个小孔可显示出0或1,假设每次显示其中三个孔,但相邻的两孔不能同时显示,则这个显示屏可以显示_______种不同的信号.7. 学校文艺队有10名会表演唱歌或跳舞的队员,其中会唱歌的有5人,会跳舞的有7人。
高中数学选修计数原理概率知识点总结
选修2-3定理概念及公式总结第一章基数原理1.分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法 N=m 1+m 2+……+m n 种不同的方法2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事有N=m 1×m 2×……m n 种不同的方法 分类要做到“不重不漏”,分步要做到“步骤完整”3.两个计数原理的区别:如果完成一件事,有n 类办法,不论哪一类办法中的哪一种方法,都能独立完成这件事,用分类计数原理,如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要完成所有步骤才能完成这件事,是分步问题,用分步计数原理.!4.排列:从n 个不同的元素中取出m 个(m ≤n)元素并按一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(1)排列数: 从n 个不同的元素中取出m 个(m ≤n)元素的所有排列的个数.用符号m n A 表示 (2)排列数公式:)1()2)(1(+-⋅⋅⋅--=m n n n n A mn用于计算, 或m nA )!(!m n n -=()n m N m n ≤∈*,, 用于证明。
nnA =!n =()1231⨯⨯⨯⨯- n n =n(n-1)! 规定0!=1 5.组合:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合(1)组合数: 从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,用mn C 表示[(2)组合数公式: (1)(2)(1)!m m n nm m A n n n n m C A m ---+== 用于计算,或)!(!!m n m n C m n -=),,(n m N m n ≤∈*且 用于证明。
完整版分类加法计数原理和分步乘法计数原理
分类计数与分步计数原理的区别和联系:
联系
区别一
加法原理
乘法原理
分类计数原理和分步计数原理,回答的都是关于
完成一件事情的不同方法的种数的问题。 完成一件事情共有n类 完成一件事情,共分n个 办法,关键词是“分类” 步骤,关键词是“分步”
区别二
每一步得到的只是中间结果,
每类办法都能独立完成
这件事情。
任何一步都不能能独立完成 这件事情,缺少任何一步也
(1)从书架上任取1本书,有多少种不同的取法?
N=4+3+2=9
(2)从书架的第1、 2、 3层各取1本书,有多少种 不同取法?
N=4 ×3×2=24
(3)从书架上取2本不同种的书,有多少种不同 的取法?
解:需先分类再分步. 第一类:从一、二层各取一本,有4×3=12种方法; 第二类:从一、三层各取一本,有4×2=8种方法; 第三类:从二、三层各取一本,有3×2=6种方法;
不能完成这件事情,只有每
个步骤完成了,才能完成这
件事情。
各类办法是互斥的、
区别三 并列的、独立的
各步之间是相关联的
例1 在填写高考志愿表时,一名高中毕业生了解到A、B两 所大学各有一些自己感兴趣的强项专业,具体情况如下:
A大学 生物学 化学 医学 物理学
B大学 数学 会计学 信息技术学 法学
工程学 如果这名同学只能选一个专业,那么他共有多少种选择呢?
1.1分类计数原理
与分步计数原理
问题 1用一个大写的的英文字母或一个阿拉伯数 字给教室里的座位编号,总共能够编出多少 种不同的号码?
因为英文字母共有 26个,阿拉伯数字0 ~ 9共有10个, 所以总共可以编出 26 ? 10 ? 36种不同的号码.
高中数学排列组合必懂方法
高中数学排列组合必懂方法.doc高考数学排列组合难题解决方法1.分类计数原理(加法原理)完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类nm1办法中有种不同的方法,…,在第类办法中有种不同的方法,那么nmm2n完成这件事共有:Nmmm,,,,12n种不同的方法(2.分步计数原理(乘法原理)完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步nm1有种不同的方法,…,做第步有种不同的方法,那么完成这件事共nmm2n有:Nmmm,,,,12n种不同的方法(3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件( 解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.1C 先排末位共有 31C 然后排首位共有 41313CACA 最后排其它位置共有 4434 113CCA,288 由分步计数原理得 434位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。
若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件 1练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法,二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
【高中数学】分类加法计数原理与分步乘法计数原理(2) 课件 高二数学人教A版2019选择性必修第三册
3. 从1, 2, ‧‧‧, 19, 20中任选一个数作被减数,再从1, 2, ‧‧‧, 10中任选一个数
作减数,然后写成一个减法算式,共可得到多少个不同的算式?
解:20×10=200 (个).
课本P7
4. 在1, 2, ‧‧‧, 500中,被5除余2的数共有多少个?
解1:被5除余2的正整数的个位是2或7.
数字的记数法,即二进制. 为了使计算机能够识别字符,需要对字符进行编
码,每个字符可以用1个或多个字节来表示,其中字节是计算机中数据存储
的最小计量单位,每个字节由8个二进制位构成.
(1) 1个字节(8位)最多可以表示多少个不同的字符?
(2) 计算机汉字国标码包含了6763个汉字,一个汉字为一个字符,要对这
满足条件的k值有100个, 所以满足条件的数共有100个.
5. 由数字1, 2, 3, 4, 5可以组成多少个三位数(各位上的数字可以重复)?
解:满足条件的三位数有5×5×5= 125 个 .
课本P11
1. 乘积(a1+a2+a3)(b1+b2+b3)(c1+c2+c3+c4+c5) 展开后共有多少项?
也是最容易控制的两种状态. 因此计算机内部就采用了每一位只有0或1两种
数字的记数法,即二进制. 为了使计算机能够识别字符,需要对字符进行编
码,每个字符可以用1个或多个字节来表示,其中字节是计算机中数据存储
的最小计量单位,每个字节由8个二进制位构成.
(1) 1个字节(8位)最多可以表示多少个不同的字符?
m
>, <
m
/
>a3 <
m
>, <
数学高中选修2-3第一章 计数原理1.分类加法计数原理和分步乘法计数原理1.1 分类加法计数原理
制作 冯健璇
问题1 从温州到杭州旅游,可以乘火车,也可以乘汽
车。若一天中火车有3列,汽车有2辆。那么一天中乘坐 这些交通工具从温州到杭州有多少种不同的走法?
变式: 从温州到杭州旅游,可以乘火车,也可以乘汽
车,还可以乘飞机。若一天中火车有3列,汽车有2辆, 飞机有4架。那么一天中乘坐这些交通工具从温州到 杭州有多少种不同的走法?
分类计数原理
(加法原理)
完成一件事,有n类办法. 在第1类办法中有m1 种不同的方法,在第2类办法中有m2种不同的方 法,……,在第n类办法中有mn种不同的方法,
则完成这件事共有 N= m1+m2+… +mn 种 不同的方法.
在1,2,3,…,200中,能够被5整除的数共有 多少个? 解:能够被5整除的数,末位数字是0或5, 因此,我们把1,2,3,…,200中,能够被5整除的 数分成两类来计数: 第一类:末位数字是0的数,一共有20个. 第二类:末位数字是5的数,一共有20个. 根据加法原理,在1,2,3,…,200中,能够被5整 除的数共有20+20=40个.
一个商店销售某种型号的电视机, 其中本地的产品有4种,外地的产 品有7种,要买1台这种型号的电视 机,有多少种不同的选法?
N= 4 + 7 =11
分类计数原理
针对的是“分类”问题
(加法原理)
各类方法相互独立
完成一件事,有n类办法. 在第1类办法中有m1 种不同的方法,在第2类办法中有m2种不同的方 法,……,在第n类办法中有mn种不同的方法, 则完成这件事共有 N= m1+m2+… +mn 种 不同的方法.
完成一件工作,有两种方法,有5个人只会 用第一种方法,另外有4个人只会用第二种 方法,从这9个人中选1人完成这件工作, 一共有多少种选法? 分类计数原理: 针对的是“分类”问题
计数原理的十二个技巧的典型例题
计数原理的十二个技巧的典型例题摘要:一、引言二、计数原理概述1.分类计数原理2.分步计数原理三、典型例题解析1.分类计数问题a.例题1:颜色的分配b.例题2:排列组合问题2.分步计数问题a.例题3:组合数的计算b.例题4:事件的相互独立性四、解题技巧总结1.善于运用分类讨论思想2.掌握分步计数原理的应用3.利用数学公式和性质简化计算4.注意审题,挖掘题目信息五、结论正文:一、引言计数原理是高中数学中的一个重要知识点,它可以帮助我们解决各种计数问题。
掌握计数原理的十二个技巧,可以让我们在解决典型例题时更加游刃有余。
本文将详细解析这些技巧,并给出典型例题的解答。
二、计数原理概述计数原理主要包括分类计数原理和分步计数原理。
1.分类计数原理当我们面临一个问题时,可以将其分为若干个类别,然后分别计算每个类别的方案数,最后求和得到总方案数。
2.分步计数原理分步计数原理适用于一个问题可以分为多个步骤完成的情况。
我们可以按照每个步骤的方案数计算乘积,得到总方案数。
三、典型例题解析1.分类计数问题例题1:有5个不同的颜色,要将这些颜色分配给8个物体,问有多少种分配方法?解:可以将问题分为两类,一类是每个物体都分配到颜色,另一类是有一个物体没有颜色。
计算可得,第一类的分配方法有5^8种,第二类的分配方法有8种。
所以总的分配方法为5^8 + 8 = 391,729种。
例题2:从5个人中选出3个人参加比赛,问有几种不同的选法?解:这个问题可以采用组合数的计算公式解决。
根据组合数公式,C(n, m) = n! / (m!(n-m)!),可得C(5, 3) = 5! / (3!(5-3)!) = 10种。
2.分步计数问题例题3:有一个盒子,可以装下1~4个球。
现在有5个球,问有多少种放法?解:可以将问题分为四个步骤:a.第一个球可以放入盒子,有4种放法;b.第二个球可以放入盒子,有4种放法;c.第三个球可以放入盒子,有4种放法;d.第四个球可以放入盒子,有4种放法。
高中数学 第一章 计数原理 1.1 分类加法计数原理与分步乘法计数原理 第1课时 分类加法计数原理与
第1课时分类加法计数原理与分步乘法计数原理[A 基础达标]1.从甲地到乙地一天有汽车8班,火车2班,轮船3班,某人从甲地到乙地,共有不同的走法种数为( )A.13 B.16C.24 D.48解析:选A.由分类加法计数原理可知,不同的走法种数为8+2+3=13(种).2.(2019·某某高二检测)如图,一条电路从A处到B处接通时,可构成线路的条数为( )A.8 B.6C.5 D.3解析:选B.从A处到B处的电路接通可分两步:第一步,前一个并联电路接通有2条线路;第二步,后一个并联电路接通有3条线路.由分步乘法计数原理知电路从A处到B处接通时,可构成线路的条数为2×3=6(条),故选B.3.(2019·某某高二检测)已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为( )A.40 B.16C.13 D.10解析:选C.分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13(个)不同的平面.4.现有4名同学去听同时进行的3个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( )A.81 B.64C.48 D.24解析:选A.每个同学都有3种选择,所以不同选法共有34=81(种),故选A.5.如果x,y∈N,且1≤x≤3,x+y<7,那么满足条件的不同的有序自然数对(x,y)的个数是( )A.15 B.12C.5 D.4解析:选A.分三类情况讨论:①当x=1时,y=0,1,2,3,4,5,有6种情况;②当x=2时,y=0,1,2,3,4,有5种情况;③当x=3时,y=0,1,2,3,有4种情况.由分类加法计数原理可得,满足条件的有序自然数对(x,y)的个数是6+5+4=15(个).6.十字路口来往的车辆,如果不允许回头,则不同的行车路线有________种.解析:完成该任务可分为四类,从每一个方向的入口进入都可作为一类,如图,从第1个入口进入时,有3种行车路线;同理,从第2个,第3个,第4个入口进入时,都分别有3种行车路线,由分类加法计数原理可得共有3+3+3+3=12(种)不同的行车路线.答案:127.已知集合A={0,3,4},B={1,2,7,8},集合C={x|x∈A或x∈B},则当集合C 中有且只有一个元素时,C的情况有________种.解析:分两种情况:当集合C中的元素属于集合A时,有3种;当集合C中的元素属于集合B时,有4种.因为集合A与集合B无公共元素,所以集合C的情况共有3+4=7(种).答案:78.(2019·某某高二检测)已知函数y=ax2+bx+c为二次函数,其中a,b,c∈{0,1,2,3,4},则不同的二次函数个数为________.解析:若y=ax2+bx+c为二次函数,则a≠0,要完成该事件,需分步进行:第一步,对系数a有4种选法;第二步,对系数b有5种选法;第三步,对系数c有5种选法.所以共有4×5×5=100(个)不同的二次函数.答案:1009.现有高二四个班学生34人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选两人作中心发言,这两人需来自不同的班级,有多少种不同的选法?解:(1)分四类:第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法.所以,共有不同的选法N=7+8+9+10=34(种).(2)分四步,第一、二、三、四步分别从一、二、三、四班学生中选一人任组长,所以共有不同的选法N=7×8×9×10=5 040(种).(3)分六类,每类又分两步,从一、二班学生中各选1人,有7×8种不同的选法;从一、三班学生中各选1人,有7×9种不同的选法;从一、四班学生中各选1人,有7×10种不同的选法;从二、三班学生中各选1人,有8×9种不同的选法;从二、四班学生中各选1人,有8×10种不同的选法;从三、四班学生中各选1人,有9×10种不同的选法.所以共有不同的选法N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).10.(2019·某某高二检测)已知集合A={a,b,c},集合B={-1,0,1}.(1)从集合A到B能构造多少个不同的函数?(2)满足f(a)+f(b)+f(c)=0的函数有多少个?解:(1)每个元素a,b,c都可以有3个数和它对应,故从A到B能构造3×3×3=27(个)不同的函数.(2)列表如下:[B 能力提升]11.从集合{1,2,3,…,10}中任意选出3个不同的数,使这3个数成等比数列,这样的等比数列的个数为( )A.3 B.4C.6 D.8解析:选D.以1为首项的等比数列为1,2,4;1,3,9.以2为首项的等比数列为2,4,8.以4为首项的等比数列为4,6,9.把这4个数列的顺序颠倒,又得到4个数列,所以所求的数列共有2×(2+1+1)=8(个).12.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为( )A.14 B.13C.12 D.10解析:选B.对a进行讨论,为0与不为0,当a不为0时还需考虑判别式与0的大小关系.若a=0,则b=-1,0,1,2,此时(a,b)的取值有4个;若a≠0,则方程ax2+2x+b=0有实根,需Δ=4-4ab≥0,所以ab≤1,此时(a,b)的取值为(-1,0),(-1,1),(-1,-1),(-1,2),(1,1),(1,0),(1,-1),(2,-1),(2,0),共9个.所以(a,b)的个数为4+9=13(个).故选B.13.某节目中准备了两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?解:抽奖过程分三步完成,考虑到幸运之星可分别出现在两个信箱中,故可分两种情形考虑,分两大类:(1)幸运之星在甲箱中抽,先定幸运之星,再在两箱中各定一名幸运伙伴有30×29×20=17 400(种)结果.(2)幸运之星在乙箱中抽,同理有20×19×30=11 400(种)结果.因此共有不同结果17 400+11 400=28 800(种).14.(选做题)从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有多少种?解:法一:(直接法)若黄瓜种在第一块土地上,则有3×2×1=6种不同的种植方法.同理,黄瓜种在第二块、第三块土地上均有3×2×1=6种不同的种植方法.故不同的种植方法共有6×3=18(种).法二:(间接法)从4种蔬菜中选出3种种在三块土地上,有4×3×2=24种方法,其中不种黄瓜有3×2×1=6种方法,故共有不同的种植方法24-6=18(种).。
1.1分类加法计数原理与分步乘法计数原理(高中数学人教A选修2-3)
故任选一名学生任学生会主席的选法共有50+60+55=165 种不同的方法.
(2)选一名学生任学生会体育部长有三类不同的选法. 第一类:从高二(1)班男生中选有30种不同的方法; 第二类:从高二(2)班男生中选有30种不同的方法; 第三类:从高二(3)班女生中选有20种不同的方法.
2.分步计数原理针对的是“分步”问题, 各个步骤中的方法相互依存,只有各 个步骤都完成才算做完这件事.
两个计数原理
分类加法计数原理 分步乘法计数原理
相同点 用来计算“完成一件事”的方法种数
分类完成类类相加 分步完成 步步相乘
每类方案中的每一 每步_依__次__完__成__才
不同点 种完方成法这都 件能 事_独__立___
两类
能
26种 10种
26+10=36种
假如你从南宁到北海,
可以坐直达客车或直达火车,
客车每天有3个班次,火车每天有2个班次,
请问你共有多少种不同的走法客?车1
北海
南宁
客车2
客车3
火车1 火车2 分析:完成从南宁到北海这件事有2类方案, 所以,从从南宁到北海共有3+ 2= 5种方法.
问题1:你能否发现这两个问题有什么共同特征? 1、都是要完成一件事 2、用任何一类方法都能直接完成这件事 3、都是采用加法运算
物理学
法学
汉语言文学
工程学
பைடு நூலகம்
韩语
如果这名同学只能选一个专业,那么他共有多少种 选择呢? N=5+4+5=14(种)
人教A版高中数学选择性必修第三册6-1第一课时分类加法计数原理与分步乘法计数原理课件
题型二 分步乘法计数原理 [学透用活]
[典例 2] 从-2,-1,0,1,2,3 这六个数中任选 3 个不重复的数作为二次函 数 y=ax2+bx+c 的系数 a,b,c,则可以组成抛物线的条数为多少?
[解] 由题意知 a 不能为 0,故 a 的值有 5 种选法; b 的值也有 5 种选法;c 的值有 4 种选法. 由分步乘法计数原理得,可以组成抛物线的条数为 5×5×4=100(条).
[方法技巧] 利用两个计数原理解题时的三个注意点
(1)当题目无从下手时,可考虑要完成的这件事是什么,即怎样做才算完成这 件事,然后给出完成这件事的一种或几种方法,从这几种方法中归纳出解题方法.
(2)分类时标准要明确,做到不重不漏,有时要恰当画出示意图或树状图,使 问题的分析更直观、清楚,便于探索规律.
答案:D
2.[多选]现有 4 个兴趣小组,第一、二、三、四组分别有 6 人、7 人、8 人、9
人,则下列说法正确的是
()
A.选 1 人为负责人的选法种数为 30
B.每组选 1 名组长的选法种数为 3 024
C.若推选 2 人发言,这 2 人需来自不同的小组,则不同的选法种数为 335
D.若另有 3 名学生加入这 4 个小组,可自由选择小组,且第一组必有人选,
2.8 个乒乓球队每两个队比赛一场,共有多少场比赛?
解:根据题意得 8 个乒乓球队每两个队比赛一场,其中第一支要和剩余 的 7 支球队都要赛一场,有 7 场比赛;
第二支球队要和除第一支球队之外的 6 支球队都要赛一场,有 6 场比赛; 第三支球队要和除第一、二支球队之外的 5 支球队都要赛一场,有 5 场 比赛; 以此类推,第七支球队只需要和第八支球队赛一场,有 1 场比赛.则共 需要比赛 7+6+5+4+3+2+1=28(场).
6.1分类加法计数原理与分步乘法计数原理课件(人教版)
6.1 分类加法计数原理 与分步乘法计数原理
1.理解分类加法计数原理与分步乘法 计数原理.(重点) 2.会用这两个原理分析和解决一些简 单的实际计数问题.(难点)
1.核糖核酸(RNA)分子有碱基按一定顺序排列而成。 已知碱基有4种,但由成百上千个碱基组成的RNA分 子的种数非常巨大。为什么?
B 果将这 2 个新节目插人节目单中,那么不同的插法种数为( )
A.12
B.20
C.36
D.120
解析:利用分步计数原理,第一步插入第一个新节目,有 4 种方法,第二步插 入第二个新节目,此时有 5 个空,故有 5 种方法.因此不同的插法共有 45 20 种.故选 B.
2.如图,用 4 种不同的颜色对 A,B,C,D 四个区域涂色,要求相邻的两个区
工程学
如果这名同学只能选一个专业,那么他共有多少种选择?
解:这名同学可以选择 A,B 两所大学中的一所. 在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法. 因为没有一个强项专业是两所大学共有的, 所以根据分类加法计数原理, 这名同学可能的专业选择种数为 N 5 4 9 .
完成一件事需要两个步骤,做第 1 步有 m 种不同的方
法,做第 2 步有 n 种不同的方法,那么完成这件事共有 N
=m×n种不同的方法.
例 1 在填写高考志愿表时,一名高中毕业生了解到,A,B
两所大学各有一些自己感兴趣的强项专业,如下表.
A 大学
B 大学
生物学
数学
化学
会计学
医学
信息技术学
物理学
法学Biblioteka 例5 给程序模块命名,需要用3个字符,其中首字符要求用字母 A~G或U~Z,后两个字符要求用数字1~9,最多可以给多少个程 序模块命名?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1 在填写高考志愿表时,一名高中毕业生了解到A、B两 所大学各有一些自己感兴趣的强项专业,具体情况如下: A大学 生物学 化学 医学 物理学 B大学 数学 会计学 信息技术学 法学
工程学 如果这名同学只能选一个专业,那么他共有多少种选择呢?
解:这名同学在A大学中有5种专业选择,在B大学中有4种专业选择。
(2)从书架的第1、 2、 3层各取1本书,有多少种 不同取法?
N=4 ×3×2=24
例5、要从甲、乙、丙3幅不同的画中选出2幅, 分别挂在左右两边墙上的指定位置,问共有多 少种不同的挂法?
课堂练习
1、在所有的两位数中,个位数字比十位数 字大的两位数有多少个? 2、8本不同的书,任选3本分给3个同学,每 人1本,有多少种不同的分法?
10×10× 10× 10=104 10× 9 × 8 × 7=5040
变式: 若要求最后4个数字不重复,则又有多少种不同 的电话号码?
例4、 书架上第1层放有4本不同的计算机书,第 2层放有3本不同的文艺书,第3层放有2本不同的 体育杂志. (1)从书架上任取1本书,有多少种不同的取法?
N=4+3+2=9
根据分类计数原理:这名同学可能的专业选择共有5+4=9种。
思考?
用A,B,C,D,E,F这6个大写英文字母 和1~9九个阿拉伯数字,以A1, A2,〃〃〃,B1,B2,〃〃〃的方式给教 室里的座位编号,总共能编出多少个不 同的号码?
分析:由于前6个英文字母中的任意一个都能 与9个数字中的任何一个组成一个号码,而且 它们各个不同,因此共有6×9=54个不同的 号码。
联系
区别一
区别二
每一步得到的只是中间结果, 任何一步都不能能独立完成 每类办法都能独立完成 这件事情,缺少任何一步也 这件事情。 不能完成这件事情,只有每 个步骤完成了,才能完成这 件事情。
区别三
各类办法是互斥的、 并列的、独立的
各步之间是相关联的
课堂练习
如图,从甲地到乙地有2条路,从乙地到丁地 有3条路;从甲地到丙地有4条路可以走,从丙 地到丁地有2条路。从甲地到丁地共有多少种 不同地走法?
1.1.1分类计数原理
与分步计数原理
2006年夏季在德国举行的第十
八届世界杯足球赛共有32支队伍参 决出16强,这16强按确定的程序进
行淘汰赛后,最后决出冠亚军,此外 还决出了三、四名。 问:一共安排了多少场比赛?
加。他们先分成八个小组进行循环赛,
思考?
用一个大写的的英文字母或一个阿拉伯 数字给教室里的座位编号,总共能够编出多 少种不同的号码?
不同的二次函数?其中图象过原点的二次函 数有多少个?图象过原点且顶点在第一象限 的二次函数又有多少个?
分类计数与分步计数原理的区别和联系: 加法原理 乘法原理
分类计数原理和分步计数原理,回答的都是关于 完成一件事情的不同方法的种数的问题。 完成一件事情共有n类 完成一件事情,共分n个 办法,关键词是“分类” 步骤,关键词是“分步”
甲地
乙地 N1=2×3=6
N2=4×2=8 N= N1+N2 =14
丙地 丁地
2.如图,该电
路,从A到B共 有多少条不 同的线路可 通电?
A
B
解: 从总体上看由A到B的通电线路可分三类,
第一类, m1 = 3 条 第二类, m2 = 1 条 第三类, m3 = 2×2 = 4, 条 所以, 根据分类原理, 从A到B共有 N=3+1+4=8 条不同的线路可通电。
一、分类计数原理 完成一件事,有n类办法. 在第1类办法中有 m1种不同的方法,在第2类方法中有m2种不同的 方法,……,在第n类方法中有mn种不同的方法, 则完成这件事共有
说明
N= m1+m2+… + mn 种不同的方法
1)各类办法之间相互独立,都能独立的完成这件事,要 计算方法种数,只需将各类方法数相加,因此分类计数原 理又称加法原理 2)首先要根据具体的问题确定一个分类标准,在分 类标准下进行分类,然后对每类方法计数.
3、将4封信投入3个不同的邮筒,有多少种不 同的投法? 4、已知 a {3, 4,6}, b {1, 2,7,8}, r {8,9}
则方程 ( x a)2 ( y b)2 r 2 可表示不同的圆的 个数有多少?
课堂练习
5、已知二次函数 y ax
2
bx c. 若
a, b, c {3, 2,0,1, 2,3}. 则可以得到多少个
26+10=36
问题 1. 从甲地到乙地,可以乘火车,也
可以乘汽车,还可以乘轮船。一天中,火 车有4 班, 汽车有2班,轮船有3班。那么一 天中乘坐这些交通工具从甲地到乙地共有 多少种不同的走法? 分析: 从甲地到乙地有3类方法, 第一类方法, 乘火车,有4种方法; 第二类方法, 乘汽车,有2种方法; 第三类方法, 乘轮船, 有3种方法; 所以 从甲地到乙地共有 4 + 2 + 3 = 9 种方法。
分析:
二、分步计数原理 完成一件事,需要分成n个步骤。做第1步有m1 种不同的方法,做第2步有m2种不同的方法, ……, 做第n步有mn种不同的方法,则完成这件事共有
说明
N= m1×m2×… ×mn种不同的方法
1)各个步骤相互依存,只有各个步骤都完成了, 这件事才算完成,将各个步骤的方法数相乘得 到完成这件事的方法总数,又称乘法原理 2)首先要根据具体问题的特点确定一个分步 的标准,然后对每步方法计数.
字母
数字
1 2 3 4
得到的号码
A1 A2
A3
A4
A
5
6
A5
A6
7
树形图 8
A7
A8
9
A9
问题 2. 如图,由A村去BБайду номын сангаас的道路有3条,
由B村去C村的道路有2条。从A村经B村去 C村,共有多少种不同的走法?
北 A村 北 B村 C村
中
南 南
从A村经 B村去C村有2步, 第一步, 由A村去B村有3种方法, 第二步, 由B村去C村有3种方法, 所以 从A村经 B村去C村共有 3 ×2 = 6 种 不同的方法。
例2、设某班有男三好学生5名,女三好学生4名。现 要从中选出(1)一人代表去参赛,有几种不同选法? (2)男、女生各一名代表班级参加比赛,共有多少 种不同的选法? 例3、惠州市的部分电话号码是0752210××××,后面 每个数字来自0~9这10个数,问可以产生多少个不同的 电话号码? 分析:
0752210 分析: