高一数学练习 三角函数单元测验
高一数学三角函数章节测试卷(含详解)
高一三角函数章节测试卷一、单选题(本大题共8小题,共40分)1. 将分针拨快10分钟,则分针转过的弧度数是( ) A. π3B. −π3C. π6D. −π62. 《掷铁饼者》取材于希腊的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的一只手臂长约为π4米,整个肩宽约为π8米.“弓”所在圆的半径约为1.25米.则掷铁饼者双手之间的距离约为(参考数据:√2≈1.414;√3≈1.732) ( )A. 1.612米B. 1.768米C. 1.868米D. 2.045米3. 已知θ是第四象限角,M (1,m )为其终边上一点,且sinθ=√55m ,则2sinθ−cosθsinθ+cosθ的值( ) A. 0B. 45C. 43D. 54. sin15∘cos75∘−cos15∘sin105∘=( ) A. −12B. 12C. −√32D. √325. 终边为一、三象限角平分线的角的集合是( ) A. {α|α=2kπ+π4,k ∈Z} B. {α|α=kπ+π2,k ∈Z} C. {α|α=2kπ+π2,k ∈Z}D. {α|α=kπ+π4,k ∈Z}6. 已知4sin α−2cos α5cos α+3sin α=57,则sinα⋅cosα的值为( ) A. −103B. 103C. −310D. 3107. 设a =cos π12,b =sin 41π6,c =cos 7π4,则( )A. a >c >bB. c >b >aC. c >a >bD. b >c >a8. 为了得到函数y =4sinxcosx ,x ∈R 的图象,只要把函数y =√3sin2x +cos2x ,x ∈R 图象上所有的点( )A. 向左平移π12个单位长度 B. 向右平移π12个单位长度 C. 向左平移π6个单位长度D. 向右平移π6个单位长度二、多选题(本大题共4小题,共20分)9. 下列化简结果正确的是( ) A. cos22∘sin52∘−sin22∘cos52∘=12B. sin15∘sin30∘sin75∘=14C. cos15∘−sin15∘=√22D. tan24∘+tan36∘1−tan24∘tan36∘=√310. 对于函数f (x )=sinx +cosx ,下列说法正确的有( ) A. 2π是一个周期B. 关于(π2,0)对称 C. 在[0,π2]上的值域为[1,√2]D. 在[π4,π]上递增11. 已知函数f(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,将函数f(x)的图象上所有点的横坐标变为原来的23,纵坐标不变,再将所得函数图象向右平移π6个单位长度,得到函数g(x)的图象,则下列关于函数g(x)的说法正确的是( )A. g(x)的最小正周期为2π3 B. g(x)在区间[π9,π3]上单调递增 C. g(x)的图象关于直线x =4π9对称 D. g(x)的图象关于点(π9,0)成中心对称12. 绍兴市柯桥区棠棣村是浙江省美丽乡村,也是重要的研学基地,村口的大水车,是一道独特的风景.假设水轮半径为4米(如图所示),水轮中心O 距离水面2米,水轮每60秒按逆时针转动一圈,如果水轮上点P 从水中浮现时(图中P 0)开始计时,则( )A. 点P 第一次达到最高点,需要20秒B. 当水轮转动155秒时,点P 距离水面2米C. 在水轮转动的一圈内,有15秒的时间,点P 距水面超过2米D. 点P 距离水面的高度ℎ(米)与t(秒)的函数解析式为ℎ=4sin (π30t −π6)+2三、填空题(本大题共4小题,共20分)13. 函数f (x )=tan (πx −π4)的定义域为______.14. 要得到函数y =cos (x 2−π4)的图象,只需将y =sin x2的图象向左平移 个单位;15.1sin10∘−√3sin80∘的值为16. 已知cosα=13,且−π2<α<0,则cos (−α−π)sin (2π+α)tan (2π−α)sin (3π2−α)cos (π2+α)= .四、解答题(本大题共6小题,共70分)17. (本小题10分)已知sin x 2−2cos x2=0.(1)求tanx 的值;(2)求cos2xcos(5π4+x)sin(π+x)的值.18. (本小题12分)已知函数f(x)=sin (π4+x)sin (π4−x)+√3sin xcos x .(1)求f(π6)的值;(2)在△ABC 中,若f(A2)=1,求sinB +sinC 的最大值.19. (本小题12分)设函数f(x)=√32cos x +12sin x +1.(1)求函数f(x)的值域和单调递增区间;(2)当f(α)=95,且π6<α<2π3时,求sin(2α+2π3)的值.20. (本小题12分)已知函数f(x)=Asin(ωx +φ)(A >0,ω>0,0<φ<2π)的部分图象如图所示.(1)求函数f(x)的解析式;(2)若ℎ(x)=f(x)⋅f(x −π6),x ∈[0,π4],求ℎ(x)的取值范围.21. (本小题12分)已知函数f(x)=(sinx+cosx)2+2cos2x.(1)求函数y=f(x)周期及其单调递增区间;(2)当x∈[0,π2]时,求y=f(x)的最大值和最小值.22. (本小题12分)已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边与单位圆交点为P(−45,35 ).(1)求cos(α+π4)和sin2α的值;(2)求的值.答案和解析1.解:将时钟拨快10分钟,则分针顺时针转过60°,∴将时钟拨快10分钟,分针转过的弧度数是−π3.故选B .2.解:由题得:弓所在的弧长为:l =π4+π4+π8=5π8;所以其所对的圆心角α=5π854=π2;∴两手之间的距离d =2Rsin π4=√2×1.25≈1.768.故选B .3.解:∵θ是第四象限角,M(1,m)为其终边上一点,则有m <0,∴|OM|=√1+m 2,则sin θ=√1+m2=√55m ,即m =−2,∴tanθ=−2,则2sinθ−cosθsinθ+cosθ=2tanθ−1tanθ+1=−4−1−1=5.故选D . 4.解:sin15∘cos75∘−cos15∘sin105∘=sin15°cos75°−cos15°sin75°=sin (15°−75°)=−sin60°=−√32.故选C .5.解:设角的终边在第一象限和第三象限角的平分线上的角为α,当角的终边在第一象限角的平分线上时,则α=2kπ+π4,k ∈Z ,当角的终边在第三象限角的平分线上时,则α=2kπ+5π4,k ∈Z ,综上,α=2kπ+π4,k ∈Z 或α=2kπ+5π4,k ∈Z ,即α=kπ+π4,k ∈Z ,终边在一、三象限角平分线的角的集合是:{α|α=kπ+π4,k ∈Z }.故选D .6.解:由4sinα−2cosα5cosα+3sinα=57,得4tanα−25+3tanα=57,解得tanα=3,∴sinα⋅cosα=sinα⋅cosαsin 2α+cos 2α=tanα1+tan 2α=31+32=310.故选D .7.解:b =sin41π6=sin(6π+5π6)=sin5π6=sinπ6=cosπ3,c =cos7π4=cosπ4,因为 π 2> π 3> π 4> π 12>0,且y =cos x 在(0,π2)是减函数,所以cosπ12>cosπ4>cosπ3,即a >c >b .故选A .8.因为y =4sinxcosx =2sin2x ,y =√3sin2x +cos2x =2sin (2x +π6)=2sin2(x +π12),所以为了得到函数y =4sinxcosx ,x ∈R 的图象,只要把函数y =√3sin2x +cos2x ,x ∈R 图象上所有的点向右平移π12个单位长度即可,故选:B9.解:A 中,cos 22∘sin 52∘−sin 22∘cos 52∘=sin30°=12,则A 正确,B 中,sin15°sin30°sin75°=sin15°sin30°sin (90°−15°)=sin15°cos15°sin30°=12sin30°sin30°=18,则B 错误,C 中,cos 15∘−sin 15∘=√2cos(45°+15°)=√22,则C 正确;D 中,tan 24∘+tan 36∘1−tan 24∘tan 36∘=tan60°=√3,则D 正确.故选ACD .10.解:因为函数f (x )=sinx +cosx =√2sin (x +π4),故它的一个周期为2π,故A 正确;令x =π2,得f (x )=√2sin (π2+π4)=√2sin 3π4=1,所以函数f (x )不关于(π2,0)对称,故B 不正确;当0≤x ≤π2时,π4≤x +π4≤3π4,所以√2×√22≤√2sin (x +π4)≤√2×1,即f (x )的值域为[1,√2],故C 正确;当π4≤x ≤π时,π2≤x +π4≤5π4,所以函数f (x )在[π4,π]上单调递减,故D 不正确.11.解:根据函数的图象:周期12T =5π12−(−π12)=π2,解得T =π,故ω=2.由图可得A =2,当x =5π12时,f(5π12)=2sin(5π6+φ)=−2,即5π6+φ=3π2+2kπ,k ∈Z ,由于|φ|<π,所以φ=2π3,所以f(x)=2sin(2x +2π3),函数f(x)的图象上所有点的横坐标变为原来的23,纵坐标不变,得到函数y =2sin(3x +2π3)的图象,再将所得函数图象向右平移π6个单位长度,得到函数g(x)=2sin(3x +π6)的图象, 故对于A :函数g(x)的最小正周期为T =2π3,故A 正确;对于B :由于x ∈[π9,π3],所以3x +π6∈[π2,7π6], 故函数g(x)在区间[π9,π3]上单调递减,故B 错误;对于C :当x =4π9时,g(4π9)=2sin(4π3+π6)=−2, 故函数g(x)的图象关于直线x =4π9对称,故C 正确;对于D :当x =π9时,g(π9)=2,故D 错误. 故选:AC .12.解:设点P 距离水面的高度为ℎ(米)和t(秒)的函数解析式为ℎ=Asin(ωt +φ)+B(A >0,ω>0,|φ|<π2),由题意,ℎmax =6,ℎmin =−2,∴{A +B =6−A +B =−2,解得{A =4B =2,∵T =2πω=60,∴ω=2πT =π30,则ℎ=4sin(π30t +φ)+2.当t =0时,ℎ=0,∴4sinφ+2=0,则sinφ=−12,又∵|φ|<π2,∴φ=−π6.ℎ=4sin(π30t −π6)+2,故D 正确;令ℎ=4sin(π30t −π6)+2=6,0⩽t ⩽60,∴sin(π30t −π6)=1,得t =20秒,故A 正确; 当t =155秒时,ℎ=4sin(π30×155−π6)+2=4sin5π+2=2,故B 正确; 4sin(π30×t −π6)+2>2,令0<π30×t −π6<π,解得5<t <35,故有30秒的时间,点P 距水面超过2米,故C 错误.故选:ABD .13.解:由πx −π4≠π2+kπ,k ∈Z ,可得x ≠k +34,k ∈Z ,即定义域为{x|x ≠k +34,k ∈Z}.故答案为{x|x ≠k +34,k ∈Z}.14.解:将函数y =sin x 2的图象上所有点向左平移π2个单位纵坐标不变,可得函数y =sin 12(x +π2)=sin(x 2+π4)=cos(π4−x 2)=cos(x 2−π4)的图象.故答案为: π2.15.解:原式=1sin10∘−√3cos10∘=cos10∘−√3sin10∘sin10∘cos10∘=4(12cos10∘−√32sin10∘)2sin10∘cos10∘=4cos(60∘+10∘)sin20∘=4cos70∘sin20∘=4sin20∘sin20∘=4,故答案为4.16.解:cos(−α−π)sin(2π+α)tan(2π−α)sin(3π2−α)cos(π2+α)=(−cosα)sinα(−tanα)(−cosα)(−sinα)=tanα,∵cosα=13,且−π2<α<0,∴sinα=−2√23,则原式=tanα=sinαcosα=−2√2.故答案为−2√2. 17.解:(1)∵f(x)=sin (π 4+x)sin (π 4−x)+√3sin xcos x=sin (π4+x)sin [π2−(π4+x)]+√3sinxcosx =sin (π4+x)cos (π4+x)+√3sinxcosx =12cos2x +√32sin2x =sin (2x +π6),∴f (π6)=sin (2×π6+π6)=1. (2)由f (A2)=sin (A +π6)=1,而0<A <π,可得A +π6=π2,即A =π3, ∴sinB +sinC =sinB +sin (2π3−B)=32sinB +√32cosB =√3sin (B +π6), ∵0<B <2π3,∴π6<B +π6<5π6,12<sin (B +π6)≤1,则√32<√3sin (B +π6)≤√3,故当B =π3时,sinB +sinC 取最大值,最大值为√3. 19.【答案】解:(1)由图象有A =√3,最小正周期T =43(7π12+π6)=π,所以ω=2πT=2,所以f(x)=√3sin(2x +φ).由f (7π12)=−√3,得2·7π12+φ=3π2+2kπ,k ∈Z ,所以φ=π3+2kπ,k ∈Z .又因为0<φ<2π,所以φ=π3.所以 f(x)=√3sin(2x +π3) .(2)由(1)可知f(x)=√3sin (2x +π3),ℎ(x)=f(x)⋅f(x −π6)=√3sin (2x +π3)×√3sin2x =3sin2x(12sin2x +√32cos2x)=32sin 22x +3√32sin2xcos2x =32·1−cos4x 2+3√34sin4x =32sin(4x −π6)+34.因为x ∈[0,π4],所以4x −π6∈[−π6,5π6],所以sin(4x −π6)∈[−12,1],所以ℎ(x)的取值范围为[0,94]. 20.解:(1)因为f(x)=(sinx +cosx)2+2cos 2x =2+sin2x +cos2x =√2sin(2x +π4)+2所以f(x)=√2sin(2x +π4)+2;所以f(x)的最小正周期为2π2=π;令−π2+2kπ≤2x +π4≤π2+2kπ,k ∈Z ,所以−3π8+kπ≤x ≤π8+kπ,k ∈Z 所以f(x)的单调递增区间为[−3π8+kπ,π8+kπ]k ∈Z;(2)因为x ∈[0,π2],所以2x +π4∈[π4,5π4],所以sin(2x +π4)∈[−√22,1]所以f(x)∈[1,2+√2],所以f(x)的最大值为2+√2,最小值为1.21.解:(1)由sin x 2−2cos x2=0,知cosx2≠0,∴tanx 2=2,∴tanx =2tan x21−tan 2x2=2×21−4=−43. (2)由(1),知tanx =−43,∴cos2x cos(5π4+x)sin(π+x)=cos2x −cos(π4+x)(−sinx)=22(√22cos x−√22sin x)sin x=√22(cos x−sin x)sin x=√2×cos x+sin x sin x=√2×1+tan xtan x =√24. 22.解:(1)由题意,|OP|=1,则sinα=35,cosα=−45,∴cos(α+π4)=cosαcos π4−sinαsin π4=−45×√22−35×√22=−7√210,sin2α=2sinαcosα=2×35×(−45)=−2425.(2)由(1)知,tanα=sinαcosα=−34,则3sin (π−α)−2cos (−α)5cos (2π−α)+3sin α=3sinα−2cosα5cosα+3sinα=3tanα−25+3tanα=3×(−34)−25+3×(−34)=−1711.。
高一数学第一章三角函数单元测试题及答案
三角函数数学试卷一、 选择题(本大题共12小题;每小题3分;共36分;在每小题给出的四个选项中;只有一个是符合要求的;把正确答案的代号填在括号内.) 1、600sin 的值是( ))(A ;21 )(B ;23 )(C ;23- )(D ;21-2、),3(y P 为α终边上一点;53cos =α;则=αtan ( ))(A 43-)(B 34)(C 43± )(D 34±3、已知cos θ=cos30°;则θ等于( )A. 30°B. k ·360°+30°(k ∈Z)C. k ·360°±30°(k ∈Z)D. k ·180°+30°(k ∈Z)4、若θθθ则角且,02sin ,0cos <>的终边所在象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限( )5、函数的递增区间是6、函数)62sin(5π+=x y 图象的一条对称轴方程是( ) )(A ;12π-=x )(B ;0=x )(C ;6π=x )(D ;3π=x7、函数的图象向左平移个单位;再将图象上各点的横坐标压缩为原来的;那么所得图象的函数表达式为8、函数|x tan |)x (f =的周期为( )A. π2B. πC. 2πD. 4π9、锐角α;β满足41sin sin -=-βα;43cos cos =-βα;则=-)cos(βα( )A.1611-B.85C.85-D.161110、已知tan(α+β)=25;tan(α+4π)=322; 那么tan(β-4π)的值是( )A .15B .14 C .1318 D .132211.sin1;cos1;tan1的大小关系是( )A.tan1>sin1>cos1 an1>cos1>sin1C.cos1>sin1>tan1D.sin1>cos1>tan112.已知函数f (x )=f (π-x );且当)2,2(ππ-∈x 时;f (x )=x +sin x ;设a =f (1);b =f (2);c =f (3);则( )A.a<b<cB.b<c<aC.c<b<aD.c<a<b 二、填空题(本大题共4小题;每小题3分;共12分;把最简单结果填在题后的横线上.13.比较大小 (1)0508cos 0144cos ;)413tan(π- )517tan(π-。
高一数学(人教版)必修四单元测试:三角函数(word版,有答案)
高一数学三角函数部分单元试卷班级________ 姓名__________学号________一、 选择题(每题5分)1. 集合|,24k M x x k Z ππ⎧⎫==+∈⎨⎬⎩⎭,|,42k N x x k Z ππ⎧⎫==+∈⎨⎬⎩⎭( ) (A)M N = (B)M N ≠⊂ (C) N M ≠⊂ (D)M N φ=2.下列函数中,周期为π,且在[,]42ππ上为减函数的是 ( )(A )sin ||y x =-(B )cos ||y x =(C )sin(2)2y x π=+ (D )cos(2)2y x π=+ 3.如果1cos()2A π+=-,那么sin()2A π+的值是 ( )(A ).12-(B )12(C )4.已知1sin 1a a θ-=+,31cos 1a aθ-=+,若θ为第二象限角,则下列结论正确的是( ) (A ).1(1,)3a ∈- (B ). 1a = (C). 119a a ==或 (D). 19a = 5. 方程cos x x =在(,)-∞+∞内 ( )(A).没有根 (B).有且只有一个根 (C).有且仅有两个根 (D).有无穷多个根 6. 设将函数()cos (0)f x x ωω=>的图像向右平移3π个单位后与原图像重合,则ω的最小值是 (A )13(B ) 3 (C ) 6 (D ) 9 7.为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像 ( )(A )向左平移4π个长度单位 (B )向右平移4π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2π个长度单位8.已知函数()sin(2),f x x ϕ=+其中ϕ为实数. 若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是 ( )A . ,()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ B. ,()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦C . 2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ D . ,()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦二、填空题(每题4分)9.函数sin y x ω=和函数tan (0)y x ωω=>的最小正周期之和为π,则ω=________ 10.已知α、β∈[-π2,π2]且α+β<0,若sin α=1-m ,sin β=1-m 2,则实数m 的取值范围是_________________11.令tan a θ=,sin b θ=,cos c θ=,若在集合π3π,44θθθ⎧-<<≠⎨⎩ππ0,,42⎫⎬⎭中,给θ取一个值,,,a b c三数中最大的数是b ,则θ的值所在范围是____________ 12.若函数()2sin (01)f x x ωω=<<在闭区间0,3π⎡⎤⎢⎥⎣⎦2,则ω的值为______ 13.22sin120cos180tan 45cos (330)sin(210)︒+︒+︒--︒+-︒=_______三、解答题(每题10分)14. 已知tan 2α=,计算①2cos()cos()2sin()3sin()2παπαπαπα+----+ ②33sin cos sin 2cos αααα-+15. 已知函数3)62sin(3)(++=πx x f(1(2)指出)(x f16.已知在ABC ∆中,17sin cos 25A A += ①求sin cos A A②判断ABC ∆是锐角三角形还是钝角三角形 ③求tan A 的值17.已知函数lg cos(2)y x ,(1)求函数的定义域、值域; (2)讨论函数的奇偶性;(3)讨论函数的周期性 (4)讨论函数的单调性高一数学三角函数部分试卷参考答案一、 选择题(每小题3分,共40分)二、 填空题(每小题4分,共20分)9. 3 10.11. 3(,)24ππ 12. 3413. 1三.解答题:(本大题共4小题,共40分,解答应写出文字说明,证明过程或演算步骤) 14.解 (1)tan 2α=2sin cos 2tan 13cos 3sin 13tan 7αααααα-+-+∴==-++原式=(5分)(2)322322sin cos (sin cos )sin 2cos sin cos αααααααα-+=++原式()3232tan tan 11tan 2tan 26αααα--==++ (10分) 15解:(1)图略 (5分) (2)04,3,6T A ππϕ===,22()3x k k Z ππ=+∈对称轴 3ππ对称中心(-+2k ,3), (10分)16解:(1)17sin cos 25A A +=两边平方得 21712sin cos 25A A ⎛⎫+= ⎪⎝⎭336sin cos 625A A =-.......(3分)(2)17sin cos 125A A +=< 2A π∴>,ABC ∆为钝角三角形 ..................(6分)(3)2217sin cos 25sin cos 1A A A A ⎧+=⎪⎨⎪+=⎩ 得24sin 257cos 25A A ⎧=⎪⎪⎨-⎪=⎪⎩24tan 7∴=- ....(10分)17. 解(1)定义域(,)()44k k k Z ππππ-++∈ 值域(,0]-∞ ....(3分)(2) 偶函数 ........(5分) (3)T π= ........(8分) (4)增区间(,)()4k k k Z πππ-+∈减区间(,)()4k k k Z πππ+∈ ........(10分)。
三角函数测试题及答案
高一年级新教材三角函数单元测试卷一、单选题1.() 1920sin -=( ) A.21 B.21- C. 23 D.23-2.已知扇形的圆心角为3弧度,弧长为6cm,则扇形的面积为( )2cm A.2B.3C.6D.123.已知α为第三象限角,且25sin 5α=-,则cos (α= ) A.55B.55-C.255D.255-4.已知函数)32sin()(π+=x x f ,为了得到函数)62cos()(π+=x x g 的图象,可以将)(x f 的图象( )A.向右平移6π个单位长度B.向左平移12π个单位长度C.向左平移6π个单位长度D.向右平移12π个单位长度5.函数)1sin 2lg(+=x y 的定义域为( )A.},656|{Z k k x k x ∈+<<+ππππ B.},676|{Z k k x k x ∈+<<+ππππC.},65262|{Z k k x k x ∈+<<+ππππD.},67262|{Z k k x k x ∈+<<-ππππ6.若函数()()⎪⎭⎫ ⎝⎛≤-=2sin πϕϕωx x f 的部分图象如图所示,则ω和ϕ的值是( )A.3,1πϕω== B.3,1πϕω-== C.6,21πϕω== D.6,21πϕω-==7.如图,在平面直角坐标系中,角)0(παα≤≤的始边为x 轴的非负半轴,终边与单位圆的交点为A ,将OA 绕坐标原点逆时针旋转2π至OB ,过点B 轴作x 的垂线,垂足为Q ,记线段BQ 的长为y ,则函数)(αf y =的图象大致是( )8.若将函数()()⎪⎭⎫ ⎝⎛<+=22sin 2πϕϕx x f 的图象向左平移6π个单位后得到的图象关于轴对称,则函数()x f 在⎥⎦⎤⎢⎣⎡2,0π上的最大值为( ) A. 2 B. 3 C. 1 D. 23二、多选题9. 下列结论正确的是( )A. 67π-是第三象限角B. 若圆心角为3π的扇形的弧长为π,则该扇形面积为23πC. 若角的终边过点P(-3,4),则53cos -=α D. 若角为锐角,则角为钝角10.下列各式中,值为23的是( ) A. 15cos 15sin 2 B. 15sin 15cos 22- C. 15sin 212- D. 15cos 15sin 22+11.要得到sin 25y x π⎛⎫=- ⎪⎝⎭的图象,可以将函数y =sin x 的图象上所有的点( )A.向右平行移动5π个单位长度,再把所得各点的横坐标缩短到原来的12倍B.向右平行移动10π个单位长度,再把所得各点的横坐标缩短到原来的12倍C.横坐标缩短到原来的12倍,再把所得各点向右平行移动5π个单位长度D.横坐标缩短到原来的12倍,再把所得各点向右平行移动10π个单位长度12.已知函数()sin()(0f x x ωϕω=+>,||)2πϕ<,其图象相邻两条对称轴之间的距离为4π,且直线12x π=-是其中一条对称轴,则下列结论正确的是( )A.函数()f x 的最小正周期为2πB.函数()f x 在区间[6π-,]12π上单调递增 C.点5(24π-,0)是函数()f x 图象的一个对称中心D.将函数()f x 图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,再把得到的图象向左平移6π个单位长度,可得到()sin 2g x x =的图象 三、填空题13.已知3)tan(,4tan =-=βπα,则)tan(βα+= .14.函数()⎥⎦⎤⎢⎣⎡∈++-=65,6,23sin 2cos 22ππx x x x f 的值域是 .15.已知)4,0(,34cos sin πθθθ∈=+,则θθcos sin -= .16.已知π1sin 63x ⎛⎫+= ⎪⎝⎭,则25πsin sin 6π3x x -+⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭的值为 .四、解答题17.已知3sin(3π)cos(2π)sin π2()cos(π)sin(π)f αααααα⎛⎫-⋅-⋅-+ ⎪⎝⎭=--⋅--.(1)化简()f α;(2)若α为第四象限角且31sin π25α⎛⎫-= ⎪⎝⎭,求()f α的值;(3)若31π3α=-,求()f α.18.已知α,β为锐角,1cos 7α=,11cos()14αβ+=-.(1)求sin()αβ+的值;(2)求cos β的值.19.已知函数2()2sin cos 2cos ()f x x x x x =+∈R .(1)求()f x 的最小正周期;(2)求()f x 的最值及取得最值时x 的集合.20.海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;在落潮时返回海洋.下面是某港口在某季节每天的时间和时刻 2:00 5:00 8:00 11:00 14:00 17:00 20:00 23:00 水深/米 7.0 5.0 3.0 5.0 7.0 5.0 3.0 5.0经长期观测,港口的水深与时间关系,可近似用函数()()⎪⎭⎫ ⎝⎛<>++=2,0,sin πϕωϕωA B t A t f 描述.(1)根据以上数据,求出函数()()B t A t f ++=ϕωsin 的表达式; (2)一条货船的吃水深度(船底与水面的距离)为4.0米,安全条例规定至少要有2米的安全间隙(船底与洋底的距离),该船在一天内(0:00~24:00)何时能进入港口然后离开港口?每次在港口能停留多久?21.已知0a >,函数()2sin(2)26f x a x a b π=-+++,当[0,]2x π∈时,()51f x -≤≤.(1)求常数,a b 的值;(2)设()()2g x f x π=+且()lg 0g x >,求()g x 的单调区间.22.已知函数()()2sin 24sin 206x x x f πωωω⎛⎫=--+> ⎪⎝⎭,其图象与x 轴相邻两交点的距离为2π.(1)求函数()f x 的解析式;(2)若将()f x 的图象向左平移()0m m >个长度单位得到函数()g x 的图象恰好经过点,03π⎛-⎫ ⎪⎝⎭,求当m 取得最小值时,()g x 在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调区间.1.【答案】D【解析】sin (-1920°)=- sin 1920°=- sin (21x90°+30°)=-cos30°=23-求三角函数值,根据诱导公式负化正(即把负角转化为正角),把较大的正角化为 k .90°+α的形式,α为锐角,根据奇变偶不变符号看象限,把所求的三角函数转化为求锐角的三角函数,即可求出.2.【答案】C【解析】因为扇形的圆心角为3弧度,弧长为6cm, 所以其所在圆的半径为623r ==, 因此该扇形的面积是21166m 2c 22S lr ==⨯⨯=,故选C.3.【答案】B【解析】因为α为第三象限角,且25sin 5α=-,则22255cos 11()55sin αα=--=---=-. 4. 【答案】C【解析】5.【答案】D【解析】6.【答案】D【解析】7.【答案】B 【解析】8.【答案】A 【解析】9.【答案】BC 【解析】10.【答案】BC【解析】11.【答案】AD【解析】将函数y =sin x 的图象上所有的点向右平行移动5π个单位长度得到y =sin(x 5π-),再把所得各点的横坐标缩短到原来的12倍得到y =sin(2x 5π-).也可以将函数y =sin x 的图象上所有的点横坐标缩短到原来的12倍得到y =sin2x , 再把所得各点向右平行移动10π个单位长度得到y =sin2(x 10π-)=sin(2x 5π-).12. 【答案】AC 【解析】函数()sin()(0f x x ωϕω=+>,||)2πϕ<,其图象相邻两条对称轴之间的距离为1224ππω⋅=,4ω∴=,()sin(4)f x x ϕ=+. 直线12x π=-是其中一条对称轴,4()122ππϕπ∴⨯-+=+,Z ∈,6πϕ∴=-,()sin(4)6f x x π=-.故函数()f x 的最小正周期为242ππ=,故A 正确; 当[6x π∈-,]12π,54[66x ππ-∈-,]6π,函数()f x 没有单调性,故B 错误; 令524x π=-,求得()0f x =,可得点5(24π-,0)是函数()f x 图象的一个对称中心,故C 正确;将函数()f x 图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,可得sin(2)6y x π=-的图象;再把得到的图象向左平移6π个单位长度,可得到()sin(2)6g x x π=+的图象,故D 错误, 【点评】本题主要考查由函数sin()y A x ωϕ=+的部分图象求解析式,由周期求出ω,由图象的对称性求出ϕ的值,正弦函数的图象和性质,属于中档题.13.【答案】131 【解析】14.【答案】⎥⎦⎤⎢⎣⎡27,1【解析】15.【答案】32-【解析】16.【答案】59【解析】因为5πππ1sin sin πsin 6663x x x ⎛⎫⎛⎫⎛⎫-=+-=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,2222πππππ18sin sin cos 1sin 13266699x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-+=+=-+=-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,所以25ππ185sin sin 63399x x ⎛⎫⎛⎫-+-=-+= ⎪ ⎪⎝⎭⎝⎭.17.【答案】(1)()cos f αα=-;(2)15-;(3)12-.【解析】(1)[]3sin(π)cos()sin π(sin )cos (cos )2()cos cos(π)sin(π)(cos )sin f αααααααααααα⎛⎫+⋅-⋅-+ ⎪-⋅⋅-⎝⎭===-+⋅-+-⋅.(2)因为31sin πsin cos 2π25ααα⎛⎫⎛⎫-=+== ⎪ ⎪⎝⎭⎝⎭,所以1()cos 5f αα=-=-.(3)因为31π3α=-,()cos f αα=-, 所以31π31cos π33f ⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭1cos 52ππcos πco 3πs 13321⎛⎫⎪⎛⎫=--⨯-=--=- ⎝⎭⎭=-⎝⎪. 18.解:(1)α,β为锐角,11cos()14αβ+=-. ∴2παβπ<+<,221153sin()1()1()14cos αβαβ∴+-+=--. (2)α为锐角,1cos 7α=,22143sin 11()7cos αα∴=-=-=. cos cos[()]cos cos()sin sin()βααβααβααβ∴=-+=⋅++⋅+ 11143531()7142=⨯-=. 【点评】本题考查了同角三角函数基本关系式,考查了推理能力与计算能力,属于基础题.19.(2)当142sin =⎪⎭⎫ ⎝⎛+πx ,可得()Z k k x ∈+=+πππ2242,即()Z k k x ∈+=ππ8时,函数()x f 的最大值为12+,此时x 的集合为⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,8|ππ.20.21.(1)由[0,]2x π∈,所以72[,]666x πππ+∈,则1sin(2)[,1]62x π+∈-,所以2sin(2)[2,]6a x a a π-+∈-,所以()[,3]f x b a b ∈+,又因为()51f x -≤≤,可得531b a b =-⎧⎨+=⎩,解得2,5a b ==-. (2)由(1)得()4sin(2)16f x x π=-+-,则()7()4sin(2)14sin(2)1266g x f x x x πππ=+=-+-=+-, 又由()lg 0g x >,可得()1g x >, 所以4sin(2)116x π+->,即1sin(2)62x π+>, 所以5222,666k x k k Z πππππ+<+<+∈, 当222,662k x k k Z πππππ+<+≤+∈时,解得,6k x k k Z πππ<≤+∈, 此时函数()g x 单调递增,即()g x 的递增区间为(,),6k k k Z πππ+∈ 当5222,266k x k k Z πππππ+<+<+∈时,解得,63k x k k Z ππππ+<<+∈, 此时函数()g x 单调递减,即()g x 的递减区间为(,),63k k k Z ππππ++∈. 22.解:(1)()2sin 24sin 26x x x f πωω⎛⎫=--+ ⎪⎝⎭ 311cos22cos24222x x x ωωω-=--⨯+ 33sin 2cos222x x ωω=+ 323x πω⎛⎫=+ ⎪⎝⎭ 由已知函数()f x 的周期T π=,22ππω=,1ω= ∴()323f x x π⎛⎫=+ ⎪⎝⎭. (2)将()f x 的图象向左平移()0m m >个长度单位得到()g x 的图象∴()3223m x x g π⎛⎫=++ ⎪⎝⎭, ∵函数()g x 的图象经过点,03π⎛⎫- ⎪⎝⎭3sin 22033m ππ⎡⎤⎛⎫⨯-++= ⎪⎢⎥⎝⎭⎣⎦,即sin 203m π⎛⎫-= ⎪⎝⎭ ∴23m k ππ-=,k Z ∈ ∴26k m ππ=+,k Z ∈ ∵0m >,∴当0k =,m 取最小值,此时最小值为6π此时,()2323g x x π⎛⎫=+ ⎪⎝⎭. 令7612x ππ-≤≤,则2112336x πππ≤+≤ 当22332x πππ≤+≤或32112236x πππ≤+≤,即当612x ππ-≤≤-或571212x ππ≤≤时,函数()g x 单调递增 当232232x πππ≤+≤,即51212x ππ-≤≤时,函数()g x 单调递减. ∴()g x 在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调增区间为,612ππ⎡⎤--⎢⎥⎣⎦,57,1212ππ⎡⎤⎢⎥⎣⎦;单调减区间为5,1212ππ⎡⎤-⎢⎥⎣⎦.。
高一年级数学单元测试题(三角函数)
高一数学单元测试题(三角函数)班别 学号 姓名 分数一、选择题(每小题5分;共12小题) 1. 若02<<-απ;则点P )cos ,(tan αα位于A .第一象限B .第二象限C .第三象限D .第四象限2.15cos 75cos 15cos 75cos 22⋅++的值是A .45 B .26 C .23D .431+3. sin80sin 40sin 50sin190+等于A .12-B .12C .3D .23 4.已知α为第三象限角;则2α所在的象限是 A .第一或第二象限 B .第二或第三象限 C .第一或第三象限 D .第二或第四象限 5.如果函数)0(cos sin >⋅=ωωωx x y 的最小正周期为4π;那么常数ω为A .41 B .2 C .21 D .46.已知函数()sin 1,2f x x ππ⎛⎫=-- ⎪⎝⎭则下列命题正确的是 A .()f x 是周期为1的奇函数 B .()f x 是周期为2的偶函数C .()f x 是周期为1的非奇非偶函数D .()f x 是周期为2的非奇非偶函数 7.下列不等式正确的是A .ππ74sin 75sin> B .)7tan(815tanππ-> C .)6sin()75sin(ππ->-D .)49cos()53cos(ππ->-8.函数cos y x x =-的部分图象是9.方程x x lg sin =的实根有A .1个B .2个C .3个D .无数个10.若(cos )cos 2,f x x =那么(sin15)f 的值为A .12-B .12 C.D .23 11. 如果1弧度的圆心角所对的弦长为2;则这个圆心角所对的弧长为A .1sin 0.5B .sin 0.5C .2sin 0.5D .2sin 0.512. 定义在R 上的函数()f x 既是偶函数又是周期函数;若()f x 的最小正周期是π;且当0,2x π⎡⎤∈⎢⎥⎣⎦时;()sin ,f x x =则53f π⎛⎫⎪⎝⎭的值为 A .12- B .12C.D .23二、填空题(每小题4分;共4小题) 13. 31cos cos ,21sin sin =+=+βαβα; 则=-2cos2βα .1arcsin arccos 2⎛+ ⎝⎭的值等于15. 函数()lg 1tan y x =-的定义域为 .16. 函数cos ,62y x x ππ⎛⎫⎡⎤=∈-⎪⎢⎥⎣⎦⎝⎭的最大值是 ;最小值是 .一、 选择题答题表(每小题5分;共12小题)二、填空题(每小题4分;共6小题)13. 14. 15. 16. ;高一数学单元测试题(三角函数)班别 学号 姓名 分数一、 选择题答题表(每小题5分;共12小题)二、填空题(每小题4分;共6小题)13. 14.15. 16. ;三、解答题(第17、18、19、20、21题每题12分;第22题各14分;共74分) 17.已知函数()sincos ,22x xf x x R =+∈. (1)当函数()f x 取得最大值时;求自变量x 的集合; (2)求函数()f x 的单调递增区间; (3)函数()f x 的图象可由函数)(sin R x x y ∈=的图象经过怎样的平移和伸缩变换得到?18.在平面直角坐标系中;()(3,4)0P t t t --<是角α终边上的一点;根据三角函数定义求角α的正弦、余弦、正切、余切、正割、余割等六个三角函数值.19.已知),2(,135sin ππαα∈=;求:ααα2tan ,2cos ,2sin .19. 设A 是某三角形的一个内角;且2cos 3.20cot tan 22A A A =--求cos sin A A -的值.()()()sin 0,0,f x A x A x R ωϕω=+>>∈()f x 图象与直线3y =的所有交点的坐标.()()213sin cos 22f x x a x a x R =+--∈的最大值为1时a 的值.。
人教版高一数学必修一第五单元《三角函数》单元练习题(含答案)
人教版高一数学必修一第五单元《三角函数》单元练习题(含答案)一、单选题 1.把85π化为角度是( ) A .270°B .280°C .288°D .318°2.由函数cos 2y x =的图象,变换得到函数cos 23y x π⎛⎫=- ⎪⎝⎭的图象,这个变换可以是( ) A .向左平移6π B .向右平移6π C .向左平移3π D .向右平移3π 3.已知,αβ为锐角,且cos α=10,cos β=5,则αβ+的值是( )A .23π B .34πC .4π D .3π 4.在ABC 中,()()sin sin A B A B +=-,则ABC 一定是( ) A .等腰三角形 B .等边三角形C .直角三角形D .锐角三角形5.设 ,,,,则下列不等式正确的是 A .B .C .D .6.已知sin cos 1αα+=,则sin 2α的值为( ) A .-1B .0C .1D .227.已知0,2πα⎛⎫∈ ⎪⎝⎭,3cos α= ,则cos 6πα⎛⎫+ ⎪⎝⎭等于( ) A .1626-B .616-C .16 26-+D .616-+8.已知函数()()sin 202A x f x A πϕϕ⎛⎫=+≠< ⎪⎝⎭,,若23x π=是()f x 图象的一条对称轴的方程,则下列说法正确的是( ) A .()f x 图象的一个对称中心5012π⎛⎫⎪⎝⎭, B .()f x 在36ππ⎡⎤-⎢⎥⎣⎦,上是减函数 C .()f x 的图象过点102⎛⎫ ⎪⎝⎭,D .()f x 的最大值是A9.{}n a 为等差数列,公差为d ,且01d <<,5()2k a k Z π≠∈,223557sin 2sin cos sin a a a a +⋅=,函数()sin(4)(0)f x d wx d w =+>在20,3π⎛⎫⎪⎝⎭上单调且存在020,3x π⎛⎫∈ ⎪⎝⎭,使得()f x 关于0(,0)x 对称,则w 的取值范围是( ) A .20,3⎛⎤ ⎥⎝⎦ B .30,2⎛⎤ ⎥⎝⎦C .24,33⎛⎤⎥⎝⎦D .33,42⎛⎤⎥⎝⎦10.为了得到函数sin(2)4y x π=-的图象,可以将函数sin 2y x =的图象( )A .向左平移4π个单位长度 B .向右平移4π个单位长度 C .向左平移8π个单位长度 D .向右平移8π个单位长度11.函数()sin 22f x x x =+的对称中心坐标为( )A .,0()62k k Z ππ⎛⎫-+∈ ⎪⎝⎭ B .,0()62k k Z ππ⎛⎫+∈ ⎪⎝⎭ C .,0()6k k Z ππ⎛⎫-+∈ ⎪⎝⎭ D .,0()6k k Z ππ⎛⎫+∈⎪⎝⎭12.下列函数中,既是偶函数,又在(0,)+∞上单调递减的是( ). A .y x =- B .cos y x =C .23y x =D .2y x =-第II 卷(非选择题)二、填空题13.若函数2tan tan ||4y x a x x π⎛⎫=-≤ ⎪⎝⎭的最小值为-6,则实数a 的值为________.14.已知函数()sin f x a x x =图象的一条对称轴为直线76x π=,若函数7()()5F x f x =-在7,22ππ⎡⎤-⎢⎥⎣⎦上的所有零点依次记为1x ,2x ,3x ,…,n x ,则12n x x x +++=___________. 15.若方程3sin 265x π⎛⎫-= ⎪⎝⎭在(0,)π上的解为12x x 、,且12x x >,则()12sin x x -=________.16.若4sin()5πα+=-,则cos2α的值为________.三、解答题17.已知02ω<<,函数()sin 4f x x πω⎛⎫=+ ⎪⎝⎭,且()2f x f x π⎛⎫=-⎪⎝⎭. (1)求()f x 的最小正周期;(2)若()f x 在[],t t -上单调递增,求t 的最大值.18.求函数()2sin(2)3f x x π=+单调增区间19.已知πcos(2π)sin(π)sin 2()sin(2π)3πcos(π)cos 2f ααααααα⎛⎫+⋅-⋅+ ⎪⎝⎭=+-⎛⎫+⋅- ⎪⎝⎭.(1)化简()f α;(2)若()5f α=,求11sin cos αα-的值.20.已知函数sin ωφf x A x B (0A >,0>ω,2πϕ<),在同一个周期内,当6x π=时,()f x 取得最大值322,当23x π=时,()f x 取得最小值2-.(1)求函数()f x 的解析式,并求()f x 在[0,π]上的单调递增区间. (2)将函数()f x 的图象向左平移12π个单位长度,再向下平移22个单位长度,得到函数()g x 的图象,方程()g x a =在0,2π⎡⎤⎢⎥⎣⎦有2个不同的实数解,求实数a 的取值范围.21.如图,某城市小区有一个矩形休闲广场,20AB =米,广场的一角是半径为16米的扇形BCE 绿化区域,为了使小区居民能够更好的在广场休闲放松,现决定在广场上安置两排休闲椅,其中一排是穿越广场的双人靠背直排椅MN (宽度不计),点M 在线段AD 上,并且与曲线CE 相切;另一排为单人弧形椅沿曲线CN (宽度不计)摆放.已知双人靠背直排椅的造价每米为2a 元,单人弧形椅的造价每米为a 元,记锐角NBE θ∠=,总造价为W 元.(1)试将W 表示为θ的函数()W θ,并写出的取值范围;(2)如何选取点M 的位置,能使总造价W 最小.22.已知函数()2cos 3cos )1f x x x x =+-.(1)求函数()f x 的最小正周期并用五点作图法画出函数()y f x =在区间[0,]π上的图象; (2)若将函数()f x 的图象向右平移6π个单位长度,得到函数()g x 的图象,求函数()g x 的解析式,并求当2[,]123x ππ∈-时,函数()g x 的最小值及此时的x 值.23.设函数()2222,3f x cos x cos x x R π⎛⎫=++∈ ⎪⎝⎭. (1)求函数()f x 的最小正周期和单调增区间; (2)将函数()f x 的图象向右平移3π个单位长度后得到函数()g x 的图象,求函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上的值域.24.已知角α的终边在第二象限,且与单位圆交于点15(,4P m . (1)求实数m 的值;(2)求sin()23tan()cos()2παππαα-+--的值.25.已知()2sin3cos sin 1222x x x f x ⎛⎫=-+ ⎪⎝⎭(1)若π2π,63x ⎡⎤∈⎢⎥⎣⎦,求()f x 的值域;(2)在ΔABC 中,A 为BC 边所对内角,若()1,1,f A BC ==求·AB AC 的最大值.参考答案1.C2.B3.B4.C5.B6.B7.A8.A9.D10.D11.A12.D 13.-7或714.143π15.4516.725-17.(1)2π;(2)4π. 18.5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 19.(1)cos sin αα-;(2)210. 20.(1)()22sin 262f x x π⎛⎫=++ ⎪⎝⎭,单调增区间为06,π⎡⎤⎢⎥⎣⎦,2π,π3;(2)6,2a ⎡⎤∈⎢⎥⎣ 21.(1)2016cos ()216(),sin 2W a a θπθθθ-=⋅+-(2)43AM =22.(1)π,图象见解析;(2)()2sin 26g x x π⎛⎫=- ⎪⎝⎭,最小值-312x π=-时取到. 23.(1)π,5[,],36k k k Z ππππ++∈;(2)1[,2]2. 24.(1)14m =-;(2)1525. (1)[]1,2.(2)12.。
人教版高一数学必修一第五单元《三角函数》单元练习题(含答案)
人教版高一数学必修一第五单元《三角函数》单元练习题(含答案)人教版高一数学必修一第五单元《三角函数》单元练题(含答案)一、单选题1.已知函数$f(x)=\cos 2x+3\sin 2x+1$,则下列判断错误的是()A。
$f(x)$的最小正周期为$\pi$B。
$f(x)$的值域为$[-1,3]$C。
$f(x)$的图象关于直线$x=\dfrac{\pi}{6}$对称D。
$f(x)$的图象关于点$\left(-\dfrac{\pi}{4},0\right)$对称2.已知函数$y=\sin(\omega x+\dfrac{\pi}{2})$在区间$\left[0,\dfrac{\pi}{3}\right]$上单调递增,则$\omega$的取值范围是A。
$\left[0,\dfrac{1}{2}\right]$B。
$\left[\dfrac{1}{2},1\right]$C。
$\left[\dfrac{1}{3},2\right]$D。
$\left[\dfrac{2}{3},3\right]$3.若角$\alpha$的终边过点$P(2,2)$,则$\sin\alpha=$()A。
1B。
-1C。
$\dfrac{1}{\sqrt{10}}$D。
$-\dfrac{1}{\sqrt{10}}$4.若$x$是三角形的最小内角,则函数$y=\sin x+\cos x+\sin x\cos x$的值域是()A。
$[-1,+\infty)$B。
$[1,2]$C。
$[0,2]$D。
$\left[1,\dfrac{2+\sqrt{2}}{2}\right]$5.下列说法正确的个数是()①大于等于,小于等于90的角是锐角;②钝角一定大于第一象限的角;③第二象限的角一定大于第一象限的角;④始边与终边重合的角的度数为$360^\circ$。
A。
1B。
2C。
3D。
46.角$\alpha$的终边经过点$(2,-1)$,则$2\sin\alpha+3\cos\alpha$的值为()A。
三角函数》单元测试卷含答案
三角函数》单元测试卷含答案三角函数》单元测试卷一、选择题(本大题共10小题,每小题5分,共50分)1.已知点P(tanα,cosα)在第三象限,则角α的终边在(。
)A.第一象限B.第二象限C.第三象限D.第四象限2.集合M={x|x=kπ/2±π/4,k∈Z}与N={x|x=kπ/4,k∈Z}之间的关系是(。
)A.M∩NB.M∪NC.M=ND.M∩N=∅3.若将分针拨慢十分钟,则分针所转过的角度是(。
)A.60°B.-60°C.30°D.-30°4.已知下列各角(1)787°,(2)-957°,(3)-289°,(4)1711°,其中在第一象限的角是(。
)A.(1)(2)B.(2)(3)C.(1)(3)D.(2)(4)5.设a>0,角α的终边经过点P(-3a,4a),那么sinα+2cosα的值等于(。
)A.5/21B.-1/55C.-5/13D.-2/56.若cos(π+α)=-3/22,π<α<2π,则sin(2π-α)等于(。
)A.-2/3B.3/2C.-2/5D.3/47.若是第四象限角,则απ-α是(。
)A.第一象限角B.第二象限角C.第三象限角D.第四象限角8.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是(。
)A.2B.2sin1C.2cos1D.sin29.如果sinx+cosx=4/3,且π/4<x<π/2,那么cotx的值是(。
)A.-3/4B.-4/3或-3/4C.-4/3D.3/4或-3/410.若实数x满足log2x=2+sinθ,则|x+1|+|x-10|的值等于(。
)A.2x-9B.9-2xC.11D.9二、填空题(本大题共6小题,每小题5分,共30分)11.tan300°+cot765°的值是_____________.12.若sinα+cosα=2,则sinαcosα的值是_____________.13.不等式(lg20)2cosx>1,(x∈(0,π))的解集为_____________.14.若θ满足cosθ>-1/2,则角θ的取值集合是_____________.15.若cos130°=a,则tan50°=_____________.16.已知f(x)=sin2x+cosx,则f(π/6)为_____________.sinα=√(1-cos^2α)=√(1-(2x^2/(x^2+5^2)))=√((25-x^2)/(x^2+25)),tanα=sinα/cosα=(25-x^2)/(2x)。
高一三角函数单元试题及答案
高一必修4高一年级 三角函数单元测试一、选择题(10×5分=50分)1.sin 210= ( )A B .C .12 D .12-2.下列各组角中,终边相同的角是 ( )A .π2k 或()2k k Z ππ+∈ B . (21)k π+或(41)k π± )(Z k ∈C .3k ππ±或k()3k Z π∈ D .6k ππ+或()6k k Z ππ±∈3.已知cos tan 0θθ⋅<,那么角θ是 ( )A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角D.第一或第四象限角4.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是 ( )A .2B .1sin 2C .1sin 2D .2sin 5.为了得到函数2sin(),36x y x R π=+∈的图像,只需把函数2sin ,y x x R =∈的图像上所有的点 ( )A .向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)B .向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)C .向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) D .向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)6.设函数()sin ()3f x x x π⎛⎫=+∈ ⎪⎝⎭R ,则()f x ( ) A .在区间2736ππ⎡⎤⎢⎥⎣⎦,上是增函数B .在区间2π⎡⎤-π-⎢⎥⎣⎦,上是减函数C .在区间84ππ⎡⎤⎢⎥⎣⎦,上是增函数D .在区间536ππ⎡⎤⎢⎥⎣⎦,上是减函数7.函数sin()(0,,)2y A x x R πωϕωϕ=+><∈的部分图象如图所示,则函数表达( ) A .)48sin(4π+π-=x y B .)48sin(4π-π=x y C .)48sin(4π-π-=x y D .)48sin(4π+π=x y8. 函数sin(3)4y x π=-的图象是中心对称图形,其中它的一个对称中心是 ( )A .,012π⎛⎫-⎪⎝⎭ B . 7,012π⎛⎫- ⎪⎝⎭C . 7,012π⎛⎫⎪⎝⎭ D . 11,012π⎛⎫⎪⎝⎭9.已知()21cos cos f x x +=,则()f x 的图象是下图的 ( )A B C D10.定义在R 上的偶函数()f x 满足()()2f x f x =+,当[]3,4x ∈时,()2f x x =-,则 ( ) A .11sincos 22f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭ B .sin cos 33f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C .()()sin1cos1f f <D .33sincos 22f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭ 二、填空题(4×5分=20分)11.若2cos 3α=,α是第四象限角,则sin(2)sin(3)cos(3)απαπαπ-+---=___ 12.若tan 2α=,则22sin 2sin cos 3cos αααα++=___________13.已知3sin 42πα⎛⎫+= ⎪⎝⎭,则3sin 4πα⎛⎫-⎪⎝⎭值为 14.设()f x 是定义域为R ,最小正周期为32π的周期函数,若()()cos 02sin 0x x f x xx ππ⎧⎛⎫-≤≤ ⎪⎪⎝⎭=⎨⎪≤≤⎩ 则154f π⎛⎫-= ⎪⎝⎭____________(请将选择题和填空题答案填在答题卡上)一、选择题(10×5分=50分)二、填空题(4×5分=20分)11.__________ 12.__________ 13.__________ 14.__________三、解答题15.(本小题满分12分)已知()2,A a -是角α终边上的一点,且sin α=, 求cos α的值.16.(本小题满分12分)若集合1sin ,02M θθθπ⎧⎫=≥≤≤⎨⎬⎩⎭,1cos ,02N θθθπ⎧⎫=≤≤≤⎨⎬⎩⎭,求MN .17.(本小题满分12分)已知关于x 的方程)2210x x m -+=的两根为sin θ和cos θ:(1)求1sin cos 2sin cos 1sin cos θθθθθθ+++++的值;(2)求m 的值.18.(本小题满分14分)已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的图象在y 轴上的截距为1,在相邻两最值点()0,2x ,()003,202x x ⎛⎫+-> ⎪⎝⎭上()f x 分别取得最大值和最小值. (1)求()f x 的解析式;(2)若函数()()g x af x b =+的最大和最小值分别为6和2,求,a b 的值.19.(本小题满分14分)已知1sin sin 3x y +=,求2sin cos y x μ=-的最值.20.(本小题满分16分)设0,2πα⎛⎫∈ ⎪⎝⎭,函数()f x 的定义域为[]0,1且()00f =,()11f =当x y ≥时有()()()sin 1sin 2x y f f x f y αα+⎛⎫=+- ⎪⎝⎭(1)求11,24f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭; (2)求α的值;(3)求函数()()sin 2g x x α=-的单调区间.高一年级三角函数单元测试答案一、选择题(10×5分=50分)二、填空题(4×5分=20分)11.; 12.115; 13; 14.2 三、解答题15.(本小题满分12分)已知()2,A a -是角α终边上的一点,且sin α=, 求cos α的值.解:4r =+sin a r α∴===,1a ∴=-,r =cos x r α∴===. 16.(本小题满分12分)若集合1sin ,02M θθθπ⎧⎫=≥≤≤⎨⎬⎩⎭,1cos ,02N θθθπ⎧⎫=≤≤≤⎨⎬⎩⎭,求MN .解:如图示,由单位圆三角函数线知,566M ππθθ⎧⎫=≤≤⎨⎬⎩⎭,3N πθθπ⎧⎫=≤≤⎨⎬⎩⎭由此可得536M N ππθθ⎧⎫=≤≤⎨⎬⎩⎭.17.(本小题满分12分)已知关于x 的方程)2210x x m -+=的两根为sin θ和cos θ:(1)求1sin cos 2sin cos 1sin cos θθθθθθ+++++的值;(2)求m 的值. 解:依题得:sin cos θθ+=sin cos2mθθ⋅=; ∴(1)1sin cos 2sin cos sin cos 1sin cos θθθθθθθθ+++=+=++;(2)()2sin cos12sin cos θθθθ+=+⋅∴211222m⎛⎫=+⋅ ⎪ ⎪⎝⎭∴m =. 18.(本小题满分14分)已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的图象在y 轴上的截距为1,在相邻两最值点()0,2x ,()003,202x x ⎛⎫+-> ⎪⎝⎭上()f x分别取得最大值和最小值. (1)求()f x 的解析式;(2)若函数()()g x af x b =+的最大和最小值分别为6和2,求,a b 的值. 解:(1)依题意,得0033222T x x =+-=,223,3T ππωω∴==∴=最大值为2,最小值为-2,2A ∴=22sin 3y x πϕ⎛⎫∴=+ ⎪⎝⎭图象经过()0,1,2sin 1ϕ∴=,即1sin 2ϕ= 又 2πϕ<6πϕ∴=,()22sin 36f x x ππ⎛⎫∴=+⎪⎝⎭ (2)()22sin 36f x x ππ⎛⎫=+ ⎪⎝⎭,()22f x ∴-≤≤2622a b a b -+=⎧∴⎨+=⎩或2226a b a b -+=⎧⎨+=⎩解得,14a b =-⎧⎨=⎩或14a b =⎧⎨=⎩.19.(本小题满分14分)已知1sin sin 3x y +=,求2sin cos y x μ=-的最值.解:1sin sin 3x y +=.1sin sin ,3y x ∴=-()22211sin cos sin cos sin 1sin 33y y x x x x x ∴=-=--=---222111sin sin sin 3212x x x ⎛⎫=--=-- ⎪⎝⎭,11sin 1,1sin 1,3y x -≤≤∴-≤-≤解得2sin 13x -≤≤,∴当2sin 3x =-时,max 4,9μ=当1sin 2x =时,min 1112μ=-. 20.(本小题满分16分)设0,2πα⎛⎫∈ ⎪⎝⎭,函数()f x 的定义域为[]0,1且()00f =,()11f =当x y ≥时有()()()sin 1sin 2x y f f x f y αα+⎛⎫=+- ⎪⎝⎭(1)求11,24f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭; (2)求α的值;(3)求函数()()sin 2g x x α=-的单调区间.解:(1)()()()1101sin 1sin 0sin 22f f f f ααα+⎛⎫⎛⎫==+-= ⎪ ⎪⎝⎭⎝⎭;()()210112sin 1sin 0sin 422f f f f ααα⎛⎫+ ⎪⎛⎫⎛⎫==+-= ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭(2)()()113121sin 1sin 422f f f f αα⎛⎫+ ⎪⎛⎫⎛⎫==+- ⎪⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭ ()2sin 1sin sin 2sin sin ααααα=+-=-()3113144sin 1sin 2244f f f f αα⎛⎫+ ⎪⎛⎫⎛⎫⎛⎫∴==+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎝⎭()()22232sin sin sin 1sin sin 3sin 2sin ααααααα=-+-=-2sin sin (3sin 2sin )αααα∴=⋅- sin 0α∴=或12或1 又 0,2πα⎛⎫∈ ⎪⎝⎭,6πα∴=.(3)()sin 2sin 266g x x x ππ⎛⎫⎛⎫∴=-=-- ⎪ ⎪⎝⎭⎝⎭22,2622x k k πππππ⎛⎫⎡⎤∴-∈-++ ⎪⎢⎥⎝⎭⎣⎦时,()g x 单调递减,322,2622x k k πππππ⎛⎫⎡⎤-∈++ ⎪⎢⎥⎝⎭⎣⎦时,()g x 单调递增; 解得:,63x k k ππππ⎡⎤∈-++⎢⎥⎣⎦()k Z ∈时,()g x 单调递减,5,33x k k ππππ⎡⎤∈++⎢⎥⎣⎦()k Z ∈时,()g x 单调递增.。
高一数学单元测试题(三角函数)[
高一数学单元测试题 ( 三角函数 )班别学号姓名分数一、选择题 (每题 5 分,共 12 小题)1. 若0 ,则点 P (tan, cos ) 位于2A .第一象限B .第二象限C .第三象限D .第四象限2. cos 2 75cos 2 15 cos75cos15 的值是A .5B . 6C .3D . 13 42 243. sin80 sin 40 sin 50 sin190 等于A .11C .3D .32B .2224.已知 为第三象限角,则所在的象限是2A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限5ysinxcosx(0)的最小正周期为 4 ,那么常数为.假如函数A .1B . 2C .1D . 4426.已知函数 f xsinx1,则以下命题正确的选项是2A . f x 是周期为 1的奇函数B . f x 是周期为 2 的偶函数C . f x 是周期为 1的非奇非偶函数D . fx 是周期为 2 的非奇非偶函数7.以下不等式正确的选项是A . sin5sin4B . tan15tan()778 7C . sin( 5 )sin() D . cos( 3) cos(9)76548.函数 yx cos x 的部分图象是9.方程 sin xlg x 的实根有A .1 个B .2 个C .3 个D .无数个110.若 f (cos x)cos 2x, 那么 f (sin15 ) 的值为A .1B .1C .33222D .211. 假如 1弧度的圆心角所对的弦长为 2 ,则这个圆心角所对的弧长为A . 1B . sin 0.5C . 2sin 0.5D .2sin 0.5sin 0.512. 定义在 R 上的函数f x 既是偶函数又是周期函数,若f x 的最小正周期是,且当 x0, 时, fx sin x, 则 f 5的值为32A .1B .1C .33222D .2二、填空题 (每题 4 分,共 4 小题)13. sinsin1 , coscos1 , 则 cos 22.23arcsin1arccos314.22的值等于3arctan315. 函数 y lg 1 tan x 的定义域为.16. 函数 ycos x x6 ,的最大值是,最小值是.2一、 选择题答题表 (每题5 分,共 12 小题)二、题号 1 23456789101112答案二、填空题 (每题 4 分,共 6 小题)13.14.15.16.,2高一数学单元测试题 ( 三角函数 )班别学号 姓名 分数一、选择题答题表 (每题 5 分,共 12 小题)题号 123 456789101112答案二、填空题 (每题 4分,共 6 小题)13. 14.15. 16. ,三、解答题 (第 17、18、 19、20、 21 题每题 12 分,第 22 题各 14 分,共 74 分) 17.已知函数 f xsin x cos x, x R .2 2( 1)当函数( 2)求函数f x f x 获得最大值时,求自变量 x 的会合;的单一递加区间;( 3)函数f x 的图象可由函数 y sin x ( xR ) 的图象经过如何的平移和伸缩变换获得?318.在平面直角坐标系中,P( 3t, 4t ) t 0 是角终边上的一点,依据三角函数定义求角的正弦、余弦、正切、余切、正割、余割等六个三角函数值.19.已知sin 5 , ( , ) ,求: sin 2 , cos2 , tan 2 .13 2419. 设A是某三角形的一个内角,且cos2 A 3. 求 cos A sin A 的值.A A 20cot tan2 221. 已知函数 f x Asin x A 0,0, x R 在一个周期内的图象如下图. 求函数 f x 图象与直线y 3 的全部交点的坐标 .51 a 3x R的最大值为1时a的值.22. 求当函数 f x sin 2 x a cos x2 26。
人教版高一上学期数学必修一《第五章三角函数》章节检测卷-含答案
人教版高一上学期数学必修一《第五章三角函数》章节检测卷-含答案1.已知cos θ·tan θ<0,那么角θ是第 3,4 象限角.2.已知θ∈⎪⎭⎫⎝⎛-2,2ππ且sin θ+cos θ=a ,其中a ∈(0,1),则关于tan θ的值,以下四个答案中,可能正确的是 3 (填序号). ①-3 ②3或31③-31 ④-3或-313.设θ为第三象限角,试判断2cos2sin θθ的符号为 负号 .4.已知sin(π-α)-cos(π+α)=⎪⎭⎫⎝⎛<<παπ232.求下列各式的值: (1)sin α-cos α=34; (2))2(cos )2(sin 33a a ++-ππ= 2722-5. 已知函数f (x )=1cos 21cos 3cos 2224-+-x x x 的定义域为 ⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,42ππ值域为 ]0,1[- ,奇偶性为 偶 .6.函数f (x )=tan ωx (ω>0)的图象的相邻的两支截直线y =4π所得线段长为4π,则f (4π)的值是 0 .7.为了得到函数y =2sin ⎪⎭⎫⎝⎛+63πx ,x ∈R 的图象,只需把函数y =2sin x ,x ∈R 的图象上所有的点向 平移单位,再把所有各点的横坐标变为原来的 倍.8.函数y =2sin (6π-2x )(x ∈[0,π])为增函数的区间是 ]65,3[ππ .10.给出下列命题:①函数y =cos ⎪⎭⎫ ⎝⎛+232πx 是奇函数;②存在实数α,使得sin +cos =;③若、是第一象限角且α<β,则tan α<tan β; ④x =8π是函数y =sin ⎪⎭⎫ ⎝⎛+452πx 的一条对称轴方程;⑤函数y =sin ⎪⎭⎫⎝⎛+32πx 的图象关于点⎪⎭⎫⎝⎛0,12π成中心对称图形. 其中命题正确的是 1,4 (填序号).11 如图为y =A sin (ωx +ϕ)的图象的一段,求其解析式为 .12.方程x e +x=2的根所在的一个区间是( )A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)13.设定义域为),0(+∞的单调函数)(x f ,若对任意的),0(+∞∈x ,都有11)log )((21=+x x f f ,则方程xx f 2)(=解的个数是( )A .3B .2C .1D .014.已知函数()x f 为R 上的奇函数,当时αα23αβ)322sin(3π-=x y 0>x )cos 3cos 2cos (21)(ααα++++=x x x f(),若对任意实数,则实数的取值范围是( )A .B .5π5π,66⎡⎤-⎢⎥⎣⎦C .D .15.已知函数y =3sin ⎪⎭⎫ ⎝⎛-421πx(1)用五点法作出函数的图象;(2)说明此图象是由y =sin x 的图象经过怎么样的变化得到的; (3)求此函数的振幅、周期和初相; (4)求此函数图象的对称轴方程、对称中心.16、已知定义域R 的函数的奇函数.(1)求;(2)若对任意的,不等式恒成立,求k 的取值范围.ππα-≤≤,(()x f x f x ∈-R 都有≤恒成立α2ππ,3⎡⎤--⎢⎥⎣⎦2π2π,33⎡⎤-⎢⎥⎣⎦5π,π6⎡⎤⎢⎥⎣⎦abx f x x ++-=+122)(的值b a ,R t ∈0)2()2(22<-+-k t f t t f参考答案1.已知cos θ·tan θ<0,那么角θ是第 象限角. 答案 三或四2.已知θ∈⎪⎭⎫⎝⎛-2,2ππ且sin θ+cos θ=a ,其中a ∈(0,1),则关于tan θ的值,以下四个答案中,可能正确的是 (填序号). ①-3 ②3或31③-31④-3或-31答案 ③3.设θ为第三象限角,试判断2cos2sin θθ的符号为 . 解 ∵θ为第三象限角∴2k π+π<θ<2k π+(k ∈Z )k +(k ∈Z ). 当k -2n (n ∈Z )时,2n +ππθπ43222+<<n此时在第二象限. ∴sin2θ>0,kos 2θ<0. 因此<0. 当k =2n +1(n ∈Z )时(2n +1)π+2π<2θ<(2n +1)π+43π(n ∈Z ) 即2n π+23π<2θ<2n π+47π(n ∈Z )此时2θ在第四象限. ∴sin2θ<0,cos2θ>0,因此2cos2sin θθ<0 综上可知:2cos2sin θθ<0. 4.已知sin(π-α)-cos(π+α)=⎪⎭⎫⎝⎛<<παπ232.求下列各式的值: (1)sin α-cos α= ;(2))2(cos )2(sin 33a a ++-ππ=5.已知函数f (x )=1cos 21cos 3cos 2224-+-x x x ,求它的定义域和值域,并判断它的奇偶性.解 由题意知cos2x ≠0,得2x ≠k π+2π解得x ≠42ππ+k (k ∈Z ). 所以f (x )的定义域为2cos2sin θθ⎭⎬⎫⎩⎨⎧∈+≠∈k k x x x ,42ππ且,. 又f (x )= x x x 2cos 1cos 3cos 224+-=xx x 2cos 1cos )1cos 2(22--=cos 2x -1=-sin 2x .又定义域关于原点对称,∴f (x )是偶函数. 显然-sin 2x ∈[-1,0],但∵x ≠42ππ+k ,k ∈Z . ∴-sin 2x ≠-21. 所以原函数的值域为⎭⎬⎫⎩⎨⎧≤<--<≤-021211|y y y 或.6.函数f (x )=tan ωx (ω>0)的图象的相邻的两支截直线y =4π所得线段长为4π,则f (4π)的值是 . 答案 07.为了得到函数y =2sin ⎪⎭⎫⎝⎛+63πx ,x ∈R 的图象,只需把函数y =2sin x ,x ∈R 的图象上所有的点向 平移单位,再把所有各点的横坐标变为原来的 倍. 答案 左6π3 8.函数y =2sin (6π-2x )(x ∈[0,π])为增函数的区间是 . 答案 ⎥⎦⎤⎢⎣⎡65,3ππ 9.函数f (x )=lg(sin2x +3cos2x -1)的定义域是 . 答案 ⎭⎬⎫⎩⎨⎧Z ∈+<<-k k x k x ,412|ππππ 10.给出下列命题:①函数y =cos ⎪⎭⎫ ⎝⎛+232πx 是奇函数;②存在实数α,使得sin α+cos α=23;③若α、β是第一象限角且α<β,则tan α<tan β; ④x =8π是函数y =sin ⎪⎭⎫ ⎝⎛+452πx 的一条对称轴方程;⑤函数y =sin ⎪⎭⎫⎝⎛+32πx 的图象关于点⎪⎭⎫⎝⎛0,12π成中心对称图形. 其中命题正确的是 (填序号). 答案 ①④11 如图为y =A sin (ωx +ϕ)的图象的一段,求其解析式. 解 方法一 以N 为第一个零点Z R则A=-3,T =2⎪⎭⎫⎝⎛-365ππ=π ∴ω=2,此时解析式为y =-3sin (2x +ϕ).∵点N ⎪⎭⎫⎝⎛-0,6π,∴-6π×2+ϕ=0,∴ϕ=3π所求解析式为y =-3sin ⎪⎭⎫⎝⎛+32πx .①方法二 由图象知A =3以M ⎪⎭⎫ ⎝⎛0,3π为第一个零点,P ⎪⎭⎫⎝⎛0,65π为第二个零点. 列方程组⎪⎪⎩⎪⎪⎨⎧=+•=+•πϕπωϕπω6503 解之得⎪⎩⎪⎨⎧-==322πϕω. ∴所求解析式为y =3sin ⎪⎭⎫ ⎝⎛-322πx .15.已知函数y =3sin ⎪⎭⎫ ⎝⎛-421πx(1)用五点法作出函数的图象;(2)说明此图象是由y =sin x 的图象经过怎么样的变化得到的; (3)求此函数的振幅、周期和初相;(4)求此函数图象的对称轴方程、对称中心. 解 (1)列表:描点、连线,如图所示:(2)方法一 “先平移,后伸缩”. 先把y =sin x 的图象上所有点向右平移4π个单位,得到y =sin ⎪⎭⎫⎝⎛-4πx 的图象;再把y =sin ⎪⎭⎫⎝⎛-4πx 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =sin ⎪⎭⎫ ⎝⎛-421πx 的图象,最后将y =sin ⎪⎭⎫ ⎝⎛-421πx 的图象上所有点的纵坐标伸长到原来的3倍(横坐标不变),就得到y =3sin ⎪⎭⎫ ⎝⎛-421πx 的图象.方法二 “先伸缩,后平移”先把y =sin x 的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到y =sin 21x 的图象;再把y =sin21x 图象上所有的点向右平移2π个单位 得到y =sin 21(x -2π)=sin ⎪⎭⎫ ⎝⎛-42πx 的图象,最后将y =sin ⎪⎭⎫⎝⎛-42πx 的图象上所有点的纵坐标伸长到原来的3倍(横坐标不变),就得到y =3sin ⎪⎭⎫⎝⎛-421πx 的图象.(3)周期T =ωπ2=212π=4π,振幅A =3,初相是-. (4)令=+k (k ∈Z ) 得x =2k +(k ∈Z ),此为对称轴方程. 令x -=k (k ∈Z )得x =+2k (k ∈Z ). 对称中心为(k ∈Z ).4π421π-x 2πππ23π214ππ2ππ⎪⎭⎫⎝⎛+0,22ππk。
人教版高一上学期数学必修一《第五章三角函数》章节检测卷-带答案
人教版高一上学期数学必修一《第五章三角函数》章节检测卷-带答案1.已知θ2sin )21(<1,则θ所在象限为第 象限.2.已知点P (tan α,cos α)在第三象限,则角α的终边在第 象限.3.已知sin θ=a a+-11,cos θ=aa +-113,若θ是第二象限角,则cot a = .4.sin 2(π+α)-cos(π+α)cos(-α)+1的值为 .5.如果cos α=51,且α是第四象限的角,那么cos ⎪⎭⎫⎝⎛+2πα= .6.已知cos(π+α)=-21,且α是第四象限角,计算: (1)sin(2π-α)= ; (2) [][])2cos()2sin()12(sin )12(sin παπαπαπαn n n n -•++-+++ (n ∈Z )= .7.化简:αααα6644sin cos 1sin cos 1----= .8.已知函数f (x )=2sin ωx (ω>0)在区间⎥⎦⎤⎢⎣⎡-4,3ππ上的最小值是-2,则ω的最小值等于 .9.函数y =A sin(ωx +ϕ)(ω>0,|ϕ|< 2π,x ∈R )的部分图象如图所示,则函数表达式为 .10. 某三角函数图象的一部分如下图所示,则该三角函数为 .11.若函数f (x )=2sin(ϕω+x )对任意x 都有f ⎪⎭⎫ ⎝⎛+x 6π=f ⎪⎭⎫ ⎝⎛-x 6π,则f ⎪⎭⎫⎝⎛6π= .12.函数y =2sin ⎪⎭⎫⎝⎛-x 4π的单调减区间为 .13.求f (x )=)2cos(21x --π的定义域和值域.14.已知函数y =2sin ⎪⎭⎫ ⎝⎛+32πx(1)求它的振幅、周期、初相;(2)用“五点法”作出它在一个周期内的图象;(3)说明y =2sin ⎪⎭⎫⎝⎛+32πx 的图象可由y =sin x 的图象经过怎样的变换而得到.15.已知函数f (x )=2A - 2A cos(2ωx +2ϕ) (A >0, ω>0,0<ϕ<2π),且y =f (x )的最大值为2,其图象相邻 两对称轴间的距离为2,并过点(1,2). (1)求ϕ;(2)计算f (1)+f (2)+…+f (2 008).参考答案1.已知θ2sin )21(<1,则θ所在象限为第 象限.答案 一或三2.已知点P (tan α,cos α)在第三象限,则角α的终边在第 象限. 答案 二3.已知sin θ=a a+-11,cos θ=aa +-113,若θ是第二象限角,则cot a = . 解 ∵θ是第二象限角,∴sin θ>0,cos θ<0∴⎪⎪⎩⎪⎪⎨⎧<+-=<-<+-=<0113cos 1111sin 0a a a a θθ,解得0<a <31.又∵sin 2θ+cos 2θ=1∴11131122=⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+-a a a a解得a =91或a =1(舍去),故实数a 的值为91.4.sin 2(π+α)-cos(π+α)cos(-α)+1的值为 .答案 25.如果cos α=51,且α是第四象限的角,那么cos ⎪⎭⎫⎝⎛+2πα= .答案562 6.已知cos(π+α)=-21,且α是第四象限角,计算: (1)sin(2π-α)= ; (2)[][])2cos()2sin()12(sin )12(sin παπαπαπαn n n n -•++-+++ (n ∈Z )= .解 ∵cos(π+α)=-21,∴-cos α=-21,cos α=21又∵α是第四象限角,∴sin α=-23cos 12-=-α. (1)sin(2π-α)=sin [2π+(-α)] =sin(-α)=-sin α=23. (2)[][])2cos()2sin()12(sin )12(sin παπαπαπαn n n n -•++-+++=)2cos()2sin()2sin()2sin(απαπαππαππ+-•++--+++n n n n=αααπαπcos sin )sin()sin(•+-++=αααπαcos sin )sin(sin •---=αααcos sin sin 2•-=αcos 2-=-4.7.化简:αααα6644sin cos 1sin cos 1----= .解 方法一 原式=αααααααα6632244222sin cos )sin (cos sin cos )sin (cos --+--+=32)sin (cos sin cos 3sin cos 2222222=+•αααααα. 方法二 原式=ααααααα6422422sin )cos cos 1)(cos 1(sin )cos 1)(cos 1(-++--+-8.已知函数f (x )=2sin ωx (ω>0)在区间⎥⎦⎤⎢⎣⎡-4,3ππ上的最小值是-2,则ω的最小值等于 .答案 239.函数y =A sin(ωx +ϕ)(ω>0,|ϕ|<2π,x ∈R )的部分图象如图所示,则函数表达式为 . 答案 y =-4sin ⎪⎭⎫ ⎝⎛+48ππx10.某三角函数图象的一部分如下图所示,则该三角函数为 .答案 y =cos ⎪⎭⎫⎝⎛-62πx11.若函数f (x )=2sin(ϕω+x )对任意x 都有f ⎪⎭⎫ ⎝⎛+x 6π=f ⎪⎭⎫ ⎝⎛-x 6π,则f ⎪⎭⎫⎝⎛6π= .答案 -2或212.求函数y =2sin ⎪⎭⎫⎝⎛-x 4π的单调减区间为 .解 方法一 y =2sin ⎪⎭⎫ ⎝⎛-x 4π化成y =-2sin ⎪⎭⎫ ⎝⎛-4πx .1分∵y =sin u (u ∈R )的递增、递减区间分别为⎥⎦⎤⎢⎣⎡+-22,22ππππk k (k ∈Z ) ⎥⎦⎤⎢⎣⎡++232,22ππππk k (k ∈Z ) ∴函数y =-2sin ⎪⎭⎫ ⎝⎛-4πx 的递增、递减区间分别由下面的不等式确定2k π+2π≤x -4π≤2k π+23π(k ∈Z ) 即2k π+43π≤x ≤2k π+47π(k ∈Z ) 2k π-2π≤x -4π≤2k π+2π(k ∈Z )即2k π-4π≤x ≤2k π+43π(k ∈Z ).∴函数y=2sin ⎪⎭⎫ ⎝⎛-x 4π的单调递减区间、单调递增区间分别为⎥⎦⎤⎢⎣⎡+-432,42ππππk k (k ∈Z ) ⎥⎦⎤⎢⎣⎡++472,432ππππk k (k ∈Z ).方法二 y =2sin ⎪⎭⎫⎝⎛-x 4π可看作是由y =2sin u 与u =x -4π复合而成的.又∵u =x -4π为减函数∴由2k π-2π≤u ≤2k π+2π(k ∈Z ) -2k π-4π≤x ≤-2k π+43π (k ∈Z ). 即⎥⎦⎤⎢⎣⎡+---432,42ππππk k (k ∈Z )为y =2sin ⎪⎭⎫⎝⎛-x 4π的递减区间. 由2k π+2π≤u ≤2k π+23π(k ∈Z ) 即2k π+2π≤4π-x ≤2k π+23π (k ∈Z )得 -2k π-45π≤x ≤-2k π-4π(k ∈Z ) 即⎥⎦⎤⎢⎣⎡----42,452ππππk k (k ∈Z )为y =2sin ⎪⎭⎫⎝⎛-x 4π的递增区间.综上可知:y =2sin ⎪⎭⎫⎝⎛-x 4π的递增区间为⎥⎦⎤⎢⎣⎡----42,452ππππk k (k ∈Z ); 递减区间为⎥⎦⎤⎢⎣⎡+---432,42ππππk k (k ∈Z ).13.求f (x )=)2cos(21x --π的定义域和值域.解 由函数1-2cos ⎪⎭⎫⎝⎛-x 2π≥0,得sin x ≤22,利用单位圆或三角函数的图象,易得所求函数的定义域是⎭⎬⎫⎩⎨⎧∈+≤≤-k k x k x ,42452|ππππ. 当sin x =cos ⎪⎭⎫⎝⎛-x 2π=22时,y min =0; 当sin x =cos ⎪⎭⎫⎝⎛-x 2π=-1时,y max =21+.所以函数的值域为[0,21+].Z14.已知函数y =2sin ⎪⎭⎫ ⎝⎛+32πx(1)求它的振幅、周期、初相;(2)用“五点法”作出它在一个周期内的图象;(3)说明y =2sin ⎪⎭⎫⎝⎛+32πx 的图象可由y =sin x 的图象经过怎样的变换而得到.解 (1)y =2sin ⎪⎭⎫⎝⎛+32πx 的振幅A =2,周期T =22π=π 初相ϕ=3π. (2)令X =2x +3π,则y =2sin ⎪⎭⎫ ⎝⎛+32πx =2sin X .列表,并描点画出图象:(3)方法一 把y =sin x 的图象上所有的点向左平移3π个单位,得到y =sin ⎪⎭⎫ ⎝⎛+3πx 的图象,再把y =sin⎪⎭⎫ ⎝⎛+3πx 的图象上的点的横坐标缩短到原来的21倍(纵坐标不变),得到y =sin ⎪⎭⎫ ⎝⎛+32πx 的图象,最后把y =sin ⎪⎭⎫ ⎝⎛+32πx 上所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y =2sin ⎪⎭⎫ ⎝⎛+32πx 的图象. 方法二 将y =sin x 的图象上每一点的横坐标x 缩短为原来的21倍,纵坐标不变,得到y =sin2x 的图象; 再将y =sin2x 的图象向左平移6π个单位; 得到y =sin2⎪⎭⎫ ⎝⎛+6πx =sin ⎪⎭⎫ ⎝⎛+32πx 的图象;再将y =sin ⎪⎭⎫⎝⎛+32πx 的图象上每一点的横坐标保持不变,纵坐标伸长为原来的2倍,得到y =2sin ⎪⎭⎫⎝⎛+32πx 的图象.15.已知函数f (x )=2A - 2A cos(2ωx +2ϕ) (A >0, ω>0,0<ϕ<2π),且y =f (x )的最大值为2,其图象相邻 两对称轴间的距离为2,并过点(1,2).(1)求ϕ;(2)计算f (1)+f (2)+…+f (2 008). 解 (1)∵y =2A - 2Acos(2ωx +2ϕ) 且y =f (x )的最大值为2,A >0 ∴2A +2A=2,A =2. 又∵其图象相邻两对称轴间的距离为2,ω>0 ∴21⎪⎭⎫ ⎝⎛ωπ22=2, ω=4π.∴f (x )= 22-22cos ⎪⎭⎫ ⎝⎛+ϕπ22x =1-cos ⎪⎭⎫⎝⎛+ϕπ22x .∵y =f (x )过(1,2)点,∴cos ⎪⎭⎫⎝⎛+ϕπ22=-1.ϕπ22+=2k π+π,k ∈Z .∴ϕ=k π+4π,k ∈Z . 又∵0<ϕ<2π,∴ϕ=4π.(2)∵ϕ=4π,∴f (x )=1-cos ⎪⎭⎫ ⎝⎛+22ππx =1+sin x 2π.∴f (1)+f (2)+f (3)+f (4)=2+1+0+1=4.又∵y =f (x )的周期为4,2 008=4×502∴f (1)+f (2)+…+f (2 008)=4×502=2 008.。
高一数学《三角函数》单元测试试题
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,选择一个符合题目要求的选项.1函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,则ϕ的值是( ) A 0 B4π C 2πD π 2.函数5sin()2y x π=+的图象的一条对称轴方程是( )A .2π-=x B .2x π=C .x π=D .32x π=3.函数2005sin(2004)2y x π=-是 ( ) A.奇函数 B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数 4.设M 和m 分别表示函数1cos 31-=x y 的最大值和最小值,则m M +等于 ( ) A .32 B .32- C .34- D .2- 5.函数)4tan()(π+=x x f 的单调增区间为 ( )A .Z k k k ∈+-),2,2(ππππ B Z k k k ∈+),,(πππC .Z k k k ∈+-),4,43(ππππD .Z k k k ∈+-),43,4(ππππ 6.将函数sin()3y x π=-的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移3π个单位,得到的图象对应的僻析式是 ( ) A 1sin 2y x = B 1sin()22y x π=-C 1sin()26y x π=-D sin(2)6y x π=-7.已知A 为三角形的一个内角,且A A A A sin cos ,81cos sin --=则的值为( )A .23-B .23±C .25±D .25-8.在函数x y sin =、x y sin =、)322sin(π+=x y 、)322cos(π+=x y 中,最小正周期为π的函数的个数为( )A 1个B 2个C 3个D 4个9.函数2sin ()63y x x ππ=≤≤的值域是 ( )A .[]1,1-B .1,12⎡⎤⎢⎥⎣⎦C .12⎡⎢⎣⎦D .2⎤⎥⎣⎦10.为得到函数y =cos(x-3π)的图象,可以将函数y =sinx 的图象 ( ) A.向左平移3π个单位 B.向右平移3π个单位C.向左平移6π个单位 D.向右平移6π个单位11.直线y a =(a 为常数)与正切曲线tan y x ω=(ω为常数且0ω>)相交的相邻两点间的距离是( )A .B .2πω C .πωD .与a 值有关12. 给出下列命题:①存在实数x ,使3sin cos 2x x +=;②若,αβ是第一象限角,且αβ>,则cos cos αβ<;③函数2sin()32y x π=+是偶函数;④函数sin 2y x =的图象向左平移4π个单位,得到函数sin(2)4y x π=+的图象 其中正确的个数是( )A 1个B 2个C 3个D 4个二、填空题:本大题共4小题,每小题4分,共16分.答案须填在题中横线上 13.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是 。
高一数学必修第一二章测试题及答案
第一.二章三角函数单元检测试卷一、选择题:本答题共12小题,每小题5分,共60分;在每小题给出的四个选项中,只有一项是符合题目要求的;1.在平行四边形ABCD 中,BD CD AB +-等于A .DBB .ADC .ABD .AC2.若|a |=2,|b |=5,|a +b |=4,则|a -b |的值A .13B .3C .42D .73.函数sin(2)3y x π=+图像的对称轴方程可能是A .6x π=-B .12x π=-C .6x π=D .12x π=5.点Ax,y 是300°角终边上异于原点的一点,则xy值为 333333函数)32sin(π-=x y 的单调递增区间是A .⎥⎦⎤⎢⎣⎡+-125,12ππππk k Z k ∈ B .⎥⎦⎤⎢⎣⎡+-1252,122ππππk k Z k ∈ C .⎥⎦⎤⎢⎣⎡+-65,6ππππk k Z k ∈ D .⎥⎦⎤⎢⎣⎡+-652,62ππππk k Z k ∈ 7.sin -310π的值等于 A .21B .-21C .23D .-238.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是 A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角9.函数x x y sin sin -=的值域是A .0B .[]1,1-C .[]1,0D .[]0,2-10.函数x x y sin sin -=的值域是A .[]1,1-B .[]2,0C .[]2,2-D .[]0,2-11.函数x x y tan sin +=的奇偶性是A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数 12.比较大小,正确的是 A .5sin 3sin )5sin(<<- B .5sin 3sin )5sin(>>-C .5sin )5sin(3sin <-<D .5sin )5sin(3sin >->二、填空题每小题5分,共20分13.终边在坐标轴上的角的集合为_________.14.已知扇形的周长等于它所在圆的周长的一半,则这个扇形的圆心角是________________. 15.已知角α的终边经过点P-5,12,则sin α+2cos α的值为______.16.一个扇形的周长是6厘米,该扇形的中心角是1弧度,该扇形的面积是________________. 三、解答题:本大题共6小题,共70分;解答应写出文字说明及演算步骤.; 17.8分已知tan 3α=-,且α是第二象限的角,求αsin 和αcos ; 18.10分已知3tan =α,计算ααααsin 3cos 5cos 2sin 4+-的值;19.12分求函数)32tan(π+=x y 的定义域和单调区间. 第一章三角函数单元检测试卷参考答案一、选择题每小题5分,共60分1----6、BBDCBA7----12、CCDCAB 二、填空题每小题5分,共20分13.{α|}Z n n ∈=,2πα14.rad )2(-π 132三、解答题共70分17.1sin ,cos αα==2tan 2α=18.解、∵3tan =α∴0cos ≠α∴原式=ααααααcos 1)sin 3cos 5(cos 1)cos 2sin 4(⨯+⨯- =ααtan 352tan 4+- =335234⨯+-⨯ =7519.解:函数自变量x 应满足πππk x +≠+232,z k ∈,即ππk x 23+≠,z k ∈所以函数的定义域是⎭⎬⎫⎩⎨⎧∈+≠z k k x x ,23ππ; 由ππk +-2<32π+x <ππk +2,z k ∈,解得ππk 235+-<x <ππk 23+,z k ∈所以,函数的单调递增区间是)23,235(ππππk k ++-,z k ∈;20.解:令t=cosx,则]1,1[t -∈所以函数解析式可化为:453y 2++-=t t =2)23(2+--t 因为]1,1[-∈t ,所以由二次函数的图像可知:当23=t 时,函数有最大值为2,此时Z k k x ∈++=k 611262,或ππππ 当t=-1时,函数有最小值为341-,此时Z k ∈+=k 2x ,ππ 21解:32π函数的最小正周期为 ,3322===∴ωπωπ即T又2-函数的最小值为 ,2=∴A 所以函数解析式可写为)3sin(2y ϕ+=x又因为函数图像过点95π,0, 所以有:0)953(sin 2=+⨯ϕπ解得35ππϕ-=k 323,ππϕπϕ-=∴≤或 所以,函数解析式为:)323sin(2y )33sin(2y ππ-=+=x x 或 22.解:Ⅰ8x π=是函数)(x f y =的图象的对称轴Ⅱ由Ⅰ知34πϕ=-,因此3sin(2)4y xπ=-由题意得3222,242k x k k Z πππππ-≤-≤+∈所以函数3sin(2)4y xπ=-的单调递增区间为Ⅲ由3sin(2)4y xπ=-可知故函数)(xfy=在区间[]0,π上的图象是。
高一年级数学三角函数单元测试题附答案
三角函数测试题一.选择题1.tan300o +cot405o的值为A .1+3 B.1-3 C.-1-3 D.-1+3 2.函数y=sin(4π-x)的递增区间是A.[ 2k π-43π,2k π+4π](k ∈ Z) B.[ 2k π+π43,2k π+π47](k ∈ Z) C.[2k π+4π,2k π+π45](k ∈ Z) D.[2k π-4π, 2k π+π43](k ∈ Z)3.已知sin αcos α=83且α∈(4π,2π),则cos α–sin α的值是A.21 B.-21 C.41 D.-414. 函数f(x)=cos (2x +φ)的图像关于点(3π,0)中心对称的充要条件是A. φ=65π+k π(k ∈ Z) B. φ= -6π+2k π(k ∈ Z) C. φ=-32π+k π(k ∈ Z) D. φ=34π+2k π(k ∈ Z)5.如图正弦曲线对应的函数解析式是 A. y=23sin (56x +π43)+23B. y=23sin (56x +π109)+23C. y=3sin (12x +π43)D. y=23sin (512x +π109)+236.下列四个函数中以π为最小正周期,且在区间(ππ,2)上为减函数的是A.y=cosxB.y=2 |sinx|C.y=(31)cotxD.y=-cosx7.在平面直角坐标系中,已知A (cos80o ,sin80o )、B (cos20o ,sin20o ), 则|AB |的值是A.21 B.22 C.23 D.18.已知 sin α– sin β= a ,cos α+cos β=b ,则cos (α+β)= 9.已知sinx=215-,则 sin2(x -4π)=三.解答题 10. 已知0<α<2π,cos α-sin α=-55,求αααtan 112cos 2sin -+-的值.11. 求值:0220sin3-220cos1+64sin 22012. 已知函数f (x )=5sinxcosx -53cos 2x +253(x ∈ R ).(1) 求 f (x )的单调区间;(2) 求 f (x )图象的对称轴, 对称中心;(3) 函数f (x )的图象经过怎样的变化得到y=5sinx 的图象二.填空题: 13.2222-+b a 14. 2-518已知0<α<2π,cos α-sin α=-55,求αααt a n 112c o s 2s i n -+-的值解:αααtan 112cos 2sin -+-=ααααααsin cos )sin 2cos sin 2(cos 2-+=αααααsin cos )sin (cos 2sin -+=ααπααsin cos 4sin 22sin -⎪⎭⎫ ⎝⎛+⋅由 cos α-sin α=-55,两边平方得sin2α=54.又2cos (α+4π)=-55, ∴cos (α+4π)=-1010.而0<α<2π, ∴4π<α+4π<43π,∴sin (α+4π)=10103. ∴原式=5510103254-⋅⋅=-51211.解: 原式=2220220cos 20sin20sin20cos 3-+64sin 2200=20040sin41)20sin 20cos 3)(20sin 20cos 3(-++64sin 2200=2040sin40sin 80sin 44⨯+64sin 2200 = 32cos400 +32(1-cos400) = 32 ..12.解: f (x )=25sin2x -5322cos 1x+⋅+253 = 25sin2x -253cos2x = 5sin (2x-3π).(1) 由2k π-2π≤2x -3π≤2k π+2π得[ k π-12π, k π+125π], k ∈ Z 为f (x )的单调增区间.由2k π+2π≤2x -3π≤2k π+23π得[ k π+125π, k π+1211π], k ∈ Z 为f (x )的单调减区间.(2)令2x -3π= k π+2π,得x=21k π+125π,k ∈ Z 为f (x )图象的对称轴方程.令2x -3π= k π,得x=21k π+6π, k ∈ Z. 故对称中心为(21k π+6π, 0 ), k ∈Z.(3)将y = 5sin (2x -3π)图象上每一点的横坐标扩大到原来的2倍,纵坐标不变,得到y = 5sin (x -3π). 然后,将y=5sin (x -3π)图象上每一点向左平移3π个单位,纵坐标不变,即得到y=5sinx 的图象..。
完整版)高中三角函数测试题及答案
完整版)高中三角函数测试题及答案高一数学必修4第一章三角函数单元测试班级:__________ 姓名:__________ 座号:__________评分:__________一、选择题:共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
(48分)1、已知$A=\{\text{第一象限角}\}$,$B=\{\text{锐角}\}$,$C=\{\text{小于90°的角}\}$,那么$A$、$B$、$C$ 关系是()A.$B=A\cap C$B.$B\cup C=C$C.$A\cap D$D.$A=B=C$2、将分针拨慢5分钟,则分钟转过的弧度数是A。
$\frac{\pi}{3}\sin\alpha-\frac{2}{3}\cos\alpha$ B。
$-\frac{\pi}{3}$C。
$\frac{\pi}{6}$D。
$-\frac{\pi}{6}$3、已知 $\tan\alpha=-5$,那么 $\tan\alpha$ 的值为A。
2B。
$\frac{1}{6164}$C。
$-\frac{1}{6164}$D。
$-\frac{2}{3}$4、已知角 $\alpha$ 的余弦线是单位长度的有向线段,那么角 $\alpha$ 的终边()A。
在 $x$ 轴上B。
在直线 $y=x$ 上C。
在 $y$ 轴上D。
在直线 $y=x$ 或 $y=-x$ 上5、若 $f(\cos x)=\cos 2x$,则 $f(\sin 15^\circ)$ 等于()A。
$-\frac{2}{3}$B。
$\frac{3}{2}$C。
$\frac{1}{2}$D。
$-\frac{1}{2}$6、要得到 $y=3\sin(2x+\frac{\pi}{4})$ 的图象只需将$y=3\sin 2x$ 的图象A。
向左平移 $\frac{\pi}{4}$ 个单位B。
向右平移 $\frac{\pi}{4}$ 个单位C。
高一数学单元测验题(三角函数)
高一数学单元测验题(三角函数)姓名 座位号 班别 成绩1. 函数)42sin(2+=x y 的周期,振幅,初相分别是 A.4,2,4ππB. 4,2,4ππ-- C. 4,2,4ππ D. 4,2,2ππ2. 如果点)cos 2,cos (sin θθθP 位于第三象限,那么角θ所在象限是A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 已知sin a cos a =81,4π< α<2π, 则cos a -sin a 的值为 A.23B. 23C. 43D. -434. 如果21)cos(-=+A π,那么=+)2sin(A πA. 21-B. 21 C. 23- D. 235. 已知函数y=f(x),将f(x)图象上每一点的纵坐标保持不变,横坐标扩大到原来的2倍,然后把所得到的图象沿x 轴向左平移4π个单位,这样得到的曲线与y=3sinx 的图象相同, 那么y=f(x)的解析式为 A .f(x)=3sin(42π-x ) B .f(x)=3sin(2x+4π) C .f(x)=3sin(42π+x ) D .f(x)=3sin(2x -4π) 6. 函数)62sin(π+-=x y 的单调递减区间是A . Z k k k ∈++-]23,26[ππππB .5[2,2]66k k k Z ππππ++∈C .[,]63k k k Z ππππ-++∈D .Z k k k ∈++]65,6[ππππ7. 已知sin 0α<,tan 0α>,则角2α的终边所在的象限是 A. 一或三; B. 二或四; C. 一或二; D. 三或四。
8. 函数2005sin(2004)2y x π=-是 A.奇函数 B.偶函数 C.非奇非偶函数 D.既是奇函数又是偶函数 9. 下列命题中正确的是A. 第二象限角必是钝角B. 终边相同的角相等C.相等的角终边必相同D.不相等的角其终边必不相同 10. 函数x x y sin cos 2-=的值域是:A. []1,1-B. ⎥⎦⎤⎢⎣⎡45,1C. []2,0D. ⎥⎦⎤⎢⎣⎡-45,1二、填空题(每个小题4分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数练习
班级 姓名 学号 成绩____________
一、填空题(本大题满分为40分,每小题4分):
1. 函数⎪⎭
⎫
⎝
⎛+
=43sin πx y 的最小正周期是 .
2.在ABC ∆中, 30A ,23c ,3a =∠==,则=∠B ___________.
3.当π≤≤x 0时,f(x)=sinx+3cosx 的值域是_________.
4.已知⎪⎭⎫
⎝⎛<<=-ππx x 201sin 3,则用反三角形式表示x =__________________. 5.函数⎪⎭
⎫
⎝⎛-=x 24sin y π的递增区间是_______________________________.
6.函数x y 2tan =的图象的对称中心为_________________. 7.已知6
π
-
=x 是方程3)tan(3=+αx 的一个解,)0(,
πα-∈,则=α . 8.若函数
()arcsin f x x x =-,且3
(),5
f a =-则()f a -=_________.
9.关于x 的方程0sin cos =+-a x x 在区间],0[π上有两个不同的实数解,则实数a 的取值范围是
__________________.
10.已知ABC ∆中,2BC ,1AB ==,则C ∠的取值范围是___________.
二、选择题(本大题满分20分,每小题5分): 9.函数x y 2sin =的图像的一条对称轴方程是( ) (A) 4
x π
=-
. (B) 2
x π
=-
. (C) 0x =. (D) x π=.
11.为得到函数sin(3)3
y x π
=-的图像,可以将函数y sin 3x =的图像( )
(A) 向左平移
3π个单位. (B) 向右平移3
π
个单位. (C) 向左平移
9π个单位. (D) 向右平移9π
个单位. 12.函数2
x
tan
y =是
( )
(A)周期为2π的奇函数
(B )周期为π
2
的奇函数
(C)周期为π的偶函数
(D )周
期为2π的偶函数 13.给出下列四个命题:①函数x y tan =在定义域内是增函数②函数x arccos 2
y -=
π
既不是奇函数也不是偶函数③函数x sin 2x sin y +=的值域为[]3,2-④函数
)0a (3ax sin y ≠⎪⎭⎫ ⎝
⎛
+=π的最小正周期为a 2π。
其中不正确的命题个数是( ) (A )1 (B )2 (C )3 (D )4 三、解答题(本大题满分为40分): 14.(本题10分)解方程:
(1)sin 2sin 0x x -=. (2)2
13tan 20x -=
15.(本题8分)在ABC ∆中,已知ac b c a 2
2
2
+=+,且2
1
3c a +=,求∠C 的大小.
16.(本题10分)函数)20,0,0)(sin(πϕωϕω<<>>+=A x A y 的图像在一个周期内有一个最高
点的坐标是⎪⎭⎫
⎝⎛2,12π,相邻的最低点的坐标是⎪⎭
⎫
⎝⎛-2,127π,求这个函数的解析式.
17.(本题12分,第1小题4分,第2小题4分,第3小题4分)
已知函数2()2sin cos 1(,f x x x x x R ωωω=-+∈ω>0)的最小正周期是π.
(1)求ω的值;
(2)求使函数()f x 取得最大值时x 的集合;
(3)若当⎥⎦
⎤
⎢⎣⎡∈2,4ππx 时,不等式 ()f x m -<2恒成立,求实数m 的取值范围.。