一元一次方程应用2工程
七年级-人教版-数学-上册-第2课时-一元一次方程的应用——工程问题
例2 某项工作,甲单独做需要 4 小时,乙单独做需要 6 小 时,甲先做 30分钟,然后甲、乙合作.甲、乙合作还需要多少 小时才能完成全部工作?
解法1:设甲、乙合作还需要x小时才能完成全部工作.
根据题意,得
1 4
1 2Βιβλιοθήκη x1 6x
1.
解方程,得 x=2.1.
答:甲、乙合作还需要2.1小时才能完成全部工作.
归纳
工程问题中的等量关系 (1)在工作总量不明确、不具体的情况下,通常把工作总量看 成单位____1__. (2)工作总量=_工__作__效__率__×__工__作__时__间__. (3)甲、乙合作的工作效率=_甲__的__工__作__效__率_+_乙__的__工__作__效__率__. (4)所有人工作量的和等于__总__工__作__量__.
为 8(x+2) .
40
40
思考 根据前面的分析,完成表格:
项目
人均效率 人数 时间/h 工作量
第一阶段工作
1
40
第二阶段工作
1 40
x
4
x+2
8
4x 40
8(x 2) 40
问题 列出方程,对本题进行解答.
解:设安排 x 人先做 4 h. 根据先后两个时段的工作量之和应等于总工作量,列出方程
4x 8(x 2)=1.
第2课时 一元一次方程的 应用——工程问题
上节课,我们学习了如何运用一元一次方程来解决实际问 题中的配套问题,本节课,我们来探究一元一次方程与实际问 题——工程问题.
在学习新课之前,先完成下面的填空: 工作量=__工__作__效__率__×__工__作__时__间__; 工作效率=_工___作__量__÷__工__作__时__间__; 工作时间=__工__作__量__÷__工__作__效__率__.
北师大数学七年级上册第五章一元一次方程应用(二)“希望工程”义演与追赶小明(基础)
一元一次方程应用(二)----“希望工程”义演与追赶小明(基础)知识讲解【学习目标】1.能够分析复杂问题中的数量关系,建立方程解决实际问题;体会对同一问题设不同未知数的算法多样化;2.能借助“线段图”分析复杂问题中的数量关系,发展文字语言、图形语言、符号语言之间的转换能力;3.归纳利用方程解决实际问题的一般步骤,进一步体会模型思想.【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类问题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系.(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数.(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一.(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可.(6)“答”就是写出答案,注意单位要写清楚.要点二、“希望工程”义演(分配问题)分配(调配或比例)问题在日常生活中十分常见,比如合理安排工人生产,按比例选取工程材料,调剂人数或货物等. 这类问题与生活密切相关,考察大家分析问题能力的同时,也考察了同学们的日常生活知识.要点诠释:分配问题中关键是要认识清楚部分量、总量以及两者之间的关系,在分配问题中主要考虑“总量不变”;而在比例问题中则主要考虑总量与部分量之间的关系,或是量与量之间的比例关系.要点三、追赶小明(行程问题)(1)三个基本量间的关系: 路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离. ②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一, 同地不同时出发:前者走的路程=追者走的路程;第二, 同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.【典型例题】类型一、“希望工程”义演(分配问题)1.(2015春•南关区校级期中)抗洪救灾小组在甲地段有28人,乙地段有15人,现在又调来29人,分配在甲乙两个地段,要求调配后甲地段人数是乙地段人数的2倍,求应调至甲地段和乙地段各多少人?【思路点拨】首先设应调至甲地段x 人,则调至乙地段(29﹣x )人,则调配后甲地段有(28+x )人,乙地段有(15+29﹣x )人,根据关键语句“调配后甲地段人数是乙地段人数的2倍”可得方程28+x=2(15+29﹣x ),再解方程即可.【答案与解析】解:设应调至甲地段x 人,则调至乙地段(29﹣x )人,根据题意得:28+x=2(15+29﹣x ),解得:x=20,所以:29﹣x=9,答:应调至甲地段20人,则调至乙地段9人.【总结升华】此题主要考查了一元一次方程的应用,关键是弄懂题意,表示出调配后甲、乙两地段各有多少人.举一反三:到市场去【答案】(1)设该经营户从蔬菜市场批发了辣椒x kg ,则蒜苗(40)x -kg ,得1.6 1.8(40)70x x +-=解得:10x = 4030x -=(2)利润: 10(2.6 1.6)30(3.3 1.8)55-+-=(元)答:该经营户批发了10kg 辣椒和30kg 蒜苗;当天能赚55元.【变式2】某商店选用A 、B 两种价格分别是每千克28元和每千克20元的糖果混合成杂拌糖果后出售,为使这种杂拌糖果的售价是每千克25元,要配制这种杂拌糖果100千克,问要用这两种糖果各多少千克?【答案】解:设要用A 种糖果x 千克,则B 种糖果用(100-x)千克.依题意,得:28x+20(100-x)=25×100解得:x=62.5.当x=62.5时,100-x=37.5.答:要用A 、B 两种糖果分别为62.5千克和37.5千克.类型二、追赶小明(行程问题)1.一般问题2.小山娃要到城里参加运动会,如果每小时走4千米,那么走完预订时间离县城还有0.5千米,如果他每小时走5千米,那么比预订时间早半小时就可到达县城.试问学校到县城的距离是多少千米?【答案与解析】解:设小山娃预订的时间为x 小时,由题意得:4x+0.5=5(x-0.5),解得x =3.所以4x+0.5=4×3+0.5=12.5(千米).答:学校到县城的距离是12.5千米.【总结升华】当直接设未知数有困难时,可采用间接设的方法.即所设的不是最后所求的,而是通过求其它的数量间接地求最后的未知量.举一反三:【变式】某汽车在一段坡路上往返行驶,上坡的速度为10千米/时,下坡的速度为20千米/时,求汽车的平均速度.【答案】解:设这段坡路长为a 千米,汽车的平均速度为x 千米/时,则上坡行驶的时间为10a 小时,下坡行驶的时间为20a 小时.依题意,得:21020a a x a ⎛⎫+= ⎪⎝⎭, 化简得: 340ax a =.显然a ≠0,解得1133x = 答:汽车的平均速度为1133千米/时.2.相遇问题(相向问题)3.(2016•云南模拟)昆曲高速公路全长128千米,甲、乙两车同时从昆明、曲靖两地高速路收费站相向匀速开出,经过40分钟相遇,甲车比乙车每小时多行驶20千米.求甲、乙两车的速度.【思路点拨】设出乙车速度,进而表示出甲车速度,再根据相遇问题,两车行驶的路程之和为128千米列出方程,解方程求出x 的值即可.【答案与解析】解:40分钟=小时,设乙车速度为x 千米/时,甲车速度为(x+20)千米/时,根据题意,得(x+x+20)=128,解得x=86,则甲车速度为:x+20=86+20=106.答:甲车速度为106千米/时,乙车速度为86千米/时.【总结升华】本题主要考查了一元一次方程的应用,解答本题的关键是根据路程=速度×时间公式列出一元一次方程,此题难度不大.举一反三:【变式】(2015•绥棱县期末)A 、B 两站相距300千米,一列快车从A 站开出,行驶速度是每小时60千米,一列慢车从B 站开出,行驶速度是每小时40千米,快车先开15分钟,两车相向而行,快车开出几小时后两车相遇?(只列出方程,不用解)【答案】解:设快车开出x 小时后两车相遇,根据题意得:60x+40(x ﹣)=300. 3.追及问题(同向问题)4.一队学生去校外进行军事野营训练,他们以5千米/时的速度行进,走了18分钟时,学校要将一紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员用多少分钟可以追上学生队伍?【答案与解析】解:设通讯员x 小时可以追上学生队伍,则根据题意, 得18145560x x =⨯+, 得:16x =, 16小时=10分钟. 答:通讯员用10分钟可以追上学生队伍.【总结升华】追及问题:路程差=速度差×时间,此外注意:方程中x 表示小时,18表示分钟,两边单位不一致,应先统一单位.4.航行问题(顺逆流问题)5.一艘船航行于A 、B 两个码头之间,轮船顺水航行需3小时,逆水航行需5小时,已知水流速度是4千米/时,求这两个码头之间的距离.【答案与解析】解法1:设船在静水中速度为x 千米/时,则船顺水航行的速度为(x+4)千米/时,逆水航行的速度为(x-4)千米/时,由两码头的距离不变得方程:3(x+4)=5(x-4),解得:x=16,(16+4)×3=60(千米)答:两码头之间的距离为60千米.解法2:设A 、B 两码头之间的距离为x 千米,则船顺水航行时速度为3x 千米/时,逆水航行时速度为5x 千米/时,由船在静水中的速度不变得方程:4435x x -=+,解得:60x = 答:两码头之间的距离为60千米.【总结升华】顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度,根据两个码头的距离不变或船在静水中的速度不变列方程.类似地,当物体在空中飞翔时,常会遇到顺风逆风问题,解题思路类似顺逆流问题.【巩固练习】一、选择题1.一份数学试卷有20道选择题,规定答对一道得5分,不做或做错一题扣1分,结果某学生得分为76分,则他做对题数为( )道.A. 16B. 17C. 18D. 192.学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,总计用了112元.已知每张甲票比乙票贵2元,则甲票、乙票的票价分别是( ).A .甲票10 元/张,乙票8 元/张B .甲票8元∕张,乙票10元∕张C .甲票12元/张,乙票lO 元∕张D .甲票lO 元/张,乙票12元∕张3.足球比赛的计分规则是:胜一场得3分,平一场得1分,负一场得0分,一个队打14场比赛,负5场,共得19分,那么这个队胜了( ).A .3场B .4场C .5场.D .6场4. 飞机逆风时速度为x 千米/小时,风速为y 千米/小时,则飞机顺风时速度为 ( ).A .()x y +千米/小时B .()x y -千米/小时C .(2)x y +千米/小时D .(2)x y +千米/小时5.(2015秋•宜兴市校级期中)某学生从家到学校时,每小时行5千米;按原路返回家时,每小时行4千米,结果返回的时间比去学校的时间多花10分钟.设去学校所用时间为x 小时,则可列方程得( )A .B .C .5(x ﹣)=4xD .6. 甲列车从A 地以50千米/时的速度开往B 地,1小时后,乙列车从B 地以70千米/时的速度开往A 地,如果A ,B 两地相距200千米,则两车相遇点距A 地( )千米.A. 100B. 112C. 112.5D. 114.5二、填空题7. 学校买回2元的圆珠笔和6元的钢笔作为奖品,共用了290元,已知圆珠笔数量比钢笔数量多5支,那么圆珠笔买了 支,钢笔买了 支.8.(2015•新宾县模拟)某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列方程为________.9.若干本书分给某班同学,如果每人6本,则余18本;如果每人7本,则缺24本,则这个班的同学有 人,书有 本.10.甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑9米,乙每秒钟跑7米.(1)当两人同时同地背向而行时,经过________秒钟两人首次相遇;(2)当两人同时同地同向而行时,经过________秒钟两人首次相遇.11.(2016春•原阳县校级月考)某水池有甲进水管和乙出水管,已知单开甲注满水池需6h,单开乙管放完全池水需要9h,当同时开放甲、乙两管时需要h水池水量达全池的.12.一架飞机飞行于两城市之间,顺风需要5小时30分,逆风需要6小时,已知风速为每小时20千米,则无风时飞机的速度为千米/时.三、解答题13. 甲乙两车间共120人,其中甲车间人数比乙车间人数的4倍少5人.(1)求甲、乙两车间各有多少人?(2)若从甲、乙两车间分别抽调工人,组成丙车间研制新产品,并使甲、乙、丙三个车间的人数比为13∶4∶7,那么甲、乙两车间要分别抽调多少工人?14.(2016春•蓬溪县期中)某人原计划用26天生产一批零件,工作两天后因改变了操作方法,每天比原来多生产5个零件结果提前4天完成任务,问原来每天生产多少个零件?这批零件有多少个?15. A、B两地相距216千米,甲、乙分别在A、B两地,若甲骑车的速度为15千米/时,乙骑车的速度为12千米/时.(1)甲、乙同时出发,背向而行,问几小时后他们相距351千米?(2)甲、乙相向而行,甲出发三小时后乙才出发,问乙出发几小时后两人相遇?(3)甲、乙相向而行,要使他们相遇于AB的中点,乙要比甲先出发几小时?(4)甲、乙同时出发,相向而行,甲到达B处,乙到达A处都分别立即返回,几小时后相遇?相遇地点距离A有多远?【答案与解析】一、选择题1.【答案】A【解析】设他做对题数为x道,则不做或做错了(20-x)道,根据题意得:5x-(20-x)=76.2.【答案】A【解析】设乙票价为x元,则甲票价为(2+x)元,依题意得4x+8(2+x)=112. 3.【答案】C【解析】设该队共平x场,则该队胜了14-x-5=9-x场,依题意得3(9-x)+x=19,x=4∴该队胜了14-x-5=9-4=5场.4.【答案】C【解析】逆风速度+2风速=顺风速度.5.【答案】B.【解析】根据从家到学校的路程相等可得方程为:5x=4×(x+).6.【答案】C【解析】200505050112.5 5070-⨯+=+二、填空题7.【答案】40,35【解析】设钢笔数量是x支,圆珠笔数量是(x+5)支,则6x+2×(x+5)=290,x=35.35+5=40.8.【答案】20x=15(x+4)﹣10 .9.【答案】42,270【解析】设这个班的同学有x人,则:6x+18=7x-24,解得:x=42,则6x+18=270.也可设有数y本,y-18y+24=67,解得y=270,y-18=642.10.【答案】25;200【解析】(1)相遇问题:4002579=+(秒);(2)追及问题:40020097=-(秒).11.【答案】6;【解析】解:设水池容积为1,同时开放甲、乙两管时需要xh水池水量达全池的,依题意得:(﹣)x=,解得x=6,∴同时开放甲、乙两管时需要6h水池水量达全池的.12.【答案】460【解析】设飞机无风时飞行速度为x千米/时,题意得:112×(x+20)=6×(x-20),解,得x=460.三、解答题13.【解析】解:(1)设乙车间有x人,那么甲车间有(4x-5)人,根据题意得:x+(4x-5)=120,x=25.4x-5=4×25-5=95(人).(2)设甲、乙、丙三个车间人数比的一份为x人,则这三个车间的人数依次为13x人4x人、7x人,依题意得:13x+4x+7x=120.x=5.当x=5时,95-13x=95-13×5=30(人),25-4x=25-4×5=5(人).答:原甲、乙车间各有95人和25人.需分别从甲、乙两车间分别抽调30人和5人组成丙车间.14.【解析】解:设原来每天生产x个零件,根据题意可得:26x=2x+(x+5)×20,解得:x=25,故26×25=650(个).答:原来每天生产25个零件,这批零件有650个.15. 【解析】(1)解:设x小时后,甲、乙相距351千米,依题意,得15x+12x=351-216,解这个方程,得x=5.答:5小时后,甲、乙相距351千米. (2)解:设乙出发x小时后两人相遇.依题意,得15(3+x)+12x=216,解这个方程,得x=163.答:乙出发163小时后,甲、乙两人相遇.(3)解:设当乙比甲早出发x小时,使甲、乙二人相遇于AB的中点.依题意,得1121621612221512x⨯⨯-=,解这个方程,得x=415.答:只要乙比甲先出发415小时,两人就能相遇于AB的中点.(4)解:设x小时后甲乙相遇,依题意,得15x+12x=216×3解这个方程,得x=24.当x=24时,12x-216=72(千米).答:24小时后两人相遇,相遇地点距离A地72千米.。
一元一次方程常见应用题型及解法
一元一次方程常见应用题:
一、行程问题:路程=速度×时间
1:相遇问题:甲路程+乙路程=总路程
2:追及问题:a、不同时同地出发:快者(追者)走的路程=慢者(前者)走的路程
b、同时不同地出发:慢者走的路程+两者距离=快者走的路程
3、水流问题:顺水行的路程=逆水行的路程
提前写出:顺水速度=静水速度+水流速度
逆水速度=静水速度-水流速度
二、工程问题:工作总量=工作效率×工作时间工作效率与单独工作的时间互为倒数
各部分工作量之和=1
三、利润率、销售问题:
商品利润=商品售价-商品进价=商品进价×商品利润率
商品利润率=商品利润/商品进价×100%
售价=进价×(1+利润率)
注:进价
售价=实际销售价格
标价=定价=原价=预计售价=原销售价
四、数字问题:
设一个两位数的十位上的数字和个位上的数字分别为a、b,则这个两位数表示为10a+b 五、按比例分配问题:
甲:乙:丙=a:b:c 全部数量=各种成分的数量之和(设一份为χ)
六、配套问题
“加工的两种物品成比例”
七、分配问题
“总量不变”
八、积分问题
比赛总场数=胜场总数+平场总数+负场总数
比赛总积分=胜场总积分+平场总积分+负场总积分九、规律问题
●3个规律数字:设中间的数为χ
●月历中的问题
月历中每一行上相邻的两数,右边的数比左边的数大1;
月历中的每一列上相邻的两数,下边的数比上边的数大7 十、方案决策问题
选择最优的方案就要把每种方案的结果算出来,进行比较。
一元一次方程的应用跨学科题目
一、概述在数学中,一元一次方程是一种基本的代数方程形式,它在解决各种实际问题中有着广泛的应用。
除了数学领域,一元一次方程的应用还涉及到其他学科,比如物理、经济学、工程等领域。
本文将从跨学科的角度探讨一元一次方程的应用,以便读者更全面地了解这一数学概念在不同学科中的重要性。
二、数学领域中一元一次方程的应用1.1 解决实际问题数学领域中,一元一次方程广泛应用于解决各种实际问题。
在代数学中,一元一次方程可以用来描述抛物线的轨迹,解决速度、时间和距离之间的关系等问题。
1.2 研究函数关系一元一次方程也常常用于研究函数关系。
通过一元一次方程,可以得到函数的图像、性质以及在不同区间的变化规律。
1.3 在几何学中的应用在几何学领域,一元一次方程用于描述直线的方程,这对于研究平面几何学问题具有重要意义。
三、物理学中一元一次方程的应用2.1 物体运动的描述在物理学中,一元一次方程常常用于描述物体的运动。
通过一元一次方程,可以推导出物体的位移、速度、加速度等相关物理量之间的关系,从而更好地理解物体的运动规律。
2.2 力学问题的解答一元一次方程还被应用于解决力学领域中的各种问题。
通过一元一次方程可以计算物体受力后的运动状态,分析受力平衡条件等。
四、经济学中一元一次方程的应用3.1 成本与收益的关系在经济学中,一元一次方程常常被用来描述成本与收益的关系。
通过解一元一次方程,可以求得最优的经济决策,使得收益最大化或成本最小化。
3.2 市场需求与供给一元一次方程也可以用于描述市场需求与供给之间的关系。
通过解一元一次方程,可以求得市场均衡价格和数量,从而更好地理解市场的运行规律。
五、工程领域中一元一次方程的应用4.1 结构分析在工程学中,一元一次方程被广泛用于结构分析。
通过一元一次方程可以计算结构的受力情况,分析结构的稳定性和安全性。
4.2 能量利用一元一次方程还被应用于计算工程中的能量利用问题。
通过解一元一次方程可以优化能源的利用,提高能效。
《一元一次方程的应用(2)》参考教案
4.3 一元一次方程的应用(2)学案一、学习目标1. 学会分析实际问题中的“不变量”,建立方程解决问题;会设未知数,正确求解,并验明解的合理性。
2.通过分析实际问题,明白运用方程解决问题的关键是找到等量关系从而建立数学模型解决问题。
3.体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决;激发学生的学习情绪,让学生在探索问题中学会合作。
二、教学重点难点:如何从实际问题中寻找等量关系建立方程,解决问题后如何验证它的合理性。
如何从实际问题中寻找等量关系建立方程。
三、教学过程(一)复习回顾1.长方形的周长l=_________; 长方形面积S=_______;长方体体积V=_________.2.正方形的周长l=_________; 正方形面积S=_______;正方体体积V=________.3. 圆的周长l = ________; 圆的面积S = _______;圆柱体体积V = _________.(二)新课学习1.情境导入:如图,将一个底面直径为20cm、高为9cm的圆柱锻压成底面直径为10cm的圆柱,假设在锻压过程中圆柱的体积保持不变,那么圆柱的高变成了多少?在这个问题中有如下等量关系:锻压前的体积=锻压后的体积。
设水箱的高变为m,填写下表:解方程: x=答:高变成了 cm.2.例题讲解:例1、小明有一个问题想不明白:他要用一根长为10米的铁线围成一个长方形。
(1)使得该长方形的长比宽多1.4米,此时长方形的长、宽各是多少米呢?面积是多少?分析:等量关系为“”解:设长方形的宽为x米,则它的长为米.(2)使长方形的长比宽多0.8米,此时长方形的长、宽各为多少米?它所围成的长方形与第一次所围成的长方形相比,面积有什么变化?解:设长方形的宽为x米,则它的长为米.此时长方形的长 m,宽 m,面积是 m2.此时长方形的面积比第一次围成的面积增大(m2)。
(3)若使长方形的长和宽相等,即围成一个正方形,此时正方形的边长是多少米?围成的面积与第二次围成的面积相比,又有什么变化?解:设正方形的宽为x米.面积增大:(m2)此时长方形的面积比第二次围成的面积增大 m2 .3.比较探究:同样长的铁线围成怎样的四边形面积最大?例题:面积:练习(2):面积:练习(3):面积:围成正方形时面积最大五、巩固练习1. 要锻造一个直径为10cm、高为8cm的圆柱形毛坯,应截取直径为8cm是圆钢多长?2. 小明的爸爸想用10米铁丝在墙边围成一个鸡棚,使长比宽大2米,问小明要帮他爸爸围成的鸡棚的长和宽各是多少呢?3. 把一块长、宽、高分别为5cm、3cm、3cm的长方体铁块,浸入半径为4cm的圆柱形玻璃杯中(盛有水),水面将增高多少?(不外溢)4. 墙上钉着用一根彩绳围成的梯形形状的装饰物,小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,那么,小颖所钉长方形的长和宽各为多少厘米?。
一元一次方程应用题练习(二)附答案
一元一次方程应用题共同点:1、方程只含有一个未知数;2、未知数的次数是1;3、等式两边都是整式.只含有一个未知数,未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程一、工程问题1某管道由甲乙两个工程队单独施工分别要30天,20天铺完。
1.如果两队从两端同时施工,需要多少天铺完?2.已知甲队单独施工每天200元,乙队单独施工每天280元,那么怎样施工才能满足少花钱多办事的目的。
2一个水池安有甲乙丙三个水管,甲单独开12h注满水池,乙单独开8h注满,丙单独开24h可排掉满池的水,如果三管同开,多少小时后刚好把水池注满水?3某工人若每小时生产38个零件,在规定时间内还有15个不能完成;若每小时生产42个,则可超额5个,问规定时间是多少?共生产多少个零件?4某工厂今年比去年增产60%,达到生产320万件产品的目标,那么该工厂去年的年产量是多少?5某工程,甲单独完成续20天,乙单独完成续12天甲乙合干6天后,再由乙继续完成,乙再做几天可以完成全部工程?二.路程问题6甲乙两个人在400米的环形跑道上同时同点出发,甲的速度是6米/秒,乙的速度是4米/秒,乙跑几圈后,甲可超过乙一圈?7小王在400米的环形跑道上跑了一圈,从起点出发,最初跑了45秒,后来加速0.5米/秒,再花了20秒跑到终点,问小王最初跑的速度是多少?8小张骑车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进,已知两人在上午8点同时出发,到上午10点两人还相距36千米,到中午12点两人又相距36千米,求A、B两地间的路程。
9甲乙两站相距300km,一列慢车从甲站开往乙站,每小时行40km,一列快车从乙站开往甲站,每小时行80km,已知慢车先行1.5h,快车再开出,问快车开出多少小时后与慢车相遇?10甲乙两人在400米环形跑道上练习长跑,两人速度分别是200米/分和160米/分.(1)若两人从同一地点同时反向跑,多少分钟后两人第3次相遇?(2)若两人从同一地点同时同向跑,多少分钟后两人第2次相遇?11小张开车去火车站,如果速度为30千米/时,则早15分钟到达,如果18千米/时,则迟到5分,现在打算提前5分钟到达,那么他开车的速度是多少?12A、B两地相距49千米,某人步行从A地出发,分三段以不同速度走完全程,共用10小时。
一元一次方程的应用
一元一次方程的应用1. 苹果的购买:假设每个苹果的价格是p,你买了x个苹果,花了y 元。
这个购买过程可以用方程px = y来表示,其中p是苹果的单价。
通过解这个方程,可以计算出每个苹果的价格或购买的数量。
2. 电费计算:假设每度电的价格是p,你使用了x度电,支付了y元的电费。
这个计算过程可以用方程px = y来表示,通过解这个方程,可以计算出每度电的价格或使用的数量。
3. 路程和速度的关系:假设一个人以每小时v的速度行驶了x小时,那么他所行驶的路程可以用方程vx = d来表示,其中d是行驶的总路程。
通过解这个方程,可以计算出速度或行驶的时间。
4. 汽车行驶的时间:假设一个汽车以每小时的速度v行驶了x千米,行驶的时间可以用方程vx = t来表示,其中t是行驶的时间。
通过解这个方程,可以计算出汽车的速度或行驶的距离。
5. 工作量计算:假设一项工作需要x个小时完成,每小时工作的效率是p个单位,那么完成这项工作需要的总工作量可以用方程px = w来表示,其中w是工作的总量。
通过解这个方程,可以计算出工作的效率或完成工作所需的时间。
6. 线性销售模型:假设一种商品每件的价格是p,销售了x件,总销售额为y元。
这个销售过程可以用方程px = y来表示。
通过解这个方程,可以计算出每件商品的价格或销售的数量。
7. 比例关系:假设一个问题中存在两个量x和y,它们之间存在比例关系,可以用方程yx = t来表示,其中t是比例系数。
通过解这个方程,可以计算出两个量的比例关系。
以上这些是一元一次方程在现实生活中的一些应用场景,我们可以通过解这些方程来计算出各种参数的值或者确认各种关系。
整合了数学和实际问题,使得人们可以更好地理解和解决实际生活中的各种情况。
人教版数学七年级上册第12讲 一元一次方程的实际应用(二)
第12讲一元一次方程的实际应用(二)知识导航1.列一元一次方程解决行程问题;2.列一元一次方程解决工程问题;3.列一元一次方程解决调配与配套问题;4.列一元一次方程解决利润问题.【板块一】行程问题方法技巧1.行程问题有相遇问题,追及问题,顺流(风)、逆流(风)问题,上坡、下坡问题等.在运动形式上分直线运动及曲线运动.2.相遇问题是相向而行,相遇时的总路程=两运动物体的路程和.3.追及问题是同向而行,分慢的在快的前面或慢的先行若干时间,快的再追.4.顺流(风)、逆流(风)和上坡、下坡问题应注意运动方向和速度不同.题型一一般行程问题【例1】一列匀速前进的火车,从它进入320米长隧道到完全通过隧道共用了18秒,隧道顶部一盏固定的小灯灯光在火车上照了10秒钟,求这列火车的长为多少米?【练1】某人骑自行车由甲地驶向乙地,如果每小时比原来的速度快6公里,便可以早到5分钟;如果每小时比原来的速度慢5公里,便要迟到6分钟.求甲、乙两地的距离为多少公里?题型二相遇问题【例2】小李骑自行车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米.求A,B两地间的路程.【练2】A,B两地间的路程为360km,甲车从A地出发开往B地,每小时行驶72km,甲车出发25min后,乙车从B地出发开往A地,每小时行驶48km,两车相遇后,各自按原来速度继续行驶,那么相遇以后,两车相距100km时,甲车从出发开始共行驶了多少小时?题型三追及问题【例3】A,B两地相距480km,一列慢车从A地出发,每小时行走50km,一列快车从B地出发,每小时走70km.⑴两车同时出发,相向而行,出发后多少小时相遇?⑵若两车同时出发,同向而行,慢车在快车前面,相遇前经过多少小时两车相距200km?相遇后经过多少小时两车相距200km?【练3】甲、乙两人在一环形场地上锻炼,甲骑自行车,乙跑步,甲比乙每分钟快200m,两人同时从起点同向出发,经过3min两人首次相遇,此时乙还需跑150m才能跑完第一圈.⑴求甲、乙两人的速度分别是每分钟多少米?(列方程或者方程组解答)⑵若两人相遇后,甲立即以每分钟300m的速度掉头向反方向骑车,乙仍按原方向继续跑,要想不超过1.2min两人再次相遇,则乙的速度至少要提高每分钟多少米?题型四 流水问题与上、下坡问题【例4】某船从A 地顺流而下到达B 地,然后逆流返回,到达A ,B 两地之间的C 地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时.A ,C 两地之间的路程为10千米,求A ,B 两地之间的路程.【练4】如图所示,折线AC -CB 是一条公路的示意图,AC =8km .甲骑摩托车从A 地沿这条公路到B 地,速度为40km /h ,乙骑自行车从C 地到B 地,速度为10km /h ,两人同时出发,结果甲比乙早到6分钟.求这条公路的长.针对练习11、 一只小船从甲港到乙港逆流航行需2小时,水流速度增加一倍后,再从甲港到乙港航行需3小时,水流速度增加后,从乙港返回甲港需航行( )A . 0.5小时B . 1小时C . 1.2小时D . 1.5小时2、我国元朝朱世杰所著的《算学启蒙》中有这样的记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,良马数日追及之”.如果设良马x 日追上驽马,那么根据题意,可列方程为 .3、已知A 、B 两地相距350千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.若甲车速度为110千米/ 时,乙车速度为90千米/时,经过t 小时两车相距50千米,则t = 小时.4、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相 同,两道侧门也大小相同,安全检查时,对4道门进行测试,当同时开启一道正门和两道侧门时,2分钟内 可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可通过800名学生. (1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下,全大楼学生应在5分钟通过这4道门安全撤离,假设这栋教学楼每间教室最多有45名学生.问:建造的4道门是否符合安全规定?请说明理由.ACB5、为赴台湾考察学习,小颖的爸爸在元旦节的早晨7点自驾一辆小轿车(平均速度为60千米/时)从家里出发赶往距家45千米的重庆江北机场,此时,距规定到达机场的时间仅剩90分钟. 7点30分时小颖发现爸爸忘了带身份证,急忙通知爸爸返同,同时她乘坐出租车以40千米/时的平均速度直奔机场(打电话和上出租车的时间忽略不计),与此同时,爸爸接到通知后继续往机场方向行驶了5分钟后返同,结果不到30分钟就遇上了小颖(拿身份证的时间忽略不计),并立即赶赴机场,请问:(1)设小颖从7点30分出发经过x小时与爸爸相遇,则与爸爸相遇时小颖行驶千米,爸爸返回千米(均用含x的代数式表示);(2)小颖的爸爸能否在规定的时间内赶到机场?6.有甲、乙两艘船,现同时由A地顺流而下,乙船到B地时接到通知,须立即逆流而上返回C地执行任务,甲船继续顺流航行.已知甲、乙两船在静水中的速度都是每小时7.5 km,水流速度为每小时2.5 km,A、C两地间的距离为10km.如果乙船由A地经过B地再到达C地共用了4h,问:乙船从B到到达C地时,甲船距离B地有多远?【板块二】工程问题方法技巧1、基本量之间的关系:工作量=工作效率╳工作时间.2、当总工作量未给出具体数量时,常把总工作量当作整体1.常用的相等关系为:总工作量=各部分工作量的和.题型一有具体数量作为工作量【例5】某地为了打造风光带,将一段长为360m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24 m,乙工程队每天整治16 m.求甲、乙两个工程队分别整治了多长的河道.【练5】有一些相同的房间需要粉刷,一天3名师傅去粉刷8个房间,结果其中有40m2墙面未来得及粉刷,同样的时间内5名徒弟粉刷了9个房间的墙面,每名师傅比徒弟一天多刷30m2的墙面.(1)求每个房间需要粉刷的墙面面积;(2)张师傅现有36个这样的房间需要粉刷,若请1名师傅带2名徒弟去,需要几天完成?题型二没有具体数量作为工作量【例6】检修一处住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天,前7天由甲、乙合做,但乙中途离开了一段时间,后2天由乙、丙合做完成,问乙中途离开了几天?【练6】一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用,已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运这批货物分别用2a次、a次能运完;若甲、丙两车运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.问:(1)乙车每次所运货物是甲车每次所运货物量的几倍?(2)现甲、乙、丙合运相同次数把这次货物运完时,货主应付车主运费各多少元?(按每运1吨付运费20元计算)题型三牛吃草问题(总工作量发生变化)【例7】有一片牧场,草每天都在匀速地生长(即草每天增长的量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草.设每头牛每天吃草的量是相等的,问:(1)如果放牧16头牛,几天可以吃完牧草?(2)要使牧草永远吃不完,至多放牧几头牛?【练7】山脚下有一池塘,山泉以固定的流量(即单位时间里流人池中的水量相同)不停地向池塘内流淌,现池塘中有一定深度的水,若用一台A型抽水机则1小时后正好能把池塘中的水抽完,若用两台A型抽水机则 20分钟正好把池塘中的水抽完,问若用三台A型抽水机同时抽,则需要多长时间恰好把池塘中的水抽完?针对练习21、完成某项工程,甲、乙合做要2天,乙、丙合做要4天,丙、甲合做要2.4天,则甲单独完成此项工程需要的天数是( )A. 2.8B. 3C. 6D. 122、为使某项工程提前20天完成任务,需将原定工作效率提高25%,则原计划完成这项工程需要 .3、某农民在农贸市场卖鸡,甲先买了总数的一半又半只,然后乙买了剩下的一半又半只,最后丙买了剩下的一半又半只,恰好卖完,则该农民一共卖了只鸡.4、刺绣一件作品,甲单独绣需要15天完成,乙单独绣需要12天完成.现在甲先单独绣1天,接着乙又单独绣 4天,剩下的工作由甲、乙两人合绣.再绣多少天可以完成这件作品?5、甲、乙两个施工队在六安(六盘水一安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设 5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x米,则乙队每天铺设(x—100)米.(1)依题意列出一元一次方程;(2)求出甲、乙两个施工队每天各铺设多少米.6、—棉花种植区的农民研制出采摘棉花的单人便携式采棉机,采摘效率高,能耗低,绿色环保,经测试,一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,购买一台采棉机需900元,雇人采摘棉花,按每采摘1公斤棉花a元的标准支付雇工工钱,雇工每天工作8小时.(1)一个雇工手工采摘棉花,一天能采摘多少公斤?(2)—个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,求a的值.【板块三】调配及配套问题方法技巧1.调配问题的相等关系往往通过题目中的一句关键的语气呈现.2.产品配套问题的相等关系要抓住成套产品的两个部件之间固有的倍数关系.题型一调配问题【例8】学校组织植树活动,已知在甲处植树的有14人,在乙处植树的有6人,现调70人去支援.(1)若要使在甲处植树的人数与在乙处植树的人数相等,应调往甲处人.(2)若要使在甲处植树的人数是在乙处植树人数的2倍,问应调往甲、乙两处各多少人?(3)通过适当的调配支援人数,使在甲处植树的人数恰好是在乙处植树人数的n倍(n是大于1的正整数,不包括1.)则符合条件的n的值共有个.【练8】某工厂生产一批桌椅,甲车间有29人生产桌子,乙车间有17人生产椅子,现要赶工期,总公司调20人去支援,使甲车间的人数为乙车间人数的2倍,应调往甲、乙车间各多少人?题型二配套问题【例9】某儿童三轮车厂有95名工人,每人每天能生产车身9个或车轮30个.要使每天生产的车身和车轮恰好配套(一个车身配三个车轮),应安排生产车身和车轮各多少人?【练9】某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个,两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?针对练习31.食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输,为提高质量,做进一步研究,某饮料加工在厂需生产A,B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添剂3克,饮料加工厂生产了A,B两种饮料各多少瓶?2.某服装厂加工车间有工人54人,每人每天可以加工上衣8件或裤子10条(一件上衣配一条裤子),应怎样分配人数,才能使每天生产的上衣和裤子配套?3.甲仓库和乙仓库分别存放着某种机器20台和6台.现在准备调运给A厂10台,B厂16台,已知从甲库调运一台机器到A厂的运费为400元,到B厂的运费为800无;从乙库调运一台机器到A厂的运费为300元,到B厂的运费为500元,如果总运费用了16000元.求:从甲库调给A厂,乙库调给B厂各为多少台机器?4.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件。
一元一次方程的应用
一元一次方程的应用一元一次方程是数学中最基本的方程类型之一,也是最常见的方程类型之一。
它的一般形式为ax + b = 0,其中a和b是已知数,x是未知数。
一元一次方程存在于我们生活的各个方面,并且在解决实际问题时起到了重要的作用。
一元一次方程的应用非常广泛,例如在日常生活中,我们经常会遇到求解包裹邮费、电费、水费等问题,这些问题都可以通过一元一次方程来求解。
例如,我们想知道一次包裹的邮费多少,已知每千克的邮费是3元,而这个包裹的重量是x千克,我们可以建立如下一元一次方程:3x = 邮费又例如,我们想知道一台电视机的价格多少,已知原价是5000元,现在打8折,我们可以建立如下一元一次方程:0.8x = 5000除了在日常生活中的应用,一元一次方程也在工程、经济等领域中起到了至关重要的作用。
例如,在工程中,我们需要计算材料的成本,已知每平方米的成本是10元,而这个工程的面积是x平方米,我们可以建立如下一元一次方程:10x = 成本又例如,在经济学中,我们经常会遇到求解定价和销量的问题,已知价格是p元,销量是x个,收入是p * x元,而成本是100元,我们可以建立如下一元一次方程:p * x - 100 = 收入以上只是一元一次方程的一些应用举例,实际上一元一次方程在解决实际问题时的应用是非常广泛的。
在解决实际问题时,我们可以通过列方程、变量替换、消元等方法来求解一元一次方程,这些方法都需要根据具体问题来选取,灵活运用。
总之,一元一次方程是数学中最基本的方程类型之一,它的应用非常广泛。
通过解决实际问题中的一元一次方程,我们可以更好地理解和掌握数学的应用能力,也可以更好地应对日常生活中遇到的各种问题。
因此,学好一元一次方程的应用,对我们的数学能力和生活能力的提升是非常有益的。
一元一次方程的应用系列2(表示同一个量的两个不同的式子相等)
一元一次方程的应用2 【0308】初一()班姓名:__________________ 学号: __________________ 【问题二】把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25 本.这个班有多少学生?分析: 设这个班有x名学生每人分3本,共分出3x本,加上剩余的20本,这批书共____________本.每人分4本,需要______本,减去缺的25本,这批书共_____________本.这批书的总数是一个定值,表示它的两个式子应相等.解: 设这个班有x名学生, 列方程得____________________________________________________解方程________________________________________________答: 这个班有__________名学生.练习A1. 种一批树苗,如果每人种10棵,则剩6棵树苗未种;如果每人种12棵,则缺6棵树苗.有多少人种树?设有x人种树, 每人种10棵,,共种10x棵, 加上剩余的6棵,这树苗共____________棵.每人种12棵,需要______棵,减去缺的6棵,这批树苗共_____________棵.列方程, 得________________________________________________________________2. 某种商品因换季准备打折出售,如果按定价的七五价出售将赔25元,而按定价的九折出售将赚20元. 设这商品的定价是x元, 列方程得_________________________________________________3. 某工厂八月十五中秋节给工人发苹果,如果每人分两箱,则剩余20箱,如果每人分3箱,则还缺20箱,这个工厂有工人多少人?解: 设综合练习:1.据《城市晚报》报道, 2004年2月16日,中国著名篮球明星姚明与麦当劳公司正式签约,姚明作为麦当劳的形象代言人,三年共获酬金1400万美元.若后一年的酬金是前一年的两倍,并且不考虑税金,那么姚明第一年应得酬金为多少万美元? 设姚明第一年应得酬金为x万美元,列方程,得____________________________________________________2.喷灌和滴灌是比漫灌节水的灌溉方式.随着农业技术的现代化,节水灌溉得到逐步推广.灌溉三块同样大的试验田,第一块用漫灌方式,第二块用喷灌方式,第三块用滴灌方式.后两种方式用水量分别是漫灌的25%和15%,三块地共用水420块,每块地各用水多少吨?解:3.某造纸厂为节约木材,大力扩大再生纸的生产.这家工厂去年10月生产再生纸2050纸,这比前年10月产量的2倍还多150吨,它前年10月生产再生纸多少吨?解:总结: 回忆在列方程解应用题中,常使用的两种基本的相等关系:1. 总量=各部分量的_______;2. 表示同一个量的两个不同的式子_________.。
七年级上册数学同步培优:第10讲 一元一次方程的应用二--尖子班
第10讲 一元一次方程的应用二⎧⎪⎨⎪⎩工程问题一元二次方程的应用利润问题其他问题知识点1 一元一次方程的实际问题-工程问题1、工程问题的基本量有:工作量、工作效率、工作时间。
公式为:①工作量=工作效率×工作时间,②=工作量工作时间工作效率,③=工作量工作效率工作时间。
2、工程问题中,一般常将全部工作量看作整体1,如果完成全部工作的时间为t ,则工作效率为1t。
3、常用列式依据:“甲的工作量+乙的工作量+丙的工作量=1”,有些工程问题也可以分阶段“第一阶段工作量+第二阶段工作量=1”。
【典例】1.一项工程,甲单独完成需要9天,乙单独完成需要12天,丙单独完成需要15天,若甲、丙先做3天,甲因故离开,由乙接替甲的工作,如果要求这个工程6天完成,问此工程是否能按期完成?【方法总结】1、本题可以分两个阶段:第一阶段“甲、丙合做3天”,第二阶段“乙、丙合做x 天”,可得“甲、丙合做3天”的工作量+“乙、丙合做x 天”的工作量=工作总量2、对于问是否能按时完成任务的问题,先求实际完成任务的时间,再与规定时间做比较,得出是否能按时完成2. 甲、乙两人完成一项工作,甲先做了3天,然后乙加入合作,完成剩下的工作,设工作总量为1,工作进度如右表:则完成这项工作共需多少天?【方法总结】1、分析表格,找出有用信息,求出甲、乙的工作效率是解本题的关键:由甲做3天,完成工作进度的14,可求出甲的工作效率为114312;由第三天到第五天,甲乙合作两天时间,完成工作进度的14,列式可求乙的工作效率为124。
2、此题是典型的工程问题,需要分段分析,分清每段的情况【随堂练习】1.(2017秋•鞍山期末)一项工程,甲单独做12小时完成,乙单独做8小时完成,甲先单独做9小时,后因甲由其他任务调离,余下的任务由乙单独完成,那么乙还要多少小时完成?2.(2017秋•黄石期末)一项工程,由甲、乙、丙三人完成,甲单独做需10天完成,乙单独做需12天完成,丙单独需15天完成.现计划7天完成,乙、丙先合做3天后,乙有事,由甲、丙完成剩下工程,问:能否按计划完成?3.(2018春•唐河县期中)现加工一批机器零件,甲单独完成需4天,乙单独完成需6天,现由乙先做1天,然后两人合作完成,共付给报酬600元,若按个人完成的工作量付给报酬,该如何分配?知识点2 一元一次方程的实际问题-利润问题销售问题中有四个基本量:成本(进价)、销售价(收入)、利润、利润率。
一元一次方程应用题——工程问题 (2)
1.一项工程,甲单独做20天完成,乙单独做10天完成,现在由乙先独做几天后,剩下的部分由甲独做,先后共话12天完成,问乙做了几天2.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成3.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。
如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五4. 已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;(1)如果单独打开进水管,每小时可以注入的水占水池的几分之几(2)如果单独打开出水管,每小时可以放出的水占水池的几分之几(3)如果将两管同时打开,每小时的效果如何如何列式(4)对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间5. 有一个水池,用两个水管注水。
如果单开甲管,2小时30分注满水池,如果单开乙管,5小时注满水池。
①如果甲、乙两管先同时注水20分钟,然后由乙单独注水。
问还需要多少时间才能把水池注满②假设在水池下面安装了排水管丙管,单开丙管3小时可以把一满池水放完。
如果三管同时开放,多少小时才能把一空池注满水6.检修某场区的自来水管,甲独做需14天完成,乙独做18天完成,丙独做12天完成。
前7天由甲乙两人一起合作,但乙中途离开了一段时间;后一部分甲乙合作2天完成,问乙中途离开了几天7.某项工程计划用300人在若干天内完成,为了缩短工期,实际施工时,实行了承包责任制,工作效率提高50%因此只用了250人,还提前20天完成任务,问原计划多少天完成这项工程8.汛期到来之前某水利部门利用挖掘机挖掘土方,甲机单独做12天挖完,乙机单独做15天可以挖完,现在两机合作若干天后,再由乙机单独挖6天完成任务,问甲机挖了几天9.一组割草人去割两块草地,大的一块比小的一块大一倍,上午全部人都在大的一块草地割草,下午一半人留在大草地上,到傍晚时把草割完,另一半人去割小草地的草,到傍晚还剩一块,这一块由一个割草人在用一天时间刚好割完,问,这组割草人共有多少人?(按习惯,从早晨到傍晚算一天工作,上午、下午各占一半)10.整理一批数据,由一个人做需80小时完成。
3.22一元一次方程的应用(2)
x . 3.2 3.2x 橘子 6-x 2.6 2.6(6-x) 请列出方程解这道题。
质量 单价 (千克) (元/千克) x 3.2 苹果 6-x 2.6 橘子
总价 (元)
3.2x 2.6(6-x)
解:设小丽买了x千克苹果. 根据题意,得 3.2x+2.6(6-x)=18. 解这个方程,得 x=4. 则 6-x=2 答:小丽买了4千克苹果、2千克橘子。
答:甲做465个零件,乙做620个零件,丙做496 个零件。
练习:某工厂狠抓产品质量后,有一批产品的 98%是一等品和二等品,其中一等品和二等品的 件数 之比是19:1,又一等品比二等品多1764件, 这批产品的一等品、二等品各有几件? 解:设二等品有x 件,则一等品有19x 件。 等量关系:一等品件数-二等品件数=1764件
(1)买苹果的金额+买橘子的金额=18元 (设) x 18-x (2)苹果的重量+橘子的重量=6千克 (列) x 18-x 3.2 2.6
列代数式:
(1)某厂八月份原计划生产洗衣机y台,技术 革新后,实际超额完成计划的15%,则 0.15y 超额生产洗衣机______________台, 1.15y 实际生产洗衣机______________台。
依题意得:19x-x=1764 x=98 则19x=1862
答:这批产品的一等品有1862件,二等品有98件。
例3、甲、乙两仓库存货吨数比为4 :3,如果由
甲库中取出8吨放到乙库中,则甲、乙两库存货吨 数比为4 :5,两仓库原存货总吨数是多少吨?
分析:(1)设元,本题中有两个比,设其中的 哪个一份为x呢 ? (2)相等关系,题目中可以找到吗? 解:设甲、乙两仓库原存货的总吨数为4x吨和3x 吨。 依题意得: (4x – 8) :(3x + 8 )= 4 :5 x=9 则4x = 36,3x = 27 答:…….
北师大版(2024)七年级数学上册 第五章 习题课件 第8课 一元一次方程的应用(2)——盈不足问题
7.《孙子算经》中有一道阐述“盈不足术”的问题, 原文如下: 今有木,不知长短,引绳度之,余绳四尺五寸;屈 绳量之,不足一尺.问:几何? 译文为:现在有一根木头,不知道有多长,用一段 绳子去测量,拉直后绳子还多四尺五寸;将绳子对 折后去量木头,木头还剩一尺,问木头多长?(一 尺等于十寸)
解:设木头长x尺,则绳子长(x+4.5)尺.
第五章 一元一次方程 第8课 一元一次方程的应用(2)——
盈不足问题
1.某班分两组去两处植树, 第一组22人, 第二组26人.
现第一组在植树中遇到困难,需第二组支援. 问从第
二组调多少人去第一组才能使第一组的人数和第二
组的人数同样多?设抽调x人, 则可列方程 ( C )
A.22+x=26
B.22+x=26+x
解:设这种三色冰淇淋中咖啡色配料为2x g,那么红色 和白色配料分别为3x g和5x g. 依题意,得2x+3x+5x=50,解得x=5. 则2x=10,3x=15,5x=25. 答:这种三色冰淇淋中咖啡色、红色和白色配料分别是
10 g,15 g和25 g.
5. 延安是中国革命圣地,是全国爱国主义、革命传统 和延安精神三大教育基地.某校组织学生去延安进 行研学,若租用同型号的客车5辆,还剩22人没有 座位;若租用6辆,有8个空座位.求该客车的载客 量.
依题意,得x- x 4.5 =1,解得x=6.5. 2
答:木头长6.5尺.
解:(1)设用x尺布做衣身,则用(300-x)尺布做袖管,那
x
么2·可x 2
x
只.依题意,得
,解得x=200.所以300-200=100(尺).
答:8 用200尺2 布做衣身,100尺布做袖管正好配套.
(2)可做多少件上衣? 解:(2)200÷8=25(件). 答:可做25件上衣.
一元一次方程的分类应用题b
一元一次方程的应用(二)工程问题知识精讲一、工程问题工作总量=工作时间×工作效率各部分工作量之和=1【例1】将一批工业最新动态信息输入管理储存网络,甲单独做需要6小时,乙单独做需要4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?【例2】一水池装有甲、乙两个进水管和一个出水管丙,如果单独开放甲管4小时注满水池;单独开放乙管3小时可注满水池;单独开放丙管8小时可把满池水放完.问三管一齐开放,几小时注满水池?【例3】某车间原计划每周装配42台机床,预计若干周完成任务.在装配了三分之一以后,改进操作技术,工效提高了一倍,结果提前一周半完成任务.求这次任务需装配机床总台数.【例4】为了美化环境,市政部门将为某道路两旁植树,现将工程承包给甲,乙两个工程队,甲,乙两队单独完成这项工程分别需要30天和20天.(1)甲乙两工程队合做这项工程需要多少天?(2)若先由甲单独植树5天,剩下的部分由甲、乙合做,列出方程求剩下的部分需要多少天完成?【例5】 检修一住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天.前7天由甲、乙两人合作,但乙中途离开了一段时间,后2天由乙、丙两人合作完成,问乙中途离开了几天?商品销售问题知识精讲一、 商品销售问题在现实生活中,购买商品和销售商品时,经常会遇到进价、标价、售价、打折等概念,在了解这些基本概念的基础上,还必须掌握以下几个等量关系:()=1+⨯标价进价利润率利润=售价-进价 =100%⨯利润利润率进价 利润=进价×利润率实际售价=标价×打折率【例6】 某商店卖出两件衣服,每件卖价60元,其中一件盈利25%,另一件亏损25%,那么这两件衣服卖出后,商店是盈利还是亏损?或是不盈也不亏?【例7】 某商店将彩电的进价提高40%,然后在广告上写“大酬宾,八折优惠”.结果每台彩电仍获利270元,求彩电的进价.【例8】 某商品的售价为900元,为了参与市场竞争,商店按售价的9折再让利40元进行销售,此时仍可获利10%,此商品的进价是多少元?【例9】“五一”期间,某商场搞优惠促销,决定由顾客抽奖确定折扣.某顾客购买甲、乙两种商品,分别抽到七折(按售价的70%销售)和九折(按售价的90%销售),共付款386元,这两种商品原销售价之和为500元.问:这两种商品原销售价分别为多少元?【例10】甲、已两个团体共120人去某风景区旅游.风景区规定超过80人的团体可购买团体票,已知每张团体比个人票优惠20%,而甲、已两团体人数均不足80人,两团体决定合起来买团体票,共优惠了480元,则团体票每张多少元?【例11】开县新世纪商场出售甲、乙、丙三种型号的电冰箱,已知甲型冰箱在第一季度销售额占这三种冰箱销售总额的56%;第二季度乙、丙两种型号的冰箱的销售总额比第一季度乙、丙两种型号的冰箱的销售总额减少了a%,但第二季度该商场三种冰箱的销售总额比第一季度的三种冰箱的销售总额增加了12%,且第二季度甲型冰箱的销售额比第一季度甲型冰箱的销售额增加了23%,求a的值.方案决策问题知识精讲一、方案决策问题在实际生活中,做一件事情往往会有多种选择,这就需要从几种方案中,选择最佳方案,如网络的使用,到不同旅行社购票等,一般都要运用方程解答,把每一种方案的结果先算出来,进行比较后得出最佳方案.【例12】移动公司开设了两种通讯业务:“全球通”,使用者先交50元月租费,然后每通话1分钟,再付通话费0.40元;“快捷通”,不交月租费,每通话1分钟,付花费0.60元,以上两种通讯业务不足1分钟的均按1分钟计算.(1)若一个月内通话时间为x分钟,试用含x的式子分别表示出两种方式的通话费用;(2)通话时间为多少时,两种方式的费用一样多?(3)小明每个月的通话时间大约为200分钟,那么他选择哪种业务较合算?【例13】列方程或方程组解应用题:在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮小明算一算,用哪种方式购票更省钱.【例14】某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收获这种蔬菜140吨,该公司加工的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行.受季节等条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕,为此公司制定了三种可行方案.方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行精加工,没有来得及进行加工的蔬菜,在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为选择哪种方案获利最多?为什么?【例15】“中国竹乡”安吉县有丰富的毛竹资源,某企业已收购毛竹52.5吨,根据市场信息,将毛竹直接销售,每吨可获利100元;如果对毛竹进行粗加工,每天可加工8吨,每吨可获利1000元;如果进行精加工,每天可加0.5吨,每吨可获利5000元.由于受条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售,为此研究了二种方案:方案一:将毛竹全部粗加工后销售,则可获利元.方案二:30天时间都进行精加工,未来得及加工的毛竹,在市场上直接销售,则可获利元.问:是否存在第三种方案,将部分毛竹精加工,其余毛竹粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由.【例16】某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元不超过300元一律九折;③一次性购物超过300元一律八折.(1)小新妈妈购物付款99元,那她购买的物品实际价格为多少元?(2)若购物付款259.2元,那她购买的物品实际价格为多少元?【例17】某校科技小组的学生在3名老师带领下,准备前往国家森林公园考察、采集标本.当地有两家旅行社,分别去两个景区.两家旅行社收取的途中费用和相应的景区门票定价都相同,且对师生都有优惠:甲旅行社表示带队老师免费,学生按8折收费;乙旅行社表示师生一律按7折收费.甲景区对师生均收半价,乙景区则规定当人数超过30人时,按4折收费,否则按6折收费.经合算两家旅行社的实际途中收费正好相同.你认为该去何处较合算?若该校在暑假夏令营中,学生数增加了8名,老师不变,则又该去哪个旅行社?配套问题【例18】某工厂有72名工人,分成两组分别生产螺母和螺丝,已知3名工人生产的螺丝恰好与一名工人生产的螺母配套,如果要使每天生产的螺母和螺丝都能配套,则应怎样安排工人?【例19】某车间有技工85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?【例20】某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?积分问题知识精讲一、积分问题比赛场数=胜的场数+平的场数+负的场数,比赛分数=胜场得分+平场得分 负场扣分.【例21】某次数学竞赛出了15道选择题,选对一道得4分,选错一道倒扣2分.若某个同学做了全部15道选择题得36分,则该同学做对了几道选择题.【例22】足球比赛的记分规则为:胜一场得3分,平一场得1分,•输一场得0分.一支足球队在某个赛季中共需比赛14场,现已比赛了8场,输了一场,得17分.(1)前8场比赛中,这支球队共胜了多少场?(2)这支球队打满14场比赛,最高能得多少分?(3)通过对比赛情况的分析,这支球队打满14场比赛,得分不低于29分,就可以达到预期目标.请【例23】我校“春之声”广播室小记者潭艳同学为了及时报道学校参加全市中学生篮球比赛情况,她从领队老师那里了解到校队共参加了16场比赛,积分28分,按规定,赢一场得2分,输一场得1分,可是,小潭忘记了解赢、输各多少场了,请你根据上面提供得信息求出输、赢各多少场?【例24】某校高一年级有12个班.在学校组织的高一年级篮球比赛中,规定每两个班之间只进行一场比赛,每场比赛都要分出胜负,每班胜一场得2分,负一场得1分.某班要想在全部比赛中得18分,那么这个班的胜负场数应分别是多少?随堂练习【习题1】某工程,甲工程队单独做40天完成,乙工程队单独做需要60天完成,若乙工程队单独做30天后,甲、乙两工程队再合作,则还需要多少天能完成这项工程?【习题2】商场打折促销时,张老师买了一件衣服和一条裤子,共用了284元.其中衣服按标价打六折,裤子按标价打八折,衣服的标价为300元,则裤子的标价应为多少元?【习题3】某乳制品厂,现有鲜牛奶10吨,若直接销售,每吨可获利500元;若制成酸奶销售,每吨可获利1200元;若制成奶粉销售,每吨可获利2000元,本工厂的生产能力是:若制成酸奶,每天可加工鲜牛奶3吨;若制成奶粉,每天可加工鲜牛奶1吨(两种加工方式不能同时进行).受气温条件限制,这批鲜牛奶必须在4天内全部销售或加工完成.为此该厂设计了以下两种可行方案:方案一:4天时间全部用来生产奶粉,其余直接销售鲜奶;方案二:将一部分制成奶粉,其余制成酸奶,并恰好4天完成.你认为哪种方案获利最多,为什么?【习题4】在一次有12个队参加的足球循环赛(每两个队之间赛且只赛一场)中,规定每胜一场记3分,平一场记1分,负一场记0分.某队在这次循环赛中所胜场数比所负场数多2场,结果共积了18分,那么该队战平几场?课后作业【作业1】整理一批图书,由一个人做要40小时完成.现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?【作业2】“五一”期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( )A .()130%80%2080x +⨯=B .30%80%2080x ⋅⋅=C .208030%80%x ⨯⨯=D .30%208080%x ⋅=⨯【作业3】一牛奶制品厂现有鲜奶9t.若将这批鲜奶制成酸奶销售,则加工1t鲜奶可获利1200元;若制成奶粉销售,则加工1t鲜奶可获利2000元.该厂的生产能力是:若专门生产酸奶,则每天可用去鲜奶3t;若专门生产奶粉,则每天可用去鲜奶1t.由于受人员和设备的限制,酸奶和奶粉两产品不可能同时生产(同一天内一段时间生产酸奶,另一段时间生产奶粉),为保证产品的质量,这批鲜奶必须在不超过4天的时间内全部加工完毕.假如你是厂长,你将如何设计生产方案,才能使工厂获利最大,最大利润是多少?【作业4】某车间有28名工人,生产一种螺栓和螺母,每人每天平均能生产螺栓12个或螺母18个,一个螺栓要配两个螺母,应分配多少人生产螺栓、多少人生产螺母,才能使生产效率最高?【作业5】某区中学生足球联赛共赛8轮(即每队均需参赛8场),胜一场得3分,平一场得1分,负一场得0分,在这次足球联赛中,猛虎足球队踢平的场数是所负场数的2倍,共得17分.试问该队胜了几场?。
7年级-上册-数学-第5章《一元一次方程》5.4一元一次方程的应用(2)等积变形问题-分节好题挑选
浙教版-7年级-上册-数学-第5章《一元一次方程》5.4一元一次方程的应用(2)等积变形问题-每日好题挑选【例1】用一个棱长为20厘米的立方体容器(已装满水)向一个长、宽、高分别是50厘米,10厘米和8厘米的长方体铁盒内倒水,当铁盒内装满水时,立方体容器中水的高度下降了。
【例2】根据图中给出的信息,可得正确的方程是。
【例3】如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,它们内部的底面积分别为80cm2,100cm2,且甲容器装满水,乙容器是空的.若将甲容器中的水全部倒入乙容器中,则乙容器中的水位比原先甲容器中的水位降低了8cm,则甲容器的容积为cm3。
【例4】一辆自行车换胎,若新轮胎安装在前轮,则自行车行驶2500km后报废;若新轮胎安装在后轮,则自行车行驶1500km后报废.已知自行车在行驶一定的路程后可以交换前后轮轮胎,如果通过交换前后轮轮胎使一辆自行车的一对新轮胎同时报废,那么这对新轮胎一共支撑自行车行驶了km。
【例5】如图,6位朋友均匀地围坐在圆桌旁共度佳节,圆桌半径为60cm,每人离圆桌的距离均为10cm。
现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x(cm),根据题意,可列方程。
【例6】拟有一玻璃密封器皿如图①,测得其底面直径为20cm,高为20cm,现装有蓝色溶液若干。
正放时的截面如图②,测得液面高10cm;倒放时的截面如图③,测得液面高16cm,则该玻璃密封器皿的总容量为cm3。
(结果保留π)【例7】一种圆筒状包装的保鲜膜如图所示,其规格为“20cm×60m”,经测量这筒保鲜膜的内径、外径的长分别是3.2cm, 4.0cm,则这种保鲜膜的厚度约为cm。
(结果精确到0.0001cm)【例8】爷爷病了,需要挂一瓶100mL的药液(如图所示),小明守在旁边,观察到输液流量是3mL/min,输液10min后,吊瓶的空出部分容积是50mL,利用这些数据,计算整个吊瓶的容积是mL。
工程问题的解题思路一元一次方程
工程问题的解题思路一元一次方程在实际的工程问题中,我们经常会遇到需要解决一元一次方程的情况。
一元一次方程是一种常见的数学工具,用来描述工程问题中的线性关系。
解题思路的正确运用可以帮助我们有效地解决各种工程问题。
本文将介绍一元一次方程的基本概念,解题方法以及在工程问题中的应用。
一、一元一次方程的基本概念一元一次方程是指只包含一个未知数,并且这个未知数的最高次数为一的方程。
一元一次方程的一般形式为:ax + b = 0,其中a和b为已知数,a≠0。
在工程问题中,未知数通常表示我们需要求解的物理量,而已知数则是已知的条件或者数据。
二、一元一次方程的解题方法1. 消元法消元法是一种常用的解一元一次方程的方法。
当方程中含有多个未知数时,我们可以通过变换等式两侧或者联立多个方程进行消元,将方程转化为只有一个未知数的一元一次方程。
2. 因式分解法如果方程可以经过因式分解得到两个或多个因式,且其中一个因式可以整除另一个因式,那么我们可以根据因式关系来求解方程。
这种方法常用于较为简单的一元一次方程。
3. 代入法代入法是通过已知条件将方程中的一个变量表达式代入到另一个变量表达式中,从而减少方程中的未知数的个数。
通过代入已知的数值,我们可以求解方程中的未知数。
三、一元一次方程在工程问题中的应用1. 比例问题在工程问题中,常常涉及到比例关系。
通过建立相应的比例关系,我们可以将工程问题转化为一元一次方程,并通过求解方程来得到所需的结果。
2. 调和平均问题调和平均是工程问题中一种常见的求均值的方法。
当我们需要求解一组数据的调和平均值时,可以将调和平均的定义转化为一元一次方程,并通过求解方程来得到所需的结果。
3. 增减问题增减问题在工程中也十分常见。
通过建立增减关系的一元一次方程,我们可以求解变化量、增长率、变化趋势等问题。
四、工程问题解题思路的总结在解决工程问题中的一元一次方程时,我们需要注意以下几点:1. 仔细分析问题,明确给出的已知条件和要求的未知数。
一元一次方程的应用(2)工程问题同步培优题典(原卷版)
七年级数学上册同步培优题典一元一次方程的应用(2)工程问题姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2017秋•沾化区期末)加工1500个零件,甲单独做需要12小时,乙单独做需要15小时,若两个合做需x 小时,依题意可列方程( ) A .(112+115)x =1500 B .(150012+150015)x =1500 C .(112+150015)x =1500D .(150012+150015)x =12.(2009秋•龙亭区校级期中)某工程要求按期完成,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天,后两队合作,则正好按期完工.问该工程的工期是几天?设该工程的工期为x 天.则方程为( ) A .440+x 40+50=1 B .440+x 40×50=1C .440+x 40+x50=1D .440+x−440+x−450=13.(2018秋•宁津县期末)在国道107工程施工现场,调来72名司机师傅参加挖土和运土工作,已知3名司机师傅挖出的土1名司机师傅恰好能开车全部运走,怎样分配这72名司机师傅才能使挖出的土能及时运走?解决此问题,可设:派x 名司机师傅挖土,其他的人运土,列方程①72−x x=13;②72﹣x =x3;③x +3x =72;④x72−x=3上述所列方程,正确的有( )个.A .1B .2C .3D .44.(2020•南宁一模)某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x 个,则可列方程为( )A .x+12050−x 50+6=3 B .x50−x 50+6=3 C .x50−x+12050+6=3 D .x+12050+6−x50=35.(2018秋•蔡甸区期末)一项工程,甲单独完成需10天,乙单独完成需15天,现在两人合作完成后厂家共付给450元,如果按完成工作量的多少分配,则甲、乙两人各分得( ) A .250元,200元 B .260元,190元 C .265元,185元D .270元,180元6.(2019秋•黔东南州期末)一件工程甲单独做50天可完成,乙单独做75天可完成,现在两个人合作.但是中途乙因事离开几天,从开工后40天把这件工程做完.则乙中途离开了多少天.( ) A .10B .25C .30D .357.(2019秋•白云区期末)一件工程,甲单独做需12天完成,乙单独做需8天完成,现先由甲、乙合作2天后,乙有其他任务,剩下的工程由甲单独完成,则甲还需要( )天才能完成该工程. A .634B .713C .6D .78.(2019秋•河东区期末)某项工作甲单独做4天完成,乙单独做6天完成,若甲先做1天,然后甲,乙合作完成此项工作,若甲一共做了x 天,则所列方程为( ) A .x+14+x 6=1 B .x 4+x+16=1C .x 4+x−16=1D .x4+14+x+16=19.(2019秋•五常市期末)一项工程甲单独做要40天完成,乙单独做需要50天完成,甲先单独做4天,然后两人合作x 天完成这项工程,则可列的方程是( ) A .x 40+x 40+50=1 B .440+x 40×50=1 C .440+x 50=1 D .440+x 40+x 50=110.(2019春•新泰市期末)一项工程甲单独做需20天完成,乙单独做需30天完成,甲先单独做4天,然后甲、乙两人合作x 天完成这项工程,则下面所列方程正确的是( ) A .420+x 20+30=1 B .420+x 20×30=1C .420+x 30=1 D .4+x 20+x 30=1二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019秋•郾城区期末)几个人共同种一批树苗,如果每人种5棵,则剩下3棵树苗未种;如果每人种6棵,则缺少4棵树苗.若设参与种树的人数为x 人,则所列方程为 .12.(2019秋•麻城市期末)一项工程,甲单独做10天可以完成,乙单独做15天可以完成,甲队先做两天,余下的工程由两队合做x 天可以完成,则由题意可列出的方程是 .13.(2019秋•正定县期末)甲、乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工,若乙单独整理需要20分钟完工.若甲先整理了10分钟,然后,甲、乙合作整理x 分钟后完成此项工作.请列出方程: .14.(2019秋•丹东期末)某工厂每天需要生产50个零件才能在规定的时间内完成生产一批零件的任务,实际该工厂每天比计划多生产了6个零件,结果比规定的时间提前3天完成.若设该工厂要完成的零件任务为x 个,则可列方程为 .15.(2018春•浦东新区期中)有甲、乙两桶油,从甲桶到出14到乙桶后,乙桶比甲桶还少6升,乙桶原有油30升,设甲有油x 升,可列方程为 .16.(2018秋•繁昌县期末)某小组几名同学准备到图书馆整理一批图书,若一名同学单独做要40h 完成.现在该小组全体同学一起先做8h 后,有2名同学因故离开,剩下的同学再做4h ,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有x 名同学,根据题意可列方程为 .17.(2019秋•盘龙区期末)某项工作甲单独做12天完成,乙单独做8天完成,若甲先做2天,然后甲、乙合作完成此项工作,则甲一共做了 天.18.(2019秋•北京期末)一项工程,甲单独做10天完成,乙单独做15天完成.两人合作, 天可以完成.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•大足区期末)为庆祝建国七十周年,南岗区准备对某道路工程进行改造,若请甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,若甲、乙两队合作2个月后,甲工程队到期撤离,则乙工程队再单独需几个月能完成?20.(2019秋•郧西县期末)某工厂计划26小时生产一批零件,后因每小时多生产5件,用24小时,不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?21.(2017秋•河口区期末)某地为了打造风光带,将一段长为360m 的河道整治任务由甲,乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m ,乙工程队每天整治16m .求: (1)甲,乙两个工程队分别整治了多长的河道? (2)甲、乙两工程队各整治河道的天数.22.(2019•安徽模拟)在某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天,乙队单独完成这项工程需要90天;若由甲队先做20天,剩下的工程由甲、乙两队合做完成.(1)甲、乙两队合作多少天?(2)甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?23.(2019秋•义乌市期末)列一元一次方程解答下列问题:(1)义乌市为了搞好“五水共治”工作,将一段长为3600m的河道任务交由甲乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治240m,乙工程队每天整治160m,试求甲乙两个工程队分别整治了多长的河道.(2)小玲在数学书上发现如图所示的题目,两个方框表示的是同一个数,请你帮小玲求出方框所表示的数.24.(2019秋•甘州区期末)某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲每天修桌凳16套,乙每天修桌凳比甲多8套,甲单独修完这些桌凳比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)问该中学库存多少套桌凳?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.你认为哪种方案省时又省钱,为什么?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、一件工作甲单独做x小时完成,甲乙合作y小时完成,问乙的工作效率是。
4、解答题:
(1)抗洪抢险中修补一段大坝,甲队单独施工12天完成,乙队单独施工8天完成,现在有甲队先工作两天,剩下的有两队合作还需要多少天?
(2)整理一批数据有一人做需80小时完成,现在计划先有一些人做两小时,再增加5人做8小时,可完成这项工作的 ,怎样安排参与整理数据的具体人数?
细心填一填,
小组内交流,用语言叙述出来。
二、【合作交流、互动合作、提升能力】例1:某项工作,甲单独做需要4小时,乙单独做需要6小时,如果甲先做30分钟,然后甲、乙合作,问甲、乙合作还需要多久才能完成全部工作?
分析:
1、知识准备关系:(1)工作量=×(2)注意:通常设完成全部工作的总工作量为
2、相等关系:
分析:(1)人均效率(一个人做1小时完成的工作量)为。
(2)有x人先做4小时,完成的工作量为。再增加2人和前一部分人一起做8小时,完成的工作量为。
(3)这项工作分两段完成,两段完成的工作量之和为。
(4)列方程
开动脑筋,相信自己一定能行。不会的可以向组长请教
【我自测、我提高、我收获】
1、填空:
(1)一项工程甲单独做需12天,乙单独做需18天,两人合作天。
承德三中七年级数学学科导学案
主备人高树金审核人姜瑞凤审批领导授课时间编号0307
课题
一元一次方程的应用工程问题
课型
自学互学展示课
学习目标
1.学会工程问题相等关系的分析,列出一元一次方程解应用题。
2.通过直线型和圆型示意图来表示,并会把工作总量看作1,渗透“一般与特殊”的思想方法。
重点
工程问题相等关系的分析
3、设甲、乙合作还需要小时才能完成全部工作
列方程:
变式练习:一个道路工程,甲队单独施工9天完成,乙队单独做24天完成。现在甲乙两队共同施工3天,因甲另有任务,剩下的工程有乙队完成,问乙队还需几天才能完成?
完成后,小组交流讨论结论;
【我探究、我敢试、我成功】例2:整理一批图书,由一个人做要40小时完成.现在计划由一部分人先做4小时,再增加两人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应安排多少人工作?
难点
找等量关系
环节预设
学法建议
我预习、我会学、我快乐】
1、解下列方程:
(1) (2)
2.一项工作甲独做5天完成,乙独做10天完成,那么甲每天的工作效率是,乙每天的工作效率是,两人合作3天完成的工作量是,此时剩余的工作量是。
3.一项工作甲独做a天完成,乙独做b天完成,那么甲每天的工作效率是,乙每天的工作效率是,两人合作3天完成的工作量是,此时剩余的工作量是。
补充:
(1) = (2) (x+1)-2=x- (x-1)
(3) y+2=y- - y (4) =1-
总结
反思