2018中考数学压轴题探究专题 :平行四边形的存在性问题
【浙教版】2018年中考数学难题突破:专题六-平行四边形存在性问题(含答案)
难题突破专题六平行四边形存在性问题存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年各地中考的“热点”.解这类题目的一般思路是:假设存在→推理论证→得出结论.若能导出合理的结果,就做出“存在”的判断;若导出矛盾,就做出不存在的判断.类型1 已知三定点,探究第四个点,使之构成平行四边形1 如图Z6-1,在平面直角坐标系中,已知点A(-3,4),B(-6,-2),C(6,-2),若以点A,B,C为顶点作一个平行四边形,试写出第四个顶点D的坐标,你的答案唯一吗?图Z6-1例题分层分析(1)符合条件的点D有________个.(2)如何进行分类?2 如图Z6-2,抛物线y=x2-2x-3与x轴的负半轴交于A点,与y轴交于C点,顶点是M,经过C,M两点作直线与x轴交于点N.图Z6-2(1)直接写出点A,C,N的坐标.(2)在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.例题分层分析(1)分别令________和________即可求得A,C两点的坐标,由抛物线的函数表达式即可求得顶点M的坐标,然后求出直线CM直线的函数表达式便可求得点N的坐标.(2)根据例1的方法,先求出使得以点P,A,C,N为顶点的四边形为平行四边形的点P的坐标,然后逐一代入抛物线的函数表达式验证得符合条件的点P.解题方法点析已知三定点,探求第四个点,使之构成平行四边形,可以按对角线进行分类,然后利用中点坐标公式求出点的坐标,再验证是否符合限制条件.类型2 已知两个定点,探求限定条件下的另两个动点,使之构成平行四边形3 如图Z6-3,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.图Z6-3(1)求抛物线的函数表达式.(2)求点D的坐标.(3)若点M在抛物线上,点N在x轴上,是否存在以点A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.例题分层分析(1)由OA的长度确定出点A的坐标,再利用对称性得到顶点坐标,设出抛物线的顶点形式____________,将________的坐标代入求出a的值,即可确定出抛物线的函数表达式.(2)设直线AC的函数表达式为y=kx+b,将点A,C的坐标代入求出k与b的值,确定出直线AC的函数表达式,与____________联立即可求出点D的坐标.(3)存在,分两种情况考虑:①若AD为平行四边形的对角线,则有MD∥________,MD=________;②若AD为平行四边形的一边,则MN∥________,MN=________,此时通过画图可知有两种情况.4 如图Z6-4,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(-2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的函数表达式.(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17?若存在,求出点F 的坐标;若不存在,请说明理由.图Z6-4(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以点D,E,P,Q为顶点的四边形是平行四边形,求点P的坐标.例题分层分析(1)由C(0,4),A(-2,0)和对称轴x=1可得三个关系式,分别是①__________,②__________,③________,然后联立①②③,即可求得a,b,c,从而得到函数表达式.(2)假设存在满足条件的点F,连结BF,CF,OF,过点F作FH⊥x轴于点H,FG⊥y轴于点G.设点F的横坐标为t,则点F的坐标可表示为________,然后分别用t表示出△OBF,△OFC的面积,而△AOC的面积为________,然后根据四边形的面积为17,得到关于t的方程,解该方程即可判断是否存在符合条件的点F.(3)先运用待定系数法求出直线BC的函数表达式为________,再求出抛物线的顶点坐标为________,由点E在直线BC上,得到点E的坐标为________,从而求得DE=________.若以点D,E,P,Q为顶点的四边形是平行四边形,因为DE∥PQ,所以只需DE=PQ.设点P的横坐标是m,则可表示出点P的坐标为______________,点Q的坐标是______________,然后再进行分类讨论.①当0<m<4时,PQ=________________,②当m<0或m>4时,PQ=______________,再根据DE=PQ,即可得到关于m的方程,从而求得符合条件的点P的坐标.解题方法点析对于两个定点、两个动点的问题,一般思路是先用一个未知数假设一个相对较简单的动点坐标,然后把这三点看成定点,用该未知数表示另一个动点的坐标,最后再根据动点应满足的条件,求出相应点的坐标.专题训练1.[2017²临沂] 如图Z6-5,抛物线y=ax2+bx-3经过点A(2,-3),与x轴负半轴交于点B,与y轴交于点C,且OC=3O B.(1)求抛物线的解析式.(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标.(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.图Z6-52.[2017²泰安] 如图Z6-6,是将抛物线y=-x2平移后得到的抛物线,其对称轴为直线x=1,与x轴的一个交点为A(-1,0),另一个交点为B,与y轴的交点为C.(1)求抛物线的函数表达式.(2)若点N 为抛物线上一点,且BC ⊥NC ,求点N 的坐标.(3)点P 是抛物线上一点,点Q 是一次函数y =32x +32的图象上一点,若四边形OAPQ 为平行四边形,则这样的点P ,Q 是否存在?若存在,分别求出点P ,Q 的坐标;若不存在,说明理由.图Z 6-63.[2017²宜宾] 如图Z 6-7,抛物线y =-x 2+bx +c 与x 轴分别交于A (-1,0),B (5,0)两点. (1)求抛物线的解析式.(2)在第二象限内取一点C ,作CD 垂直x 轴于点D ,连结AC ,且AD =5,CD =8,将Rt △ACD 沿x 轴向右平移m 个单位长度,当点C 落在抛物线上时,求m 的值.(3)在(2)的条件下,当点C 第一次落在抛物线上时记为点E ,点P 是抛物线对称轴上一点.试探究在抛物线上是否存在点Q ,使以点B ,E ,P ,Q 为顶点的四边形是平行四边形?若存在,请求出点Q 的坐标;若不存在,请说明理由.图Z 6-74.[2017²齐齐哈尔] 如图Z 6-8,在平面直角坐标系中,把矩形OABC 沿对角线AC 所在的直线折叠,点B 落在点D 处,DC 与y 轴相交于点E .矩形OABC 的边OC ,OA 的长是关于x 的一元二次方程x 2-12x +32=0的两个根,且OA >O C.(1)求线段OA ,OC 的长.(2)证明△ADE ≌△COE ,并求出线段OE 的长. (3)直接写出点D 的坐标.(4)若F 是直线AC 上的一个动点,在平面直角坐标系内是否存在点P ,使以点E ,C ,P ,F 为顶点的四边形是菱形?若存在,请直接写出P点的坐标;若不存在,请说明理由.图Z6-8参考答案类型1 已知三定点,探究第四个点,使之构成平行四边形例1 【例题分层分析】(1)3 (2)分别以AB,BC,AC为平行四边形的对角线.解:答案不唯一,有三种情况:若AB为平行四边形的对角线,则点D的坐标为(-15,4);若BC为平行四边形的对角线,则点D的坐标为(3,-8);若AC为平行四边形的对角线,则点D的坐标为(9,4).例2 【例题分层分析】(1)y=0 x=0解:(1)A (-1,0),C (0,-3),N (-3,0).(2)存在.若AC 为平行四边形的对角线,则点P 的坐标为(2,-3);若AN 为平行四边形的对角线,则点P 的坐标为(-4,3);若CN 为平行四边形的对角线,则点P 的坐标为(-2,-3).把这三个点的坐标分别代入验证,得点P (2,-3)在该抛物线上,因此存在符合条件的点P ,点P 的坐标为(2,-3).类型2 已知两个定点,探求限定条件下的另两个动点,使之构成平行四边形 例3 【例题分层分析】 (1)y =a (x -2)2+3 点A (2)抛物线的函数表达式 (3)AD AD AN AN解:(1)设抛物线的顶点为E ,根据题意,得E (2,3). 设抛物线的函数表达式为y =a (x -2)2+3, 将(4,0)代入,得0=4a +3,即a =-34,∴抛物线的函数表达式为y =-34(x -2)2+3=-34x 2+3x .(2)设直线AC 的函数表达式为y =kx +b (k ≠0), 将(4,0),(0,3)代入,得⎩⎪⎨⎪⎧4k +b =0,b =3,解得⎩⎪⎨⎪⎧k =-34,b =3.故直线AC 的函数表达式为y =-34x +3,将直线AC 的函数表达式与抛物线的函数表达式联立, 得⎩⎪⎨⎪⎧y =-34x +3,y =-34x 2+3x ,解得⎩⎪⎨⎪⎧x =1,y =94或⎩⎪⎨⎪⎧x =4,y =0,∴点D 的坐标为⎝ ⎛⎭⎪⎫1,94.(3)存在,分两种情况考虑:Ⅰ.若AD 为平行四边形的对角线,则有MD ∥AN ,MD =AN .由对称性得到M 1⎝ ⎛⎭⎪⎫3,94,即DM 1=2,故AN 1=2, ∴点N 1的坐标为(2,0).Ⅱ.若AD 为平行四边形的一边,则MN ∥AD ,MN =AD .①当点M 在x 轴上方时,如图①所示. 由Ⅰ知AN 2=2,∴点N 2的坐标为(6,0).②当点M 在x 轴下方时,如图②所示,过点D 作DQ ⊥x 轴于点Q ,过点M 3作M 3P ⊥x 轴于点P ,可得△ADQ ≌△N 3M 3P ,∴M 3P =DQ =94,N 3P =AQ =3,∴点M 3的纵坐标为-94.将y M =-94代入抛物线的函数表达式,得-94=-34x 2+3x ,解得x M =2-7或x M =2+7,∴x N =x M -3=-7-1或7-1, ∴N 3()-7-1,0,N 4( 7-1,0).综上所述,满足条件的点N 有4个,N 1(2,0),N 2(6,0),N 3(-7-1,0),N 4( 7-1,0). 例4 【例题分层分析】(1)①c =4 ②0=4a -2b +c ③b =-2a (2)(t ,-12t 2+t +4) 4(3)y =-x +4 (1,92) (1,3) 32 (m ,-m +4) (m ,-12m 2+m +4) (-12m 2+m +4)-(-m +4)=-12m 2+2m (-m +4)-(-12m 2+m +4)=12m 2-2m解:(1)由抛物线经过点C (0,4)可得c =4,① ∵对称轴为直线x =-b2a =1,∴b =-2a ,②又抛物线经过点A (-2,0), ∴0=4a -2b +c ,③由①②③得a =-12,b =1,c =4,∴抛物线的函数表达式是y =-12x 2+x +4.(2)假设存在满足条件的点F ,如图所示,连结BF ,CF ,OF .过点F 分别作FH ⊥x 轴于点H ,FG ⊥y 轴于点G .设点F 的坐标为(t ,-12t 2+t +4),其中0<t <4,则FH =-12t 2+t +4,FG =t ,∴S △OBF =12OB ²FH =12³4³(-12t 2+t +4)=-t 2+2t +8,S △OFC =12OC ²FG =12³4³t =2t ,∴S 四边形ABFC =S △AOC +S △OBF +S △OFC =4-t 2+2t +8+2t =-t 2+4t +12. 令-t 2+4t +12=17,即t 2-4t +5=0,则判别式=(-4)2-4³5=-4<0, ∴方程t 2-4t +5=0无解,故不存在满足条件的点F . (3)设直线BC 的函数表达式为y =kx +b ′(k ≠0), ∵直线经过点B (4,0),C (0,4),∴⎩⎪⎨⎪⎧4=b′,0=4k +b′,解得⎩⎪⎨⎪⎧b′=4,k =-1, ∴直线BC 的函数表达式是y =-x +4.由y =-12x 2+x +4=-12(x -1)2+92,得D (1,92).∵点E 在直线BC 上,∴点E 的坐标为(1,3),于是DE =92-3=32.若以点D ,E ,P ,Q 为顶点的四边形是平行四边形,∵DE ∥PQ ,∴只需DE =PQ . 设点P 的坐标是(m ,-m +4), 则点Q 的坐标是(m ,-12m 2+m +4).①当0<m <4时,PQ =(-12m 2+m +4)-(-m +4)=-12m 2+2m ,由-12m 2+2m =32,解得m =1或3.当m =1时,线段PQ 与DE 重合,m =1舍去, ∴m =3,此时P 1(3,1).②当m <0或m >4时,PQ =(-m +4)-(-12m 2+m +4)=12m 2-2m ,由12m 2-2m =32,解得m =2±7,经检验符合题意,此时P 2(2+7,2-7),P 3(2-7,2+7).综上所述,满足条件的点P 有3个,分别是P 1(3,1),P 2(2+7,2-7),P 3(2-7,2+7). 专题训练1.解:(1)令x =0,由y =ax 2+bx -3得y =-3, ∴C (0,-3),∴OC =3. 又∵OC =3OB ,∴OB =1, ∴B (-1,0).把点B (-1,0)和A (2,-3)的坐标分别代入y =ax 2+bx -3,得⎩⎪⎨⎪⎧a -b -3=0,4a +2b -3=-3, 解得⎩⎪⎨⎪⎧a =1,b =-2,∴抛物线的解析式为y =x 2-2x -3.(2)过点B 作BE ⊥x 轴,交AC 的延长线于点E . ∵∠BDO =∠BAC ,∠BOD =∠BEA =90°, ∴Rt △BDO ∽Rt △BAE , ∴OD ∶OB =AE ∶BE , ∴OD ∶1=3∶3, ∴OD =1,∴D 点坐标为(0,1)或(0,-1).(3)存在.M 1(0,-3);M 2(-2,5);M 3(4,5).2.解:(1)由题意,设抛物线的函数表达式为y =-(x -1)2+k , 把(-1,0)代入,得0=-(-1-1)2+k ,解得k =4, ∴抛物线的函数表达式为y =-(x -1)2+4=-x 2+2x +3.(2)当x =0时,y =-(0-1)2+4=3,∴点C 的坐标是(0,3),∴OC =3.∵点B 的坐标是(3,0),∴OB =3,∴OC =OB ,则△OBC 是等腰直角三角形,∴∠OCB =45°.过点N 作NH ⊥y 轴,垂足为H .∵∠NCB =90°,∴∠NCH =45°,∴NH =CH ,∴HO =OC +CH =3+CH =3+NH ,设点N 为(a ,-a 2+2a +3),∴a +3=-a 2+2a +3,解得a =0(舍去)或a =1,∴点N 的坐标是(1,4).(3)∵四边形OAPQ 是平行四边形,∴PQ =OA =1,且PQ ∥OA .设P (t ,-t 2+2t +3),则Q (t +1,-t 2+2t +3).将点Q (t +1,-t 2+2t +3)代入y =32x +32,得-t 2+2t +3=32(t +1)+32, 整理得2t 2-t =0,解得t 1=0,t 2=12, ∴-t 2+2t +3的值为3或154, ∴P ,Q 的坐标分别是(0,3),(1,3)或(12,154),(32,154). 3.解:(1)∵抛物线y =-x 2+bx +c 经过A (-1,0),B (5,0)两点,∴⎩⎪⎨⎪⎧-1-b +c =0,-25+5b +c =0,解得⎩⎪⎨⎪⎧b =4,c =5, ∴y =-x 2+4x +5.(2)∵点C 的纵坐标为8,∴令-x 2+4x +5=8,解得x 1=1,x 2=3,当x =1时,m =1-(-6)=7;当x =3时,m =3-(-6)=9.综上所述,将△ADC 沿x 轴向右平移7个或9个单位长度时,点C 落在抛物线上.(3)由(1)得,抛物线的对称轴为直线x =2,即点P 的横坐标为x P =2,由(2)得点E (1,8).若以点B ,E ,P ,Q 为顶点的四边形是平行四边形,则分两类情况讨论:①以BE 为一边的平行四边形,如图①,②,则||x Q -2=4,解得x Q =6或x Q =-2,∴Q (6,-7)或Q (-2,-7);②以BE 为对角线的平行四边形,如图③,则x Q =x B +x E -x P =5+1-2=4,∴Q (4,5).综上所述,使得以点B ,E ,P ,Q 为顶点的四边形是平行四边形的点Q 的坐标为(6,-7)或(-2,-7)或(4,5).4.解:(1)解x 2-12x +32=0得x 1=8,x 2=4.∵边OC ,OA 的长是关于x 的一元二次方程x 2-12x +32=0的两个根,且OA >OC ,∴OA =8,OC =4.(2)∵把矩形OABC 沿对角线AC 所在的直线折叠,点B 落在点D 处,DC 与y 轴相交于点E ,∴AD =AB =CO ,∠ADE =∠ABC =∠COE ,又∵∠AED =∠CEO ,∴△ADE ≌△COE (AAS ),∴CE =AE =OA -OE =8-OE .在Rt △OEC 中,由勾股定理得OE 2+OC 2=CE 2,即OE 2+42=(8-OE )2,∴OE =3.(3)如图所示,作DM ⊥x 轴于点M ,则△COE ∽△CMD ,∴OE DM =CO CM =CE CD,即3DM =44+OM =58,∴OM =125,DM =245,∴点D 的坐标为(-125,245).(4)存在.如图①所示,点P 的坐标为(54,12);①② 如图②所示,点P 的坐标为(4,5); 如图③所示,点P 的坐标为P 3(5,3-2 5);③④ 如图④所示,点P 的坐标为P 4(-5,3+2 5).。
2018年中考数学压轴题专题汇编41动态几何之动点形成的四边形存在性问题(解析版)
综上所述:当 0< b≤4时,四边形 DEFB 是矩形,这时, t 4 16 b2 ,当 b>4 时,四边 形 DEFB 不是矩形。
【考点】 动点问题,三角形中位线定理,平行四边形的判定和性质,相似三角形的判定和性质,勾股定理,
矩形的判定和性质,直线与圆的位置关系,解一元二次方程,圆周角定理,三角形外角定理。
( 3)是否存在 t 的值,使四边形 PDBQ 为菱形?若存在,求出 t 的值;若不存在,说明理由 .并探究如何改
变点 Q 的速度(匀速运动) ,使四边形 PDBQ 在某一时刻成为菱形,求点 Q 的速度 .
4
18
16
【答案】 (1)QB=12-2t,PD= t (2)t= 秒,或 t=3.6 秒。( 3)t=5 秒, Q 的速度为 。
( 1)①根据题意得: 当点 P 与点 A 重合时能构成一个三角形,此时 t=0, ∵点 P 到达 D 点需: 8( s), 点 Q 到达 B 点需: 26( s), ∴当点 P 与点 D 重合时能构成一个三角形,此时 t=8s; 故当 t=0 或 8s 时,以 CD 、PQ 为两边,以梯形的底( AD 或 BC )的一部分(或全部)为第三边能构成一个 三角形; ②∵ BC-AD=2cm , 过点 P 作 PF⊥ BC 于点 F,过点 D 作 DE ⊥ BC 于点 E,
∵当 PQ=CD 时,四边形 PQCD 为等腰梯形, ∴△ PFQ≌△ DCE , EF=PD, ∴ QF=CE=2cm ,
∴当 CQ-PD=QF+CE=4cm 时,四边形 PQCD 为等腰梯形, ∴ t- (24-3t )=4,
∴ t=7 ( s),
∴当 t=7s 时,四边形 PQCD 为等腰梯形; [ 来源:]
挑战中考数学压轴题——平行四边形存在性问题
∵点D关于l的对称点为E,∴E( ,﹣ ),∴DE= ﹣ =2,
若以点D、E、P、Q为顶点的四边形为平行四边形,有两种情况:
当DE为边时,则有PQ∥DE且PQ=DE=2.
∴点P的横坐标为 +2= 或 ﹣2=﹣ ,
∴点P的纵坐标为( ﹣ )2﹣ =﹣ ,
∴点P的坐标为( ,﹣ )或(﹣ ,﹣ );
当DE为对角线时,则可知P点为抛物线的顶点,即P( ,﹣ );
例2.将抛物线沿c1:y=﹣ x2+ 沿x轴翻折,得拋物线c2,如图所示.
(1)请直接写出拋物线c2的表达式.
(2)现将拋物线C1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x轴的交点从左到右依次为A,B;将抛物线C2向右也平移m个单位长度,平移后得到的新抛物线的顶点为N,与x轴交点从左到右依次为D,E.
∵PN⊥x轴,交直线AB于点M,交抛物线于点N,OP=m,
∴P(m,0),M(m, m+1),∴PM= m+1;
(3)由题意可得:N(m,﹣ m2+ m+1),
∵MN∥BC,
∴当MN=BC时,四边形BCMN为平行四边形,
当点P在线段OC上时,MN=﹣ m2+ m,
又∵BC= ,
∴﹣ m2+ m= ,
三角形的顶点,过每个点画对边的平行线,三条直线两两相交,产生3个交点.
四、如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况.
灵活运用向量和中心对称的性质,可以使得解题简便.
典型例题
例1.如图,抛物线:y= x2﹣x﹣ 与x轴交于A、B(A在B左侧),A(﹣1,0)、B(3,0),顶点为C(1,﹣2)
中考数学压轴题之抛物线中存在性问题(平行四边形)
中考数学压轴题之抛物线中存在性问题(平行四边形)
上一篇文章中已经说明了“两定两动”型平行四边形存在性问题如何解答,这一次我们来看看“三定一动”型平行四边形存在性问题如何突破,其实这类问题解题是有一定套路可寻的。
通常情况下,我们首先连接三个定点形成一个小三角形,接着分别过三个定点做对边的平行线,三条平行线相交形成一个大三角形,则大三角形的三个顶点可能就是我们要求的答案。
题目及图像
解答图像
点评:AB长度以及C点坐标对于求M有很大作用,解题时要注意对称性质的使用。
2018中考数学压轴题 专题训练4 平行四边形的存在性问题(word版 无答案)
专题训练四 平行四边形的存在性问题例 1 如图,二次函数 y =23 x 2 13- x 的图像经过△AOB 的三个顶点,其中 A (-1,m ),B (n ,n ). (1)求点 A 、B 的坐标;(2)在坐标平面内找点 C ,使以 A 、O 、B 、C 为顶点的四边形是平行四边形.①这样的点 C 有几个?②能否将抛物线y =23 x 2 13- x 平移后经过 A 、C 两点? 若能,求出平移后经过 A 、C 两点的一条抛物线的解析式;若不能,说明理由.专题直击已知 A (-1, 1),B (2, 2)两点,在坐标平面内找点 C ,使以 A 、O 、B 、C 为顶点的四边形 是平行四边形,求点 C 的坐标.例2 如图,点A(2, 6)在反比例函数的图像上,点C 的坐标为(0, 2),如果点D 在x 轴的正半轴上,点E 在反比例函数的图像上,四边形ACDE 是平行四边形,求边CD 的长.例3 如图1,在平面直角坐标系中,抛物线经过点A(-1,0)、B(3,0)、C(0,-1)三点.(1)求该抛物线的解析式;(2)点Q 在y 轴上,点P 在抛物线上,要使以点Q、P、A、B 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标.例4 已知直线y=2x+3 与y 轴交于点C,与直线x=1 交于点A,AB⊥x 轴于B.点E 是直线AC 上一动点,点F 在x 轴上方的平面内,且使以A、B、E、F 为顶点的四边形是菱形,求点F 的坐标.例5 如图1,在Rt△ABC 中,∠C=90°,AC=6,BC=8,动点P 从点A 开始沿边AC 向点C 以每秒1 个单位长度的速度运动,动点Q 从点C 开始沿边CB 向点B 以每秒2 个单位长度的速度运动,过点P 作PD//BC,交AB 于点D,联结PQ.点P、Q 分别从点A、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t 秒(t≥0).(1)直接用含t 的代数式分别表示:QB=,PD=;(2)是否存在t 的值,使四边形PDBQ 为菱形?若存在,求出t 的值;若不存在,说明理由,并探究如何改变点Q 的速度(匀速运动),使四边形PDBQ 在某一时刻为菱形,求点Q 的速度.例6 如图,在平面直角坐标系中,直线AB 与x 轴,y 轴分别交于点A(4, 0),B(0, 3),点C 的坐标为(0, m),过点C 作CE⊥AB 于点E,点D 为x 轴正半轴的一动点,且满足OD =2OC,连结DE,以DE、DA 为边作平行四边形DEF A.(1)当m=1 时,求AE 的长;(2)当0<m<3 时,若平行四边形DEF A 为矩形,求m 的值;(3)是否存在m 的值,使得平行四边形DEF A 为菱形?若存在,直接写出m 的值;若不存在,请说明理由.例7 将抛物线c1:y = 2 沿x 轴翻折,得到抛物线c2,如图所示.现将抛物线c1 向左平移m 个单位长度,平移后得到新抛物线的顶点为M,与x 轴的交点从左到右依次为A、B;将抛物线c2 向右也平移m 个单位长度,平移后得到新抛物线的顶点为N,与x 轴的交点从左到右依次为D、E.在平移过程中,是否存在以点A、N、E、M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.例8 如图,菱形ABCD 的边长为4,∠B=60°,F、H 分别是AB、CD 的中点,E、G 分别在AD、BC 上,且AE=CG.(1)求证四边形EFGH 是平行四边形;(2)当四边形EFGH 是矩形时,求AE 的长;(3)当四边形EFGH 是菱形时,求AE 的长.。
初中数学_二次函数专题复习—平行四边形存在性问题教学设计学情分析教材分析课后反思
《平行四边形存在性问题》教学设计执教者学情分析本节课是在已经进行过一轮复习,也适当做了一些往年的中考试卷,对于基础知识学生掌握的还是不错的,但对于综合性的题目却感觉困难,特别是动点问题。
对于这类问题存在以下几种情况:1、这类问题无论教师做了多大的努力,对学生来说都比较困难,所以一部分学生放弃作答。
2、一部分学生对动点问题从根本上不理解,勉强照猫画虎,写了不少但不得分。
3、学生对动点问题有一定认识,对分类能进行简单尝试, 但不完整。
针对以上情况,我希望通过本节课的学习,一方面帮助学生树立信心,让他们明白所谓的综合题都是由诸多小知识点组成的,所谓的动态问题可以变为“静”来解决,通过代数解决几何问题另一方面通过例题讲解让学生掌握解决这类题目的解题策略。
效果分析针对学生面临的困难:首先,我在教学时注意层次性,讲究循序渐进,由浅入深,由易到难,不要一步到位,逐步过渡。
其次,注意所选例题的典型性,选了最具代表性的两类动点问题产生的平行四边形形存在性问题,一类一个例题,这样就可由一题推及一类,让学生可触类旁通,达到举一反三的效果。
教学时注重这几个方面:1、利用几何画板动态画图,让学生体会点在运动过程中,图形会跟着发生变化。
在变化的过程中抓住某一瞬间,化“动”为“静”,使其构成平行四边形,再利用所学知识解决问题。
2、注重板书。
通过清晰的板书让学生一目明了如何分析平行四边形存在性问题。
3、注重数学思想方法的渗透。
数学思想方法是数学学科的精髓,是数学素养的重要内容之一,在数学教学和探究活动中始终体现这些数学思想方法,动点问题也不例外,因此,在数学教学中应特别注重这些思想方法的渗透,因为只有让学生充分掌握领会这种思维,才能更有效地运用所学知识,形成求解动点问题的能力。
动点问题中主要体现方程思想,数形结合思想,分类讨论思想等。
方程思想,大多数动点问题到最后都转化为方程形式,然后利用方程来求解。
数形结合思想,动点问题中,所研究的量的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。
初三数学专题5 平行四边形存在性问题
专题5 平行四边形存在性1:如图,在平面直角坐标系xOy 中,已知抛物线22y ax x c =-+与直线y kx b =+都经过(0,3)A -、(3,0)B 两点,该抛物线的顶点为C .(1)求此抛物线和直线AB 的解析式;(2)设直线AB 与该抛物线的对称轴交于点E ,在射线EB 上是否存在一点M ,过M 作x 轴的垂线交抛物线于点N ,使点M 、N 、C 、E 是平行四边形的四个顶点?若存在,求点M 的坐标;若不存在,请说明理由;2:【两定两动:x 轴+抛物线】如图,已知抛物线2(0)y ax bx c a =++≠经过点(3,0)A ,(1,0)B -,(0,3)C -.(1)求该抛物线的解析式;(2)若点Q 在x 轴上,点P 在抛物线上,是否存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.3:【两定两动:对称轴+抛物线】如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于(1,0)A -,(3,0)B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式,并写出它的对称轴;(2)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以B ,C ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.4:【两定两动:斜线+抛物线】如图,在平面直角坐标系中,直线122y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线212y x bx c =-++经过A ,B 两点且与x 轴的负半轴交于点C .(1)求该抛物线的解析式;(2)已知E ,F 分别是直线AB 和抛物线上的动点,当B ,O ,E ,F 为顶点的四边形是平行四边形时,直接写出所有符合条件的E 点的坐标.矩形的存在性问题1:如图,直线y =x -3与坐标轴交于A 、B 两点,抛物线214y x bx c =++经过点B ,与直线y =x -3交于点E (8,5),且与x 轴交于C ,D 两点. (1)求抛物线的解析式;(2)点P 在抛物线上,在坐标平面内是否存在点Q ,使得以点P ,Q ,B ,C 为顶点的四边形是矩形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.菱形的存在性问题1:综合与探究如图,抛物线2y x bx c =++与x 轴交于A 、B 两点,与y 轴交于C 点,OA =2,OC =6,连接AC 和BC .(1)求抛物线的解析式;(2)若点M 是y 轴上的动点,在坐标平面内是否存在点N ,使以点A 、C 、M 、N 为顶点的四边形是菱形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.备用图。
特殊平行四边形动点及存在性问题(压轴题)
特殊平行四边形动点及存在性问题(压轴题)例1】在正方形ABCD中,DM=2,N是AC上的动点,求使得DN+MN最小的N点坐标。
解:由于正方形对称性,不妨设N在AC上且AN=x,则NC=8-x,由勾股定理得DN=sqrt(x^2+4),MN=sqrt((8-x)^2+4),因此DN+MN=sqrt(x^2+4)+sqrt((8-x)^2+4),对XXX求导得到x=2,即N点坐标为(2,6)。
练1】在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点。
1)若E为边OA上的一个动点,求使得△CDE周长最小的E点坐标。
解:由于矩形OACB的对称性,不妨设E在OA上且AE=x,则OE=3-x,CE=4-x,DE=sqrt((3-x)^2+x^2),CD=sqrt((4-x)^2+9),因此△CDE周长为sqrt((3-x)^2+x^2)+sqrt((4-x)^2+9),对其求导得到x=1/2,即E点坐标为(1/2,3/2)。
2)若E、F为边OA上的两个动点,且EF=2,求使得四边形CDEF周长最小的E、F点坐标。
解:同样设AE=x,则EF=2,AF=3-x,OE=3-x/2,OF=2-x/2,CE=4-x,CF=5/2-x/2,DE=sqrt((3-x/2)^2+x^2),DF=sqrt((2-x/2)^2+(5/2-x/2)^2),因此四边形CDEF的周长为sqrt((3-x/2)^2+x^2)+sqrt((2-x/2)^2+(5/2-x/2)^2)+2,对其求导得到x=1/2,即E、F点坐标分别为(1/2,3/2)和(2,1/2)。
例2】在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P 在BC上运动,当三角形△ODP是腰长为5的等腰三角形时,求P点坐标。
解:由于OD=DA=5,因此△ODP是等腰直角三角形,即OP=DP=5/sqrt(2),又因为P在BC上,设BP=x,则PC=4-x,由勾股定理得到x^2+PC^2=OP^2,代入PC=4-x,解得x=2,因此P点坐标为(2,2)。
中考数学解法探究专题:平行四边形的存在性问题
【专题解析】考题研究:存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。
解题攻略:解平行四边形的存在性问题一般分三步:第一步寻找分类标准,第二步画图,第三步计算.难点在于寻找分类标准,分类标准寻找的恰当,可以使解的个数不重复不遗漏,也可以使计算又好又快.如果已知三个定点,探寻平行四边形的第四个顶点,符合条件的有3个点:以已知三个定点为三角形的顶点,过每个点画对边的平行线,三条直线两两相交,产生3个交点.如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况.根据平行四边形的对边平行且相等,灵活运用坐标平移,可以使得计算过程简便.根据平行四边形的中心对称的性质,灵活运用坐标对称,可以使得解题简便.解题思路:这类题目解法的一般思路是:假设存在→推理论证→得出结论。
若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。
由于“存在性”问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。
这里我们主要讨论在平面直角坐标系中平行四边形是否存在的问题。
先假设平行四边形存在,并在坐标系中把平行四边形做出来,再根据平行四边形的性质得出相应的点或边的关系,从而得出结论,在作图的时候要注意分类讨论,把所有的情况考虑进去。
例题解析(2017年真题和2017年模拟)1.已知二次函数的表达式为y=x2+mx+n.(1)若这个二次函数的图象与x轴交于点A(1,0),点B(3,0),求实数m,n的值;(2)若△ABC是有一个内角为30°的直角三角形,∠C为直角,sinA,cosB是方程x2+mx+n=0的两个根,求实数m,n的值.【考点】HA:抛物线与x轴的交点;T7:解直角三角形.【分析】(1)根据点A、B的坐标,利用待定系数法即可求出m、n的值;(2)分∠A=30°或∠B=30°两种情况考虑:当∠A=30°时,求出sinA、cosB的值,利用根与系数的关系即可求出m、n的值;当∠B=30°时,求出sinA、cosB的值,利用根与系数的关系即可求出m、n的值.【解答】解:(1)将A(1,0)、B(3,0)代入y=x2+mx+n中,,解得:,∴实数m=﹣4、n=3.(2)当∠A=30°时,sinA=cosB=,∴﹣m=+,n=×,∴m=﹣1,n=;当∠B=30°时,sinA=cosB=,∴﹣m=+,n=×,∴m=﹣,n=.综上所述:m=﹣1、n=或m=﹣、n=.2.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.【考点】HA:抛物线与x轴的交点;H8:待定系数法求二次函数解析式;T7:解直角三角形.【分析】(1)将点A、B代入抛物线y=﹣x2+ax+b,解得a,b可得解析式;(2)由C点横坐标为0可得P点横坐标,将P点横坐标代入(1)中抛物线解析式,易得P点坐标;(3)由P点的坐标可得C点坐标,由B、C的坐标,利用勾股定理可得BC长,利用sin∠OCB=可得结果.【解答】解:(1)将点A、B代入抛物线y=﹣x2+ax+b可得,,解得,a=4,b=﹣3,∴抛物线的解析式为:y=﹣x2+4x﹣3;(2)∵点C在y轴上,所以C点横坐标x=0,∵点P是线段BC的中点,∴点P横坐标x P==,∵点P在抛物线y=﹣x2+4x﹣3上,∴y P=﹣3=,∴点P的坐标为(,);(3)∵点P的坐标为(,),点P是线段BC的中点,∴点C的纵坐标为2×﹣0=,∴点C的坐标为(0,),∴BC==,∴sin∠OCB===.3.如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B 两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)抛物线的解析式可变形为y=(x+1)(x﹣3),从而可得到点A 和点B的坐标,然后再求得点E的坐标,设直线AE的解析式为y=kx+b,将点A 和点E的坐标代入求得k和b的值,从而得到AE的解析式;(2)设直线CE的解析式为y=mx﹣,将点E的坐标代入求得m的值,从而得到直线CE的解析式,过点P作PF∥y轴,交CE与点F.设点P的坐标为(x,x2﹣x﹣),则点F(x,x﹣),则FP=x2+x.由三角形的面积公式得到△EPC的面积=﹣x2+x,利用二次函数的性质可求得x的值,从而得到点P的坐标,作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、M.然后利用轴对称的性质可得到点G和点H的坐标,当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH;(3)由平移后的抛物线经过点D,可得到点F的坐标,利用中点坐标公式可求得点G的坐标,然后分为QG=FG、QG=QF,FQ=FQ三种情况求解即可.【解答】解:(1)∵y=x2﹣x﹣,∴y=(x+1)(x﹣3).∴A(﹣1,0),B(3,0).当x=4时,y=.∴E(4,).设直线AE的解析式为y=kx+b,将点A和点E的坐标代入得:,解得:k=,b=.∴直线AE的解析式为y=x+.(2)设直线CE的解析式为y=mx﹣,将点E的坐标代入得:4m﹣=,解得:m=.∴直线CE的解析式为y=x﹣.过点P作PF∥y轴,交CE与点F.设点P的坐标为(x,x2﹣x﹣),则点F(x,x﹣),则FP=(x﹣)﹣(x2﹣x﹣)=x2+x.∴△EPC的面积=×(x2+x)×4=﹣x2+x.∴当x=2时,△EPC的面积最大.∴P(2,﹣).如图2所示:作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、M.∵K是CB的中点,∴k(,﹣).∴tan∠KCP=.∵OD=1,OC=,∴tan∠OCD=.∴∠OCD=∠KCP=30°.∴∠KCD=30°.∵k是BC的中点,∠OCB=60°,∴OC=CK.∴点O与点K关于CD对称.∴点G与点O重合.∴点G(0,0).∵点H与点K关于CP对称,∴点H的坐标为(,﹣).∴KM+MN+NK=MH+MN+GN.当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH.∴GH==3.∴KM+MN+NK的最小值为3.(3)如图3所示:∵y′经过点D,y′的顶点为点F,∴点F(3,﹣).∵点G为CE的中点,∴G(2,).∴FG==.∴当FG=FQ时,点Q(3,),Q′(3,).当GF=GQ时,点F与点Q″关于y=对称,∴点Q″(3,2).当QG=QF时,设点Q1的坐标为(3,a).由两点间的距离公式可知:a+=,解得:a=﹣.∴点Q1的坐标为(3,﹣).综上所述,点Q的坐标为(3,)或′(3,)或(3,2)或(3,﹣).4.如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y 轴交于点C,且OC=3OB.(1)求抛物线的解析式;(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N 为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)待定系数法即可得到结论;(2)连接AC,作BF⊥AC交AC的延长线于F,根据已知条件得到AF∥x轴,得到F(﹣1,﹣3),设D(0,m),则OD=|m|即可得到结论;(3)设M(a,a2﹣2a﹣3),N(1,n),①以AB为边,则AB∥MN,AB=MN,如图2,过M作ME⊥对称轴y于E,AF⊥x轴于F,于是得到△ABF≌△NME,证得NE=AF=3,ME=BF=3,得到M(4,5)或(﹣2,11);②以AB为对角线,BN=AM,BN∥AM,如图3,则N在x轴上,M与C重合,于是得到结论.【解答】解:(1)由y=ax2+bx﹣3得C(0.﹣3),∴OC=3,∵OC=3OB,∴OB=1,∴B(﹣1,0),把A(2,﹣3),B(﹣1,0)代入y=ax2+bx﹣3得,∴,∴抛物线的解析式为y=x2﹣2x﹣3;(2)设连接AC,作BF⊥AC交AC的延长线于F,∵A(2,﹣3),C(0,﹣3),∴AF∥x轴,∴F(﹣1,﹣3),∴BF=3,AF=3,∴∠BAC=45°,设D(0,m),则OD=|m|,∵∠BDO=∠BAC,∴∠BDO=45°,∴OD=OB=1,∴|m|=1,∴m=±1,∴D1(0,1),D2(0,﹣1);(3)设M(a,a2﹣2a﹣3),N(1,n),①以AB为边,则AB∥MN,AB=MN,如图2,过M作ME⊥对称轴y于E,AF ⊥x轴于F,则△ABF≌△NME,∴NE=AF=3,ME=BF=3,∴|a﹣1|=3,∴a=3或a=﹣2,∴M(4,5)或(﹣2,5);②以AB为对角线,BN=AM,BN∥AM,如图3,则N在x轴上,M与C重合,∴M(0,﹣3),综上所述,存在以点A,B,M,N为顶点的四边形是平行四边形,M(4,5)或(﹣2,5)或(0,﹣3).5.如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在异于B、D的点Q,使△BDQ中BD边上的高为2?若存在求出点Q的坐标;若不存在请说明理由.【考点】HF:二次函数综合题.【分析】(1)可设抛物线解析式为顶点式,由B点坐标可求得抛物线的解析式,则可求得D点坐标,利用待定系数法可求得直线BD解析式;(2)设出P点坐标,从而可表示出PM的长度,利用二次函数的性质可求得其最大值;(3)过Q作QG∥y轴,交BD于点G,过Q和QH⊥BD于H,可设出Q点坐标,表示出QG的长度,由条件可证得△DHG为等腰直角三角形,则可得到关于Q 点坐标的方程,可求得Q点坐标.【解答】解:(1)∵抛物线的顶点C的坐标为(1,4),∴可设抛物线解析式为y=a(x﹣1)2+4,∵点B(3,0)在该抛物线的图象上,∴0=a(3﹣1)2+4,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3,∵点D在y轴上,令x=0可得y=3,∴D点坐标为(0,3),∴可设直线BD解析式为y=kx+3,把B点坐标代入可得3k+3=0,解得k=﹣1,∴直线BD解析式为y=﹣x+3;(2)设P点横坐标为m(m>0),则P(m,﹣m+3),M(m,﹣m2+2m+3),∴PM=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m=﹣(m﹣)2+,∴当m=时,PM有最大值;(3)如图,过Q作QG∥y轴交BD于点G,交x轴于点E,作QH⊥BD于H,设Q(x,﹣x2+2x+3),则G(x,﹣x+3),∴QG=|﹣x2+2x+3﹣(﹣x+3)|=|﹣x2+3x|,∵△BOD是等腰直角三角形,∴∠DBO=45°,∴∠HGQ=∠BGE=45°,当△BDQ中BD边上的高为2时,即QH=HG=2,∴QG=×2=4,∴|﹣x2+3x|=4,当﹣x2+3x=4时,△=9﹣16<0,方程无实数根,当﹣x2+3x=﹣4时,解得x=﹣1或x=4,∴Q(﹣1,0)或(4,﹣5),综上可知存在满足条件的点Q,其坐标为(﹣1,0)或(4,﹣5).6.如图所示,在平面直角坐标系中xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)求A、B两点的坐标及抛物线的对称轴;(2)求直线l的函数表达式(其中k、b用含a的式子表示);(3)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a 的值;(4)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.【考点】HF:二次函数综合题.【分析】(1)解方程即可得到结论;(2)根据直线l:y=kx+b过A(﹣1,0),得到直线l:y=kx+k,解方程得到点D 的横坐标为4,求得k=a,得到直线l的函数表达式为y=ax+a;(3)过E作EF∥y轴交直线l于F,设E(x,ax2﹣2ax﹣3a),得到F(x,ax+a),求出EF=ax2﹣3ax﹣4a,根据三角形的面积公式列方程即可得到结论;(4)令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,得到D(4,5a),设P(1,m),①若AD是矩形ADPQ的一条边,②若AD是矩形APDQ的对角线,列方程即可得到结论.【解答】解:(1)当y=0时,ax2﹣2ax﹣3a=0,解得:x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),对称轴为直线x==1;(2)∵直线l:y=kx+b过A(﹣1,0),∴0=﹣k+b,即k=b,∴直线l:y=kx+k,∵抛物线与直线l交于点A,D,∴ax2﹣2ax﹣3a=kx+k,即ax2﹣(2a+k)x﹣3a﹣k=0,∵CD=4AC,∴点D的横坐标为4,∴﹣3﹣=﹣1×4,∴k=a,∴直线l的函数表达式为y=ax+a;(3)过E作EF∥y轴交直线l于F,设E(x,ax2﹣2ax﹣3a),则F(x,ax+a),EF=ax2﹣2ax﹣3a﹣ax﹣a=ax2﹣3ax﹣4a,=S△AFE﹣S△CEF=(ax2﹣3ax﹣4a)(x+1)﹣(ax2﹣3ax﹣4a)x=(ax2∴S△ACE﹣3ax﹣4a)=a(x﹣)2﹣a,∴△ACE的面积的最大值=﹣a,∵△ACE的面积的最大值为,∴﹣a=,解得a=﹣;(4)以点A、D、P、Q为顶点的四边形能成为矩形,令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,解得:x1=1,x2=4,∴D(4,5a),∵抛物线的对称轴为直线x=1,设P(1,m),①若AD是矩形ADPQ的一条边,则易得Q(﹣4,21a),m=21a+5a=26a,则P(1,26a),∵四边形ADPQ是矩形,∴∠ADP=90°,∴AD2+PD2=AP2,∴52+(5a)2+32+(26﹣5a)2=22+(26a)2,即a2=,∵a<0,∴a=﹣,∴P(1,﹣);②若AD是矩形APDQ的对角线,则易得Q(2,﹣3a),m=5a﹣(﹣3a)=8a,则P(1,8a),∵四边形APDQ是矩形,∴∠APD=90°,∴AP2+PD2=AD2,∴(﹣1﹣1)2+(8a)2+(1﹣4)+(8a﹣5a)2=52+(5a)2,即a2=,∵a<0,∴a=﹣,∴P(1,﹣4),综上所述,点A、D、P、Q为顶点的四边形能成为矩形,点P(1,﹣)或(1,﹣4).7.如图,抛物线y=x2+bx+c经过点B(3,0),C(0,﹣2),直线l:y=﹣x ﹣交y轴于点E,且与抛物线交于A,D两点,P为抛物线上一动点(不与A,D重合).(1)求抛物线的解析式;(2)当点P在直线l下方时,过点P作PM∥x轴交l于点M,PN∥y轴交l于点N,求PM+PN的最大值.(3)设F为直线l上的点,以E,C,P,F为顶点的四边形能否构成平行四边形?若能,求出点F的坐标;若不能,请说明理由.【考点】HF:二次函数综合题.【分析】(1)把B(3,0),C(0,﹣2)代入y=x2+bx+c解方程组即可得到结论;(2)设P(m,m2﹣m﹣2),得到N(m,﹣m﹣),M(﹣m2+2m+2,m2﹣m﹣2),根据二次函数的性质即可得到结论;(3)求得E(0,﹣),得到CE=,设P(m,m2﹣m﹣2),①以CE为边,根据CE=PF,列方程得到m=1,m=0(舍去),②以CE为对角线,连接PF 交CE于G,CG=GE,PG=FG,得到G(0,﹣),设P(m,m2﹣m﹣2),则F(﹣m,m﹣),列方程得到此方程无实数根,于是得到结论.【解答】解:(1)把B(3,0),C(0,﹣2)代入y=x2+bx+c得,,∴∴抛物线的解析式为:y=x2﹣x﹣2;(2)设P(m,m2﹣m﹣2),∵PM∥x轴,PN∥y轴,M,N在直线AD上,∴N(m,﹣m﹣),M(﹣m2+2m+2,m2﹣m﹣2),∴PM+PN=﹣m2+2m+2﹣m﹣m﹣﹣m2+m+2=﹣m2+m+=﹣(m ﹣)2+,∴当m=时,PM+PN的最大值是;(3)能,理由:∵y=﹣x﹣交y轴于点E,∴E(0,﹣),∴CE=,设P(m,m2﹣m﹣2),若以E,C,P,F为顶点的四边形能构成平行四边形,①以CE为边,∴CE∥PF,CE=PF,∴F(m,﹣m﹣),∴﹣m﹣﹣m2+m+2=,∴m=1,m=0(舍去),②以CE为对角线,连接PF交CE于G,∴CG=GE,PG=FG,∴G(0,﹣),设P(m,m2﹣m﹣2),则F(﹣m,m﹣),∴×(m2﹣m﹣2+m﹣)=﹣,∴m=1,m=0(舍去),∴此方程无实数根,综上所述,当m=1时,以E,C,P,F为顶点的四边形能构成平行四边形.8.如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P 作PD⊥x轴于点D,交直线BC于点E.(1)求抛物线解析式;(2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积;(3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在上,直接写出点N的坐标;若不存在,请说明理由.【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】【考点】HF:二次函数综合题.【分析】(1)由抛物线y=ax2+bx﹣2的对称轴是直线x=1,A(﹣2,0)在抛物线上,于是列方程即可得到结论;(2)根据函数解析式得到B(4,0),C(0,﹣2),求得BC的解析式为y=x ﹣2,设D(m,0),得到E(m,m﹣2),P(m,m2﹣m﹣2),根据已知条件列方程得到m=5,m=0(舍去),求得D(5,0),P(5,),E(5,),根据三角形的面积公式即可得到结论;(3)设M(n,n﹣2),①以BD为对角线,根据菱形的性质得到MN垂直平分BD,求得n=4+,于是得到N(,﹣);②以BD为边,根据菱形的性质得到MN∥BD,MN=BD=MD=1,过M作MH⊥x轴于H,根据勾股定理列方程即可得到结论.【解答】解:(1)∵抛物线y=ax2+bx﹣2的对称轴是直线x=1,A(﹣2,0)在抛物线上,∴,解得:,抛物线解析式为y=x 2﹣x ﹣2; (2)令y=x 2﹣x ﹣2=0,解得:x 1=﹣2,x 2=4,当x=0时,y=﹣2,∴B (4,0),C (0,﹣2),设BC 的解析式为y=kx +b ,则,解得:,∴y=x ﹣2,设D (m ,0),∵DP ∥y 轴,∴E (m , m ﹣2),P (m , m 2﹣m ﹣2),∵OD=4PE ,∴m=4(m 2﹣m ﹣2﹣m +2),∴m=5,m=0(舍去),∴D (5,0),P (5,),E (5,),∴四边形POBE 的面积=S △OPD ﹣S △EBD =×5×﹣1×=; (3)存在,设M (n , n ﹣2),①以BD 为对角线,如图1,∵四边形BNDM 是菱形,∴MN 垂直平分BD ,∴n=4+,∴M (,),∵M ,N 关于x 轴对称,∴N (,﹣);②以BD 为边,如图2,∵四边形BNDM 是菱形,∴MN ∥BD ,MN=BD=MD=1,过M 作MH ⊥x 轴于H ,∴MH2+DH2=DM2,即(n﹣2)2+(n﹣5)2=12,∴n1=4(不合题意),n2=5.6,∴N(4.6,),同理(n﹣2)2+(4﹣n)2=1,∴n1=4+(不合题意,舍去),n2=4﹣,∴N(5﹣,),③以BD为边,如图3,过M作MH⊥x轴于H,∴MH2+BH2=BM2,即(n﹣2)2+(n﹣4)2=12,∴n1=4+,n2=4﹣(不合题意,舍去),∴N(5+,),综上所述,当N(,﹣)或(4.6,)或(5﹣,)或(5+,),以点B,D,M,N为顶点的四边形是菱形.学科网9.如图,已知二次函数y=x2﹣4的图象与x轴交于A,B两点,与y轴交于点C,⊙C的半径为,P为⊙C上一动点.(1)点B,C的坐标分别为B(3,0),C(0,﹣4);(2)是否存在点P,使得△PBC为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)连接PB,若E为PB的中点,连接OE,则OE的最大值=.【考点】HF:二次函数综合题.【分析】(1)在抛物线解析式中令y=0可求得B点坐标,令x=0可求得C点坐标;(2)①当PB与⊙相切时,△PBC为直角三角形,如图1,连接BC,根据勾股定理得到BC=5,BP2=2,过P2作P2E⊥x轴于E,P2F⊥y轴于F,根据相似三角形的性质得到==2,设OC=P2E=2x,CP2=OE=x,得到BE=3﹣x,CF=2x﹣4,于是得到FP2=,EP2=,求得P2(,﹣),过P1作P1G⊥x轴于G,P1H ⊥y轴于H,同理求得P1(﹣1,﹣2),②当BC⊥PC时,△PBC为直角三角形,根据相似三角形的判定和性质即可得到结论;(3)如图3中,连接AP,∵OB=OA,BE=EP,推出OE=AP,可知当AP最大时,OE的值最大,【解答】解:(1)在y=x2﹣4中,令y=0,则x=±3,令x=0,则y=﹣4,∴B(3,0),C(0,﹣4);故答案为:3,0;0,﹣4;(2)存在点P,使得△PBC为直角三角形,①当PB与⊙相切时,△PBC为直角三角形,如图(2)a,连接BC,∵OB=3.OC=4,∴BC=5,∵CP2⊥BP2,CP2=,∴BP2=2,过P2作P2E⊥x轴于E,P2F⊥y轴于F,则△CP2F∽△BP2E,四边形OCP2B是矩形,∴==,设OC=P2E=2x,CP2=OE=x,∴BE=3﹣x,CF=2x﹣4,∴==2,∴x=,2x=,∴FP2=,EP2=,∴P2(,﹣),过P1作P1G⊥x轴于G,P1H⊥y轴于H,同理求得P1(﹣1,﹣2),②当BC⊥PC时,△PBC为直角三角形,过P4作P4H⊥y轴于H,则△BOC∽△CHP4,∴==,∴CH=,P4H=,∴P4(,﹣﹣4);同理P3(﹣,﹣4);综上所述:点P的坐标为:(﹣1,﹣2)或(,﹣)或(,﹣﹣4)或(﹣,﹣4);(3)如图(3),连接AP,∵OB=OA,BE=EP,∴OE=AP,∴当AP最大时,OE的值最大,∵当P在AC的延长线上时,AP的值最大,最大值=5+,∴OE的最大值为故答案为:.10.如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线y=ax2+bx+4过点B,C两点,且与x轴的一个交点为D(﹣2,0),点P是线段CB上的动点,设CP=t(0<t<10).(1)请直接写出B、C两点的坐标及抛物线的解析式;(2)过点P作PE⊥BC,交抛物线于点E,连接BE,当t为何值时,∠PBE=∠OCD?(3)点Q是x轴上的动点,过点P作PM∥BQ,交CQ于点M,作PN∥CQ,交BQ于点N,当四边形PMQN为正方形时,请求出t的值.【考点】HF:二次函数综合题.【分析】(1)由抛物线的解析式可求得C点坐标,由矩形的性质可求得B点坐标,由B、D的坐标,利用待定系数法可求得抛物线解析式;(2)可设P(t,4),则可表示出E点坐标,从而可表示出PB、PE的长,由条件可证得△PBE∽△OCD,利用相似三角形的性质可得到关于t的方程,可求得t 的值;(3)当四边形PMQN为正方形时,则可证得△COQ∽△QAB,利用相似三角形的性质可求得CQ的长,在Rt△BCQ中可求得BQ、CQ,则可用t分别表示出PM 和PN,可得到关于t的方程,可求得t的值.【解答】解:(1)在y=ax2+bx+4中,令x=0可得y=4,∴C(0,4),∵四边形OABC为矩形,且A(10,0),∴B(10,4),把B、D坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2+x+4;(2)由题意可设P(t,4),则E(t,﹣t2+t+4),∴PB=10﹣t,PE=﹣t2+t+4﹣4=﹣t2+t,∵∠BPE=∠COD=90°,∠PBE=∠OCD,∴△PBE∽△OCD,∴=,即BP•OD=CO•PE,∴2(10﹣t)=4(﹣t2+t),解得t=3或t=10(不合题意,舍去),∴当t=3时,∠PBE=∠OCD;(3)当四边形PMQN为正方形时,则∠PMC=∠PNB=∠CQB=90°,PM=PN,∴∠CQO+∠AQB=90°,∵∠CQO+∠OCQ=90°,∴∠OCQ=∠AQB,∴Rt△COQ∽Rt△QAB,∴=,即OQ•AQ=CO•AB,设OQ=m,则AQ=10﹣m,∴m(10﹣m)=4×4,解得m=2或m=8,①当m=2时,CQ==2,BQ==4,∴sin∠BCQ==,sin∠CBQ==,∴PM=PC•sin∠PCQ=t,PN=PB•sin∠CBQ=(10﹣t),∴t=(10﹣t),解得t=,②当m=8时,同理可求得t=,∴当四边形PMQN为正方形时,t的值为或.11.如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;=8S (3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN,且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说明△QAB理由.【考点】HF:二次函数综合题.【分析】(1)连接OC,由勾股定理可求得MN的长,则可求得OC的长,由垂径定理可求得OD的长,在Rt△OCD中,可求得CD的长,则可求得PD的长,可求得P点坐标;(2)可设抛物线的解析式为顶点式,再把N点坐标代入可求得抛物线解析式;=8S△QAB可求得点Q到x (3)由抛物线解析式可求得A、B的坐标,由S四边形OPMN轴的距离,且点Q只能在x轴的下方,则可求得Q点的坐标,再证明△QAB∽△OBN即可.【解答】解:(1)如图,连接OC,∵M(4,0),N(0,3),∴OM=4,ON=3,∴MN=5,∴OC=MN=,∵CD为抛物线对称轴,∴OD=MD=2,在Rt△OCD中,由勾股定理可得CD===,∴PD=PC﹣CD=﹣=1,∴P(2,﹣1);(2)∵抛物线的顶点为P(2,﹣1),∴设抛物线的函数表达式为y=a(x﹣2)2﹣1,∵抛物线过N(0,3),∴3=a(0﹣2)2﹣1,解得a=1,∴抛物线的函数表达式为y=(x﹣2)2﹣1,即y=x2﹣4x+3;(3)在y=x2﹣4x+3中,令y=0可得0=x2﹣4x+3,解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∵ON=3,OM=4,PD=1,=S△OMP+S△OMN=OM•PD+OM•ON=×4×1+×4×3=8=8S△QAB,∴S四边形OPMN=1,∴S△QAB设Q点纵坐标为y,则×2×|y|=1,解得y=1或y=﹣1,当y=1时,则△QAB为钝角三角形,而△OBN为直角三角形,不合题意,舍去,当y=﹣1时,可知P点即为所求的Q点,∵D为AB的中点,∴AD=BD=QD,∴△QAB为等腰直角三角形,∵ON=OB=3,∴△OBN为等腰直角三角形,∴△QAB∽△OBN,综上可知存在满足条件的点Q,其坐标为(2,﹣1).12.如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD ∥y轴交BC于点D,求△DMH周长的最大值.【考点】HF:二次函数综合题.【分析】(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可求得∠OCB=60°,则在Rt△AOC中可得∠ACO=30°,利用三角函数的定义可求得OA,则可求得A点坐标;(2)由A、B两点坐标,利用待定系数法可求得抛物线解析式;(3)由平行线的性质可知∠MDH=∠BCO=60°,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,则可表示出DM的长,从而可表示出△DMH的周长,利用二次函数的性质可求得其最大值.【解答】解:(1)∵直线y=﹣x+分别与x轴、y轴交于B、C两点,∴B(3,0),C(0,),∴OB=3,OC=,∴tan∠BCO==,∴∠BCO=60°,∵∠ACB=90°,∴∠ACO=30°,∴=tan30°=,即=,解得AO=1,∴A(﹣1,0);(2)∵抛物线y=ax2+bx+经过A,B两点,∴,解得,∴抛物线解析式为y=﹣x2+x+;学科网(3)∵MD∥y轴,MH⊥BC,∴∠MDH=∠BCO=60°,则∠DMH=30°,∴DH=DM,MH=DM,∴△DMH的周长=DM+DH+MH=DM+DM+DM=DM,∴当DM有最大值时,其周长有最大值,∵点M是直线BC上方抛物线上的一点,∴可设M(t,﹣t2+t+),则D(t,﹣t+),∴DM=﹣t2+t+),则D(t,﹣t+),∴DM=﹣t2+t+﹣(﹣t+)=﹣t2+t=﹣(t﹣)2+,∴当t=时,DM有最大值,最大值为,此时DM=×=,即△DMH周长的最大值为.13.如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6.(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.【考点】HF:二次函数综合题.【分析】(1)由条件可求得B、C坐标,利用待定系数法可求得抛物线解析式,进一步可求得D点坐标;(2)过F作FG⊥x轴于点G,可设出F点坐标,利用△FAG∽△BDE,由相似三角形的性质可得到关于F点坐标的方程,可求得F点的坐标;(3)可求得P点坐标,设T为菱形对角线的交点,设出PT的长为n,从而可表示出M点的坐标,代入抛物线解析式可得到n的方程,可求得n的值,从而可求得MN的长.【解答】解:(1)∵OB=OC=6,∴B(6,0),C(0,﹣6),∴,解得,∴抛物线解析式为y=x2﹣2x﹣6,∵y=x2﹣2x﹣6=(x﹣2)2﹣8,∴点D的坐标为(2,﹣8);(2)如图1,过F作FG⊥x轴于点G,设F(x,x2﹣2x﹣6),则FG=|x2﹣2x﹣6|,在y=x2﹣2x﹣6中,令y=0可得x2﹣2x﹣6=0,解得x=﹣2或x=6,∴A(﹣2,0),∴OA=2,则AG=x+2,∵B(6,0),D(2,﹣8),∴BE=6﹣2=4,DE=8,当∠FAB=∠EDB时,且∠FGA=∠BED,∴△FAG∽△BDE,∴=,即==,当点F在x轴上方时,则有=,解得x=﹣2(舍去)或x=7,此进F 点坐标为(7,);当点F在x轴上方时,则有=﹣,解得x=﹣2(舍去)或x=5,此进F点坐标为(5,﹣);综上可知F点的坐标为(7,)或(5,﹣);(3)∵点P在x轴上,∴由菱形的对称性可知P(2,0),如图2,当MN在x轴上方时,设T为菱形对角线的交点,∵PQ=MN,∴MT=2PT,设PT=n,则MT=2n,∴M(2+2n,n),∵M在抛物线上,∴n=(2+2n)2﹣2(2+2n)﹣6,解得n=或n=,∴MN=2MT=4n=+1;当MN在x轴下方时,同理可设PT=n,则M(2+2n,﹣n),∴﹣n=(2+2n)2﹣2(2+2n)﹣6,解得n=或n=(舍去),∴MN=2MT=4n=﹣1;综上可知菱形对角线MN的长为+1或﹣1.14.如图,在平面直角坐标系xOy中,抛物线y=x2﹣2x﹣3交x轴于A,B两点(点A在点B的左侧),将该抛物线位于x轴上方曲线记作M,将该抛物线位于x轴下方部分沿x轴翻折,翻折后所得曲线记作N,曲线N交y轴于点C,连接AC、BC.(1)求曲线N所在抛物线相应的函数表达式;(2)求△ABC外接圆的半径;(3)点P为曲线M或曲线N上的一动点,点Q为x轴上的一个动点,若以点B,C,P,Q为顶点的四边形是平行四边形,求点Q的坐标.【考点】HF:二次函数综合题.【分析】(1)由已知抛物线可求得A、B坐标及顶点坐标,利用对称性可求得C 的坐标,利用待定系数法可求得曲线N的解析式;(2)由外接圆的定义可知圆心即为线段BC与AB的垂直平分线的交点,即直线y=x与抛物线对称轴的交点,可求得外接圆的圆心,再利用勾股定理可求得半径的长;(3)设Q(x,0),当BC为平行四边形的边时,则有BQ∥PC且BQ=PC,从而可用x表示出P点的坐标,代入抛物线解析式可得到x的方程,可求得Q点坐标,当BC为平行四边形的对角线时,由B、C的坐标可求得平行四边形的对称中心的坐标,从而可表示出P点坐标,代入抛物线解析式可得到关于x的方程,可求得P点坐标.【解答】解:(1)在y=x2﹣2x﹣3中,令y=0可得x2﹣2x﹣3=0,解得x=﹣1或x=3,∴A(﹣1,0),B(3,0),令x=0可得y=﹣3,又抛物线位于x轴下方部分沿x轴翻折后得到曲线N,∴C(0,3),设曲线N的解析式为y=ax2+bx+c,把A、B、C的坐标代入可得,解得,∴曲线N所在抛物线相应的函数表达式为y=﹣x2+2x+3;(2)设△ABC外接圆的圆心为M,则点M为线段BC、线段AB垂直平分线的交点,∵B(3,0),C(0,3),∴线段BC的垂直平分线的解析式为y=x,又线段AB的解析式为曲线N的对称轴,即x=1,∴M(1,1),∴MB==,即△ABC外接圆的半径为;(3)设Q(t,0),则BQ=|t﹣3|①当BC为平行四边形的边时,如图1,则有BQ∥PC,∴P点纵坐标为3,即过C点与x轴平行的直线与曲线M和曲线N的交点即为点P,x轴上对应的即为点Q,当点P在曲线M上时,在y=x2﹣2x﹣3中,令y=3可解得x=1+或x=1﹣,∴PC=1+或PC=﹣1,当x=1+时,可知点Q在点B的右侧,可得BQ=t﹣3,∴t﹣3=1+,解得t=4+,当x=1﹣时,可知点Q在点B的左侧,可得BQ=3﹣t,∴3﹣t=﹣1,解得t=4﹣,∴Q点坐标为(4+,0)或(4﹣,0);当点P在曲线N上时,在y=﹣x2+2x+3中,令y=3可求得x=0(舍去)或x=2,∴PC=2,此时Q点在B点的右侧,则BQ=t﹣3,∴t﹣3=2,解得t=5,∴Q点坐标为(5,0);②当BC为平行四边形的对角线时,∵B(3,0),C(0,3),∴线段BC的中点为(,),设P(x,y),∴x+t=3,y+0=3,解得x=3﹣t,y=3,∴P(3﹣t,3),当点P在曲线M上时,则有3=(3﹣t)2﹣2(3﹣t)﹣3,解得t=2+或t=2﹣,∴Q点坐标为(2+,0)或(2﹣,0);当点P在曲线N上时,则有3=﹣(3﹣t)2+2(3﹣t)+3,解得t=3(Q、B重合,舍去)或t=1,∴Q点坐标为(1,0);综上可知Q点的坐标为(4+,0)或(4﹣,0)或(5,0)或(2+,0)或(2﹣,0)或(1,0).15.如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1,0)、B(4,0)、C(0,2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于一象限上的一动点,连接PA分别交BC,y 轴与点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1﹣S2的最大值.【考点】HF:二次函数综合题.【分析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)当点D在x轴上方时,则可知当CD∥AB时,满足条件,由对称性可求得D 点坐标;当点D在x轴下方时,可证得BD∥AC,利用AC的解析式可求得直线BD的解析式,再联立直线BD和抛物线的解析式可求得D点坐标;(3)过点P作PH∥y轴交直线BC于点H,可设出P点坐标,从而可表示出PH的长,可表示出△PEB的面积,进一步可表示出直线AP的解析式,可求得F点的坐标,联立直线BC和PA的解析式,可表示出E点横坐标,从而可表示出△CEF的面积,再利用二次函数的性质可求得S1﹣S2的最大值.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+x+2;(2)当点D在x轴上方时,过C作CD∥AB交抛物线于点D,如图1,∵A、B关于对称轴对称,C、D关于对称轴对称,∴四边形ABDC为等腰梯形,∴∠CAO=∠DBA,即点D满足条件,∴D(3,2);当点D在x轴下方时,∵∠DBA=∠CAO,∴BD∥AC,∵C(0,2),∴可设直线AC解析式为y=kx+2,把A(﹣1,0)代入可求得k=2,∴直线AC解析式为y=2x+2,∴可设直线BD解析式为y=2x+m,把B(4,0)代入可求得m=﹣8,∴直线BD解析式为y=2x﹣8,联立直线BD和抛物线解析式可得,解得或,∴D(﹣5,﹣18);综上可知满足条件的点D的坐标为(3,2)或(﹣5,﹣18);(3)过点P作PH∥y轴交直线BC于点H,如图2,设P(t,﹣t2+t+2),由B、C两点的坐标可求得直线BC的解析式为y=﹣x+2,∴H(t,﹣t+2),∴PH=y P﹣y H=﹣t2+t+2﹣(﹣t+2)=﹣t2+2t,设直线AP的解析式为y=px+q,∴,解得,∴直线AP的解析式为y=(﹣t+2)(x+1),令x=0可得y=2﹣t,∴F(0,2﹣t),∴CF=2﹣(2﹣t)=t,联立直线AP和直线BC解析式可得,解得x=,即E点的横坐标为,∴S1=PH(x B﹣x E)=(﹣t2+2t)(4﹣),S2=••,∴S1﹣S2=(﹣t2+2t)(4﹣)﹣••=﹣t2+4t=﹣(t﹣)2+,∴当t=时,有S1﹣S2有最大值,最大值为.。
中考数学压轴题专项汇编专题特殊平行四边形的存在性
专题24 特殊平行四边形的存在性破解策略在平行四边形的基础上增加一些条件,即可得到特殊的平行四边形因而可以结合”等腰三角形的存在性”,”直角三角形的存在性”和”平行四边形的存在性”来解决这类问题. 例题讲解例1:如图,在平面直角坐标系xOy 中,抛物线y =ax 2-2ax -3a (a <0)与x 轴交于A ,B 两点(点A 在点B 的左侧).经过点A 的直线l :y =ax +a 与抛物线的另一交点为C ,设P 是抛物线的对称轴上的一点,点Q 在抛物线上,那么以点A ,C ,P ,Q 为顶点是四边形能否成为矩形?若能,求出点P 的坐标;若不能,请说明理由.解:以点A ,C ,P ,Q 为都顶点的四边形能成为矩形.令ax 2-2a -3a =ax +a .解得x 1=-1,x 2=4, 所以点A 的坐标为(-1,0),C 的坐标为(4,5a ).因为y =ax 2-2ax -3a ,所以抛物线的对称轴为x =1.则x P =1. ①若AC 是矩形的一条边,如图,则x A +x P =x C +x Q ,可得x Q =-4,从而点Q 坐标为(-4,21a ). 同样y A +y P =y C +y Q ,可得y P =26a ,从而点P 坐标为(1,26a ).因为AC =PQ ,所以有22+(26a )2=82+(16a )2, 解得)(77,7721舍去=-=a a ,此时点P 的坐标为(1,7726-)②若AC 是矩形的一条对角线,如图.则x A +x C =x P +x Q ,可得x Q =2,从而点Q 坐标为(2,-3a ). 同样y A +y C =y P +y Q ,可得y P =8a ,从而点P 坐标为(1,8a ).因为AC =PQ ,所以有52+(5a )2=12+(11a )2, 算得)(21,2143舍=-=a a ,所以此时点P 的坐标为(1,-4) 综上可得,以点A ,C ,P ,Q 为顶点的四边形能成为矩形,点P 的坐标为(1,7726-)或(1,-4).例2:如图,在平面直角坐标系xOy 中,菱形ABCD 的中心与原点重合,C ,D 两点的坐标分别为(4,0),(0,3).现有两动点P ,Q 分别从A ,C 同时出发,点P 沿线段AD 向终点D 运动,点Q 沿折线CBA 向终点A 运动,设运动时间为t 秒.(1)菱形ABCD 的边长是_____,面积是_____,高BE 的长是_____;(2)若点P 的速度为每秒1个单位.点Q 的速度为每秒k 个单位.在运动过程中,任何时刻都有对应的k 值,使得△APQ 沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形.请探究当t =4秒时的情形,并求出k 的值.解:(1)5,24,4.8.(2)要使△APQ 沿它的一边翻折,翻折前后的两个三角形组成的四边形为菱形,根据轴对称的性质,翻折前后两个图形是全等的,所以要满足四边形是菱形只需△APQ 为等腰三角形即可.当t =4时,AP =4.①如图,当点Q 在线段BC 上时,PQ ≥BE >AP ,同理,AQ >AP ,所以只存在QA =QP 的等腰三角形.过点Q 作QH ⊥AP 于点H ,交AC 于点F ,则AH =PH =21AP =2 易证:△AFH ∽△CFQ ∽△ADO , 所以43===AODO CQFQ AHFH可得522,1033,23===CQ FQ FH从而k =10114=CQ ②当Q 在BA 上时,有两种情况的等腰三角形存在:(i )如图1,当AP =AQ 时,此时点P ,Q 关于x 轴对称,BQ =PD =1 所以,k =234=+BQ CB (ⅱ)如图3,当PA =PQ 时,过点P 作PH ⊥AB 于点H .易证△AHP ∽△AEB ,所以AH AP AE AB=,其中AE =227.5AB BE -= 所以AH =2825,AQ =2AH =5625,所以k =97450CB BQ +=. (ⅲ)由①可得,AP 的垂直平分线与BC 相交,所以点Q 在线段AB 上时,不存在AQ =PQ 这种情况.综上所得,满足条件的k 值为32,1110,9750.y xP QHE A CB DO例3 如图,二次函数212y x x c =-+的图象与x 轴分别交于A ,B 两点,顶点M 关于x 轴的对称点是M ′.问:是否存在抛物线212y x x c =-+使得四边形AMBM ′为正方形?若存在,请求出抛物线的表达式;若不存在,请说明理由.xyBM′MAO解:存在易得AMBM ’是菱彤,所以当AB =MM ′时,四边彤AMBM ′是正方形 设点A 的坐标为(x 1,0),B 的坐标为(x 2,0).令2102x x c -+=所以x 1+x 2=2,x 1·x 2=2c 所以AB =()212124x x x x +-=48.c -点M 的纵坐标为2421.42ac b c a --=若四边形AMBM ’为正方形,则有214822c c --=⨯.解得1213,.22c c ==-又因为已知抛物线与x 轴有两个交点, 所以()2214140.2b ac c ∆=-=--⨯>解得c <12, 所以c 的值为3.2-.所以存在抛物线21322y x x =--,使得四边彤AMBM '为正方形. 进阶训练1.已知抛物线C 1: y =-2x 2+8x -6与抛物线C 关于原点对称,抛物线C 2与x 轴分别交于点A ,B 两点(点A 在点B 的左侧),顶点为M ,抛物线C 2与x 轴分别交于C ,D 两点(点C 在点D 的左侧)顶点为N . (1)求抛物线C 2的表达式;(2)若抛物线C 1与抛物线C 2同时以每秒1 个单位的速度沿x 轴方向分别向左、向右运动,此时记A ,B ,C ,D ,M ,N 在某一时刻的新位置分别为A',B',C',D',M',N',当点A'与点D'重合时运动停止,在运动过程中,四边形B',M',C',N'能否形成矩形? 若能,求出此时运动时间t (秒)的值;若不能,请说明理由.解:(1)抛物线C 2的表达式为2286y x x =++ (2)能.1=[提示](2)如图,由轴对称的性质可得四边形C 'N 'B 'M '为平行四边形.所以当∠B 'M 'C '=90 或B 'C '=M 'N '时.四边形为矩形,由此可列方程,从面求得t .2.如图,抛物线22725()326y x =--与x 轴的右交点为A ,与y 轴的交点为B ,设E (x ,y )是抛物线上一动点,且位于第四象限,若四边形OEAF 是以OA 为对角线的平行四边形. (1)该四边形的面积为24时,判断平行四边形OEAF 是否为菱形;(2)是否存在点E ,使平行四边形OEAF 为正方形? 若存在,求出点E 的坐标;若不存在,请说明理由.xyAFEBO解:(1)当点E 的坐标为(3,-4)时,平行四边形OAEF 是菱形;(2)不存在,理由:若平行四边形OEAF 是正方形,则OA ⊥EF 且OA =EF .此时的点E 不在抛物线上.3.如图,抛物线经过原点O 与x 轴上一点A (4,0),抛物线的顶点为E ,它的对称轴x 轴交于点D ,直线y =-2x -1经过抛物线上一点B (-2,m ),与抛物线的对称轴交于点F . (1)求抛物线的表达式;(2)Q 是平面内任意一点,点M 从点F 出发,沿对称轴向上以每秒1个单位长度的速度均速运动,设点M 的运动时间为t 秒,是否能使以Q ,A ,E , M 四点顶点的四边形是菱形? 若能,请直接写出点M 的运动时间;若不能,请说明理由.xyDFBE A O解:(1)抛物线的表达式为214y x x =-; (2)能,t 的值为45-,6,45+或132. [提示](2)如图,点M 的运动过程中,以Q ,A ,E ,M 为顶点的四边形是菱形有以下四种情况,根据菱形的性质即可求得对应的t 的值. xyQ 1DFBEA OxQ 2A E BFDOxy Q 3A E BFDOxyQ 4A E BFDO4.如图,抛物线y =-x 2+bx +c 经过A (-1,0)两点,且与y 轴交于点C ,D 是抛物线的顶点,抛物线的对称轴DE 交x 轴于点E ,连结B D .(1)P 是线段BD 上一点,当PE =PC 时,请求出点P 的坐标;(2)在(1)的条件下,过点P 作PF ⊥x 轴于点F ,G 为抛物线上一动点,M 为x 轴上一动点,N 为直线PF 上一动点,当以F ,M ,N ,G 为顶点的四边形是正方形时,请求出点M 的坐标.xyCPDBEAO解:(1)点P 的坐标为(2,2),(2)点M 的坐标为1211213133130000.22⎛⎫⎛⎫⎫⎫-+ ⎪ ⎪⎪⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,,,[提示](1)易求得抛物线的l 表达式为223y x x =-++.所以C (0,3),D (1,4),E (1,0),从而直线BD 的表达式为y =-2x +6.设点P 的坐标为(t ,-2t +6).若PE =P C .则有t 2+(-2t +6-3)()()22126t t =-+-+,解得t =2,从而得到点P 的坐标为(2.2).(2)可设点M 的坐标为(m ,0),则点G 的坐标为(m ,223m m -++).而以F ,M ,N ,G为顶点的四边形是正方形.所以MF =MG ,从而2223m m m -=-++,解得m =,或m =M 的坐标.。
《平行四边形的存在性问题》教学设计
《平行四边形的存在性问题》教学设计一、教学分析:本节内容是北师大版八下数学第六章复习课,平行四边形的存在性问题是中考常考知识点,本节主要采用第三章图形平移的知识去处理两类存在性问题:三定点一动点和两定点两动点,体现了知识间的联系性和渗透性,注重数形结合和分类讨论思想的应用,培养学生善于将未知转化为已知的能力。
二、教学目标:1、知识与技能①通过本节学习,让学生掌握用判定和坐标平移法去处理平行四边形的存在性问题。
②让学生学会用运动变化的观点去处理数学问题,在变化中体现不变性。
进一步培养学生归纳、总结的能力。
2、过程与方法通过小组讨论与交流,培养学生积极思考,主动表达自己的见解与想法,大胆质疑的精神,进一步培养学生分析问题、解决问题的能力。
3、情感、态度与价值观通过解决有一定挑战性的问题,培养敢于面对困难、克服困难的信心和勇气;通过交流展示,敢于发表自己的观点,尊重理解他人的见解,并从交流中获益。
三、教学重点和难点教学重点:用坐标法解决平行四边形的存在性问题。
教学难点:在用坐标法去处理平行四边形的存在性问题时,分类讨论思想的应用。
四、教学过程1、复习回顾:(1).在平面直角坐标系中,直线的解析式为 ,直线 的解析式为。
若 ∥ ,则 ;反之亦然。
L21L 11b x k y +=2L 22b x k y +=1L 2L 1K 2K(2). 在如图所示的单位正方形网络中,已知线段CD是由线段AB的平移得到。
点A(-1,2)的对应点为点C(3,5),则点B(1,0)的对应点D的坐标为 ___。
2、问题导入:如图,直角坐标系中的网格由单位正方形构成,以A,B,C,D为顶点组成平行四边形,A点坐标为(1,0),B点坐标为(5,0),C点坐标为(2,2).(1)画出所有符合条件的平行四边形。
(2)求点D的坐标.3、新知探究如图,在平面直角坐标系中,直线 与x 轴、y 轴相交于A 、B 两点,动点C 在线段OA 上,将线段CB 绕着点C 顺时针旋转到CD ,此时点D 恰好落在直线AB 上时,过点D 作轴于点E 。
中考复习小专题平行四边形存在性问题课件PPT
点A、B是定点, 点Q 、P两个动点
y
Q
P
分两种情况: AB为一条边
(-1,0)A O
B(3,0) x
AB为一条对角线
解:假设在抛物线上存在点P,使得以A、B、Q、P为 顶点的四边形是平行四边形,分两种情况:
(1)当AB为一条边时
y
P
Q
由题意可知 PQ=4,所以P点 横坐标X=±4
Q
A
O
(-1,0)
P
B
x
(3,0)
(2)当AB为一条对角线时
由题意可知AO=BE=1 所以OE=3-1=2
所以P点横坐标X=2
y
Q
E
AO (-1,0)
P
B (3,0)
x
例3.如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m 与该二次函数的图象交于A 、B两点,其中A点的坐标为(3,4),B 点在y轴上
A 1个
B 2个
C 3个
D 4个
D
C
D
A
B
D
2.如图,在平面直角坐标系中,点A坐标(-1,0),B(3,0),C(0,2), 点D是平面内任意一点,若A、B 、C 、D四点恰好构成一 个平行四边形,则在平面内符合这样条件的点D的坐标为
D (-4,2)
C(0,2)
D (4,2)
(-1,0) A O
E B(3,0)
中考复习小专题
平行四边形存在性问题
牛首一中周勇琴
存在性问题是指判断满足某种条件的事物是否存在 的问题,这类问题多以压轴题形式出现,其包涵知 识覆盖面较广,综合性较强,题意构思非常精巧, 解题方法灵活,对学生分析问题和解决问题的能力 要求较高,是近几年中考的“热点”,更是 难点。 存在性问题类型很多,今天这节课只研究
二次函数压轴题之平行四边形存在性问题
平行四边形存在性问题考虑到求证平行四边形存在,必先了解平行四边形性质: (1)对应边平行且相等; (2)对角线互相平分.这是图形的性质,我们现在需要的是将其性质运用在在坐标系中: (1)对边平行且相等可转化为:A B D CAB DC x x x x y y y y -=-⎧⎨-=-⎩,可以理解为点B 移动到点A ,点C 移动到点D ,移动路径完全相同.y D -y Cx D -x Cy A -y Bx A -x BABC D(2)对角线互相平分转化为:2222A CB DAC BD x x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩,可以理解为AC 的中点也是BD 的中点.DCBA【小结】虽然由两个性质推得的式子并不一样,但其实可以化为统一:A B D C A C D BA B D C AC D B x x x x x x x x y y y y y y y y -=-+=+⎧⎧→⎨⎨-=-+=+⎩⎩, 2222A CB DAC BD x x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩→A C B D A C B D x x x x y y y y +=+⎧⎨+=+⎩. 当AC 和BD 为对角线时,结果可简记为:A C B D +=+(各个点对应的横纵坐标相加)以上是对于平行四边形性质的分析,而我们要求证的是平行四边形存在性问题,此处当有一问:若坐标系中的4个点A 、B 、C 、D 满足“A +C =B +D ”,则四边形ABCD 是否一定为平行四边形?反例如下:D之所以存在反例是因为“四边形ABCD 是平行四边形”与“AC 、BD 中点是同一个点”并不是完全等价的转化,故存在反例.虽有反例,但并不影响运用此结论解题,另外,还需注意对对角线的讨论: (1)四边形ABCD 是平行四边形:AC 、BD 一定是对角线.(2)以A 、B 、C 、D 四个点为顶点是四边形是平行四边形:对角线不确定需要分类讨论.【题型分类】平行四边形存在性问题通常可分为“三定一动”和“两定两动”两大类问题. 1.三定一动已知A (1,2)B (5,3)C (3,5),在坐标系内确定点D 使得以A 、B 、C 、D 四个点为顶点的四边形是平行四边形.D 3D 2D 1OyxCBA思路1:利用对角线互相平分,分类讨论:设D 点坐标为(m ,n ),又A (1,2)B (5,3)C (3,5),可得: (1)BC 为对角线时,531352m n +=+⎧⎨+=+⎩,可得()17,6D ;(2)AC 为对角线时,135253mn +=+⎧⎨+=+⎩,解得()21,4D -;(3)AB 为对角线时,153235mn +=+⎧⎨+=+⎩,解得()33,0D .当然,如果对这个计算过程非常熟悉的话,也不用列方程解,直接列算式即可. 比如:1=D B C A +-,2=D A C B +-,3D A B C =+-.(此处特指点的横纵坐标相加减)2.两定两动已知A (1,1)、B (3,2),点C 在x 轴上,点D 在y 轴上,且以A 、B 、C 、D 为顶点的四边形是平行四边形,求C 、D 坐标.【分析】设C 点坐标为(m ,0),D 点坐标为(0,n ),又A (1,1)、B (3,2). (1)当AB 为对角线时,130120m n +=+⎧⎨+=+⎩,解得43m n =⎧⎨=⎩,故C (4,0)、D (0,3);(2)当AC 为对角线时,130102m n +=+⎧⎨+=+⎩,解得21m n =⎧⎨=-⎩,故C (2,0)、D (0,-1);(3)当AD 为对角线时,103120m n +=+⎧⎨+=+⎩,解得21m n =-⎧⎨=⎩,故C (-2,0)、D (0,1).【动点综述】“三定一动”的动点和“两定两动”的动点性质并不完全一样,“三定一动”中动点是在平面中,横纵坐标都不确定,需要用两个字母表示,这样的我们姑且称为“全动点”,而有一些动点在坐标轴或者直线或者抛物线上,用一个字母即可表示点坐标,称为“半动点”.从上面例子可以看出,虽然动点数量不同,但本质都是在用两个字母表示出4个点坐标.若把一个字母称为一个“未知量”也可理解为:全动点未知量=半动点未知量×2.找不同图形的存在性最多可以有几个未知量,都是根据图形决定的,像平行四边形,只能有2个未知量.究其原因,在于平行四边形两大性质: (1)对边平行且相等; (2)对角线互相平分.但此两个性质统一成一个等式: A C B D AC BD x x x x y y y y +=+⎧⎨+=+⎩,两个等式,只能允许最多存在两个未知数,即我们刚刚所讲的平行四边形存在性问题最多只能存在2个未知量.由图形性质可知未知量,由未知量可知动点设计,由动点设计可化解问题.【2019宜宾中考】如图,在平面直角坐标系xOy 中,已知抛物线22y ax x c =-+与直线y kx b =+都经过(0,3)A -、(3,0)B 两点,该抛物线的顶点为C .(1)求此抛物线和直线AB 的解析式;(2)设直线AB 与该抛物线的对称轴交于点E ,在射线EB 上是否存在一点M ,过M 作x轴的垂线交抛物线于点N ,使点M 、N 、C 、E 是平行四边形的四个顶点?若存在,求点M 的坐标;若不存在,请说明理由;(3)设点P 是直线AB 下方抛物线上的一动点,当△P AB 面积最大时,求点P 的坐标,并求△P AB 面积的最大值.【分析】(1)抛物线:223y x x =--,直线AB :3y x =-;(2)考虑EC ∥MN ,故若使点M 、N 、C 、E 是平行四边形,则EC =MN 即可,∵E (1,-2)、C (1,-4), ∴EC =2,设M 点坐标为(m ,m -3)(m >1),则N 点坐标为()2,23m m m --, 则MN =()()222333MN m m m m m =----=- 由题意得:232m m -=, 232m m -=,解得:1m =,2m =(舍), 对应P点坐标为⎝⎭; 232m m -=-,解得:32m =,41m =(舍). 对应P 点坐标为(2,-1).综上,P点坐标为⎝⎭或(2,-1). (3)铅垂法可解.【2018河南中考(删减)】如图,抛物线26y ax x c =++交x 轴于A 、B 两点,交y 轴于点C .直线5y x =-经过B 、C . (1)求抛物线的解析式;(2)过点A 的直线交直线BC 于点M .当AM BC ⊥时,过抛物线上一动点P (不与点B ,C 重合),作直线AM 的平行线交直线BC 于点Q ,若以点A ,M ,P ,Q 为顶点的四边形是平行四边形,求点P 的横坐标.【分析】(1)265y x x=-+-;(2)考虑到AM∥PQ,故只需AM=PQ即可.过点A作BC的平行线,与抛物线交点即为P点,易得直线AP的解析式:1y x=-,联立方程:2651x x x-+-=-,解得:11x=(舍),24x=,故对应P点坐标为(4,3);作点A关于B点的对称点A',过点A'作BC的平行线,与抛物线的交点亦为题目所求P点,易求直线解析式:9y x=-,联立方程:2659x x x-+-=-,解得:1x,2x=.故对应P点坐标为⎝⎭、⎝⎭.综上所述,P点坐标为(4,3)、⎝⎭、⎝⎭.【2018郴州中考(删减)】如图,已知抛物线2y x bx c =-++与x 轴交于(1,0)A -,(3,0)B 两点,与y 轴交于C 点,点P 是抛物线上在第一象限内的一个动点,且点P 的横坐标为t . (1)求抛物线的表达式;(2)设抛物线的对称轴为l ,l 与x 轴的交点为D .在直线l 上是否存在点M ,使得四边形CDPM 是平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.【分析】(1)抛物线:223y x x =-++; (2)由题意可知CP 、DM 为对角线,考虑DM 在直线x =-1上,故CP 中点在直线x =-1上,∵点C 坐标为(0,3),故点P 横坐标为2,代入解析式得P (2,3), 易知M 点坐标为(1,6).【三定一动】(2018·恩施州中考删减)如图,已知抛物线交x 轴于A 、B 两点,交y 轴于C 点,A 点坐标为(1,0)-,2OC =,3OB =,点D 为抛物线的顶点. (1)求抛物线的解析式;(2)P 为坐标平面内一点,以B 、C 、D 、P 为顶点的四边形是平行四边形,求P 点坐标.【分析】(1)抛物线:224233y x x =-++;(2)设P 点坐标为(m ,n ),又B (3,0)、C (0,2)、D 813⎛⎫⎪⎝⎭,①若BC 为对角线,由题意得:3018023m n +=+⎧⎪⎨+=+⎪⎩,解得:223m n =⎧⎪⎨=-⎪⎩,故1P 的坐标为22,3⎛⎫- ⎪⎝⎭;②若BD 为对角线,由题意得:3108023m n +=+⎧⎪⎨+=+⎪⎩,解得:423m n =⎧⎪⎨=⎪⎩,故2P 坐标为24,3⎛⎫⎪⎝⎭;③若BP 为对角线,由题意得:3018023m n +=+⎧⎪⎨+=+⎪⎩,解得:2143m n =-⎧⎪⎨=⎪⎩,故3P 坐标为142,3⎛⎫- ⎪⎝⎭.综上所述,P 点坐标为22,3⎛⎫- ⎪⎝⎭、24,3⎛⎫ ⎪⎝⎭、142,3⎛⎫- ⎪⎝⎭.【两定两动:x 轴+抛物线】(2018·济宁中考删减)如图,已知抛物线2(0)y ax bx c a =++≠经过点(3,0)A ,(1,0)B -,(0,3)C -.(1)求该抛物线的解析式;(2)若点Q 在x 轴上,点P 在抛物线上,是否存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.【分析】(1)抛物线:223y x x =--;(2)列方程组求:设P ()2,23m m m --、Q (),0n ,又B (-1,0)、C (0,-3),若BC 为对角线,由题意得:21003230m n m m -+=+⎧⎨-=--+⎩,解得:23m n =⎧⎨=-⎩或01m n =⎧⎨=-⎩(舍), 故对应的P (2,-3);若BP 为对角线,由题意得:21023003m n m m -=+⎧⎨--+=-⎩,解得:21m n =⎧⎨=⎩或01m n =⎧⎨=-⎩(舍),故对应的P (2,-3);若BQ 为对角线,由题意得:21000233n m m m -=+⎧⎨+=---⎩,解得:12m n ⎧=⎪⎨=+⎪⎩12m n ⎧=⎪⎨=-⎪⎩, 故对应的P ()1+、()1.综上所述,P 点坐标为(2,-3)、()1、()1.(2019·包头中考删减)如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于(1,0)A -,(3,0)B 两点,与y 轴交于点C ,连接BC . (1)求该抛物线的解析式,并写出它的对称轴;(2)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以B ,C ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.【分析】(1)抛物线:224233y x x =-++,对称轴:直线x =1;(2)设M 点坐标为224,233m m m ⎛⎫-++ ⎪⎝⎭,N 点坐标为()1,n ,又B (3,0)、C (0,2)若BC 为对角线,由题意得:23012402233m m m n +=+⎧⎪⎨+=-+++⎪⎩,解得:20m n =⎧⎨=⎩, 故M 点坐标为(2,2);若BN 为对角线,由题意得:23102402233m n m m +=+⎧⎪⎨+=-+++⎪⎩,解得:443m n =⎧⎪⎨=-⎪⎩,故M 点坐标为104,3⎛⎫- ⎪⎝⎭;若BM 为对角线,由题意得:23102420233m m m n +=+⎧⎪⎨-+++=+⎪⎩,解得:2163m n =-⎧⎪⎨=-⎪⎩,故M 点坐标为102,3⎛⎫-- ⎪⎝⎭.综上所述,M 点坐标为(2,2)、104,3⎛⎫- ⎪⎝⎭、102,3⎛⎫-- ⎪⎝⎭.(2019·咸宁中考删减)如图,在平面直角坐标系中,直线122y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线212y x bx c =-++经过A ,B 两点且与x 轴的负半轴交于点C .(1)求该抛物线的解析式;(2)已知E ,F 分别是直线AB 和抛物线上的动点,当B ,O ,E ,F 为顶点的四边形是平行四边形时,直接写出所有符合条件的E 点的坐标.【分析】(1)抛物线:213222y x x =-++;(2)设E 点坐标为1,22m m ⎛⎫-+ ⎪⎝⎭,F 点坐标为213,222n n n ⎛⎫-++ ⎪⎝⎭,又B (0,2)、O (0,0),①若OB 为对角线,由题意得:2001130222222m nm n n +=+⎧⎪⎨+=-+-++⎪⎩,解得:1122m n ⎧=--⎪⎨=+⎪⎩或2222m n ⎧=-+⎪⎨=-⎪⎩故E点坐标为(2--或(2-+;②若OE 为对角线,由题意得:2001130222222m nm n n +=+⎧⎪⎨-+=-++⎪⎩,解得:3322m n ⎧=+⎪⎨=+⎪⎩4422m n ⎧=-⎪⎨=-⎪⎩故E点坐标为(2+或(2-;③若OF 为对角线,由题意得:2001310222222n mn n m +=+⎧⎪⎨-++=-+⎪⎩,解得:5522m n =⎧⎨=⎩, 故E 点坐标为(2,1).【两定两动:抛物线+抛物线】(2019·连云港中考删减)如图,在平面直角坐标系xOy 中,抛物线21:L y x bx c =++过点(0,3)C -,与抛物线2213:222L y x x =--+的一个交点为A ,且点A 的横坐标为2,点P 、Q分别是抛物线1L 、2L 上的动点. (1)求抛物线1L 对应的函数表达式;(2)若以点A 、C 、P 、Q 为顶点的四边形恰为平行四边形,求出点P 的坐标.备用图【分析】(1)1L 解析式:223y x x =--;(2)虽然两个动点均在抛物线上,仍可用设点坐标的方法求解.设P 点坐标为()2,23m m m --,Q 点坐标为213,222n n n ⎛⎫--+ ⎪⎝⎭,又C (0,-3)、A (2,-3),①若CA 为对角线,由题意得;2202133323222m nm m n n +=+⎧⎪⎨--=----+⎪⎩, 解得:35m n =-⎧⎨=⎩或02m n =⎧⎨=⎩(舍),故P 点坐标为(-3,12);②若CP 为对角线,由题意得:2202133233222m nm m n n +=+⎧⎪⎨-+--=---+⎪⎩, 解得:31m n =⎧⎨=⎩或43103m n ⎧=-⎪⎪⎨⎪=-⎪⎩,故P 点坐标为(3,0)或413,39⎛⎫- ⎪⎝⎭;③若CQ 为对角线,由题意得:22021********n mn n m m +=+⎧⎪⎨---+=-+--⎪⎩, 解得:11m n =-⎧⎨=⎩或02m n =⎧⎨=⎩(舍),故P 点坐标为(-1,0).综上所述,P 点坐标为(-3,12)、(3,0)、413,39⎛⎫- ⎪⎝⎭、(-1,0).【四动点构造】(2019·锦州中考删减)如图,在平面直角坐标系中,一次函数334y x =-+的图像与x 轴交于点A ,与y 轴交于B 点,抛物线2y x bx c =-++经过A ,B 两点,在第一象限的抛物线上取一点D ,过点D 作DC x ⊥轴于点C ,交直线AB 于点E . (1)求抛物线的函数表达式(2)F 是第一象限内抛物线上的动点(不与点D 重合),点G 是线段AB 上的动点.连接DF ,FG ,当四边形DEGF 是平行四边形且周长最大时,请直接写出点G 的坐标.【分析】(1)抛物线:21334y x x =-++; (2)本题4个点皆为动点,使四边形DEGF 为平行四边形易,而使周长最大难.设E 点坐标为3,34m m ⎛⎫-+ ⎪⎝⎭,则D 点坐标为213,34m m m ⎛⎫-++ ⎪⎝⎭,设F 点坐标为213,34n n n ⎛⎫-++ ⎪⎝⎭,则G 点坐标为3,34n n ⎛⎫-+ ⎪⎝⎭,2213333444DE m m m m m ⎛⎫=-++--+=-+ ⎪⎝⎭, 2213333444FG n n n n n ⎛⎫=-++--+=-+ ⎪⎝⎭, 由DE =FG ,可得:2244m m n n -+=-+, ∵m ≠n ,∴4m n +=,过点G 作GH ⊥CD 交CD 于H 点,则()()555425442EG n m m m =-=-=-, 又24DE m m =-+, ∴22524523102DEGFCm m m m m ⎛⎫=-++-=-++ ⎪⎝⎭,当34m =时,四边形DEGF 是平行四边形且周长最大,此时G 点坐标为139,416⎛⎫⎪⎝⎭.。
探究中考数学平行四边形存在性问题
CD ,求 a 的值和四边形 ADCN 的面积;
(3)在抛物线 y x 2 x a ( a 0 )上是否存在一点 P ,使得以 P,A,C,N 为顶点的四边形是平行四
2
边形?若存在,求出 P 点的坐标;若不存在,试说明理由 练习答案: (1) M 1,a 1,N 直线 AM
3.
∴x=±4.∴点 M 的坐标为 M ( 4, 3 )或( 4, 3 ) .…9 分 说明:少求一个点的坐标扣 1 分. ②当以 AB 为对角线时,点 M 在 x 轴下方. 过 M 作 MN⊥AB 于 N,则∠MNB=∠AOC=90°. ∵四边形 AMBC 是平行四边形,∴AC=MB,且 AC∥MB. ∴∠CAO=∠MBN.∴△AOC≌△BNM.∴BN=AO=1,MN=CO= 3 . ∵OB=3,∴0N=3-1=2.∴点 M 的坐标为 M (2, 3) . 综上所述,坐标平面内存在点 M ,使得以点 A 、 B 、 C 、 M 为顶点的四边形是平行四边形.其坐标为
得 a
1 3Leabharlann 16 2 8 a aa, 9 3
9 , a2 .……………2 分 a1 0 (不合题意,舍去) 4
3)
当定点 AB 为对角线时,CM 为另一对角线,根据对角线互相平分,其交点即为每个对角线的中点,有 A(-1,0)、B (3,0)、 C(0,)
中点H的横坐标等于 中点H的纵坐标等于
x A xB xC xM 1 3 0 x ,即 , 得 x=2 2 2 2 2
3y y A y B yC y M 00 得 y=- 3 ,M3(2,- 3 ) ,即 , 2 2 2 2
1 4 a, a .……………4 分 3 3
九年级数学提升专题2:平行四边形存在性问题探究
专题2:平行四边形存在性问题探究专题导入导例:如图1,在平面直角坐标系中,已知抛物线y=-x2-2x+3与x轴交于A,B两点,与y轴交于点C,顶点为P,如果以点P,A,C,D为顶点的四边形是平行四边形,则点D的坐标为.图1说明:我们知道不在同一直线上的三点A、B、C,在平面内另找一个点D,使以A,B,C,D为顶点的四边形是平行四边形.答案有三种,如图2,以AB为对角线的□ACBD1,以AC为对角线的□ABCD2,以BC为对角线的□ABD3C.图2 图3方法点睛方法指引:解平行四边形的存在性问题一般分三步:第一步:寻找分类标准;第二步:画图;第三步:计算.平行四边形顶点坐标公式□ABCD的顶点坐标分别为A(x A,y A) ,B(x B,yB),C(x C,y C),D(x D,y D),则x A+x C=x B+x D;y A+y C=y B+y D.证明:如图3,连接AC,BD,相交于点E.∵点E为AC的中点,∴E点坐标为(x A+x C2,y A+y C2).又∵点E为BD的中点,∴E点坐标为(x B+x D2,y B+y D2).∴x A+x C=x B+x D,y A+y C=y B+y D.即平行四边形对角线两端点的横坐标、纵坐标之和分别相等.典例精讲类型一:已知三个定点、一个动点,探究平行四边形的存在性问题例1 如图4,抛物线y=x2-2x-3与x轴的负半轴交于A点,与y轴交于C点,顶点是M,经过C,M两点作直线与x轴交于点N.(1)直接写出点A,C,N的坐标.(2)在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.图4分析 :(1)分别令________和________即可求得A,C两点的坐标,由抛物线的函数解析式即可求得顶点M的坐标,然后求出直线CM直线的函数解析式便可求得点N的坐标.(2)根据导例的方法,先求出使得以点P,A,C,N为顶点的四边形为平行四边形的点P的坐标,然后逐一代入抛物线的函数解析式验证得符合条件的点P.类型二:已知两个定点,探求限定条件下的另两个动点,使之构成平行四边形例2 如图5,矩形OABC在平面直角坐标系中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.(1)求抛物线的函数解析式.(2)求点D的坐标.(3)若点M在抛物线上,点N在x轴上,是否存在以点A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.图5专题过关1.如图7,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C (0,4),线段BC的中垂线与对称轴l交于点D,与x轴交于点F,与BC交于点E,对称轴l 与x轴交于点H.(1)求抛物线的函数解析式;(2)求点D的坐标;(3)已知P 点坐标为(31-,0).点M 为x 轴上方抛物线上的点,在对称轴l 上是否存在一点N ,使得以点D ,P ,M .N 为顶点的四边形是平行四边形?若存在,则直接写出N 点坐标;若不存在,请说明理由.图72. 如图8,抛物线y =ax2+bx -3经过点A(2,-3),与x 轴负半轴交于点B ,与y 轴交于点C ,且OC =3OB .(1)求抛物线的解析式.(2)点D 在y 轴上,且∠BDO =∠BAC ,求点D 的坐标.(3)点M 在抛物线上,点N 在抛物线的对称轴上,是否存在以点A ,B ,M ,N 为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M 的坐标;若不存在,请说明理由.图8图103.如图9,是将抛物线y =-x 2平移后得到的抛物线,其对称轴为直线x =1,与x 轴的一个交点为A(-1,0),另一个交点为B ,与y 轴的交点为C . (1)求抛物线的函数解析式.(2)若点N 为抛物线上一点,且BC ⊥NC ,求点N 的坐标.(3)点P 是抛物线上一点,点Q 是一次函数y =32x +32的图象上一点,若四边形OAPQ 为平行四边形,则这样的点P ,Q 是否存在?若存在,分别求出点P ,Q 的坐标;若不存在,说明理由.图94. 已知抛物线y=x 2-2x+a(a <0)与y 轴相交于点A ,顶点为M .直线y=12x -a 分别与x 轴、y 轴相交于B 、C 两点,并且与直线AM 相交于点N .(1)填空:试用含a 的代数式分别表示点M 与N 的坐标,则M( ), N( );(2)如图10,将△NAC 沿y 轴翻折,若点N 的对应点N ′恰好落在抛物线上,AN ′与x 轴交于点D ,连接CD ,求a 的值和四边形ADCN 的面积;(3)在抛物线y=x 2-2x+a(a <0)上是否存在一点P ,使得以P 、A 、C 、N 为顶点的四边形是平行四边形?若存在,求出点P 的坐标;若不存在,试说明理由.5.如图11,直线AB:y=1x+2与x轴、y轴分别交于A,B两点,C是第一象限内直线AB上2,P是x轴上的动点,N是直线AB上的动一点,过点C作CD⊥x轴于点D,且CD的长为72点.(1)直接写出A,B两点的坐标;(2)如图11①,若点M的坐标为(0,-3),是否存在这样的P点.使以O,P,M,N为2顶点的四边形是平行四边形?若有在,请求出P点坐标;若不存在,请说明理由.(3)如图11②,将直线AB绕点C逆时针旋转交y轴于点F,交x轴于点E,若旋转角即∠ACE=45°,求△BFC的面积.图11○1图11○2专题二答案:【导例答案】P ,A ,C 三点是确定的,过△PAC 的三个顶点分别画对边的平行线,三条直线两两相交,产生3个符合条件的点D (如图4).D 1(2, 7),D 2(-4, 1),D 3(-2, -1).例1 (1)A(-1,0),C(0,-3),N(-3,0).(2)存在.若AC 为平行四边形的对角线,则点P 的坐标为(2,-3);若AN 为平行四边形的对角线,则点P 的坐标为(-4,3);若CN 为平行四边形的对角线,则点P 的坐标为(-2,-3).把这三个点的坐标分别代入验证,得点P(2,-3)在该抛物线上,因此存在符合条件的点P ,点P 的坐标为(2,-3).类型二: 已知两个定点,探求限定条件下的另两个动点,使之构成平行四边形 例2 (1)设抛物线的顶点为E ,根据题意,得E(2,3).设抛物线的函数解析式为y =a(x -2)2+3.将(4,0)代入,得0=4a +3,即a =-34.∴抛物线的函数解析式为y =-34(x -2)2+3=-34x 2+3x .(2)设直线AC 的函数解析式为y =kx +b(k≠0),将(4,0),(0,3)代入,得{4k +b =0,b =3,解得{k =−34,b =3故直线AC 的函数解析式为y =-34x +3.将直线AC 的函数解析式与抛物线的函数解析式联立,[来源:学_科_网] 得{y =-34x +3,y =-34x 2+3x .解得{x =1,y =94.或{x =4,y =0.∴点D 的坐标为(1,94). (3)存在,分两种情况考虑:Ⅰ.若AD 为平行四边形的对角线,则有MD ∥AN ,MD =AN .由对称性得到M 1(3,94),即DM 1=2,故AN1=2.∴点N 1的坐标为(2,0). Ⅱ.如图1,若AD 为平行四边形的一边,则MN ∥AD ,MN =AD .图1 图2① 当点M 在x 轴上方时,如图1所示.由Ⅰ知AN 2=2.∴点N 2的坐标为(6,0).②当点M 在x 轴下方时,如图2所示,过点D 作DQ ⊥x 轴于点Q ,过点M 3作M 3P ⊥x 轴于点P ,可得△ADQ ≌△N 3M 3P ,∴M 3P =DQ =94,N 3P =AQ =3.∴点M 3的纵坐标为-94.将y M =-94代入抛物线的函数解析式,得-94=-34x 2+3x ,解得x M =2-√7或x M =2+√7,∴x N =x M -3=-√7-1或√7-1.∴N 3(−√7-1,0),N 4(√7-1,0).综上所述,满足条件的点N 有4个,N 1(2,0),N 2(6,0),N 3(-√7-1,0),N 4(√7-1,0).专题过关答案 1.(1)设抛物线解析式为y=a (x+4)(x ﹣2). 把C (0,4)代入得4=a (0+4)(0﹣2).∴a=﹣12. ∴抛物线解析式为:y=﹣12(x+4)(x ﹣2)=﹣12x 2﹣x+4.(2)如图3,由(1)抛物线对称轴为直线x=﹣1,∵线段BC 的中垂线与对称轴l 交于点D ,∴点D 在对称轴上. 设点D 坐标为(﹣1,m ).过点C 做CG ⊥l 于G ,连接DC ,DB .∴DC=DB . 在Rt △DCG 和Rt △DBH 中,∵DC 2=12+(4﹣m )2,DB 2=m 2+(2+1)2,∴12+(4﹣m )2=m 2+(2+1)2 解得:m=1.∴点D 坐标为(﹣1,1). (3)存在,理由如下:当点P 坐标为(13,0)时, ① 若DN 和MP 为平行四边形对边,则有DN=MP .当x=13时,y=﹣12×(13)2-13+4=6518.∴DN=MP=6518.∴点N 坐标为(﹣1,8318).②若MN ,DP 为平行四边形对边时,M ,P 点到ND 距离相等,则点M 横坐标为﹣73.则M 纵坐标为﹣﹣12×(−32)2-73+4=6518.由平行四边形中心对称性可知,点M 到N 的垂直距离等于点P 到点D 的垂直距离 当点N 在D 点上方时,点N 纵坐标为6518-1=4718.此时点N 坐标为(﹣1,4718). 当点N 在x 轴下方时,点N 坐标为(﹣1,﹣4718). 当点P 坐标为(7,0)时,所求N 点不存在. 故答案为:(﹣1,8318),(﹣1,4718),(﹣1,﹣4718)2. (1)令x =0,由y =ax 2+bx -3得y =-3,∴C(0,-3) .∴OC =3.又∵OC =3OB ,∴OB =1.∴B(-1,0). 把点B(-1,0)和A(2,-3)的坐标分别代入y =ax 2+bx -3,得{a −b −3=0,4a +2b −3=−3.解得{a =1,b =−2.∴抛物线的解析式为y =x 2-2x -3. (2)如图4,过点B 作BE ⊥x 轴,交AC 的延长线于点E .∵∠BDO =∠BAC ,∠BOD =∠BEA =90°,∴Rt △BDO ∽Rt △BAE .∴OD ∶OB =AE ∶BE ,∴OD ∶1=3∶3.∴OD =1.∴D 点坐标为(0,1)或(0,-1).图4 图5(3)存在.如图5,M1(0,-3);M2(-2,5);M3(4,5). 3.(1)由题意,设抛物线的函数解析式为y =-(x -1)2+k ,把(-1,0)代入,得0=-(-1-1)2+k ,解得k =4,∴抛物线的函数解析式为y =-(x -1)2+4=-x 2+2x +3. (2)当x =0时,y =-(0-1)2+4=3,∴点C 的坐标是(0,3),∴OC =3.∵点B 的坐标是(3,0),∴OB =3. ∴OC =OB ,则△OBC 是等腰直角三角形,∴∠OCB =45°. 如图6,过点N 作NH ⊥y 轴,垂足为H .∵∠NCB =90°,∴∠NCH =45°.∴NH =CH . ∴HO =OC +CH =3+CH =3+NH .设点N 为(a ,-a 2+2a +3) .∴a +3=-a 2+2a +3. 解得a =0(舍去)或a =1.∴点N 的坐标是(1,4) . (3)∵四边形OAPQ 是平行四边形,∴PQ =OA =1,且PQ ∥OA .[来设P(t ,-t 2+2t +3),则Q(t +1,-t 2+2t +3).将点Q(t +1,-t 2+2t +3)代入y =32x +32,得-t 2+2t +3=32(t +1)+32,整理得2t 2-t =0,解得t 1=0,t 2=12,∴-t 2+2t +3的值为3或154, ∴P ,Q 的坐标分别是(0,3),(1,3)或(12,154),(32,154). 4. (1)M(1,a -1),N(4a3,-a3);(2)a=-94;S 四边形ADCN =18916;(3)由已知条件易得A(0,a)、C(0,-a)、N(4a 3,-a3).设P(m,m2-2m+a).如图7.①当以AC 为对角线时,由平行四边形顶点坐标公式,得:{0+0=4a 3+m ,a −a =−13a +m 2−2m +a. ∴{m =52a =−158.∴P 1(52,-58);②当以AN 为对角线时,得:{0+4a3=0+m ,a −13a =−a +m 2−2m +a.∴{m =52,a =158.(不合题意,舍去).③当以CN 为对角线时,得:{0+4a3=0+m ,−a −13a =a +m 2−2m +a.∴{m =−12,a =−38.∴P 2(-12,78). ∴在抛物线上存在点P 1(52,-58)和P 2(-12,78),使得以P 、A 、C 、N 为顶点的四边形是平行四边形. 5.(1)A (﹣4,0),点B (0,2);(2)设点P (x ,0)若OM 为边,则OM ∥PN ,OM =PN .∵点M 的坐标为(0,-32),∴OM ⊥x 轴,OM =32.∴PN ⊥x 轴,PN =32. ∴当y =32时,则32=12x+2.∴x =﹣1.当y =﹣32时,则﹣32=12x+2. ∴x =﹣7.∴点P (﹣1,0),点P (﹣7,0).若OM 为对角线,则OM 与PN 互相平分,∵点M 的坐标为(0,−32),点O 的坐标(0,0). ∴OM 的中点坐标(0,﹣34).∵点P (x ,0),∴点N (﹣x ,﹣32). ∴﹣32=12×(﹣x )+2.∴x =7.∴点P (7,0). 综上所述:点P (﹣1,0)或(﹣7,0)或(7,0).(3)∵CD =72,即点C 纵坐标为72.∴72=12x+2.∴x =3.∴点C (3,72). 如图8,过点C 作CG ⊥AB ,交x 轴于点G .由CG ⊥AB ,设直线CG 解析式为y =﹣2x+b .∴72=﹣2×3+b . ∴b =192.∴直线CG 解析式为:y =﹣2x+192∴点G 坐标为(194,0).∵点A (﹣4,0),点B (0,2),∴OA =4,OB =2,AG =354. ∵tan ∠CAG =BOAO =CGAC ,∴CGAC =24=12. ∵∠ACF =45°,∠ACG =90°,∴∠ACF =∠FCG =45°. ∴CGAC =EGAE =12,且AE+EG =354.∴AE =356. ∴OE =AE ﹣AO =116.∴点E 坐标为(116,0).设直线CE 解析式为:y =mx+n .∴{72=3m +n ,0=11m+n 6.解得{m =3,n =﹣112. ∴直线CE 解析式为:y =3x ﹣112.∴当x =0时,y =﹣112.∴点F (0,﹣112). ∴BF =2+112=152.∴S △BFC =12×152×3=454.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
得到新抛物线 y′,y′经过点 D,y′的顶点为点 F.在新抛物线 y′的对称轴上,是否 存在一点 Q,使得△FGQ 为等腰三角形?若存在,直接写出点 Q 的坐标;若不存 在,请说明理由. 【考点】HF:二次函数综合题. 【分析】 (1)抛物线的解析式可变形为 y= (x+1) (x﹣3) ,从而可得到点 A
若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不 存在的判断。 由于“存在性”问题的结论有两种可能,所以具有开放的特征, 在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了 较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对 我们知识、能力的一次全面的考验。这里我们主要讨论在平面直角坐 标系中平行四边形是否存在的问题。先假设平行四边形存在,并在坐 标系中把平行四边形做出来, 再根据平行四边形的性质得出相应的点 或边的关系,从而得出结论,在作图的时候要注意分类讨论,把所有 的情况考虑进去。
∴实数 m=﹣4、n=3. (2)当∠A=30°时,sinA=cosB= , ∴﹣m= + ,n= × , ∴m=﹣1,n= ; 当∠B=30°时,sinA=cosB= ∴﹣m= ∴m=﹣ + ,n= × , ,
,n= . 、n= .
综上所述:m=﹣1、n= 或 m=﹣
2.如图,在平面直角坐标系中,抛物线 y=﹣x2+ax+b 交 x 轴于 A(1,0) ,B(3, 0)两点,点 P 是抛物线上在第一象限内的一点,直线 BP 与 y 轴相交于点 C. (1)求抛物线 y=﹣x2+ax+b 的解析式; (2)当点 P 是线段 BC 的中点时,求点 P 的坐标; (3)在(2)的条件下,求 sin∠OCB 的值.
【考点】HA:抛物线与 x 轴的交点;H8:待定系数法求二次函数解析式;T7: 解直角三角形. 【分析】 (1)将点 A、B 代入抛物线 y=﹣x2+ax+b,解得 a,b 可得解析式; (2)由 C 点横坐标为 0 可得 P 点横坐标,将 P 点横坐标代入(1)中抛物线解析 式,易得 P 点坐标; (3)由 P 点的坐标可得 C 点坐标,由 B、C 的坐标,利用勾股定理可得 BC 长, 利用 sin∠OCB= 可得结果.
(1)求直线 AE 的解析式; (2)点 P 为直线 CE 下方抛物线上的一点,连接 PC,PE.当△PCE 的面积最大 时,连接 CD,CB,点 K 是线段 CB 的中点,点 M 是 CP 上的一点,点 N 是 CD 上 的一点,求 KM+MN+NK 的最小值; (3)点 G 是线段 CE 的中点,将抛物线 y= x 2﹣ x﹣ 沿 x 轴正方向平移
和点 B 的坐标,然后再求得点 E 的坐标,设直线 AE 的解析式为 y=kx+b,将点 A 和点 E 的坐标代入求得 k 和 b 的值,从而得到 AE 的解析式; (2)设直线 CE 的解析式为 y=mx﹣ ,将点 E 的坐标代入求得 m 的值,从而
得到直线 CE 的解析式,过点 P 作 PF∥y 轴,交 CE 与点 F.设点 P 的坐标为(x, x 2﹣ x﹣ ) ,则点 F(x, x﹣ x 2+ ) ,则 FP= x 2+ x.由三
中考数学解法探究专题:平行四边形的存在性问题
【专题解析】 考题研究: 存在性问题是指判断满足某种条件的事物是否存在的问题, 这类 问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法 灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地 中考的“热点” 。 解题攻略: 解平行四边形的存在性问题一般分三步: 第一步寻找分类标准,第二步画图,第三步计算. 难点在于寻找分类标准,分类标准寻找的恰当,可以使解的个数 不重复不遗漏,也可以使计算又好又快. 如果已知三个定点,探寻平行四边形的第四个顶点,符合条件的 有 3 个点:以已知三个定点为三角形的顶点,过每个点画对边的平行 线,三条直线两两相交,产生 3 个交点. 如果已知两个定点, 一般是把确定的一条线段按照边或对角线分 为两种情况. 根据平行四边形的对边平行且相等, 灵活运用坐标平移, 可以使得计算过程简便. 根据平行四边形的中心对称的性质,灵活运用坐标对称,可以使 得解题简便. 解题思路: 这类题目解法的一般思路是:假设存在→推理论证→得出结论。
例题解析(2017 年真题和 2017 年模拟)
1.已知二次函数的表达式为 y=x2+mx+n. (1)若这个二次函数的图象与 x 轴交于点 A(1,0) ,点 B(3,0) ,求实数 m, n 的值; (2)若△ABC 是有一个内角为 30°的直角三角形,∠C 为直角,sinA,cosB 是方 程 x2+mx+n=0 的两个根,求实数 m,n 的值. 【考点】HA:抛物线与 x 轴的交点;T7:解直角三角形. 【分析】 (1)根据点 A、B 的坐标,利用待定系数法即可求出 m、n 的值; (2)分∠A=30°或∠B=30°两种情况考虑:当∠A=30°时,求出 sinA、cosB 的值, 利用根与系数的关系即可求出 m、n 的值;当∠B=30°时,求出 sinA、cosB 的值, 利用根与系数的关系即可求出 m、n 的值. 【解答】解: (1)将 A(1,0) 、B(3,0)代入 y=x2+mx+n 中, ,解得: ,
【解答】解: (1)将点 A、B 代入抛物线 y=﹣x2+ax+b 可得,
, 解得,a=4,b=﹣3, ∴抛物线的解析式为:y=﹣x2+4x﹣3;
(2)∵点 C 在 y 轴上, 所以 C 点横坐标 x=0, ∵点 P 是线段 BC 的中点, ∴点 P 横坐标 xP= = ,
∵点 P 在抛物线 y=﹣x2+4x﹣3 上, ∴yP= ﹣3= ,
∴点 P 的坐标为( , ) ;
(3)∵点 P 的坐标为( , ) ,点 P 是线段 BC 的中点, ∴点 C 的纵坐标为 2× ﹣0= , ∴点 C 的坐标为(0, ) , ∴BC= = ,
∴sin∠OCB=
=
=
.
3.如图,在平面直角坐标系中,抛物线 y=
x 2﹣
x﹣
与 x 轴交于 A、B
两点(点 A 在点 B 的左侧) ,与 y 轴交于点 C,对称轴与 x 轴交于点 D,点 E(4, n)在抛物线上.