反比例7
反比例的意义
反比例的意义1. 引言反比例,又称为反比关系,是指两个变量之间的关系,当一个变量增加时,另一个变量会相应减少,并且呈现出一条特定规律的曲线。
反比例关系在日常生活中广泛存在,对于理解和应用于各个领域均具有重要的意义。
本文将探讨反比例的意义以及其在不同领域中的应用。
2. 数学中的反比例关系在数学中,反比例关系可以用一个简单的数学表达式表示,如下所示:y = k/x其中,y和x是两个变量,k是常数。
当x增大时,y会相应减小,具有反比例的关系。
这种关系在数学中具有重要的意义,不仅可以用于解决实际问题,还有助于深入理解数学概念。
3. 物理学中的反比例关系反比例关系在物理学中也具有重要的意义。
以牛顿运动定律中的万有引力定律为例,根据定律可以推导出两个物体之间的引力与它们之间距离的平方成反比。
这个反比例关系对于研究天体运动和行星的轨道等宇宙现象具有非常重要的意义。
4. 经济学中的反比例关系在经济学中,反比例关系也经常出现。
例如,某种商品的需求量与商品的价格之间存在反比例关系,在价格上涨时需求量减少,价格下跌时需求量增加。
这种反比例关系在经济学中对于研究供需关系和市场机制具有重要的意义。
5. 工程学中的反比例关系反比例关系在工程学中也有广泛的应用。
例如,电阻和电流之间的关系可以表示为反比例关系,当电阻增加时,电流减小。
这个反比例关系在电路设计和电子工程中具有重要的意义,可以用于控制电流大小和电路的稳定性。
6. 生活中的反比例关系反比例关系在日常生活中也随处可见。
例如,我们常见的行驶速度和行驶时间之间存在反比例关系,行驶速度越快,所需行驶的时间越短。
同样地,人均工作时间和产出之间也存在反比例关系,工作时间越长,单位时间的产出越低。
7. 结论反比例关系在数学、物理学、经济学、工程学以及日常生活中都具有重要的意义。
它不仅在解决实际问题中起到关键作用,还有助于我们深入理解各个领域的相关概念和原理。
因此,对于学习和了解反比例关系的意义具有重要的价值。
中考数学专题复习7反比例函数及其运用(解析版)
反比例函数及其运用复习考点攻略考点一 反比例函数的概念1.反比例函数的概念:一般地.函数ky x=(k 是常数.k ≠0)叫做反比例函数.反比例函数的解析式也可以写成1y kx -=的形式.自变量x 的取值范围是x ≠0的一切实数.函数的取值范围也是一切非零实数. 2.反比例函数k y x =(k 是常数.k ≠0)中x .y 的取值范围:反比例函数ky x=(k 是常数.k ≠0)的自变量x 的取值范围是不等于0的任意实数.函数值y 的取值范围也是非零实数. 【例1】下列函数中.y 与x 之间是反比例函数关系的是 A .xyB .3x +2y =0C .y =D .y =【答案】A考点二 反比例函数的图象和性质1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线.它有两个分支.这两个分支分别位于第一、三象限.或第二、四象限.由于反比例函数中自变量x ≠0.函数y ≠0.所以.它的图象与x 轴、y 轴都没有交点.即双曲线的两个分支无限接近坐标轴.但永远达不到坐标轴.(2)性质:当k >0时.函数图象的两个分支分别在第一、三象限.在每个象限内.y 随x 的增大而减小.当k <0时.函数图象的两个分支分别在第二、四象限.在每个象限内.y 随x 的增大而增大.2kx 21x +表达式 ky x=(k 是常数.k ≠0) kk >0k <0大致图象所在象限 第一、三象限第二、四象限增减性在每个象限内.y 随x 的增大而减小在每个象限内.y 随x 的增大而增大反比例函数的图象既是轴对称图形.又是中心对称图形.其对称轴为直线y =x 和y =-x .对称中心为原点. 【注意】(1)画反比例函数图象应多取一些点.描点越多.图象越准确.连线时.要注意用平滑的曲线连接各点.(2)随着|x |的增大.双曲线逐渐向坐标轴靠近.但永远不与坐标轴相交.因为反比例函数ky x=中x ≠0且y ≠0. (3)反比例函数的图象不是连续的.因此在谈到反比例函数的增减性时.都是在各自象限内的增减情况.当k >0时.在每一象限(第一、三象限)内y 随x 的增大而减小.但不能笼统地说当k >0时.y 随x 的增大而减小.同样.当k <0时.也不能笼统地说y 随x 的增大而增大.【例2】一次函数与反比例函数在同一坐标系中的图象可能是( ) A . B .C .D .y ax a =-(0)ay a x=≠【答案】D【解析】当时..则一次函数经过一、三、四象限.反比例函数经过一 、三象限.故排除A.C 选项; 当时..则一次函数经过一、二、四象限.反比例函数经过二、四象限.故排除B 选项.故选:D .【例3】若点.在反比例函数的图象上.且.则的取值范围是( )A .B .C .D .或【答案】B【解析】解:∵反比例函数.∴图象经过第二、四象限.在每个象限内.y 随x 的增大而增大.①若点A 、点B 同在第二或第四象限.∵.∴a -1>a+1.此不等式无解;②若点A 在第二象限且点B 在第四象限.∵.∴.解得:; ③由y 1>y 2.可知点A 在第四象限且点B 在第二象限这种情况不可能. 综上.的取值范围是.故选:B .考点三 反比例函数解析式的确定1.待定系数法:确定解析式的方法仍是待定系数法.由于在反比例函数ky x=中.只有一个待定系数.因此只需要一对对应值或图象上的一个点的坐标.即可求出k 的值.从而确定其解析式.2.待定系数法求反比例函数解析式的一般步骤 (1)设反比例函数解析式为ky x=(k ≠0); (2)把已知一对x .y 的值代入解析式.得到一个关于待定系数k 的方程; (3)解这个方程求出待定系数k ;(4)将所求得的待定系数k 的值代回所设的函数解析式.【例4】点A 为反比例函数图象上一点.它到原点的距离为5.到x 轴的距离为3.若点A 在第二象限内.则这个函数的解析式为( )0a >0a -<y ax a =-(0)ay a x=≠0a <0a ->y ax a =-(0)ay a x=≠()11,A a y -()21,B a y +(0)ky k x=<12y y >a 1a <-11a -<<1a >1a <-1a >(0)ky k x=<12y y >12y y >1010a a -⎧⎨+⎩<>11a -<<a 11a -<<A.y=12xB.y=-12xC.y=112xD.y=-112x【答案】B【解析】设A点坐标为(x.y).∵A点到x轴的距离为3.∴|y|=3.y=±3.∵A点到原点的距离为5.∴x2+y2=52.解得x=±4.∵点A在第二象限.∴x=-4.y=3.∴点A的坐标为(-4.3).设反比例函数的解析式为y=.∴k=-4×3=-12.∴反比例函数的解析式为y=.故选B.考点四反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时.可通过面积作和或作差的形式来求解.(1)正比例函数与一次函数所围成的三角形面积.如图①.S△ABC=2S△ACO=|k|;(2)如图②.已知一次函数与反比例函数kyx=交于A、B两点.且一次函数与x轴交于点C.则S△AOB=S△AOC+S△BOC=1||2AOC y⋅+1||2BOC y⋅=1(||||)2A BOC y y⋅+;(3)如图③.已知反比例函数kyx=的图象上的两点.其坐标分别为()A Ax y,.k x 12 x-()B B x y ,.C 为AB 延长线与x 轴的交点.则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-.【例5】如图.已知双曲线经过直角三角形OAB 斜边OB 的中点D .与直角边AB 相交于点C .若△OBC 的面积为9.则k =__________.【答案】6【解析】如图.过点D 作x 轴的垂线交x 轴于点E .∵△ODE 的面积和△OAC 的面积相等.∴△OBC 的面积和四边形DEAB 的面积相等且为9. 设点D 的横坐标为x .纵坐标就为. ∵D 为OB 的中点.∴EA =x .AB =. ∴四边形DEAB 的面积可表示为:(+)x =9;k =6. 故答案为:6.【例6】如图.A 、B 两点在双曲线y x=的图象上.分别经过A 、B 两点向轴作垂线段.已知1S =阴影.则12S S +=ky x=k x 2k x12k x 2k xA .8B .6C .5D .4【答案】B【解析】∵点A 、B 是双曲线y =上的点.分别经过A 、B 两点向x 轴、y 轴作垂线段.则根据反比例函数的图象的性质得两个矩形的面积都等于|k |=4.∴S 1+S 2=4+4-1×2=6.故选B .考点五 反比例函数与一次函数的综合1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时.联立两个解析式.构造方程组.然后求出交点坐标.针对12y y >时自变量x 的取值范围.只需观察一次函数的图象高于反比例函数图象的部分所对应的x 的范围.例如.如下图.当12y y >时.x 的取值范围为A x x >或0B x x <<;同理.当12y y <时.x 的取值范围为0A x x <<或B x x <.2.求一次函数与反比例函数的交点坐标(1)从几何角度看.一次函数与反比例函数的交点由k 值的符号来决定. ①k 值同号.两个函数必有两个交点;②k 值异号.两个函数可能无交点.可能有一个交点.也可能有两个交点;(2)从代数角度看.一次函数与反比例函数的交点主要取决于两函数所组成的方程组的解的情况.【例7】已知抛物线y =x 2+2x +k +1与x 轴有两个不同的交点.则一次函数y =kx ﹣k 与反比例函数y =在同一坐标系内的大致图象是( )4xA.B.C.D.【解析】∵抛物线y=x2+2x+k+1与x轴有两个不同的交点.∴△=4﹣4(k+1)>0.解得k<0.∴一次函数y=kx﹣k的图象经过第一二四象限.反比例函数y=的图象在第二四象限.故选:D.考点六反比例函数的实际应用解决反比例函数的实际问题时.先确定函数解析式.再利用图象找出解决问题的方案.特别注意自变量的取值范围.【例8】如图.△OAC和△BAD都是等腰直角三角形.∠ACO=∠ADB=90°.反比例函数y=k在第一象限的图象经过点B.若xOA2−AB2=12.则k的值为______.【解析】设B点坐标为(a,b).∵△OAC和△BAD都是等腰直角三角形.∴OA=√2AC.AB=√2AD.OC=AC.AD=BD.∵OA2−AB2=12.∴2AC2−2AD2=12.即AC2−AD2=6.∴(AC+AD)(AC−AD)=6.∴(OC+BD)⋅CD=6.∴a⋅b=6.∴k=6.故答案为:6..(其中mk≠0)图象交于【例9】如图.一次函数y=kx+b与反比例函数y=mxA(−4,2).B(2,n)两点.(1)求一次函数和反比例函数的表达式;(2)求△ABO的面积;(3)请直接写出当一次函数值大于反比例函数值时x 的取值范围.【解析】(1)∵一次函数y =kx +b 与反比例函数y =m x(mk ≠0)图象交于A(−4,2).B(2,n)两点.根据反比例函数图象的对称性可知.n =−4. ∴{2=−4k +b−4=2k +b .解得{k =−1b =−2.故一次函数的解析式为y =−x −2. 又知A 点在反比例函数的图象上.故m =−8. 故反比例函数的解析式为y =−8x ; (2)在y =−x −2中.令y =0.则x =−2. ∴OC =2.∴S △AOB =12×2×2+12×2×4=6; (3)根据两函数的图象可知:当x <−4或0<x <2时.一次函数值大于反比例函数值.第一部分 选择题一、选择题(本题有10小题.每题4分.共40分)1.下列函数:①2x y =;②2y x =;③12y x=-;④12y x -=中.是反比例函数的有( ) A .1个 B .2个 C .3个D .4个【答案】C【解析】①不是正比例函数.②③④是反比例函数.故选C .2.点A 为反比例函数图象上一点.它到原点的距离为5.则x 轴的距离为3.若点A 在第二象限内.则这个函数的解析式为( )A .y =12xB .y =-12xC .y =112xD .y =-112x【答案】C【解析】∵反比例函数y =-中.k =-6.∴只需把各点横纵坐标相乘.结果为-6的点在函数图象上.四个选项中只有C 选项符合.故选C . 3. 已知点A (1.m ).B (2.n )在反比例函数(0)ky k x=<的图象上.则( ) A .0m n << B .0n m << C .0m n >>D .0n m >>【答案】A【解析】∵反比例函数(0)k y k x =<.它的图象经过A (1.m ).B (2.n )两点.∴m =k <0.n =2k<0.∴0m n <<.故选A .4. 如图.等腰三角形ABC 的顶点A 在原点.顶点B 在x 轴的正半轴上.顶点C 在函数y =kx(x >0)的图象上运动.且AC =BC .则△ABC 的面积大小变化情况是( )A .一直不变B .先增大后减小C .先减小后增大D .先增大后不变【答案】A【解析】如图.作CD ⊥AB 交AB 于点D .则S △ACD =.∵AC =BC .∴AD =BD .∴S △ACD =S △BCD . ∴S △ABC =2S △ACD =2×=k .∴△ABC 的面积不变.故选A .6x 2k2k5.如图.点.点都在反比例函数的图象上.过点分别向轴、轴作垂线.垂足分别为点..连接...若四边形的面积记作.的面积记作.则( )A .B .C .D .【答案】C【解析】解:点P (m.1).点Q (−2.n )都在反比例函数y =的图象上. ∴m×1=−2n =4.∴m =4.n =−2.∵P (4.1).Q (−2.−2).∵过点P 分别向x 轴、y 轴作垂线.垂足分别为点M.N.∴S 1=4.作QK ⊥PN.交PN 的延长线于K.则PN =4.ON =1.PK =6.KQ =3. ∴S 2=S △PQK −S △PON −S 梯形ONKQ =×6×3−×4×1−(1+3)×2=3.∴S 1:S 2=4:3.故选:C .6. 已知一次函数y 1=kx +b 与反比例函数y 2=kx在同一直角坐标系中的图象如图所示.则当y 1<y 2时.x 的取值范围是( )(,1)P m (-2,)Q n 4y x=P x y M N OP OQ PQ OMPN 1S POQ △2S 12:2:3S S =12:1:1S S =12:4:3S S =12:5:3S S =4x121212A .x <-1或0<x <3B .-1<x <0或x >3C .-1<x <0D .x >3【答案】B【解析】根据图象知.一次函数y 1=kx +b 与反比例函数y 2=kx的交点是(-1.3).(3.-1).∴当y 1<y 2时.-1<x <0或x >3.故选B .7.如图.在平面直角坐标系xOy 中.函数()0y kx b k =+≠与()0my m x=≠的图象相交于点()()2,3,6,1A B --.则不等式mkx b x+>的解集为( )A .6x <-B 60x -<<.或2x >C .2x >D 6x <-.或02x <<8. 如图.直线l ⊥x 轴于点P .且与反比例函数y 1=1k x(x >0)及y 2=2k x (x >0)的图象分别交于点A .B .连接OA .OB .已知△OAB 的面积为2.则k 1-k 2的值为( )A .2B .3C .4D .-4【答案】C【解析】根据反比例函数k 的几何意义可知:△AOP 的面积为12k .△BOP 的面积为22k. ∴△AOB 的面积为12k −22k . ∴12k −22k =2.∴k 1–k 2=4.故选C . 9. 一次函数y =ax +b 与反比例函数a by x-=.其中ab <0.a 、b 为常数.它们在同一坐标系中的图象可以是( )A .B .C .D .【答案】C【解析】A .由一次函数图象过一、三象限.得a >0.交y 轴负半轴.则b <0.满足ab <0. ∴a −b >0.∴反比例函数y =a bx-的图象过一、三象限.所以此选项不正确; B .由一次函数图象过二、四象限.得a <0.交y 轴正半轴.则b >0.满足ab <0. ∴a −b <0.∴反比例函数y =a bx-的图象过二、四象限.所以此选项不正确; C .由一次函数图象过一、三象限.得a >0.交y 轴负半轴.则b <0.满足ab <0.∴a −b >0.∴反比例函数y =a bx的图象过一、三象限.所以此选项正确; D .由一次函数图象过二、四象限.得a <0.交y 轴负半轴.则b <0.满足ab >0.与已知相矛盾. 所以此选项不正确.故选C .10. 如图.一次函数与x 轴.y 轴的交点分别是A(−4,0).B(0,2).与反比例函数的图象交于点Q .反比例函数图象上有一点P 满足:①PA ⊥x 轴;②PO =√17(O 为坐标原点).则四边形PAQO 的面积为( )A. 7B. 10C. 4+2√3D. 4−2√3【答案】C【解析】∵一次函数y =ax +b 与x 轴.y 轴的交点分别是A(−4,0).B(0,2). ∴−4a +b =0.b =2. ∴a =12.∴一次函数的关系式为:y =12x +2. 设P(−4,n).∴√(−4)2+n 2=√17. 解得:n =±1.由题意知n =−1.n =1(舍去). ∴把P(−4,−1)代入反比例函数y =mx . ∴m =4.反比例函数的关系式为:y =4x .解{y =12x +2y =4x 得.{x =−2+2√3y =√3+1.{x =−2−2√3y =1−√3. ∴Q(−2+2√3,√3+1).∴四边形PAQO 的面积=12×4×1+124×2+12×2×(−2+2√3)=4+2√3. 故选:C .第二部分 填空题二、填空题(本题有6小题.每题4分.共24分)11.若正比例函数的图象与某反比例函数的图象有一个交点的纵坐标是2.则该反比例函数的解析式为________. 【答案】 【解析】令y=2x 中y=2.得到2x=2.解得x=1.∴正比例函数的图象与某反比例函数的图象交点的坐标是(1,2). 设反比例函数解析式为.将点(1,2)代入.得. ∴反比例函数的解析式为.故答案为:. 12.如图.直线y =x 与双曲线()0ky k x=>的一个交点为A .且OA =2.则k 的值为__________.【答案】2【解析】∵点A 在直线y =x 上.且OA =2.∴点A的坐标为把得.∴k=2.故答案为:2. 13. 已知(),3A m 、()2,B n -在同一个反比例函数图像上.则m n =__________.【答案】23-【解析】设反比例函数解析式为()0ky k x=≠.将(),3A m 、()2,B n -分别代入.得 3k m =.2k n =-. 2y x =2y x=2y x =ky x=122k =⨯=2y x =2y x=(22),(22),ky x=22=∴2332k m k n ==--. 故答案为:23-. 14.平面直角坐标系xOy 中.点A (a .b )(a >0.b >0)在双曲线y =上.点A 关于x 轴的对称点B 在双曲线y =.则k 1+k 2的值为__________. 【答案】0【解析】∵点A (a .b )(a >0.b >0)在双曲线y =上.∴k 1=ab ; 又∵点A 与点B 关于x 轴对称.∴B (a .–b ).∵点B 在双曲线y =上.∴k 2=–ab ;∴k 1+k 2=ab +(–ab )=0.故答案为:0. 15.如图.点A 是反比例函数图象上的一点.过点A 作轴.垂足为点C .D 为AC 的中点.若的面积为1.则k 的值是【答案】4【解析】点A 的坐标为(m.2n ).∴.∵D 为AC 的中点.∴D (m.n ). ∵AC ⊥轴.△ADO 的面积为1.∴. ∴.∴ 16. 如图.反比例函数y =24x(x >0)的图象与直线y =32x 相交于点A .与直线y =kx(k ≠0)相交于点B .若△OAB 的面积为18.则k 的值为______.【答案】41k x2k x1k x2k x y x=AC x ⊥AOD ∆2mn k =x ()ADO11121222S AD OC n n m mn =⋅=-⋅==2mn =24k mn ==【解析】:由题意得.{y =24xy =32x .解得:{x 1=4y 1=6.{x 2=−4y 2=−6(舍去). ∴点A(4,6).(1)如图1.当y =kx 与反比例函数的交点B 在点A 的下方. 过点A 、B 分别作AM ⊥x 轴.BN ⊥x 轴.垂足分别为M 、N . 设点B 坐标为(b,24b ).则ON =b .BN =24b.∴点A(4,6).∴OM =4.AM =6;∵S △AOB =S △AOM +S 梯形AMNB −S △BON =S 梯形AMNB . ∴18=12(6+24b)(b −4).解得.b 1=8.b 2=−2(舍去) ∴点B(8,3).代入y =kx 得. k =38; (2)如图2.当y =kx 与反比例函数的交点B 在点A 的上方. 过点A 、B 分别作AM ⊥y 轴.BN ⊥y 轴.垂足分别为M 、N . 设点B 坐标为(b,24b ).则ON =24b.BN =b .∴点A(4,6).∴OM =6.AM =4;∵S △AOB =S △AOM +S 梯形AMNB −S △BON =S 梯形AMNB . ∴18=12(b +4)(24b −6). 解得.b 1=2.b 2=−8(舍去) ∴点B(2,12).代入y =kx 得. k =6;故答案为:6或38.第三部分 解答题三、解答题(本题有6小题.共56分)17. 如图.已知A (–4.n ).B (2.–4)是一次函数y =kx +b 和反比例函数y =的图象的两个交点.(1)求一次函数和反比例函数的解析式; (2)求△AOB 的面积.【答案】(1)y =–x –2.y =–;(2)6【解析】(1)∵B (2.–4)在y =图象上. ∴m =–8.∴反比例函数的解析式为y =–. ∵点A (–4.n )在y =–图象上. ∴n =2. ∴A (–4.2).∵一次函数y =kx +b 图象经过A (–4.2).B (2.–4).∴.解得.∴一次函数的解析式为y =–x –2;(2)如图.令一次函数y =–x –2的图象与y 轴交于C 点.mx8xmx 8x8x4224k b k b -+=+=-⎧⎨⎩12k b =-=-⎧⎨⎩当x=0时.y =–2. ∴点C (0.–2). ∴OC =2.∴S △AOB =S △ACO +S △BCO =×2×4+×2×2=6. 18.如图.已知反比例函数y x=与一次函数y =x +b 的图象在第一象限相交于点A (1.-k +4). (1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B 的坐标.并根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.【答案】(1).y =x +1;(2)B 的坐标为(-2.-1).x <-2或0<x <1 【解析】(1)∵已知反比例函数经过点A (1.-k +4). ∴.即-k +4=k . ∴k =2.∴A (1.2).∵一次函数y =x +b 的图象经过点A (1.2). ∴2=1+b .∴b =1.∴反比例函数的表达式为. 一次函数的表达式为y =x +1.12122y x=ky x=41kk -+=2y x=(2)由.消去y .得x 2+x -2=0. 即(x +2)(x -1)=0. ∴x =-2或x =1. ∴y =-1或y =2.∴或.∵点B 在第三象限. ∴点B 的坐标为(-2.-1).由图象可知.当反比例函数的值大于一次函数的值时.x 的取值范围是x <-2或0<x <1. 19.如图.一次函数的图象与反比例函数(为常数且)的图象相交于.两点.(1)求反比例函数的表达式;(2)将一次函数的图象沿轴向下平移个单位.使平移后的图象与反比例函数的图象有且只有一个交点.求的值.【答案】(1);(2)b 的值为1或9. 【解析】(1)由题意.将点代入一次函数得: 将点代入得:.解得 则反比例函数的表达式为; (2)将一次函数的图象沿轴向下平移个单位得到的一次函数的解析式为联立整理得: 12y x y x ⎧=+⎪⎨=⎪⎩21x y ⎧=-⎨=-⎩12x y ⎧=⎨=⎩5y x =+ky x=k 0k ≠(1,)A m -B 5y x =+y b (0)b >ky x=b 4y x=-(1,)A m -5y x =+154m =-+=(1,4)A -∴(1,4)A -ky x=41k =-4k =-4y x =-5y x =+y b 5y x b =+-54y x by x =+-⎧⎪⎨=-⎪⎩2(5)40x b x +-+=一次函数的图象与反比例函数的图象有且只有一个交点 关于x 的一元二次方程只有一个实数根此方程的根的判别式解得则b 的值为1或9.20.如图.一次函数y =kx +b (k 、b 为常数.k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点.且与反比例函数y =(n 为常数.且n ≠0)的图象在第二象限交于点C .CD ⊥x 轴.垂足为D .若OB =2OA =3OD =12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E .求△CDE 的面积; (3)直接写出不等式kx +b ≤的解集.【答案】(1)y =–2x +12;(2)140;(3)x ≥10.或–4≤x <0 【解析】(1)由已知.OA =6.OB =12.OD =4.∵CD ⊥x 轴.∴OB ∥CD .∴△ABO ∽△ACD . ∴=.∴=.∴CD =20. ∴点C 坐标为(–4.20).∴n =xy =–80. ∴反比例函数解析式为:y =–. 把点A (6.0).B (0.12)代入y =kx +b 得:.解得.∴一次函数解析式为:y =–2x +12; (2)当–=–2x +12时.解得x 1=10.x 2=–4; 当x =10时.y =–8.∴点E 坐标为(10.–8). ∴S △CDE =S △CDA +S △EDA =×20×10+×8×10=140; 5y x b =+-4y x=-∴2(5)40x b x +-+=∴2(5)440b ∆=--⨯=121,9b b ==nxnxOA AD OBCD 61012CD80x0612k b b =+=⎧⎨⎩212k b =-=⎧⎨⎩80x1212(3)不等式kx +b ≤.从函数图象上看.表示一次函数图象不高于反比例函数图象; ∴由图象得.x ≥10.或–4≤x <0. 21.如图.一次函数y =k 1x +b 的图象与反比例函数y=的图象相交于A 、B 两点.其中点A 的坐标为(–1.4).点B 的坐标为(4.n ).(1)根据图象.直接写出满足k 1x +b >的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上.且S △AOP ∶S △BOP =1∶2.求点P 的坐标. 【答案】(1)x <–1或0<x <4;(2)y =–(3)P (.)【解析】(1)∵点A 的坐标为(–1.4).点B 的坐标为(4.n ).由图象可得:k 1x +b >的x 的取值范围是x <–1或0<x <4; (2)∵反比例函数y =的图象过点A (–1.4).B (4.n ). ∴k 2=–1×4=–4.k 2=4n .∴n =–1.∴B (4.–1). ∵一次函数y =k 1x +b 的图象过点A .点B .∴. 解得k =–1.b =3.∴直线解析式y =–x +3.反比例函数的解析式为y =–; (3)设直线AB 与y 轴的交点为C .∴C (0.3).∵S △AOC =×3×1=. ∴S △AOB =S △AOC +S △BOC =×3×1+×3×4=. n x2k x 2k xx 332k x2k x 11441k b k b -+=+=-⎧⎨⎩4x 12321212152∵S△AOP :S △BOP =1:2.∴S △AOP =×=. ∴S △COP =–=1.∴×3x P =1.∴x P =. ∵点P 在线段AB 上.∴y =–+3=.∴P (.).22.如图.反比例函数1k y x=和一次函数2y mx n =+相交于点()1,3A .()3,B a -. (1)求一次函数和反比例函数解析式;(2)连接OA.试问在x 轴上是否存在点P.使得OAP ∆为以OA 为腰的等腰三角形.若存在.直接写出满足题意的点P 的坐标;若不存在.说明理由.【答案】(1)22y x =+(2)见解析【解析】(1)∵反比例函数1k y x =和一次函数2y mx n =+相交于点()1,3A .()3,B a -. ∴k=1×3=3.∴13y x=. ∴-3a=3.解得:a=-1.∴B(-3.-1).∴331m n m n +=⎧⎨-+=-⎩.解得:12m n =⎧⎨=⎩. ∴22y x =+;(2)设P(t.0).∵()1,3A .∴222(1)(03)(1)9t t -+-=-+t 221310+. 15213525232122323732373∵OAP ∆为以OA 为腰的等腰三角形.∴OA=AP 或OA=OP.当OA=AP 时.22(1)9(10)t -+=.解得:1220t t ==,(不符合题意.舍去). ∴P(2.0);当OA=OP 时.t 10解得:10.∴10.0)或P(10.0).综上所述:存在点P.使OAP ∆为以OA 为腰的等腰三角形.点P 坐标为:(2.0) 或10.0)或(10.0).。
关于反比例函数的知识点
关于反比例函数的知识点反比例函数是数学中经常用到的一种重要函数类型。
它是一种特殊类型的函数,通过定义两个变量之间的关系,其中一个变量的增加导致另一个变量的减小,反之亦然。
本文将详细介绍反比例函数的定义、图像、性质以及一些实际应用。
一、反比例函数的定义反比例函数的定义如下:y = k / x其中,x 和 y 是变量,k 是一个常数。
在反比例函数中,y 的值与 x 的值成反比例关系,即 x 越大,y 越小,反之亦然。
常数 k 称为比例常数,它决定了函数的形状。
二、反比例函数的图像反比例函数的图像通常是一个双曲线,它的形状取决于比例常数 k 的值。
当比例常数 k 大于 0 时,反比例函数的图像在 x 轴的正半轴和 y 轴的负半轴上分别存在一个渐近线。
这是因为当 x 趋近于无穷大时,y 趋近于 0,当 y 趋近于无穷大时,x 趋近于 0。
当比例常数 k 小于 0 时,反比例函数的图像与前一种情况相似,但是渐近线位于 x 轴的负半轴和 y 轴的正半轴上。
三、反比例函数的性质1. 定义域和值域:由于反比例函数中 x 不能为 0,所以它的定义域为 x ≠ 0。
根据函数的定义,可以得出反比例函数的值域为 y ≠ 0。
2. 对称性:反比例函数具有轴对称性,即当 (x, y) 在反比例函数中时,(-x, -y) 也在反比例函数中。
3. 变化率:反比例函数的变化率是一个常数,即在函数图像上的任意两个点 (x1, y1) 和 (x2, y2) 中,斜率 k = y1 / x1 = y2 / x2 是一个常数。
四、反比例函数的实际应用反比例函数在实际生活中有许多应用。
以下是一些常见的实际应用示例:1. 物体的速度和时间:当物体的运动速度保持不变时,物体在单位时间内所需的时间与其速度成反比例关系。
当速度增加时,所需时间减小;当速度减小时,所需时间增加。
2. 货币兑换:兑换货币时,汇率决定了兑换后的货币数量。
如果汇率变高,那么兑换后的货币数量就变少;如果汇率变低,兑换后的货币数量就变多。
反比例函数知识点总结
反比例函数知识点总结反比例函数知识点总结1.反比例函数的定义一般地,形如y=k/x(k为常数,k≠0)的函数称为反比例函数。
它可以从以下几个方面来理解:⑴ x是自变量,y是x的反比例函数;⑵自变量x的取值范围是x≠0的一切实数,函数值的取值范围是y≠0;⑶比例系数k≠0是反比例函数定义的一个重要组成部分;⑷反比例函数有三种表达式:① y=k/x(k≠0);② y=kx^-1(k≠0);③ xy=k(定值)(k≠0);⑸函数y=k/x(k≠0)与函数x=k/y(k≠0)是等价的,所以当y是x的反比例函数时,x也是y的反比例函数。
当k=0时,y=k/x就不是反比例函数了。
2.用待定系数法求反比例函数的解析式由于反比例函数y=k/x(k≠0)中,只有一个待定系数,因此,只要一组对应值,就可以求出k的值,从而确定反比例函数的表达式。
3.反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称。
由于反比例函数中自变量x≠0,函数值y≠0,所以它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例函数的画法分三个步骤:⑴列表;⑵描点;⑶连线。
再作反比例函数的图像时应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
4.反比例函数的性质关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表所示:反比例函数 y=k/x(k≠0) k的符号 k>0 k0 y0时,函数图像的两个分支分别在第一、第三象限,在每个象限内,y随x的增大而减小。
当k<0时,函数图像的两个分支分别在第二、第四象限,在每个象限内,y随x的增大而增大。
反比例ppt课件
实例应用分析
日常生活中的反比例现象
在日常生活中,反比例现象非常普遍。 例如,当一个物体从高空下落时,下落 速度与下落时间成反比关系;当汽车以 恒定速度行驶时,行驶距离与行驶时间 成反比关系等。
VS
实际应用中的反比例关系
在许多实际应用领域中,如物理学、工程 学、经济学等,都存在反比例关系。掌握 反比例函数的变化趋势和影响因素对于解 决实际问题具有重要意义。例如,在物理 学中,当两个带电体之间的距离增大时, 它们之间的库仑力会减小;在经济学中, 当商品的价格上涨时,其需求量会减少等 。
课件
目 录
• 反比例的定义 • 反比例的应用 • 反比例的图像表示 • 反比例的变化趋势及影响因素 • 反比例的实践与探索
CHAPTER 01
反比例的定一个常数, 那么它们成反比例。
表达式
假设有两个量x和y,它们的乘积 为k,即x×y=k,那么我们称x和y 成反比例,k为它们的比例常数。
在生理学中,反比例关系可以用 来描述心率与血压之间的关系, 以及血糖水平与胰岛素浓度之间
的关系等。
THANKS FOR WATCHING
感谢您的观看
率与传动比的关系等。
在电力工程中,反比例关系可以用来描 述电压与电流之间的关系,以及功率与
电阻之间的关系等。
反比例在医学中的应用
在医学领域,反比例关系也有着 广泛的应用。例如,在药物治疗 中,药物的疗效与剂量之间存在
着反比例关系。
在疾病诊断中,某些病症的表现 症状与病情的严重程度之间也存
在着反比例关系。
CHAPTER 04
反比例的变化趋势及影响因 素
变化趋势分析
反比例函数的变化趋势
反比例函数是一种具有特殊性质的函数,其图像表现为双曲 线。在反比例函数中,当一个变量增加时,另一个变量会减 少,反之亦然。这种变化趋势在数学中具有重要的应用价值 。
反比例函数教案(优秀7篇)
反比例函数教案(优秀7篇)反比例函数教案篇一一、背景分析1.对教材的分析本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。
本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。
本节课前一课时是在具体情境中领会反比例函数的意义和概念。
函数的性质蕴涵于概念之中,对反比例函数性质的探索是对其内在规定性的的认识,也是对函数的概念的深化。
同时,本节课也是下一节课《反比例函数的应用》的基础,有了本节课的知识储备,便于学生利用函数的观点来处理问题和解释问题。
传统教材在内容和编写意图的比较:传统教材里反比例函数的内容仅有一节,新教材里反比例函数的内容增加至一章。
本节课中的作函数图象的要求在新旧教材中并不一样,旧教材对画图只是一带而过,而新教材中让学生反复作反比例函数的图象,为下一步性质的探索打下良好的基础。
因为在学生进行函数的列表、描点作图是活动中,就已经开始了对反比例函数性质的探索,而且通过对函数的三种表示方式的整和,逐步形成对函数概念的整体性认识。
在旧教材中对反比例函数性质只是简单观察以后,由老师讲解得到,但是在新教材中注重从操作、观察、概括和交流这些数学活动中得到性质结论,从而逐步提高从函数图象中获取信息的能力。
这也充分体现了重视获取知识过程体验的新课标的精神。
(1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。
(2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。
(3)难点:探索并掌握反比例函数的主要性质。
2、对学情的分析九年级学生在前面学习了一次函数之后,对函数有了一定的认识,虽然他们在小学已经接触了反比例,但都处于浅显的、肤浅的知识表面,这对于他们理解反比例函数的图象与性质没有多大的帮助,但由于本节课采用z+z智能教育平台进行教学,比较形象,便于学生接受。
反比例函数实际应用的七种情况
反比例函数实际应用的七种情况1.电阻与电流之间的关系:根据欧姆定律,电阻与电流成反比例关系,即电阻越大,通过电阻的电流越小。
这个关系在电路设计和计算中非常有用,让我们可以根据所需的电流值来选择合适的电阻。
2.速度与旅行时间之间的关系:在常规的运动中,速度与旅行时间成反比例关系。
例如,如果行驶的速度减小,那么到达目的地所需要的时间将会增加。
这个关系在交通规划中非常重要,可以帮助我们预测旅行时间和选择最佳路线。
3.固定工作量与完成时间的关系:在工作中,如果完成一项任务所需的工作量固定,那么完成任务所需的时间将与工作量成反比例关系。
这个关系可以帮助我们计划工作时间和分配资源,确保在规定时间内完成工作。
4.人均资金和受益人数之间的关系:在社会福利领域,人均资金和受益人数成反比例关系。
例如,如果一些项目的预算不变,那么资金按比例减少时,受益人的数量将会增加。
这个关系可以帮助我们合理分配资源,确保尽可能多的人从社会福利项目中受益。
5.产品价格与需求之间的关系:根据供需理论,产品价格与需求成反比例关系。
如果产品价格上升,需求将减少;反之,如果产品价格下降,需求将增加。
这个关系可以帮助企业制定合理的定价策略和预测市场需求,以最大程度地获得利润。
6.光的强度与距离之间的关系:根据光传播定律,光的强度与距离成反比例关系。
如果距离光源越远,光的强度将越弱。
这个关系在光学中非常重要,可以帮助我们计算光的传播距离和设计照明方案。
7.音量与距离之间的关系:在声学中,音量与距离也成反比例关系。
如果距离声源越远,声音的音量将越低。
这个关系在音响设计和音频工程中非常有用,可以帮助我们调整音乐会场的音效和音量控制系统。
以上是反比例函数实际应用的七种情况,这些情况涉及到不同领域的应用,从物理学到经济学,再到工程学和音响学等。
对于学习和应用反比例函数的人来说,了解这些实际案例可以帮助他们更好地理解和运用反比例函数。
八年级数学反比例函数复习7
反比例函数十大经典题型
反比例函数十大经典题型(原创实用版)目录1.反比例函数的定义与性质2.反比例函数的图像与画法3.待定系数法在反比例函数中的应用4.反比例函数的比较大小问题5.反比例函数与直线的交点问题6.反比例函数的中点问题7.反比例函数的平行线问题8.反比例函数的内插法问题9.反比例函数的外插法问题10.反比例函数的实际应用问题正文一、反比例函数的定义与性质反比例函数是指两个变量之间的关系,当一个变量的值增大时,另一个变量的值会减小,而且它们的乘积保持不变。
反比例函数的一般形式为y=k/x,其中 k 是常数。
二、反比例函数的图像与画法反比例函数的图像是一条双曲线,它有两条渐近线,当 x 趋近于 0 时,y 趋近于无穷大;当 x 趋近于无穷大时,y 趋近于 0。
画反比例函数的图像时,可以先确定渐近线,然后在渐近线之间取一个点,以此点为起点,画出双曲线。
三、待定系数法在反比例函数中的应用待定系数法是求解反比例函数的常用方法,它的一般步骤是:先设反比例函数的关系式,然后根据题目的条件,列出方程组,解方程组得到 k 值,最后代入关系式求得函数的解析式。
四、反比例函数的比较大小问题比较反比例函数的大小问题通常是通过比较函数值的大小来解决的。
例如,若点 A(1, y1) 和点 B(2, y2) 在反比例函数 y=k/x 的图像上,则可以通过比较 y1 和 y2 的大小来判断 k 的取值范围。
五、反比例函数与直线的交点问题反比例函数与直线的交点问题可以通过解方程组来解决。
设反比例函数为 y=k/x,直线的解析式为 y=ax+b,将两个方程联立,解得 x 和 y 的值,即可得到交点。
六、反比例函数的中点问题反比例函数的中点问题通常是通过求解中点坐标来解决的。
设反比例函数为 y=k/x,已知两点 A(x1, y1) 和 B(x2, y2),则中点 M 的坐标为 ((x1+x2)/2, (y1+y2)/2)。
七、反比例函数的平行线问题反比例函数的平行线问题可以通过比较函数的斜率来解决。
反比例函数图像与性质知识点总结
反比例函数图像与性质知识点总结一、反比例函数公式口诀反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线,x、y的顺序可交换。
二、反比例函数图象当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内,两个分支无限接近x和y轴,但永远不会与x轴和y轴相交。
图象画法1)在平面直角坐标系中标出点(一般标5个点,称为5点作图法)。
2)用平滑的曲线连接点。
当K>0时,在图象所在的每一象限内,Y随X的增大而减小。
当K<0时,在图象所在的每一象限内,Y随X的增大而增大。
当两个数相等时那么曲线呈弯月型。
k的意义及应用过反比例函数y=k/x(k≠0)图象上任意一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积为|k|。
过反比例函数图象一点,作任一坐标轴的垂线,并连接原点,围成的三角形的面积为|k|/2。
研究函数问题要透视函数的.本质特征。
反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积为|k|。
所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。
这个常数是k的绝对值。
在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。
三、反比例函数性质单调性当k>0时,图象分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小;当k<0时,图象分别位于第二、四象限,每一个象限内,从左往右,y随x的增大而增大。
k>0时,函数在x<0上为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。
相交性因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交,只能无限接近x轴,y轴。
反比例的意义ppt
轮的模数和齿数之间存在反比关系,以确保齿轮的正常运转。
03
航空航天设计
在航空航天设计中,反比例关系用于确定飞行器的性能和稳定性。例如,
飞行器的机翼面积和展弦比之间存在反比关系,以确保飞行器的升力和
稳定性。
经济学的应用
供需关系
在经济学中,供需关系是反比例 关系的一个典型例子。当需求增 加时,供给会减少;反之亦然。 这一关系决定了市场价格的形成。
在物理学中,声速与温度成反比关系。 随着温度的升高,声速会减小;反之, 随着温度的降低,声速会增大。
工程设计中的应用
01
建筑设计
在建筑设计中,反比例关系常常用于确定结构的稳定性。例如,建筑物
的宽度和高度之间存在反比关系,以确保建筑物的重心稳定。
02
机械设计
在机械设计中,反比例关系用于确定机械零件的尺寸和性能。例如,齿
反比例的意义
目录
• 反比例的定义 • 反比例的应用 • 反比例的实例 • 反比例的意义和重要性
01 反比例的定义
什么是反比例
反比例是指两个量在变化过程中,一 个量随着另一个量的增加而减小或一 个量随着另一个量的减小而增加,且 它们的乘积为常数。
例如,当一个电池的电量逐渐减少时 ,它的电压也会随之降低,它们的乘 积为常数,即电量与电压成反比例关 系。
反比y = k/x,其中 y 和 x 是两个变量, k 是它们的乘积为常数。
02
当 x 增大时,y 减小;当 x 减小 时,y 增大。
反比例的性质
反比例关系是一种函 数关系,其中一个变 量是另一个变量的倒 数。
反比例关系在坐标系 中表现为双曲线,即 y = k/x 的图像是一 条双曲线。
数学问题中的反比例实例
反比例关系的例子
反比例关系的例子
以下是 7 条关于反比例关系的例子:
1. 你看啊,上学的时候,学习时间和玩耍时间不就是反比例关系吗?当你拼命花大量时间学习时,玩耍的时间不就变少了嘛,反之亦然,这多明显啊!
2. 就说减肥和美食吧,你越想吃美食,那减肥就越困难呀,这两者绝对是反比例关系呢!你要是整天大吃大喝,还怎么能瘦下来呢?
3. 工作和休息不也是这样嘛!你拼命工作,那休息的时间不就少得可怜啦?这简直就是反比例得不能再明显了,大家不都有这样的体会吗?
4. 嘿,你想想,打游戏的技术水平和偷懒不练习不也是成反比例吗?你越偷懒不去练习,那技术肯定越烂呀,这不是明摆着的嘛!
5. 存钱和花钱也是反比例关系呀!你花钱如流水,那存款不就很难增加咯,反过来说,你要是能克制自己少花钱,那存款不就慢慢多起来啦!这不是生活常识嘛!
6. 运动的频率和身体的慵懒程度也是反比例的呀!你多多运动,身体就不会那么慵懒,而要是一直懒得动,那身体会越来越不想动呢,多有意思啊!
7. 对孩子的陪伴时间和孩子对你的陌生感也是反比例呀!你陪孩子时间少,孩子跟你就会陌生呀,难道不是这样吗?
我觉得反比例关系在生活中无处不在,时刻影响着我们的选择和生活状态呢。
50个反比例的例子
50个反比例的例子1、煤的总量一定,每天的烧煤量和能够烧的天数成反比例。
2、种子的总量一定,每公顷的播种量和播种的公顷数成反比例。
3、李叔叔从家到工厂,骑自行车的速度和所需时间成反比例。
4、百米赛跑,路程100米不变,速度和时间成反比例。
5、排队做操,总人数不变,排队的行数和每行的人数成反比例。
6、买东西,总钱数一定,它的单价和数量成反比例。
7、长方形的面积一定,长和宽成反比例。
8、等分一块蛋糕,每人分到的蛋糕与人数成反比例。
9、总价一定,单价与数量成反比例。
10、长方体体积一定,底面积与高成反比例。
11、葡萄总量一定,分的人数和人均分到的数量成反比例。
12、快递数量一定,快递员人数与人均派送数量成反比例。
13、做纸盒子,总个数一定,每人做的个数和人数反比例。
14、买东西(实际就用文具用品),总钱数一定,它的单价和数量是反比例。
15、书的总册数一定,每包的册数和包数成反比例关系总价一定,单价和数量成反比例。
16、同样质量的物品,密度和体积是反比例。
17、等分一块蛋糕,每人分到的蛋糕与人数成反比例。
18、总价一定,单价与数量成反比例。
19、长方体体积一定,底面积与高成反比例。
20、总纸盒一定,每人做的个数与人数成反比例。
21、奖金总额一定,获奖人数与人均获奖金额成反比例。
22、路程一定,时间和速度成反比例。
23、购买商品的总价一定,单价和数量成反比例。
24、总页数一定,平均每天看的页数和看完书的天数成反比例。
25、总字数一定,打字速度和所用时间成反比例。
26、果汁总量一定,分的杯数和每杯果汁量成反比例。
27、总人数一定,排队的行数和每行的人数是反比例。
28、煤的总量一定,每天的烧煤量和烧的天数成反比例。
29、树的总棵数一定,每行种的棵数与行数成反比例。
30、一堆货物一定,运出的和剩下的成反比例。
31、煤的总量一定,每天的烧煤量和烧的天数成反比例。
32、树的总棵数一定,每行种的棵数与行数成反比例。
33、工作总量一定,工效和时间成反比例。
反比例的所有概念和性质
反比例的所有概念和性质反比例是指两个变量之间存在一种相互制约的关系,当其中一个变量增大时,另一个变量会相应地减小,反之亦然。
在数学中,反比例通常用一个函数来表示,即y = k/x,其中k表示一个常数。
反比例的概念和性质如下:1. 反比例函数的定义:反比例函数是一种形式为y = k/x的函数,其中k为常数。
当x不等于零时,函数是定义良好的。
2. 反比例函数的图像:反比例函数的图像呈现出一种特殊的形态,即一个双曲线。
随着自变量x趋近于零,因变量y趋近于无穷大;随着自变量x趋近于无穷大,因变量y趋近于零。
3. 反比例的变化趋势:反比例的关系是由两个变量之间的相互制约所决定的。
当其中一个变量增大时,另一个变量会相应地减小;当其中一个变量减小时,另一个变量会相应地增大。
这种变化趋势与正比例关系相反。
4. 反比例的例子:反比例关系在现实生活中有许多实际应用,例如弹簧刚度与其伸长长度的关系、密度与体积的关系、速度与时间的关系等等。
5. 反比例的性质:反比例具有以下性质:a. 零点:反比例函数的图像经过坐标轴的原点。
b. 单调性:反比例函数在自变量的正值区间上是单调递减的,在自变量的负值区间上是单调递增的。
c. 渐进线:反比例函数的图像有两条渐近线,即y轴和x轴。
当自变量趋近于无穷大时,函数的图像趋近于x轴;当因变量趋近于无穷大时,函数的图像趋近于y轴。
d. 定比关系:反比例函数中,y/x的值始终等于常数k,即y = k/x。
6. 反比例的应用:反比例关系在实际生活中有广泛的应用,例如电阻和电流的关系、速度和时间的关系、浓度和体积的关系等等。
这些应用可以通过反比例关系来描述和解释。
7. 反比例的变种:在一些情况下,变量之间的关系可能不是严格的反比例,而是近似反比例。
在这种情况下,函数可能具有形式为y = k/x^n的一般反比例关系,其中n为正整数。
8. 反比例与正比例的关系:反比例和正比例是两个相关但相反的概念。
一文搞定反比例函数7个模型,13类题型
反比例函数是高中数学中的重要内容,也是考试中经常出现的题型之一。
掌握反比例函数的基本概念和解题方法对于提高数学成绩至关重要。
本文将通过七个模型和十三类题型,帮助读者全面了解并掌握反比例函数的相关知识。
一、反比例函数的基本概念1. 反比例函数的定义反比例函数是一种特殊的二元一次函数,其函数关系可以表示为y=k/x,其中k为比例系数。
当x增大时,y减小;当x减小时,y增大。
反比例函数的图像呈现出一条经过原点的曲线,并且不过原点,是一对对称的点。
2. 反比例函数的特点反比例函数的图像呈现出一种特殊的“反比例”关系,即x与y成反比。
在实际问题中,反比例函数常常用来描述一种随着某个变量的增大而导致另一个变量的减小,或者随着某个变量的减小而导致另一个变量的增大的情况。
二、反比例函数的模型分析1. 比例系数为正数的反比例函数模型当比例系数k大于0时,反比例函数的图像为一条经过第一象限和第三象限的曲线,随着x的增大,y的值减小;随着x的减小,y的值增大。
2. 比例系数为负数的反比例函数模型当比例系数k小于0时,反比例函数的图像为一条经过第二象限和第四象限的曲线,随着x的增大,y的值增大;随着x的减小,y的值减小。
3. 比例系数为零的反比例函数模型当比例系数k等于0时,函数变为y=0,即y始终为0,这时反比例函数的图像为一条水平直线。
4. 比例系数为整数的反比例函数模型当比例系数k为整数时,反比例函数的图像呈现出一种更为规律的变化规律,可以通过整数的变化来探究x和y之间的反比关系。
5. 比例系数为分数的反比例函数模型当比例系数k为分数时,反比例函数的图像表现出更为复杂的变化规律,需要通过分数的变化来揭示x和y之间的反比关系。
6. 反比例函数的图像变换反比例函数的图像可以通过平移、缩放、翻转等变换来形成新的图像,这些变换对于理解反比例函数的性质和特点非常重要。
7. 反比例函数的应用举例反比例函数在日常生活中有很多应用,比如收费问题、速度与时间问题、密度与体积问题等等。
反比例函数的图像和性质7
《反比例函数的图像和性质》说课稿1.关于教材本节内容是上海教育出版社出版的九年制义务教育课本八年级第二学期第十七章第四节第二课时,属于数形结合的知识。
在此之前,学生已学习了正比例函数的图像与性质。
这为过渡到本节的学习起着铺垫作用。
本节内容是学生学过的函数的延续和拓展,又是后续研究其他函数的基础,它是整个函数的认知中起承上启下作用的核心知识之一。
因此,在初中函数学习中,占据重要的地位。
本节课中其函数表达式是重点,其图像是难点,x与k不等于零是关键。
基于以上对教材的认识,根据数学课程标准的基本理念,考虑到学生已有的认知结构与心理特征,制定如下的教学目标。
2.关于目标:知识与技能:认识并掌握反比例函数的相关性质和图像。
过程与方法:通过对正比例函数的认识,由学生自己利用五点描图法猜想反比例还是得有关概念,最后由老师总结。
情感态度与价值观:经历对有关的图形进行观察、分析、欣赏、交流等活动,发展初步的审美能力,增强对图形欣赏的意识。
为突出重点、突破难点、抓住关键,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈设计思路。
3.关于教学方法教法选择与教学手段:基于本节课的特点是运用学生动手实践、自主探索的学习方法,所以应着重采用引导学生动手探究新知的教学方法与手段,即探究式教学。
最后,我来具体谈一谈本节课的教学过程。
4.关于教学过程在分析教材、确定教学目标、合理选择教法与学法的基础上,我预设的教学过程是:一、提出问题:提问:1、我们经常用什么方法画函数的图像2、自变量的取值范围是什么?学生独立思考后说出自己的发现;并列表画图二、考虑1. 双曲线的两个分支与x轴和y轴能相交吗?为什么?让学生充分思考,互相交流,并联系一次函数的性质,让学生代表回答问题,尝试归纳:(1)双曲线的两个分支与x轴和y轴没有交点;(2)双曲线的两个分支关于原点成中心对称.(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;(2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。
专题1-4 一文搞定反比例函数7个模型13类题型(原卷版)
专题1-4 一文搞定反比例函数7个模型,13类题型知识点梳理 (2)题型一|k|模型..................................................................................................................................................... 题型二面积模型................................................................................................................................................. 题型三垂直模型................................................................................................................................................. 题型四比例端点模型......................................................................................................................................... 题型五矩形模型(平行,比例性质)............................................................................................................. 题型六等线段模型............................................................................................................................................. 题型七等角模型................................................................................................................................................ 题型八反比例函数中的设而不求法............................................................................................................... 题型九反比例函数与相似相似三角形结合..................................................................................................... 题型十反比例函数与一次函数综合................................................................................................................. 题型十一反比例函数中的探究类问题............................................................................................................. 题型十二反比例函数与与几何综合................................................................................................................. 题型十三反比例函数的找规律问题.................................................................................................................知识点梳理【模型1】|k |模型结论1:S 矩形=|k |:结论2:S 三角形=|k |【模型2】面积模型(四类)类型一结论:证明:.类型二结论:① AO=BO ,AB 关于原点对称,② S △ABC =4|k |类型三AOB ABNMS S = 梯形AOB BONAONB S S S =- 四边形ABNM AOM AONB S S S =- 梯形四边形BON AOMS S = AOB ABNM S S ∴= 形梯结论:① ABCD 为平行四边形,② S 四边形ABCD =4S △AOB 类型四结论:S 四边形ABOC =k 2-k 1【模型3】垂直模型结论:证明:作BC ⊥x 轴,AD ⊥x 轴,则△BCO ∽△ODA ,∴【模型4】比例端点模型出现比例端点时可以考虑作垂线构造相似或设点坐标来转化212OBC OAD S O S k OB k A OB OA ∆∆⎛⎫⊥⇒== ⎪⎝⎭212OBC OAD S O S k OB k A OB OA ∆∆⎛⎫⊥⇒== ⎪⎝⎭结论:证明:过点D 作DE ⊥x 轴,,,【模型5】矩形模型(平行性质和比例性质)一、比例性质如图,A,B 是反比例函数y=图象上任意两点,过A 、B 作x 轴、y 轴垂线段线段比(共线的线段之比为定值)证明一:∵S 矩形OADF =S 矩形OGEC ,∴证明二:∵结论:二、平行性质2BC OD BA OA ⎛⎫= ⎪⎝⎭~ODE OAB ∆∆2ODE OAB S OD S OA ⎛⎫∴= ⎪⎝⎭ ODE OBC S S = 2ODE OBC OAB OAB S S OD BC OA S S BA ⎛⎫∴=== ⎪⎝⎭xkAO AD CE CO ⨯⨯=CBCEAB AD =CBCEAB AD S S S S ABCO CEGO ABCO ADFO =⇒=矩形矩形矩形矩形CBCE AB AD =如图1、图2、图3,点A 、B 是反比例函数y =k x图象上的任意两点,过点A 作y 轴的垂线,垂足为点C ,过点B 作x 轴的垂线,垂足为点D ,连接AB 、CD ,则AB ∥CD .下面以图1为例来证明(图2、图3证法类似):法一:面积法(等积变形)如图,易知S △ACE =S △ADE ,因为两个三角形同底等高,故ED ∥CA补充xxx图1图2方法二:连接OA 、OB ,延长CA 、DB 交于点E则OC =DE ,OD =CE由k 的几何意义可知S △AOC =S △BOD,,又∵∠E =∠E ,∴△EAB ∽△ECD ∴∠EAB =∠ECD ,∴AB ∥CD 方法三:延长CA 、DB 交于点E1122AC OC BD OD ∴⋅=⋅OD OC AC BD∴=CE DE AC BD ∴=AE BE CE DE∴=设,,则又∵∠E =∠E ,∴△EAB ∽△ECD ∴∠EAB =∠ECD ,∴AB ∥CD 补充拓展:矩形模型中的翻折如图,矩形OABC 顶点A ,C 分别位于x 轴,y 轴正半轴,反比例函数在第一象限图象交矩形OABC 两边于D ,E 点,将△BED 沿ED 翻折,若B 点刚好落在x 轴上的点F 处,则EO=EF【模型六】等线段模型如图1、图2,点A 、B 是反比例函数y =k x图象上的任意两点,直线AB 交y 轴于点C ,交x 轴于点D ,则AC =BD .,k A a a⎛⎫ ⎪⎝⎭,k B b b ⎛⎫ ⎪⎝⎭,E b k a ⎛⎫ ⎪⎝⎭,,,k k kAE b a CE b BE DE a b a∴=-==-=AE BE b a CE DE b-∴==ky x=证明:作AE ⊥y 轴于点E ,作BF ⊥x 轴于点F 由平行性质可知AB ∥EF∴四边形CEFB 和四边形AEFD 均为平行四边形∴BC =EF =AD ,∴AC =BD【模型七】等角模型模型一:如图,点A 、B 是反比例函数=y k x图象上的任意两点,直线OB 交反比例函数=y kx的图象于另一点C ,直线AC 交x 轴于点D ,交y 轴于点E ,直线AB 交x 轴于点F ,交y 轴于点G ,则∠ADF =∠AFD ,∠AEG =∠AGE ,由此可得AD =AF ,CD =AE =AG =BF ,AB =DE.证明:作CN ∥x 轴,AN ∥y 轴,BM ⊥AN 于M则∠ADF =∠ACN ,∠AFD =∠ABM 设A (a ,ka ),B (b ,k b ),则C (-b ,-k b)∴CN =a +b ,AN =k a+k b,BM =b -a ,AM =k a-k b∴tan ∠ACN =AN CN=k a+k b a +b=k ab,tan ∠ABM =AM BM=k a-k b b -a=k ab∴tan ∠ACN =tan ∠ABM ,∴∠ACN =∠ABM ∴∠ADF =∠AFD ,∴AD =AF ,∠CEO =∠FGO ∵∠AEG =∠CEO ,∴∠FGO =∠AEG ∴AE =AG∵AG =BF ,∴AE =BF ,∴AB =DE ∵CD =AE ,∴CD =AE =AG =BF模型二:如图,平行四边形ABCD 顶点A ,B 位于反比例函数ky x在第一象限的图象上,C ,D 分别位于x 轴正半轴和y 轴正半轴上,则必然有∠1=∠2,∠3=∠4E ,F 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章《反比例函数》测试题
一、选择题:(每题5分,共50分)
1、下列函数中,不属于反比例函数的是( ) A 、1xy = B 、11y x =
+ C 、1y x -=- D 、13y x
= 2、有以下判断:①圆面积公式2
S r π=中,面积S 与半径r 成正比例;②运动的时间与速度成反比例;③当电压不变时,电流强度和电阻成反比例;④圆柱体的体积公式2
1
3
V r h π=中,当体积V 不变时,圆柱的高h 与底面半径r 的平方成反比例,其中错误的有( ) A 、1个 B 、2个 C 、3个 D 、4个 3、若y 与x 成反比例,x 与z 成正比例,则y 是z 的( )
A 、 正比例函数
B 、 反比例函数
C 、 一次函数
D 、 不能确定 4、如图,A 为反比例函数k
y x
=
图象上一点,AB 垂直x 轴于B 点,若S △AOB =3,则k 的值为( ) A 、6
B 、3
C 、+3或-3
D 、+6或-6
5、如果反比例函数的图象经过点)2,3(,那么下列各点在此函数图象上的是( )
A 、)23,2(-
B 、)3
2
,
9( C 、)32,3(- D 、 )2
3,
6( 6、在同一直角坐标平面内,如果直线1y x k =与双曲线2
k y x
=没有交点,那么1k 和2k 的关系一定是( ) A 、1k <0, 2k >0
B 、1k >0, 2k <0
C 、1k 、2k 同号
D 、1k 、2k 异号
7、下列函数中y 随x 的增大而减小的是( ) A 、90)y x x =-<( B 、11y x =
C 、3
0)y x x
=>( D 、2y x = 8、已知112233(,),(,),(,)x y x y x y 是反比例函数4
y x
-=的图象上三点,且1230x x x <<<,则123,,y y y 的大小关系是( )
第4题图
A 、1230y y y <<<
B 、1230y y y >>>
C 、1320y y y <<<
D 、1320y y y >>> 9、在同一坐标系中,函数k
y x
=和3y kx =+的图象大致是 ( )
A B C D
10、已知P 为函数2
y x
=-的图像上的点,且P P 点的个数为( )
A 、0个
B 、2个
C 、4个
D 、无数个 二、填空题:(各题6分,共30分) 11、已知反比例函数x
k
y =
的图象经过点(3,4),则k = ; 12、若反比例函数2
21
(1)k k y k x --=-的图象经过二、四象限,则k= _______.
13、已知A (-3,3m -)和B (m+3,2)都是反比例函数k
y x
=的图像上的两点,则m=______. 14、对于函数2y x
=
,当2x >时,y 的取值范围是______y <<______;当2x ≤时且0x ≠时,y 的取值范围是y ______1。
(提示:利用图像解答)
15、一个均匀的立方体骰子六个面上标有数1,2,3,4,5,6,若以连续掷两次骰子分别得到的点数m ,n 作为P 点的坐标,则点P 落在反比例函数(x >0)的图象与两坐标轴所围成区域内(在反比例函数y =x
6
图象上的点)的概率是 ; 四、解答题:(共60分)
17(本题6分)、已知y-2与x 成反比例,当x=3时,y=1,求y 与x 之间的函数关系式。
18(本题6分)、如图,已知正比例函数x y 31=
与反比例函数x
k
y =的图象都过A (m,1)点。
(1)求m 的值,并求反比例函数的解析式。
(3分)
(2)求正比例函数与反比例函数的另一个交点B 的坐标。
(3分)
19、已知函数的图象经过A (1,4),B (2,2)两 点,请你写出满足条件的两个不同函数的表达式,并简要说明解答过程。
(6分)
20.已知反比例函数y=
m
x
与一次函数y=kx+b 的图象的一个交点为A(-2,-1),并且在x=3时,这两个函数的值相等,求这两个函数的解析式. (8分)
21.(本题10分)、如图,P 是矩形ABCD 的边CD 上的一个动点,且P 不与C 、D 重合,BQ ⊥AP 于点Q ,已知AD=6cm,AB=8cm ,设AP=x(cm),BQ=y(cm). (1)求y 与x 之间的函数解析式并求自变量x 的取值范围;(5分)
(2)是否存在点P ,使BQ=2AP 。
若存在,求出AP 的长;若不存在,说明理由。
22.(12分)如图,Rt △ABO 的顶点A 是双曲线y =x
k
与直线y =-x -(k+1)在第二象限的交点,AB ⊥x 轴于B ,且S △ABO =2
3
,求: (1)求这两个函数的解析式;
(2)求直线与双曲线的两个交点A 、C 的坐标; (3)求△AOC 的面积;
(4)根据图象写出使一次函数的值大于反比例函数的值x 的取值范围。
23.(12分)如图,已知正方形OABC 的面积为9,点O 为坐标原点,点A 在x 轴上,点C 在y 轴上,点B 在函数(0,0)k y k x x =
>>的图象上,点P(m,n) 是函数(0,0)k
y k x x
=>>的图象上任意一点,过点 P 分别作x 轴,y 轴的垂线,垂足分别为E, F ,若设矩形OEPF
中和正方形OABC 不重合部分的面积为S. (1)求B 点坐标和k 的值; (2) 写出S 关于m 的函数关系式。
(3) 求9
2
S =
时点P 的坐标;。