四川省成都市第七中学2017-2018学年高一上学期半期考试数学(文)试题+PDF版含答案

合集下载

四川省成都市第七中学2017-2018学年高二上学期半期考试

四川省成都市第七中学2017-2018学年高二上学期半期考试

四川省成都市第七中学2017-2018学年高二上学期半期考试数学(文)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 拋物线的准线方程是()A. B. C. D.【答案】D【解析】试题分析:抛物线方程变形为,准线为考点:抛物线方程及性质2. “”是“直线与圆相切”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】若直线与圆相切,则或所以“”是“直线与圆相切”的充分不必要条件.故选A.3. 设双曲线的渐近线方程为,则的值为()A. 4B. 3C. 2D. 1【答案】C【解析】双曲线的渐近线y=±x,所以a=2,选C项.4. 圆和圆的位置关系是()A. 相离B. 相交C. 外切D. 内切【答案】B【解析】试题分析:由题意可知圆的圆心,半径,圆的圆心,半径,又,所以圆和圆的位置关系是相交,故选B.考点:圆与圆的位置关系.5. 已知是拋物线的焦点,是该拋物线上的两点,,则线段的中点到轴的距离为()A. B. 1 C. D.【答案】C【解析】试题分析::∵F是抛物线y2=x的焦点,F(,0)准线方程x=−,设A,B,∴|AF|+|BF|=解得,∴线段AB的中点横坐标为,∴线段AB的中点到y轴的距离为.考点:抛物线的简单性质6. 设椭圆的右焦点与拋物线的焦点相同,离心率为,则此椭圆的方程()A. B. C. D.【答案】B【解析】试题分析:因为抛物线的焦点为F(2,0),所以c=2,再由离心率为,所以m=4,所以所以.考点:椭圆与抛物线的标准方程,及性质.点评:由抛物线的焦点,可得椭圆的半焦距c,再由离心率可知m,从而,因而椭圆方程确定.7. 在同一坐标系中,方程与的曲线大致是()A. B. C. D.【答案】D【解析】椭圆即,焦点在轴上;抛物线,即;焦点在轴的非正半轴上;比较四个选项,综合分析可知选D8. 如果实数满足,则的最大值为()A. B. C. D.【答案】D【解析】=k,则与圆有交点,因此圆心到直线距离解得即的最大值是,故选.点睛:与圆上点有关代数式的最值的常见类型及解法.①形如型的最值问题,可转化为过点和点的直线的斜率的最值问题;②形如型的最值问题,可转化为动直线的截距的最值问题;③形如型的最值问题,可转化为动点到定点的距离平方的最值问题.9. 椭圆的左右焦点分别为,过的直线与椭圆交于两点,点关于轴的对称点为点,则四边形的周长为()A. 6B.C. 12D.【答案】C【解析】∵过的直线与椭圆交于两点,点关于轴的对称点为点,∴四边形的周长为,∵椭圆,∴四边形的周长为12.故选C.【点睛】本题考查椭圆的定义,考查四边形的周长,正确运用椭圆的定义是解题的关键.10. 设直线,圆,则下列说法中正确的是()A. 直线与圆有可能无公共点B. 若直线的一个方向向量为,则C. 若直线平分圆的周长,则或D. 若直线与圆有两个不同交点,则线段的长的最小值为【答案】D【解析】对于,时,由已知,圆的圆心为,半径为2,圆心到直线的距离为:所以直线与圆一定相交; A错;对于B,直线的一个方向向量为,则直线的斜率为则故B错误;对于C,直线平分圆的周长,则直线过圆心 , 则,C错;对于D,若直线与圆有两个不同交点,线段的长的最小时圆心到直线的距离最大,即时的,此时;故D正确.故选D.11. 已知抛物线的焦点为,直线与交于(点在轴上方)两点,若满足,则实数的值为()A. B. C. 2 D. 3【答案】D【解析】试题分析:联立,解得,∵A在x轴上方,,则|AF|=+1=4,|BF|=+1=,由,得考点:抛物线的简单性质12. 已知是椭圆和双曲线的公共焦点,是它们的一个公共点,且,则椭圆和双曲线的离心率的倒数之和的最大值为()A. B. C. D.【答案】A【解析】设椭圆的长半轴为,双曲线的实半轴为,(),半焦距为,由椭圆和双曲线的定义可知,设椭圆和双曲线的离心率分别为∵,则由余弦定理可得,①在椭圆中,①化简为即…②,在双曲线中,①化简为即…③,由柯西不等式得故选B.【点睛】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 命题的否定是__________.【答案】【解析】全称命题的否定是特称命题,故命题的否定是14. 过点的圆与直线相切于点,则圆的方程为__________.【答案】【解析】直线的斜率为1,∴过点直径所在直线方程斜率为-1,∵,∴此直线方程为,即,设圆心C坐标为,即解得,∴圆心坐标为,半径为,则圆方程为.故答案为.【点睛】本题考查圆的标准方程,两点间的距离公式,两直线垂直时斜率满足的关系,求出圆心坐标与半径是解题的关键.15. 点为双曲线的右焦点,以为圆心的圆过坐标原点,且与双曲线的两渐近线分别交于两点,若四边形是菱形,则双曲线的离心率为__________.【答案】2【解析】由题意,是等边三角形,∴双曲线的离心率为故答案为2.16. 在中,斜边,以的中点为圆心,作半径为2的圆,分别交于两点,令,则的值为__________.【答案】42【解析】由题意,中,根据余弦定理..................三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知椭圆的长轴两端点为双曲线的焦点,且双曲线的离心率为.(1)求双曲线的标准方程;(2)若斜率为1的直线交双曲线于两点,线段的中点的横坐标为,求直线的方程.【答案】(1);(2)【解析】试题分析: (1)利用双曲线与椭圆有公共焦点,且离心率为.,求出基本量,即可求双曲线的方程;(2)设直线的方程为,与双曲线的方程联立,结合弦长公式,即可求方程.试题解析:(1)椭圆的长轴两端点为,得,又,得,∴.∴双曲线的方程为.(2)设直线的方程为,由得,∴,,∴.∴直线方程为.18. 若命题:方程有两不等正根;:方程无实根.求使为真,为假的实数的取值范围. 【答案】【解析】p:q:, 即-2<m<3.由题意知p与q一真一假。

高考圆锥曲线中的定点与定值问题(题型总结超全)

高考圆锥曲线中的定点与定值问题(题型总结超全)

专题08 解锁圆锥曲线中的定点与定值问题一、解答题1.【陕西省榆林市第二中学2018届高三上学期期中】已知椭圆的左右焦点分别为,离心率为;圆过椭圆的三个顶点.过点且斜率不为0的直线与椭圆交于两点.(Ⅰ)求椭圆的标准方程;(Ⅱ)证明:在轴上存在定点,使得为定值;并求出该定点的坐标.【答案】(1)(2)【解析】试题分析:(Ⅰ)设圆过椭圆的上、下、右三个顶点,可求得,再根据椭圆的离心率求得,可得椭圆的方程;(Ⅱ)设直线的方程为,将方程与椭圆方程联立求得两点的坐标,计算得。

设x轴上的定点为,可得,由定值可得需满足,解得可得定点坐标。

解得。

∴椭圆的标准方程为.(Ⅱ)证明:由题意设直线的方程为,由消去y整理得,设,,要使其为定值,需满足,解得.故定点的坐标为.点睛:解析几何中定点问题的常见解法(1)假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点; (2)从特殊位置入手,找出定点,再证明该点符合题意.2.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知斜率为k 的直线l 经过点()1,0-与抛物线2:2C y px =(0,p p >为常数)交于不同的两点,M N ,当12k =时,弦MN的长为. (1)求抛物线C 的标准方程;(2)过点M 的直线交抛物线于另一点Q ,且直线MQ 经过点()1,1B -,判断直线NQ 是否过定点?若过定点,求出该点坐标;若不过定点,请说明理由. 【答案】(1)24y x =;(2)直线NQ 过定点()1,4- 【解析】试题分析:(1)根据弦长公式即可求出答案;(2)由(1)可设()()()2221122,2,,2,,2M t t N t t Q t t ,则12MN k t t =+, 则()11:220MN x t t y tt -++=; 同理: ()22:220MQ x t t y tt -++=()1212:220NQ x t t y t t -++=.由()1,0-在直线MN 上11t t ⇒=(1);由()1,1-在直线MQ 上22220t t tt ⇒+++=将(1)代入()121221t t t t ⇒=-+- (2) 将(2)代入NQ 方程()()12122420x t t y t t ⇒-+-+-=,即可得出直线NQ 过定点.(2)设()()()2221122,2,,2,,2M t t N t t Q t t ,则12211222=MN t t k t t t t -=-+, 则()212:2MN y t x t t t -=-+即()11220x t t y tt -++=; 同理: ()22:220MQ x t t y tt -++=;()1212:220NQ x t t y t t -++=.由()1,0-在直线MN 上11tt ⇒=,即11t t =(1); 由()1,1-在直线MQ 上22220t t tt ⇒+++=将(1)代入()121221t t t t ⇒=-+- (2) 将(2)代入NQ 方程()()12122420x t t y t t ⇒-+-+-=,易得直线NQ 过定点()1,4-3.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知抛物线()2:0C y mx m =>过点()1,2-, P 是C 上一点,斜率为1-的直线l 交C 于不同两点,A B (l 不过P 点),且PAB ∆的重心的纵坐标为23-. (1)求抛物线C 的方程,并求其焦点坐标;(2)记直线,PA PB 的斜率分别为12,k k ,求12k k +的值. 【答案】(1)方程为24y x =;其焦点坐标为()1,0(2)120k k +=【解析】试题分析;(1)将()1,2-代入2y mx =,得4m =,可得抛物线C 的方程及其焦点坐标;(2)设直线l 的方程为y x b =-+,将它代入24y x =得22220x b x b -++=(),利用韦达定理,结合斜率公式以及PAB ∆的重心的纵坐标23-,化简可12k k + 的值;因为PAB ∆的重心的纵坐标为23-, 所以122p y y y ++=-,所以2p y =,所以1p x =,所以()()()()()()1221121212122121221111y x y x y y k k x x x x ------+=+=----, 又()()()()12212121y x y x --+--()()()()12212121x b x x b x ⎡⎤⎡⎤=-+--+-+--⎣⎦⎣⎦()()()12122122x x b x x b =-+-+-- ()()()22212220b b b b =-+-+--=.所以120k k +=.4.已知椭圆2222:1(0)x y C a b a b+=>>的短轴端点到右焦点()10F ,的距离为2.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点F 的直线交椭圆C 于A B ,两点,交直线4l x =:于点P ,若1PA AF λ=,2PB BF λ=,求证: 12λλ-为定值.【答案】(1) 22143x y +=;(2)详见解析. 【解析】试题分析:(Ⅰ)利用椭圆的几何要素间的关系进行求解;(Ⅱ)联立直线和椭圆的方程,得到关于x 或y 的一元二次方程,利用根与系数的关系和平面向量的线性运算进行证明.(Ⅱ)由题意直线AB 过点()1,0F ,且斜率存在,设方程为()1y k x =-, 将4x =代人得P 点坐标为()4,3k ,由()221{ 143y k x x y =-+=,消元得()22223484120k xk x k +-+-=,设()11,A x y , ()22,B x y ,则0∆>且21222122834{ 41234k x x kk x x k +=+-⋅=+, 方法一:因为1PA AF λ=,所以11141PA x AF x λ-==-. 同理22241PB x BFx λ-==-,且1141x x --与2241x x --异号,所以12121212443321111x x x x x x λλ⎛⎫---=+=--+ ⎪----⎝⎭()()1212123221x x x x x x +-=-+-++()2222238682412834k k k k k --=-+--++0=. 所以, 12λλ-为定值0.当121x x <<时,同理可得120λλ-=. 所以, 12λλ-为定值0.同理2223PB my BFmy λ-==,且113my my -与223my my -异号,所以()12121212123332y y my my my my my y λλ+---=+=-()()36209m m ⨯-=-=⨯-.又当直线AB 与x 轴重合时, 120λλ-=, 所以, 12λλ-为定值0.【点睛】本题考查直线和椭圆的位置关系,其主要思路是联立直线和椭圆的方程,整理成关于x 或y 的一元二次方程,利用根与系数的关系进行求解,因为直线AB 过点()1,0F ,在设方程时,往往设为1x my =+()0m ≠,可减少讨论该直线是否存在斜率.5.【四川省绵阳南山中学2017-2018学年高二上学期期中考】设抛物线C : 24y x =, F 为C 的焦点,过F 的直线l 与C 相交于,A B 两点. (1)设l 的斜率为1,求AB ; (2)求证: OA OB ⋅是一个定值. 【答案】(1) 8AB =(2)见解析【解析】试题分析:(1)把直线的方程与抛物线的方程联立,利用根与系数的关系及抛物线的定义、弦长公式即可得出;(2)把直线的方程与抛物线的方程联立,利用根与系数的关系、向量的数量积即可得出;(2)证明:设直线l 的方程为1x ky =+,由21{4x ky y x=+-得2440y ky --= ∴124y y k +=, 124y y =-()()1122,,,OA x y OB x y ==,∵()()1212121211OA OB x x y y kx ky y y ⋅=+=+++,()212121222144143k y y k y y y y k k =++++=-++-=-,∴OA OB ⋅是一个定值.点睛:熟练掌握直线与抛物线的相交问题的解题模式、根与系数的关系及抛物线的定义、过焦点的弦长公式、向量的数量积是解题的关键,考查计算能力,直线方程设成1x ky =+也给解题带来了方便.6.【内蒙古包头市第三十三中2016-2017学年高一下学期期末】已知椭圆C : 22221(0,0)x y a b a b+=>>的,右焦点为求椭圆C 的方程; (2)若过原点作两条互相垂直的射线,与椭圆交于A ,B 两点,求证:点O 到直线AB 的距离为定值.【答案】(1) 2213x y += ,(2) O 到直线AB 的距离为定值2. 【解析】试题分析:(1)根据焦点和离心率列方程解出a ,b ,c ;(2)对于AB 有无斜率进行讨论,设出A ,B 坐标和直线方程,利用根与系数的关系和距离公式计算;有OA⊥OB知x1x2+y1y2=x1x2+(k x1+m) (k x2+m)=(1+k2) x1x2+k m(x1+x2)=0 代入,得4 m2=3 k2+3原点到直线AB的距离d==,当AB的斜率不存在时, 11x y= ,可得,1x d==依然成立.所以点O 到直线点睛:本题考查了椭圆的性质,直线与圆锥曲线的位置关系,分类讨论思想,对于这类题目要掌握解题方法.设而不求,套用公式解决.7.【四川省成都市石室中学2017-2018学年高二10月月考】已知双曲线()222210x yb aa b-=>>渐近线方程为y=,O为坐标原点,点(M在双曲线上.(Ⅰ)求双曲线的方程;(Ⅱ)已知,P Q为双曲线上不同两点,点O在以PQ为直径的圆上,求2211OP OQ+的值.【答案】(Ⅰ)22126x y-=;(Ⅱ)221113OP OQ+=.【解析】试题分析:(1)根据渐近线方程得到设出双曲线的标准方程,代入点M的坐标求得参数即可;(2)由条件可得OP OQ⊥,可设出直线,OP OQ的方程,代入双曲线方程求得点,P Q的坐标可求得221113OP OQ+=。

2017-2018学年四川省成都市第七中学高一上学期半期考试数学(理)试题

2017-2018学年四川省成都市第七中学高一上学期半期考试数学(理)试题

2017-2018学年四川省成都市第七中学高一上学期半期考试数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}0,1M =,{}0,2,3N =,则N M =I ( ) A .{}2 B .{}1 C .{}0 D .{}0,1 2.函数()()lg 1f x x =+的定义域为( )A .(]1,2-B .[]1,2-C .[)2,+∞D .(),1-∞- 3.下列函数为R 上的偶函数的是( )A .2y x x =+ B .133xx y =+C .1y x x=+ D .11y x x =--+4.集合(){},0C x y y x =-=,集合()11,222y x D x y y x ⎧⎫⎧=+⎪⎪⎪=⎨⎨⎬⎪⎪⎪=-⎩⎩⎭,则集合,C D 之间的关系为( )A .D C ∈B .CD ∈ C .C D ⊆ D .D C ⊆ 5.下列结论正确的是( )A2=- B .()lg 35lg5lg3+=+ C.2313⎛⎫-=⎪⎝⎭D .2ln 2log 5ln 5=6.下列各组函数中,表示同一组函数的是( )A .()2f x x =-,()2131x g x x -=-- B .()f x x=,()2g x =C.()f x =()g x x = D .()1f t t =-,()1,11,1x x g x x x -≥⎧=⎨-+<⎩7.大西洋鲑鱼每年都要逆流而上,游回产地产卵.研究鲑鱼的科学家发现鲑鱼的游速可以表示为函数31log 2100Ov =,单位是/m s ,其中O 表示鱼的耗氧量的单位数.则一条鲑鱼静止时耗氧量的单位数为( )A .100B .300C .3D .1 8.设 3.30.99a =,0.993.3b =, 3.3log 0.99c =,则( )A .c b a <<B .c a b <<C .a b c <<D .a c b << 9.函数1xy a =+(0a >且1a ≠),[],x kk ∈-,0k >的图象可能为( )A .B .C .D .10.方程()24250x m x m +-+-=的一根在区间()1,0-内,另一根在区间()0,2内,则m的取值范围是( ) A .5,53⎛⎫ ⎪⎝⎭ B .7,53⎛⎫-⎪⎝⎭ C .()5,5,3⎛⎫-∞+∞ ⎪⎝⎭U D .5,3⎛⎫-∞ ⎪⎝⎭11.函数()22f x x mx =-+,()0m >在[]0,2x ∈的最大值为9,则m 的值为( ) A .1或3 B .3或134 C .3 D .13412.已知函数()()22log ,022,0x x f x x x x ⎧-<⎪=⎨-+≥⎪⎩,函数()()F x f x a =-有四个不同的零点1234,,,x x x x 且满足:1234x x x x <<<,则223141212x x x x x x ++的取值范围为( )A .17257,416⎛⎤⎥⎝⎦ B .[)2,+∞ C .172,4⎛⎤⎥⎝⎦D .()2,+∞ 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知:12a a-+=,则22a a -+= .14.若幂函数()21my m m x =--⋅的函数图象经过原点,则m = . 15.设函数()()22log 32f x x x =+-,则()f x 的单调递增区间为 .16.已知()f x 为R 上的偶函数,当0x >时,()2log f x x =.对于结论(1)当0x <时,()()2log f x x =--;(2)函数()f f x ⎡⎤⎣⎦的零点个数可以为4,5,7; (3)若()02f =,关于x 的方程()()220f x mf x +-=有5个不同的实根,则1m =-;(4)若函数212y f ax x ⎛⎫=-+⎪⎝⎭在区间[]1,2上恒为正,则实数a 的范围是1,2⎛⎫+∞ ⎪⎝⎭. 说法正确的序号是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.计算下列各式的值:(1)()11230.0082-+(2)5log 22225lg5lg 2lg2lg5log 5log 45+++⨯+18.已知函数()222,0,2,0.x x x f x x x x ⎧+≥⎪=⎨-+<⎪⎩(1)解不等式()3f x >;(2)求证:函数()f x 在(),0-∞上为增函数.19.已知集合{}24xA x R =∈<,(){}lg 4B x R y x =∈=-.(1)求集合,A B ;(2)已知集合{}11C x m x m =-≤≤-,若集合()C A B ⊆U ,求实数m 的取值范围. 20.《中华人民共和国个人所得税法》规定,公民全月工资所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额,此项税款按下表分段累计计算:(1)某人10月份应交此项税款为350元,则他10月份的工资收入是多少?(2)假设某人的月收入为x 元,012500x ≤≤,记他应纳税为()f x 元,求()f x 的函数解析式.21.已知定义域为R 的函数()1231x a f x =-++是奇函数. (1)求a 的值;(2)判断函数()f x 的单调性并证明;(3)若对任意的()1,2t ∈,不等式()()222120f t t f t mt -+++-≤有解,求m 的取值范围.22.已知函数()f x 的定义域为()1,1-,对任意实数(),1,1x y ∈-,都有()()1x y f x f y f xy ⎛⎫++= ⎪+⎝⎭.(1)若21m n f mn +⎛⎫=⎪+⎝⎭,11m n f mn -⎛⎫= ⎪-⎝⎭,且(),1,1m n ∈-,求()f m ,()f n 的值; (2)若a 为常数,函数()2lg 1x g x a x ⎛⎫=- ⎪+⎝⎭是奇函数, ①验证函数()g x 满足题中的条件;②若函数()(),11,1,11,g x x h x k x x x -<<⎧⎪=⎨+≤-≥⎪⎩或求函数()2y h h x =-⎡⎤⎣⎦的零点个数.成都七中学年上期2020届半期数学试卷(参考答案)一、选择题1-5:CABDC 6-10:DABCB 11、12:DA 二、填空题13.2 14.2 15.()1,1-注:(]1,1-也对 16.(2)(3) 三、解答题17.解:(1)()11230.0082-+=54110ππ+-+=- (2)5log 22225lg5lg 2lg2lg5log 5log 45+++⨯+()lg5lg2lg2lg5=++lg32lg 22lg 22lg3+⨯+=lg5lg 2124+++= 18.解:(1)当0x ≥时,由()223f x x x =+>,得2230x x +->,解得1x >或3x <-,又0x ≥, ∴1x >.当0x <时,由()223f x x x =-+>,得2230x x -+<,解得x ∈∅.综上所述,原不等式的解集为{}1x x >. (2)证明:设任意()12,,0x x ∈-∞,且12x x <.则()()()()2212112222f x f x x x x x -=-+--+ ()()22211222x x x x =-+-()()21212x x x x =-+-由12x x <,得210x x ->,由()12,,0x x ∈-∞,得2120x x +-<. 所以()()120f x f x -<,即()()12f x f x <. 所以函数()f x 在(),0-∞上为增函数. 19.解:(1)∵222x< ∴(),2A =-∞又∵()lg 4y x =-可知4x > ∴()4,B =+∞(2)∵()()(),24,A B =-∞+∞U U ,又∵()C A B ⊆U (i )若C =∅,即11m m ->-, 解得1m <,满足:()C A B ⊆U ∴1m <符合条件(ii )若C ≠∅,即1m m -≤-, 解得1m ≥,要保证:()C A B ⊆U14m ->或12m -<,解得3m <-(舍)或12m -<解得[)1,3m ∈综上:m 的取值范围为3m <20.解:(1)易知工资纳税是一个分段计费方式:(i )若该人的收入刚达到5000元,则其应纳税所得额为5000.0345⨯=元, 易知:其收入超过5000元;(ii )若该人的收入刚达到8000元,则30000.1300⨯=元, 易知:其应纳税所得额为:30045345350+=< 故其收入超过8000元;(iii )设其收入超过8000元的部分为x 元,易知0.25x =元,解得25x = 则其10月份的工资收入是8025元.(2)易知他应交此项税款()f x 为是一个分段函数()()()()0,03500,0.033500,35005000,0.1500045,50008000,0.28000345,800012500,x x x f x x x x x ≤≤⎧⎪⨯-<≤⎪=⎨⨯-+<≤⎪⎪⨯-+<≤⎩整理可得:()0,03500,0.03105,35005000,0.1455,50008000,0.21255,800012500,x x x f x x x x x ≤≤⎧⎪-<≤⎪=⎨-<≤⎪⎪-<≤⎩21.解:(1)由()f x 为奇函数,可知:()00f =,解得1a =.(2)()11231x f x =-++,易知31x +为单调递增函数,131x +为单调递减函数, ∴()11231x f x =-++单调递减的函数.证明:设12x x >,()()12121111231231x x f x f x ⎛⎫-=-+--+ ⎪++⎝⎭()()211212113331313131x x x x x x -=-=++++ ∵13110x+>>,同理23110x+>>, ∵21x x <,∴21330xx-<,∴()()21123303131x x xx -<++,∴()()120f x f x -<,∴()()12f x f x <, ∴()f x 在R 上单调递减(3)任意的()1,2t ∈,()()222120f t t f t mt -+++-≤ 可得()()22212f t t f t mt -++≤--()22f mt t =-由单调性易知:22212t t mt t -++≥- ∴221mt t t ≤-++ 可得121m t t≤-++有解,∴易知111,12t t⎛⎫-++∈- ⎪⎝⎭ 故21m <,解得12m <. 22.解:(1)对题中条件取0x y ==,得()00f =.再取y x =-,得()()()00f x f x f +-==,则()()f x f x -=-, 即函数()f x 在()1,1-内为奇函数. 所以()()()()11m n f f m f n f m f n mn -⎛⎫=+-=-=⎪-⎝⎭,又()()21m n f f m f n mn +⎛⎫=+=⎪+⎝⎭.解得()32f m =,()12f n =. (2)由函数()2lg 1x g x a x ⎛⎫=-⎪+⎝⎭是奇函数,得()0lg 0lg1g a ===,则1a =. 此时()21lg 1lg 11x xg x x x -⎛⎫=-= ⎪++⎝⎭,满足函数()g x 是奇函数,且()00g =有意义. ①由101xx ->+,得11x -<<,则对任意实数(),1,1x y ∈-, 有()()11lglg =1+1x y g x g y x y --+=++111lg =lg 1+11x y x y xyx y x y xy ⎛⎫----+⋅ ⎪++++⎝⎭, 11lg 111x yx y xy g x y xy xy+-⎛⎫++== ⎪++⎝⎭++1lg 1x y xy x y xy --++++, 所以()()1x y g x g y g xy ⎛⎫++=⎪+⎝⎭.②由()20y h h x =-=⎡⎤⎣⎦,得()2h h x =⎡⎤⎣⎦,令()t h x =,则()2h t =. 作出图象由图可知,当0k ≤时,只有一个10t -<<,对应有3个零点; 当1k >时,只有一个t ,对应只有一个零点;当01k <≤时,112k <+≤,此时11t <-,210t -<<,311t k=≥.由2111k k k k k +-+-==1k k k ⎛ ⎝⎭⎝⎭1k <≤时,11k k +>,三个t 分别对应一个零点,共3个.在102k <≤时,11k k +≤,三个t 分别对应1个,1个,3个零点,共5个.综上所述,当1k >时,函数()2y h h x =-⎡⎤⎣⎦只有1零点;当0k ≤或112k <≤时,函数()2y h h x =-⎡⎤⎣⎦有3零点;当102k <≤是,函数()2y h h x =-⎡⎤⎣⎦有5零点.。

四川省成都市第七中学2016-2017学年高一上学期期末考试数学试题-Word版含答案

四川省成都市第七中学2016-2017学年高一上学期期末考试数学试题-Word版含答案

四川省成都市第七中学2016-2017学年高一上学期期末考试数学试题-Word版含答案数学试题 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{0,1,2}A =,{2,3}B =,则A B ⋃=( ) A .{0,1,2,3} B .{0,1,3} C .{0,1} D .{2}2. 下列函数中,为偶函数的是( ) A .2log y x = B .12y x = C . 2xy -=D .2y x -=3. 已知扇形的弧长为6,圆心角弧度数为3,则其面积为( )A . 3B . 6C . 9D . 12 4. 已知点A (0,1) , B (-2,1),向量(1,0)e =,则AB 在e 方向上的投影为( )A . 2B . 1 C. -1 D .-2 5. 设α是第三象限角,化简:2cos 1tan αα+=( )A . 1B . 0 C. -1 D . 26. 已知α为常数,幂函数()f x x α=满足1()23f =,则(3)f =( )A . 2B . 12 C. 12- D . -2 7. 已知(sin )cos 4f x x =,则1()=2f ( ) A .3B . 12 C. 12- D. 3-2 8. 要得到函数2log (21)y x =+的图象,只需将21log y x =+的图象( )A .向左移动12个单位B .向右移动12个单位C. 向左移动1个单位 D .向右移动1个单位9. 向高为H 的水瓶(形状如图)中注水,注满为止,则水深h 与注水量v 的函数关系的大致图象是( )10. 已知函数12log ,1()13,1x x f x x x ≥⎧⎪=⎨⎪-<⎩,若0[()]2f f x =-,则0x 的值为( )A . -1B . 0 C. 1 D .2 11. 已知函数21tan ()log1tan x f x x -=+,若()12f a π+=,则()2f a π-=( ) A .1 B . 0 C. -1 D .-2 12. 已知平面向量a ,b ,c 满足3a b ∙=,2a b -=,且()()0a cbc -∙-=,则c 的取值范围是( )A .[0,2]B .[1,3] C. [2,4] D .[3,5]第Ⅱ卷(非选择题,共90分)二、填空题(本大题4小题,每小题5分,共20分,答案写在答题卡相应横线上)13. 设向量1e ,2e 不共线,若1212(2)//(4)e e e e λ-+,则实数λ的值为 .14. 函数2tan 2y x x x π=-的定义域是 .15. 已知函数()sin()(0,0,)f x A x A ωϕωϕπ=+>><的部分图象(如图所示),则()f x 的解析式为 .16. 设e 为自然对数的底数,若函数2()(2)(2)1x x x f x e e a e a =-++⋅--存在三个零点,则实数a 的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. (本小题满分10分)设向量(,4)a x =, (7,1)b =-,已知a b a +=. (I)求实数x 的值;(II)求a 与b 的夹角的大小. 18. (本小题满分12分)已知sin 4cos 22sin cos αααα-=+. (I)求tan α的值;(II)若0πα-<<,求sin cos αα+的值. 19. (本小题满分12分)如图,在ABC ∆中,M 为BC 的中点,3AN NB =.(I)以CA ,CB 为基底表示AM 和CN ;(II)若1204ABC CB ∠=︒=,,且AM CN ⊥,求CA 的长 20. (本小题满分12分)某地政府落实党中央“精准扶贫”政策,解决一贫困山村的人畜用水困难,拟修建一个底面为正方形(由地形限制边长不超过10m )的无盖长方体蓄水池,设计蓄水量为8003m .已知底面造价为160元/2m ,侧面造价为100元/2m .(I)将蓄水池总造价()f x (单位:元)表示为底面边长x (单位: m )的函数;(II)运用函数的单调性定义及相关知识,求蓄水池总造价()f x 的最小值. 21. (本小题满分12分) 已知函数()2sin()13f x x πω=-+,其中0ω>. (I)若对任意x R ∈都有5()()12f x f π≤,求ω的最小值; (II)若函数lg ()y f x =在区间[,]42ππ上单调递增,求ω的取值范围·22. (本小题满分10分) 定义函数()4(1)2xx af x a a=-+⋅+,其中x 为自变量,a 为常数.(I)若当[0,2]x ∈时,函数()af x 的最小值为一1,求a 之值;(II)设全集U R =,集{}{}32|()(0),|()(2)(2)a a a A x f x f B x f x f x f =≥=+-=,且()U A B φ≠ð中,求a 的取值范围.试卷答案一、选择题1-5: ;;;;;A D B D C 6-10: ;;;;;B C A D A 11、12:;.C B 二、填空题13. -2 14. 0,;2π⎡⎫⎪⎢⎣⎭15.2sin(2);6y x π=+ 16.()1,2 三、解答题 17.解:(Ⅰ),(,+=∴22a b a a +b)=a 即0=22a b +b.······2分代坐标入,得2(74)500,x -+=解得 3.x =- ······5分(Ⅱ)设,a b 夹角为,(3,4),(7,1),θ=-=-a b,∴⋅=a b -21-4=-25 ······6分且2222(3)45,7(1)52=-+=+-=a b .······8分2cos 2552θ⋅∴===-⨯a b a b ······9分[]30,,,4πθπθ∈∴=即,a b 夹角为3.4π······10分18.解:(I)原式可化3sin 6cos ,αα=-(或化为tan α的分式齐次式)······3分 sin tan 2.cos ααα∴==-······6分(Ⅱ)(,0),απ∈-且tan 2,sin αα=-∴=······9分sin 5cos tan ααα∴== ·····11分 5sin cos αα∴+=·····12分19.解:(Ⅰ)1;2AM AC CM CA CB =+=+ ·····3分3313()4444CN CA AN CA AB CA CB CA CA CB =+=+=+-=+.·····6分(Ⅱ)由已知,AM CN ⊥得0,AM CN ⋅=即113()()0,248CA CB CA CB -+⋅+=展开得221530488CA CA CB CB --⋅+=.·····8分又120,4,ACB CB ∠=︒=25240,CA CA ∴--=·····10分即(8)(3)0,CA CA -+= 解得8,CA =即8CA =为所求. ·····12分20.解:(Ⅰ)设蓄水池高为h ,则2800,h x=·····2分222800()16010041601004f x x x h x x x ∴=+⋅⋅=+⋅⋅·····4分22000160(),(010)x x x=+<≤.·····6分(注:没有写定义域,扣1分) (Ⅱ)任取(]12,0,10,x x ∈且12,x x <则2212121220002000()()160[()()]f x f x x x x x -=+-+121212121212122000160()()160()[()2000].x x x x x x x x x x x x x x =-+----=·····8分 1212121212010,0,0,()2000,x x x x x x x x x x <<≤∴>-<+<12()(),y f x f x ∴=-即12()(),f x f x > ()y f x ∴=在(]0,10x ∈上单调递减.·····10分 故10x =当时,min()(10)48000fx f ==·····11分答:当底面边长为10m 时,蓄水池最低造价为48000元·····12分21.解:(Ⅰ)由已知()f x 在512x π=处取得最大值,52,.1232k k Z πππωπ∴-=+∈·····2分解得242,,5k k Z ω=+∈·····4分 又0,ω>∴当0k =时,ω的最小值为2.·····5分 (Ⅱ)[,],0,,4243323x x πππππππωωωω∈>∴-≤-≤- ·····6分 又lg ()y f x =在[,]42x ππ∈内单增,且()0,f x > 2436,.2232k k Z k πππωππππωπ⎧->-+⎪⎪∴∈⎨⎪-≤+⎪⎩ ·····8分 解得:2584,.33k k k Z ω+<≤+∈ ·····10分 25184,334k k k +<+∴<且k Z ∈,·····11分又0,0,k ω>∴=故ω的取值范围是25,33⎛⎤⎥⎝⎦·····12分 (另解,2,,04,2242T T ππππωω≥-∴=≥∴<≤结合2584,33k k k Z ω+<≤+∈可得,0,k ω=的取值范围是25,33⎛⎤⎥⎝⎦) 22.解:(Ⅰ)令2,[0,2],[1,4],xt x t =∈∴∈设2()(1),[1,4].t ta t a t ϕ=-++∈·····1分1°当11,2a +≤即1a ≤时,min()(1)0,fx ϕ==与已知矛盾;·····2分 2°当114,2a +<<即22min 11(1)17,()()()1,222a a a a f x a ϕ+++<<==-+=-解得3a =或1,17,3;a a a =-<<∴=·····3分3°当14,2a +≥即min7,()(4)16441,a fx a a ϕ≥==--+=解得133a =,但与7a ≥矛盾,故舍去. ·····4分综上所述,a 之值为3。

【数学】四川省成都市第七中学2018届高三上学期半期考试数学(文)试题含解析

【数学】四川省成都市第七中学2018届高三上学期半期考试数学(文)试题含解析

成都七中 2017—2018 学年度上期高 2018 届半期考试数学试卷(文科)考试时间:120 分钟满分:150 分第 I 卷(选择题,共 60 分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. 或 D.【答案】D【解析】即则故答案选2. 若直线与直线平行,则()A. B. 2 C. D. 0【答案】A【解析】由题意可得两直线的斜率分别为:由于两直线平行,故解得验证可得当时,直线的方程均可以化为:,直线重合,故可得故答案选3. 设为等差数列,公差,为其前项和. 若,则()A. 18B. 20C. 22D. 24【答案】B【解析】试题分析:由等差数列的前10项的和等于前11项的和可知,第11项的值为0,然后根据等差数列的通项公式,利用首项和公差d表示出第11项,让其等于0列出关于首项的方程,求出方程的解即可得到首项的值.解:由s10=s11,得到a1+a2+…+a10=a1+a2+…+a10+a11即a11=0,所以a1-2(11-1)=0,解得a1=20.故选B考点:等差数列的性质点评:此题考查学生掌握等差数列的性质,灵活运用等差数列的通项公式化简求值,是一道基础题4. 如图,设两点在河的两岸,一测量者在的同侧河岸选定一点,测出的距离为 50米,,,则两点的距离为()A. 米B. 50米C. 25米D. 米【答案】A【解析】在△ABC中,∵∠ACB=45°,∠CAB=105°∴∠B=30°由正弦定理可得:,故答案为:A.5. 若等比数列的前5项的乘积为1,,则数列的公比为()A. B. 2 C. D.【答案】B【解析】等比数列的前5项的乘积为1,联立以上两式得到:,,将两式作比得到故答案选B。

6. 设,则()A. B. C. D.【答案】A【解析】已知底数和真数在1的两侧,,底数小于1,次数大于0,故,底数大于1,次数大于0,故>1.故可以得到。

成都七中18届高三文科数学上学期半期考试试卷

成都七中18届高三文科数学上学期半期考试试卷

A.18
B.20
C.22
D.24
4. 如图,设 A、B 两点在河的两岸,一测量者在 A 的同侧河岸选定一
点 C,测出 AC 的距离为 50 米,∠ACB=45°,∠CAB=105°,则 A、B
两点的距离为
A. 50 2 米 B. 50 3 米 C. 25 2 米 D. 25 2 米 2
5. 若等比数列 an的前 5 项的乘积为 1, a6 8 ,则数列an的公比为
(θ 为参数).
(1) 设 P 为线段 MN 的中点,求直线 OP 的平面直角坐标方程; (2) 判断直线 l 与圆 C 的位置关系
23. (本题满分 10 分)选修 4-5:不等式选讲 已知函数 f (x)=m-|x-1|,m∈R,且 f (x+2)+ f (x-2)≥0 的解集为[-2,4]. (1) 求 m 的值; (2) 若 a,b,c 为正实数,且1a+21b+31c=m,求证:a+2b+3c≥3.
成都七中 2017—2018 学年度上期高 2018 届半期考试
数学试卷(文科)
考试时间:120 分钟 满分:150 分
第 I 卷(选择题,共 60 分)
一. 选择题(本大题共 12 小题,每小题 5 分,共 60 分. 在每小题给出的四个选项中,只有一 项是符合题目要求的)
1. 已知集合 A x | x 2, B x | x x2 ,则 A B
A.
1 2
cm3
B.
2 3
cm3
C.
5 6
cm3
D.
7 8
cm3
9. 把函数 y sin2(x π ) cos2(x π ) 的图像向左平移 ( >0)个单位就得到了一个奇函数的

2017-2018学年四川省成都市第七中学高二数学上半期考试(文)试题

2017-2018学年四川省成都市第七中学高二数学上半期考试(文)试题

四川省成都市第七中学 2017-2018 学年高二上学期半期考 试数学(文)试题
第I 卷(共60分)
一、选择题:本大题共 12个小题,每小题5分,共60分在每小题给出的四个选项中,只有一 项是符合
题目要求的 1.拋物线y =4x 2的准线方程是(
) C . y - -1
2 2
2•“ a =3 ”是“直线y =x 与圆x-a ]亠[y -3[. =8相切”的()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
2 2 3. 设双曲线 冷-丫 1 a 0的渐近线方程为3x_2y=0,则a 的值为( )
a 9 A. 4 B. 3 C. 2 D. 1
4. 圆A:x 2 • y 2 -2x =0和圆B:
x 2 y 2 -4y =0的位置关系是(

中点到y 轴的距离为(
) 3
5 A . B . 1 C .— 4 4
椭圆的方程( ) 2 2 2 2 2 2 2 2 A . x y =1 B . x y =1 C . X y =1 D . x
y =1 12 16 16 12 48 64 64 48 2 2 6.设椭圆 笃•再=1 m -0,n 0的右焦点与拋物线 m n 2 y =8x 的焦点相同,离心率为 ) 2 2 2 2 2 m x ny =1与mx ny =0m n 0的曲线大致是( 7.在同一坐标系中,方程 C .
16
A.相离
B.相交
C.外切
D.内切 5.已知F 是拋物线y 二x 的焦点,
A,B 是该拋物线上的两点, AF | -|BF =3 ,贝熾段AB 的。

成都七中18届高三文科数学上学期半期考试答案

成都七中18届高三文科数学上学期半期考试答案

成都七中2017—2018学年度上期高三数学期中考试参考答案与评分标准一、选择题:DABABA BDCDCC二、填空题:13. 2 14. 22 15. π3 16. ]311,310[]35,0(三、解答题:17.(1) 121+=+n n S a ,2,121≥+=-n S a n n ,两式相减得n n n a a a 21=-+,n n a a 31=+,2≥n ……..3分注意到11213312,1a S a a ==+==…………………….4分于是n n a a n 3,11=≥∀+,所以13-=n n a ………………..6分(2) n b n =…………………………………………….…..7分 于是111)1(11+-=+=+n n n n b b n n 所以2018201720181201713121211111201820173221=-++-+-=+++ b b b b b b ……….12分18. (1) C ab c b a abc b a C cos 2,2cos 222222=-+-+=………….1分 C ab C ab c b a S sin 2134cos 234222==-+=………………….……..4分 6,33tan πC C ==………………………………………………...….6分 (2) ⎪⎭⎫ ⎝⎛+-=-3cos cos sin πA A B 或者⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-B ππB πA 6cos ,3sin ,6sin ……..9分 因为⎪⎭⎫ ⎝⎛∈65,0πA ,所以⎪⎭⎫ ⎝⎛∈+67,33πππA ,]1,21(3cos -∈⎪⎭⎫ ⎝⎛+πA ,所以]1,21(cos sin -∈-A B ………..12分19.(1) 连结DE ,EF ,FC ,则在三角形AB A 1中EF 为中位线,于是A A EF 1//,A A EF 121=…………...2分 因为D 为C C 1中点,所以EF 平行且等于DC . 所以在平行四边形EFCD 中,CF 平行于DE ……………4分 因为DE 在平面BD A 1上,所以CF 平行于平面BD A 1……………………………………………………..……..5分(2) 因为CF 垂直于AB ,CF 垂直于1AA ,所以CF 垂直于平面11A ABB . …………………………….………..7分 于是DE 垂直于平面11A ABB ,2=DE …………………………………………………………………….…….8分 三角形ADE 的面积为26,三角形AE A 1的面积为2………………………………………………..…………..10分 由ADE A AE A D V V --=11得d ⋅=⋅2622,362=d ,1A 到平面ADE 的距离为362…………………………12分20.(1) 由椭圆的定义知2,244==a a ……1分 由ac e =知1==ea c …………………………..…2分 1222=-=c a b …………………………………...3分 所以椭圆的方程为1222=+y x ……………….….4分 (2) 由(1)知)0,1(1-F ,)0,1(2F ,221=F F设),(11y x A ,),(22y x B ,1:-=my x l联列1-=my x 与1222=+y x 得到()012222=--+my y m ………………...6分 21222221++=-m m y y ……………………………………………………….…..8分 2121212121212y y y y F F S S S F BF F AF ABF -=-⋅⋅=+=212222++=m m ………..10分 ()21111222122222222++++=++=m m m m S ABF当0,112==+m m 时,2ABF S 最大为2,1:-=x l ……………………….….12分21.(1) ()xx x x f 12'2+-=……………………………….1分 ()()231,01'-==f f ……………………………………..…2分 所求切线方程为23-=y ………………………………...….3分(2) ()()()()xx a x x a x a x x f 11'2--=++-=……………4分 当1=a 时,()x f 在()+∞,0递增…………………………………….…5分当0≤a 时,()x f 在()1,0递减,()+∞,1递增………………………….6分当10<<a 时,()x f 在()a ,0递增,()1,a 递减,()+∞,1递增………7分当1>a 时,()x f 在()1,0递增,()a ,1递减,()+∞,a 递增……….…..8分(3) 由()0>x f 得()x x a x x -<-221ln 注意到x x y ln -=,xx y 1'-=,于是x x y ln -=在()1,0递减,()+∞,1递增,最小值为0 所以()+∞∈∀,e x ,0ln >-x x .于是只要考虑()xx xx a x ln 21,,e 2--<+∞∈∀……………..……9分 设()x x xx x g ln 212--=,()()()()2ln ln 22121'x x x x x x g --+-= 注意到()x x x h ln 22-+=,()xx x h 2'-=,于是()x x x h ln 22-+=在()+∞,e 递增,()()0e e >=>h x h 所以()x g 在()+∞,e 递增………………………………….…11分于是()()1e 2e 2e e 2--=≤g a ……………………………………..12分22. (1) M 、N 的平面直角坐标为(2,0)、(0, 332)……………..2分 于是P 的坐标为(1, 33)……………………………………….…4分 所以OP 直线的方程为:x y 33=(03=-y x )……………..5分 (2) 直线l 的方程为:023=-+y x ……………………………6分圆C 的方程为:()()43222=++-y x …………………….…..7分 C 到l 的距离223<=d ………………………………………….…9分 所以l 与C 相交……………………………………………………..10分23. (1) m x x 231≤-++………………………………………………1分设()31-++=x x x g ,则当1-≤x 时,()22+-=x x g ;当31<<-x 时,()4=x g ;当3≥x 时,()22-=x x g …………….3分所以()()m g g 2642===-,m =3………………………………..……5分 (2) 331211=++cb a ………………………………………………….….6分 由柯西不等式,223)3132121()31211)(32(=⋅+⋅+⋅≥++++cc b b a a c b a c b a ……………9分 所以332≥++c b a ………………………………………………………10分。

四川省成都市第七中学2018-2019学年高二上学期半期考试数学(文)试题答案

四川省成都市第七中学2018-2019学年高二上学期半期考试数学(文)试题答案

成都七中2018~2019学年度上期高2020届数学半期考试试题(文科)参考答案一、选择题(共12题,每题5分,共60分)二、填空题(共4题,每题5分,共20分)13. 8 14. 2 15. 45 16.2291(0)5y x y +=≠三、解答题17.解:(1)线段AB 的中垂线方程为:x =2,由{x =2 3x +2y =0,得y =−3,∴圆心C 为(2,−3), 又半径r =|AC|=5,∴圆C 的方程为(x −2)2+(y +3)2=25. ……5分(2)直线l 的方程为:2x −3y =0,所以点C 到直线l 的距离为:d =4+9√4+9√13,∴|MN |==4√3,∴S △MCN =12×|MN |×d =12×4√3×√13=2√39. ……10分18.解:(1)由已知得b a =2c =,解得1,a b ==∴双曲线E 的方程为x 2−y 22=1. ……4分(2)设直线l 方程为:y −1=k(x −2),A(x 1,y 1),B(x 2,y 2).由{y =kx +(1−2k )x 2−y 22=1 ,得(2−k 2)x 2+2k (2k −1)x −(1−2k)2−2=0 (∗)……6分∴{2−k 2≠0 Δ=4k 2(2k −1)2+4(2−k 2)[(1−2k )2+2]>0…①……8分 ∴x 1+x 2=2k (2k−1)k 2−2,由M(2,1)为AB 的中点,得x 1+x 22=k (2k−1)k 2−2=2,解得k =4,适合①……10分∴直线l 的方程为y −1=4(x −2),即4x −y −7=0……12分说明:学生也可以用点差法求解,如果没有检验0∆>的学生,扣1分.19.解:(1)令抛物线上一点P(x 0,y 0),设E(x,y).由已知得x 0=x,y =12y 0,∵P(x 0,y 0)满足y 2=16x ,∴y 02=16x 0,则4y 2=16x ,即y 2=4x .∴曲线E 的方程为:y 2=4x . ……6分(2)由{y =x −4y 2=4x,可得x 2−12x +16=0, 设A (x 1,y 1),B (x 2,y 2),由于2124160,∆=-⨯> 由韦达定理可知:x 1+x 2=12,x 1x 2=16,y 1y 2=(x 1−4)(x 2−4)=x 1x 2−4(x 1+x 2)+16=−16,∴OA ⃗⃗⃗⃗⃗ ∙OB⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=0, ∴OA ⊥OB . ……12分20.解:设生产甲种肥料x 车皮,乙种肥料y 车皮,能够产生利润z 万元,目标函数为z =x +0.5y ,其中x ,y 满足以下条件:{4x +y ≤1018x +15y ≤66x ≥0y ≥0……4分 可行域如右图:……6分把z =x +0.5y 变形为y =−2x +2z ,……8分得到斜率为−2,在y 轴上的截距为2z ,随z 变化的一族平行直线,当直线y =−2x +2z 经过可行域上的点M 时,截距2z 最大,即z 最大,联立方程{4x +y =1018x +15y =66,得M(2,2). ……10分 ∴z max =2+1=3. ……11分答:生产甲、乙两种肥料各2车皮,能够产生最大利润,最大利润为3万元. ……12分21.解:(1)设圆P 的方程为:x 2+y 2+Dx +Ey +F =0.∵A ,B ,C 都在圆上,∴ {29+5D −2E +F =09+3E +F =017+4D +E +F =0 , 解得{D =0E =4F =−21. ∴所求圆P 的方程为x 2+y 2+4y −21=0. ……6分(2)由x 2+(y +2)2=25,知圆心P(0,−2),半径r =5,如右图,由直线l 被圆p 截得的弦长为8,得圆心距d =22=3 ……8分当直线l 与x 轴不垂直时,设直线l 方程为:y +3=k(x +3),即kx −y +3k −3=0,∴圆心P 到直线l 距离d =|3k−1|2=3,化简得−6k =8,则k =−43. ∴直线l 方程为:y +3=−43(x +3),即4x +3y +21=0. ……10分 当直线l ⊥x 轴时,直线l 方程为x =−3,代入圆方程得y 2+4y −12=0,解得y 1=−6,y 2=2,∴弦长仍为8,满足题意. ……11分 综上,直线l 的方程为4x +3y +21=0,或x =−3. ……12分22.解:(1)由2b =4,得b =2.由e =√53=c a ,得a 2−4a 2=59,解得a 2=9. ∴椭圆的方程为x 29+y 24=1. ……3分(2)设A (x 0,y 0),D (x 1,y 1),则B (−x 0,−y 0).∴{x 029+y 024=1…①x 129+y 124=1…②由①−②得:(x 0−x 1)(x 0+x 1)9+(y 0−y 1)(y 0+y 1)4=0, 即(x 0−x 1)(x 0+x 1)9=−(y 0−y 1)(y 0+y 1)4,−49=(y 0−y 1)(y 0+y 1)(x 0−x 1)(x 0+x 1), 即k AD ∙k BD =−49. ……7分(3)由(2)知k AD ∙k BD =−49,设A (3cos θ,2sin θ),则B (−3cos θ,−2sin θ).又k BD =k BP =2sin θ1+3cos θ,则k AD =−2(1+3cos θ)9sin θ, ∴直线AD 方程为:y −2sin θ=−2(1+3cosθ)9sinθ(x −3cos θ) …③ 同理k BC ∙k AC =−49,又k AC =k AP =2sin θ3cos θ−1,则k BC =−2(3cosθ−1)9sinθ,∴直线BC 方程为:y +2sin θ=−2(3cos θ−1)9sin θ(x +3cos θ)…④ 由③−④得:−4sin θ=−29sin θ[(1+3cos θ)(x −3cos θ)−(3cos θ−1)(x +3cos θ)],化简得x =9.∴点M 在定直线x =9上. ……12分。

四川省成都七中2017-2018学年高二上学期阶段性考试数学文试卷 Word版含答案

四川省成都七中2017-2018学年高二上学期阶段性考试数学文试卷 Word版含答案

成都七中2017-2018学年高二上学期阶段性考试数学(文科)试卷考试时间:120分钟总分:150分一选择月(每小题5分,共60分,在每小题给出的四个选项中,只有一项符合要求,把答案填在答题卡上.)1、右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A .9πB.10π C .11πD.12π2、过不重合的A(m2+2,m2一3),B(3一m一m2,2m)两点的直线l倾斜角为450,则m的取值为()A.m=一1 B.m=一2 C.m=一1或2 D.m=l或m=-23、利用斜二测画法得到的①三角形的直观图是三角形。

②平行四边形的直观图是平行四边形。

③正方形的直观图是正方形。

④菱形的直观图是菱形。

以上结论,正确的是()A.①②B.①④C.③④D.①②③④4、若直线l沿x轴向左平移3个单位,再沿y轴向上平移1个单位后,回到原来位置,则直线l的斜率为()A.13B、一13C、一3 D.35、己知圆C1:x2十y2+2x+8y一8=0,圆C2:x2十y2-4x-4y一2=0,圆C1与圆C2的位置关系为()A.外切B.内切C.相交D.相离6、己知变量x,y满足约束条件,则z=3x十y的最大值为()A.12 B.11 C.3 D.一l7、己知点A(l,3),B(3,l),C(一1,0),则△ABC的面积为()A.5 B.10C D.78、若圆x2十y2一4x一4y一10=0上至少有三个不同的点,到直线l:y=x+b的距离为b取值范围为()A.(一2,2)B.[一2,2]C.[0,2]D.[一2,2)9、若直线a x 十2by 一2=0(a >0,b >0)始终平分圆x 2十y 2一4x 一2y 一8=0的周长,则12a b+的最小值为()A .1B .5C .D .3+10、己知函数f (x )=(x 一l )(log 3a )2一6(log 3a )x +x +l 在x ∈0,l ]内恒为正值,则a 的取值范围是()A 一1<a <13 B 、a <13 C 、a D ·13<a 11、平面上到定点A (l ,2)距离为1且到定点B (5,5)距离为d 的直线共有4条,则d的取值范是() A .(0,4) B .(2,4) C .(2,6) D .(4,6) 12、实数a ,b 满足这三个条件,则|a 一b 一6|的范围是( )A .[2,4+B .[32,7]C .[32,4+ D .[2,7] 二、填空题(本大题共4小题,每题4分,共16分,把答案填在答题卡的横线上.) 13、长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图),剩下 几何体的体积为 。

成都七中17届高一理科数学上期半期考试试卷答案

成都七中17届高一理科数学上期半期考试试卷答案

成都七中2014-2015学年上期 2017届半期考试数学试卷考试时间:120分钟 总分:150分命题人:张世永 审题人:杜利超 吴雪 龙家娱一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求.把答案凃在答题卷上。

){}{}{}MD MC MB MA x x M ≠⊂-∈∅∈-∈=-=1,1..1.1.)(,01|.12则以下正确的是已知集合)是(的只可能满足示的函数下列选项对应的图象表)2()3()41(),(.2f f fx f>>A B C D{}{}{}{}{}{}{}8,7,2,1.8,7.8,7,6,5,4.3.)(6,5,4,33,2,1,9|.3D C B A Venn B A x x U 集合为图中阴影部分所表示的则,,的正整数是小于已知===[][][]1.2.4.8.)()84(121,,)(,)(.423D C B A f x x Zx x f Z x x x f ==⎪⎩⎪⎨⎧∉∈=..则,的最大整数,如表示不大于其中若函数 []2.51.1.50.3,012)(.5D C B A x x x f ..)的最大值为(在函数∈+= {}()()[)()[)[)2,2.2,10,2.1,0.1,0.)(,01|,4|,.62--=⎭⎬⎫⎩⎨⎧≤-=<==D C B A B C A x x x B x x A R U U 则集合已知全集()()()552512525.44.1924log .21ln ..76432572-=÷--=-=⨯=D C B e A ππ)(以下运算错误的是)1ln()(.)1ln()(.)ln()(.)ln()(.)(ln )(.8xx g D xx g C x x g B x x g A x x x f -==--=-==轴对称的函数为关于函数()()(][)(][]2,1.2,1.,1.2,.2,12log )(.922D C B A a a ax x x f +∞∞-++-=)(是的取值范围上是减函数,则实数在已知函数()()()⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-∈=--⊗-=⎩⎨⎧>-≤-+-=⊗⊗0,2732.0,2724.0,2720.0,2716.,,,0)(,121)(,,,12,.103213212D C B A x x x x x x R m m x f x x x x f b a ab ba ab a b a b a )的取值范围是(则恒有三个不等实根的方程且关于设”;定义运算“和对于实数二、填空题(本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上。

四川省成都七中2017-2018学年高三上学期入学数学试卷(文科) Word版含解析

四川省成都七中2017-2018学年高三上学期入学数学试卷(文科) Word版含解析

2017-2018学年四川省成都七中高三(上)入学数学试卷(文科)一.选择题.(本大题共12小题,每题5分,共60分,每小题的四个选项中仅有一项符合题目要求)1.复数=()A.﹣1+i B.1﹣i C.﹣1﹣i D.1+i2.sin210°的值为()A.B.﹣C.D.﹣3.数列{a n}满足a n=,a1=,则a3=()+1A.1 B.2 C.﹣1 D.4.已知集合A={x||x|<1},B={x|2x>1},则A∩B=()A.(﹣1,0)B.(﹣1,1)C.(0,)D.(0,1)5.从区间[0,]内随机取一个实数x,则sinx<的概率为()A.B.C.D.6.已知p:函数f(x)=|x+a|在(﹣∞,﹣1)上是单调函数;q:函数g(x)=log a(x+1)(a>0且a≠1)在(﹣1,+∞)上是增函数,则¬p成立是q成立的()A.充分不必要B.必要不充分C.充要条件 D.既不充分也不必要7.按右图所示的程序框图运算,若输入x=200,则输出k 的值是()A.3 B.4 C.5 D.68.已知不等式组所表示的平面区域为D,若直线y=kx﹣3与平面区域D有公共点,则k的取值范围是()A.[﹣3,3] B.(﹣∞,]∪[,+∞)C.(﹣∞,﹣3]∪[3,+∞)D.[]9.一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.10.若两个非零向量,满足|+|=|﹣|=2||,则向量+与﹣的夹角是()A.B.C. D.11.已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2 C.D.12.若0<<a<b,当a﹣取最小值时,a+b=()A.4 B.5 C.6 D.7二.填空题.(本大题共4小题,每题5分,共20分)13.设函数f(x)=x4+ax,若曲线y=f(x)在x=1处的切线斜率为1,那么a=______.14.已知△ABC中,A、B、C的对边分别为a、b、c,且a2=b2+c2+bc,则A=______.15.设α、β、γ为彼此不重合的三个平面,l为直线,给出下列命题:①若α∥β,α⊥γ,则β⊥γ,②若α⊥γ,β⊥γ,且α∩β=l,则l⊥γ③若直线l与平面α内的无数条直线垂直则直线l与平面α垂直,④若α内存在不共线的三点到β的距离相等.则平面α平行于平面β上面命题中,真命题的序号为______.(写出所有真命题的序号)16.已知函数f(x)为偶函数,又在区间[0,2]上有f(x)=,若F(x)=f(x)﹣a在区间[﹣2,2]恰好有4个零点,则a的取值范围是______.三.解答题.(解答应写出文字说明,证明过程或演算步骤)17.为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们5(2)若从上表的第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.18.已知=(2cosx,sinx),=(cosx,sinx﹣cosx),设函数f(x)=•.(1)求f(x)图象的对称轴方程;(2)求f(x)在[,π]上的值域.19.如图,五面体A﹣BCC1B1中,AB1=4.底面ABC 是正三角形,AB=2.四边形BCC1B1是矩形,二面角A﹣BC﹣C1为直二面角.(Ⅰ)D在AC上运动,当D在何处时,有AB1∥平面BDC1,并且说明理由;(Ⅱ)当AB1∥平面BDC1时,求二面角C﹣BC1﹣D余弦值.20.已知函数f(x)=lnx﹣ax2+(a﹣2)x.(Ⅰ)若f(x)在x=1处取得极值,求a的值;(Ⅱ)求函数y=f(x)在[a2,a]上的最大值.21.如图,O为坐标原点,A和B分别是椭圆C1: +=1(a>b>0)和C2: +=1(m>n>0)上的动点,满足•=0,且椭圆C2的离心率为.当动点A在x轴上=的投影恰为C的右焦点F时,有S△AOF(1)求椭圆C的标准方程;(2)若C1与C2共焦点,且C1的长轴与C2的短轴等长,求||2的取值范围.选修4-4:坐标系与参数方程22.已知在平面直角坐标系xOy中,直线l的参数方程是(t是参数),以原点O为极点,Ox为极轴建立极坐标系,圆C的极坐标方程为p=2cos(θ+).(1)求圆心C的直角坐标;(2)由直线l上的点向圆C引切线,求切线长的最小值.(选修4-5;不等式选讲)23.设a,b,c 均为正数,且a+b+c=1,证明:(1)ab+bc+ca≤;(2)++≥1.2017-2018学年四川省成都七中高三(上)入学数学试卷(文科)参考答案与试题解析一.选择题.(本大题共12小题,每题5分,共60分,每小题的四个选项中仅有一项符合题目要求)1.复数=()A.﹣1+i B.1﹣i C.﹣1﹣i D.1+i【考点】复数代数形式的乘除运算.【分析】据所给的复数的表示形式,进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理出最简形式,化简复数为a+bi(a、b∈R)形式.【解答】解:复数=故选C2.sin210°的值为()A.B.﹣C.D.﹣【考点】运用诱导公式化简求值.【分析】所求式子中的角度变形后,利用诱导公式化简即可求出值.【解答】解:sin210°=sin=﹣sin30°=﹣.故选B=,a1=,则a3=()3.数列{a n}满足a n+1A.1 B.2 C.﹣1 D.【考点】数列递推式.=,a1=,分别取n=1,2即可得出.【分析】利用a n+1=,a1=,【解答】解:∵a n+1∴a2===2,∴a3===﹣1,故选:C.4.已知集合A={x||x|<1},B={x|2x>1},则A∩B=()A.(﹣1,0)B.(﹣1,1)C.(0,)D.(0,1)【考点】交集及其运算.【分析】利用绝对值不等式性质求出集合A,利用指数函数的性质求出集合B,再由交集定义能求出A∩B.【解答】解:∵集合A={x||x|<1}={x|﹣1<x<1},B={x|2x>1}={x|x>0},∴A∩B={x|0<x<1}=(0,1).故选:D.5.从区间[0,]内随机取一个实数x,则sinx<的概率为()A.B.C.D.【考点】几何概型.【分析】由题意,本题属于几何概型的运用,已知区间的长度为,满足sinx<的x∈[0,],求出区间长度,由几何概型公式解答.【解答】解:在区间[0,]上,当x∈[0,]时,sinx,由几何概型知,符合条件的概率为.故选:B.6.已知p:函数f(x)=|x+a|在(﹣∞,﹣1)上是单调函数;q:函数g(x)=log a(x+1)(a>0且a≠1)在(﹣1,+∞)上是增函数,则¬p成立是q成立的()A.充分不必要B.必要不充分C.充要条件 D.既不充分也不必要【考点】必要条件、充分条件与充要条件的判断.【分析】分别求出p,q成立时的a的范围,从而得到¬p成立时a>1是q的充要条件.【解答】解:由p成立,则a≤1,由q成立,则a>1,所以¬p成立时a>1是q的充要条件.故选C.7.按右图所示的程序框图运算,若输入x=200,则输出k 的值是()A.3 B.4 C.5 D.6【考点】程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的x,k的值,当x=3215,k=4时满足条件x≥2018,退出循环,输出x的值为3215,k的值为4.【解答】解:模拟执行程序框图,可得x=200,k=0x=401,k=1不满足条件x≥2018,x=803,k=2不满足条件x≥2018,x=1607,k=3不满足条件x≥2018,x=3215,k=4满足条件x≥2018,退出循环,输出x的值为3215,k的值为4,故选:B.8.已知不等式组所表示的平面区域为D,若直线y=kx﹣3与平面区域D有公共点,则k的取值范围是()A.[﹣3,3] B.(﹣∞,]∪[,+∞)C.(﹣∞,﹣3]∪[3,+∞)D.[]【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用线性规划的知识即可得到结论.【解答】解:作出不等式组对应的平面区域,y=kx﹣3过定点D(0,﹣3),则k AD=,k BD==﹣3,要使直线y=kx﹣3与平面区域M有公共点,由图象可知k≥3或k≤﹣3,故选:C9.一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【考点】由三视图求面积、体积.【分析】该几何体可视为正方体截去两个三棱锥,可得其体积.【解答】解:该几何体可视为正方体截去两个三棱锥,如图所示,所以其体积为.故选D.10.若两个非零向量,满足|+|=|﹣|=2||,则向量+与﹣的夹角是()A.B.C. D.【考点】数量积表示两个向量的夹角.【分析】利用向量模的平方等于向量的平方得到两个向量的关系,利用向量的数量积公式求出两向量的夹角.【解答】解:依题意,∵|+|=|﹣|=2||∴=∴⊥,=3,∴cos<,>==﹣,所以向量与的夹角是,故选C11.已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2 C.D.【考点】双曲线的简单性质.【分析】设M在双曲线﹣=1的左支上,由题意可得M的坐标为(﹣2a,a),代入双曲线方程可得a=b,再由离心率公式即可得到所求值.【解答】解:设M在双曲线﹣=1的左支上,且MA=AB=2a,∠MAB=120°,则M的坐标为(﹣2a,a),代入双曲线方程可得,﹣=1,可得a=b,c==a,即有e==.故选:D.12.若0<<a<b,当a﹣取最小值时,a+b=()A.4 B.5 C.6 D.7【考点】基本不等式在最值问题中的应用;函数的最值及其几何意义.【分析】由题意可得b﹣a>0,2a﹣b>0,从而化简a﹣=(2a﹣b)+(b﹣a)+,再利用基本不等式化简即可.【解答】解:∵0<<a<b,∴b﹣a>0,2a﹣b>0;∴a﹣=(2a﹣b)+(b﹣a)+≥2+=++≥3;(当且仅当2a﹣b=b﹣a=1时,等号同时成立);解得,a=2,b=3;故a+b=5;故选B.二.填空题.(本大题共4小题,每题5分,共20分)13.设函数f(x)=x4+ax,若曲线y=f(x)在x=1处的切线斜率为1,那么a=﹣3.【考点】利用导数研究曲线上某点切线方程.【分析】求出函数的导数,求得切线的斜率,解方程可得a=﹣3.【解答】解:函数f(x)=x4+ax的导数为f′(x)=4x3+a,即有在x=1处的切线斜率为4+a=1,解得a=﹣3.故答案为:﹣3.14.已知△ABC中,A、B、C的对边分别为a、b、c,且a2=b2+c2+bc,则A=.【考点】余弦定理.【分析】由a2﹣bc=b2+c2,结合余弦定理:b2+c2﹣a2=2bccosA,求出cosA,即可求得A.【解答】解:由a2=b2+c2+bc,得:b2+c2﹣a2=﹣bc,由余弦定理得:b2+c2﹣a2=2bccosA,∴cosA=﹣,又A为三角形ABC的内角,∴A=.故答案为:.15.设α、β、γ为彼此不重合的三个平面,l为直线,给出下列命题:①若α∥β,α⊥γ,则β⊥γ,②若α⊥γ,β⊥γ,且α∩β=l,则l⊥γ③若直线l与平面α内的无数条直线垂直则直线l与平面α垂直,④若α内存在不共线的三点到β的距离相等.则平面α平行于平面β上面命题中,真命题的序号为①②.(写出所有真命题的序号)【考点】平面与平面之间的位置关系;空间中直线与平面之间的位置关系.【分析】逐一分析各个选项,利用线面、面面之间的关系,应用有关定理推论,举反例等手段,排除错误选项,得到真命题.【解答】解:因为如2个平行平面中有一个和第三个平面垂直,则另一个也和第三个平面垂直,故①正确.若2个平面都和第三个平面垂直,则他们的交线也和第三个平面垂直,故②正确.直线l与平面α内的无数条直线垂直,也不能保证直线l与平面α内的2条相交直线垂直,故③不正确.α内存在不共线的三点到β的距离相等,这3个点可能在2个相交平面的交线的两侧,故④不正确.综上,正确答案为①②.16.已知函数f(x)为偶函数,又在区间[0,2]上有f(x)=,若F(x)=f(x)﹣a在区间[﹣2,2]恰好有4个零点,则a的取值范围是(4,5).【考点】函数奇偶性的性质.【分析】作出函数y=f(x)在[﹣2,2]的图象,根据图象,可得a的取值范围【解答】解:作出函数y=f(x)在[﹣2,2]的图象,根据图象,F(x)=f(x)﹣a在区间[﹣2,2]恰好有4个零点,则a的取值范围是(4,5).故答案为:(4,5).三.解答题.(解答应写出文字说明,证明过程或演算步骤)17.为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们5(2)若从上表的第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布表.【分析】(1)候车时间少于10分钟的人数所占的比例,用60乘以比例,即得所求.(2)从这6人中选2人作进一步的问卷调查,用列举法列出上述所有可能情况共有15种,用列举法求得抽到的两人恰好自不同组的情况共计8种,由此求得抽到的两人恰好自不同组的概率.【解答】解:(1)由频率分布表可知:这15名乘客中候车时间少于10分钟的人数为8,所以,这60名乘客中候车时间少于10分钟的人数大约等于60×=32人.…(2)设第三组的乘客为a,b,c,d,第四组的乘客为1,2;“抽到的两个人恰好来自不同的组”为事件A.…所得基本事件共有15种,即:ab,ac,ad,a1,a2,bc,bd,b1,b2,cd,c1,c2,d1,d2,12…其中事件A包含基本事件a1,a2,b1,b2,c1,c2,d1,d2,共8种,…由古典概型可得P(A)=…18.已知=(2cosx,sinx),=(cosx,sinx﹣cosx),设函数f(x)=•.(1)求f(x)图象的对称轴方程;(2)求f(x)在[,π]上的值域.【考点】三角函数中的恒等变换应用;平面向量数量积的运算;正弦函数的图象.【分析】本题考了平面向量与三角函数的结合运算,由平面向量数量积运算求出函数f(x),将函数进行化简,结合三角函数的图象和性质即可求函数f(x)图象的对称方程;根据x∈[,π],求f(x)的最大值和最小值,即可得f(x)的值域.【解答】解:(1)已知=(2cosx,sinx),=(cosx,sinx﹣cosx),则函数f(x)=•=2cos2x+==cos(2x++(1)由:(k∈Z)解得:x=(k∈Z)所以:函数f(x)的对称轴方程为:x=(k∈Z).(2)由(1)得:f(x)=所以:当x时,解得:当时,有=.当时,有.∴f(x)的最大值和最小值故x∈[,π],f(x)的f(x)的值域是19.如图,五面体A﹣BCC1B1中,AB1=4.底面ABC 是正三角形,AB=2.四边形BCC1B1是矩形,二面角A﹣BC﹣C1为直二面角.(Ⅰ)D在AC上运动,当D在何处时,有AB1∥平面BDC1,并且说明理由;(Ⅱ)当AB1∥平面BDC1时,求二面角C﹣BC1﹣D余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(I)由题意连接B1C交BC1于O,连接DO由于四边形BCC1B1是矩形且O为B1C 中点又D为AC中点,从而DO∥AB1,在由线线平行,利用线面平行的判定定理即可;(II)由题意建立空间直角坐标系,先求出点B,A,C,D及点C1的坐标,利用先求平面的法向量,在由法向量的夹角与平面的夹角的关系求出二面角的余弦值的大小.【解答】解:(Ⅰ)当D为AC中点时,有AB1∥平面BDC1,证明:连接B1C交BC1于O,连接DO∵四边形BCC1B1是矩形∴O为B1C中点又D为AC中点,从而DO∥AB1,∵AB1⊄平面BDC1,DO⊂平面BDC1∴AB1∥平面BDC1(Ⅱ)建立空间直角坐标系B﹣xyz如图所示,则B(0,0,0),A(,1,0),C(0,2,0),D(,,0),C1(0,2,2),所以=(,,0),=(0,2,2).设=(x,y,z)为平面BDC1的法向量,则有,即令Z=1,可得平面BDC1的一个法向量为=(3,﹣,1),而平面BCC1的一个法向量为=(1,0,0),所以cos<,>===,故二面角C﹣BC1﹣D的余弦值为.20.已知函数f(x)=lnx﹣ax2+(a﹣2)x.(Ⅰ)若f(x)在x=1处取得极值,求a的值;(Ⅱ)求函数y=f(x)在[a2,a]上的最大值.【考点】利用导数求闭区间上函数的最值;函数在某点取得极值的条件.【分析】(I)先求函数的定义域,然后求出导函数,根据f(x)在x=1处取得极值,则f'(1)=0,求出a的值,然后验证即可;(II)先求出a的范围,然后利用导数研究函数的单调性,当时,f(x)在[a2,a]单调递增,则f max(x)=f(a),当时,f(x)在单调递增,在单调递减,f max(x)=f(),当,即时,f(x)在[a2,a]单调递减,则f max(x)=f(a2),从而求出所求.【解答】解:(Ⅰ)∵f(x)=lnx﹣ax2+(a﹣2)x,∴函数的定义域为(0,+∞).…∴.…∵f(x)在x=1处取得极值,即f'(1)=﹣(2﹣1)(a+1)=0,∴a=﹣1.…当a=﹣1时,在内f'(x)<0,在(1,+∞)内f'(x)>0,∴x=1是函数y=f(x)的极小值点.∴a=﹣1.…(Ⅱ)∵a2<a,∴0<a<1.…∵x∈(0,+∞),∴ax+1>0,∴f(x)在上单调递增;在上单调递减,…①当时,f(x)在[a2,a]单调递增,∴f max(x)=f(a)=lna﹣a3+a2﹣2a;…②当,即时,f(x)在单调递增,在单调递减,∴;…③当,即时,f(x)在[a2,a]单调递减,∴f max(x)=f(a2)=2lna﹣a5+a3﹣2a2.…综上所述,当时,函数y=f(x)在[a2,a]上的最大值是lna﹣a3+a2﹣2a;当时,函数y=f(x)在[a2,a]上的最大值是;当1>时,函数y=f(x)在[a2,a]上的最大值是2lna﹣a5+a3﹣2a2.…21.如图,O为坐标原点,A和B分别是椭圆C1: +=1(a>b>0)和C2: +=1(m>n>0)上的动点,满足•=0,且椭圆C2的离心率为.当动点A在x轴上=的投影恰为C的右焦点F时,有S△AOF(1)求椭圆C的标准方程;(2)若C1与C2共焦点,且C1的长轴与C2的短轴等长,求||2的取值范围.【考点】椭圆的简单性质.【分析】(1)由题意,结合隐含条件可得关于a,b,c的方程组,求解方程组得到a,b,c 的值,则椭圆C1方程可求;(2)由C1与C2共焦点,且C1的长轴与C2的短轴等长求得椭圆C2方程,当OA所在直线斜率存在且不为0时,写出OA、OB所在直线方程,分别与两椭圆联立,求出|OA|2、|OB|2,得到|AB|2,整理后利用基本不等式求得||2的取值范围,当线段OA的斜率不存在和斜率k=0时,|AB|2=4,由此求得答案.【解答】解:(1)设椭圆C1的半焦距为c,由题意可知,,又椭圆C1的离心率=,且a2=b2+c2,联立以上三式可得:,∴椭圆C1的标准方程为;(2)由C1的长轴与C2的短轴等长,知n=a=,又C1与C2共焦点,可知,∴椭圆C2的标准方程为.当线段OA的斜率存在且不为0时,设OA:y=kx,联立,解得,∴.由•=0,得OB:y=﹣,联立,解得,∴|OB|2=,∴|AB|2=|OA|2+|OB|2==.又(当时取等号),∴.当线段OA的斜率不存在和斜率k=0时,|AB|2=4,综上,.选修4-4:坐标系与参数方程22.已知在平面直角坐标系xOy中,直线l的参数方程是(t是参数),以原点O为极点,Ox为极轴建立极坐标系,圆C的极坐标方程为p=2cos(θ+).(1)求圆心C的直角坐标;(2)由直线l上的点向圆C引切线,求切线长的最小值.【考点】参数方程化成普通方程.【分析】(1)由圆C的极坐标方程ρ=2cos(θ+),展开化为ρ2=,把代入配方即可得出;(2)利用勾股定理可得直线l上的点向圆C引切线长=,化简整理利用二次函数的单调性即可得出.【解答】解:(1)由圆C的极坐标方程ρ=2cos(θ+),化为,展开为ρ2=,化为x2+y2=.平方为=1,∴圆心为.(2)由直线l上的点向圆C引切线长==≥2,∴由直线l上的点向圆C引切线长的最小值为2.(选修4-5;不等式选讲)23.设a,b,c 均为正数,且a+b+c=1,证明:(1)ab+bc+ca≤;(2)++≥1.【考点】不等式的证明.【分析】(1)a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,由累加法,再由三个数的完全平方公式,即可得证;(2)+b≥2a, +c≥2b, +a≥2c,运用累加法和条件a+b+c=1,即可得证.【解答】证明:(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,可得a2+b2+c2≥ab+bc+ca,(当且仅当a=b=c取得等号)由题设可得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1,即有3(ab+bc+ca)≤1,则ab+bc+ca≤;(2)+b≥2a, +c≥2b, +a≥2c,故+++(a+b+c)≥2(a+b+c),即有++≥a+b+c.(当且仅当a=b=c取得等号).故++≥1.2016年9月28日。

2017-2018年四川省成都七中高一上学期数学期中试卷带答案

2017-2018年四川省成都七中高一上学期数学期中试卷带答案

2017-2018学年四川省成都七中高一(上)期中数学试卷一、选择题1.(5.00分)已知集合M={0,1},N={0,2,3},则N∩M=()A.{2}B.{1}C.{0}D.{0,1}2.(5.00分)函数f(x)=+lg(x+1)的定义域为()A.[﹣1,2]B.[﹣1,2)C.(﹣1,2]D.(﹣1,2)3.(5.00分)下列函数为R上的偶函数的是()A.y=x2+x B.C.D.y=|x﹣1|﹣|x+1|4.(5.00分)集合C={(x,y)|y﹣x=0},集合,则集合C,D之间的关系为()A.D∈C B.C∈D C.C⊆D D.D⊆C5.(5.00分)下列结论正确的是()A. B.lg(3+5)=lg5+lg3C.D.6.(5.00分)下列各组函数中,表示同一组函数的是()A.f(x)=x﹣2,g(x)=﹣3B.f(x)=x,g(x)=C.f(x)=,g(x)=xD.f(t)=|t﹣1|,g(x)=7.(5.00分)大西洋鲑鱼每年都要逆流而上,游回产地产卵.研究鲑鱼的科学家发现鲑鱼的游速可以表示为函数v=,单位是m/s,其中O表示鱼的耗氧量的单位数.则一条鲑鱼静止时耗氧量的单位数为()A.100 B.300 C.3 D.18.(5.00分)设a=0.993.3,b=3.30.99,c=log3.30.99,则()A.c<b<a B.c<a<b C.a<b<c D.a<c<b9.(5.00分)函数y=a|x|+1(a>0且a≠1),x∈[﹣k,k],k>0的图象可能为()A. B.C.D.10.(5.00分)方程4x2+(m﹣2)x+m﹣5=0的一根在区间(﹣1,0)内,另一根在区间(0,2)内,则m的取值范围是()A.(,5)B.(﹣,5)C.(﹣∞,)∪(5,+∞)D.(﹣∞,)11.(5.00分)函数f(x)=﹣x2+2mx,(m>0)在x∈[0,2]的最大值为9,则m的值为()A.1或3 B.C.3 D.12.(5.00分)已知函数f(x)=,函数F(x)=f(x)﹣a 有四个不同的零点x1,x2,x3,x4且满足:x1<x2<x3<x4,则的取值范围为()A.B.[2,+∞)C.D.(2,+∞)二、填空题13.(5.00分)已知:a+a﹣1=2则a2+a﹣2=.14.(5.00分)若幂函数y=(m2﹣m﹣1)•x m的函数图象经过原点则m=.15.(5.00分)函数f(x)=log2(3+2x﹣x2)的单调递增区间为.16.(5.00分)已知f(x)为R上的偶函数,当x>0时,f(x)=log2x.对于结论(1)当x<0时,f(x)=﹣log2(﹣x);(2)函数f[f(x)]的零点个数可以为4,5,7;(3)若f(0)=2,关于x的方程f2(x)+mf(x)﹣2=0有5个不同的实根,则m=﹣1;(4)若函数在区间[1,2]上恒为正,则实数a的范围是.说法正确的序号是.三、解答题17.(10.00分)计算下列各式的值:(1);(2)lg5+lg22+lg2lg5+log25×log254+.18.(12.00分)已知函数(1)解不等式f(x)>3;(2)求证:函数f(x)在(﹣∞,0)上为增函数.19.(12.00分)已知集合A={x|x∈R|2x<4},B={x∈R|y=lg(x﹣4)}.(1)求集合A,B;(2)已知集合C={x|1﹣m≤x≤m﹣1},若集合C⊆(A∪B),求实数m的取值范围.20.(12.00分)《中华人民共和国个人所得税法》规定,公民全月工资所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额.此项税款按下表分段累计计算:全月应纳税所得额税率(%)不超过1500元的部分3超过1500元至4500元的部分10超过4500元至9000元的部分20(1)某人10月份应交此项税款为350元,则他10月份的工资收入是多少?(2)假设某人的月收入为x元,0≤x≤12500,记他应纳税为f(x)元,求f(x)的函数解析式.21.(12.00分)已知定义域为R的函数f(x)=﹣+是奇函数(1)求a的值;(2)判断函数f(x)的单调性并证明;(3)若对于任意的t∈(1,2),不等式f(﹣2t2+t+1)+f(t2﹣2mt)≤0有解,求m的取值范围.22.(12.00分)已知函数f(x)的定义域为(﹣1,1),对任意实数x,y∈(﹣1,1),都有f(x)+f(y)=f()(1)若f()=2,f()=1,且m,n∈(﹣1,1),求f(m),f(n)的值;(2)若a为常数,函数g(x)=lg(a﹣)是奇函数①验证函数g(x)满足题中的条件;②若函数h(x)=,求函数y=h[h(x)]﹣2的零点个数.2017-2018学年四川省成都七中高一(上)期中数学试卷参考答案与试题解析一、选择题1.(5.00分)已知集合M={0,1},N={0,2,3},则N∩M=()A.{2}B.{1}C.{0}D.{0,1}【解答】解:∵集合M={0,1},N={0,2,3},∴N∩M={0}.故选:C.2.(5.00分)函数f(x)=+lg(x+1)的定义域为()A.[﹣1,2]B.[﹣1,2)C.(﹣1,2]D.(﹣1,2)【解答】解:∵函数f(x)=+lg(x+1),∴,解得﹣1<x≤2,∴函数f(x)的定义域为(﹣1,2].故选:C.3.(5.00分)下列函数为R上的偶函数的是()A.y=x2+x B.C.D.y=|x﹣1|﹣|x+1|【解答】解:y=f(x)=x2+x,有f(﹣x)=x2﹣x,则f(﹣x)≠f(x),且f(﹣x)≠﹣f(x),故f(x)为非奇非偶函数;f(x)=3x+的定义域为R,f(﹣x)=3﹣x+3x=f(x),故f(x)为偶函数;f(x)=x+的定义域为{x|x≠0},f(﹣x)=﹣x﹣=﹣f(x),则f(x)为奇函数;f(x)=|x﹣1|﹣|x+1|的定义域为R,且f(﹣x)=|x+1|﹣|x﹣1|=﹣f(x),则f (x)为奇函数.故选:B.4.(5.00分)集合C={(x,y)|y﹣x=0},集合,则集合C,D之间的关系为()A.D∈C B.C∈D C.C⊆D D.D⊆C【解答】解:∵集合C={(x,y)|y﹣x=0},集合={(1,1)},∴集合C,D之间的关系为D⊆C.故选:D.5.(5.00分)下列结论正确的是()A. B.lg(3+5)=lg5+lg3C.D.【解答】解:,故A不正确,lg(3+5)=lg8,故B不正确,,故C正确,,故D不正确.∴正确的是C.故选:C.6.(5.00分)下列各组函数中,表示同一组函数的是()A.f(x)=x﹣2,g(x)=﹣3B.f(x)=x,g(x)=C.f(x)=,g(x)=xD.f(t)=|t﹣1|,g(x)=【解答】解:对于A,f(x)=x﹣2(x∈R),g(x)=﹣3=x﹣2(x≠1),定义域不同,故不为同一函数;对于B,f(x)=x(x∈R),g(x)=()2=x(x≥0),定义域不同,故不为同一函数;对于C,f(x)==|x|,g(x)=x,对应法则不同,故不为同一函数;对于D,f(t)=|t﹣1|,g(x)=,定义域和对应法则完全相同,故为同一函数.故选:D.7.(5.00分)大西洋鲑鱼每年都要逆流而上,游回产地产卵.研究鲑鱼的科学家发现鲑鱼的游速可以表示为函数v=,单位是m/s,其中O表示鱼的耗氧量的单位数.则一条鲑鱼静止时耗氧量的单位数为()A.100 B.300 C.3 D.1【解答】解:研究鲑鱼的科学家发现鲑鱼的游速可以表示为函数v=,单位是m/s,其中O表示鱼的耗氧量的单位数.则:一条鲑鱼静止时,即v=0.故:,解得:O=100.故选:A.8.(5.00分)设a=0.993.3,b=3.30.99,c=log3.30.99,则()A.c<b<a B.c<a<b C.a<b<c D.a<c<b【解答】解:∵0.993.3<0.990.99,0.990.99<3.30.99,∴0<a=0.993.3<b=3.30.99,又c=log3.30.99<0,∴c<a<b.故选:B.9.(5.00分)函数y=a|x|+1(a>0且a≠1),x∈[﹣k,k],k>0的图象可能为()A. B.C.D.【解答】解:函数y=a|x|+1(a>0且a≠1),x∈[﹣k,k],k>0.函数是偶函数,排除A;函数y=a|x|+1>1,排除B;a>1时,x>0函数是增函数,C 不满足题意,D不满足题意;当a∈(0,1)时,x>0函数是减函数,C 满足题意,D不满足题意;故选:C.10.(5.00分)方程4x2+(m﹣2)x+m﹣5=0的一根在区间(﹣1,0)内,另一根在区间(0,2)内,则m的取值范围是()A.(,5)B.(﹣,5)C.(﹣∞,)∪(5,+∞)D.(﹣∞,)【解答】解:∵方程4x2+(m﹣2)x+m﹣5=0的一根在区间(﹣1,0)内,另一根在区间(0,2)内,∴函数f(x)=4x2+(m﹣2)x+m﹣5的两个零点一个在区间(﹣1,0)内,另一个在区间(0,2)内,则,解得﹣<m<5.∴m的取值范围是(﹣,5).故选:B.11.(5.00分)函数f(x)=﹣x2+2mx,(m>0)在x∈[0,2]的最大值为9,则m的值为()A.1或3 B.C.3 D.【解答】解:f(x)=﹣x2+2mx=﹣(x﹣m)2+m2,对称轴是x=m,开口向下,0<m<2时,f(x)在[0,m)递增,在(m,2]递减,故f(x)max=f(m)=m2=9,解得:m=3,不合题意,m≥2时,f(x)在[0,2]递增,故f(x)max=f(2)=4m﹣4=9,解得:m=,符合题意,故选:D.12.(5.00分)已知函数f(x)=,函数F(x)=f(x)﹣a 有四个不同的零点x1,x2,x3,x4且满足:x1<x2<x3<x4,则的取值范围为()A.B.[2,+∞)C.D.(2,+∞)【解答】解:由题意,画出函数y=|f(x)|的图象,如图所示,又函数g(x)=a﹣|f(x)|有四个零点x1,x2,x3,x4,且x1<x2<x3<x4,x3,x4,关于x=1对称;所以1<a≤2,且log2(﹣x1)=﹣log2(﹣x2)=x32﹣2x3+2=x42﹣2x4+2,x1∈[﹣4,﹣2),x2∈(﹣2,﹣],x1=,所以∈[,1),=x12,x1∈(﹣4,﹣2),则x12∈(4,16],则=+x12=+x12∈,故选:A.二、填空题13.(5.00分)已知:a+a﹣1=2则a2+a﹣2=2.【解答】解:由a+a﹣1=2,得(a+a﹣1)2=4,即a2+2+a﹣2=4,∴a2+a﹣2=2.故答案为:2.14.(5.00分)若幂函数y=(m2﹣m﹣1)•x m的函数图象经过原点则m=2.【解答】解:由题意得:m2﹣m﹣1=1,解得:m=﹣1或m=2,而函数图象过原点,则m=2,故答案为:2.15.(5.00分)函数f(x)=log2(3+2x﹣x2)的单调递增区间为(﹣1,1).【解答】解:令t=3+2x﹣x2>0,求得﹣1<x<3,故函数的定义域为(﹣1,3),且f(x)=log2t,故本题即求函数t在定义域上的增区间.再利用二次函数的性质可得函数t在定义域上的增区间为(﹣1,1),故答案为:(﹣1,1).16.(5.00分)已知f(x)为R上的偶函数,当x>0时,f(x)=log2x.对于结论(1)当x<0时,f(x)=﹣log2(﹣x);(2)函数f[f(x)]的零点个数可以为4,5,7;(3)若f(0)=2,关于x的方程f2(x)+mf(x)﹣2=0有5个不同的实根,则m=﹣1;(4)若函数在区间[1,2]上恒为正,则实数a的范围是.说法正确的序号是(3).【解答】解:f(x)为R上的偶函数,当x>0时,f(x)=log2x,当x<0时,f(﹣x)=log2(﹣x)=f(x),故(1)错;令t=f(x),则f(t)=0,可得t=1或﹣1,由f(x)=1可得x=﹣2或2;f(x)=﹣1时,可得x=±,函数f[f(x)]的零点个数为4,故(2)错;若f(0)=2,关于x的方程f2(x)+mf(x)﹣2=0有5个不同的实根,由对称性可得x=0即4+2m﹣2=0,解得m=﹣1,故(3)对;若函数在区间[1,2]上恒为正,即为log2(ax2﹣x+)>0在[1,2]恒成立,可得ax2﹣x﹣>0在[1,2]恒成立,即为a>+的最大值,由+=(+1)2﹣,可得≤≤1,可得x=1时,+取得最大值,则a>,故(4)错.故答案为:(3).三、解答题17.(10.00分)计算下列各式的值:(1);(2)lg5+lg22+lg2lg5+log25×log254+.【解答】解:(1)==(0.2)﹣1+4﹣π+1=5+4﹣π+1=10﹣π;(2)lg5+lg22+lg2lg5+log25×log254+=lg5+lg2(lg2+lg5)+log25×log52+2=lg5+lg2+1+2=1+1+2=4.18.(12.00分)已知函数(1)解不等式f(x)>3;(2)求证:函数f(x)在(﹣∞,0)上为增函数.【解答】解:(1)由题意得:或,解得:x>1故不等式的解集是(1,+∞);(2)设x1<x2<0,则f(x1)﹣f(x2)=﹣+2x1+﹣2x2=(x2﹣x1)(x1+x2﹣2),∵x1<x2<0,x2﹣x1>0,x1+x2﹣2<0,故f(x1)﹣f(x2)<0,故f(x)在(﹣∞,0)递增.19.(12.00分)已知集合A={x|x∈R|2x<4},B={x∈R|y=lg(x﹣4)}.(1)求集合A,B;(2)已知集合C={x|1﹣m≤x≤m﹣1},若集合C⊆(A∪B),求实数m的取值范围.【解答】解:(1)由2x<4=22,得到x<2,即A={x|x<2},由y=lg(x﹣4)得到x﹣4>0,即x>4,B={x|x>4};(2)∵A={x|x<2},B={x|x>4},∴A∪B={x|x<2或x>4},∵C={x|1﹣m≤x≤m﹣1},若集合C⊆(A∪B),∴当C≠∅时,1﹣m≤m﹣1,即m≥1,此时m﹣1<2或1﹣m>4,解得:1≤m<3,当C=∅时,即1﹣m>m﹣1,解得:m<1,则m的范围是m<3.20.(12.00分)《中华人民共和国个人所得税法》规定,公民全月工资所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额.此项税款按下表分段累计计算:全月应纳税所得额税率(%)不超过1500元的部分3超过1500元至4500元的部分10超过4500元至9000元的部分20(1)某人10月份应交此项税款为350元,则他10月份的工资收入是多少?(2)假设某人的月收入为x元,0≤x≤12500,记他应纳税为f(x)元,求f(x)的函数解析式.【解答】解:(1)当他当月的工资、薪金所得为5000元时,应交税(5000﹣3500)×3%=45(元),当他当月的工资、薪金所得为5000到8000元时,应交税最多为45+3000×10%=345(元),现某人一月份应缴纳此项税款为350元,则他当月的工资、薪金所得为8000到12500元,由350﹣345=5,8000+5÷20%=8025(元),故他当月的工资、薪金所得是8025元;(2)当0<x≤3500时,y=0;当3500<x≤5000时,y=(x﹣3500)×3%=0.03x﹣105;当5000<x≤8000时,y=1500×3%+(x﹣5000)×10%=0.1x﹣455;当8000<x≤10000时,y=1500×3%+3000×10%+(x﹣8000)×20%=0.2x﹣1255.综上可得,y=21.(12.00分)已知定义域为R的函数f(x)=﹣+是奇函数(1)求a的值;(2)判断函数f(x)的单调性并证明;(3)若对于任意的t∈(1,2),不等式f(﹣2t2+t+1)+f(t2﹣2mt)≤0有解,求m的取值范围.【解答】解:(1)∵f(x)是R上的奇函数,∴f(0)=﹣+=0,∴a=1.(2)f(x)=﹣+,故f(x)是R上的减函数.证明:设x1,x2是R上的任意两个数,且x1<x2,则f(x1)﹣f(x2)=﹣=,∵x1<x2,∴0<3<3,∴>0,即f(x1)﹣f(x2)>0,∴f(x1)>f(x2),∴f(x)在R上是减函数.(3)∵f(x)是奇函数,f(﹣2t2+t+1)+f(t2﹣2mt)≤0有解,∴f(t2﹣2mt)≤﹣f(﹣2t2+t+1)=f(2t2﹣t﹣1),又f(x)是减函数,∴t2﹣2mt≥2t2﹣t﹣1在(1,2)上有解,∴m≤=﹣++.设g(t)=﹣++,则g′(t)=﹣﹣<0,∴g(t)在(1,2)上单调递减,∴g(t)<g(1)=.∴m的取值范围是(﹣∞,].22.(12.00分)已知函数f(x)的定义域为(﹣1,1),对任意实数x,y∈(﹣1,1),都有f(x)+f(y)=f()(1)若f()=2,f()=1,且m,n∈(﹣1,1),求f(m),f(n)的值;(2)若a为常数,函数g(x)=lg(a﹣)是奇函数①验证函数g(x)满足题中的条件;②若函数h(x)=,求函数y=h[h(x)]﹣2的零点个数.【解答】解:(1)令x=y=0,得f(0)=0,再令y=﹣x,得f(x)+f(﹣x)=0,则f(﹣x)=﹣f(x),∴函数f(x)在(﹣1,1)上为奇函数,∴f()=f(m)+f(﹣n)=f(m)﹣f(n)=1,f()=f(m)+f(n)=2,解得f(m)=,f(n)=,(2)∵a为常数,函数g(x)=lg(a﹣)是奇函数,得g(0)=lga=0=lg1,∴a=1,此时g(x)=lg(1﹣)=lg,满足函数g(x)为奇函数,且g(0)=0有意义,①由>0,解得﹣1<x<1,则对任意实数x,y∈(﹣1,1),有g(x)+g(y)=lg+lg=lg(•)=lg,g()=lg=lg,∴g(x)+g(y)=g(),②由y=h[h(x)]﹣2,得h[h(x)]=2,令t=h(x),则h(t)=2,作出图象,当k≤0时,只有一个﹣1<t<0,对应3个零点,当0<k≤1时,1<k+1≤2,此时t1<﹣1,﹣1<t2<0,t3=≥1,由k+1﹣==(k+)(k﹣),得在<k≤1,k+1>,三个t分别对应一个零点,共3个,在0<k≤时,k+1≤,三个t分别对应1个,1个,3个零点,共5个,综上所述:当k>1时,y=h[h(x)]﹣2只有1个零点,当k≤0或<k≤1时,y=h[h(x)]﹣2有3个零点,当0<k≤时,y=h[h(x)]﹣2有5个零点.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;xyB CAO2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

2017-2018学年成都市高一上学期期末数学试卷

2017-2018学年成都市高一上学期期末数学试卷

2017-2018学年成都市高一上学期期末数学试卷一、选择题:本大题共12小题,每小題5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合{}{}02,1||1P x x Q x x =<<=-<<,则P Q ⋂= ( )(A) {}1|x x < (B) {}1|0x x << (C) {}1|1x x -<< (D) {}0 【答案】:B【解析】:()0,1P Q ⋂= 【考点】:集合 【难度】:★★★2.已知平面向量()()1,2,3,3a m b =+-=-.若a b ∥,则实数m 的值为( ) (A)0 (B) −3 (C)1 (D)−1【答案】:C 【解析】:()()32310m -⨯--⨯+= 【考点】:向量共线定理 【难度】:★★★3.函数130(1),x y aa a +=->≠且的图象一定经过的点( )(A) ()0, 2- (B) ()1,3-- (C) (0, −3) (D) ()1,2-- 【答案】:D 【解析】:省略 【考点】:指数函数过定点问题 【难度】:★★★4.已知θθθθcos 2sin cos sin -+=21,则tan θ的值为( )(A) 4- (B) 14- (C) 41(D) 4【答案】:A 【解析】:tan 11tan 22θθ+=-即tan 4θ=-【考点】:齐次式 【难度】:★★★5.函数()3log 2f x x =-的大致图象是( )(A) (B) (C) (D)【答案】:D 【解析】:函数图像的变换 【考点】:函数图像性质 【难度】:★★★6.函数()1tan 324f x x ππ⎛⎫=+ ⎪⎝⎭的单调递增区间为( ) (A) 312,2,22k k k Z ⎛⎫+ ⎪⎝⎭-∈ (B) 112,2,22k k k Z ⎛⎫+ ⎪⎝⎭-∈(C) 114,4,22k k k Z ⎛⎫+ ⎪⎝⎭-∈ (D) 314,4,22k k k Z ⎛⎫+ ⎪⎝⎭-∈【答案】:A 【解析】:由2242k x k ππππππ-+<+<+,k Z ∈3122,22k x k k Z ∴-<<+∈ 【考点】:三角函数单调性【难度】:★★★7.函数 ()()1ln 23f x x x =---的零点所在区间为( ) (A) () 4, 3-- (B) ()3, e -- (C) (),2e -- (D) ()2,1-- 【答案】:B 【解析】:()1203ef e -=+-<且()3ln3120f -=+->【考点】:零点存在定理 【难度】:★★★8.将函数()sin f x x =的图象上所有点的横坐标缩短为原来的12倍(纵坐标不变),再向右平移6π个单位,得到函数()g x 的图象.则函数()g x 的图象的一条对称轴为( ) (A) 12x π= (B) 6x π= (C) 12x π=- (D) 6x π=-【答案】:C【解析】:由题知()sin 23g x x π⎛⎫=-⎪⎝⎭232x k πππ∴-=+化解得:5,212k x k Z ππ=+∈ 12x π∴=-【考点】:三角函数图像变换【难度】:★★★9.已知()722log 28,log 5,lg 2lg5a b c ===+,则,,a b c 的大小关系为( )(A) c a b << (B) c b a << (C) a c b << (D) b a c <<【答案】:A 【解析】:7728491log 28212a <<∴<<∴<<22log 54g 2lo b =>=()()22lg 2lg 15lg 01c ===+ 所以c a b <<【考点】:对数大小比较 【难度】:★★★10.如图,在ABC 中,已知BD =21DC ,P 为AD 上点,且满足49CP mCA CB =+,则实数m 的值为( )(A) 32 (B) 31 (C) 95 (D) 21【答案】:B【解析】:由题3429CP mCA CB =+⨯即:23CP mCA CB =+ ,,A P D 共线所以:13m =【考点】:向量三点共线结论 【难度】:★★★11.当,()0θπ∈时,若53cos 65πθ⎛⎫-=- ⎪⎝⎭,则tan 6πθ⎛⎫+ ⎪⎝⎭的值为( )(A)34 (B) 43 (C) 43- (D) 34- 【答案】:B【解析】:53533cos cos cos 656565πππθθθπ⎛⎫⎛⎫⎛⎫-=-∴-=-∴+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3cos 65πθ⎛⎫∴+= ⎪⎝⎭又,()0θπ∈所以7,666πππθ⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭4tan 63πθ⎛⎫∴+= ⎪⎝⎭【考点】:诱导公式【难度】:★★★12.定义在R 上的函数()f x 满足()()22f x f x =-,且当(]1,1x ∈-时, ()12xf x ⎛⎫= ⎪⎝⎭,若关于x 的方程()()32f x a x =-+在()0,5上至少有两个实数解,则实数a 的取值范围( )(A) []0,2 (B) [0,)+∞ (C) (]0,2 (D [2,)+∞【答案】:C【解析】: 【考点】:函数的综合运用 【难度】:★★★★★二、填空题:本大题共4小题,每小题5分,共20分把答案填在答题卡上13.设角a 的顶点与坐标原点重合始边与x 轴的非负半轴重合.若角a 的终边上一点P 的坐标为(1,)3,则cos α的值为__________. 【答案】:12【解析】:省略 【考点】:三角函数线 【难度】:★★★14.已知函数()f x =⎩⎨⎧<<<-0,210,log 2x x x x,则=)]31([f f __________. 【答案】:3 【解析】:2211log log 333f ⎛⎫==- ⎪⎝⎭2log 31[()]233f f ∴==【考点】:分段函数求值 【难度】:★★★15.若函数()13f x ⎛⎫= ⎪⎝⎭在区间()1,1-上单调递减,则实数m 的取值范围是_________. 【答案】:[4,)+∞【解析】:由复合函数同增异减所以223x mx +-在区间()1,1-上单调递增14m∴-≤-所以4m ≥【考点】:复合函数 【难度】:★★★16.已知P 是ABC 内一点, ()2AB PB PC =+,记PBC 的面积为1S ,ABC 的面积为2S ,则=21S S _________. 【答案】:14【解析】:设线段BC 的中点是D ,则2PB PC PD +=()2AB PB PC =+ 4AB PD ∴= 4AB PD ∴=所以设P 到BC 的距离为h ,则A 到BC 的距离为4h所以1214S S = 【考点】:★★★★★三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知平面向量(4,3)a =-,(5,0)b =. (Ⅰ)求a 与b 的夹角的余弦值;(Ⅱ)若向量a kb +与a kb -相互垂直,求实数k 的值. 【答案】:(Ⅰ)45(Ⅱ)1± 【解析】:(Ⅰ)向量(4,3)a =-,(5,0)b =,1211,422S BC h S BC h∴==204cos ,555a b a b a b⋅∴===⨯. ∴向量a 与b 的夹角余弦值为45.(Ⅱ)向量a kb +与a kb -相互垂直,222()()0a kb a kb a k b ∴+-=-=.又2225a b ==,225250k ∴-=.1k ∴=±.【考点】:向量的运算,向量的垂直平行. 【难度】:★★★18.(本小题满分12分)已知定义域为R 的奇函数()131xaf x =-+,a R ∈. (Ⅰ)求a 的值;(Ⅱ)用函数单调性的定义证明函数()f x 在R 上是增函数. 【答案】:(Ⅰ)2(Ⅱ)略 【解析】:(Ⅰ)()f x 是定义域为R 的奇函数,()()f x f x ∴-=-,即1(1)3131x xa a--=--++. 23131x x a a -∴+=++,即323131x xx a a⋅∴+=++. 解得2a =.(Ⅱ)由(Ⅰ),知2()131xf x =-+. 任取12,x x R ∈且12x x <,则121221*********(33)()()(1)(1)31313131(31)(31)x x x x x x x x f x f x --=---=-=++++++.由12x x <,可知12033xx<<.1310x ∴+>,2310x +>,12330x x -<.1212122(33)()()0(31)(31)x x x x f x f x --=<++,即12()()f x f x <.∴函数()f x 在R 上是增函数.【考点】:函数的证明,单调性定义证明 【难度】:★★★19.(本小题满分12分)大西洋鲑鱼每年都要逆流而上,游回产地产卵.研究鲑鱼的科学家发现鲑鱼的游速v (单位:/m s )语气耗氧量单位数Q 之间的关系可以表示为函数3log 100Qv k b =+,其中k ,b 为常数.已知一条鲑鱼在静止时的耗氧量为100个单位;而当它的游速为1.5/m s 时,其耗氧量为2700个单位.(Ⅰ)求出游速v 与其耗氧量单位数Q 之间的函数解析式;(Ⅱ)求当一条鲑鱼的游速不高于2.5/m s 时,其耗氧量至少需要多少个单位? 【答案】:(Ⅰ)31log 2100Qv =.(Ⅱ)24300个单位. 【解析】:(Ⅰ)由题意,得331000log 10027001.5log 100k b k b⎧=+⎪⎪⎨⎪=+⎪⎩.解得12k =,0b =. ∴游速v 与其耗氧量单位数Q 之间的函数解析式为31log 2100Qv =(Ⅱ)由题意,有31log 2.52100Q ≤,即3log 5100Q≤. 533log log 3100Q ≤.由对数函数的单调性,有503100Q<≤,解得024300Q <≤. ∴当一条鲑鱼的游速不高于2.5/m s 时,其耗氧量至少需要24300个单位.【考点】:函数的应用 【难度】:★★★20.(本小题满分12分)已知函数()sin()f x A x ωϕ=+(0A >,0ω>)的部分图像如图所示. (Ⅰ)求函数()f x 的解析式;(Ⅱ)若函数()f x 在[]0,π上取得最小值时对应的角度为θ.求半径为2,圆心角为θ的扇形的面积.【答案】:(Ⅰ)故()2sin(2)6f x x π=+.(Ⅱ)2112442233S r ππθ==⨯⨯=. 【解析】:(Ⅰ)0A >,∴根据函数图像,得2A =.又周期T 满足()46124T πππ=--=,0ω>, 2T ππω∴==.解得2ω=.当6x π=时,2sin(2)26πϕ⨯+=.2,32k k Z ππϕπ∴+=+∈.2,6k k Z πϕπ∴=+∈.故()2sin(2)6f x x π=+.(Ⅱ)函数()f x 的周期为π,()f x ∴在[]0,π上的最小值为-2.由题意,角(0)θθπ≤≤满足()2f θ=-,即sin(2)16πθ+=-.解得23πθ=. ∴半径为2,圆心角为θ的扇形的面积为2112442233S r ππθ==⨯⨯=【考点】:三角函数图像性质【难度】:★★★21.(本小题满分12分)设函数2()21f x x ax =++,a R ∈.(Ⅰ)当[]1,1x ∈-时,求函数()f x 的最小值()g a ;(Ⅱ)若函数()f x 的零点都在区间[)2,0-内,求a 的取值范围.【答案】:(Ⅰ)222,1()1,1122,1a a g a a a a a -≥⎧⎪=--<<⎨⎪+≤-⎩(Ⅱ)51,4⎡⎤⎢⎥⎣⎦【解析】:(Ⅰ)函数222()21()1,f x x ax x a a a R =++=++-∈.当1a -≤-,即1a ≥时,()(1)22g a f a =-=-; 当11a -<-<,即11a -<<时,2()()1g a f a a =-=-; 当1a -≥,即1a ≤-时,()(1)22g a f a ==+.综上,222,1()1,1122,1a a g a a a a a -≥⎧⎪=--<<⎨⎪+≤-⎩(Ⅱ)函数()f x 的零点都在区间[)2,0-内等价于函数()f x 的图像与x 轴的交点都在区间[)2,0-内.2440(2)540514(0)1020a f a a f a ⎧=-≥⎪-=-≥⎪∴⇒≤≤⎨=>⎪⎪-≤-<⎩故a 的取值范围是51,4⎡⎤⎢⎥⎣⎦【考点】:二次函数闭区间内的零点存在问题 【难度】:★★★★22.(本小题满分12分)已知函数22()log (21)f x mx mx =-+,m R ∈(Ⅰ)若函数()f x 的定义域为R ,求m 的取值范围;(Ⅱ)设函数4()()2log g x f x x =-.若对任意[]0,1x ∈,总有(2)0xg x -≤,求m 的取值范围.【答案】:(Ⅰ)[)0,1(Ⅱ)[)0,1【解析】:(Ⅰ)函数()f x 的定义域为R ,即2210mx mx -+>在R 上恒成立. 当0m =时,恒成立,符合题意;当0m ≠时,必有200010440m m m m m >>⎧⎧⇒⇒<<⎨⎨<-<⎩⎩. 综上,m 的取值范围是[)0,1.(Ⅱ)42()()2log ()log g x f x x f x x =-=-,22(2)(2)2log (2221)2x x x x g x f x m m x -=-=⋅-⋅+-.对任意[]0,1x ∈,总有(2)0xg x -≤,等价于2222log (2221)2log 2x x x m m x ⋅-⋅+≤=在[]0,1x ∈上恒成立2222221022212x x x x x m m m m ⎧⋅-⋅+>⎪⇔⎨⋅-⋅+≤⎪⎩在[]0,1x ∈上很成立.(*) 设2x t =,则[]1,2t ∈,220t t -≤(当且仅当2t =时取等号). (*)222(2)10(2)1m t t m t t t⎧-+>⎪⇔⎨-+≤⎪⎩,在[]1,2t ∈上恒成立.(* *) 当2t =时,(* *)显然成立.当[)1,2t ∈时,2222221(2)1021(2)12m m t t t t t m t t t m t t ⎧<-⎪⎧-+>⎪⎪-⇔⎨⎨--+≤⎪⎩⎪≥⎪-⎩在[)1,2t ∈上恒成立. 令21()2u t t t=--,[)1,2t ∈.只需min ()m u t <. 2211()2(1)1u t t t t =-=----在区间[)1,2上单调递增, min ()(1)1m u t u ∴<==. 令221()2t h t t t-=-,在区间[)1,2只需max ()m h t ≥. 而210t -≥,220t t -<,且(1)0h =,22102t t t -∴≤-,故0m ≥. 综上,m 的取值范围是[)0,1【考点】:含参不等式的分类讨论【难度】:★★★★★。

四川省成都市实验中学2017-2018学年高一上学期期中考试数学试卷 Word版含答案

四川省成都市实验中学2017-2018学年高一上学期期中考试数学试卷 Word版含答案

成都市实验中学高2017-2018学年度上期半期考试试题高一数学一.选择题:(共12题,每题5分,共计60分)1.设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4}2.已知集合A={x|x>﹣1},则下列选项正确的是()A.0⊆A B.{0}⊆A C.∅∈A D.{0}∈A3. 下列函数中,与y=x相同的函数是()A.B.y=lg10x C.D.4. 若全集U={0,1,2,3}且∁U A={2},则集合A的真子集共有()A.3个B.5个 C.7个 D.8个5. 已知函数f(x)是奇函数,且当x>0时,f(x)=x2+,则f(﹣1)=()A.﹣2 B.0 C.1 D.26. 若a=log20.5,b=20.5,c=0.52,则a,b,c三个数的大小关系是()A.a<b<cB.b<c<a C.a<c<b D.c<a<b7 设函数f(x)=,若f(a)=1,则a=()A.﹣1或3 B.2或3 C.﹣1或2 D.﹣1或2或38. 函数f(x)=的定义域为()A. {x|0<x≤2}B.{x|0<x≤2且x≠1}C.{x|0<x<2}D.{x|0<x<2且x≠1}9. 在定义域内既是奇函数又是减函数的是()A.y= B.y=﹣x+C.y=﹣x|x|D.y=10. 若a<,则化简的结果是()A.B.﹣C.D.﹣11. 已知f(x)=是(﹣∞,+∞)上的增函数,那么实数a的取值范围是()A.(0,3) B.(1,3) C.(1,+∞)D.12. 函数f(x)的定义域为D,若函数f(x)满足:(1)f(x)在D上为单调函数;(2)存在区间[a,b]⊆D,使得f(x)在[a,b]上的值域为[,],则称函数f(x)为“取半函数”.若f(x)=log c(c x+t)(c>0,且c≠1)为“取半函数”,则t的取值范围是()A.(﹣,) B.(0,)C.(0,)D.(,1)二.填空题:(共4题,每题5分,共计20分)13.若9x=81,则x=;log0.51+log39=.14.已知函数f(x+1)=3x+2,则f(x)的解析式是.15.函数,满足f(x)>1的x的取值范围是.16. 若函数f(x)=log a(2x2+x)(a>0,a≠1)在区间恒有f(x)>0,则f(x)的单调递增区间是.三.解答题:(共6题,17题10分,其余每题12分,共计70分)17.计算:(1);(2).18.集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}(1)求A∩B:(2)若集合C={x|2x+a>0}.满足B∪C=C.求实数a的取值范围.19.已知函数(1)判断并证明函数的单调性;(2)求此函数的最大值和最小值.20.已知f(x)是定义在R上的奇函数,且当x<0时,f(x)=﹣(x+1)2.(1)求f(0);(2)画出f(x)在R上的图象,并求出x>0时f(x)的解析式;(3)写出f(x)的单调增区间.21.已知函数f(x)=ax2+bx+1(a,b为实数),x∈R.(1)若函数f(x)的最小值是f(﹣1)=0,求f(x)的解析式;(2)在(1)的条件下,f(x)>x+k在区间[﹣3,﹣1]上恒成立,试求k的取值范围;22.设函数y=f(x)是定义在R上的函数,并且满足下面三个条件:①对任意正数x,y,都有f(xy)=f(x)+f(y);②当x>1时,f(x)<0;③f(3)=﹣1.(1)求的值;(2)证明f(x)在(0,+∞)上是减函数;(3)如果不等式f(x)+f(2﹣x)<2成立,求x的取值范围.高一数学选择题答案ABBC ACCB CCDB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2x ) 是奇函数, x 1
(2)若 a 为常数,函数 g( x ) lg(a ①验证函数 g( x ) 满足题中的条件; ②若函数 h x
g ( x), 1 x 1, 求函数 y h h( x) 2 的零点个数. k x 1, x 1或x 1,
. .
14.若幂函数 y ( m 2 m 1) x m 的函数图象经过原点则 m
2
15.设函数 f ( x ) log 2 (3 2 x x 2 ) ,则 f ( x ) 的单调递增区间为 16.已知 f ( x ) 为 R 上的偶函数,当 x 0 时, f ( x ) log 2 x .对于结论
( A)2
2. 函数 f ( x )
( B)1
(C )0
( D)0,1
2 x lg( x 1) 的定义域为 ()
( A) 1, 2
( B) 1, 2
(C ) 2,
( D)( , 1)
3. 下列函数为 R 上的偶函数的是 ()
……………8 分 m 1符合条件 ( ii )若C ,即1 m m 1解得m 要保证:C ( A B ) ……11 分 m 4或m 1 2解得m 舍或m 1 2 解得m 1, 3 ……………12 分
11.函数 f ( x ) x 2 2mx ,( m 在 x 0, 2 的最大值为 9 ,则 m 的值为 ()
( A)1或3
( B )3或
13 4
(C )3
( D)
13 4
12. 已 知 函 数 f ( x )
log 2 ( x ) , x 0
2 x 2 x 2, x 0
, 函 数 F ( x) f ( x) a 有 四 个 不 同 的 零 点
x1 , x2 , x3 , x4 且满足: x1 x2 x3 x4 ,则
x2 x3 x12 x4 x12 的取值范围为 () x1 2
19 解: (1) 2 x 22 又 y lg( x 4)可知x 4
A (, 2) ……………3 分 B ( 4, ) …………………6 分
1
(2) ( A B) (, 2) ( 4, )又 C ( A B) ( i )若C ,即1 m m 1解得m 1满足:C ( A B )


10. 方程 4 x ( m 2) x m 5 0 的一根在区间 ( 1, 0) 内, 另一根在区间 ( 0, 2) 内, 则m
2
的取值范围是 ()
5 ( A)( , 5) 3
7 ( B )( , 5) 3
5 (C )( , ) (5, ) 3
5 ( D)( , ) 3
.
(1)当 x 0 时, f ( x ) log 2 ( x ) ; (2) 函数 f f ( x ) 的零点个数可以为 4,5,7;
2 (3) 若 f ( 0) 2 , 关于 x 的方程 f ( x ) mf ( x ) 2 0 有 5 个不同的实根, 则 m 1 ;
21.已知定义域为 R 的函数 f ( x ) (1)求 a 的值; (2)判断函数 f ( x ) 的单调性并证明;
1 a x 是奇函数. 2 3 1
(3)若对任意的 t (1, 2) , 不等式 f ( 2t 2 t 1) f ( t 2 2mt ) 0 有解, 求 m 的取值范围.


20. 《中华人民共和国个人所得税法》规定,公民全月工资所得不超过 3500 元的部分不必
纳税,超过 3500 元的部分为全月应纳税所得额。此项税款按下表分段累计计算:
3
(1) 某人 10 月份应交此项税款为 350 元,则他 10 月份的工资收入是多少? (2) 假设某人的月收入为 x 元,0 x 12500 , 记他应纳税为 f ( x ) 元, 求 f ( x) 的函数解析式.
=(x 2 x1 )(x2 x1 2)
由 x1 x2 ,得 x 2 x1 0 ,由 x1, x2 , 0 ,得 x 2 x1 2 0.
所以 f ( x1 ) f ( x2 ) 0 ,即 f ( x1 ) f ( x2 ) . 所以函数 f ( x ) 在 , 0 上为增函数. ……………12 分
17.计算下列各式的值:
(1)(0.008)
1 3 1 1 ( 4)2 2 2 6 ; 8
( 2) lg 5 lg 2 2 lg 2 lg 5 log 2 5 log 25 4 5log5 2
2 x 2 x, x 0, 18.已知函数 f x 2 x 2 x, x 0.
…………10 分
18.解: (1)当 x 0 时,由 f ( x ) x 2 2 x 3 ,得 x 2 2 x 3 0, 解得 x 1或x 3, 又 x 0 ,
x 1. ……………3 分
当 x 0 时,由 f ( x ) x 2 x 3 ,得 x 2 x 3 0,
( D )log 2 5 ln 2 ln 5
( A) f ( x ) x 2, g( x )
x2 1 3 x 1
( B ) f ( x ) x , g( x ) ( x )2
(C ) f ( x) x 2 , g( x) x
x 1, x 1 ( D) f ( t ) t 1 , g( x ) x 1, x 1
( B )300
0.99
(C )3 () (C )a b c
( D)1
, c log 3.3 0.99, 则
( A)c b a
x
( B)c a b
( D)a c b
9. 函数 y a 1(a 0且a 1), x k , k , k 0 的图象可能为 ()


(4)若函数 y f (ax x ) 在区间 1, 2 上恒为正,则实数 a 的范围是
2
1 2

1 , . 2
说法正确的序号是
.
三 . 解答题 ( 17 题 10 分其余每小题 12 分, 共 70 分 . 解答应写出文字说明, 证明过程或演算 步骤 . )
为 ()
( A) D C
( B )C D
(C )C D
( D) D C
5. 下列结论正确的是 ()
( A) 4 (2)4 2
1 2 1 (C )( ) 3 3 3 9
6. 下列各组函数中,表示同一组函数的是 ()
( B)lg(3 5) lg 5 lg 3
综上:m的取值范围为m 3
20.解: (1)易知工资纳税是一个分段计费方式: ( i )若该人的收入刚达到5000元则其应纳税所得额为1500 0.03 45元, 易知:其收入超过5000元; ( ii )若该人的收入刚达到8000元则3000 0.1 300元, 易知:其应纳税所得额为: 300 45 345 350故其收入超过8000元; ( iii )设其收入超过8000元的部分为x元,易知0.2 x 5元解得x 25 则其10月份的工资收入是8025元.
( A) y x 2 x
( B ) y 3x
1 3x
(C ) y x
1 x
( D) y x 1 x 1
1 1 y x 4. 集合 C ( x, y ) y x 0 ,集合 D ( x , y ) 2 2 , 则集合 C , D 之间的关系 y 2 x
17 (C ) 2, 4
17 257 ( A) , 4 16
( B) 2,
( D)(2, )
二、填空题:本大题共 4 小题,每题 5 分,共 20 分,把答案填在题中的横线上
13.已知: a a 1 2 则 a 2 a 2
15.
注: -1,1 也对
16.
三.解答题(17 题 10 分其余每小题 12 分,共 70 分.解答应写出文字说明,证明 过程或演算步骤. ) 17 解:
(1)(0.008)
1 3
( 4) 2 6
2 2
解得 x . 综上所述,原不等式的解集为{x| x 1 }.……………6 分 .
则 f ( x1 ) f ( x2 ) ( x1 2 x1 ) ( x2 2 x2 )
2 2
2 ( x2 x12 ) (2 x1 2 x2 )
(1)解不等式 f ( x ) 3; (2)求证:函数 f ( x ) 在 , 0 上为增函数. 19.已知集合 A x R 2 x 4 , B x R y lg( x 4) . (1)求集合 A, B; (2)已知集合 C x 1 m x m 1 , 若集合 C ( A B) ,求实数 m 的取值范 围.
成都七中 2017-2018 学年度上期 2020 届半期考试数学试卷
考试时间:120 分钟
1. 已知集合 M 0,1 , N 0, 2, 3 , 则 N
总分: 150 分
一. 选择题 (每小题 5 分, 共 60 分, 在每小题给出的四个选项中, 只有一项是符合要求. )
M ()
7. 大西洋鲑鱼每年都要逆流而上, 游回产地产卵. 研究鲑鱼的科学家发现鲑鱼的游速可以表示 为函数 v
1 O log3 ,单位是 m / s ,其中 O 表示鱼的耗氧量的单位数. 则一条鲑鱼静止时 2 100
相关文档
最新文档