2018年甘肃省陇南市育才中学最新中考数学模拟试卷-含答案
甘肃省陇南市数学中考模拟试卷
甘肃省陇南市数学中考模拟试卷姓名:________ 班级:________ 成绩:________一、单选题。
(共8题;共16分)1. (2分) (2018七上·酒泉期末) -4的相反数是()A .B . -C . 4D . - 42. (2分)(2019·江北模拟) (x2y)2的结果是()A . x6yB . x4y2C . x5yD . x5y23. (2分)我市某一周的最高气温(单位:℃)分别为25,27,27,26,28,28,28.则这组数据的中位数是()A . 28B . 27C . 26D . 254. (2分)如图,AB∥ED,∠ECF=70°,则∠BAF的度数为()A . 130°B . 110°C . 70°D . 20°5. (2分)在△ABC中,∠ABC=90°,BD⊥AC,D为垂足,下面结论错误的是()A . 图中有三个直角B . ∠1=∠CC . ∠2和∠A都是∠C的余角D . ∠1=∠26. (2分)(2016·南沙模拟) 在平面直角坐标系中,第一个正方形ABCD的位置如图所示,点A的坐标为(2,0),点D的坐标为(0,4).延长CB交x轴于点A1 ,作第二个正方形A1B1C1C;延长C1B1交x轴于点A2 ,作第三个正方形A2B2C2C1 ,…,按这样的规律进行下去,第2016个正方形的面积为()A . 20×()4030B . 20×()4032C . 20×()2016D . 20×()20157. (2分)(2017·满洲里模拟) 不等式组的所有整数解之和是()A . ﹣8B . ﹣9C . ﹣10D . ﹣128. (2分)已知点A(﹣2,0),B为直线x=﹣1上一个动点,P为直线AB与双曲线y=的交点,且AP=2AB,则满足条件的点P的个数是()A . 0个B . 1个C . 2个D . 3个二、填空题。
2018年甘肃省陇南市中考数学试卷
…………………装………绝密★启用前 2018年甘肃省陇南市中考数学试卷 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、单选题 1.﹣2018的相反数是( ) A . ﹣2018 B . 2018 C . ﹣ D . 2.下列计算结果等于x 3的是( ) A . x 6÷x 2 B . x 4﹣x C . x+x 2 D . x 2•x 3.若一个角为65°,则它的补角的度数为( ) A . 25° B . 35° C . 115° D . 125° 4.已知 (a≠0,b≠0),下列变形错误的是( ) A . B . 2a=3b C . D . 3a=2b 5.若分式 的值为0,则x 的值是( ) A . 2或﹣2 B . 2 C . ﹣2 D . 0 6.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s 2如下表:外…………○…………装…………○…………订…○…………线※※请※※不※※要※※在※装※※订※※线※※内※※※ …○………线……○A . 甲 B . 乙 C . 丙 D . 丁7.关于x 的一元二次方程x 2+4x+k=0有两个实数根,则k 的取值范围是( )A . k≤﹣4B . k <﹣4C . k≤4D . k <48.如图,点E 是正方形ABCD 的边DC 上一点,把△ADE 绕点A 顺时针旋转90°到△ABF 的位置,若四边形AECF 的面积为25,DE=2,则AE 的长为( )A . 5B .C . 7D .9.如图,⊙A 过点O (0,0),C ( ,0),D (0,1),点B 是x 轴下方⊙A 上的一点,连接BO ,BD ,则∠OBD 的度数是( )A . 15°B . 30°C . 45°D . 60°10.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A . ①②④B . ①②⑤C . ②③④D . ③④⑤…………○…………○…………订…………学校:_____________班级:___________考号:_______………装…………○…………………线…………○……………………○第II 卷(非选择题) 请点击修改第II 卷的文字说明 二、填空题 11.计算:2sin30°+(﹣1)2018﹣( )﹣1=_____. 12.使得代数式 有意义的x 的取值范围是_____. 13.若正多边形的内角和是1080°,则该正多边形的边数是_____. 14.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为_____. 15.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.16.如图,一次函数y=﹣x ﹣2与y=2x +m 的图象相交于点P (n ,﹣4),则关于x 的不等式组 < < 的解集为_____. 17.如图,分别以等边三角形的每个顶点为圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a ,则勒洛三角形的周长为_____.……装…………○…………………○……※※不※※要※※在题※※ …………○………18.如图,是一个运算程序的示意图,若开始输入x 的值为625,则第2018次输出的结果为_____.三、解答题19.计算:20.如图,在△ABC 中,∠ABC=90°.(1)作∠ACB 的平分线交AB 边于点O ,再以点O 为圆心,OB 的长为半径作⊙O ;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC 与⊙O 的位置关系,直接写出结果.21.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.22.随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A ,B 两地被大山阻隔,由A 地到B 地需要绕行C 地,若打通穿山隧道,建成A ,B 两地的直达高铁,可以缩短从A 地到B 地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A 地到B 地的路程将约缩短多少公里?(参考数据: ≈1.7, ≈1.4)…………○………订…………○…………○……学校:______考号:___________ …………装…………○………………………○……………装…………○… 23.如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案. (1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少? (2)现将方格内空白的小正方形(A ,B ,C ,D ,E ,F )中任取2个涂黑,得到新图案.请用列表或画树状图的方法求新图案是轴对称图形的概率. 24.“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A ,B ,C ,D 四个等级进行统计,制成了如下不完整的统计图.(说明:A 级:8分﹣10分,B 级:7分﹣7.9分,C 级:6分﹣6.9分,D 级:1分﹣5.9分) 根据所给信息,解答以下问题: (1)在扇形统计图中,C 对应的扇形的圆心角是 度; (2)补全条形统计图; (3)所抽取学生的足球运球测试成绩的中位数会落在 等级; (4)该校九年级有300名学生,请估计足球运球测试成绩达到A 级的学生有多少人? 25.如图,一次函数y=x +4的图象与反比例函数y= (k 为常数且k ≠0)的图象交于A (﹣1,a ),B 两点,与x 轴交于点C . (1)求此反比例函数的表达式; (2)若点P 在x 轴上,且S △ACP = S △BOC ,求点P 的坐标.……装…………○…………○…………○……※不※※要※※在※※装※※※答※※题※※ ……………………26.已知矩形ABCD 中,E 是AD 边上的一个动点,点F ,G ,H 分别是BC ,BE ,CE 的中点.(1)求证:△BGF ≌△FHC ; (2)设AD=a ,当四边形EGFH 是正方形时,求矩形ABCD 的面积.27.如图,点O 是△ABC 的边AB 上一点,⊙O 与边AC 相切于点E ,与边BC ,AB 分别相交于点D ,F ,且DE=EF .(1)求证:∠C=90°;(2)当BC=3,sinA=时,求AF 的长.28.如图,已知二次函数y=ax 2+2x+c 的图象经过点C (0,3),与x 轴分别交于点A ,点B (3,0).点P 是直线BC 上方的抛物线上一动点.(1)求二次函数y=ax 2+2x+c 的表达式;(2)连接PO ,PC ,并把△POC 沿y 轴翻折,得到四边形POP′C.若四边形POP′C 为菱形,请求出此时点P 的坐标;(3)当点P 运动到什么位置时,四边形ACPB 的面积最大?求出此时P 点的坐标和四边形ACPB 的最大面积.……线…………○………………○…………装…………○…参考答案1.B【解析】【分析】直接利用相反数的定义分析得出答案.【详解】﹣2018的相反数是:2018.故选:B.【点睛】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.D【解析】【分析】根据同底数幂的除法、乘法及同类项的定义逐一计算即可得.【详解】A、x6÷x2=x4,不符合题意;B、x4﹣x不能再计算,不符合题意;C、x+x2不能再计算,不符合题意;D、x2•x=x3,符合题意;故选:D.【点睛】本题主要考查整式的运算,解题的关键是掌握同底数幂的除法、乘法及同类项的定义.3.C【解析】【分析】根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】180°﹣65°=115°.故它的补角的度数为115°.故选:C【点睛】本题考查了余角和补角,解决本题的关键是熟记互为补角的和等于180°.4.B【解析】【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【详解】解:由得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选:B.【点睛】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.5.A【解析】【分析】直接利用分式的值为零则分子为零进而得出答案.【详解】∵分式的值为0,∴x2﹣4=0,解得:x=2或﹣2.故选:A.【点睛】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.6.A【解析】【分析】根据平均数和方差的意义解答.【详解】从平均数看,成绩好的同学有甲、乙,从方差看甲、乙两人中,甲方差小,即甲发挥稳定,故选:A.【点睛】本题考查了平均数和方差,熟悉它们的意义是解题的关键.7.C【解析】【分析】根据判别式的意义得△=42﹣4k≥0,然后解不等式即可.【详解】根据题意得△=42﹣4k≥0,解得k≤4.故选:C.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.8.D【解析】【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【详解】∵把△ADE顺时针旋转△ABF的位置,∴四边形AECF的面积等于正方形ABCD的面积等于25,∴AD=DC=5,∵DE=2,∴Rt△ADE中,故选:D.【点睛】此题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.9.B【解析】【分析】连接DC,利用三角函数得出∠DCO=30°,进而利用圆周角定理得出∠DBO=30°即可.【详解】连接DC,∵,,,,∴∠DOC=90°,OD=1,,∴∠DCO=30°,∴∠OBD=30°,故选:B.【点睛】此题考查圆周角定理,关键是利用三角函数得出∠DCO=30°.10.A【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>0.①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选:A.【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).11.0【解析】【分析】根据特殊角的三角函数值、幂的乘方和负整数指数幂可以解答本题.【详解】原式=0,故答案为:0.【点睛】本题考查实数的运算、负整数指数幂、特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.12.x>3【解析】【分析】二次根式中被开方数的取值范围:二次根式中的被开方数是非负数.【详解】∵代数式有意义,∴x﹣3>0,∴x>3,∴x的取值范围是x>3,故答案为:x>3.【点睛】本题主要考查了二次根式有意义的条件,如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.13.8【解析】【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故答案为:8.【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.14.108【解析】【分析】观察该几何体的三视图发现该几何体为正六棱柱,然后根据提供的尺寸求得其侧面积即可.【详解】观察该几何体的三视图发现该几何体为正六棱柱,其底面边长为3,高为6,所以其侧面积为3×6×6=108,故答案为:108.【点睛】本题考查了由三视图判断几何体的知识,解题的关键是能够根据三视图判断几何体的形状及各部分的尺寸,难度不大.15.7【解析】【分析】根据非负数的性质列式求出a、b的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c的取值范围,再根据c是奇数求出c的值.【详解】∵a,b满足|a﹣7|+(b﹣1)2=0,∴a﹣7=0,b﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴,又∵c为奇数,∴c=7,故答案为:7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.16.﹣2<x<2【解析】【分析】先将点P(n,﹣4)代入y=﹣x﹣2,求出n的值,再找出直线y=2x+m落在y=﹣x﹣2的下方且都在x轴下方的部分对应的自变量的取值范围即可.【详解】∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),∴﹣4=﹣n﹣2,解得n=2,∴P(2,﹣4),又∵y=﹣x﹣2与x轴的交点是(﹣2,0),∴关于x的不等式组<<的解集为.故答案为:.【点睛】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.17.πa【解析】【分析】首先根据等边三角形的性质得出∠A=∠B=∠C=60°,AB=BC=CA=a,再利用弧长公式求出的长=的长=的长=ππ,那么勒洛三角形的周长为ππ【详解】如图.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的长=的长=的长=ππ,∴勒洛三角形的周长为ππ故答案为πa.【点睛】本题考查了弧长公式:π(弧长为l,圆心角度数为n,圆的半径为R),也考查了等边三角形的性质.18.1【解析】【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案.【详解】当x=625时,x=125,当x=125时,x=25,当x=25时,x=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,…(2018﹣3)÷2=1007.5,即输出的结果是1,故答案为:1【点睛】本题考查了求代数式的值,能根据求出的结果得出规律是解此题的关键.19.【解析】先计算括号内分式的减法,再计算除法即可得.【详解】原式=【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.20.(1)见解析(2)相切【解析】【分析】(1)首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作⊙O即可;(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.【详解】(1)如图所示:;(2)相切;过O点作OD⊥AC于D点,∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O与直线AC相切,【点睛】此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系,正确利用角平分线的性质求出d=r是解题关键.21.合伙买鸡者有9人,鸡的价格为70文钱【分析】设合伙买鸡者有x人,鸡的价格为y文钱,根据“如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【详解】设合伙买鸡者有x人,鸡的价格为y文钱,根据题意得:,解得:答:合伙买鸡者有9人,鸡的价格为70文钱.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.224【解析】【分析】过点C作CD⊥AB于点D,利用锐角三角函数的定义求出CD及AD的长,进而可得出结论.【详解】过点C作CD⊥AB于点D,在Rt△ADC和Rt△BCD中,∵∠CAB=30°,∠CBA=45°,AC=640,∴,,∴,,∴,∴,∴1088﹣864=224(公里),答:隧道打通后与打通前相比,从A地到B地的路程将约缩短224公里.本题考查的是解直角三角形的应用﹣方向角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记锐角三角函数的定义.23.(1)(2)【解析】【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到新图案是轴对称图形的结果数,利用概率公式计算可得.【详解】(1)∵正方形网格被等分成9等份,其中阴影部分面积占其中的3份,∴米粒落在阴影部分的概率是(2)列表如下:由表可知,共有30种等可能结果,其中是轴对称图形的有10种,故新图案是轴对称图形的概率为【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.24.(1)117(2)见解析(3)B(4)30【解析】【分析】(1)先根据B等级人数及其百分比求得总人数,总人数减去其他等级人数求得C等级人数,继而用360°乘以C等级人数所占比例即可得;(2)根据以上所求结果即可补全图形;(3)根据中位数的定义求解可得;(4)总人数乘以样本中A等级人数所占比例可得.【详解】(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(1)y=-(2)点P(﹣6,0)或(﹣2,0)【解析】【分析】(1)利用点A在y=﹣x+4上求a,进而代入反比例函数求k.(2)联立方程求出交点,设出点P坐标表示三角形面积,求出P点坐标.【详解】(1)把点A(﹣1,a)代入y=x+4,得a=3,∴A(﹣1,3)把A(﹣1,3)代入反比例函数∴k=﹣3,∴反比例函数的表达式为(2)联立两个函数的表达式得解得或∴点B的坐标为B(﹣3,1)当y=x+4=0时,得x=﹣4∴点C(﹣4,0)设点P的坐标为(x,0)∵△△,∴解得x1=﹣6,x2=﹣2∴点P(﹣6,0)或(﹣2,0)【点睛】本题是一次函数和反比例函数综合题,考查利用方程思想求函数解析式,通过联立方程求交点坐标以及在数形结合基础上的面积表达.26.见解析(2)【解析】【分析】(1)根据三角形中位线定理和全等三角形的判定证明即可;(2)利用正方形的性质和矩形的面积公式解答即可.【详解】(1)连接EF,∵点F,G,H分别是BC,BE,CE的中点,∴FH∥BE,FH=BE,FH=BG,∴∠CFH=∠CBG,∵BF=CF,∴△BGF≌△FHC,(2)当四边形EGFH是正方形时,连接GH,可得:EF⊥GH且EF=GH,∵在△BEC中,点,H分别是BE,CE的中点,∴且GH∥BC,∴EF⊥BC,∵AD∥BC,AB⊥BC,∴AB=EF=GH=a,∴矩形ABCD的面积=【点睛】此题考查正方形的性质,关键是根据全等三角形的判定和正方形的性质解答.27.(1)见解析(2)【解析】【分析】(1)连接OE,BE,因为DE=EF,所以=,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA=从而可求出r的值.【详解】(1)连接OE,BE,∵DE=EF,∴=∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O与边AC相切于点E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=,∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA=∴∴【点睛】本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识.28.(1)y=﹣x2+2x+3(2)(+,)(3)当点P的坐标为(,)时,四边形ACPB的最大面积值为【解析】【分析】(1)根据待定系数法,可得函数解析式;(2)根据菱形的对角线互相垂直且平分,可得P点的纵坐标,根据自变量与函数值的对应关系,可得P点坐标;(3)根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.【详解】(1)将点B和点C的坐标代入函数解析式,得解得二次函数的解析式为y=﹣x2+2x+3;(2)若四边形POP′C为菱形,则点P在线段CO的垂直平分线上,如图1,连接PP′,则PE⊥CO,垂足为E,∵C(0,3),∴,∴点P的纵坐标,当时,即,解得,(不合题意,舍),∴点P的坐标为;(3)如图2,P在抛物线上,设P(m,﹣m2+2m+3),设直线BC的解析式为y=kx+b,将点B和点C的坐标代入函数解析式,得解得直线BC的解析为y=﹣x+3,设点Q的坐标为(m,﹣m+3),PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,OA=1,,S四边形ABPC=S△ABC+S△PCQ+S△PBQ,当m=时,四边形ABPC的面积最大.当m=时,,即P点的坐标为.当点P的坐标为时,四边形ACPB的最大面积值为.【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用菱形的性质得出P点的纵坐标,又利用了自变量与函数值的对应关系;解(3)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质.。
陇南市中考数学模拟考试试卷
陇南市中考数学模拟考试试卷姓名:________ 班级:________ 成绩:________一、选择题:本大题共12小题,每小题选对得3分。
(共12题;共36分)1. (3分)的值等于()A . 4B .C .D . 22. (3分)(2020·深圳模拟) 下列数中,最小的正数的是().A . 3B . -2C . 0D . 23. (3分)下列各组单项式中,不是同类项的一组是()A . x2y和2xy2和2xyB . ﹣32和3C .D . 5x2y和﹣2yx24. (3分) (2018九上·皇姑期末) 如果,那么代数式的值为A . 6B . 8C .D .5. (3分)(2019·枣庄模拟) 将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠a的度数是()A . 85°B . 75°C . 60°D . 45°6. (3分)(2018·龙东) 某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A . 平均分是91B . 中位数是90C . 众数是94D . 极差是207. (3分)(2019·枣庄模拟) 新能源汽车环保节能,越来越受到消费者的喜爱。
各种品牌相继投放市场。
一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元。
销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1-5月份每辆车的销售价格是多少万元?设今年1-5月份每辆车的销售价格为x万元.根据题意,列方程正确的是()A .B .C .D .8. (3分)(2019·枣庄模拟) 把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为()A .B .C .D .9. (3分)(2019·枣庄模拟) 如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,CD 与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD:②MP·MD=MA·ME:③2CB2=CP·CM.其中正确的是()A . ①②③B . ①C . ①②D . ②③10. (3分)(2019·枣庄模拟) 甲、乙两车从A地出发,匀速驶向B地。
2018年甘肃省陇南市育才中学数学中考模拟试卷(四)
九年级模拟试卷 试第1页 共6页 九年级模拟试卷 第2页 共6页学校 班级 姓名 考号密 封 线 内 不 要 答 题2018年甘肃省陇南市中考数学模拟试卷(四)2018年甘肃省陇南市中考模拟试卷科目 数学满分:120分 考试时间:120分钟一、单项选择题:本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填入题后的括号内.1.下列图形中,既是中心对称图形,又是轴对称图形的个数是( )A .1B .2C .3D .42.一种新病毒的直径约为0.00000043毫米,用科学记数法表示为( ) A .0.43×10﹣6B .0.43×106C .4.3×107D .4.3×10﹣73.已知不等式组,其解集在数轴上表示正确的是( )A .B .C .D .4.下列运算正确的是( )A .x 2•x 3=x 6B .x 6÷x 5=xC .(﹣x 2)4=x 6D .x 2+x 3=x 5 5.如图所示,该几何体的俯视图是( )A .B .C .D .6.下列二次分式中,与是同类二次根式的是( )A .B .C .D .7.若分式方程2+=有增根,则k 的值为( )A .﹣2B .﹣1C .1D .28.从边长为a 的正方形内去掉一个边长为b 的小正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作所能验证的等式是( )A .(a ﹣b )2=a 2﹣2ab +b 2B .a 2﹣b 2=(a +b )(a ﹣b )C .(a +b )2=a 2+2ab +b 2D .a 2+ab=a (a +b )9.如图,在▱ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,若EF :AF=2:5,则S △DEF :S 四边形EFBC 为( )A .2:5B .4:25C .4:31D .4:35第8题图 第9题图 第10题图 10.已知如图,等腰三角形ABC 的直角边长为a ,正方形MNPQ 的边为b (a <b ),C 、M 、A 、N 在同一条直线上,开始时点A 与点M 重合,让△ABC 向右移动,最后点C 与点N 重合.设三角形与正方形的重合面积为y ,点A 移动的距离为x ,则y 关于x 的大致图象是( )A .B .C .D .二、填空题(本大题共8小题,每小题3分,共24分.把答案写在答题卡中的横线上.)11.多项式2x 3﹣8x 2y +8xy 2分解因式的结果是 . 12.计算:﹣= .13.若等腰三角形的顶角为120°,腰长为2cm ,则它的底边长为 cm .14.关于x 的一元二次方程mx 2+(m ﹣2)x +m ﹣2=0有两个不相等的实数根,则m 的取值范围九年级模拟试卷 第3页 共6页 九年级模拟试卷 第4页 共6页密 封 线 内 不 要 答 题是 .15.如图,△ABC 中,点D 、E 在BC 边上,∠BAD=∠CAE 请你添加一对相等的线段或一对相等的角的条件,使△ABD ≌△ACE .你所添加的条件是 .第15题图 第16题图 第17题图 16.在Rt △ABC 中,∠C=90°,D 为BC 上一点,∠DAC=30°,BD=2,,则AC 的长是 .17.在开展“全民阅读”活动中,某校为了解全校1500名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1500名学生一周的课外阅读时间不少于7小时的人数是 .18.正整数按如图所示的规律排列,则第29行第30列的数字为 .三、解答题(一):本大题共5小题,共26分.解答时,应写出必要的文字说明、证明过程或演算步骤.19.(5分)计算:﹣22﹣+|1﹣4sin60°|+(π﹣)0.20.(5分)解分式方程:+=3.21.(6分)如图,在△ABC 中,AB=AC ,AD ⊥BC ,AE ∥BC .(1)作∠ADC 的平分线DF ,与AE 交于点F ;(用尺规作图,保留作图痕迹,不写作法) (2)在(1)的条件下,若AD=2,求DF 的长.22.(5分)如图,山区某教学楼后面紧邻着一个土坡,坡面BC 平行于地面AD ,斜坡AB 的坡比为i=1:,且AB=26米.为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过53°时,可确保山体不滑坡. (1)求改造前坡顶与地面的距离BE 的长.(2)为了消除安全隐患,学校计划将斜坡AB 改造成AF (如图所示),那么BF 至少是多少米?(结果精确到1米)(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75).23.(5分)如图,在平面直角坐标系xOy 中,一次函数y=﹣ax +b 的图象与反比例函数y=的图象相交于点A (﹣4,﹣2),B (m ,4),与y 轴相交于点C .(1)求反比例函数和一次函数的表达式; (2)求点C 的坐标及△AOB 的面积.九年级模拟试卷 试第1页 共6页 九年级模拟试卷 第6页 共6页学校 班级 姓名 考号密 封 线 内 不 要 答 题四、解答题(二):本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤.24.(7分)如图,转盘被平均分成三块扇形,转动转盘,转动过程中,指针保持不动,转盘停止后,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止. (1)转动转盘两次,用画树状图或列表的方法求两次指针所指区域数字不同的概率;(2)在第(1)题中,两次转到的区域的数字作为两条线段的长度,如果第三条线段的长度为5,求这三条线段能构成三角形的概率.25.(8分)“世界那么大,我想去看看”一句话红遍网络,随着国际货币基金组织正式宣布人民币2016年10月1日加入SDR (特别提款权),以后出国看世界更加方便.为了解某区6000名初中生对“人民币加入SDR”知晓的情况,某校数学兴趣小组随机抽取区内部分初中生进行问卷调查,将问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不了解”四个等级,并将调查结果整理分析,得到下列图表:某区抽取学生对“人民币加入SDR”知晓情况频数分布表(1)本次问卷调查抽取的学生共有 人,其中“不了解”的学生有 人; (2)在扇形统计图中,学生对“人民币加入SDR”基本了解的区域的圆心角为 °;(3)根据抽样的结果,估计该区6000名初中生对“人民币加入SDR”了解的有多少人(了解是指“非常了解”、“比较了解”和“基本了解”)?26.(7分)如图,在菱形ABCD 中,AB=2,∠DAB=60°,点E 是AD 边的中点,点M 是AB 边上的一个动点(不与点A 重合),延长ME 交CD 的延长线于点N ,连接MD ,AN . (1)求证:四边形AMDN 是平行四边形.(2)当AM 的值为何值时,四边形AMDN 是矩形?请说明理由.27.(8分)如图,在Rt △ABC 中,∠ACB=90°,以AC 为直径的⊙O 与AB 边交于点D ,点E 是边BC 的中点.(1)求证:BC 2=BD•BA ;(2)判断DE 与⊙O 位置关系,并说明理由.28.(10分)如图,已知抛物线与x 轴交于A (﹣1,0)、B (4,0)两点,与y 轴交于点C (0,3).(1)求抛物线的解析式; (2)求直线BC 的函数解析式;(3)在抛物线上,是否存在一点P ,使△PAB 的面积等于△ABC 的面积?若存在,求出点P 的坐标;若不存在,请说明理由.。
2018年甘肃省中考数学模拟试卷(解析版)
2018年甘肃省中考数学模拟试卷一、选择题(每小题3分,共30分)1.(3分)下列是电视台的台标,属于中心对称图形的是()A.B.C.D.2.(3分)在3,0,﹣2,﹣四个数中,最小的数是()A.3B.0C.﹣2D.﹣3.(3分)27的立方根是()A.±3B.±3C.3D.34.(3分)将一个正方体如图放置在一个长方体上,则所构成的几何体的左视图可能是()A.B.C.D.5.(3分)下列计算正确的是()A.a5+a5=2a10B.a3•2a2=2a6C.(a+1)2=a2+1D.(﹣2ab)2=4a2b26.(3分)如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为()A.30°B.40°C.50°D.60°7.(3分)在平面直角坐标系中,已知一次函数y=(k﹣2)x﹣b的图象大致如图所示,则下列结论正确的是()A.k>2,b>0B.k>2,b<0C.k<2,b>0D.k<2,b<0 8.(3分)我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步.“如果设矩形田地的长为x步,那么同学们列出的下列方程中正确的是()A.x(x+12)=864B.x(x﹣12)=864C.x2+12x=864D.x2+12x﹣864=09.(3分)若代数式3x2﹣4x+6的值为9,则x2﹣x+8的值为()A.17B.15C.11D.910.(3分)如图1,E为矩形ABCD边AD上一点,点P从点C沿折线CD﹣DE﹣EB运动到点B时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是()A.AE=8cmB.C.当10≤t≤12时,D.当t=12s时,△PBQ是等腰三角形二、填空题(每小题3分,共24分)11.(3分)分解因式:2x2﹣8x+8=.12.(3分)分式方程=的解是.13.(3分)在△ABC中,(tan A﹣)2+|﹣cos B|=0,则∠C的度数为.14.(3分)如图,AB是⊙O的直径,点C、D在⊙O上,若∠ACD=25°,则∠BOD的度数为.15.(3分)若关于x的一元二次方程(k﹣2)x2+2kx+k=0没有实数根,则k的取值范围是.16.(3分)如图,将边长为6cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在Q处,EQ与BC交于点G,则BG的长是cm.17.(3分)如图,在⊙O中,圆周角∠ACB=150°,弦AB=4,则扇形OAB的面积是.18.(3分)下列图案是用长度相同的火柴棒按一定规律拼搭而成的,第1个图案需4根火柴棒,第2个图案需10根火柴棒,第3个图案需16根图案…按此规律,第n个图案需根火柴棒.三、解答题(本大题共5小题,共38分)19.(4分)计算:+()﹣1﹣4sin30°﹣(π﹣3.14)0.20.(4分)解不等式组:.21.(6分)如图,已知△ABC,点D在BC边上,请用圆规和直尺作出点D,使点D到AB 的距离与点D到AC的距离相等(不写作法,保留作图痕迹).22.(6分)敦煌莫高窟是甘肃省敦煌市境内的莫高窟、西千佛洞的总称,是我国著名的四大石窟之一,也是世界上现存规模最宏大、保存最完好的佛教艺术宝库,数学课外实践活动中,小明为测量莫高窟内佛像高度,分别在点D、H处用高为1.5米的测角仪对佛像进行了测量,如图,测得∠ACE=42°,∠AFE=61°,若DH=15米,求佛像的高度AB.(结果精确到1米,参考数据sin42°≈0.67,tan42°≈0.90,sin61°≈0.87,tan61°≈1.80)23.(6分)2018年2月16日,由著名导演林超贤的电影《红海行动》在各大影院上映后,好评不断,小亮和小丽都想去观看这部电影,但是只有一张电影票,于是他们决定采用摸球的办法决定谁去看电影,规则如下:在一个不透明的袋子中装有编号1~4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字,若两次数字之和大于5,则小亮获胜,若两次数字之和小于5,则小丽获胜.(1)请用列表或画树状图的方法表示出两数和的所有可能的结果;(2)分别求出小亮和小丽获胜的概率.四、解答题(本大题共5小题,共50分)24.(7分)“低碳生活,绿色出行”是我们倡导的一种生活方式,某校为了解学生对共享单车的使用情况,随机抽取部分学生进行问卷调查,并将这次调查的结果绘制了以下两幅不完整的统计图.根据所给信息,解答下列问题:(1)m=;(2)补全条形统计图;(3)这次调查结果的众数是;(4)已知全校共3000名学生,请估计“经常使用”共享单车的学生大约有多少名?25.(7分)如图,直线AB经过x轴上的点M,与反比例函数y=(x>0)的图象相交于点A(1,8)和B(m,n),其中m>1,AC⊥x轴于点C,BD⊥y轴于点D,AC与BD 交于点P.(1)求k的值;(2)若AB=2BM,求△ABD的面积;(3)若四边形ABCD为菱形,求直线AB的函数解析式.26.(8分)如图,在平行四边形ABCD中,直线EF绕对角线AC的中点O旋转,分别交BC、AD于E、F两点,连接AE、CF.(1)求证:四边形AECF是平行四边形;(2)若AC=2,∠CAF=30°,则当AF=时,四边形AECF是矩形.27.(8分)如图,AC是⊙O的直径,OB是⊙O的半径,P A切⊙O于点A,PB与AC的延长线交于点M,∠COB=∠APB.(1)求证:PB是⊙O的切线;(2)当OB=3,P A=6时,求MB、MC的长.28.(10分)如图,抛物线y=ax2+bx+c与x轴交于A,B(1,0)两点,与y轴交于点C,直线y=x﹣2经过A,C两点,抛物线的顶点为D.(1)求抛物线的解析式;(2)求抛物线的顶点D的坐标;(3)在y轴上是否存在一点G,使得GD+GB的值最小?若存在,求出点G的坐标;若不存在,请说明理由;(4)在直线AC的上方抛物线上是否存在点P,使△P AC的面积最大?若存在,直接写出P 点坐标及△P AC面积的最大值.2018年甘肃省中考数学模拟试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列是电视台的台标,属于中心对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:A.2.(3分)在3,0,﹣2,﹣四个数中,最小的数是()A.3B.0C.﹣2D.﹣【解答】解:∵﹣2<﹣<0<3,∴四个数中,最小的数是﹣2,故选:C.3.(3分)27的立方根是()A.±3B.±3C.3D.3【解答】解:∵3的立方等于27,∴27的立方根等于3.故选:C.4.(3分)将一个正方体如图放置在一个长方体上,则所构成的几何体的左视图可能是()A.B.C.D.【解答】解:从几何体的左边看可得,故选:C.5.(3分)下列计算正确的是()A.a5+a5=2a10B.a3•2a2=2a6C.(a+1)2=a2+1D.(﹣2ab)2=4a2b2【解答】解:A、结果是2a2,故本选项不符合题意;B、结果是2a5,故本选项不符合题意;C、结果是a2+2a+1,故本选项不符合题意;D、结果是4a2b2,故本选项符合题意;故选:D.6.(3分)如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为()A.30°B.40°C.50°D.60°【解答】解:如图,由三角形的外角性质可得:∠3=30°+∠1=30°+30°=60°,∵AB∥CD,∴∠2=∠3=60°.故选:D.7.(3分)在平面直角坐标系中,已知一次函数y=(k﹣2)x﹣b的图象大致如图所示,则下列结论正确的是()A.k>2,b>0B.k>2,b<0C.k<2,b>0D.k<2,b<0【解答】解:∵一次函数y=(k﹣2)x﹣b的图象经过二、三、四象限,∴k﹣2<0,﹣b<0.解得:k<2,b>0故选:C.8.(3分)我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步.“如果设矩形田地的长为x步,那么同学们列出的下列方程中正确的是()A.x(x+12)=864B.x(x﹣12)=864C.x2+12x=864D.x2+12x﹣864=0【解答】解:设矩形田地的长为x步,那么宽就应该是(x﹣12)步.根据矩形面积=长×宽,得:x(x﹣12)=864.故选:B.9.(3分)若代数式3x2﹣4x+6的值为9,则x2﹣x+8的值为()A.17B.15C.11D.9【解答】解:∵3x2﹣4x+6的值为9,∴3x2﹣4x=3,x2﹣x=1,∴x2﹣x+8=1+8=9.故选:D.10.(3分)如图1,E为矩形ABCD边AD上一点,点P从点C沿折线CD﹣DE﹣EB运动到点B时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是()A.AE=8cmB.C.当10≤t≤12时,D.当t=12s时,△PBQ是等腰三角形【解答】解:观察图象可知:点P在CD上运动的时间为6s,在DE上运动的时间为4s,点Q在BC上运动的时间为12s,所以CD=6,DE=4,BC=12,∵AD=BC,∴AD=12,∴AE=12﹣4=8cm,故A正确,在Rt△ABE中,∵AE=8,AB=CD=6,∴BE==10,∴sin∠EBC=sin∠AEB===,故B正确,当10≤t≤12时,点P在BE上,BP=10﹣(t﹣10)=20﹣t,∴S△BQP=•t•(20﹣t)•=﹣t2+6t,故C正确,故选:D.二、填空题(每小题3分,共24分)11.(3分)分解因式:2x2﹣8x+8=2(x﹣2)2.【解答】解:原式=2(x2﹣4x+4)=2(x﹣2)2.故答案为2(x﹣2)2.12.(3分)分式方程=的解是x=1.【解答】解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解.故答案为:x=1.13.(3分)在△ABC中,(tan A﹣)2+|﹣cos B|=0,则∠C的度数为75°.【解答】解:由题意得tan A=,cos B=.∠A=60°,∠B=45°.∠C=180°﹣∠A﹣∠B=75°,故答案为:75°14.(3分)如图,AB是⊙O的直径,点C、D在⊙O上,若∠ACD=25°,则∠BOD的度数为130°.【解答】解:由圆周角定理得,∠AOD=2∠ACD=50°,∴∠BOD=180°﹣50°=130°,故答案为:130°.15.(3分)若关于x的一元二次方程(k﹣2)x2+2kx+k=0没有实数根,则k的取值范围是k<0.【解答】解:∵关于x的一元二次方程(k﹣2)x2+2kx+k=0没有实数根,∴,解得:k<0.故答案为:k<0.16.(3分)如图,将边长为6cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在Q处,EQ与BC交于点G,则BG的长是4cm.【解答】解:∵正方形ABCD折叠点D落在AB边的中点E处,∴EF=FD,设AF=x,则EF=6﹣x,∵点E是AB的中点,∴AE=BE=×6=3,在Rt△AEF中,由勾股定理得,AE2+AF2=EF2,即32+x2=(6﹣x)2,解得x=,∵∠FEG=90°,∴∠AEF+∠BEG=90°,∵∠BEG+∠BGE=90°,∴∠AEF=∠BGE,又∵∠A=∠B=90°,∴△AEF∽△BGE,∴=,∴BG===4cm.故答案为:4.17.(3分)如图,在⊙O中,圆周角∠ACB=150°,弦AB=4,则扇形OAB的面积是π.【解答】解:作所对的圆周角∠ADB,如图,∵∠ADB+∠ACB=180°,∴∠ADB=180°﹣150°=30°,∴∠AOB=2∠ADB=60°,而OA=OB,∴△OAB为等边三角形,∴OA=AB=4,∴扇形OAB的面积==π.故答案为π.18.(3分)下列图案是用长度相同的火柴棒按一定规律拼搭而成的,第1个图案需4根火柴棒,第2个图案需10根火柴棒,第3个图案需16根图案…按此规律,第n个图案需(6n﹣2)根火柴棒.【解答】解:第1个图形中,有4根火柴,4=1+3×1;第2个图形中,有10根火柴,10=1+3×3;第3个图形中,有16根火柴,16=1+3×5;…按此规律,第n个图形中,火柴的根数是1+3(2n﹣1)=6n﹣2.故答案为:(6n﹣2).三、解答题(本大题共5小题,共38分)19.(4分)计算:+()﹣1﹣4sin30°﹣(π﹣3.14)0.【解答】解:原式=3+3﹣2﹣1=3.20.(4分)解不等式组:.【解答】解:∵解不等式①得:x≤4,解不等式②得:x>﹣3,∴不等式组的解集是﹣3<x≤4.21.(6分)如图,已知△ABC,点D在BC边上,请用圆规和直尺作出点D,使点D到AB 的距离与点D到AC的距离相等(不写作法,保留作图痕迹).【解答】解:如图,作∠BAC的平分线交BC于点D,点D即为所求;22.(6分)敦煌莫高窟是甘肃省敦煌市境内的莫高窟、西千佛洞的总称,是我国著名的四大石窟之一,也是世界上现存规模最宏大、保存最完好的佛教艺术宝库,数学课外实践活动中,小明为测量莫高窟内佛像高度,分别在点D、H处用高为1.5米的测角仪对佛像进行了测量,如图,测得∠ACE=42°,∠AFE=61°,若DH=15米,求佛像的高度AB.(结果精确到1米,参考数据sin42°≈0.67,tan42°≈0.90,sin61°≈0.87,tan61°≈1.80)【解答】解:Rt△AFE中,tan∠AFE=tan61°=,设AE=x,则EF=,由已知得:CF=DH=15,Rt△ACE中,tan∠ACE=,∵∠ACE=42°,∴tan42°=0.90=,解得:x=27,∴AB=BE+AE=1.5+27=28.5;答:佛像的高度AB是28.5米.23.(6分)2018年2月16日,由著名导演林超贤的电影《红海行动》在各大影院上映后,好评不断,小亮和小丽都想去观看这部电影,但是只有一张电影票,于是他们决定采用摸球的办法决定谁去看电影,规则如下:在一个不透明的袋子中装有编号1~4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字,若两次数字之和大于5,则小亮获胜,若两次数字之和小于5,则小丽获胜.(1)请用列表或画树状图的方法表示出两数和的所有可能的结果;(2)分别求出小亮和小丽获胜的概率.【解答】解:(1)画树状图为:共有16种等可能的结果数;(2)因为两次数字之和大于5的结果数为6,所以小亮获胜的概率==,因为两次数字之和小于5的结果数为6,所以小丽获胜的概率==,四、解答题(本大题共5小题,共50分)24.(7分)“低碳生活,绿色出行”是我们倡导的一种生活方式,某校为了解学生对共享单车的使用情况,随机抽取部分学生进行问卷调查,并将这次调查的结果绘制了以下两幅不完整的统计图.根据所给信息,解答下列问题:(1)m=15%;(2)补全条形统计图;(3)这次调查结果的众数是偶尔使用;(4)已知全校共3000名学生,请估计“经常使用”共享单车的学生大约有多少名?【解答】解:(1)∵被调查的学生总人数为25÷25%=100(人),∴经常使用的人数对应的百分比m=×100%=15%,故答案为:15%;(2)偶尔使用的人数为100﹣(25+15)=60(人),补全条形统计图如下:(3)∵偶尔使用的人数最多,∴这次调查结果的众数是偶尔使用,故答案为:偶尔使用;(4)估计“经常使用”共享单车的学生大约有3000×15%=450(人).25.(7分)如图,直线AB经过x轴上的点M,与反比例函数y=(x>0)的图象相交于点A(1,8)和B(m,n),其中m>1,AC⊥x轴于点C,BD⊥y轴于点D,AC与BD 交于点P.(1)求k的值;(2)若AB=2BM,求△ABD的面积;(3)若四边形ABCD为菱形,求直线AB的函数解析式.【解答】解:(1)把A(1,8)代入y=,可得k=8;(2)∵A(1,8),B(m,n),∴AP=8﹣n,AC=8,∵AB=2BM,∴=,∵AC⊥x轴,BD⊥y轴,∴BP∥CM,∴==,即=,解得n=,把B(m,)代入反比例函数解析式可得m=3,∴BD=3,∴S△ABD=BD•AP=×3×(8﹣)=8;(3)∵四边形ABCD为菱形,∴BP=DP,∴点P坐标为(m,n),∵P A=PC,∴P(1,4),∴m=1,n=4,∴m=2,n=4,∴B(2,4),设直线AB解析式为y=kx+b,∴,解得,∴直线AB的解析式为y=﹣4x+12.26.(8分)如图,在平行四边形ABCD中,直线EF绕对角线AC的中点O旋转,分别交BC、AD于E、F两点,连接AE、CF.(1)求证:四边形AECF是平行四边形;(2)若AC=2,∠CAF=30°,则当AF=时,四边形AECF是矩形.【解答】证明:(1)在平行四边形ABCD中,AD∥BC,∴∠CAF=∠ACE,∵点O是平行四边形ABCD对角线的中点,∴OA=OC,在△AOF和△COE中,∵,∴△AOF≌△COE(ASA),∴AF=CE,∵AF∥CE,∴四边形AECF是平行四边形;(2)∵四边形AECF是矩形,∴∠AFC=90°,在Rt△ACF中,∠CAF=30°,AC=2,∴CF=1,AF=.故答案为:.27.(8分)如图,AC是⊙O的直径,OB是⊙O的半径,P A切⊙O于点A,PB与AC的延长线交于点M,∠COB=∠APB.(1)求证:PB是⊙O的切线;(2)当OB=3,P A=6时,求MB、MC的长.【解答】证明:(1)∵AC是⊙O的直径,P A切⊙O于点A,∴P A⊥OA∴在Rt△MAP中,∠M+∠P=90°,而∠COB=∠APB,∴∠M+∠COB=90°,∴∠OBM=90°,即OB⊥BP,∴PB是⊙O的切线;(2)∵∠COB=∠APB,∠OBM=∠P AM,∴△OBM∽△APM,∴=,设MB=x,则MA=2x,MO=2x﹣3,∴MP=4x﹣6,在Rt△AMP中,(4x﹣6)2﹣(2x)2=62,解得x=4或0(舍去)∴MB=4,MC=2.28.(10分)如图,抛物线y=ax2+bx+c与x轴交于A,B(1,0)两点,与y轴交于点C,直线y=x﹣2经过A,C两点,抛物线的顶点为D.(1)求抛物线的解析式;(2)求抛物线的顶点D的坐标;(3)在y轴上是否存在一点G,使得GD+GB的值最小?若存在,求出点G的坐标;若不存在,请说明理由;(4)在直线AC的上方抛物线上是否存在点P,使△P AC的面积最大?若存在,直接写出P 点坐标及△P AC面积的最大值.【解答】解:(1)把x=0代入y=x﹣2中得:y=﹣2.把y=0代入y=x﹣2中得:x=4.∴A(4,0),C(0,﹣2).把A(4,0),B(1,0),C(0,﹣2)分别代入y=ax2+bx+c,得,解得.则该抛物线的解析式为:y=﹣x2+x﹣2;(2)由(1)知,该抛物线的解析式为y=﹣x2+x﹣2,∴y=﹣x2+x﹣2=﹣(x﹣)2+,∴顶点D(,);(3)存在点G(0,)使得GD+GB的值最小.理由如下:如图1,作点B关于y轴的对称点B′,连接B′D交y轴于点G,则B′(﹣1,0).设直线B′D的解析式为y=kx+b.则,解得:,.∴直线B′D的解析式为y=x+,把x=0代入,得y=,∴存在点G(0,)使得GD+GB的值最小.(4)在直线AC的上方抛物线上存在点P(2,1),使△P AC的面积最大,最大值为4.理由如下:如图2,过点P作PQ∥y轴交AC于Q,连接PC,P A.设P(x,﹣x2+x﹣2),则Q(x,x﹣2).∴PQ=﹣x2+x﹣2﹣(x﹣2)=﹣x2+2x=﹣(x﹣2)2+2.又∵S△P AC=S△PQC+S△PQA=x•PQ+(4﹣x)•PQ=2PQ,∴S△P AC=﹣(x﹣2)2+4.∴当x=2时,S△P AC最大值为4,此时﹣x2+x﹣2=1,∴在直线AC的上方抛物线上存在点P(2,1),使△P AC的面积最大,最大值为4.。
2018年甘肃省陇南市中考数学试卷及答案解析
2018年甘肃省陇南市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确1.﹣2018的相反数是()A.﹣2018 B.2018 C.﹣D.2.下列计算结果等于x3的是()A.x6÷x2B.x4﹣x C.x+x2 D.x2•x3.若一个角为65°,则它的补角的度数为()A.25°B.35°C.115° D.125°4.已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b5.若分式的值为0,则x的值是()A.2或﹣2 B.2 C.﹣2 D.06.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷102平均数A.甲B.乙C.丙D.丁7.关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<48.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.5 B. C.7 D.9.如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°10.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x 轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤二、填空题:本大题共8小题,每小题4分,共32分11.(4分)计算:2sin30°+(﹣1)2018﹣()﹣1=.12.(4分)使得代数式有意义的x的取值范围是.13.(4分)若正多边形的内角和是1080°,则该正多边形的边数是.14.(4分)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为.15.(4分)已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c 为奇数,则c=.16.(4分)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为.17.(4分)如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为.18.(4分)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2018次输出的结果为.三、解答题(一);本大题共5小题,共38分,解答应写出必要的文字说明,证明过程或演算步骤19.(6分)计算:÷(﹣1)20.(6分)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.21.(8分)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.22.(8分)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4)23.(10分)如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.四、解答题(二):本大题共5小题,共50分。
2018年甘肃省中考数学试卷(含答案解析)[3]
2018年甘肃省中考数学试卷(含答案解析)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年甘肃省中考数学试卷(含答案解析)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年甘肃省中考数学试卷(含答案解析)(word版可编辑修改)的全部内容。
2018年甘肃省(全省统考)中考数学试卷一、选择题:本大题共10小题,每小题2018年甘肃省定西市,共30分,每小题只有一个正确1. —2018的相反数是( )A .-2018B .2018C .12018-D .12018 2。
下列计算结果等于3x 的是( )A .62x x ÷B .4x x -C .2x x +D .2x x ⋅3.若一个角为65°,则它的补角的度数为( )A .25°B .35°C .115°D .125°4。
已知(0,0)23a b a b =≠≠,下列变形错误的是( )A .23a b =B .23a b =C .32b a = D .32a b =5. 若分式24x x -的值为0,则的值是( ) A 。
2或-2 B. 2 C. -2 D 。
06.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s 2如下表:甲乙 丙 丁 平均数(环)11。
1 11。
1 10。
9 10.9 方差s 2 1。
1 1。
2 1。
3 1。
4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择( )A .甲B .乙C .丙D .丁7.关于x 的一元二次方程x 2+4x+k=0有两个实数根,则k 的取值范围是( )A .k≤﹣4B .k <﹣4C .k≤4D .k <48.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF 的位置,若四边形AECF的面积为25,DE=2,则AE的长为( )A. 5 B。
2018年甘肃省中考数学试卷(含答案解析)
2018年甘肃省中考数学试卷(含答案解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年甘肃省中考数学试卷(含答案解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年甘肃省中考数学试卷(含答案解析)的全部内容。
2018年甘肃省(全省统考)中考数学试卷一、选择题:本大题共10小题,每小题2018年甘肃省定西市,共30分,每小题只有一个正确1. -2018的相反数是( )A .—2018B .2018C .D .2。
下列计算结果等于的是( )A .B .C .D . 3.若一个角为65°,则它的补角的度数为( )A .25°B .35°C .115°D .125°4。
已知,下列变形错误的是( )A .B .C .D . 5. 若分式的值为0,则的值是( )A. 2或-2B. 2C. -2 D 。
06.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s 2如下表:平均数(环)方差s 2 )A .甲B .乙C .丙D .丁7.关于x 的一元二次方程x 2+4x+k=0有两个实数根,则k 的取值范围是( )A .k≤﹣4B .k <﹣4C .k≤4D .k <48.如图,点E 是正方形ABCD 的边DC 上一点,把△ADE 绕点A 顺时针旋转90°到△ABF 的位置,若四边形AECF 的面积为25,DE=2,则AE 的长为( )12018-120183x 62x x ÷4x x -2x x +2x x ⋅(0,0)23a b a b =≠≠23a b =23a b =32b a =32a b =24x x -A. 5 B 。
2018年甘肃省陇南市中考数学试卷(含解析)真题
2018年甘肃省陇南市中考数学试卷一、选择题(共10小题,每小题3分,满分30分.每小题只有一个正确选项)1.(3分)﹣2018的相反数是()A.﹣2018 B.2018 C.﹣ D.2.(3分)下列计算结果等于x3的是()A.x6÷x2B.x4﹣x C.x+x2 D.x2•x3.(3分)若一个角为65°,则它的补角的度数为()A.25°B.35°C.115° D.125°4.(3分)已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b5.(3分)若分式的值为0,则x的值是()A.2或﹣2 B.2 C.﹣2 D.06.(3分)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:平均数(米)若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁7.(3分)关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<48.(3分)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.5 B.C.7 D.9.(3分)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°10.(3分)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x <3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤二、填空题:本大题共8小题每小题4分,共32分11.(4分)计算:2sin30°+(﹣1)2018﹣()﹣1=.12.(4分)使得代数式有意义的x的取值范围是.13.(4分)若正多边形的内角和是1080°,则该正多边形的边数是.14.(4分)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为.15.(4分)已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c 为奇数,则c=.16.(4分)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为.17.(4分)如图,分别以等边三角形的每个顶点为圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为.18.(4分)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2018次输出的结果为.三、解答题(一):本大题共5小题共38分解答应写出必要的文字说明,证明过程或演算步骤19.(6分)计算:÷(﹣1)20.(6分)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.21.(8分)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.22.(8分)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁,可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4)23.(10分)如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2个涂黑,得到新图案.请用列表或画树状图的方法求新图案是轴对称图形的概率.四、解答题(二):本大题共5小题,共50分解答应写出必要的文字说明,证明过程或演算步骤24.(8分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?25.(10分)如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C.(1)求此反比例函数的表达式;=S△BOC,求点P的坐标.(2)若点P在x轴上,且S△ACP26.(10分)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.27.(10分)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sinA=时,求AF的长.28.(12分)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C 为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.2018年甘肃省陇南市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分.每小题只有一个正确选项)1.(3分)﹣2018的相反数是()A.﹣2018 B.2018 C.﹣ D.【解答】解:﹣2018的相反数是:2018.故选:B.2.(3分)下列计算结果等于x3的是()A.x6÷x2B.x4﹣x C.x+x2 D.x2•x【解答】解:A、x6÷x2=x4,不符合题意;B、x4﹣x不能再计算,不符合题意;C、x+x2不能再计算,不符合题意;D、x2•x=x3,符合题意;故选:D.3.(3分)若一个角为65°,则它的补角的度数为()A.25°B.35°C.115° D.125°【解答】解:180°﹣65°=115°.故它的补角的度数为115°.故选:C.4.(3分)已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b【解答】解:由=得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选:B.5.(3分)若分式的值为0,则x的值是()A.2或﹣2 B.2 C.﹣2 D.0【解答】解:∵分式的值为0,∴x2﹣4=0,解得:x=2或﹣2.故选:A.6.(3分)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:平均数(米)若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁【解答】解:从平均数看,成绩好的同学有甲、乙,从方差看甲、乙两人中,甲方差小,即甲发挥稳定,故选:A.7.(3分)关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<4【解答】解:根据题意得△=42﹣4k≥0,解得k≤4.故选:C.8.(3分)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.5 B.C.7 D.【解答】解:∵把△ADE顺时针旋转△ABF的位置,∴四边形AECF的面积等于正方形ABCD的面积等于25,∴AD=DC=5,∵DE=2,∴Rt△ADE中,AE==.故选:D.9.(3分)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°【解答】解:连接DC,∵C(,0),D(0,1),∴∠DOC=90°,OD=1,OC=,∴∠DCO=30°,∴∠OBD=30°,故选:B.10.(3分)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x <3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤【解答】解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴x=﹣=1,∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选:A.二、填空题:本大题共8小题每小题4分,共32分11.(4分)计算:2sin30°+(﹣1)2018﹣()﹣1=0.【解答】解:2sin30°+(﹣1)2018﹣()﹣1=2×+1﹣2=1+1﹣2=0,故答案为:0.12.(4分)使得代数式有意义的x的取值范围是x>3.【解答】解:∵代数式有意义,∴x﹣3>0,∴x>3,∴x的取值范围是x>3,故答案为:x>3.13.(4分)若正多边形的内角和是1080°,则该正多边形的边数是8.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故答案为:8.14.(4分)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为108.【解答】解:观察该几何体的三视图发现该几何体为正六棱柱,其底面边长为3,高为6,所以其侧面积为3×6×6=108,故答案为:108.15.(4分)已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c 为奇数,则c=7.【解答】解:∵a,b满足|a﹣7|+(b﹣1)2=0,∴a﹣7=0,b﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴6<c<8,又∵c为奇数,∴c=7,故答案是:7.16.(4分)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为﹣2<x<2.【解答】解:∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),∴﹣4=﹣n﹣2,解得n=2,∴P(2,﹣4),又∵y=﹣x﹣2与x轴的交点是(﹣2,0),∴关于x的不等式2x+m<﹣x﹣2<0的解集为﹣2<x<2.故答案为﹣2<x<2.17.(4分)如图,分别以等边三角形的每个顶点为圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为πa.【解答】解:如图.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的长=的长=的长==,∴勒洛三角形的周长为×3=πa.故答案为πa.18.(4分)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2018次输出的结果为1.【解答】解:当x=625时,x=125,当x=125时,x=25,当x=25时,x=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,…(2018﹣3)÷2=1007.5,即输出的结果是1,故答案为:1三、解答题(一):本大题共5小题共38分解答应写出必要的文字说明,证明过程或演算步骤19.(6分)计算:÷(﹣1)【解答】解:原式=÷(﹣)=÷=•=.20.(6分)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.【解答】解:(1)如图所示:;(2)相切;过O点作OD⊥AC于D点,∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O与直线AC相切,21.(8分)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.【解答】解:设合伙买鸡者有x人,鸡的价格为y文钱,根据题意得:,解得:.答:合伙买鸡者有9人,鸡的价格为70文钱.22.(8分)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁,可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4)【解答】解:过点C作CD⊥AB于点D,在Rt△ADC和Rt△BCD中,∵∠CAB=30°,∠CBA=45°,AC=640,∴CD=320,AD=320,∴BD=CD=320,BC=320,∴AC+BC=640+320≈1088,∴AB=AD+BD=320+320≈864,∴1088﹣864=224(公里),答:隧道打通后与打通前相比,从A地到B地的路程将约缩短224公里.23.(10分)如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2个涂黑,得到新图案.请用列表或画树状图的方法求新图案是轴对称图形的概率.【解答】解:(1)∵正方形网格被等分成9等份,其中阴影部分面积占其中的3份,∴米粒落在阴影部分的概率是=;(2)列表如下:由表可知,共有30种等可能结果,其中是轴对称图形的有10种,故新图案是轴对称图形的概率为=.四、解答题(二):本大题共5小题,共50分解答应写出必要的文字说明,证明过程或演算步骤24.(8分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是117度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在B等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?【解答】解:(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.25.(10分)如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C.(1)求此反比例函数的表达式;=S△BOC,求点P的坐标.(2)若点P在x轴上,且S△ACP【解答】解:(1)把点A(﹣1,a)代入y=x+4,得a=3,∴A(﹣1,3)把A(﹣1,3)代入反比例函数y=∴k=﹣3,∴反比例函数的表达式为y=﹣(2)联立两个函数的表达式得解得或∴点B的坐标为B(﹣3,1)当y=x+4=0时,得x=﹣4∴点C(﹣4,0)设点P的坐标为(x,0)=S△BOC∵S△ACP∴解得x1=﹣6,x2=﹣2∴点P(﹣6,0)或(﹣2,0)26.(10分)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.【解答】解:(1)∵点F,G,H分别是BC,BE,CE的中点,∴FH∥BE,FH=BE,FH=BG,∴∠CFH=∠CBG,∵BF=CF,∴△BGF≌△FHC,(2)当四边形EGFH是正方形时,可得:EF⊥GH且EF=GH,∵在△BEC中,点,H分别是BE,CE的中点,∴GH=,且GH∥BC,∴EF⊥BC,∵AD∥BC,AB⊥BC,∴AB=EF=GH=a,∴矩形ABCD的面积=.27.(10分)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sinA=时,求AF的长.【解答】解:(1)连接OE,BE,∵DE=EF,∴∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O与边AC相切于点E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA===∴r=∴AF=5﹣2×=28.(12分)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C 为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.【解答】解:(1)将点B和点C的坐标代入函数解析式,得,解得,二次函数的解析是为y=﹣x2+2x+3;(2)若四边形POP′C为菱形,则点P在线段CO的垂直平分线上,如图1,连接PP′,则PE⊥CO,垂足为E,∵C(0,3),∴E(0,),∴点P的纵坐标,当y=时,即﹣x2+2x+3=,解得x1=,x2=(不合题意,舍),∴点P的坐标为(,);(3)如图2,P在抛物线上,设P(m,﹣m2+2m+3),设直线BC的解析式为y=kx+b,将点B和点C的坐标代入函数解析式,得,解得.直线BC的解析为y=﹣x+3,设点Q的坐标为(m,﹣m+3),PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,OA=1,AB=3﹣(﹣1)=4,S四边形ABPC=S△ABC+S△PCQ+S△PBQ=AB•OC+PQ•OF+PQ•FB=×4×3+(﹣m2+3m)×3=﹣(m﹣)2+,当m=时,四边形ABPC的面积最大.当m=时,﹣m2+2m+3=,即P点的坐标为(,).当点P的坐标为(,)时,四边形ACPB的最大面积值为.。
2018年甘肃省陇南市中考数学试卷和答案解析
2018年甘肃省陇南市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确1.-2018的相反数是()A.-2018B.2018C.-1D.1201820182.下列计算结果等于x3的是()A.x64-x2B.x4-xC.x+x2D.x2«x3.若一个角为65。
,则它的补角的度数为()A.25°B.35°C.115°D.125°4.已知旦=_L(aUO,b尹0),下列变形错误的是()23A. B.2a=3b C.—D.3a=2bb3a22.5.若分式土二1的值为0,则x的值是()XA.2或-2B.2C.-2D.06.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数三与方差S2如下表:甲乙丙T平均数三(环)11.111.110.910.9方差S2 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁7.关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.kW-4B.k<-4C.kW4D.k<48.如图,点E是正方形ABCD的边DC上一点,把^ADE绕点A顺时针旋转90。
到AABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.5B.V23C.7D.^29_9.如图,G)A过点O(0,0),C(福,0),D 的一点,连接BO,BD,贝IJZOBD的度数是((0,1),点B是x轴下方©A±)A.15°B.30°C.45°D.60°10.如图是二次函数y=ax2+bx+c(a,b,c是常数,aUO)图象的一部分,与x 轴的交点A在点(2,0)和(3,0)之间,对称轴是x=l.对于下列说法:①ab <0;②2a+b=0;③3a+c>0;④a+b^m(am+b)(m为实数);⑤当-l<x<3时,y>0,其中正确的是()二、填空题:本大题共8小题,每小题4分,共32分11.(4分)计算:2sin30°+(-1)2018-(1)212.(4分)使得代数式有意义的x的取值范围是_______.V x~313.(4分)若正多边形的内角和是1080%则该正多边形的边数是.14.(4分)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为.俯视图15.(4分)巳知a,b,c是^ABC的三边长,a,b满足|a-7|+(b-1)2=0,c 为奇数,贝!J c=.16.(4分)如图,一次函数y=-x-2与y=2x+m的图象相交于点P(n,-4),则关于x的不等式组(2x+m?x-2的解集为-x-2<017.(4分)如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为.18.(4分)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2018次输出的结果为.三、解答题(一);本大题共5小题,共38分,解答应写出必要的文字说明,证明过程或演算步骤19.(6分)计算:——:(—-1)a2-b2a-b20.(6分)如图,在ZXABC中,ZABC=90°.(1)作ZACB的平分线交AB边于点0,再以点。
陇南市中考数学模拟试卷
陇南市中考数学模拟试卷姓名:________ 班级:________ 成绩:________一、选择题 (共15题;共30分)1. (2分)(2018·江都模拟) 如图所示的几何体的俯视图是()A .B .C .D .2. (2分)(2017·孝感模拟) 一元二次方程x2+x﹣1=0 的根的情况为()A . 有两个不相等的实数根B . 有两个相等的实数根C . 只有一个实数根D . 没有实数根3. (2分) (2018九上·汝阳期末) 若A(﹣4,y1),B(﹣1,y2),C(0,y3)为二次函数y=﹣(x+2)2+3的图象上的三点,则y1 , y2 , y3的大小关系是()A . y1<y2=y3B . y3=y1<y2C . y3<y1<y2D . y1=y2<y34. (2分)若正方形的对角线长为2 cm,则这个正方形的面积为()A . 4cm2B . 2cm2C . cm2D . 2cm25. (2分)(2018·潘集模拟) 若△ABC∽△A′B′C′,相似比为1∶2,则△ABC与△A′B′C′的面积的比为()A . 1∶2B . 2∶1C . 1∶4D . 4∶16. (2分)下列说法,正确的是()A . 弦是直径B . 弧是半圆C . 半圆是弧D . 过圆心的线段是直径7. (2分)如果反比例函数的图像经过点(-3,-4),那么函数的图像应在().A . 第一、三象限B . 第一、二象限C . 第二、四象限D . 第三、四象限8. (2分) (2016九上·门头沟期末) 小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A .B .C .D .9. (2分) (2019九下·沙雅期中) 若反比例函数y= (k≠0)的图象经过点(﹣1,2),则这个函数的图象一定经过点()A . (1,﹣1)B . (﹣,4)C . (﹣2,﹣1)D . (,4)10. (2分)十年后,2003班学生聚会,见面时相互间均握了一次手,好事者统计:一共握了780次.你认为这次聚会的同学有()人。
陇南市中考数学模拟试
陇南市中考数学模拟试姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分) (2018七上·咸安期末) 下列运算中,正确的是()A . 3÷6× =3÷3=1B . ﹣|﹣5|=5C . ﹣2(x﹣3y)=6y﹣2xD . (﹣2)3=﹣62. (2分)(2017·增城模拟) 如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的俯视图是()A .B .C .D .3. (2分) (2016七上·兴业期中) 计算(﹣1)100×5的结果是()A . ﹣5B . ﹣500C . 5D . 5004. (2分)某校计划修建一座既是中心对称图形,又是轴对称图形的花坛,从学生中征集到的设计方案有正三角形、正五边形、等腰梯形、菱形等四种图案,你认为符合条件的是()A . 正三角形B . 正五边形C . 等腰梯形D . 菱形5. (2分)如图所示,直线a、b与直线c相交,给出下列条件:①∠1=∠2,②∠3=∠6,③∠5=∠7,④∠6=∠8,⑤∠4+∠7=180°,⑥∠3+∠5=180°,⑦∠2+∠7=180°,其中能使a∥b的正确个数有()A . 4个B . 5个C . 6个D . 7个6. (2分)(2017·葫芦岛) 下表是某同学周一至周五每天跳绳个数统计表:星期一二三四五跳绳个数160160180200170则表示“跳绳个数”这组数据的中位数和众数分别是()A . 180,160B . 170,160C . 170,180D . 160,2007. (2分) (2017七下·金山期中) 下列运算正确的是()A . (﹣3x2y)3=﹣9x6y3B . (a+b)(a+b)=a2+b2C .D . (x2)3=x58. (2分) (2017七下·成安期中) 一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15km/h,水流速度为5km/h.轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t(h),航行的路程为s(km),则s与t的函数图象大致是()A .B .C .D .9. (2分)不等式组的解集是()A . x≥﹣1B . x<5C . ﹣1≤x<5D . x≤﹣1或x>510. (2分) (2018九上·建昌期末) 若关于x的一元二次方kx2-2x-1=0程有两个实数根,则实数k的取值范围是()A . k>-1B . k<1C . k≥-1且k≠0D . k>-1且k≠011. (2分)如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于()A .B .C .D .12. (2分)如图,二次函数y=ax2+2x-3的图象与x轴有一个交点在0和1之间(不含0和1),则a的取值范围是()A . a>B . 0<a<1C . a>1D . a>-且a≠0二、填空题: (共6题;共7分)13. (2分) (2016七上·连州期末) 两个有理数a、b在数轴上的位置如图所示,则a+b________0;ab________0(填“<”或“>”).14. (1分)函数y= 中自变量x的取值范围是________.15. (1分)(2017·呼兰模拟) 甲、乙、丙、丁4名同学进行一次乒乓球单打比赛,要从中随机选出2名同学打第一场比赛,其中有乙同学参加的概率是________.16. (1分)如图,AB与CD相交于点O,且∠OAD=∠OCB,延长AD、CB交于点P,那么图中的相似三角形的对数为________17. (1分)△ABC中,∠C=90°,AB=8,cosA=,则AC的长是________ 。
陇南市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
陇南市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列不等式组是一元一次不等式组的是()A.B.C.D.【答案】C【考点】一元一次不等式组的定义【解析】【解答】根据一元一次不等式组的定义可知选项C正确,故选:C.【分析】根据一元一次不等式组的定义可判断.不等式组中只含有一个未知数并且未知数的次数是一次的.2、(2分)学校买来一批书籍,如图所示,故事书所对应的扇形的圆心角为()A. 45°B. 60°C. 54°D. 30°【答案】C【考点】扇形统计图【解析】【解答】解:15÷(30+23+15+32)×360°=54°.故答案为:C【分析】计算故事书所占的百分比,然后乘以360°可得对应的圆心角的度数.3、(2分)为了了解所加工的一批零件的长度,抽取了其中200个零件的长度,在这个问题中,200个零件的长度是()A. 总体B. 个体C. 总体的一个样本D. 样本容量【答案】C【考点】总体、个体、样本、样本容量【解析】【解答】解:A、总体是所加工的一批零件的长度的全体,错误,故选项不符合题意;B、个体是所加工的每一个零件的长度,错误,故选项不符合题意;C、总体的一个样本是所抽取的200个零件的长度,正确,故选项符合题意;D、样本容量是200,错误,故选项不符合题意.故答案为:C【分析】根据总体、个体和样本、样本容量的定义进行判断即可解答.4、(2分)如图所示,直线L1,L2,L3相交于一点,则下列答案中,全对的一组是()A. ∠1=90°,∠2=30°,∠3=∠4=60°;B. ∠1=∠3=90°,∠2=∠4=30°C. ∠1=∠3=90°,∠2=∠4=60°;D. ∠1=∠3=90°,∠2=60°,∠4=30°【答案】D【考点】对顶角、邻补角【解析】【解答】解:根据对顶角相等,可知∠2=60°,∠4=30°.由平角的定义知,∠3=180°-∠2-∠4=90°,所以∠1=∠3=90°.故答案为:D【分析】因为∠1和∠3是对顶角,所以相等,∠2和的角,∠4和的角分别是对顶角.5、(2分)如图,在某张桌子上放相同的木块,R=34,S=92,则桌子的高度是()A. 63B. 58C. 60D. 55【答案】A【考点】三元一次方程组解法及应用【解析】【解答】解:设木块的长为x,宽为y,桌子的高度为z,由题意得:,由①得:y-x=34-z,由②得:x-y=92-z,即34-z+92-z=0,解得z=63;即桌子的高度是63.故答案为:A.【分析】由第一个图形可知:桌子的高度+木块的宽=木块的长+R;由第二个图形可知:桌子的高度+木块的长=木块的宽+S;设未知数,列方程组,求解即可得出桌子的高度。
2018年甘肃省普通高中中考数学模拟试卷(解析版)
22. (6 分)如图,在▱ ABCD 中,DE=CE,连接 AE 并延长交 BC 的延长线于点 F. (1)求证:△ADE≌△FCE; (2)若 AB=2BC,∠F=36°.求∠B 的度数.
23. (4 分)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘 做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字) .游戏规 则如下: 两人分别同时转动甲、 乙转盘, 转盘停止后, 若指针所指区域内两数和小于 12, 则李燕获胜;若指针所指区域内两数和等于 12,则为平局;若指针所指区域内两数和大 于 12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止) . (1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果; (2)分别求出李燕和刘凯获胜的概率.
15. (3 分)若 a、b、c 为三角形的三边,且 a、b 满足 数,则 c= .
2
+(b﹣2) =0,第三边 c 为奇
2
16. (3 分)若关于 x 的一元二次方程(k﹣1)x ﹣4x﹣5=0 没有实数根,则 k 的取值范围 是 .
17. (3 分)如图,已知 AB 是⊙O 的弦,半径 OC 垂直 AB,点 D 是⊙O 上一点,且点 D 与 点 C 位于弦 AB 两侧,连接 AD、CD、OB,若∠BOC=70°,则∠ADC= 度.
A.
B.
C.
第 1 页(共 22 页)
D.7
7. (3 分)在同一平面坐标系内,若直线 y=3x﹣1 与直线 y=x﹣k 的交点在第四象限的角平 分线上,则 k 的值为( A.k=﹣ ) C.k=
2 2
B.k=
D.k=1 )
8. (3 分)若 x1,x2 是一元二次方程 x ﹣2x﹣1=0 的两个根,则 x1 ﹣x1+x2 的值为( A.﹣1 B.0 C.2 D.3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年甘肃省陇南市育才中学最新中考数学模拟试卷
满分:120分考试时间:120分钟
一、单项选择题:本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填入题后的括号内.
1.下列图形中,既是中心对称图形,又是轴对称图形的个数是()
A.1 B.2 C.3 D.4
2.一种新病毒的直径约为0.00000043毫米,用科学记数法表示为()
A.0.43×10﹣6 B.0.43×106 C.4.3×107 D.4.3×10﹣7
3.已知不等式组,其解集在数轴上表示正确的是()
A. B. C. D.
4.下列运算正确的是()
A.x2•x3=x6 B.x6÷x5=x
C.(﹣x2)4=x6 D.x2+x3=x5
5.如图所示,该几何体的俯视图是()
A. B. C. D.
6.下列二次分式中,与是同类二次根式的是()
A. B.C.D.
7.若分式方程2+=有增根,则k的值为()
A.﹣2 B.﹣1 C.1 D.2
8.从边长为a的正方形内去掉一个边长为b的小正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作所能验证的等式是()
A.(a﹣b)2=a2﹣2ab+b2 B.a2﹣b2=(a+b)(a﹣b)
C.(a+b)2=a2+2ab+b2 D.a2+ab=a(a+b)
9.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,若EF:AF=2:5,则S△DEF:S四边形EFBC为
()
A.2:5 B.4:25 C.4:31 D.4:35
第8题图第9题图第10题图
10.已知如图,等腰三角形ABC的直角边长为a,正方形MNPQ的边为b (a<b),C、M、A、N在同一条直线上,开始时点A与点M重合,让△ABC向右移动,最后点C与点N重合.设三角形与正方形的重合面积为y,点A移动的距离为x,则y关于x的大致图象是()
A.B.C.D.
二、填空题(本大题共8小题,每小题3分,共24分.把答案写在答题卡中的横线上.)
11.多项式2x3﹣8x2y+8xy2分解因式的结果是.
12.计算:﹣= .
13.若等腰三角形的顶角为120°,腰长为2cm,则它的底边长为cm.
14.关于x的一元二次方程mx2+(m﹣2)x+m﹣2=0有两个不相等的实数根,则m的取值范围是.
15.如图,△ABC中,点D、E在BC边上,∠BAD=∠CAE请你添加一对相等的线段或一对相等的角的条件,使△ABD ≌△ACE.你所添加的条件是.
第15题图第16题图第17题图
16.在Rt△ABC中,∠C=90°,D为BC上一点,∠DAC=30°,BD=2,,则AC的长是.
17.在开展“全民阅读”活动中,某校为了解全校1500名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1500名学生一周的课外阅读时间不少于7小时的人数是.
三、解答题(一):本大题共5小题,共26分.解答时,应写出必要的文字说明、证明过程或演算步骤.
19.(5分)计算:﹣22﹣+|1﹣4sin60°|+(π﹣)0.
20.(5分)解分式方程:+=3.
21.(6分)如图,在△ABC中,AB=AC,AD⊥BC,AE∥BC.
(1)作∠ADC的平分线DF,与AE交于点F;(用尺规作图,保留作图痕迹,不写作法)
(2)在(1)的条件下,若AD=2,求DF的长.
22.(5分)如图,山区某教学楼后面紧邻着一个土坡,坡面BC平行于地面AD,斜坡AB的坡比为i=1:,且AB=26米.为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过53°时,可确保山体不滑坡.
(1)求改造前坡顶与地面的距离BE的长.
(2)为了消除安全隐患,学校计划将斜坡AB改造成AF(如图所示),那么BF至少是多少米?(结果精确到1米)(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75).
23.(5分)如图,在平面直角坐标系xOy中,一次函数y=﹣ax+b的图象与反比例函数y=的图象相交于点A(﹣4,﹣2),B(m,4),与y轴相交于点C.
(1)求反比例函数和一次函数的表达式;
(2)求点C的坐标及△AOB的面积.
四、解答题(二):本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤.
24.(7分)如图,转盘被平均分成三块扇形,转动转盘,转动过程中,指针保持不动,转盘停止后,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.
(1)转动转盘两次,用画树状图或列表的方法求两次指针所指区域数字不同的概率;
(2)在第(1)题中,两次转到的区域的数字作为两条线段的长度,如果第三条线段的长度为5,求这三条线段能构成三角形的概率.
25.(8分)“世界那么大,我想去看看”一句话红遍网络,随着国际货币基金组织正式宣布人民币2016年10月1日加入SDR(特别提款权),以后出国看世界更加方便.为了解某区6000名初中生对“人民币加入SDR”知晓的情况,某校数学兴趣小组随机抽取区内部分初中生进行问卷调查,将问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不了解”四个等级,并将调查结果整理分析,得到下列图表:
某区抽取学生对“人民币加入SDR”知晓情况频数分布表
(1)本次问卷调查抽取的学生共有人,其中“不了解”的学生有人;
(2)在扇形统计图中,学生对“人民币加入SDR”基本了解的区域的圆心角为°;
(3)根据抽样的结果,估计该区6000名初中生对“人民币加入SDR”了解的有多少人(了解是指“非常了解”、“比较了解”和“基本了解”)?
26.(7分)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.
(1)求证:四边形AMDN是平行四边形.
(2)当AM的值为何值时,四边形AMDN是矩形?请说明理由.
27.(8分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,点E是边BC的中点.(1)求证:BC2=BD•BA;
(2)判断DE与⊙O位置关系,并说明理由.
28.(10分)如图,已知抛物线与x轴交于A(﹣1,0)、B(4,0)两点,与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)求直线BC的函数解析式;
(3)在抛物线上,是否存在一点P,使△PAB的面积等于△ABC的面积?若存在,求出点P的坐标;若不存在,请说明理由.。