2020春沪科版数学七年级下册习题课件-第6章 单元检测卷
沪科版七年级数学下册 第六章测试卷
沪科版七年级数学下册第六章实数测试卷一、选择题(每小题3分,共30分)1.下列语句中正确的是 ( ) A.49的算术平方根是7 B.49的平方根是-7 C.-49的平方根是7 D.49的算术平方根是7±2.下列实数33,9,15.3,2,0,87,3--π中,无理数有 ( ) A.1个 B.2个 C.3个 D.4个 3.8-的立方根与4的算术平方根的和是 ( ) A.0 B.4 C.2± D.4± 4.下列说法中正确的是 ( ) A.无理数都是开方开不尽的数 B.无理数可以用数轴上的点来表示 C.无理数包括正无理数、零、负无理数 D.无理数是无限小数5.下列各组数中互为相反数的是 ( ) A. 2-与2)2(- B. 2-与38- C. 2-与21- D.2-与2 6.圆的面积增加为原来的n 倍,则它的半径是原来的 ( ) A. n 倍; B. 倍2n C. n 倍 D. n 2倍. 7.实数在数轴上的位置如下图,那么化简2a b a --的结果是 ( ) A.b a -2 B.bC.b -D.b a +-28.若一个数的平方根是它本身,则这个数是 ( ) A 、1 B 、-1 C 、0 D 、1或09.一个数的算术平方根是x ,则比这个数大2的数的算术平方根是 ( ) A.22+x B 、2+x C.22-x D.22+x 10.若033=+y x ,则y x 和的关系是 ( ) A.0==y x B. y x 和互为相反数 C. y x 和相等 D. 不能确定 二、填空题(每小题3分,共21分)11.2)4(-的平方根是_______,36的算术平方根是______ ,1258-的立方根是________ .38-的相反数是______,2π-的倒数是______.12.若一个数的算术平方根与它的立方根相等,那么这个是 . 13.下列判断:① 3.0-是09.0的平方根;② 只有正数才有平方根;③ 4-是16-的平方根;④2)52(的平方根是52±.正确的是______________(写序号).14.3±,则317-a = .15.比较大小:516.满足52<<-x 的整数x 是 .17.小成编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21,则x 为______________ .三.解答题(共69分): 18.(每小题4分,共16分)(1)求x 的值 4)12(2=-x (2) 081)2(33=-+x(3)计算 2232+- (4)33323272)21()4()4()2(--⨯-+-⨯-19.解答题(每小题8分,共24分) (1)已知09222=-++b b a ,求b a +的值.(2)已知下面代数式有意义,求该代数式的值:______2112=-+-+-x x x .(3)若9的平方根是a,b 的绝对值是4,求a+b 的值?20.(9分)一种长方体的书,长与宽相等,四本同样的书叠在一起成一个正方体,体积为216立方厘米,求这本书的高度.21.(10分)例如∵,974<<即372<<,∴7的整数部分为2,小数部分为27-,如果2小数部分为a ,3的小数部分为b ,求2++b a 的值.22.(10分)如图,有高度相同的A 、B 、C 三只圆柱形杯子,A 、B 两只杯子已经盛满水,小颖把A 、B 两只杯子中的水全部倒进C 杯中,C 杯恰好装满,小颖测量得A 、B 两只杯子底面圆的半径分别是3厘米和4厘米,你能求出C 杯底面的半径是多少吗?A B C。
初中数学沪科版七年级下册第6章 实数6.1 平方根、立方根-章节测试习题(5)
章节测试题1.【答题】若a2=(-5)2,b3=(-5)3,则a+b的值为( )A. 0B. ±10C. 0或10D. 0或-10【答案】D【分析】先根据平方根、立方根的定义分别求出a,b的值,然后即可求a+b的值.【解答】解:∵a2=(-5)2,b3=(-5)3,∴a=±5,b=-5,∴a+b=0或-10选D.2.【答题】下列计算正确的是()A. =0.5B. =C. =1D. -=-【答案】C【分析】直接利用立方根的定义分析得出答案【解答】解: A. ≠0.5,故A错误;B. =,故B错误;C. =1,正确;D.-=,故D错误.选C.3.【答题】下列结论正确的是( )A. 64的立方根是±4B. -没有立方根C. 立方根等于本身的数是0D. =-【答案】D【分析】直接利用立方根的定义分析得出答案【解答】解: A.64的立方根是4,故A错误;B.-的立方根是,故B错误;C.立方根等于本身的数是0和±1,故C错误;D. =-=-6,正确.选D.4.【答题】等于( )A. 2B. 2C. -D. -2【答案】D【分析】直接利用立方根的定义分析得出答案【解答】解:=-2选D.5.【答题】计算的正确结果是( )A. 7B. -7C. ±7D. 无意义【答案】B【分析】直接利用立方根的定义分析得出答案【解答】解:选B.6.【答题】下列说法正确的是( )A. 一个数的立方根有两个,它们互为相反数B. 一个数的立方根比这个数平方根小C. 如果一个数有立方根,那么它一定有平方根D. 与互为相反数【答案】D【分析】利用立方根的定义判断即可得到结果.【解答】解:A、一个数的立方根只有一个,故错误;B、0的平方根和立方根均为0,故错误;C、负数具有立方根,却不具有平方根,故错误;D、由于-a与a互为相反数,故a的立方根与-a的立方根互为相反数,故正确. 选D.7.【答题】的平方根是______,的平方根是______,-343的立方根是______,的平方根是______.【答案】±3, ±2,-7,±4;【分析】根据平方根以及立方根的定义即可求解.【解答】解:=9,9的平方根是±3;=4,4的平方根是±2;-343的立方根是-7;,16的平方根是±4故答案为:±3,±2,-7, ±48.【答题】已知(x-1)3=8,则x的值是______.【答案】3【分析】根据立方根的定义可以计算出结果.【解答】由题意知(x-1)是8的立方根,所以x-1=2,即x=39.【答题】=______..【答案】5【分析】根据立方根的定义即可求解.【解答】因为53=125,所以=5,故答案为5.10.【答题】若一个数的平方根是,则这个数的立方根是______.【答案】4【分析】首先利用平方根的定义求出这个数,然后根据立方根的定义即可求解.【解答】∵一个数的平方根是,∴这个数是64,∴这个数的立方根是4,即.11.【答题】若和都是5的立方根,则b-a=______.【答案】-5【分析】由于若和都是5的立方根,由此可以得到关于a、b的方程组,解之即可求出结果.【解答】∵和都是5的立方根,∴2b+1=3,a-1=5,∴b=1,a=6,∴b-a=1-6=-5.12.【答题】-8的立方根是______,的算术平方根是______.【答案】-2,3【分析】根据算术平方根以及立方根的定义即可求解.【解答】因为(-2)3=-8,所以-8的立方根是-2;因为=9,=3,所以的算术平方根是3,故答案为(1)-2,(2)313.【答题】当x<7时,=______.【答案】x-7【分析】根据立方根的意义,一个正数的立方根是正数,一个负数的立方根为负,0的立方根为0【解答】由题意可知当x<7时,=x-7故答案为:x-714.【答题】若,则x=______;,则x=______,若,则x=______.【答案】5,6,-4【分析】根据立方根的意义求解.【解答】根据立方根的意义,由53=125,可知x=5;由,则x=6;由若,求得x=-4.故答案为:5;6;-4.15.【答题】立方根是-8的数是______,的立方根是______.【答案】-512,2【分析】根据平方根以及立方根的定义即可求解.【解答】根据立方根的意义,由(-8)3=-512,所以立方根是-8的数是-512;根据算术平方根的意义可知=8,然后由23=8,可知8的立方根为2,即求得的立方根为2.故答案为:-512;2.方法总结:此题主要考查了求一个数的立方根,根据立方根的意义,一个数的立方等于a,那么这个数就是a的立方根,关键是判断a是谁的立方.16.【答题】9的平方根是______;的立方根是______.【答案】3,-3;-2【分析】根据平方根以及立方根的定义即可求解.【解答】因为3的平方是9,-3的平方是9,所以9的平方根是,因为-2的立方是-8,所以-8的立方根是-2,故答案为: ,-2.17.【答题】已知,则a和b的关系是______.【答案】互为相反数【分析】已知等式利用立方根定义化简,得出a与b关系即可.【解答】因为,所以与互为相反数,则a与b互为相反数,故答案为互为相反数.18.【答题】的算术平方根是______,-8的立方根是______.【答案】2,-2【分析】根据算术平方根以及立方根的定义即可求解.【解答】=4,4算术平方根是2;-8的立方根是-2.故答案为2,-219.【答题】如果一个数的平方根等于这个数的立方根,那么这个数是______.【答案】0【分析】根据平方根与立方根的定义求解.【解答】根据平方根与立方根的定义,可知0的平方根等于0的立方根.故答案为:0方法总结:本题考查了立方根:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a,那么x叫做a的立方根.记作:,也考查了平方根.20.【答题】若=-7,则a=______.【答案】-343【分析】根据立方根的定义直接计算.【解答】解:∵,∴a=-343故答案为:-343。
达标测试沪科版七年级数学下册第6章 实数章节测试试题(含详解)
沪科版七年级数学下册第6章 实数章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列等式正确的是( ).A 8±B .8=C .8=±D 4=±2 )A B CD .33、在 1.414-,π12,2,3.212212221…(相邻两个1之间的2的个数逐次加1),3.14这些数中,无理数的个数为( )个.A .5B .2C .3D .44、在实数3.1415,227,2.8181181118…(相邻两个8之间1的个数逐次加1)中,无理数有( )A .1个B .2个C .3个D .4个52的值在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间6、在12-,227,2022这四个数中,无理数是( )A .12- B .227 C D .20227、下列各数中,无理数是( )A .227B .πC D8、下列数中,15,3.7,π-7之间的3的个数逐次加1),是无理数的有( )个.A .5B .4C .3D .29a a 的值不可能为( )A .2B .3C .4D .510、下列说法中正确的有( )①±2都是8的立方根=x32.A .1个B .2个C .3个D .4个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、立方等于-27的数是__________.2、对于实数a ,b ,定义运算“*”如下:a *b =(a +b )2﹣(a ﹣b )2.若(m +2)*(m ﹣3)=24,则m 的值为______.3、下列各数:-1、2π227,0.1010010001…(相邻两个1之间0的个数增加1),其中无理数的个数是______.4、比较大小:213-_____. 5、规定了一种新运算:11*11a b a b a b⨯=+,计算:(3*4)*5=___. 三、解答题(5小题,每小题10分,共计50分)1x ≠0,y ≠0,求x y的值. 2.3、如图是一个无理数筛选器的工作流程图.(1)当x 为16时,y 值为______;(2)是否存在输入有意义的x 值后,却始终输不出y 值?如果存在,写出所有满足要求的x 值;如果不存在,请说明理由;(3)如果输入x 值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x 值可能是什么情况?(4)当输出的y x值是否唯一?如果不唯一,请写出其中的三个.4、已知a,b互为相反数,c,d互为倒数,x的立方等于﹣8,求3(a+b)+cd+x的值.5、已知a,b,c,d是有理数,对于任意a bc d,我们规定:a bbc adc d=-.例如:1223142 34=⨯-⨯=.根据上述规定解决下列问题:(1)2332=--_________;(2)若321711xx-=+,求x的值;(3)已知1153xk-=,其中k是小于10的正整数,若x是整数,求k的值.-参考答案-一、单选题1、C【分析】分别利用平方根和算术平方根以及立方根得出各选项是否正确即可.【详解】解:A8,故此选项错误;B、8±,故此选项错误;C、由B得此选项正确;D4,故此选项错误.故选:C.【点睛】此题主要考查了立方根、平方根、算术平方根等知识,正确把握各定义是解题关键.2、A【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【详解】故选:A.【点睛】此题主要考查相反数,解题的关键是熟知实数的性质.3、D【分析】有理数是整数与分数的统称,无理数就是无限不循环小数,据此逐一判断即可得答案.【详解】-是有限小数,是有理数,1.414π是无理数,1是分数,是有理数,22是无理数,3.212212221…(相邻两个1之间的2的个数逐次加1),是无限不循环小数,是无理数,3.14是有限小数,是有理数,∴无理数有π2和3.212212221…(相邻两个1之间的2的个数逐次加1),共4个,故选:D.【点睛】本题主要考查了无理数的定义,无理数就是无限不循环小数,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.熟练掌握定义是解题关键.4、B【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】2.818118111811118⋯(相邻两个8之间1的个数逐次增加1)是无理数,故选:B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008⋯(每两个8之间依次多1个0)等形式.5、A【分析】先估算45=,然后再减去2即可求出范围.【详解】解:∵45=,4到5之间,2在2到3之间,故选:A.【点睛】本题考查了无理数的估值计算,属于基础题,熟练常见正整数的平方根是解题的关键.6、C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A、12-是分数,属于有理数,不符合题意;B、227是分数,属于有理数,不符合题意;CD、2022是整数,属于有理数,不符合题意;故选C.【点睛】本题主要考查了无理数的定义,解题的关键在于能够熟练掌握有理数和无理数的定义.7、B【详解】解:A、是有理数,故本选项不符合题意;B、是无理数,故本选项符合题意;C2是有理数,故本选项不符合题意;D2是有理数,故本选项不符合题意;故选:B【点睛】本题主要考查了无理数的定义,熟练掌握无限不循环小数是无理数是解题的关键.8、C【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】,无理数有:-7之间的3的个数逐次加1),共3个.故选:C.【点睛】本题考查了无理数,解题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.9、D【分析】a可能的值,判断求解即可.【详解】,a,∴整数a可能的值为:2,3,4,∴整数a的值不可能为5,故选:D.【点睛】此题考查了无理数的估算,解题的关键是熟练掌握无理数的估算方法.10、B【分析】根据平方根和立方根的定义进行判断即可.【详解】解:①2是8的立方根,-2不是8的立方根,原说法错误;=x,正确;=,9的平方根是±3,原说法错误;9,正确;综上,正确的有②④共2个,故选:B.【点睛】本题考查了立方根,平方根,熟练掌握立方根的定义是解本题的关键.二、填空题1、-3【分析】根据立方根的定义解答即可.【详解】解:∵(-3)3=-27,∴立方等于-27的数是-3.故答案为-3.【点睛】本题考查了有理数的乘方,熟悉乘方和立方根的定义是解题的关键.2、3-或4【分析】先根据新运算的定义可得一个关于m 的方程,再利用平方根解方程即可得.【详解】解:由题意得:22(23)(23)24m m m m ++--+-+=,即2(21)2524m --=,2(21)49m -=,217m -=或217m -=-,解得4m =或3m =-,故答案为:3-或4.【点睛】本题考查了利用平方根解方程,掌握理解新运算的定义是解题关键.3、3【分析】无理数就是无限不循环小数;有理数是整数与分数的统称,即有限小数和无限循环小数是有理数,由此即可判定.【详解】在-1、2π227,0.1010010001…(相邻两个1之间0的个数增加1)中,无理数有2π1之间0的个数增加1)共3个. 故答案为:3.【点睛】本题考查了实数的分类,理解有理数与无理数的概念是解题的关键.4、>【分析】先求解两个实数的绝对值,再利用近似值比较它们绝对值的大小,利用两个负数绝对值大的反而小可得答案.【详解】 解:2211 1.67,33 1.73,33 而1.67 1.73, 21 3.3故答案为:>【点睛】本题考查的是实数的大小比较,掌握“两个负实数的大小比较的方法”是解本题的关键. 5、736【分析】根据新定义的运算法则先将3*4转化为常规运算,再计算(3*4)*5即可.【详解】解:(3*4)*5=11111751734755=5===11111736+7+134557⨯⎛⎫⨯ ⎪⎛⎫=** ⎪ ⎪⎝⎭ ⎪+⎝⎭. 故答案为736. 【点睛】本题考查新运算的理解,有理数乘除混合运算,倒数和与积,掌握新定义运算法则是解题关键.三、解答题1、32【分析】根据互为相反数的和为零,可得方程,再根据等式的性质变形.【详解】0,即31120y x -+-=,∴32y x =, ∴32x y =. 【点睛】本题考查了相反数的概念以及立方根,利用互为相反数的和为零得出方程是解题关键.2、2【分析】根据算术平方根与立方根的定义即可完成.【详解】=+-233=2.【点睛】本题是实数的运算,考查了算术平方根的定义、立方根的定义,关键是掌握两个定义,要注意的是负数没有平方根,而任何实数都有立方根.3、(1(2)0,1(3)x<0(4)x=3或x=9或x=81.【分析】(1)根据运算规则即可求解;(2)根据0的算术平方根是0,即可判断;(3)根据二次根式有意义的条件,被开方数是非负数即可求解;(4)根据运算法则,进行逆运算即可求得无数个满足条件的数.(1)解:当x=162,则y;.(2)解:当x=0,1时,始终输不出y值.因为0,1的算术平方根是0,1,一定是有理数;(3)解:当x <0时,导致开平方运算无法进行;(4)解: x 的值不唯一.x =3或x =9或x =81.【点睛】本题考查了算术平方根及无理数,正确理解给出的运算方法是关键.4、-1【分析】由题意可知0a b +=,1cd =,38x =-,2x =-,将值代入即可.【详解】解:由题意得:0a b +=,1cd =;38x =-解得2x =-∴()330121a b cd x +++=⨯++-=-.【点睛】本题考查了相反数,倒数,立方根等知识点.解题的关键在于正确理解相反数,倒数,立方根的概念与应用.5、(1)-5(2)11x =-(3)k =1,4,7.【分析】(1)根据规定代入数据求解即可;(2)根据规定代入整式,利用方程的思想求解即可;(3)根据规定代入整式,利用方程的思想,用含k 的式子表示x ,利用k 是小于10的正整数,x 是整数,就可求出k 的值.(1)解:233322532=⨯--⨯-=---; (2)解:()3212131711x x x x -=--+=+ 即:()21317x x --+=21337x x ---=11x -=11x =-(3)解:()113153x x k k-=--=, 即:()315x k --=335x k --=38x k =+83k x += 因为k 是小于10的正整数且x 是整数,所以k =1时,x =3;k =4时,x =4;k =7时,x =5.所以k =1,4,7.【点睛】本题考查新定义问题.新定义问题是一道创设情境、引入新的数学概念的探索性问题,发现问题间的区别与联系,创造性地解决问题,主要考察数形结合、类比与归纳的数学思想方法.。
初中数学沪科版七年级下册第6章 实数6.1 平方根、立方根-章节测试习题(17)
章节测试题1.【答题】下列说法中,不正确的是().A. 3是的算术平方根B. ±3是平方根C. -3是的算术平方根D. -3是的立方根【答案】C【分析】根据算术平方根、平方根、立方根的定义判断即可.【解答】A、3是(-3)2的算术平方根,正确;B、±3是(-3)2的平方根,正确;C、(-3)2的算术平方根是3,故本选项错误;D、3是(-3)3的立方根,正确.选C.2.【答题】下列计算正确的是()A. B.C. D.【答案】C【分析】根据算术平方根和立方根的概念计算即可求解.【解答】解:A、,选项错误;B、,选项错误;,选项正确;D、,选项错误;选C.3.【答题】下列各式中,正确的是()A. B. =4 C. D.【答案】C【分析】本题考查了平方根和立方根.【解答】A、原式=4,所以A选项错误;B、原式=±4,所以B选项错误;C、原式=-3,所以C选项正确;D、原式=|-4|=4,所以D选项错误.选C.4.【答题】8的平方根和立方根分别是()A. 8和4B. 和2C. 和8D. 和2【答案】D【分析】根据平方根和立方根定义求出即可.【解答】解:8的平方根和立方根分别是±和2.5.【答题】65.下列说法正确是A. -2没有立方根B. 8的立方根是±2C. -27的立方根是-3D. 立方根等于本身的数只有0和1 【答案】C【分析】本题考查了立方根.【解答】G根据立方根的性质,易得C.6.【答题】下列语句正确的是()A. 的平方根是±2B. 36的平方根是6C. 的立方根是D. 的立方根是2【答案】D【分析】本题考查了平方根和立方根.【解答】选项A,的平方根是±;选项B,36的平方根是±6;选项C,的立方根是;选项D,的立方根是2,选D.7.【答题】下列说法中,正确的是()A. B. 64的立方根是±4C. 6平方根是D. 0.01的算术平方根是0.1【分析】本题考查了平方根和立方根.【解答】A.=3,故错误;B. 64的立方根是4,故错误;C. 6的平方根是±,故错误;D. 0.01的算术平方根是0.1,正确;选D.8.【答题】下列说法中正确的有()①都是8的立方根;②=±4;③的平方根是;④⑤是81的算术平方根A. 1个B. 2个C. 3个D. 4个【答案】B【分析】本题考查了平方根和立方根.【解答】①、2是8的立方根,则错误;②、=4,则错误;③、正确;④、正确;⑤、9是81的算术平方根.9.【答题】下列说法不正确的是()A. 的平方根是B. -9是81的一个平方根C. 0.2的算术平方根是0.04D. -27的立方根是-3【分析】本题考查了平方根和立方根.【解答】A. 的平方根是,正确;B. -9是81的一个平方根,正确;C. 0.2的是0.04算术平方根,错误;D. -27的立方根是-3,正确选C.10.【答题】-27的立方根与的平方根之和是()A. 0B. 6C. 0或-6D. -12或6【答案】C【分析】本题考查了平方根和立方根.【解答】-27的立方根是-3,的平方根是±3,所以-27的立方根与的平方根之和是-3+3=0或-3-3=-6.选:C.11.【答题】下列计算正确的是A.B.C.D.【答案】D【分析】本题考查了平方根和立方根.【解答】A、,故该项错误;B、,故该项错误;C、,故该项错误;D、,故该项正确.选D.12.【答题】下列说法正确的是()A. 3是9的立方根B. 3是(-3)2的算术平方根C. (-2)2的平方根是2D. 8的平方根是±4【答案】B【分析】根据算术平方根,平方根,立方根的概念,逐一判断.【解答】A.∵33=27,∴3是27的立方根,本选项错误;B. (-3)2=9,3是9的算术平方根,本选项正确;C. (-2)2=4,4的平方根为±2,本选项错误;D. 8的平方根是,本选项错误.13.【答题】下列各式正确的是().A. B.C. D.【答案】A【分析】本题考查了平方根和立方根.【解答】∵,则B错;,则C;,则D错,选A.14.【答题】-8的立方根与4的平方根的和是()A. 0B. 0或4C. 4D. 0或-4 【答案】D【分析】本题考查了平方根和立方根.【解答】∵-8的立方根为-2,4的平方根为±2,∴-8的立方根与4的平方根的和是0或-4.选D.15.【答题】下列说法错误的是()A. 1是1的算术平方根B.C. -27的立方根是-3D.【分析】本题考查了平方根和立方根.【解答】A、因为12=1,所以1是1的算术平方根,故此选项正确;B、=7,故此选项正确;C、(-3)3=-27,所以-27的立方根是-3,故此选项正确;D、=12,故此选项错误.选D.16.【答题】下列计算正确的是().A. B.C. D.【答案】D【分析】本题考查了平方根和立方根.【解答】项.错误;项.,错误;项.错误;.选.17.【答题】下列各式计算正确的是()A. =-9B. =±5C. =-1D. (-)2=-2【答案】C【分析】本题考查了平方根和立方根.【解答】A.=9,故该选项错误;B. =5,故该选项错误;C. =-1,正确;D. (-)2=2,故该选项错误.选C.18.【答题】64的立方根是()A. ±4B. 4C. -4D. 16【答案】B【分析】本题考查了立方根.【解答】∵43=64∴64的立方根是4.选B.19.【答题】使用某种电子计算器求+的近似值,其按键顺序正确的是()A. 8+2ndF6=B. 8+2ndF6=C. 8+6=D. 8+6=【答案】A【分析】本题考查了平方根和立方根.【解答】根据无理数运算中计算器的使用法则可知,是先按,再按8,是先按2ndf键,再按,再按6.故本题正确答案为A.20.【答题】若x2=25,则x=______;若,则x=______;若,则x=______;若x3=-216,则x=______;若=3,则x=______;若,则x=______.【答案】±5,18,,-6,27,-27【分析】本题考查了平方根和立方根.【解答】分别利用立方根和算术平方根的定义求解即可.解:∵x2=25,∴x=±5;∵,∴x=42+2=18;∵,∴x=()2=;∵x3=-216,∴x=-6;∵,∴x=33=27;∵,∴x=(-3)3=-27.故答案为:±5,18,,-6,27,-27.。
沪科版七年级数学下册第六章实数单元试题含答案解析
沪科版七年级数学下册第六章实数单元试题含答案解析一、选择题(本大题共10小题,共40分) 1. 下列说法正确的是( )A. 116的平方根是14B. -16的算术平方根是4C. (-4)2的平方根是-4D. 0的平方根和算术平方根都是0 2. 立方根等于它本身的有( )A. −1,0,1B. 0,1C. 0,−1D. 13. 在实数:3.14159,√643,1.010010001…,4.2⋅1⋅,π,227中,无理数有( )A. 1个B. 2个C. 3个D. 4个 4. 已知√3743≈7.205,√37.43≈3.344,则√-0.0003743约等于( )A. -0.07205B. -0.03344C. -0.007205D. -0.003344 5. 估计√40的值在( )A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间 6. 下列各式中,正确的是( )A. √25=±5B. ±√16=4C. √−273=−3D. √(−4)2=±47. 下列说法:①实数和数轴上的点是一一对应的; ②无理数是开方开不尽的数; ③负数没有立方根;④16的平方根是±4,用式子表示是√16=±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0, 其中错误的是( ) A. 0个 B. 1个 C. 2个 D. 3个 8. 实数√9的平方根为( ).A. 3B. −3C. ±3D. ±√39. 实数a 、b 在数轴上的位置如图,则|a +b|−|a −b|等于( )A. 2aB. 2bC. 2b −2aD. 2b +2a 10. 一个正数的两个平方根分别是2a −1与−a +2,则a 的值为( )A. 1B. −1C. 2D. −2二、填空题(本大题共4小题,共20分) 11. 2−√5的相反数是______.12. 比较大小:3______2√3(填“>”,“=”或“<”)13. 如图,将一个直径为1个单位长度的圆片上的点A 放在原点,并把圆片沿数轴滚动1周,点A 所在位置表示的数是______ .14. 已知5+√11的小数部分为m ,5−√11的小数部分为n ,则m +n =______ .三、计算题(本大题共2小题,共24分) 15. 计算:①|√3−√2|+|√3−2|−|√2−1|②√83+√(−2)2−√14+(−1)2016.16. 解方程:①(x −4)2=4;②13(x +3)3−9=0.四、解答题(本大题共6小题,共66分)17. 将下列各数的序号填在相应的集合里:①−√83,②2π,③3.1415926,④−0.86,⑤3.030030003…相邻两个3之间0的个数逐渐多1),⑥2√2,⑦20162017,⑧−√(−1)2. 有理数集合:{______ }.无理数集合:{______ }. 负实数集合:{______ }.18.按要求填空:已知:√7.2=2.638,则√720=______ ,√0.00072=______ ;已知:√0.0038=0.06164,√x=61.64,则x=______ .19.按要求填空:已知:√7.2=2.638,则√720=______ ,√0.00072=______ ;已知:√0.0038=0.06164,√x=61.64,则x=______ .20.正数x的两个平方根分别为3-a和2a+7.(1)求a的值;(2)求44-x这个数的立方根.21.已知实数a,b,c,d,e,f,且a,b互为倒数,c,d互为相反数,e的绝对值为√2,f的算术平方根是8,求12ab+c+d5+e2+√f3的值.22.已知√2a−1=3,3a+b−1的平方根是±4,c是√60的整数部分,求a+2b+c的算术平方根。
初中数学沪科版七年级下册第6章 实数6.1 平方根、立方根-章节测试习题(29)
章节测试题1.【答题】的平方根是______.【答案】【分析】本题考查了平方根.【解答】=3,本题实际上就是求3的平方根.2.【答题】计算:.【答案】2【分析】如果一个数x的平方等于a,那么x是a的平方根,其中正的平方根叫做算术平方根.由此即可求解.【解答】故答案为:3.【答题】的平方根是______.【答案】±3【分析】根据平方根的定义解答即可.【解答】∵(±3)2=9,∴9的平方根是±3.故答案为:±3.4.【答题】______.【答案】4【分析】本题考查了算术平方根.【解答】∵42=16,∴16的算术平方根是4,即=4.故答案为:4.5.【答题】7的平方根是______.【答案】【分析】本题考查了平方根.【解答】∵,∴7的平方根是,故答案为:.6.【答题】化简:=______.【答案】3【分析】本题考查了平方根.【解答】=|-3|=-(-3)=3.故答案是:3.7.【题文】已知-(b-2)=0,求b a的值.【答案】【分析】由平方根的性质,把原式变形为,根据几个非负数的和为零,那么这几个非负数都等于零,列方程求a,b的值.【解答】由,得,根据非负数的性质得1+a=0,2-b=0,解得a=-1,b=2,所以b a=2-1=8.【题文】已知一个正数的两个平方根分别为2a+5和3a-15.(1)求这个正数;(2)请估算30a的算术平方根在哪两个连续整数之间.【答案】(1)81(2)7和8之间【分析】本题考查了平方根与算术平方根.【解答】(1)由题意得2a+5+3a-15=0,解得a=2.故所求的正数是(2a+5)2=(2×2+5)2=81.(2)∵a=2,∴30a=60.∵49<60<64,∴,即.9.【题文】已知的算术平方根是3,的平方根是,是的整数部分,求的平方根.【答案】【分析】先根据算术平方根及平方根的定义得出关于的方程组,求出的值,再估算出的取值范围求出c的值,代入所求代数式进行计算即可.【解答】∵2a−1的算术平方根是3,3a+b−1的平方根是±4,∴解得∵9<13<16,∴,∴的整数部分是3,即c=3,∴原式.6的平方根是.10.【题文】若2a-5和a+8是一个正数的平方根,那么这个正数是多少?.【答案】这个正数为441或49【分析】直接利用平方根的定义分析得出答案.【解答】由题可知:①当2a-5=a+8时,解得:a=13,那么a+8=21,∴正数为441;②当2a-5+a+8=0时,解得:a=-1,那么a+8=7,∴正数为49.∴这个正数为441或49.11.【题文】若正数m的平方根是5a+1和a-19,求m的值及m的平方根.【答案】m=256,m的平方根是±16.【分析】根据数m的平方根是5a+1和a-19,可知5a+1和a-19互为相反数,据此即可列方程求得a的值,然后根据平方根的定义求得m的值.【解答】由题可得(5a+1)+(a-19)=0,解得a=3,则m=(5a+1)2=162=256,所以m的平方根是±16.12.【题文】求下列各式中的值:(1);(2)【答案】(1);(2)【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)方程整理后,利用立方根定义开立方即可求出解.【解答】(1)方程整理得:x2=4,开方得:x=±2;(2)方程整理得:(x-3)3=,开立方得:x-3=,解得:x=.13.【题文】(1)计算|-5|+-32+.(2)求的值:【答案】(1)-1(2)±2【分析】(1)理解绝对值,算术平方根,乘方,立方根的意义;(2)把常数项移到方程的右边,用平方根的意义求解.【解答】解:(1)原式=5+4-9-1=-1;(2)4x2=16,所以x²=4,所以x=±2.14.【题文】已知,的平分根是,是的整数部分,求:(1)求的值;(2)的平方根.【答案】(1)a=5,b=2,c=7(2)【分析】(1)先根据算术平方根及平方根的定义得出关于a、b的方程,求出a、b的值,再估算出的取值范围求出c的值即可;(2)把(1)中的a、b、c的值代入进行计算即可得.【解答】(1)∵,的平分根是,∴2a-1=32,3a+b-1=(±4)2,∴a=5,b=2,∵7<<8,是的整数部分,∴c=7;(2)∵a=5,b=2,c=7,∴a+2b+c=16,16的平方根是±4,即的平方根是±4.15.【题文】先阅读下列材料,再回答相应的问题若与同时成立,则x的值应是多少?有下面的解题过程:由于与都是算术平方根,故两者的被开方数与均为非负数.而与互为相反数,两个非负数互为相反数,只有一种情形,那便是,所以.问题:已知,求的值.【答案】【分析】根据阅读的解题过程,可类比求解即可求出x、y的值,代入求解即可.【解答】由于与都是算术平方根,故两者的被开方数与均为非负数.而与互为相反数,两个非负数互为相反数,只有一种情形,那便是,,所以,y=2,代入即可得==.16.【题文】若正数M的两个平方根是和,试求和M的值.【答案】a=2,M=9【分析】根据平方根的意义,一个正数有两个平方根,它们互为相反数,可列方程求解.【解答】因为正数M的两个平方根是和所以3a-3+2a-7=0解得a=2所以M=(3a-3)2=32=9.17.【题文】求的值,.【答案】x=0或x=-4【分析】根据平方根的意义,先两边同除以4,再直接开平方即可.【解答】(x+2)2=4x+2=±2解得x=0或x=4.18.【题文】(1)已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b的平方根;(2)若2a-4与3a+1是同一个正数的平方根,求a的值.【答案】(1)±3;(2)a=1【分析】(1)利用平方根及算术平方根的定义列出方程组,求出方程组的解得到a与b 的值,确定出的值,即可确定出平方根.(2)与是同一个正数的平方根,即可求出的值.【解答】(1)由题意得2a−1=9,3a+b−1=16,解得:a=5,b=2,则a+2b=9,则9的平方根为3或−3;(2)∵与是同一个正数的平方根,19.【题文】求x的值:4(x+1)2=64【答案】x=3或x=-5.【分析】直接开方法即可求出的值.【解答】或或20.【题文】计算下列各题:(1)(2)【答案】(1)-12;(2)-8【分析】(1)注意运算的顺序,先算乘除,后算加减;(2)注意-32与(-3)2的区别,-32=-9,(-3)2=9;负数得绝对值等于它的相反数,即;表示16的算术平方根,即.【解答】(1)原式=-10-2=-12(2)原式=-9+5-4=-8。
【沪科版】七年级数学下册第六章单元测试卷(一)含答案与解析
沪科版七年级数学下册第六章单元测试卷(一)实数(考试时间:120分钟满分150分)班级____________姓名____________学号___________分数________一、选择题(共10题,每小题4分,共计40分)1.在,0,﹣1,1这些数中最小的数是()A.﹣1B.0C.1D.2.在实数7,,,中,无理数是()A.B.C.7D.3.下列各数是无理数的是()A.2B.C.D.3.14159264.25的算术平方根是()A.﹣5B.±5C.25D.55.下列各数:(相邻两个1之间依次多一个3),其中无理数的个数是()A.1个B.2个C.3个D.4个6.的平方根是()A.3或﹣3B.9或﹣9C.3D.97.下列说法:①实数与数轴上的点一一对应;②﹣a2没有平方根;③任何实数的立方根有且只有一个;④平方根与立方根相同的数是0和1;⑤的算术平方根是2.其中正确的有()A.1个B.2个C.3个D.4个8.已知x,y为实数,且+(y+2)2=0,则x+y的立方根为()A.﹣3B.3C.1D.﹣19.下列说法:①所有无理数都能用数轴上的点表示;②带根号的数都是无理数;③任何实数都有立方根;④的平方根是±4,﹣6是36的一个平方根;⑤一个数的算术平方根是正数;⑥是无理数;⑦﹣1的相反数是﹣﹣1.其中正确的个数为()A.2个B.3个C.4个D.5个10.若规定,f(x)表示最接近x的整数(x≠n+0.5,n整数)例如:f(0.7)=1,f(2.3)=2,f (5)=5,则f(1)+f()+f()+…+f()的值()A.16B.17C.18D.19二.填空题(共4小题,每题5分,共计20分)11.已知某数的一个平方根是,那么它的另一个平方根是.12.计算:|﹣|=.13.比较大小:﹣41.14.已知实数a、b互为相反数,c、d互为倒数,e是的整数部分,f是的小数部分,求代数式﹣+e﹣f=.三.解答题(共9小题,15-18每题8分,19-20每题10分,21,22每题12分,23题14分,共计90分)15.将下列各数填在相应的集合里:,1﹣π,﹣0.2020020002…,0,﹣(﹣200%),﹣|﹣5|,﹣(﹣1)2,3.14159负数集合(…)正分数集合(…)自然数集合(…)无理数集合(…)16.计算()2+﹣.17.解方程:(1)2(x﹣1)2﹣18=0;(2)3x3+4=﹣20.18.在数轴上标出表示:﹣(﹣5),﹣4,0,﹣|﹣2|各数的点,并用“<”号将它们连接起来.19.已知某正数的两个平方根分别是﹣1和a﹣4,b﹣12的立方根为2.(1)求a,b的值.(2)求a+b的平方根.20.已知一个正数m的两个不同的平方根是a﹣1与5﹣2a,求a和m的值.21.已知2a﹣1的平方根是,3a+b﹣1的算术平方根是6,求a+4b的平方根.22.请回答下列问题;(1)介于连续的两个整数a和b之间,且a<b,那么a=,b=;(2)x是+2的小数部分,y是﹣1的整数部分,求x=,y=;(3)求(﹣x)y的平方根.23.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而1<<2于是可用﹣1来表示的小数部分.请解答下列问题:(1)的整数部分是,小数部分是;(2)如果5+的小数部分为a,5﹣的整数部分为b,求a+b的值.参考答案与解析一、选择题(每小题4分,共40分)1.在,0,﹣1,1这些数中最小的数是()A.﹣1B.0C.1D.【分析】先根据实数的大小比较法则比较数的大小,再得出答案即可.【解答】解:∵﹣﹣1<0<1,∴最小的数是﹣,故选:D.【点评】本题考查了实数的大小比较和算术平方根,能熟记实数的大小比较法则是解此题的关键.2.在实数7,,,中,无理数是()A.B.C.7D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是无理数;B、是分数,属于有理数;C、7是整数,属于有理数;D、,是整数,属于有理数.故选:A.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.3.下列各数是无理数的是()A.2B.C.D.3.1415926【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、2是整数,属于有理数;B、是无理数;C、,是整数,属于有理数;D、3.1415926是有限小数,属于有理数.故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.4.25的算术平方根是()A.﹣5B.±5C.25D.5【分析】直接利用算术平方根的定义得出答案.【解答】解:25的算术平方根是:5.故选:D.【点评】此题主要考查了算术平方根,正确把握定义是解题关键.5.下列各数:(相邻两个1之间依次多一个3),其中无理数的个数是()A.1个B.2个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:是分数,属于有理数;,是整数,属于有理数;无理数有:,,,1.1313313331…(相邻两个1之间依次多一个3),共4个.故选:D.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.6.的平方根是()A.3或﹣3B.9或﹣9C.3D.9【分析】根据算术平方根和平方根解答即可.【解答】解:因为,9的平方根是±3,所以的平方根是±3,故选:A.【点评】此题考查算术平方根和平方根,关键是根据算术平方根化简解答.7.下列说法:①实数与数轴上的点一一对应;②﹣a2没有平方根;③任何实数的立方根有且只有一个;④平方根与立方根相同的数是0和1;⑤的算术平方根是2.其中正确的有()A.1个B.2个C.3个D.4个【分析】本题考查实数与数轴的点的关系及实数的有关性质,依次分析可得答案.【解答】解:依次分析可得:①实数与数轴上的点一一对应,符合实数与数轴上的点的关系,故正确;②a=0时,﹣a2=0,平方根为0,故错误;③任何实数的立方根有且只有一个,故正确;④平方根与立方根相同的数是0,而1的平方根是±1,而立方根是1,故错误,⑤的算术平方根是,故错误,∴①③正确,故选:B.【点评】本题考查实数与数轴的点的关系及实数的有关性质.8.已知x,y为实数,且+(y+2)2=0,则x+y的立方根为()A.﹣3B.3C.1D.﹣1【分析】直接利用非负数的性质得出x,y的值,再利用立方根的定义得出答案.【解答】解:∵+(y+2)2=0,其中≥0,(y+2)2≥0,∴,解得:x=1,y=﹣2,∴x+y=﹣1,∴x+y的立方根为:﹣1.故选:D.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.9.下列说法:①所有无理数都能用数轴上的点表示;②带根号的数都是无理数;③任何实数都有立方根;④的平方根是±4,﹣6是36的一个平方根;⑤一个数的算术平方根是正数;⑥是无理数;⑦﹣1的相反数是﹣﹣1.其中正确的个数为()A.2个B.3个C.4个D.5个【分析】根据实数的有关概念分别进行判断.【解答】解:①所有无理数都能用数轴上的点表示是正确的;②带根号的数不一定是无理数,如=2,原来的说法错误;③任何实数都有立方根是正确的;④=4的平方根是±2,﹣6是36的一个平方根,原来的说法错误;⑤一个数的算术平方根不一定是正数,如0的算术平方根是0,原来的说法错误;⑥=4是有理数,原来的说法错误;⑦﹣1的相反数是﹣+1,原来的说法错误.故其中正确的个数为2个.故选:A.【点评】此题考查了实数的分类,以及数轴的特征,还有算术平方根、平方根和立方根的含义和求法的应用,要熟练掌握.同时考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.10.若规定,f(x)表示最接近x的整数(x≠n+0.5,n整数)例如:f(0.7)=1,f(2.3)=2,f(5)=5,则f(1)+f()+f()+…+f()的值()A.16B.17C.18D.19【分析】根据f(x)表示的意义,分别求出f(1),f(),f(),…f()的值,再计算结果即可.【解答】解:f(x)表示的意义可得,f(1)=1,f()=1,f()=2,f()=2,f()=2,f()=2,f()=3,f()=3,f()=3,∴f(1)+f()+f()+…+f()=1+1+2+2+2+2+3+3+3=19,故选:D.【点评】本题考查无理数的估算及新定义的意义,对无理数的估算是正确解答的关键.二.填空题(共4小题)11.已知某数的一个平方根是,那么它的另一个平方根是.【分析】根据正数的平方根有两个,它们互为相反数进行解答.【解答】解:若一个数的一个平方根是,则它的另一个平方根是.故答案为:.【点评】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数.12.计算:|﹣|=5.【分析】直接利用绝对值以及立方根的性质分别得出答案.【解答】解:原式=|﹣5|=5.故答案为:5.【点评】此题主要考查了实数的性质,正确掌握相关定义是解题关键.13.比较大小:﹣4>1.【分析】先估算出的范围,再求出﹣4的范围,再得出答案即可.【解答】解:∵5<<6,∴1﹣4<2,即﹣4>1,故答案为:>.【点评】本题考查了实数的大小比较,能估算出的范围是解此题的关键.14.已知实数a、b互为相反数,c、d互为倒数,e是的整数部分,f是的小数部分,求代数式﹣+e﹣f=4﹣.【分析】根据互为相反数、互为倒数、无理数的整数部分、小数部分的意义求解即可.【解答】解:∵实数a、b互为相反数,∴a+b=0,∵c、d互为倒数,∴cd=1,∵3<<4,∴的整数部分为3,e=3,∵2<<3,∴的小数部分为﹣2,即f=﹣2,∴﹣+e﹣f=﹣+3﹣(﹣2)=0﹣1+3﹣+2=4﹣,故答案为:4﹣.【点评】本题考查相反数、倒数、无理数的估算,掌握相反数、倒数的意义,以及无理数的整数部分、小数部分的表示方法是解决问题的关键.三.解答题(共9小题)15.将下列各数填在相应的集合里:,1﹣π,﹣0.2020020002…,0,﹣(﹣200%),﹣|﹣5|,﹣(﹣1)2,3.14159负数集合(1﹣π,﹣0.2020020002…,﹣|﹣5|,﹣(﹣1)2…)正分数集合(,3.14159…)自然数集合(0,﹣(﹣200%)…)无理数集合(1﹣π,﹣0.2020020002……)【分析】根据实数的分类,可得答案.【解答】解:负数集合(1﹣π,﹣0.2020020002…,﹣|﹣5|,﹣(﹣1)2 …)正分数集合(,3.14159 …)自然数集合(0,﹣(﹣200%)…)无理数集合(1﹣π,﹣0.2020020002……),故答案为:1﹣π,﹣0.2020020002…,﹣|﹣5|,﹣(﹣1)2;,3.14159;0,﹣(﹣200%);1﹣π,﹣0.2020020002….【点评】本题考查了实数,利用实数的分类是解题关键.16.计算()2+﹣.【分析】直接利用立方根以及算术平方根的性质分别化简得出答案.【解答】解:原式=16﹣3﹣5=8.【点评】此题主要考查了实数运算,正确化简各数是解题关键.17.解方程:(1)2(x﹣1)2﹣18=0;(2)3x3+4=﹣20.【分析】(1)依据平方根的定义,进行计算即可得出结论;(2)依据立方根的定义,进行计算即可得出结论.【解答】解:(1)2(x﹣1)2﹣18=0,2(x﹣1)2=18,(x﹣1)2=9,x﹣1=±3,解得x=4或﹣2;(2)3x3+4=﹣20,3x3=﹣24,x3=﹣8,解得x=﹣2.【点评】本题主要考查了平方根与立方根,如果一个数的平方等于a,这个数就叫做a的平方根;如果一个数的立方等于a,那么这个数叫做a的立方根.18.在数轴上标出表示:﹣(﹣5),﹣4,0,﹣|﹣2|各数的点,并用“<”号将它们连接起来.【分析】先在数轴上表示出各个数,再比较大小即可.【解答】解:,﹣4<﹣|﹣2|<0<﹣(﹣5).【点评】本题考查了数轴、绝对值、相反数和实数大小比较等知识点,能正确在数轴数轴上表示出各个数是解此题的关键.19.已知某正数的两个平方根分别是﹣1和a﹣4,b﹣12的立方根为2.(1)求a,b的值.(2)求a+b的平方根.【分析】(1)依据平方根以及立方根的定义,即可得到a,b的值.(2)依据a,b的值,即可得出a+b的平方根.【解答】解:(1)由题意得,a﹣4=1,b﹣12=8,所以a=5,b=20;(2)由(1)得,a+b=25,所以.【点评】本题主要考查了平方根与立方根,注意一个正数有两个平方根,这两个平方根互为相反数.20.已知一个正数m的两个不同的平方根是a﹣1与5﹣2a,求a和m的值.【分析】直接利用平方根的定义得出a的值,进而得出答案.【解答】解:∵一个正数m的两个不同的平方根是a﹣1与5﹣2a,∴a﹣1+5﹣2a=0,解得:a=4,则a﹣1=3,故m=32=9.【点评】此题主要考查了平方根,正确掌握平方根的定义:一个正数有两个平方根,这两个平方根互为相反数是解题关键.21.已知2a﹣1的平方根是,3a+b﹣1的算术平方根是6,求a+4b的平方根.【分析】根据算术平方根和平方根的定义列式求出a、b的值,然后代入代数式求出a+4b的值,再根据平方根的定义解答即可.【解答】解:根据题意,得2a﹣1=17,3a+b﹣1=62,解得a=9,b=10,所以,a+4b=9+4×10=9+40=49,∵(±7)2=49,∴a+4b的平方根是±7.【点评】本题考查了算术平方根和平方根的定义,能够熟记概念并列式求出a、b的值是解题的关键.22.请回答下列问题;(1)介于连续的两个整数a和b之间,且a<b,那么a=4,b=5;(2)x是+2的小数部分,y是﹣1的整数部分,求x=﹣4,y=3;(3)求(﹣x)y的平方根.【分析】(1)根据正整数的算术平方根的意义,可得出答案;(2)估算+2,﹣1的值,确定x、y的值;(3)把x、y的值代入计算即可.【解答】解:(1)∵<<,∴4<<5,∴a=4,b=5,故答案为:4,5;(2)∵6<+2<7,3<﹣1<4,又∵x是+2的小数部分,y是﹣1的整数部分,∴x=+2﹣6=﹣4,y=3,故答案为:﹣4,3;(3)∵x=﹣4,y=3,∴(﹣x)y=43=64,∴(﹣x)y的平方根为±=±8.【点评】本题考查无理数的估算、算术平方根,确定无理数的整数部分和小数部分是正确解答的关键.23.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而1<<2于是可用﹣1来表示的小数部分.请解答下列问题:(1)的整数部分是5,小数部分是﹣5;(2)如果5+的小数部分为a,5﹣的整数部分为b,求a+b的值.【分析】(1)估算的近似值,即可得出的整数部分和小数部分;(2)求出a、b的值,再代入计算即可.【解答】解:(1)∵<<,∴5<<6,∴的整数部分为5,小数部分为﹣5,故答案为:5,﹣5;(2)∵2<<3,∴7<5+<8,∴5+的小数部分a=5+﹣7=﹣2,∵2<<3,∴﹣3<﹣<﹣2,∴2<5﹣<3,∴5﹣的整数部分为b=2,∴a+b=﹣2+2=3﹣2.【点评】本题考查无理数的估算,掌握算术平方根的意义是正确估算的前提.。
初中数学沪科版七年级下册第6章 实数6.1 平方根、立方根-章节测试习题(21)
章节测试题1.【题文】求下列各数的立方根:(1);(2)-10-6;【答案】(1)(2)-10-2【分析】(1)直接利用立方根的定义求出即可;(2)直接利用立方根的定义求出即可.【解答】(1),∵,所以的立方根是;(2)∵,所以的立方根是.2.【题文】求下列各数的立方根:(1)-125;(2)0.027;(3)(53)2.【答案】(1)-5;(2)0.3;(3)25【分析】根据立方根的意义,如果一个数x的立方等于a,即x的三次方等于a (x3=a),即3个x连续相乘等于a,那么这个数x就叫做a的立方根,也叫做三次方根.【解答】(1)∵(-5)3=-125∴-125的立方根为-5;(2)∵0.33=0.027∴0.027的立方根为0.3(3)∵(53)2=(52)3∴(53)2立方根为52=25.3.【题文】请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.【答案】(1)魔方的棱长6cm;(2)长方体纸盒的长为10cm.【分析】(1)由正方体的体积公式,再根据立方根,即可解答;(2)根据长方体的体积公式,再根据平方根,即可解答.【解答】(1)设魔方的棱长为xcm,可得:x3=216,解得:x=6,答:该魔方的棱长6cm;(2)设该长方体纸盒的长为ycm,6y2=600,y2=100,y=10,答:该长方体纸盒的长为10cm.4.【题文】如果一个正数x的两个平方根分别为a+1和a-5.(1)求a和x的值;(2)求7x+1的立方根.【答案】(1)x=9(2)【分析】(1)根据一个正数的两个平方根互为相反数,得出以为未知数的方程,求解即可求出的值,结合可求出的值;(2)先求出的值,再根据立方根的定义求解即可.【解答】(1)由题意,得解得所以因为的平方根是,所以(2)因为所以的立方根为5.【题文】已知一个正方体的体积是1000cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使得截去后余下的体积是488cm3,问截得的每个小正方体的棱长是多少?【答案】截得的每个小正方体的棱长是4cm.【分析】一个正方体的体积是1000cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488cm3,设截得的每个小正方体的棱长xcm,根据已知条件可以列出方程,解方程即可求解.【解答】设截去的每个小正方体的棱长是xcm,则由题意得,解得x=4.答:截去的每个小正方体的棱长是4厘米.6.【题文】已知x-2的平方根是±2,2x+y+7的立方根是3,求的平方根.【答案】±10【分析】先运用立方根和平方根的定义求出x与y的值,再求出的平方根.【解答】∵x-2的平方根是±2,2x+y+7的立方根是3,∴x-2=4,2x+y+7=27,解得x=6,y=8,∴==100,∴的平方根是±10.7.【题文】计算:(1)(2)36(x-3)2-25=0(3)(x+5)3=-27.【答案】(1)0;(2)x1=,x2=;(3)x=-8.【分析】(1)首先化简各数,进而计算得出答案;(2)直接利用平方根的定义得出答案;(3)直接利用立方根的定义得出答案.【解答】(1)原式=2+2+=0;(2)36(x-3)2-25=0则(x-3)2=,故x-3=±,解得:x1=,x2=;(3)(x+5)3=-27x+5=-3,解得:x=-8.8.【题文】(1)求x的值:(1-x)3=-27;(2)计算:【答案】(1)x=4;(2)4【分析】(1)利用乘方概念解方程.(2)利用开平方,开立方计算.【解答】(1)(1-x)3=-27,1-x=3,x=4.(2)=2+1+1=4.9.【题文】若(2a-4)2和互为相反数,求a b的平方根与立方根.【答案】平方根是±2,立方根是2.【分析】根据几个非负数的和为零,那么这几个非负数都等于零,列方程求a,b 的值.【解答】∵(2a-4)2和互为相反数,∴(2a-4)2+=0,∴2a-4=0,b-3=0,解得a=2,b=3,所以a b=23=8,∴a b的平方根是±2,立方根是2.10.【题文】已知第一个正方体玩具的棱长是6cm,第二个正方体玩具的体积要比第一个玩具的体积大127cm,试求第二个正方体玩具的棱长.【答案】第二个正方形玩具的棱长为7cm【分析】先根据正方体的体积公式求出体积,然后得到第二个正方体的体积,然后根据立方根求解即可.【解答】第一个正方体的体积为:6×6×6=216cm3第二个正方体的体积为:216+127=343cm3第二个正方体的棱长为:=7cm.11.【题文】已知3a+b-1的立方根是3,2a+1的算术平方根是5,求a+b的平方根.【答案】±2【分析】根据立方根与算术平方根的定义得到3a+b-1=27,2a+1=25,则可计算出a=12,b=-8,然后计算a+b后利用平方根的定义求解.【解答】根据题意得3a+b-1=27,2a+1=25,解得a=12,b=-8,所以a+b=12-8=4,而4的平方根为±=±2,所以a+b的平方根为±2.12.【题文】已知2a-1的平方根是±3,3a+b+9的立方根是3,求2(a+b)的平方根.【答案】±4【分析】根据平方根可求出2a-1=9,根据立方根可求出3a+b+9=27,然后解方程求出a、b的值即可.【解答】解:由已知得,2a-1=9解得:a=5,又3a+b+9=27∴b=3,2(a+b)=2×(3+5)=16,∴2(a+b)的平方根是:±=±413.【题文】已知5a+2的立方根是3,3a+b-1的算术平方根是4,c是的整数部分.(1)求a,b,c的值;(2)求3a-b+c的平方根.【答案】(1)a=5,b=2,c=3.(2)3a-b+c的平方根是±4.【分析】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值,代入代数式求出值后,进一步求得平方根即可.【解答】(1)∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2.∵c是的整数部分,∴c=3;(2)当a=5,b=2,c=3时,3a-b+c=16,3a-b+c的平方根是±4.14.【题文】计算:(1)(2)【答案】(1)8;(2)【分析】(1)根据算术平方根和立方根的定义解答即可;(2)根据绝对值的意义和平方根的性质化简计算即可.【解答】(1)原式=10-2=8;(2)原式.15.【题文】计算:().().【答案】(1)–2;(2)【分析】此题涉及平方根、算术平方根、立方根的求法,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.【解答】()原式.()原式.16.【题文】(1);(2).【答案】(1)-3;(2)3.【分析】(1)直接利用算术平方根定义分析得出答案;(2)直接利用立方根的性质化简得出答案.【解答】(1)=2+5-10=-3;(2)==3.17.【题文】已知3a-2的平方根是±5,4a-2b-8的算术平方根是4,求a+3b的立方根.【答案】3【分析】根据题意可以求得a、b的值,再求a+3b的立方根即可.【解答】∵3a-2的平方根是±5,∴3a-2=25,解得a=9.∵4a-2b-8的算术平方根是4,∴36-2b-8=16,解得b=6,∴a+3b=9+3×6=27.∴a+3b的立方根为3.18.【题文】已知2a-1的平方根是±3,3a-b+2的算术平方根是4,求a+3b的立方根.【答案】2【分析】根据平方根与算术平方根的定义得到3a-b-2=16,2a-1=9,则可计算出a=5,b=1,然后计算a+b后利用立方根的定义求解.【解答】∵2a-1的平方根是±3∴a=5∵3a-b+2的算术平方根是4,a=5∴b=1∴a+3b=8∴a+3b的立方根是219.【题文】计算:(1);(2).【答案】0.3,【分析】本题考查了立方根.【解答】(1).(2).20.【题文】若与(6-27)2互为相反数,求的立方根.【答案】【分析】本题考查了平方根和立方根.【解答】根据题意,得:a+8=0,b-27=0,解得:a=-8,b=27,所以.。
沪科版七年级下数学第6章《实数》单元测试(含答案)
《实数》单元测试一.选择题(共10小题)1.设a是9的平方根,B=()2,则a与B的关系是()A.a=±B B.a=B C.a=﹣B D.以上结论都不对2.π、,﹣,,3.1416,0.中,无理数的个数是()A.1个B.2个C.3个D.4个3.实数b满|b|<3,并且有实数a,a<b恒成立,a的取值范围是()A.小于或等于3的实数B.小于3的实数C.小于或等于﹣3的实数D.小于﹣3的实数4.的平方根为()A.±8 B.±4 C.±2 D.45.设的小数部分为b,那么(4+b)b的值是()A.1 B.是一个有理数C.3 D.无法确定6.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1 B.2 C.3 D.47.下列说法错误的是()A.2是8的立方根B.±4是64的立方根C.﹣是的平方根D.4是的算术平方根8.实数a,b在数轴上的位置如图所示,下列各式正确的是()A.a>0 B.a+b>0 C.a﹣b>0 D.ab<09.如图,点A在数轴上表示的实数为a,则|a﹣2|等于()A.a﹣2 B.a+2 C.﹣a﹣2 D.﹣a+210.的相反数是()A.2 B.﹣2 C.4 D.﹣二.填空题(共4小题)11.数轴上﹣1所对应的点为A,将A点右移4个单位长度再向左平移6个单位长度,则此时A点距原点的距离为个单位长度.12.已知x=,则x3+12x的算术平方根是.13.阅读下列材料:设=0.333…①,则10x=3.333…②,则由②﹣①得:9x=3,即.所以=0.333…=.根据上述提供的方法把下列两个数化成分数.=,=.14.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值=.三.解答题(共8小题)15.已知实数a、b满足(a+2)2+=0,则a+b的值.16.计算题(1)(+3)(﹣3)﹣(2)+(﹣)×17.已知实数x、y满足y=,求的值.18.如图,数轴上a、b、c三个数所对应的点分别为A、B、C,已知:b是最小的正整数,且a、c满足(c﹣6)2+|a+2|=0,①求代数式a2+c2﹣2ac的值;②若将数轴折叠,使得点A与点B重合,则与点C重合的点表示的数是.③请在数轴上确定一点D,使得AD=2BD,则点D表示的数是.19.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣1|+|c﹣2|=0.(1)在数轴上是否存在点P,使得P A+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴负方向运动.经过t(t≥1)秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.20.如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为﹣1,正方形ABCD的面积为16.(1)数轴上点B表示的数为;(2)将正方形ABCD沿数轴水平移动,移动后的正方形记为A′B′C′D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分的面积为S.①当S=4时,画出图形,并求出数轴上点A′表示的数;②设正方形ABCD的移动速度为每秒2个单位长度,点E为线段AA′的中点,点F在线段BB′上,且BF=BB′.经过t秒后,点E,F所表示的数互为相反数,直接写出t的值.21.如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,PQ=AB;(3)当点P运动到点B的右侧时,P A的中点为M,N为PB的三等分点且靠近于P点,求PM﹣BN的值.22.阅读下面的材料:如图①,若线段AB在数轴上,A,B点表示的数分别为a,b(b>a),则线段AB的长(点A到点B的距离)可表示为AB=b﹣a请用上面材料中的知识解答下面的问题:如图②,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B 点,然后向右移动7cm到达C点,用1个单位长度表示1cm(1)请你在数轴上表示出A,B,C三点的位置,并直接写出线段AC的长度;(2)若数轴上有一点D,且AD=4cm,则点D表示的数是什么?(3)若将点A向右移动xcm,请用代数式表示移动后的点表示的数?(4)若点B以每秒2cm的速度向左移动至点P1,同时点A,点C分别以每秒1cm和4cm 的速度向右移动至点P2,点P3,设移动时间为t秒,试探索:P3P2﹣P1P2的值是否会随着t 的变化而变化?请说明理由.参考答案与试题解析一.选择题(共10小题)1.设a是9的平方根,B=()2,则a与B的关系是()A.a=±B B.a=BC.a=﹣B D.以上结论都不对【解答】解:∵a是9的平方根,∴a=±3,又B=()2=3,∴a=±b.故选:A.2.π、,﹣,,3.1416,0.中,无理数的个数是()A.1个B.2个C.3个D.4个【解答】解:在π、,﹣,,3.1416,0.中,无理数是:π,共2个.故选:B.3.实数b满|b|<3,并且有实数a,a<b恒成立,a的取值范围是()A.小于或等于3的实数B.小于3的实数C.小于或等于﹣3的实数D.小于﹣3的实数【解答】解:∵|b|<3,∴﹣3<b<3,又∵a<b,∴a的取值范围是小于或等于﹣3的实数.故选:C.4.的平方根为()A.±8 B.±4 C.±2 D.4【解答】解:∵=4,又∵(±2)2=4,∴的平方根是±2.故选:C.5.设的小数部分为b,那么(4+b)b的值是()A.1 B.是一个有理数 C.3 D.无法确定【解答】解:∵的小数部分为b,∴b=﹣2,把b=﹣2代入式子(4+b)b中,原式=(4+b)b=(4+﹣2)×(﹣2)=3.故选:C.6.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1 B.2 C.3 D.4【解答】解:121[]=11[]=3[]=1,∴对121只需进行3次操作后变为1,故选:C.7.下列说法错误的是()A.2是8的立方根B.±4是64的立方根C.﹣是的平方根D.4是的算术平方根【解答】解:A、2是8的立方根是正确的,不符合题意;B、4是64的立方根,原来的说法错误,符合题意;C、﹣是的平方根是正确的,不符合题意;D、4是的算术平方根是正确的,不符合题意.故选:B.8.实数a,b在数轴上的位置如图所示,下列各式正确的是()A.a>0 B.a+b>0 C.a﹣b>0 D.ab<0【解答】解:由数轴可知:a<0<b,|a|>|b|,∴a+b<0,a﹣b<0,ab<0,∴选项D正确.故选:D.9.如图,点A在数轴上表示的实数为a,则|a﹣2|等于()A.a﹣2 B.a+2 C.﹣a﹣2 D.﹣a+2【解答】解:根据数轴,可知2<a<3,所以a﹣2>0,则|a﹣2|=a﹣2.故选:A.10.的相反数是()A.2 B.﹣2 C.4 D.﹣【解答】解:的相反数是(2,即2.故选:A.二.填空题(共4小题)11.数轴上﹣1所对应的点为A,将A点右移4个单位长度再向左平移6个单位长度,则此时A点距原点的距离为3个单位长度.【解答】解:根据题意:数轴上﹣1所对应的点为A,将A点右移4个单位长度再向左平移6个单位长度,得到点的坐标为﹣1+4﹣6=﹣3,故此时A点距原点的距离为3个单位长度.12.已知x=,则x3+12x的算术平方根是2.【解答】解:设=a,=b.则,.又4==a3b3,∴x=a2b﹣ab2,x2=a4b2﹣2a3b3+a2b4,故原式=x(x2+12),=(a2b﹣ab2)(a4b2﹣2a3b3+a2b4+12),=(a2b﹣ab2)(a4b2﹣8+a2b4+12),=(a2b﹣ab2)(a4b2+a2b4+4),=ab(a﹣b)a2b2(a2+b2+ab),=a3b3(a3﹣b3),=,=4×2=8.则其算术平方根是2.故答案为:2.13.阅读下列材料:设=0.333…①,则10x=3.333…②,则由②﹣①得:9x=3,即.所以=0.333…=.根据上述提供的方法把下列两个数化成分数.=,=.【解答】解:设=x=0.777…①,则10x=7.777…②则由②﹣①得:9x=7,即x=;根据已知条件=0.333…=.可以得到=1+=1+=.故答案为:;.14.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值=406.【解答】解:∵①=1;②=3=1+2;③=6=1+2+3;④=10=1+2+3+4,∴=1+2+3+4+…+28=406.三.解答题(共8小题)15.已知实数a、b满足(a+2)2+=0,则a+b的值.【解答】解:∵(a+2)2+=0,∴a+2=0,b2﹣2b﹣3=0,解得:a=﹣2,b1=﹣1,b2=3,则a+b的值为:1或﹣3.16.计算题(1)(+3)(﹣3)﹣(2)+(﹣)×【解答】解:(1)原式=()2﹣32﹣(﹣3)=14﹣9+3=8;(2)原式=×+×﹣×,=6+5﹣6,=5.17.已知实数x、y满足y=,求的值.【解答】解:∵4 x﹣1≥0,1﹣4 x≥0∴x≥,x≤,∴x=,∴y=,∴=.18.如图,数轴上a、b、c三个数所对应的点分别为A、B、C,已知:b是最小的正整数,且a、c满足(c﹣6)2+|a+2|=0,①求代数式a2+c2﹣2ac的值;②若将数轴折叠,使得点A与点B重合,则与点C重合的点表示的数是﹣7.③请在数轴上确定一点D,使得AD=2BD,则点D表示的数是0或4.【解答】解:(1)∵(c﹣6)2+|a+2|=0,∴a+2=0,c﹣6=0,解得a=﹣2,c=6,∴a2+c2﹣2ac=4+36+24=64;(2)∵b是最小的正整数,∴b=1,∵(﹣2+1)÷2=﹣0.5,∴6﹣(﹣0.5)=6.5,﹣0.5﹣6.5=﹣7,∴点C与数﹣7表示的点重合;(3)设点D表示的数为x,则若点D在点A的左侧,则﹣2﹣x=2(1﹣x),解得x=4(舍去);若点D在A、B之间,则x﹣(﹣2)=2(1﹣x),解得x=0;若点D在点B在右侧,则x﹣(﹣2)=2(x﹣1),解得x=4.综上所述,点D表示的数是0或4.故答案为:﹣7;0或4.19.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣1|+|c﹣2|=0.(1)在数轴上是否存在点P,使得P A+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴负方向运动.经过t(t≥1)秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.【解答】解:(1)∵|a+5|+|b﹣1|+|c﹣2|=0,∴a+5=0,b﹣1=0,c﹣2=0,解得a=﹣5,b=1,c=2,设点P表示的数为x,∵P A+PB=PC,①P在AB之间,[x﹣(﹣5)]+(1﹣x)=2﹣x,x+5+1﹣x=2﹣x,x=2﹣1﹣5,x=﹣4;②P在A的左边,(﹣5﹣x)+(1﹣x)=2﹣x,﹣5﹣x+1﹣x=2﹣x,﹣x=2﹣1+5,x=﹣6;③P在BC的中间,(5+x)+(x﹣1)=2﹣x,2x+4=2﹣x,3x=﹣2,x=﹣(舍去);④P在C的右边,(x+5)+(x﹣1)=x﹣2,2x+4=x﹣2,x=﹣6(舍去).综上所述,x=﹣4或x=﹣6.(2)∵运动时间为t(t≥1),A的速度为每秒1个单位长度,B的速度为每秒3个单位长度,C的速度为每秒5个单位长度,∴点A表示的数为﹣5﹣t,点B表示的数为1﹣3t,点C表示的数为2﹣5t,①当1﹣3t>﹣5﹣t,即t<3时,AB=(1﹣3t)﹣(﹣5﹣t)=﹣2t+6,BC=(1﹣3t)﹣(2﹣5t)=2t﹣1,AB﹣BC=(﹣2t+6)﹣(2t﹣1)=7﹣4t,∴AB﹣BC的值会随着时间t的变化而变化.②当t≥3时,AB=(﹣5﹣t)﹣(1﹣3t)=2t﹣6,BC=(1﹣3t)﹣(2﹣5t)=2t﹣1,AB﹣BC=(2t﹣6)﹣(2t﹣1)=﹣5,∴AB﹣BC的值不会随着时间t的变化而变化.综上所述,当1≤t<3时,AB﹣BC的值会随着时间t的变化而变化.当t≥3时,AB﹣BC的值不会随着时间t的变化而变化.20.如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为﹣1,正方形ABCD的面积为16.(1)数轴上点B表示的数为﹣5;(2)将正方形ABCD沿数轴水平移动,移动后的正方形记为A′B′C′D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分的面积为S.①当S=4时,画出图形,并求出数轴上点A′表示的数;②设正方形ABCD的移动速度为每秒2个单位长度,点E为线段AA′的中点,点F在线段BB′上,且BF=BB′.经过t秒后,点E,F所表示的数互为相反数,直接写出t的值.【解答】解:(1)∵正方形ABCD的面积为16,∴AB=4,∵点A表示的数为﹣1,∴AO=1,∴BO=5,∴数轴上点B表示的数为﹣5,故答案为:﹣5.(2)①∵正方形的面积为16,∴边长为4,当S=4时,分两种情况:若正方形ABCD向左平移,如图1,A'B=4÷4=1,∴AA'=4﹣1=3,∴点A'表示的数为﹣1﹣3=﹣4;若正方形ABCD向右平移,如图2,AB'=4÷4=1,∴AA'=4﹣1=3,∴点A'表示的数为﹣1+3=2;综上所述,点A'表示的数为﹣4或2;②t的值为4.理由如下:当正方形ABCD沿数轴负方向运动时,点E,F表示的数均为负数,不可能互为相反数,不符合题意;当点E,F所表示的数互为相反数时,正方形ABCD沿数轴正方向运动,如图3,∵AE=AA'=×2t=t,点A表示﹣1,∴点E表示的数为﹣1+t,∵BF=BB′=×2t=t,点B表示﹣5,∴点F表示的数为﹣5+t,∵点E,F所表示的数互为相反数,∴﹣1+t+(﹣5+t)=0,解得t=4.21.如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).(1)填空:①A、B两点间的距离AB=10,线段AB的中点表示的数为3;②用含t的代数式表示:t秒后,点P表示的数为﹣2+3t;点Q表示的数为8﹣2t.(2)求当t为何值时,PQ=AB;(3)当点P运动到点B的右侧时,P A的中点为M,N为PB的三等分点且靠近于P点,求PM﹣BN的值.【解答】解:(1)①8﹣(﹣2)=10,﹣2+×10=3,故答案为:10,3;②由题可得,点P表示的数为﹣2+3t,点Q表示的数为8﹣2t;故答案为:﹣2+3t,8﹣2t;(2)∵t秒后,点P表示的数﹣2+3t,点Q表示的数为8﹣2t,∴PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,又PQ=AB=×10=5,∴|5t﹣10|=5,解得:t=1或3,∴当t=1或3时,PQ=AB;(3)∵P A的中点为M,N为PB的三等分点且靠近于P点,∴MP=AP=×3t=t,BN=BP=(AP﹣AB)=×(3t﹣10)=2t﹣,∴PM﹣BN=t﹣(2t﹣)=5.22.阅读下面的材料:如图①,若线段AB在数轴上,A,B点表示的数分别为a,b(b>a),则线段AB的长(点A到点B的距离)可表示为AB=b﹣a请用上面材料中的知识解答下面的问题:如图②,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B 点,然后向右移动7cm到达C点,用1个单位长度表示1cm(1)请你在数轴上表示出A,B,C三点的位置,并直接写出线段AC的长度;(2)若数轴上有一点D,且AD=4cm,则点D表示的数是什么?(3)若将点A向右移动xcm,请用代数式表示移动后的点表示的数?(4)若点B以每秒2cm的速度向左移动至点P1,同时点A,点C分别以每秒1cm和4cm 的速度向右移动至点P2,点P3,设移动时间为t秒,试探索:P3P2﹣P1P2的值是否会随着t 的变化而变化?请说明理由.【解答】解:(1)如图所示:CA=4﹣(﹣1)=4+1=5(cm);(2)设D表示的数为a,∵AD=4,∴|﹣1﹣a|=4,解得:a=﹣5或3,∴点D表示的数为﹣5或3;(3)将点A向右移动xcm,则移动后的点表示的数为﹣1+x;(4)P3P2﹣P1P2的值不会随着t的变化而变化,理由如下:根据题意得:P3P2=(4+4t)﹣(﹣1+t)=5+3t,P1P2=(﹣1+t)﹣(﹣3﹣2t)=2+3t,∴P3P2﹣P1P2=(5+3t)﹣(2+3t)=3,∴P3P2﹣P1P2的值不会随着t的变化而变化.。
2020春沪科版七年级数学下册课件-第6章 实数-第6章达标测试卷
第6章达标测试卷一、选择题(每题3分,共30分) 1.以下各数中没有平方根的是( )A .64B .(-2)2C .0D .-222.在-3.5,227,0,π2,-2,-30.001,0.616 116 111 6…(相邻两个6之间依次增加一个1)中,无理数有( )A .1个B .2个C .3个D .4个 3.下列各组数中互为相反数的是( ) A .5和(-5)2 B .-|-5|和-(-5) C .-5和3-125 D .-5和154.下列说法中不正确的是( ) A .3是(-3)2的算术平方根B .±3是(-3)2的平方根C .-3是(-3)2的算术平方根D .-3是(-3)3的立方根5.如图,数轴上点P 表示的数可能是( )A. 5B.7C.11D.176.下列比较实数大小正确的是( )A.3-1>1B.3-22>0C .-33=-1D.326>37.若a ,b 为实数,且|a +1|+b -1=0,则(ab )2 019的值是( ) A .0 B .1 C .-1 D .±1 8.若3<a <10,则下列结论中正确的是( )A .1<a <3B .1<a <4C .2<a <3D .2<a <49.下列语句中正确的是( )①无理数的相反数是无理数; ②一个实数的绝对值一定是非负数; ③有理数比无理数小;④无限小数不一定是无理数.A .②③B .②③④C .①②④D .②④10.已知n =3m -137-12-m ,当m 的值最大时,n 的值为( ) A .12 B .-3126-1 C .5 D .-5 二、填空题(每题3分,共12分)11.1-7的相反数是________;1-7的绝对值是________.12.一个正方体的体积为125 cm 3,若要使其体积增大到343 cm 3,则它的棱长需要增加________cm.13.对于两个不相等的实数a ,b ,定义一种新的运算如下,a *b =a +ba -b(a +b >0),如:3*2=3+23-2=5,那么6*(5*4)=________.14.如图,数轴上点A 表示的数为3,点B 到点A 的距离为5个单位长度,则点B 表示的数是____________.三、(每题6分,共12分) 15.计算:1214-3278-⎪⎪⎪⎪⎪⎪3-12564.16.观察下列各数:0,-3,-π,3.131 131 113…(相邻两个3之间依次增加一个1),-(-2)2,3-125,||3-2,-38.(1)找出其中的有理数和无理数;(2)计算其中所有无理数之和(精确到百分位,其中3≈1.732).四、(每题6分,共12分) 17.求下列各式中x 的值: (1)25x 2=9; (2)(x +3)3=8.18.比较下列每组中的两个数的大小. (1)6和3215; (2)2和11+12.五、(每题8分,共16分) 19.如果A =a -2b +3a +3b 为a +3b 的算术平方根,B =2a -b -11-a 2为1-a 2的立方根,求A +B 的立方根.20.先观察下列等式,再回答问题:①1+112+122=1+11-11+1=112;②1+122+132=1+12-12+1=116;③1+132+142=1+13-13+1=1112;….(1)请你根据上面三个等式提供的信息,猜想1+142+152的结果,并验证.(2)请你按照上面各等式反映的规律,试写出用含n的式子表示的等式(n为正整数).六、(12分)21.对于实数a,我们规定:用符号[a]表示不大于a的最大整数,称[a]为a 的根整数,例如:[9]=3,[10]=3.(1)仿照以上方法计算:[4]=______;[26]=______.(2)若[x]=1,写出满足题意的x的整数值.(3)如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次[10]=3→[3]=1,这时候结果为1.对100连续求根整数,______次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是________.七、(12分)22.我们知道当a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们可以得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来说明上述结论是否成立;(2)若32x-17与3-x-94-3互为相反数,求4-x的值.八、(14分)23.用“”和“”分别代表甲种植物和乙种植物,为了美化环境,采用如图所示的方案种植.(1)观察图形,寻找规律填写下表(单位:株):(2)求出方案○n中甲种植物和乙种植物的株数;(3)是否存在一种种植方案,使得乙种植物的株数是甲种植物的株数的2倍?若存在,请你写出是第几种方案;若不存在,请说明理由.答案一、1.D 2.C 3.B 4.C5.C点拨:因为9<11<16,所以3<11<4.故选C.6.B7.C点拨:因为|a+1|+b-1=0,绝对值、算术平方根都是非负数,若几个非负数的和等于0,则每个非负数都等于0,所以a+1=0,b-1=0,解得a=-1,b=1,所以(ab)2 019=(-1)2 019=-1.故选C.8.B点拨:因为1<3<2,3<10<4,3<a<10,所以1<a<4.9.C10.D二、11.7-1;7-1 12.213.1 14.3-5或3+5三、15.解:原式=112-32-⎪⎪⎪⎪⎪⎪-54=114.16.解:(1)有理数:0,-3,-(-2)2,3-125,-38;无理数:-π,3.131 131 113…(相邻两个3之间依次增加一个1),||3-2.(2) -π+||3-2+3.131 131 113…≈-3.142+|1.732-2|+3.131=-3.142+2-1.732+3.131=0.257≈0.26.四、17.解:(1)x2=925,x=±925,x=±35.(2)x+3=38,x+3=2,x=-1.18.解:(1)因为63=216>215,所以6>3 215.(2)因为32=9<11,所以3<11,所以4<11+1,所以42<11+12,即2<11+12.五、19.解:由题意,得⎩⎨⎧a -2b +3=2,2a -b -1=3. 解得⎩⎨⎧a =3,b =2.所以A =3+3×2=9=3, B =31-32=3-8=-2. 所以A +B =3-2=1, 因为1的立方根是1, 所以A +B 的立方根是1. 20.解:(1)猜想:1+142+152=1+14-14+1=1120,验证:1+142+152=1+116+125=1+25400+16400=441400=2120=1120.(2)1+1n 2+1(n +1)2=1+1n -1n +1=1+1n (n +1)(n 为正整数).六、21.解:(1)2;5(2)因为12=1,22=4,且[x ]=1,所以x 的整数值为1,2,3. (3)3 (4)255点拨:(1)因为22=4,52=25,62=36,所以5<26<6,所以[4]=[2]=2,[26]=5;(3)第一次:[100]=10,第二次:[10]=3,第三次:[3]=1,故答案为3;(4)因为[255]=15,[15]=3,[3]=1,所以对255只需进行3次操作后变为1.因为[256]=16,[16]=4,[4]=2,[2]=1,所以对256只需进行4次操作后变为1,所以只需进行3次操作后变为1的所有正整数中,最大的是255.七、22.解:(1)2+(-2)=0,23=8,(-2)3=-8,8+(-8)=0, 因此结论成立(举例不唯一).(2)由(1)验证的结果可得2x-17-x-94-3=0,去分母,得4(2x-1)-7(x-9)-84=0,解得x=25.故4-x=4-25=4-5=-1.八、23.解:(1)第一行:16;25;36第二行:25;36;49(2)甲种植物有n2株,乙种植物有(n+1)2株.(3)不存在理由:若存在,则有(n+1)2=2n2,两边同时开平方,得n+1=2n,这个方程的正整数解不存在.。
沪科版2020年七年级下册数学第六章实数综合测试卷
沪科版2020年七年级下册数学第六章实数综合测试卷第6章综合测试卷(时间: 120 分钟分数: 150分) 得分:⼀、选择题(每题4分,共40分) 1.下列说法不正确的是( )A.0的平⽅根是0B.1的算术平⽅根是1.C.-1的⽴⽅根是±1D.4的平⽅根是⼟2 2.下列式⼦中,正确的是 ( )A.3-7 =-37B.36 =⼠6C.- 3.6 =-0.6D. ()882-=- 3.在 6161161116.0001.022,0,722,5.33,,,π---(相邻两个6之间依次多-⼀个1)中,⽆理数有 ( ) A.1个B.2个C.3个D.4个4.在实数-3, 2 ,0,2,-1中,绝对值最⼩的数是()A.-3B.0C. 2D. -15.如图为张亮的答卷,他的得分应是( )姓名:_张亮得分:填空(每⼩题20分,共100分)①-1的绝对值是_ 1 ;②-12的倒数是_- 2 ;③0.5的相反数是_ -0.5 ;④-8的⽴⽅根是_ 2 ;⑤-1 的⽴⽅根是_ -1 .A.100分B.80分C.60分D.40分6.设a=19 -1,a在两个整数之间,则这两个整数是()A.1和2B.2和3C.3和4D.4和57. 如图,数轴上的A,B,C,D四点中,与数⼀ 3 表⽰的点最接近的是( )A.点AB.点BC.点CD.点D8.已知|x|=3,5y,且|x+yl=x+y,则x-y的值为( )2A.2或8B.2或-8C.-2或8D.-2或-89.如果⼀个数的平⽅根是±8,那么这个数的⽴⽅根是()A.2B.±4C.4D.±210.有个数值转换器,原理如下:当输⼈x为125时,输出y的值是( )A.5B.35 C. 5 D.-35⼆.、填空题(每题5分,共20分)11. 如果a2=64,b3=64,则ab= .12.计算:1- 4 = ;25 -38 = .13.⼀个⼤正⽅体的体积是棱长为3 cm的⼩正⽅体体积的8倍,则这个⼤正⽅体的表⾯积是cm2.14.⽼师在讲“实数”这⼀- 节时,与同学们⼀-起做了如图所⽰的实验:圆的直径MN 为1,将点N 放在数轴的原点上,将圆沿着数轴向左滚动,点N 刚好再次落在数轴上时,它所对应的实数为 _,这个实验说明: .三、解答题(共90分) 15. (15分)计算:(1);32)6(|2|4??-?-+-+(2);1)2(27)2(|5|232----+-+-(3).53|38|41)2(32-++-+?-16.(9分)将下列各数的序号填在相应的集合⾥: ①0,②,,④③51415.3,2783π-③..7035.0-,⑥-2.3131131113...(相邻两个3之间依次多⼀个1), ⑦- 6133 ,⑧-8 ,⑨9.0,)4(2⑩-.有理数集合负⽆理数集合正实数集合⾮正实数集合 17. (10分)求下列各式中x 的值: (1)(x+2)2-9=0;(2)2(x-3)3+14=0.18. (10分)如图所⽰,数轴的正半轴上,有A,B,C三点,表⽰1和 2 的对应点分别为A,B,点B到点A的距离与点C到点A的距离相等,设点C所表⽰的数为x.(1)请你写出数x的值;(2)求(x+< 2 )2的⽴⽅根.19. (10分)通常运⽤公式u= 16df 来判断车⼦是否违章超速,其中u表⽰车速(单位:km/h),d表⽰刹车时车轮滑过的距离(单位:m),f表⽰摩擦系数.有⼀辆车在摩擦系数f=2.5的路⾯上⾏驶,刹车时滑⾏距离为10m,这段路的限速是60km/h,通过计算,判断这辆车是否违章.20. (9分)已知2a-l的平⽅根是⼟3,3a+b-9的⽴⽅根是2,c是8的整数部分,求a+b+c的平⽅根.21. (8分)已知a,b为实数,且b=4a-5 +5-4a +8,求ab的平⽅根.22.(9分)已知M=a-ba+b+3 为a+6+3的算术平⽅根,N=a-2b+3a+2b为a⼗26的⽴⽅根,求M-N的⽴⽅根.23.(10分)阅读下⾯对话,然后解答问题.你同意⼩明的说法吗?⼩丽能否⽤这个正⽅形纸⽚裁出符合要求的长⽅形纸⽚呢?为什么?答案:1.C2.A3.C4.B5.B6.C7.B8.D9.C10.B11.±3212.-1 ,313.21614.-π,⽆理数可以⽤数轴上的点来表⽰15.(1)解:原式=2+2+4 = 8(2)解:原式=5+4-3-2-1 =3(3)解:原式=4×12+|-2+ 3 |+ 3 -5 =2+2- 3 + 3 -5 = -1 16. 有理数集合:1,2,3,5,7,9负⽆理数集合:6,8正实数集合:3,4,9,10⾮正实数集合:1,2,5,6,7,817. (1)解: (x+2)2=9,x+2=±3.x=1或x=-5.(2)解:2(x-3)3= -1 4,(x-3)3=-1 8,X -3=- 12 , X=52 .18. 解: (1)x=2- 2 .(2)(x + 2 )2=(2- 2 + 2 )2=4. ∴ (x+ 2 )2的⽴⽅根是34 .19.解: u=1610x2.5 =16x 5=80, 因为80km/h> 60km/h, 所以这辆车违章。
2020年沪科版七年级数学下册第6章实数单元综合评价试卷含解析
2020年沪科版七年级数学下册第6章实数单元综合评价试卷含解析姓名座号题号一二三总分得分考后反思(我思我进步):一.选择题(共12小题)1.一个正数的两个平方根分别是2a﹣1与﹣a+2,则a的值为()A.1B.﹣1C.2D.﹣22.的值等于()A.4B.﹣4C.±4D.±23.若+(y﹣3)2=0.则x y的值为()A.﹣8B.8C.9D.4.若a2=16,=﹣2,则a+b的值是()A.12B.12或4C.12或±4D.﹣12或45.式子2+的结果精确到0.01为(可用计算器计算或笔算)()A.4.9B.4.87C.4.88D.4.896.在给出的一组数0,π,,3.14,,中,无理数有()A.1个B.2个C.3个D.5个7.在实数范围内,下列判断正确的是()A.若|m|=|n|,则m=n B.若a2>b2,则a>bC.若=()2,则a=b D.若=,则a=b8.实数7的相反数是()A.B.﹣C.﹣7D.79.已知实数a、b在数轴上的对应的点如图所示,则下列式子正确的是()A.ab>0B.|a|>|b|C.a﹣b>0D.a+b>010.给出四个数0,,π,﹣1,其中最小的是()A.0B.C.πD.﹣111.一个正方形的面积为17,估计它的边长大小为()A.2与3之间B.3与4之间C.4与5之间D.5与6之间12.如图所示,长方形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积为()A.(2﹣)B.(2﹣)2C.2D.2(2﹣)二.填空题(共8小题)13.如图是一数值转换机,若输出的结果为﹣32,则输入的x的值为.14.一个数的算术平方根是3,这个数是.15.代数式5﹣(x+y)2的最大值是,当取最大值时,x与y的关系是.16.已知x的平方根是±8,则x的立方根是.17.把取近似数并保留两个有效数字是.18.在﹣4,,0,π,1,﹣,1.这些数中,是无理数的是.19.观察下列各式:=2,=3,=4…请你将发现的规律用含n(n≥1的整数)的等式表示出来.20.﹣的相反数是.三.解答题(共8小题)21.一个正数x的平方根是a+3和2a﹣18,求x的立方根.22.已知4是3a﹣2的算术平方根,2﹣15a﹣b的立方根为﹣5.(1)求a和b的值;(2)求2b﹣a﹣4的平方根.23.若|a﹣3|+(5+b)2+=0,求代数式的值.24.已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.25.计算(写出计算过程,并用计算器验证):.26.定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作分母为1的有理数;反之为无理数.如不能表示为两个互质的整数的商,所以,是无理数.可以这样证明:设与b是互质的两个整数,且b≠0.则a2=2b2因为b是整数且不为0,所以,a是不为0的偶数,设a=2n,(n是整数),所以b2=2n2,所以b也是偶数,与a,b是互质的正整数矛盾.所以,是无理数.仔细阅读上文,然后,请证明:是无理数.27.把下列各数分别填入相应的集合里.﹣5,﹣2.626 626 662…,0,π,﹣,0.12,|﹣6|.(1)正数集合:{ …};(2)负数集合:{ …};(3)有理数集合:{ …};(4)无理数集合:{ …}.28.(1)阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时,①如图2,点A、B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图3,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图4,点A、B在原点的两边,|AB|=|OB|+|OA|=|a|+|b|=a+(﹣b)=|a﹣b|;(2)回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是;数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是;③如果|x+3|=2,那么x为;④代数式|x+3|+|x﹣2|最小值是,当代数式|x+3|+|x﹣2|取最小值时,相应的x的取值范围是.参考答案与试题解析一.选择题(共12小题)1.一个正数的两个平方根分别是2a﹣1与﹣a+2,则a的值为()A.1B.﹣1C.2D.﹣2【分析】由于一个正数的两个平方根应该互为相反数,由此即可列方程解出a.【解答】解:由题意得:2a﹣1﹣a+2=0,解得:a=﹣1,故选:B.【点评】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数.2.的值等于()A.4B.﹣4C.±4D.±2【分析】利用算术平方根的定义计算即可得到结果.【解答】解:=4.故选:A.【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.3.若+(y﹣3)2=0.则x y的值为()A.﹣8B.8C.9D.【分析】根据非负数的性质可求出x、y的值,再将x、y代入x y中求解即可.【解答】解:∵+(y﹣3)2=0,∴x=﹣2,y=3;∴x y=(﹣2)3=﹣8.故选:A.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.4.若a2=16,=﹣2,则a+b的值是()A.12B.12或4C.12或±4D.﹣12或4【分析】根据a2=16,=﹣2,可得:a=±,﹣b=(﹣2)3,据此分别求出a、b的值各是多少,再把它们相加,求出a+b的值是多少即可.【解答】解:∵a2=16,=﹣2,∴a=±=±4,﹣b=(﹣2)3=﹣8,∴a=±4,b=8,∴a+b=4+8=12或a+b=﹣4+8=4.故选:B.【点评】此题主要考查了立方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.5.式子2+的结果精确到0.01为(可用计算器计算或笔算)()A.4.9B.4.87C.4.88D.4.89【分析】首先得出≈1.732,≈1.414,进一步代入求得答案即可.【解答】解:∵≈1.732,≈1.414,∴2+≈2×1.732+1.414=4.878≈4.88.故选:C.【点评】此题主要考查了利用计算器求数的开方运算,解题首先注意要让学生能够熟练运用计算器计算实数的四则混合运算,同时也要求学生会根据题目要求取近似值.6.在给出的一组数0,π,,3.14,,中,无理数有()A.1个B.2个C.3个D.5个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:π,,共有3个.故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7.在实数范围内,下列判断正确的是()A.若|m|=|n|,则m=n B.若a2>b2,则a>bC.若=()2,则a=b D.若=,则a=b【分析】A、根据绝对值的性质即可判定;B、根据平方运算的法则即可判定;C、根据算术平方根的性质即可判定;D、根据立方根的定义即可解答.【解答】解:A、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;B、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;C、两个数可能互为相反数,如a=﹣3,b=3,故选项错误;D、根据立方根的定义,显然这两个数相等,故选项正确.故选:D.【点评】解答此题的关键是熟知以下概念:(1)一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.(2)如果一个数的平方等于a,那么这个数叫作a的平方根.8.实数7的相反数是()A.B.﹣C.﹣7D.7【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:7的相反数是﹣7,故选:C.【点评】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.9.已知实数a、b在数轴上的对应的点如图所示,则下列式子正确的是()A.ab>0B.|a|>|b|C.a﹣b>0D.a+b>0【分析】根据点a、b在数轴上的位置可判断出a、b的取值范围,然后即可做出判断.【解答】解:根据点a、b在数轴上的位置可知0<a<1,b<﹣1,∴ab<0,|a|<|b|,a﹣b>0,a+b<0.故选:C.【点评】本题主要考查的是数轴的认识、有理数的加法、减法、乘法法则的应用,掌握法则是解题的关键.10.给出四个数0,,π,﹣1,其中最小的是()A.0B.C.πD.﹣1【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣1<0<<π,故给出四个数0,,π,﹣1,其中最小的是﹣1.故选:D.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.11.一个正方形的面积为17,估计它的边长大小为()A.2与3之间B.3与4之间C.4与5之间D.5与6之间【分析】首先求出正方形的边长,进而估算其边长的取值范围.【解答】解:∵一个正方形的面积为17,∴正方形的变长为:,估计它的边长大小为:4<<5,故选:C.【点评】此题主要考查了估算无理数的大小,正确得出正方形的边长是解题关键.12.如图所示,长方形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积为()A.(2﹣)B.(2﹣)2C.2D.2(2﹣)【分析】根据正方形的面积公式求得两个正方形的边长分别是2,,再根据阴影部分的面积等于矩形的面积减去两个正方形的面积进行计算.【解答】解:∵矩形内有两个相邻的正方形面积分别为4和2,∴两个正方形的边长分别是2,,∴阴影部分的面积=(2﹣)×=2﹣2.故选:A.【点评】本题要能够由正方形的面积表示出正方形的边长,再进一步表示矩形的长.二.填空题(共8小题)13.如图是一数值转换机,若输出的结果为﹣32,则输入的x的值为±4.【分析】根据转换机列出方程,再根据平方根的定义解答即可.【解答】解:由题意得x2×(﹣2)=﹣32,所以x2=16,∵(±4)2=16,∴x=±4.故答案为:±4.【点评】本题考查了平方根的定义,根据转换机列出方程是解题的关键.14.一个数的算术平方根是3,这个数是9.【分析】根据算术平方根的定义可以得到这个数就是3的平方,由此即可得到结果.【解答】解:∵一个数的算术平方根是3,∴这个数是32=9.故答案为:9.【点评】此题主要考查了算术平方根的性质,根据一个数等于它的算术平方根的平方是解决问题的关键.15.代数式5﹣(x+y)2的最大值是5,当取最大值时,x与y的关系是x+y=0.【分析】根据平方数非负数的性质可得(x+y)2大于等于0,然后求解即可.【解答】解:根据题意(x+y)2≥0,∴5﹣(x+y)2的最大值是5,此时,x+y=0,故答案为:5,x+y=0.【点评】本题主要考查了平方数非负数的性质,是基础题,比较简单.16.已知x的平方根是±8,则x的立方根是4.【分析】根据平方根的定义,易求x,再求x的立方根即可.【解答】解:∵x的平方根是±8,∴x=(±8)2,∴x=64,∴==4,故答案是4.【点评】本题考查了立方根,解题的关键是先求出x.17.把取近似数并保留两个有效数字是 1.4.【分析】首先熟练应用计算器,然后对计算器给出的结果,根据有效数字的概念用四舍五入法取近似数即可求解.【解答】解:根据题意在计算器计算:≈1.414,∵结果保留2个有效数字,∴≈1.4.故本题答案为:1.4.【点评】本题主要考查了学生能熟练应用计算器的能力,解题关键是会用科学记算器进行算术平方根计算.18.在﹣4,,0,π,1,﹣,1.这些数中,是无理数的是π.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数只有:π.故答案是:π.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.19.观察下列各式:=2,=3,=4…请你将发现的规律用含n(n≥1的整数)的等式表示出来=(n+1)•.【分析】探究规律.利用规律即可解决问题.【解答】解:∵=2,=3,=4…∴=(n+1)•.故答案为=(n+1)•.【点评】本题考查实数、规律题,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.20.﹣的相反数是.【分析】根据相反数的定义进行填空即可.【解答】解:∵﹣的相反数是,故答案为.【点评】本题考查了实数的性质以及算术平方根,掌握相反数的定义是解题的关键.三.解答题(共8小题)21.一个正数x的平方根是a+3和2a﹣18,求x的立方根.【分析】根据平方根的和为零,可得一元一次方程,根据解方程,可得a的值,根据平方运算,可得这个数,根据开立方运算,可得答案.【解答】解:依题意得,(a+3)+(2a﹣18)=0,解得a=5,∴x的平方根是±8,∴x=64,∴x的立方根是4.【点评】本题考查了平方根,利用了开方运算,乘方运算.22.已知4是3a﹣2的算术平方根,2﹣15a﹣b的立方根为﹣5.(1)求a和b的值;(2)求2b﹣a﹣4的平方根.【分析】(1)根据算术平方根、立方根的定义,得到3a﹣2=16,2﹣15a﹣b=﹣125,求出a,b的值即可;(2)把a,b值代入代数式求出代数式的值,根据平方根即可解答.【解答】解:(1)∵4是3a﹣2的算术平方根,∴3a﹣2=16,∴a=6,∵2﹣15a﹣b的立方根为﹣5,∴2﹣15a﹣b=﹣125,∴2﹣15×6﹣b=﹣125,∴b=37.(2)2b﹣a﹣4=2×37﹣6﹣4=64,64的平方根为±8,∴2b﹣a﹣4的平方根为±8.【点评】本题考查了平方根、算术平方根,解决本题的关键是熟记平方根、算术平方根的定义.23.若|a﹣3|+(5+b)2+=0,求代数式的值.【分析】首先利用绝对值、平方和二次根式的非负性和已知条件即可得到关于a、b、c 的方程组,解方程组即可求得a、b、c的值,然后代入所求代数式中计算即可.【解答】解:∵|a﹣3|≥0,(5+b)2≥0,≥0,且|a﹣3|+(5+b)2+=0,∴a﹣3=0,5+b=0,c+1=0∴a=3,b=﹣5,c=﹣1∴=﹣.【点评】此题主要考查了非负数的性质,掌握绝对值、平方和二次根式的非负性是解决此类问题的关键.24.已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.【分析】根据平方根、立方根的定义和已知条件可知x﹣2=4,2x+y+7=27,列方程解出x、y,最后代入代数式求解即可.【解答】解:∵x﹣2的平方根是±2,∴x﹣2=4,∴x=6,∵2x+y+7的立方根是3∴2x+y+7=27把x的值代入解得:y=8,∴x2+y2的算术平方根为10.【点评】本题主要考查了平方根、立方根的概念,难易程度适中.25.计算(写出计算过程,并用计算器验证):.【分析】利用二次根式乘法法则首先将括号里面进行计算,再去括号,利用二次根式的除法法则,除以一个数等于乘以一个数的倒数,整理后再通分即可得出答案,再利用计算器验证计算结果即可.【解答】解:原式=,=,=.∵≈1.414…,∴原式=≈0.195,用计算器求出原式≈(2.236…×2.449…﹣2×3.872…)÷3×3.872…≈0.195.故以上计算正确.【点评】此题主要考查了二次根式的乘除运算以及计算器的应用,解题关键是要求学生熟悉计算器的按键顺序以及熟练应用二次根式的乘、除法法则.26.定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作分母为1的有理数;反之为无理数.如不能表示为两个互质的整数的商,所以,是无理数.可以这样证明:设与b是互质的两个整数,且b≠0.则a2=2b2因为b是整数且不为0,所以,a是不为0的偶数,设a=2n,(n是整数),所以b2=2n2,所以b也是偶数,与a,b是互质的正整数矛盾.所以,是无理数.仔细阅读上文,然后,请证明:是无理数.【分析】先设=,再由已知条件得出,a2=5b2,又知道b是整数且不为0,所以a不为0且为5的倍数,再设a=5n,(n是整数),则b2=5n2,从而得到b也为5的倍数,与a,b是互质的正整数矛盾,从而证明了答案.【解答】解:设与b是互质的两个整数,且b≠0.则,a2=5b2,因为b是整数且不为0,所以a不为0且为5的倍数,设a=5n,(n是整数),所以b2=5n2,所以b也为5的倍数,与a,b是互质的正整数矛盾.所以是无理数.【点评】本题考查了无理数的概念,解题的关键是根据所给事例模仿去做,做到举一反三.27.把下列各数分别填入相应的集合里.﹣5,﹣2.626 626 662…,0,π,﹣,0.12,|﹣6|.(1)正数集合:{ …};(2)负数集合:{ …};(3)有理数集合:{ …};(4)无理数集合:{ …}.【分析】(1)根据大于零的数是正数,可得答案;(2)根据小于零的数是负数,可得答案;(3)根据有理数是有限小数或无限不循环小数,可得答案;(4)根据无理数是无限不循环小数,可得答案.【解答】解:(1)正数集合:{π,0.12,|﹣6|};(2)负数集合:{﹣5,﹣2.626 626 662…,﹣};(3)有理数集合:{﹣5,0,﹣,0.12,|﹣6|};(4)无理数集合:{﹣2.626 626 662…,π};故答案为:π,0.12,|﹣6|;﹣5,﹣2.626 626 662…,﹣;﹣5,0,﹣,0.12,|﹣6|;﹣2.626 626 662…,π.【点评】本题考查了实数,大于零的数是正数,小于零的数是负数;有理数是有限小数或无限不循环小数,无理数是无限不循环小数.28.(1)阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时,①如图2,点A、B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图3,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图4,点A、B在原点的两边,|AB|=|OB|+|OA|=|a|+|b|=a+(﹣b)=|a﹣b|;(2)回答下列问题:①数轴上表示2和5的两点之间的距离是3,数轴上表示﹣2和﹣5的两点之间的距离是3;数轴上表示1和﹣3的两点之间的距离是4;②数轴上表示x和﹣1的两点A和B之间的距离是|x+1|;③如果|x+3|=2,那么x为﹣1或﹣5;④代数式|x+3|+|x﹣2|最小值是5,当代数式|x+3|+|x﹣2|取最小值时,相应的x的取值范围是﹣3≤x≤2.【分析】由所给阅读材料可知两点间的距离即为数轴上右边的点所对应的数减去左边的点所对应的数,据此分别求解即可.【解答】解:①|5﹣2|=5﹣2=3,|﹣2﹣(﹣5)|=﹣2﹣(﹣5)=﹣2+5=3,|1﹣(﹣3)|=1﹣(﹣3)=1+3=4,故答案为:3;3;4;②由题意可知|x﹣(﹣1)|=|x+1|,故答案为:|x+1|;③由题意可知x+3=2或x+3=﹣2,解得x=﹣1或x=﹣5,故答案为:﹣1或﹣5;④由绝对值的意义可知当﹣3≤x≤2时,|x+3|+|x﹣2的值即为2与﹣3两点间的距离,此时最小,最小值为|2﹣(﹣3)|=5.故答案为:5;﹣3≤x≤2.【点评】本题主要考查绝对值的意义,由所给阅读材料得出两点间的距离即为数轴上对应两点的数的差的绝对值是解题的关键.。
2020数学沪科七年级下单元测试卷第6章检测卷
第6章检测卷(60分钟 100分)一、选择题(本大题共10小题,每小题3分,满分30分)1.下列各式中,计算正确的是A.√(-3)2=-3B.√-3433=-7C.√-25=-5D.√62=±62.若m 的立方根是2,则m 的值是 A.4 B.8C.±4D.±83.下列说法中,正确的是A.0的立方根是0B.-1的平方根是-1C.1的平方根是1D.-1的立方根是±14.如图,-√5可用数轴上的哪个点表示A.点PB.点QC.点MD.点N 5.若k<√90<k+1(k 是整数),则k 的值为A.6B.7C.8D.96.√169的算术平方根是A.±13B.13C.-13D.√137.已知√a +2+|b-1|=0,那么(a+b )2020的值为A.0B.1C.32020D.-320208.如果√2.373≈1.333,√23.73≈2.872,那么√23703约等于A.28.72B.0.2872C.13.33D.0.13339.已知物体自由下落的高度h (m)与下落时间t (s)满足h=12gt 2(g 取9.8 m/s 2).若一个物体从高度为122.5 m 的建筑物上自由下落,到达地面大约需要A.2 sB.3 sC.5 sD.6 s10.定义运算:a b=a(b-1).下面给出了关于这种运算的四个结论:①2(-1)=-4;②a b=ba;③若a+b=1,则a a=b b;④若b a=0,则a=0或b=1.其中正确结论的序号是A.②④B.②③C.①④D.①③二、填空题(本大题共4小题,每小题4分,满分16分)11.已知a是27的立方根,则a=3.12.计算(-2)2-√36的结果是-2.13.比较大小:-4<-√13.(填“>”“<”或“=”)14.A,B是数轴上的两点,若点A表示实数-√3,且点B与点A之间的距离为2,则点B表示的实数是-√3-2或2-√3.三、解答题(本大题共6小题,满分54分)3+|√3-2|.15.(6分)计算:√9−√8解:原式=3-2+2-√3=3-√3.16.(8分)已知(x-1)2+|y+3|+√x+y+z=0,求x+y2-z的立方根.解:由已知得x=1,y=-3,z=2,故x+y2-z=8,其立方根为2.17.(8分)已知18+√13与18-√13的小数部分分别为a,b,求a+b的值.解:因为3<√13<4,所以18+√13的小数部分为a=18+√13-21=√13-3,18-√13的小数部分为b=18-√13-14=4-√13,所以a+b=√13-3+4-√13=1.18.(10分)观察图1:每个小正方形的边长均为1,我们可以得到小正方形的面积为1.(1)图1中阴影正方形的面积为 2 ,并由面积求正方形的边长,可得边长AB 为 √2 ;(2)在图2所示的3×3的正方形方格中,由(1)的解题思路和方法,设计一个方案画出长为√5的线段,并说明理由.解:(2)如图,所画正方形的边长为√5.因为所画正方形的面积为5,所以其边长为√5.(画法不唯一)19.(10分)已知-6m+n 的算术平方根是4,4m-2n 的立方根是-2,求n 2-20m 的平方根. 解:由-6m+n 的算术平方根是4,得-6m+n=16; ①由4m-2n 的立方根是-2,得4m-2n=-8. ②联立①②,解得{m =-3,n =-2,所以n 2-20m=(-2)2-20×(-3)=64,所以n 2-20m 的平方根是±√64=±8.20.(12分)认真阅读下列材料,解决后面的问题.依照平方根(二次方根)和立方根(三次方根)的定义,可给出四次方根、五次方根的定义.比如:若x2=a(a≥0),则x叫做a的二次方根;若x3=a,则x叫做a的三次方根;若x4=a(a≥0),则x叫做a的四次方根;(1)依照上面的材料,请你给出五次方根的定义,并求出-32的五次方根;(2x-4)4-8=0.(2)解方程:12解:(1)若x5=a,则x叫做a的五次方根.因为(-2)5=-32,所以-32的五次方根是-2.(2)由1(2x-4)4-8=0,得(2x-4)4=16,2所以2x-4=±2,解得x=3或x=1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D. 5 5+ 15=6
6.下列四个数中,大于 1 而又小于 2 的无理数是( B )
3
2+1
A.2
B. 2
3-1 C. 3
3+1 D. 3
7.(2019·内蒙古巴彦淖尔中考)实数 a,b 在数轴上的对应点的位置如图所示.下 列结论正确的是( C )
A.a>b C.-a>b
B.a>-b D.-a<b
18.(6 分)计算: 81+3 -27- (-2)2+| 3-2|. 解:原式=9-3-2+2- 3=6- 3.
19.(8 分)已知 5a+2 的立方根是 3,3a+b-1 的算术平方根是 4,c 是 13的整数 部分. (1)求 a,b,c 的值; (2)求 3a-b+c 的平方根.
解:(1)因为 5a+2 的立方根是 3,3a+b-1 的算术平方根是 4,所以 5a+2=27, 3a+b-1=16,所以 a=5,b=2. 因为 9<13<16,所以 3< 13<4, 所以 13的整数部分 c=3. (2)将 a=5,b=2,c=3 代入得 3a-b+c=16, 所以 3a-b+c 的平方根是±4.
10.对于有理数 a,b,定义 min{a,b}的含义为:当 a≥b 时,min{a,b}=b;当
a<b 时,min{a,b}=a.例如:min{1,-2}=-2.已知 min{ 31,a}=a,min{ 31, b}= 31,且 a 和 b 为两个连续正整数,则 ab-( 31)2 的立方根为( A )
≈__2_4_.7_7____;②若3 x≈0.183 08,则 x≈_0_._00_6_1_37___. 14.(2019·陕西西安交大附中一模)将实数-2,π,- 3, 6用“<”连接是 ___-__2_<__-___3_<____6_<__π_____.
三、解答题(共 58 分)
15.(6 分)求下列各数的相反数和绝对值:
20.(8 分)(2019·北京海淀区期中)已知正实数 x 的平方根是 m 和 m+b. (1)当 b=8 时,求 m; (2)若 m2x+(m+b)2x=4,求 x 的值. 解:(1)因为正实数 x 的平方根是 m 和 m+b.所以 m+m+b=0. 因为 b=8,所以 2m+8=0,所以 m=-4. (2)因为正实数 x 的平方根是 m 和 m+b, 所以(m+b)2=m2=x. 因为 m2x+(m+b)2x=4,所以 x2+x2=4,所以 x2=2. 因为 x>0,所以 x= 2.
214的值等于(
A
)
A.32
B.-32
C.±32
81 D.16
4.(2019·山东潍坊期末)下列说法正确的是( B )
A.215的平方根是15
B.-9 是 81 的一个平方根
C.0.2 是 0.4 的算术平方根
D.负数没有立方根
5.下列各式中正确的是( D )
A. 4=±2
B. (-3)2=-3
C.3 4=2
请解决以下问题: (1)请仿照①帮助小明完成②的填空,并猜想:一般地,当 a≥0,b≥0 时, ab与
a、 b之间的大小关系是怎样的? (2)再举一个例子,检验你猜想的结果是否正确; (3)运用以上结论,计算 81×144的值.
解:(1) 9×16= 9× 16, 根据题意,当 a≥0,b≥0 时, ab与 a, b之间的大小关系为 ab= a× b. (2)举例如, 25×1= 25× 1. 验证: 25×1=5, 25× 1=5,所以 25×1= 25× 1. 又举例如: 25×16= 25× 16. 验证: 25×16=20, 25× 16=20,所以 25×16= 25× 16等,符合(1)的猜 想. (3) 81×144= 81× 144=9×12=108.
A.-1
B.1
C.-2
D.2
二、填空题(每小题 3 分,共 12 分)
11. 3 64的平方根是___±_2_____. 12.(2019·山东济宁邹城期末)若 2x+1 和 3-x 是一个数的平方根,则 x= -__4__或__23___.
13.(2019·辽宁鞍山期末)观察: 6.137≈2.477,3 6.137≈1.830 8,填空:① 613.7
初中同步训练
数学
七年级下册 (HK版)
第6章 单元检测卷
一、选择题(每小题 3 分,共 30 分) 1.(2019·山东青岛中考)- 3的相反数是( D )
A.- 3
B.-
3 3
C.± 3
D. 3
2.(2019·湖北十堰中考)下列实数中,是无理数的是( D )
A.0
B.-3
1
C.3
D. 3
3.(2019·江苏无锡滨湖区期末)
(2)设公园中心的圆形花圃的半径为 r m,根据题意,得 πr2=800,即 r2=8π00. 两边开平方,得 r= 8π00或 r=- 8π00(舍去). 所以 r= 8π00≈16. 所以它的半径约为 16 m.
22.(10 分)阅读理解下面内容,并解决问题: 善于思考的小明在学习《实数》一章后,自己探究出了下面的两个结论: ①( 9×4)2=9×4,( 9× 4)2=( 9)2×( 4)2=9×4, 9×4和 9× 4都是 9×4 的算术平方根,而 9×4 的算术平方根只有一个,所以 9×4= 9× 4. ②( 9×16)2=9×16,( 9× 16)2=( 9)2×( 16)2=9×16, 9×16和 9× 16都 是 9×16 的算术平方根,而 9×16 的算术平方根只有一个,所以 ___9_×__1_6_=___9_×____1_6_.
8.(2019·山东德州宁津期末)点 A 在数轴上和表示 1 的点相距 6个单位长度,则点 A 表示的数为( C )
A.1- 6
B.1+ 6
C.1+ 6或 1- 6
D. 6-1
9.如图,阴影部分的面积ቤተ መጻሕፍቲ ባይዱ 16 cm2,则图中长方形的周长为( B )
A.28 cm C.25 cm
B.24 cm D.不能确定
(3)有理数:_______-__12_,__0_.1_,____3_6_,__3__-__8_,__0_,__…__ ____; (4)无理数: _________{_3__1_1_,__π2_,__0_.1_2_1_2_2_1_2_2_2_1_…__(_相__邻__两__个__1_之__间___2_的__个__数__逐__次__加___1_),__…__}___.
17.(6 分)求下列各式中 x 的值. (1)125(x+1)3=8; (2)12(2x-1)2-8=0. 解:(1)因为 125(x+1)3=8,所以(x+1)3=1825. 所以 x+1=25.所以 x=-35. (2)因为12(2x-1)2-8=0,所以(2x-1)2=16.所以 2x-1=4 或 2x-1=-4.所以 x =52或 x=-32.
21.(8 分)某地开辟一块长方形的荒地用于新建一个以环保为主题的公园.已知这 块荒地的长是宽的 2 倍,它的面积为 400 000 m2. (1)公园的宽是多少?它有 1 000 m 吗? (2)该公园中心有一个圆形花圃,面积是 800 m2,你能估计它的半径吗?(精确到 1 m)
解:(1)设这块荒地的宽是 x m,那么长是 2x m. 根据题意,得 2x×x=400 000,即 x2=200 000. 两边开平方,得 x= 200 000或 x=- 200 000(舍去). 因为 200 000<1 000 000=1 0002, 所以 200 000< 1 0002=1 000. 所以公园的宽为 200 000 m,没有 1 000 m.
(1)- 5;
(2)π-3;
(3) 3- 2;
3 (4)
-1
27 000.
解:(1) 5, 5 (2)3-π,π-3
(3) 2- 3, 3- 2 (4)130,130
16.(6 分)把下列各数写入相应的括号中: -12,3 11,0.1,π2, 36,3 -8,0,0.121 221 222 1…(相邻两个 1 之间 2 的个数 逐次加 1): (1)正数: _{_3_1_1_,__0_._1_,__π2_,___3_6_,__0_.1_2_1_2_2_1_2_2_2_1_…__(_相_邻__两__个___1_之__间___2_的__个__数__逐__次__加__1_)_,__…__}__; (2)负数:_-__12_,__3__-__8_,__…__ ;