SPWM,马鞍波,空间矢量逆变原理

合集下载

SPWM,马鞍波,空间矢量的变压变频调速

SPWM,马鞍波,空间矢量的变压变频调速

SPWM,马鞍波,空间矢量的变压变频调速
一.实验目的
(1)理解变压变频调速的原理
二.实验所需挂件
1 DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。

2 DJK13三相异步电机变频调速控制
3 DJ24三相鼠笼式异步电机
三.实验步骤
1.将DJ24电机与DJK13 逆变输出部分连接,电机接成Δ形式,关闭电机开关,调制方式设定在SPWM 方式下(将S、V、P 的三端子都悬空)。

打开挂件电源开关,点动“增速”、“减速”和“转向”键,观测挂件工作是否正常,如果工作正常,将运行频率退到零,关闭挂件电源开关。

然后打开电机开关,接通挂件电源,增加频率、降低频率以及改变转向观测电机的转速变化。

2.观测调制信号幅值随频率的变化,观测磁通幅值随频率的变化。

3.采用马鞍波和电压空间矢量方式重复以上步骤。

四.预习要求
1.变压变频调速原理
五.实验报告
1.观察频率改变后电机转速的变化,画出不同变频模式下的V/F曲线
六.注意事项
1.在频率不等于零的时候不得打开电机开关。

SPWM逆变原理及控制方法

SPWM逆变原理及控制方法
• 双极性调制法(单相)
u u
r
u
c
O
ωt
uo U
d
u of
uo
O
ωt
-U
d
19
2.2 SPWM逆变及其控制方法
u
rU
u
rV
u
c
u
rW
• 双极性调制法(三相)
u
U 2 ? U 2
u
O
? t
UN'
d
O
d
? t
u
VN'
U 2 U 2
d
O
d
? t
?
u
WN'
U 2
d
O
? t
u
UV d
U
O - U u
UN
? t
V4
V1
TD
V1
V1* V4 V4*
21
2.2 SPWM逆变及其控制方法
• 特定谐波消去法(计算法)
Selected Harmonic Elimination PWM—SHEPWM 这是计算法中一种较有 代表性的方法 输出电压半周期内,器 件通、断各3次(不包括 0和π),共6个开关时 刻可控 为减少谐波并简化控 制,要尽量使波形对称
2.1 SPWM基本原理
• PWM控制的思想源于通信技术,全控型器件的发 展使得实现PWM控制变得十分容易 • PWM技术的应用十分广泛,它使电力电子装置的 性能大大提高,因此它在电力电子技术的发展史 上占有十分重要的地位 • PWM控制技术正是有赖于在逆变电路中的成功应 用,才确定了它在电力电子技术中的重要地位
an 4 ⎡ α1 U d = sin n ω t d ω t + ∫ ⎢ 0 π ⎣ 2 + =

空间矢量脉宽调制技术

空间矢量脉宽调制技术

空间矢量脉宽调制技术空间矢量脉宽调制技术(SPWM)是一种广泛应用于电力电子和驱动控制系统中的调制技术。

该技术是基于对正弦波进行Pulse Width Modulation(PWM)的基础上,通过多种空间矢量变换的方式,进一步提高功率电子器件的使用效率和控制精度。

本文旨在探究SPWM 技术的原理、发展历程及在实际应用中的优点和挑战。

一、SPWM技术的原理SPWM技术是一种通过调制信号的脉宽来控制功率开关器件的电力电子调制技术,其原理基于三相交流电源。

具体而言,SPWM技术涉及到对正弦波电源进行采样、比较、引出调制波等操作,最终生成宽度可调的PWM信号,用于控制功率开关器件的通断。

在SPWM技术中,生成一个矢量的宽度可以通过比较采样信号和调制信号来实现。

采样信号是正弦波电源经过采样转换后得到的“参照信号”,调制信号则是通过多种空间矢量变换技术得到的“控制信号”。

1. 采样:将三相电源的正弦波进行采样转换,得到由三个方向的“参照信号”。

2. 比较:将每个参照信号与对应的调制信号进行比较,得到每个周期内相应的PWM信号。

3. 引出调制波:通过正弦波调制,将参照信号转换成空间矢量,得到三个方向的“控制信号”。

4. 生成PWM信号:根据每个周期内相应的控制信号,生成宽度可调的PWM信号,用于控制功率开关器件的通断。

SPWM技术的发展历程可以追溯到上世纪70年代末,当时由于功率开关器件的普及,PWM技术成为电力电子调制技术的主流技术。

SPWM技术的发展缘起于对传统PWM技术中影响系统效率和精度的限制的挑战。

传统PWM技术在控制效率和精度上有着天然的限制,因此SPWM技术的出现实际是为了进一步提高系统的效率和精度。

在此基础上,SPWM技术一步步得到完善。

90年代初期,国外开始出现一些SPWM技术的研究成果,如空间矢量调制技术(SVM)、对称空间矢量调制技术(SSVM)等。

此后,国内也相继出现大量研究SPWM技术的文献。

逆变器spwm的工作原理

逆变器spwm的工作原理

逆变器spwm的工作原理
逆变器是一种将直流电转换成交流电的电路,常用于太阳能电池板、电动车等领域。

逆变器的工作原理主要是通过PWM(脉宽调制)技术,将直流电转换成一定频率的交流电。

其中,SPWM(正弦波脉宽调制)是一种常用的PWM技术,它的原理是通过将直流电通过一个三相桥式逆变器进行开关控制,使其输出一定频率的三相交流电。

具体来说,SPWM技术通过将一个正弦波信号与一个三角波信号进行比较,从而得到控制逆变器开关的信号。

在SPWM技术中,正弦波信号的频率即为所需要的输出频率,而三角波信号的频率则为SPWM的调制频率。

逆变器会不断地比较正弦波信号与三角波信号的大小关系,根据比较结果来控制逆变器中的开关管开关状态,从而输出相应频率的交流电。

总的来说,逆变器SPWM技术的工作原理就是通过控制开关管的开关状态,将直流电转换成一定频率的交流电。

spwm原理

spwm原理

spwm原理
Spwm(全称Space Vector Pulse Width Modulation空间矢量脉宽调制)是一种脉宽调制的技术,它的工作原理是将多相电路的控制电压经由三相线性变换,转换成三相空间矢量,覆盖基三角形之下的六个等边三角形,以此来实现自变换。

在任何一个瞬间,由于只有三个相位和两个矢量之间的转换,这就解释了为什么说spwm是一种2至3状态变化,它可以将多相电路同步成为可控电流,从而可以控制多相设备的供电。

与普通的脉宽调制相比,spwm有以下优势:它可以生成更宽的调制范围,由于它加入了空间矢量,可以更好地抑制电动机电流和电压逆变;它可以更快地把电流转换完成;它还具有很高的非线性和负载容性,能够更好地应对各种环境振荡,最重要的是,其运行对环境没有辐射影响。

因此,由于其良好的特性,Spwm在电动机领域,特别是传动电机控制,驱动系统等领域,被广泛的应用。

SPWM原理以及具体实现方法

SPWM原理以及具体实现方法

SPWMSPWM(Sinusoidal PWM)法是一种比较成熟的,目前使用较广泛的PWM法.前面提到的采样控制理论中的一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同.SPWM法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值.定义我们先说说什么叫PWMPWM的全称是Pulse Width Modulation(脉冲宽度调制),它是通过改变输出方波的占空比来改变等效的输出电压。

广泛地用于电动机调速和阀门控制,比如我们现在的电动车电机调速就是使用这种方式。

所谓SPWM,就是在PWM的基础上改变了调制脉冲方式,脉冲宽度时间占空比按正弦规率排列,这样输出波形经过适当的滤波可以做到正弦波输出。

它广泛地用于直流交流逆变器等,比如高级一些的UPS就是一个例子。

三相SPWM是使用SPWM模拟市电的三相输出,在变频器领域被广泛的采用。

该方法的实现有以下几种方案。

1.3.1等面积法该方案实际上就是SPWM法原理的直接阐释,用同样数量的等幅而不等宽的矩形脉冲序列代替正弦波,然后计算各脉冲的宽度和间隔,并把这些数据存于微机中,通过查表的方式生成PWM信号控制开关器件的通断,以达到预期的目的.由于此方法是以SPWM控制的基本原理为出发点,可以准确地计算出各开关器件的通断时刻,其所得的的波形很接近正弦波,但其存在计算繁琐,数据占用内存大,不能实时控制的缺点.1.3.2硬件调制法硬件调制法是为解决等面积法计算繁琐的缺点而提出的,其原理就是把所希望的波形作为调制信号,把接受调制的信号作为载波,通过对载波的调制得到所期望的PWM波形。

通常采用等腰三角波作为载波,当调制信号波为正弦波时,所得到的就是SPWM波形。

SPWM原理

SPWM原理

SPWM原理
SPWM用输出的正弦信号作为调制波,用高频三角波作为载波,控制逆变器的一个桥臂的上、下两个开关管导通与关断。

如果在半个正弦周期内, 只有上( 下) 桥臂的开关管反复通断,下(上) 桥臂开关管动作, 则称为单极式SPWM.如果在整个周期内, 上、下桥臂的开关管交替导通与关断,即上通下断和上断下通的状态反复切换,则称为双极式SPWM。

下图给出了双极式SPWM的原理示意图。

当载波与调制波相交时, 由该交点确定逆变器一个桥臂开关器件的开关动作时刻及开关通断状态,获得一系列宽度不等的正负矩形脉冲电压波形。

该脉冲序列的特点是等幅不等宽, 其宽度按正弦规律变化;在正弦波半个周期内, 正负脉冲的面积总和与正弦波的面积相等。

SPWM调制的理论基础是面积等效原则, 图中横轴代表时间, 因此SPWM 的理论依据实际是时间平均等效原理.当脉冲数足够多时, 可以认为逆变器输出电压的基波幅值和调制波幅值是相等的,即SPWM逆变器输出的脉冲波的基波幅值就是调制时要求的等效正弦波。

SPWM产生原理图。

SPWM逆变电路原理

SPWM逆变电路原理

对于大多数应用场合需要的是工频电源,例如我们的电冰箱,洗衣机,电风扇等都需要正弦波的220伏、50赫兹电源,各种动力设备,远距离输电也都需要正弦波的交流电。

更多的太阳能光伏发电装置输出的是正弦波交流电,目前生成正弦波仍采用前面介绍的全桥电路,只是对开关晶体管的控制采用PWM脉宽调制或移相控制或调频控制等方式。

这里仅介绍最常用的PWM脉宽调制方式。

面积等效原理转换把直流电转换成正弦波交流电是根据根据面积等效原理,在图1上图中的正弦半波(红线)分成n等份,把正弦半波看成是由n个彼此相连的矩形脉冲组成的波形,为简单清晰,划分为7等份。

7个脉冲的幅值按正弦规律变化,每个脉冲面积与相对应的正弦波部分面积相同,这一连续脉冲就等效正弦波。

图1 用面积等效原理转换为SPWM波形如果把上述脉冲序列改为相同数量的等幅而不等宽的矩形脉冲(图1下图),脉冲中心位置不变,并且使该矩形脉冲面积和上图对应的矩形脉冲相同,得到图1下图所示的脉冲序列,脉冲宽度按正弦波规律变化,这就是PWM波形。

根据面积等效原理,PWM波形和正弦半波是等效的,图中红线就是该序列波形的平均值。

对于正弦波的负半周,也可以用同样的方法得到PWM 波形。

这种脉冲的宽度按正弦规律变化而和正弦波等效的PWM波形,也称SPWM波形。

要改变等效输出的正弦波的幅值时,只需按照同一比例系数改变上述各脉冲的宽度即可。

SPWM波形的生成输出SPWM波形仍需全桥逆变电路,在“光伏用DC-DC变换器”课件中已介绍过这种电路,通过控制开关晶体管的通与断在负载上产生交变电压,见图2。

s图2 全桥逆变电路的工作状态输出SPWM波形的矩形波必须生成序列的控制信号来控制桥式电路中开关晶体管的通与断,普遍使用的是调制法来生成控制信号,可采取单极性调制也可采用双极性调制来生成控制信号,下面介绍常用的单极性调制方式。

图3上部分是SPWM波形控制信号生成的原理图,下部分是生成的SPWM波形。

spwm原理

spwm原理

spwm原理
SPWM(Sinusoidal Pulse Width Modulation)是一种调制技术,用于将直流电压转换成交流电压。

它通过改变一个周期内脉冲的宽度,以在不同的时间点上施加不同的电压,并最终形成一个近似正弦波的输出。

SPWM的原理是通过将一个完整的周期分成很多短时间段,
并在每个时间段内施加一定的电压。

这些时间段可以被视为不同的采样点,通过改变每个时间段内脉冲的宽度来改变电压的幅值。

为了生成一个近似正弦波形的输出,这些脉冲的宽度需要按照正弦函数的规律变化。

SPWM的关键在于如何确定每个时间段内脉冲的宽度。

一种
常见的方法是使用三角波载波信号和参考信号进行比较,以得到需要施加的电压值。

三角波载波信号的频率通常比参考信号的频率高,因此每个周期内会产生多个脉冲。

通过比较三角波载波信号与参考信号的大小,确定脉冲的宽度。

如果参考信号的幅值大于三角波的幅值,则脉冲宽度增加,反之则减小。

通过不断调整每个时间段内脉冲的宽度,就可以在输出端生成一个接近正弦波形的电压信号。

这种调制技术被广泛应用于交流电压变换、电机控制等领域,能够提供高效、稳定的电压输出。

总结一下,SPWM利用调整脉冲的宽度来改变电压幅值,通
过比较三角波载波信号和参考信号来确定脉冲宽度的变化,从
而生成一个近似正弦波形的输出电压。

这种调制技术在电压变换和电机控制等领域有着广泛的应用。

三相逆变器SPWM调制原理

三相逆变器SPWM调制原理

三相逆变器SPWM调制原理PWM控制技术在逆变电路中的应用十分广泛,目前中小功率的逆变电路几乎都采用了PWM技术。

常用的PWM技术主要包括:正弦脉宽调制(SPWM)、选择谐波调制(SHEPWM)、电流滞环调制(CHPWM)和电压空间矢量调制(SVPWM)。

在采样控制理论中有一个重要的结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。

图1.1中各个形状的窄脉冲在作用到逆变器中电力电子器件时,其效果是相同的,正是基于这个理论,SPWM调制技术才孕育而生。

重要理论基础——面积等效原理a)矩形脉冲 b)三角脉冲c)正弦半波脉冲 d)单位脉冲函数图1.1 形状不同而冲量相同的各种窄脉冲把接收调制的信号作为载波,通过信号波的调制得到所期望的PWM波形,通常采用等腰三角波或锯齿波作为载波,其中等腰三角波应用最多。

因为等腰三角波上任何一点的水平宽度和高度呈线性关系且左右对称,当它与任何一个平缓变化的调制信号波相交时,这正好符合PWM控制的要求。

在调制信号波为正弦波时,所得到的就是SPWM波形。

2.电压型SPWM逆变电路控制方法2.1单极性与双极性控制(1)如果在正弦调制波的半个周期内,三角载波只在正或负的一种极性范围内变化,所得到的SPWM波也只处于一个极性的范围内,叫做单极性控制方式。

(2)如果在正弦调制波半个周期内,三角载波在正负极性之间连续变化,则SPWM波也是在正负之间变化,叫做双极性控制方式(图2.1所示)。

图2.1双极性PWM控制方式2.2同步调制与异步调制在同步调制与异步调制中主要是对载波比进行调制,载波比就是载波频率f c与调制信号频率f r之比N,既N = f c / f r;另一个相关的概念就是调制度,调制度是调制波幅值Ar与载波幅值Ac之比,即Ma=Ar/Ac。

(1)同步调制——N 等于常数,并在变频时使载波和信号波保持同步。

基本同步调制方式,f r 变化时N不变,信号波一周期内输出脉冲数固定;三相电路中公用一个三角波载波,且取N 为3的整数倍,使三相输出对称;为使一相的PWM波正负半周镜对称,N应取奇数;f r 很低时,f c 也很低,由调制带来的谐波不易滤除;f r 很高时,f c 会过高,使开关器件难以承受。

SPWM原理

SPWM原理

PWM波形是周期不变,占空比不等的脉冲波形,即频率不变,脉冲宽度变化的脉冲波形。
SPWM波形是逆变器技术中非常重要的技术,SPWM波形的形成有面积法、规则采样法、跟踪法等,一般最常用的是面积法。是这样的:
将半个周期的正弦波波形分成N等分,从而把该正弦波看成是由N个彼此相连的脉冲所组成,这些脉冲宽度相等(都等于π/N),幅值不等,且脉冲顶部不是水平直线,而是曲线,各脉冲的幅值按正弦规律变化。如果能把这种脉冲序列用同样数量的等幅而不等宽的矩形脉冲序列代替,并使矩形脉冲的中点和相应正弦等分的中点重合。且使矩形脉冲和相应的正弦部分的面积脉冲量相等,那么,就可以得到相应的脉冲序列。这样,再使各脉冲的宽度按正弦规律变化,同时使矩形波与正弦波等效,就可以实现SPWM正弦脉宽调制。

SPWM逆变电路原理

SPWM逆变电路原理

SPWM逆变电路原理————————————————————————————————作者:————————————————————————————————日期:对于大多数应用场合需要的是工频电源,例如我们的电冰箱,洗衣机,电风扇等都需要正弦波的220伏、50赫兹电源,各种动力设备,远距离输电也都需要正弦波的交流电。

更多的太阳能光伏发电装置输出的是正弦波交流电,目前生成正弦波仍采用前面介绍的全桥电路,只是对开关晶体管的控制采用PWM脉宽调制或移相控制或调频控制等方式。

这里仅介绍最常用的PWM脉宽调制方式。

面积等效原理转换把直流电转换成正弦波交流电是根据根据面积等效原理,在图1上图中的正弦半波(红线)分成n等份,把正弦半波看成是由n个彼此相连的矩形脉冲组成的波形,为简单清晰,划分为7等份。

7个脉冲的幅值按正弦规律变化,每个脉冲面积与相对应的正弦波部分面积相同,这一连续脉冲就等效正弦波。

图1 用面积等效原理转换为SPWM波形如果把上述脉冲序列改为相同数量的等幅而不等宽的矩形脉冲(图1下图),脉冲中心位置不变,并且使该矩形脉冲面积和上图对应的矩形脉冲相同,得到图1下图所示的脉冲序列,脉冲宽度按正弦波规律变化,这就是PWM波形。

根据面积等效原理,PWM波形和正弦半波是等效的,图中红线就是该序列波形的平均值。

对于正弦波的负半周,也可以用同样的方法得到PWM 波形。

这种脉冲的宽度按正弦规律变化而和正弦波等效的PWM波形,也称SPWM波形。

要改变等效输出的正弦波的幅值时,只需按照同一比例系数改变上述各脉冲的宽度即可。

SPWM波形的生成输出SPWM波形仍需全桥逆变电路,在“光伏用DC-DC变换器”课件中已介绍过这种电路,通过控制开关晶体管的通与断在负载上产生交变电压,见图2。

s图2 全桥逆变电路的工作状态输出SPWM波形的矩形波必须生成序列的控制信号来控制桥式电路中开关晶体管的通与断,普遍使用的是调制法来生成控制信号,可采取单极性调制也可采用双极性调制来生成控制信号,下面介绍常用的单极性调制方式。

SPWM工作原理及建模

SPWM工作原理及建模

SPWM工作原理及建模SPWM是一种调制技术,全称为Sinusoidal Pulse Width Modulation,即正弦脉宽调制。

它是一种用来控制逆变器输出波形的技术,适用于交流调压调速控制、电力供应的可控制直流源等领域。

SPWM的工作原理是将待控频率的正弦波与一个高频三角波进行比较,并通过调整脉冲的宽度来实现对输出波形的控制。

SPWM的工作原理基于以下几个关键步骤:1.生成三角波:使用一个可调的频率高于待控频率的三角波发生器来生成高频三角波。

这个高频三角波用来与待控频率的正弦波进行比较。

2.生成正弦波:通过一个正弦波发生器生成待控频率的正弦波。

3.比较器:将生成的正弦波与高频三角波进行比较。

比较器的输出信号形成了SPWM信号。

4.比较结果:比较器根据正弦波的幅值与三角波的幅值之间的比较关系,分析出幅度大小,进而得到高电平时间与低电平时间的比值。

5.控制输出:利用比较结果调整输出脉冲的宽度,控制逆变器的开关管的开关时间,从而实现对输出波形的控制。

通过以上步骤,SPWM可以将高频三角波与待控频率的正弦波进行比较,并通过调整脉冲的宽度来控制输出波形。

比较结果会根据正弦波的幅值与三角波的幅值之间的比较关系,将高频三角波的低电平和高电平时间比例反映到输出波形上,从而实现对输出波形的调节控制。

SPWM的建模可以用数学公式来描述。

设待控频率的正弦波为x(t),高频三角波为y(t),输出波形为z(t)。

则SPWM的控制方法可以表示为:z(t)=f(x(t),y(t))其中,f是一个函数,它描述了如何根据输入的正弦波信号和高频三角波信号来得到输出波形信号。

具体参数与函数形式由SPWM的具体实现决定。

一般而言,这个函数会通过比较正弦波信号和三角波信号的幅值来决定输出波形的脉冲宽度,从而控制输出波形的形状。

总结起来,SPWM是一种通过比较三角波和正弦波来控制输出波形的技术。

它的工作原理是通过调整脉冲的宽度来实现对输出波形的控制。

SPWM逆变电路原理

SPWM逆变电路原理

S P W M逆变电路原理Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT对于大多数应用场合需要的是工频电源,例如我们的电冰箱,洗衣机,电风扇等都需要正弦波的220伏、50赫兹电源,各种动力设备,远距离输电也都需要正弦波的交流电。

更多的太阳能光伏发电装置输出的是正弦波交流电,目前生成正弦波仍采用前面介绍的全桥电路,只是对开关晶体管的控制采用PWM脉宽调制或移相控制或调频控制等方式。

这里仅介绍最常用的PWM脉宽调制方式。

面积等效原理转换把直流电转换成正弦波交流电是根据根据面积等效原理,在图1上图中的正弦半波(红线)分成n等份,把正弦半波看成是由n个彼此相连的矩形脉冲组成的波形,为简单清晰,划分为7等份。

7个脉冲的幅值按正弦规律变化,每个脉冲面积与相对应的正弦波部分面积相同,这一连续脉冲就等效正弦波。

图1 用面积等效原理转换为SPWM波形如果把上述脉冲序列改为相同数量的等幅而不等宽的矩形脉冲(图1下图),脉冲中心位置不变,并且使该矩形脉冲面积和上图对应的矩形脉冲相同,得到图1下图所示的脉冲序列,脉冲宽度按正弦波规律变化,这就是PWM波形。

根据面积等效原理,PWM 波形和正弦半波是等效的,图中红线就是该序列波形的平均值。

对于正弦波的负半周,也可以用同样的方法得到PWM 波形。

这种脉冲的宽度按正弦规律变化而和正弦波等效的PWM波形,也称SPWM波形。

要改变等效输出的正弦波的幅值时,只需按照同一比例系数改变上述各脉冲的宽度即可。

SPWM波形的生成输出SPWM波形仍需全桥逆变电路,在“光伏用DC-DC变换器”课件中已介绍过这种电路,通过控制开关晶体管的通与断在负载上产生交变电压,见图2。

s图2 全桥逆变电路的工作状态输出SPWM波形的矩形波必须生成序列的控制信号来控制桥式电路中开关晶体管的通与断,普遍使用的是调制法来生成控制信号,可采取单极性调制也可采用双极性调制来生成控制信号,下面介绍常用的单极性调制方式。

空间电压矢量调制SVPWM 技术原理中文讲解(让初学者快速了解SVPWM控制方式)

空间电压矢量调制SVPWM 技术原理中文讲解(让初学者快速了解SVPWM控制方式)

关组合时逆变器输出的空间电压矢量,特定义开关函数 Sx ( x = a、
b、c) 为:
Sx
1上桥臂导通 0下桥臂导通
(2-30)
(Sa、Sb、Sc)的全部可能组合共有八个,包括 6 个非零矢量 Ul(001)、
U2(010) 、U3(011) 、U4(100)、U5(101) 、U6(110) 、和两个零矢量
????????????????????????66423322132tututtutudcsdcs?????????????????????????????????????段段或572333223332123212347640716264tttttttttuutututuutuuututuututututssdcsdcsdcsdcsdcsdcsdc??????浙江海得新能源有限公司第15页共23页???????????????223223321?????uuuuuuuu237同理可求得uref在其它扇区中各矢量的作用时间结果如表24所示
0
Udc
-Udc
1 3
U
dc
1 3
U
dc
2 3
U
dc
U2
-Udc Udc
0
1 3
U
dc
2 3
U
dc
1 3
U
dc
U3
-Udc
0
-Udc
2 3Байду номын сангаас
U
dc
1 3
U
dc
1 3
U
dc
第 3 页 共 23 页
浙江海得新能源有限公司
00 1
U1
0
-Udc
Udc
1 3

SPWM变频调速的基本原理与方法

SPWM变频调速的基本原理与方法

SPWM变频调速的基本原理与方法1 SPWM 逆变器的工作原理SPWM变频系统的主电路如图1-1,它工作原理是:由单片机产生的三相SPWM控制脉冲,经驱动放大电路放大后,控制主开关VT1~VT6的通断,将整流滤波后的单相直流电压逆变为三相交流电压拖动异步电动机,改变调制信号的周期与幅值,也就改变了主开关的输出脉冲周期与占空比,从而实现电机的VVVF 控制。

1)SPWM 的控制方式SPWM有两种控制方式,可以是单极式,也可以双极式。

两种控制方式调制方法相同,输出基本电压的大小和频率也都是通过改变正弦参考信号的幅值和频率而改变的,只是功率开关器件通断的情况不一样。

采用单极式控制时在正弦波的半个周期内每相只有一个开关器件开通或关断,双极式控制时逆变器同一桥臂上下两个开关器件交替通断,处于互补的工作方式。

2)逆变器输出电压与脉宽的关系在变频调速系统中,负载电机接受逆变器的输出电压而运转。

对电机来说有用的只有基波电压,通过对SPWM 输出波形的傅立叶分析可知,输出基波电压的幅值与各项脉宽有正比的关系,说明调节参考信号的幅值从而改变各个脉冲的宽度时,就实现了对逆变器输出电压基波幅值的平滑调节。

3)脉宽调制的制约条件将脉宽调制技术应用于交流调速系统要受到逆变器功率器件开关频率和调制度的制约。

逆变器各功率开关器件的开关损耗限制了脉宽调制逆变器的每秒脉冲数(即逆变器每个开关器件的每秒动作次数)。

同时,为保证主电路开关器件的安全工作,必须使所调制的脉冲波有个最小脉宽与最小间隙的限制,以保证脉冲宽度大于开关器件的导通时间与关断时间。

2 SPWM 逆变器的调制定义载波的频率fc与调制波频率fr之比为载波比N,即N= fc / fr 。

视载波比的变化与否有同步调制与异步调制之分。

三角调制波与正弦控制波的交点所确定的一组开关角决定了逆变器输出波形的频谱分布。

载波比N对逆变器输出波形的频谱分布有很大的影响。

逆变器输出的谐波分量主要集中在频率调制比N及其倍频2N、3N...的周围,在中心频率附近的谐波振幅极大值随其中心频率增大而减小,其中以N处的谐波振幅为最大,根据分析,谐波的频率可以表示为在此,基频对应于h=1。

空间矢量SVPWM讲解

空间矢量SVPWM讲解

现实考虑
易于计算机实现
形成开关信号, 控制变换器
挖掘SVPWM优势
数字实现方式
扇区确定
Vγ1>0,则A=1,反之A=0;
V γ 2>0,则B=1,反之B=0;
V γ3 >0,则C=1,反之C=0。
N =A+2B+4C
当N=3时,Uref位于第Ⅰ扇区; 当N=1时,Uref位于第Ⅱ扇区; 当N=5时,Uref 位于第Ⅲ扇区; 当N=4时,Uref 位于第Ⅳ扇区; 当N=6时,Uref 位于第Ⅴ扇区; 当N=2时,Uref 位于第Ⅵ扇区。
当N=3时,Uref位于第Ⅰ扇区; 当N=1时,Uref位于第Ⅱ扇区; 当N=5时,Uref 位于第Ⅲ扇区; 当N=4时,Uref 位于第Ⅳ扇区; 当N=6时,Uref 位于第Ⅴ扇区; 当N=2时,Uref 位于第Ⅵ扇区。






开关矢量时间确定
表Ⅰ 矢量作用时间分配
扇区






N
3
1
5
4
传统PWM技术一般通过将三角载波和
调制函数波比较获得相应脉冲波形
cos(t 30 ) 0 t 60
3 cost
60 t 120
uA
a
c os (t c os (t
150 ) 210 )
120 t 180 180 t 240
3 cost
240 t 300
cos(t 30 )
旋转向量
U UA UB UC
3
U 2
m
(sin
t,
sin
t
2 3
, s in

SPWM和空间电压矢量控制

SPWM和空间电压矢量控制
等腰三角波应用最多,因其任一点的水平宽度和高度成 线性关系且左右对称
•载波与平缓变化的调制信号相交,在交点时刻控制器件通断, 就得到宽度正比于信号波幅值的脉冲,符合PWM的要求 •调制信号波为正弦波时,得到的就是SPWM波;调制信号 是其他所需波形时,也能得到等效的PWM波
20V
基于“面积等效原理”
0V
-20V
0s
5ms
10ms
15ms
20ms
25ms
30ms
所需波形
等效的PWM波
PWM逆变电路及其控制方法
• 目前中小功率的逆变电路几乎都采用PWM技术 • 逆变电路是PWM控制技术最为重要的应用场合 • 本节内容构成了本章的主体 • PWM逆变电路也可分为电压型和电流型两种, 目前实用的PWM逆变电路几乎都是电压型电路
计算法和调制法 计算法
•根据正弦波频率、幅值和半周期脉冲数,准确计算PWM 波各脉冲宽度和间隔,据此控制逆变电路开关器件的通 断,就可得到所需PWM波形 •本法较繁琐,当输出正弦波的频率、幅值或相位变化 时,结果都要变化
计算法和调制法 调制法
•把希望输出的波形作调制信号,通过对此信号波的调制 得到所期望的PWM波 •采用等腰三角波或锯齿波作为载波
SPWM和空间电压矢量控制
理论基础 冲量相等而形状不同的窄脉冲加在具有惯性的环节 上时,其效果基本相同。 环节的输出响应波形基本相同 冲量指窄脉冲的面积 冲量
f (t) f (t) f (t) f (t)
δ (t)
O a)方波窄脉冲
t O
t t O t O b) 三角波窄脉冲 c)正弦半波窄脉冲 d)单位冲击函数
形状不同而冲量相同的各种窄脉冲
PWM控制的基本原理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SPWM,马鞍波,空间矢量逆变原理
一.实验目的
(1)理解三种常用的逆变技术原理
(2)熟悉载波与调制波波形
二.实验所需挂件
1 DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。

2 DJK13三相异步电机变频调速控制
3 示波器
三.实验步骤
1.将S,V,P悬空,观察SPWM的调制波和载波波形,观察中逐渐增加频率
2.将V,P短接,S悬空,观察马鞍波的调制波和载波
3.将S,V短接,P悬空,观察电压空间矢量的调制波和载波
四.预习要求
1.三种逆变器原理
五.实验报告
1.画出SPWM的连线
2.简述采用马鞍波调制的原因
3.简述电压空间矢量的原理
六.注意事项
1. S,P不能短接。

相关文档
最新文档