2019-2020年高考数学一轮复习第1章集合与常用逻辑用语第2节命题及其关系充分条件与必要条件课件
2020年高考数学一轮总复习第一章集合与常用逻辑用语1_2命题及其关系、充分条件与必要条件课件文新人教A版
[解析] 由题意知 a⊂α,b⊂β,若 a,b 相交,则 a,b 有公共点,从而 α,β 有公 共点,可得出 α,β 相交;反之,若 α,β 相交,则 a,b 的位置关系可能为平行、 相交或异面.因此“直线 a 和直线 b 相交”是“平面 α 和平面 β 相交”的充分不 必要条件.故选 A. [答案] A
4.(选修1-1·1.2练习改编)下列命题: ①x=2是x2-4x+4=0的必要不充分条件; ②在同一平面内,圆心到直线的距离等于半径是这条直线为圆的切线的充分必要 条件; ③sin α=sin β是α=β的充要条件; ④ab≠0是a≠0的充分不必要条件. 其中为真命题的是________(填序号). 答案:②④
由题意知p是q的充分不必要条件,
故有a≤12, a+1>1
或a<12, a+1≥1,
则0≤a≤12.
[答案] A
方法2 利用集合的包含关系求参数
【例4】
函数f(x)=
log2x,x>0, -2x+a,x≤0
有且只有一个零点的充分不必要条件是
()
A.a<0
B.0<a<12
考点一|四种命题及其关系 (易错突破) 【例1】 (1)命题“若x2+3x-4=0,则x=-4”的逆否命题及其真假性为( ) A.“若x=-4,则x2+3x-4=0”为真命题 B.“若x≠-4,则x2+3x-4≠0”为真命题 C.“若x≠-4,则x2+3x-4≠0”为假命题 D.“若x=-4,则x2+3x-4=0”为假命题
B.“若x≤y,则x2≤y2”
C.“若x>y,则x2>y2”
D.“若x≥y,则x2≥y2”
答案:B
3.(选修1-1·习题1.1A组改编)命题“若a,b都是奇数,则a+b是偶数”的逆否命 题为______________________________________. 答案:若a+b不是偶数,则a,b不都是奇数
高考数学一轮复习 1.1 集合的概念与运算
2.如果集合 A 中含有 n 个元素,则集合 A 有 2n 个子集,2n-1 个真子集. 3.正确理解交、并、补集的含义是解决集合的运算问题的关键.数轴和 Venn 图是进行集合交、并、补运算的有力工具.
12
核心考点
(4)空集: 不含任何元素的集合
叫做空集,记作: ⌀
.
规定:空集是 任何集合的子集 .
4
知识梳理
双击自测
知识梳理
-5-
3.集合的基本运算
并集
符号 表示
A∪B
图形 表示
交集 A∩B
补集
设全集为 U,集合 A 的 补集∁UA
含义
A∪
B={x|x∈A,或 x∈B}
A∩B={x|x∈A,且 x∈B}
∁UA={x|x∈U,且 x∉ A}
-13-
考点一
考点二
考点三
考点一集合的基本概念
1.设集合 A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则 M 中元素的
个数为( )
A.3
B.4
C.5
D.6
关闭
由题意知 x=a+b,a∈A,b∈B,则 x 的可能取值为 5,6,7,8.因此,集合 M 共有 4 个元素.故选 B.
关闭
B
13 解析 答案
核心考点
-14-
考点一
考点二
考点三
2.若集合 A={x∈R|ax2+ax+1=0}中只有一个元素,则 a=( )
(6)设全集为 R,函数 y= 1-������2的定义域为 M,则∁RM={x|x>1,或 x<1}.( )
2019-2020年高考数学一轮总复习第1章集合与常用逻辑用语1.2命题及其关系充分条件与必要条件模拟演练理
(4 ,+∞ ) 的真子集,故有 m≤- 2,即 m的最大值为- 2.
9.[xx ·苏州模拟
] 已知
p:A=
{
x|
x2-
2x-3≤0,
x∈
R}
,q:B=
{
x|
x
2
-
2mx+
m2- 9≤ 0,
x∈ R,m∈ R} .
(1) 若 A∩ B= [1,3] ,求实数 m的值;
(2) 若 p 是綈 q 的充分条件,求实数 m的取值范围.
2
a+ 1>1
1 或 a<2,
a+1≥1,
1 故所求实数 a 的取值范围是 0,2 .
[ B 级 知能提升 ]( 时间: 20 分钟 ) 11.[xx ·金版创新 ] 已知条件 p:x+y≠- 2,条件 q:x,y 不都是- 1,则 p 是 q 的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案 A 解析 ( 等价法 ) 因为 p:x+ y≠- 2,q:x≠- 1 或 y≠- 1,所以綈 p:x+ y=- 2,綈 q: x=- 1 且 y=- 1,因为綈 q? 綈 p 但綈 p?/ 綈 q,所以綈 q 是綈 p 的充分不必要条件,即 p 是 q 的充分不必要条件.故选 A. 12. [x x·重庆高考 ] “ x>1”是“ log 1 ( x+2)<0 ”的 ( )
2 A.充要条件 B.充分而不必要条件 C.必要而不充分条件 D.既不充分也不必要条件 答案 B 解析 由 log 1 ( x+2)<0 可得 x+ 2>1,即 x>- 1,而 { x| x>1} { x| x>-1} ,所以“ x>
高中数学高考02第一章 集合与常用逻辑用语 1 2 命题及其关系、充分条件与必要条件
师生共研
题型三 充分、必要条件的应用
例2 已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P 是x∈S的必要条件,求m的取值范围.
解 由x2-8x-20≤0,得-2≤x≤10,∴P={x|-2≤x≤10}. 由x∈P是x∈S的必要条件,知S⊆P.
解析 依题意,可得(-1,4) (2m2-3,+∞), 所以2m2-3≤-1,解得-1≤m≤1.
(2)设n∈N*,则一元二次方程x2-4x+n=0有整数根的充要条件是n=__3_或__4_. 解析 由Δ=16-4n≥0,得n≤4, 又n∈N*,则n=1,2,3,4. 当n=1,2时,方程没有整数根; 当n=3时,方程有整数根1,3, 当n=4时,方程有整数根2.综上可知,n=3或4.
5.有下列命题:
①“若x+y>0题;
③“若m>1,则mx2-2(m+1)x+m+3>0的解集是R”的逆命题;
④“若a+7是无理数,则a是无理数”的逆否命题.
其中正确的是
A.①②③
B.②③④
√C.①③④
D.①④
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
∴充分性不成立;
取 α=3π,β=136π,sin α>sin β,但 α<β,必要性不成立.
故“α>β”是“sin α>sin β”的既不充分也不必要条件.
(2)已知条件p:x>1或x<-3,条件q:5x-6>x2,则綈p是綈q的
√A.充分不必要条件
C.充要条件
B.必要不充分条件 D.既不充分也不必要条件
2020年高考人教A版理科数学一轮复习(全册PPT课件 1520张)
2020版高考 全册精品 PPT课件
第1章 集合与常用逻辑用语 第一节 集 合 第二节 命题及其关系、充分条件与必要条件 第三节 简单的逻辑联结词、全称量词与存在量词
第2章 函数、导数及其应用 第一节 函数及其表示 第二节 函数的单调性与最值 第三节 函数的奇偶性与周期性 第四节 二次函数与幂函数 第五节 指数与指数函数 第六节 对数与对数函数 第七节 函数的图象
[答案] (1)× (2)× (3)× (4)×
23 答案
2 . ( 教 材 改 编 ) 若 集 合 A = D [由题意知 A={0,1,2},由 a= {x∈N|x≤2 2},a= 2,则下列结 2,知 a∉A.] 论正确的是( ) A.{a}⊆A B.a⊆A C.{a}∈A D.a∉A
解2析4 答案
22
[基础自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打 “×”) (1)任何一个集合都至少有两个子集.( ) (2){x|y=x2}={y|y=x2}={(x,y)|y=x2}.( ) (3)若{x2,1}={0,1},则 x=0,1.( ) (4)直线 y=x+3 与 y=-2x+6 的交点组成的集合是{1,4}.( )
第8章 平面解析几何 第一节 直线的倾斜角与斜率、直线的方程 第二节 两条直线的位置关系 第三节 圆的方程 第四节 直线与圆、圆与圆的位置关系 第五节 椭 圆
第1课时 椭圆的定义、标准方程及其性质 第2课时 直线与椭圆的位置关系
第六节 双曲线 第七节 抛物线 第八节 曲线与方程 第九节 圆锥曲线中的定点、定值、范围、最值问题 高考大题增分课(五) 平面解析几何中的高考热点问题
第9章 算法初步、统计与统计案例 第一节 算法与程序框图 第二节 随机抽样 第三节 用样本估计总体 第四节 变量间的相关关系与统计案例
2020版高考数学一轮复习第1章集合与常用逻辑用语第2讲命题及其关系学案
第2讲命题及其关系、充分条件与必要条件板块一知识梳理·自主学习[必备知识]考点1 命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.考点2 四种命题及其关系考点3 充分条件、必要条件与充要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且q⇒/pp 是q 的必要不充分条件 p ⇒/q 且q ⇒pp 是q 的充要条件 p ⇔q p 是q 的既不充分也不必要条件p ⇒/q 且q ⇒/p[必会结论]1.两个命题互为逆否命题,它们具有相同的真假性.2.两个命题互为逆命题或互为否命题,它们的真假性没有关系. 3.若A ={x |p (x )},B ={x |q (x )},则 (1)若A ⊆B ,则p 是q 的充分条件; (2)若A ⊇B ,则p 是q 的必要条件; (3)若A =B ,则p 是q 的充要条件; (4)若A B ,则p 是q 的充分不必要条件; (5)若A B ,则p 是q 的必要不充分条件;(6)若AB 且A ⊉B ,则p 是q 的既不充分也不必要条件.[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)“x 2+2x -8<0”是命题.( )(2)四种形式的命题中,真命题的个数为0或2或4.( )(3)命题“三角形的内角和是180°”的否命题是“三角形的内角和不是180°”.( )(4)“a =2”是“(a -1)(a -2)=0”的必要不充分条件.( )(5)给定两个命题p ,q .若p 是q 的充分不必要条件,则綈p 是綈q 的必要不充分条件.( )答案 (1)× (2)√ (3)× (4)× (5)√ 2.[课本改编]“(2x -1)x =0”是“x =0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 若(2x -1)x =0,则x =12或x =0,即不一定是x =0;若x =0,则一定能推出(2x-1)x =0.故“(2x -1)x =0”是“x =0”的必要不充分条件.3.[2018·安徽模拟]设p :1<x <2,q :2x>1,则p 是q 成立的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件答案 A解析 ∵(1,2)(0,+∞),∴p 是q 的充分不必要条件.4.原命题p :“设a ,b ,c ∈R ,若a >b ,则ac 2>bc 2”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A.0 B.1C.2 D.4答案 C解析当c=0时,ac2=bc2,所以原命题是错误的;由于原命题与逆否命题的真假一致,所以逆否命题也是错误的;逆命题为“设a,b,c∈R,若ac2>bc2,则a>b”,它是真命题;由于否命题与逆命题的真假一致,所以逆命题与否命题都为真命题.综上所述,真命题有2个.5.“a<0,b<0”的一个必要条件为( )A.a+b<0 B.a-b>0C.ab>1 D.ab<-1答案 A解析若a<0,b<0,则一定有a+b<0.故选A.6.[2018·烟台诊断]若条件p:|x|≤2,条件q:x≤a,且p是q的充分不必要条件,则a的取值范围是( )A.[2,+∞) B.(-∞,2]C.[-2,+∞) D.(-∞,-2]答案 A解析p:|x|≤2等价于-2≤x≤2.因为p是q的充分不必要条件,所以有[-2,2](-∞,a],即a≥2.板块二典例探究·考向突破考向四种命题及其相互关系例 1 [2018·唐山检测]给出下列四个命题:①“若xy=1,则x,y互为倒数”的逆命题;②“四边相等的四边形是正方形”的否命题;③“若a>b,则a2>b2”的逆否命题;④“若x≤-3,则x2-x-6>0”的否命题;其中真命题是________.(写出所有真命题的序号)答案①②解析①“若xy=1,则x,y互为倒数”的逆命题是“若x,y互为倒数,则xy=1”,是真命题;②“四边相等的四边形是正方形”的否命题是“四边不都相等的四边形不是正方形”,是真命题;③“若a2≤b2,则a≤b”,取a=0,b=-1,a2≤b2,但a>b,故是假命题;④“若x>-3,则x2-x-6≤0”,解不等式x2-x-6≤0可得-2≤x≤3,而x=4>-3不是不等式的解,故是假命题.触类旁通四种命题真假判断的方法(1)熟悉四种命题的概念是正确书写或判断四种命题真假的关键;(2)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假;(3)判断一个命题为假命题可举反例.【变式训练1】[2017·郑州模拟]给出以下四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤-1,则x2+x+q=0有实根”的逆否命题;④若ab是正整数,则a,b都是正整数.其中真命题是________.(写出所有真命题的序号)答案①③解析①命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,显然①为真命题;②不全等的三角形的面积也可能相等,故②为假命题;③原命题正确,所以它的逆否命题也正确,故③为真命题;④若ab是正整数,但a,b不一定都是正整数,例如a=-1,b=-3,故④为假命题.考向充分必要条件的判定命题角度1 定义法判断充分、必要条件例 2 [2016·四川高考]设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析若x>1且y>1,则有x+y>2成立,所以p⇒q;反之由x+y>2不能得到x>1且y>1.所以p是q的充分不必要条件.命题角度2 等价转化法判断充分、必要条件例 3 给定两个命题p,q.若綈p是q的必要而不充分条件,则p是綈q的( ) A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件答案 A解析因为綈p是q的必要不充分条件,则q⇒綈p但綈p⇒/q,其逆否命题为p⇒綈q 但綈q⇒/p,所以p是綈q的充分不必要条件.触类旁通充分条件、必要条件的判定方法(1)定义法:根据p⇒q,q⇒p进行判断,适用于定义、定理判断性问题.(2)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题.考向充分必要条件的应用例 4 [2018·辽宁模拟]已知命题p:|x-4|≤6,命题q:1-m≤x≤1+m,m>0,若綈p是綈q的必要而不充分条件,求实数m的取值范围.解p:x∈[-2,10],q:x∈[1-m,1+m],m>0.∵綈p 是綈q 的必要而不充分条件,即p ⇒q 且q ⇒/p . ∴[-2,10][1-m,1+m ],即⎩⎪⎨⎪⎧m >0,1-m ≤-2,1+m ≥10.解得m ≥9,∴实数m 的取值范围是[9,+∞).触类旁通根据充要条件求参数的取值范围解决此类问题一般是把充分条件、必要条件或充要条件转化为集合的包含、相等关系,然后列出有关参数的不等式(组)求解;涉及参数问题,直接解决较为困难时,可用等价转化思想,将复杂、生疏的问题转化为简单、熟悉的问题来解决,如将綈p ,綈q 之间的关系转化成p ,q 之间的关系来求解.【变式训练2】 已知条件p :x 2+2x -3>0;条件q :x >a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-3]答案 A解析 由x 2+2x -3>0,得x <-3或x >1,由綈q 的一个充分不必要条件是綈p ,可知綈p 是綈q 的充分不必要条件,等价于q 是p 的充分不必要条件.∴{x |x >a }{x |x <-3或x >1},∴a ≥1.核心规律判断p 是q 的什么条件,需要从两方面分析:一是由条件p 能否推得条件q ;二是由条件q 能否推得条件p .对于带有否定性的命题或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.满分策略1.当一个命题有大前提时,要写出其他三种命题,必须保留大前提,也就是大前提不动.2.判断命题的真假及写四种命题时,一定要明确命题的结构,可以先把命题改写成“若p ,则q ”的形式.3.判断条件之间的关系,要注意条件之间的推出方向,正确理解“p 的一个充分而不必要条件是q ”等语言.板块三 启智培优·破译高考题型技法系列1——充分必要条件的探求技巧[2018·广东六校联考] “不等式x 2-x +m >0在R 上恒成立”的一个必要不充分条件是( )A .m >14B .0<m <1C .m >0D .m >1解题视点 有关探求充要条件的选择题,破题关键是:首先,判断是选项“推”题干,还是题干“推”选项;其次,利用以小推大的技巧,即可得结论.解析 不等式x 2-x +m >0在R 上恒成立,则Δ=1-4m <0,∴m >14.∴“不等式x 2-x +m >0在R 上恒成立”的一个必要不充分条件是m >0.答案 C答题启示 注意区分以下两种不同的说法,(1)A 是B 的充分不必要条件,是指A ⇒B 但B ⇒/A ;(2)A 的充分不必要条件是B ,是指B ⇒A 但A ⇒/B .,以上两种说法在充要条件的推理判断中经常出现且容易混淆,在解题中一定要注意问题的设问方式,弄清它们的区别,以免出现错误判断.跟踪训练下面四个条件中,使a >b 成立的充分而不必要的条件是( ) A .a >b +1 B .a >b -1 C .a 2>b 2D .a 3>b 3答案 A解析 a >b +1⇒a >b ;反之,例如a =2,b =1满足a >b ,但a =b +1,即a >b 推不出a >b +1,故a >b +1是a >b 成立的充分而不必要的条件.故选A.板块四 模拟演练·提能增分[A 级 基础达标]1.[2018·江西模拟]若集合A ={2,4},B ={1,m 2},则“A ∩B ={4}”是“m =2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 当m =2时,有A ∩B ={4};若A ∩B ={4},则m 2=4,解得m =±2,不能推出m =2.故选B.2.下列命题是真命题的为( ) A .若1x =1y,则x =yB .若x 2=1,则x =1 C .若x =y ,则x =y D .若x <y ,则x 2<y 2答案 A解析 取x =y =-1,排除B ,C ;取x =-2,y =-1,排除D.故选A. 3.[2018·天津模拟]设x ∈R ,则“|x -2|<1”是“x 2+x -2>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 |x -2|<1⇔-1<x -2<1⇔1<x <3;x 2+x -2>0⇔x <-2或x >1.由于(1,3)(-∞,-2)∪(1,+∞),所以“|x -2|<1”是“x 2+x -2>0”的充分而不必要条件.4.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0” B .“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0” 答案 C解析 C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0,所以不是真命题.5.[2018·长春模拟]设a ,b ∈R ,则“(a -b )a 2<0”是“a <b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 若“(a -b )a 2<0”,则“a <b ”,是真命题;而若“a <b ”,则“(a -b )a 2<0”当a =0时不成立,是假命题.故选A.6.[2018·安徽模拟]设条件p :a 2+a ≠0,条件q :a ≠0,那么p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 条件p :a 2+a ≠0,即a ≠0且a ≠-1.故条件p :a 2+a ≠0是条件q :a ≠0的充分不必要条件.也可利用逆否命题的等价性解决.7.设a ,b ∈R ,若p :a <b ,q :1b <1a<0,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 若p :-1<1,则p ⇒/q ;若q :1b <1a<0,则a <b <0,q ⇒p ,所以p 是q 的必要不充分条件.故选B.8.若“x 2-2x -8>0”是“x <m ”的必要不充分条件,则m 的最大值为________. 答案 -2解析 不等式解集为(-∞,-2)∪(4,+∞),题目等价于(-∞,m )是(-∞,-2)∪(4,+∞)的真子集,故有m ≤-2,即m 的最大值为-2.9.[2018·贵阳模拟]下列不等式: ①x <1;②0<x <1;③-1<x <0;④-1<x <1.其中可以作为“x 2<1”的一个充分条件的所有序号为________. 答案 ②③④解析 由于x 2<1即-1<x <1,①显然不能使-1<x <1一定成立,②③④满足题意. 10.已知不等式|x -m |<1成立的充分不必要条件是13<x <12,则m 的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤-12,43 解析 由|x -m |<1得m -1<x <1+m ,又因为|x -m |<1的充分不必要条件是13<x <12,借助数轴,所以⎩⎪⎨⎪⎧m -1≤13,m +1≥12,解得-12≤m ≤43. [B 级 知能提升]1.命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是( ) A .若x +y 不是偶数,则x 与y 都不是偶数 B .若x +y 是偶数,则x 与y 不都是偶数 C .若x +y 是偶数,则x 与y 都不是偶数 D .若x +y 不是偶数,则x 与y 不都是偶数 答案 D解析 “都是”的否定是“不都是”,选D 项.2.[2018·株洲模拟]设a ,b ∈R ,那么“ea b>e”是“a >b >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 B解析 由ea b>e ,得a b>1,解得a >b >0或a <b <0,所以“eab>e”是“a >b >0”的必要不充分条件.3.[2018·湖北模拟]设U 为全集,A ,B 是集合,则“存在集合C ,使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件答案 C解析 因为B ⊆∁U C ,所以B ∩C =∅.又因为A ⊆C ,所以A ∩B =∅. 反之,若A ∩B =∅,则存在集合C 使得A ⊆C ,B ⊆∁U C .4.[2017·天津大港模拟]已知集合A ={ y |y =x 2-32x +1,x ∈⎭⎪⎬⎪⎫⎣⎢⎡⎦⎥⎤34,2 ,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解 y =x 2-32x +1=⎝ ⎛⎭⎪⎫x -342+716,因为x ∈⎣⎢⎡⎦⎥⎤34,2,所以716≤y ≤2,所以A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪716≤y ≤2. 由x +m 2≥1,得x ≥1-m 2,所以B ={x |x ≥1-m 2}. 因为“x ∈A ”是“x ∈B ”的充分条件,所以A ⊆B , 所以1-m 2≤716,解得m ≥34或m ≤-34,故实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-34∪⎣⎢⎡⎭⎪⎫34,+∞.5.[2018·保定模拟]已知p :x 2≤5x -4,q :x 2-(a +2)x +2a ≤0. (1)若p 是真命题,求对应x 的取值范围; (2)若p 是q 的必要不充分条件,求a 的取值范围. 解 (1)因为x 2≤5x -4, 所以x 2-5x +4≤0,即(x -1)(x -4)≤0,所以1≤x ≤4, 即对应x 的取值范围为[1,4].(2)设p 对应的集合为A ={x |1≤x ≤4}. 由x 2-(a +2)x +2a ≤0, 得(x -2)(x -a )≤0.当a =2时,不等式的解为x =2,对应的解集为B ={2};当a >2时,不等式的解为2≤x ≤a ,对应的解集为B ={x |2≤x ≤a }; 当a <2时,不等式的解为a ≤x ≤2,对应的解集为B ={x |a ≤x ≤2}. 若p 是q 的必要不充分条件,则B A , 当a =2时,满足条件;当a >2时,因为A ={x |1≤x ≤4},B ={x |2≤x ≤a },要使B A ,则满足2<a ≤4;当a <2时,因为A ={x |1≤x ≤4},B ={x |a ≤x ≤2},要使B A ,则满足1≤a <2. 综上,a 的取值范围为[1,4].。
2019版高考数学一轮复习第1章集合与常用逻辑用语12命题及其关系、充分条件与必要条件.doc
1. 2命题及其关系、充分条件与必要条件E课后作业孕谀[基础送分提速狂刷练]一、选择题1.下列命题中是真命题的是()①“若/+yV0,则池y不全为零”的否命题;②“正多边形都相似”的逆命题;丄2③“若x-3 是有理数,则/是无理数”的逆否命题.A.①②B.①③C.②③D.①②③答案B解析对于①,其否命题是“若^2+/ = 0,则昭y全为零”,这显然是正确的,故① 为真命题;对于②,其逆命题是“若两多边形相似,则它们一定是正多边形”,这显然是错误的,故②为假命题;对于③,原命题为真,故逆否命题也为真.因此是真命题的是①③. 故选B.2.(2018 •河南八市联考)命题"若段>方,则白+c>b+c”的否命题是()A.若aWb,则a+c^b+cB.若日+cWZ?+c,则aWbC.若a+c>b+ c,则自〉方D.若 Qb,则a+ c^b+c答案A解析否命题是将原命题的条件和结论都否定,故命题“若Qb,则a+c>b+c ff的否命题是“若&Wb,则.故选A.3.(2018 •曲阜模拟)己知Q:函数f\x) = \x+ci\在(一8, —1)上是单调函数,q:函数gd)=10ga(卄1)30且自Hl)在(一1, +8)上是增函数,则繍Q是0的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案C解析易知Q成立0日Wl, Q成立OQ1,所以纟弟Q成立O日〉1,则絲Q是Q的充耍条件.故选C.4.下列命题正确的是()A.若为真命题,则p/\q为真命题b aB.“臼>0,方>0”是“一+了$2”的充分必要条件a bC.命题“若3/+2=0,则x=\或/=2”的逆否命题为“若“H1或/H2,则x~ 3卄2工0”D.命题“:x + x—1X0,则繍 q: V/WR, x x—120答案D解析若Zq为真命题,则P,Q屮至少有一个为真,那么pt\q可能为真,也可能为假,h o h ry故A错误;若臼>0,方>0,贝lj-+y^2,又当水0, 〃〈0时,也有一+了$2,所以“&>0, 〃>0” a ba bh o是“-十7三2”的充分不必要条件,故B错误;命题“若#—3卄2 = 0,则尸1或心2”的a b逆否命题为“若xHl且xH2,则3x+2H0”,故C错误,由此可知D正确.故选D.5.(2018・广东广州质检)已知p: 3^>0, e—ax< 1成立,q:函数f(力=—(曰一1)"在R上是减函数,则门是0的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析若3%>0, e—ax<\成立,则3^r>0,使得e<ax+\.由于直线y= ax+1恒过点(0, 1),且y=e'在点(0, 1)处的切线方程为y=x+l t因此p:臼>1;若函数f(x) = — (a—1)' 是减函数,则自一1〉1,则$>2,则g:日>2.故由Q可以推出p,由p推不出故p是Q的必要不充分条件.故选B.6.(2018 •合肥模拟)祖噸原理:“幕势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A,〃为两个同高的几何体,p: A,〃的体积不相等,q; A,〃在等高处的截面积不恒相等,根据祖眶原理可知,p是^的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析设命题念“若P,则q” ,可知命题臼是祖咆原理的逆否命题,则曰是真命题.故P是Q 的充分条件.设命题弘“若q,则P”,若力比〃在某些等髙处的截而积小一些,在另一些等高处的截血积大一些,且大的总量与小的总量相抵,则它们的体积还是一样的.所以命题力是假命题,即Q不是Q的必耍条件.综上所述,Q是G的充分不必要条件.故选A.7.(2017 •衡水联考)0=0”是“函数f^=sinx~-+a为奇函数”的()XA.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案C解析的定义域为{”xH0},关于原点对称,当日=0时,f(0=sinx—丄,f{~x) x=sin(—劝=—sin/+丄=—(sin/—丄]=—f(x), 故f(x)为奇函数;反之,当f{x) =sinx—~+a为奇函数吋,f{~x) +f(x) =0,x又f\~x) +f\x) =sin( —%) —^—+ a+ si nx—~+ a=2a f故已=0,—x x所以“日=0”是“函数f(x)=sinx—丄+日为奇函数”的充要条件.故选C.X& (2018 •天津模拟)已知f3=2x+3C¥WR),若| /V ) - 11 的必要条件是丨才+1|<AU, b>0),则g, b 之间的关系是()B.答案A解析 I f(x) =2卄3, .&| f(x) 一 11 <臼, :.\2x+2\<a. :.-a<2x+2<a f 一2一白 —2 +臼…~2-* ~2~•・・・|%+1|〈方,A-ZK^+KZ?,:.-b~l<x<b-l.*.* I f\x) —1 \<a 的必要条件是| /+11〈力(日,力〉0), (~2~a -2 + <A z 、 • Q ‘ 2 I —( — b — 1, b~ 1) •、一2 + & 方一恃飞一 解得bdg 故选A.9. (2018 -江西一联)已知i 为虚数单位,日为实数,复数2=(1—2i )@+i )在复平面内 对应的点为必则“日>0”是“点朋在第四象限”的()A.充分不必要条件B.必要不充分条件B.充要条件 D.既不充分也不必要条件答案B解析 复数z=(l —2i )(日+i )=w+2 —2曰i + i=m+2+(l —2Qi 在复平面内对应的点 为〃(&+2,1—2日).若Q0,则$+2>0,但1一2$的正负不确定,所以点於是否在第四象限 中+2〉0, 1 也是不确定的;若点〃在第四象限,贝U 解得小刁此时可推出日〉0.所以“日>0”是“点』/在第四象限”的必要不充分条件.故选B.10. (2017 •湖北七市联考)已知圆 Q : (x-l )2+y 2=r (r>0).设 p : 0</<3, q :圆 C 上至多有2个点到直线L 萌y+3 = 0的距离为1,则门是§的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案C解析 圆C : (X — I )2+ y = z*2的圆心(1,0)到直线x —y[^y+ 3 = 0的距离d=D. b a>2=2.当re (0, 1)时,直线与圆相离,圆上没有到直线的距离为1的点;当r=1吋,直线与圆相离,圆上只有一个点到直线的距离为1;当re (1,2)时,直线与圆相离, 圆上有两个点到直线的距离为1;当厂=2时,直线与圆相切,圆上有两个点到直线的距离为 1;当re (2,3)时,直线与圆相交,圆上有两个点到直线的距离为1.综上,当re (0, 3)时, 圆上至多有2个点到直线的距离为1,又由圆上至多有两个点到直线的距离为1可得0<K3, 故P 是Q 的充分必要条件.故选C.二、填空题11. (2017 •上海模拟)己知集合A= {x/ log_[ x+2 <0},集合”匕一日)匕一2方)<0},若“心一3”是“加狞0”的充分条件,则实数〃的取值范围是 ___________ .答案(一1, +<-) 解析 A= {x/ log 丄 x+2<0} = {x\%> —1}, 2B= {x\ (x —ci )= ( — 3, Z?)或(力,—3),由“SQ 狞0”,得&>一1,故方的取值范围为(一1, +8).12. 己知条件 p : xE : A,且 A= {x\a~\<x<a+\},条件 q : xW B,且 B= {x\ y=心_3卄2}.若p 是Q 的充分条件,则实数日的取值范围是 ______________ .答案(一8, 0]U[3, +8)解析 易得1或 心2},且A= {x\ a —\<x<a+\},由”是q 的充分条件,可知AUB,故曰+1W1或曰一 1M2,即已W0或已23.即所求实数自的取值范围是(一0]U[3, +-).13. (2018 •泰安模拟)设°:实数*满足#一4站+3歆0,其中$H0, q :实数/满足x~x —6W0,2, n OXA 若”是q 的必要不充分条件,则实数臼的取值范围是y+2^—8>0,答案(1,2]解析・・#是Q 的必要不充分条件,• •H. q.设 A= UIpU )}, B= {X \ q{x )},则〃 A.又 〃={”2<A <3},当臼〉0 时,〃={”以*3引; 当 X0 时,A — {x\ 3臼〈*臼}. 际2,故当白>0时,有解得1JW2;3®,当水0吋,显然AHB=0f 不符合题意. 综上所述,实数日的取值范围是仃,2].14. (2017 •长沙模拟)r (%):已知厂3 =sinx+cosQ 刃;s (x ) : x +/ZZA + l>0.如果X/x WR,厂匕)与s (x )有且仅有一个是真命题,则实数刃的取值范围是 ________ .|1 一 £xo + 3|2答案(一8, —2] U [―边,2)解析由sin^r+ cos^=^2sin^A z+—J,得sin^+cos%的最小值为一迈.若VxWR时,命题厂(x)为真命题,则区_蟲.若命题sd)为真命题,即V%ER,不等式x + mx+1 >0恒成立,贝ij A =爪—4〈0,解得一2</X2.若命题于(劝为真命题,命题s(力为假命题,则—2;若命题厂(方为假命题,命题s(x)为真命题,则一边W〃K2.综上所述,实数刃的取值范围是(一g, —2]U [—谑,2).三、解答题15.(2017 •沂水模拟)已知fd)是(一8, +8)上的增函数,自,z,eR,对命题“若自+ 於0,则e+/U)Nf(—日)+/*(—力)”・(1)写出其逆命题,判断其真假,并证明你的结论;(2)写出其逆否命题,判断其真假,并证明你的结论.解(1)逆命题:已知函数fd)是(一8, +8)上的增函数,&, Z?eR,若f(a)+/U)Nf(-a)+/*D,则a+b^0.是真命题.(用反证法证明)假设已+貳0,则有a〈_b, K-a.•/ f^X)在(一°°, +°°)上是增函数,血心(一日).・・・r@)+f(b)〈f(—刃+f(—方),这与题设中r+c—勿矛盾,故假设不成立.从而a+b^0成立.逆命题为真.(2)逆否命题:已知函数f(x)是(一8, +8)上的增函数,a, Z?eR,若f(白)+f(方)〈f(—白)+f(—Z?),则&+ZKO.是真命题.原命题为真,证明如下::• a2 — b, b2 _a.又Tf(x)在(一°°, + ^)上是增函数,:./'(a) 2 /'(—H), /'(H) 2 /'(—a)•/. f(ci) + f(方)Mf(—a) +/(—方).・・・原命题为真命题,.••其逆否命题也为真命题.16.(2017 •江苏兴化月考)已知命题:“日/丘{”一1〈水1},使等式x~x~m= 0成立” 是真命题.(1)求实数刃的取值集合必(2)设不等式(/—自)匕+自一2)〈0的解集为僦若圧川是圧財的必要条件,求实数臼的取值范围.解(1)由题意知,方程-x—m= 0在(-1,1)±有解,即刃的取值范围就为函数y=rX—X在(一1,1)上的值域,易知5 —*W〃K2».⑵因为/已V是的必要条件,所以兀用当已=1时,解集沖为空集,不满足题意;当&>1 时,a>2-a,此时集合N=[x\2~a<x<a} f2 —a<_Q则4解得咛;、心2,当日〈1时,从2 —日,此时集合N={x\a<x<2-a}fa<—7, 1则 4 解得X--.2 —臼M2,9、 1综上,Q才或日〈一亍。
2020届高考数学一轮总复习第一单元集合与常用逻辑用语第2讲命题及其关系、充分条件与必要条件课件理新人教A
3.四种命题的关系
4.四种命题的真假关系 (1)互为逆否的两个命题的真假性 相同 ; (2)互逆或互否的两个命题的真假性 没有关系 . (3)四种命题的真假成对出现,即原命题与逆否命题的真 假性 相同 ,逆命题与否命题的真假性 相同 .
5.充分条件与必要条件 (1)如果 p⇒q,则 p 是 q 的 充分 条件,同时 q 是 p 的
点评:(1)判断一个命题为真命题,要给出推理证明; 判断一个命题是假命题,只需举出反例即可;
(2)四种命题的真假成对出现.即原命题与逆否命题的 真假性相同,逆命题与否命题的真假性相同.当一个命题 直接判断不易进行时,可转化判断其等价命题的真假.
考点2·充要条件的判断
【例 2】(1)(2018·天津一模)设等比数列{an}的前 n 项和为
A.真,假,真
B.假,假,真
C.真,真,假
D.假,假,假
解:“若 z1,z2 互为共轭复数,则|z1|=|z2|”,由共轭复 数的定义可知为真命题,所以逆否命题也为真命题,
逆命题为:“复数|z1|=|z2|,则 z1,z2 互为共轭复数”, 由 1 和 i 的模相等,但它不是共轭复数,可知逆命题为 假命题, 所以否命题也为假命题.故选 B.
逆命题为:若向量 a=(1,x)与 b=(x+2,x)共线,则 x= -1.当 a 与 b 共线时,x(x+2)=x,解得 x=0 或-1.所以逆命题 为假命题,从而否命题也为假命题.
故真命题的个数为 2.
答案:B
4.(2018·天津卷)设 x∈R,则“x3>8”是“|x|>2”的( )
A.充分而不必要条件
高考总复习第(1)轮 理科数学
第一单元 集合与常用逻辑用语
第2讲 命题及其关系、充分 条件与必要条件
2019-2020年高考数学一轮总复习第1章集合与常用逻辑用语第二节命题及其关系充分条件与必要条件AB卷文新人教
④对于任意的 a,存在不相等的实数 x1, x2,使得 m=- n.
其中真命题有 ________( 写出所有真命题的序号 ).
解析 设 A( x1, f ( x1)) , B( x2, f ( x2)) , C( x1,g( x1)) , D( x2, g( x2)) , 对于①:从 y= 2x 的图象可看出, m= kAB> 0 恒成立,故正确;
2019-2020 年高考数学一轮总复习第 1 章集合与常用逻辑用语第二节
命题及其关系充分条件与必要条件 AB卷文新人教 A 版
(xx ·新课标全国Ⅱ, 3) 函数 f ( x) 在 x= x0 处导数存在 . 若 p:f ′ ( x0) = 0,q:x= x0 是 f ( x)
的极值点,则 (
)
A. p 是 q 的充分必要条件
π B. 若 α= 4 ,则 tan α≠1
C. 若 tan
α≠ 1,则
α
≠
π 4
D. 若 tan
α≠ 1,则
α=
π 4
解析 根据逆否命题的定义可知 C 正确 .
答案 C
6.(xx ·山东, 6) 已知直线 a, b 分别在两个不同的平面 相交”是“平面 α 和平面 β 相交”的 ( )
α , β内,则“直线 a 和直线 b
x2 使得 m= n;
对于④:由 m=- n,得 f ( x1) - f ( x2) =g( x2) - g( x1 ) ,
即 f ( x1) +g( x1) = f ( x2) + g( x2) , 令 F( x) = f ( x) + g( x) = 2x+ x2+ax, 则 F′(x) = 2xln 2 + 2x+ a, 由 F′(x) = 0,得 2xln 2=- 2x-a,结合如图所示图象可知,该方程
高考新课标数学(理)大一轮复习讲义课件第1章集合与常用逻辑用语-第2节命题及其关系、充分条件与必要条件p
4.(2015·重庆卷)“x=1”是“x2-2x+1=0”的( ) A.充要条件 B.充分而不必要条件 C.必要而不充分条件 D.既不充分也不必要条件 解析:若 x=1,则 x2-2x+1=0;若 x2-2x+1=0,即 (x-1)2=0,则 x=1.故选 A.
答案:A
5.设 x∈R,则 x>2 的一个必要不充分条件是( )
2.(2015·山东卷)设 m∈R,命题“若 m>0,则方程 x2 +x-m=0 有实根”的逆否命题是( )
A.若方程 x2+x-m=0 有实根,则 m>0 B.若方程 x2+x-m=0 有实根,则 m≤0 C.若方程 x2+x-m=0 没有实根,则 m>0 D.若方程 x2+x-m=0 没有实根,则 m≤0
A.m<4
B.m>4
C.0<m<4
D.0≤m<4
【解析】 (1)因为函数 f(x)过点(1,0),所以函数 f(x) 有且只有一个零点⇔函数 y=-2x+a(x≤0)没有零点⇔函数 y=2x(x≤0)与直线 y=a 无公共点.由数形结合,可得 a≤0 或 a>1.
观察选项,根据集合间关系{a|a<0} {a|a≤0 或 a>1},
答案:(3,+∞)
1.对于命题正误的判断是高考的热点 之一,理应引起大家的关注,命题正误的 判断可涉及各章节的内容,覆盖面宽,也 是学生的易失分点.命题正误的判断的原 则是:正确的命题要有依据或者给以论证; 不一定正确的命题要举出反例,绝对不要主观臆断,这也是 最基本的数学逻辑思维方式.
解析:依题意,P={x|f(x+t)+1<3}={x|f(x+t)<2}= {x|f(x+t)<f(2)},Q={x|f(x)<-4}={x|f(x)<f(-1)}.
高考数学第一章集合与常用逻辑用语第二节命题及其关系、充分条件与必要条件教案文
第二节命题及其关系、充分条件与必要条件1.命题2(1)四种命题间的相互关系:(2)四种命题中真假性的等价关系:原命题等价于逆否命题,原命题的否命题等价于逆命题.在四种形式的命题中真命题的个数只能是0,2,4.3.充分条件与必要条件1.(2019·昆山中学检测)下列有关命题的说法不正确的有________个.①命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”;②“x=-1”是“x2-5x-6=0”的必要不充分条件;③命题“∃x0∈R,x20+x0+1<0”的否定是“∀x∈R,x2+x+1<0”;④命题“若x=y,则sin x=sin y”的逆否命题为真命题.答案:32.设A,B是两个集合,则“A∩B=A”是“A⊆B”的________条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).答案:充要3.(2019·南通中学检测)命题“若x2+y2≤1,则x+y<2”的否命题为________________.答案:若x 2+y 2>1,则x +y ≥24.“x ≥1”是“x +1x≥2”的________条件.解析:若x >0,则x +1x≥2x ·1x=2,当且仅当x =1时取等号,显然[1,+∞) (0,+∞),所以x ≥1是x +1x≥2的充分不必要条件.答案:充分不必要1.易混淆否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.易忽视A 是B 的充分不必要条件(A ⇒B 且B ⇒/A )与A 的充分不必要条件是B (B ⇒A 且AB )两者的不同.[小题纠偏]1.(2019·海门中学检测)已知α,β表示两个不同平面,直线m 是α内一条直线,则“α∥β”是“m ∥β”的________条件.答案:充分不必要2.“在△ABC 中,若∠C =90°,则∠A ,∠B 都是锐角”的否命题为:________________. 解析:原命题的条件:在△ABC 中,∠C =90°, 结论:∠A ,∠B 都是锐角.否命题是否定条件和结论. 即“在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角”. 答案:在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角 考点一 四种命题相互关系及真假判断基础送分型考点——自主练透[题组练透]1.(2018·启东中学期末检测)能够说明“设a ,b 是任意实数,若a 2<b 2,则a <b ”是假命题的一组整数a ,b 的值依次为________.解析:可令a =1,b =-2,满足a 2<b 2,但a >b . 答案:1,-2(答案不唯一)2.(2019·常州一中测试)命题“若α=π4,则tan α=1”的逆否命题是________________.解析:命题的条件是p :α=π4,结论是q :tan α=1.由命题的四种形式,可知命题“若p ,则q ”的逆否命题是“若非q ,则非p ”,显然非q :tan α≠1,非p :α≠π4,所以该命题的逆否命题是“若tan α≠1,则α≠π4”.答案:若tan α≠1,则α≠π43.给出以下四个命题:①“若xy =1,则x ,y 互为倒数”的逆命题; ②(易错题)“全等三角形的面积相等”的否命题; ③“若q ≤-1,则x 2+x +q =0有实根”的逆否命题; ④若ab 是正整数,则a ,b 都是正整数. 其中真命题是________.(写出所有真命题的序号)解析:①命题“若xy =1,则x ,y 互为倒数”的逆命题为“若x ,y 互为倒数,则xy =1”,显然①为真命题;②不全等的三角形的面积也可能相等,故②为假命题;③原命题正确,所以它的逆否命题也正确,故③为真命题;④若ab 是正整数,但a ,b 不一定都是正整数,例如a =-1,b =-3,故④为假命题.答案:①③[谨记通法]1.判断命题真假的2种方法(1)直接判断:判断一个命题是真命题,需经过严格的推理证明;而要说明它是假命题,只需举一反例即可.(2)间接判断(等价转化):由于原命题与其逆否命题为等价命题,如果原命题的真假不易直接判断,那么可以利用这种等价性间接地判断命题的真假.2.谨防3类失误(1)如果原命题是“若p ,则q ”,则否命题是“若綈p ,则綈q ”,而命题的否定是“若p ,则綈q ”,即否命题是对原命题的条件和结论同时否定,命题的否定仅仅否定原命题的结论(条件不变).(2)对于不是“若p ,则q ”形式的命题,需先改写. (3)当命题有大前提时,写其他三种命题时需保留大前提. 考点二 充分、必要条件的判定重点保分型考点——师生共研[典例引领]1.(2019·泰州中学高三学情调研)“a =0”是“函数f (x )=x 3+ax 2(x ∈R)为奇函数”的________条件.解析:当a =0时,f (x )=x 3,所以函数f (x )是奇函数,当函数f (x )=x 3+ax 2(x ∈R)为奇函数时,f (-x )=-x 3+ax 2=-f (x )=-x 3-ax 2,所以2ax 2=0恒成立,所以a =0.所以“a =0”是“函数f (x )=x 3+ax 2(x ∈R)为奇函数”的充要条件.答案:充要2.已知条件p :x +y ≠-2,条件q :x ,y 不都是-1,则p 是q 的____________条件. 解析:因为p :x +y ≠-2,q :x ≠-1或y ≠-1,所以綈p :x +y =-2, 綈q :x =-1且y =-1, 因为綈q ⇒綈p 但綈p 綈綈q ,所以綈q 是綈p 的充分不必要条件,即p 是q 的充分不必要条件. 答案:充分不必要[由题悟法]充分、必要条件的3种判断方法 (1)定义法:根据p ⇒q ,q ⇒p 进行判断;(2)集合法:根据p ,q 成立的对象的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy ≠1”是“x ≠1或y ≠1”的某种条件,即可转化为判断“x =1且y =1”是“xy =1”的某种条件.[即时应用]1.(2018·苏州新区实验中学测试)在△ABC 中,“A ≠60°”是“cos A ≠12”的________条件.解析:当A =60°时,可以推得cos A =12;当cos A =12时,由于A ∈(0,π),也可以推得A =60°,故“A =60°”是“cos A =12”的充要条件. 即“A ≠60°”是“cos A ≠12”的充要条件.答案:充要2.设p :x 2-x -20>0,q :log 2(x -5)<2,则p 是q 的______条件.解析:因为x 2-x -20>0,所以x >5或x <-4,所以p :x >5或x <-4.因为log 2(x -5)<2,所以0<x -5<4,即5<x <9,所以q :5<x <9,因为{x |5<x <9}{x |x >5或x <-4},所以p 是q 的必要不充分条件.答案:必要不充分3.设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m ·n <0”的________________条件.解析:因为m =λn ,所以m ·n =λn ·n =λ|n|2. 当λ<0,n ≠0时,m ·n <0.反之,由m ·n =|m||n|cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝ ⎛⎦⎥⎤π2,π, 当〈m ,n 〉∈⎝ ⎛⎭⎪⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分不必要条件. 答案:充分不必要考点三 充分、必要条件的应用重点保分型考点——师生共研 [典例引领]1.已知集合A ={x |y =lg(4-x )},集合B ={x |x <a },若“x ∈A ”是“x ∈B ”的充分不必要条件,则实数a 的取值范围是________.解析:由题意知A ={x |x <4},且A B ,所以a >4. 答案:(4,+∞)2.(2019·响水中学检测)设p :x 2-2x <0,q :(x -m )(x -m -3)≤0,若p 是q 的充分不必要条件,则实数m 的取值范围是________.解析:由x 2-2x <0,得0<x <2,即p :0<x <2, 由(x -m )(x -m -3)≤0,得m ≤x ≤m +3, 即q :m ≤x ≤m +3,若p 是q 的充分不必要条件,则⎩⎪⎨⎪⎧m ≤0,m +3≥2,即-1≤m ≤0.答案:[-1,0][由题悟法]根据充分、必要条件求参数的值或范围的关键点(1)先合理转化条件,得到关于参数的方程或不等式(组),再通过解方程或不等式(组)求出参数的值或取值范围.(2)求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.[即时应用]1.(2018·兴化三校联考)已知p :x ≥a ,q :x 2-2x -3≥0,若p 是q 的充分不必要条件,则实数a 的取值范围是________.解析:由x 2-2x -3≥0,得x ≤-1或x ≥3, 若p 是q 的充分不必要条件,则{x |x ≥a }⊆{x |x ≤-1或x ≥3},所以a ≥3. 答案:[3,+∞)2.已知“命题p :(x -m )2>3(x -m )”是“命题q :x 2+3x -4<0”成立的必要不充分条件,则实数m 的取值范围为________________.解析:命题p :x >m +3或x <m , 命题q :-4<x <1.因为p 是q 成立的必要不充分条件, 所以m +3≤-4或m ≥1, 故m ≤-7或m ≥1.答案:(-∞,-7]∪[1,+∞)3.(2019·高邮中学检测)若关于x 的不等式x 2-2x +3-a <0成立的一个充分条件是1<x <4,则实数a 的取值范围是________.解析:∵不等式x 2-2x +3-a <0成立的一个充分条件是1<x <4, ∴当1<x <4时,不等式x 2-2x +3-a <0成立. 设f (x )=x 2-2x +3-a ,则满足⎩⎪⎨⎪⎧f1≤0,f4≤0,即⎩⎪⎨⎪⎧1-2+3-a ≤0,16-8+3-a ≤0,解得a ≥11.答案:[11,+∞)一抓基础,多练小题做到眼疾手快1.(2019·张家港外国语学校检测)命题“若x 2-4x +3=0,则x =3”的逆否命题是________________________.答案:若x≠3,则x2-4x+3≠02.(2019·苏州实验中学检测)在△ABC中,角A,B,C的对边分别为a,b,c.命题甲:A+C=2B,且a+c=2b;命题乙:△ABC是正三角形,则命题甲是命题乙的________条件.答案:充要3.“m=3”是“两直线l1:mx+3y+2=0和l2:x+(m-2)y+m-1=0平行”的________条件.答案:充要4.(2018·南京模拟)有下列命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.解析:①原命题的否命题为“若a≤b,则a2≤b2”,假命题.②原命题的逆命题为:“若x,y互为相反数,则x+y=0”,真命题.③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”,真命题.答案:②③5.若x>5是x>a的充分条件,则实数a的取值范围为____________.解析:由x>5是x>a的充分条件知,{x|x>5}⊆{x|x>a},所以a≤5.答案:(-∞,5]6.(2018·苏州中学检测)已知集合A={x|x(x-3)<0},B={x||x-1|<2},则“x∈A”是“x∈B”的________条件.解析:因为集合A=(0,3),集合B=(-1,3),所以“x∈A”是“x∈B”的充分不必要条件.答案:充分不必要二保高考,全练题型做到高考达标1.命题“若一个数是负数,则它的平方是正数”的逆命题是________________.解析:依题意得,原命题的逆命题是“若一个数的平方是正数,则它是负数”.答案:“若一个数的平方是正数,则它是负数”2.(2018·南通中学高三测试)已知a,b都是实数,命题p:a+b=2;命题q:直线x +y=0与圆(x-a)2+(y-b)2=2相切,则p是q的________条件.解析:圆(x -a )2+(y -b )2=2的圆心为(a ,b ),半径r =2,直线x +y =0与圆相切,则圆心到直线的距离d =|a +b |1+1=2,解得|a +b |=2.即a +b =±2,所以p 是q 的充分不必要条件.答案:充分不必要3.(2018·南通模拟)设a ,b 都是不等于1的正数,则“3a >3b>3”是“log a 3<log b 3”的________条件.解析:因为3a >3b>3,所以a >b >1,此时log a 3<log b 3;反之,若log a 3<log b 3,则不一定得到3a >3b >3,例如当a =12,b =13时,log a 3<log b 3成立,但推不出a >b >1.故“3a>3b>3”是“log a 3<log b 3”的充分不必要条件.答案:充分不必要4.(2019·无锡一中检测)给出下列说法:①“若x +y =π2,则sin x =cos y ”的逆命题是假命题;②“在△ABC 中,sin B >sin C 是B >C 的充要条件”是真命题; ③x ≤3是|x |≤3的充分不必要条件;④命题“若x <-1,则x 2-2x -3>0”的否命题为“若x ≥-1,则x 2-2x -3≤0”. 以上说法正确的是________(填序号). 解析:对于①,“若x +y =π2,则sin x =cos y ”的逆命题是“若sin x =cos y ,则x +y =π2”,当x =0,y =3π2时,有sin x =cos y 成立,但x +y =3π2,故逆命题为假命题,①正确;对于②,在△ABC 中,由正弦定理得sin B >sin C ⇔b >c ⇔B >C ,②正确;对于③,因为|x |≤3x ≤3,所以x ≤3是|x |≤3的必要不充分条件,故③错误;对于④,根据否命题的定义知④正确.答案:①②④5.(2018·南通一中高三测试)已知命题p :a ≤x ≤a +1,命题q :x 2-4x <0,若p 是q 的充分不必要条件,则a 的取值范围是________.解析:令M ={x |a ≤x ≤a +1},N ={x |x 2-4x <0}={x |0<x <4}. 因为p 是q 的充分不必要条件,所以MN ,所以⎩⎪⎨⎪⎧a >0,a +1<4,解得0<a <3.答案:(0,3)6.设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,则p是q 的________条件.解析:p 表示以点(1,1)为圆心,2为半径的圆面(含边界),如图所示.q 表示的平面区域为图中阴影部分(含边界).由图可知,p 是q 的必要不充分条件. 答案:必要不充分7.在命题“若m >-n ,则m 2>n 2”的逆命题、否命题、逆否命题中,假命题的个数是________.解析:若m =2,n =3,则2>-3,但22<32,所以原命题为假命题,则逆否命题也为假命题,若m =-3,n =-2,则(-3)2>(-2)2,但-3<2,所以逆命题是假命题,则否命题也是假命题.故假命题的个数为3.答案:38.(2018·常熟中学测试)给定下列命题: ①若k >0,则方程x 2+2x -k =0有实数根; ②若x +y ≠8,则x ≠2或y ≠6;③“a =1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件; ④“若xy =0,则x ,y 中至少有一个为零”的否命题. 其中真命题的序号是________.解析:①因为Δ=4-4(-k )=4+4k >0,所以①是真命题;②其逆否命题为真;故②是真命题;③“a =±1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件,故③是假命题;④否命题:“若xy ≠0,则x ,y 都不为零”是真命题.答案:①②④9.(2018·天一中学期末)已知p :|x -1|>2,q :x 2-2x +1-a 2≥0(a >0),若q 是p 的必要不充分条件,则实数a 的取值范围是________.解析:由|x -1|>2,得x -1>2或x -1<-2,即x >3或x <-1. 由x 2-2x +1-a 2≥0(a >0),得[x -(1-a )][x -(1+a )]≥0, 即x ≥1+a 或x ≤1-a ,a >0. 若q 是p 的必要不充分条件,则⎩⎪⎨⎪⎧a >0,1+a ≤3,1-a ≥-1,解得0<a ≤2.答案:(0,2]10.设等比数列{a n }的公比为q ,前n 项和为S n ,则“|q |=1”是“S 4=2S 2”的________条件.解析:因为等比数列{a n }的前n 项和为S n ,又S 4=2S 2, 所以a 1+a 2+a 3+a 4=2(a 1+a 2),所以a 3+a 4=a 1+a 2,所以q 2=1⇔|q |=1,所以“|q |=1”是“S 4=2S 2”的充要条件. 答案:充要11.(2019·南师大附中检测)设p :实数x 满足x 2+2ax -3a 2<0(a >0),q :实数x 满足x 2+2x -8<0,且綈p 是綈q 的必要不充分条件,求a 的取值范围.解:由x 2+2ax -3a 2<0(a >0),得-3a <x <a ,即p :-3a <x <a . 由x 2+2x -8<0,得-4<x <2,即q :-4<x <2. 因为綈p 是綈q 的必要不充分条件, 所以p 能推出q ,q 不能推出p , 所以{x |-3a <x <a }{x |-4<x <2}, 即⎩⎪⎨⎪⎧-3a ≥-4,a <2,a >0或⎩⎪⎨⎪⎧-3a >-4,a ≤2,a >0,解得0<a ≤43,故a 的取值范围是⎝ ⎛⎦⎥⎤0,43.12.已知集合A =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫mx -1x <0,B ={x |x 2-3x -4≤0},C ={x |log 12x >1},命题p :实数m 为小于6的正整数,q :A 是B 成立的充分不必要条件,r :A 是C 成立的必要不充分条件.若命题p ,q ,r 都是真命题,求实数m 的值.解:因为命题p 是真命题, 所以0<m <6,m ∈N ,① 所以A =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫mx -1x <0=⎩⎨⎧x ⎪⎪⎪⎭⎬⎫0<x <1m .由题意知,B ={x |x 2-3x -4≤0}={x |-1≤x ≤4},C =⎩⎨⎧⎭⎬⎫x |log 12x >1=⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫0<x <12.因为命题q ,r 都是真命题,所以A B ,C A ,所以⎩⎪⎨⎪⎧ 1m ≤4,1m >12.②由①②得m =1.三上台阶,自主选做志在冲刺名校1.设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的________条件. 解析:当等比数列{a n }的首项a 1<0,公比q >1时,如a n =-2n是递减数列,所以充分性不成立;反之,若等比数列{a n }为递增数列,则⎩⎪⎨⎪⎧ a 1<0,0<q <1或⎩⎪⎨⎪⎧ a 1>0,q >1,所以必要性不成立,即“q >1”是“{a n }为递增数列”的既不充分也不必要条件.答案:既不充分也不必要2.(2018·苏州木渎中学测试)若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围为________.解析:由题意知ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立;当a ≠0时,由⎩⎪⎨⎪⎧ a <0,Δ=4a 2+12a ≤0,得-3≤a <0,综上,实数a 的取值范围为[-3,0].答案:[-3,0]3.已知集合A ={x |x 2-6x +8<0},B ={x |(x -a )(x -3a )<0}.(1)若x ∈A 是x ∈B 的充分条件,求a 的取值范围;(2)若A ∩B =∅,求a 的取值范围.解:A ={x |x 2-6x +8<0}={x |2<x <4}, B ={x |(x -a )(x -3a )<0}.(1)当a =0时,B =∅,不合题意.当a >0时,B ={x |a <x <3a },要满足题意,则⎩⎪⎨⎪⎧ a ≤2,3a ≥4,解得43≤a ≤2. 当a <0时,B ={x |3a <x <a },要满足题意, 则⎩⎨⎧ 3a ≤2,a ≥4,无解.综上,a 的取值范围为⎣⎢⎡⎦⎥⎤43,2. (2)要满足A ∩B =∅,当a >0时,B ={x |a <x <3a }则a ≥4或3a ≤2,即0<a ≤23或a ≥4. 当a <0时,B ={x |3a <x <a },则a ≤2或a ≥43,即a <0. 当a =0时,B =∅,A ∩B =∅.综上,a 的取值范围为⎝ ⎛⎦⎥⎤-∞,23∪[4,+∞).。
高考数学大一轮复习第一章集合与常用逻辑用语1.2命题及其关系、充分条件与必要条件教师用书理苏教版
第一章集合与常用逻辑用语 1.2 命题及其关系、充分条件与必要条件教师用书理苏教版1.四种命题及相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,同时q是p的必要条件;(2)如果p⇒q,且q⇏p,则p是q的充分不必要条件;(3)如果p⇒q,且q⇒p,则p是q的充要条件;(4)如果q⇒p,且p⇏q,则p是q的必要不充分条件;(5)如果p⇏q,且q⇏p,则p是q的既不充分又不必要条件.【知识拓展】从集合角度理解充分条件与必要条件若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)},B={x|q(x)},则关于充分条件、必要条件又可以叙述为(1)若A⊆B,则p是q的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件;(4)若A B,则p是q的充分不必要条件;(5)若A B,则p是q的必要不充分条件;(6)若A B且A⊉B,则p是q的既不充分又不必要条件.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)“x2+2x-3<0”是命题.( ×)(2)命题“若p,则q”的否命题是“若p,则綈q”.(×)(3)若一个命题是真命题,则其逆否命题也是真命题.( √)(4)当q是p的必要条件时,p是q的充分条件.( √)(5)当p是q的充要条件时,也可说成q成立当且仅当p成立.( √)(6)若p是q的充分不必要条件,则綈p是綈q的必要不充分条件.( √)1.下列命题中为真命题的是________.(填序号)①命题“若x>y,则x>|y|”的逆命题;②命题“若x>1,则x2>1”的否命题;③命题“若x=1,则x2+x-2=0”的否命题;④命题“若x2>0,则x>1”的逆否命题.答案①解析对于①,其逆命题是若x>|y|,则x>y,是真命题,这是因为x>|y|≥y,必有x>y.2.(教材改编)命题“若x2>y2,则x>y”的逆否命题是________________________.答案若x≤y,则x2≤y2解析根据原命题和其逆否命题的条件和结论的关系,得命题“若x2>y2,则x>y”的逆否命题是“若x≤y,则x2≤y2”.3.(教材改编)给出下列命题:①命题“若b2-4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题;②命题“如果△ABC中,AB=BC=CA,那么△ABC为等边三角形”的逆命题;③命题“若a>b>0,则3a>3b>0”的逆否命题;④命题“若m>1,则不等式mx2-2(m+1)x+(m-3)>0的解集为R”的逆命题.其中真命题的序号为________.答案①②③解析①命题“若b2-4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题为:“若b2-4ac≥0,则方程ax2+bx+c=0(a≠0)有实根”,根据一元二次方程根的判定知其为真命题.②命题“如果△ABC中,AB=BC=CA,那么△ABC为等边三角形”的逆命题为:“如果△ABC 为等边三角形,那么AB=BC=CA”,由等边三角形的定义可知其为真命题.③原命题“若a>b>0,则3a>3b>0”为真命题,由原命题与其逆否命题有相同的真假性可知其逆否命题为真命题.④原命题的逆命题为:“若不等式mx 2-2(m +1)x +(m -3)>0的解集为R ,则m >1”,不妨取m =2验证,当m =2时,有2x 2-6x -1>0,Δ=(-6)2-4×2×(-1)>0,其解集不为R ,故为假命题.4.(2016·北京改编)设a ,b 是向量,则“|a |=|b |”是“|a +b |=|a -b |”的______________条件. 答案 既不充分又不必要解析 若|a |=|b |成立,则以a ,b 为邻边构成的四边形为菱形,a +b ,a -b 表示该菱形的对角线,而菱形的对角线不一定相等,所以|a +b |=|a -b |不一定成立;反之,若|a +b |=|a -b |成立,则以a ,b 为邻边构成的四边形为矩形,而矩形的邻边不一定相等,所以|a |=|b |不一定成立,所以“|a |=|b |”是“|a +b |=|a -b |”的既不充分又不必要条件. 5.在下列三个结论中,正确的是________.(写出所有正确结论的序号) ①若A 是B 的必要不充分条件,则綈B 也是綈A 的必要不充分条件;②“⎩⎪⎨⎪⎧a >0,Δ=b 2-4ac ≤0”是“一元二次不等式ax 2+bx +c ≥0的解集为R ”的充要条件;③“x ≠1”是“x 2≠1”的充分不必要条件. 答案 ①②解析 易知①②正确.对于③,若x =-1,则x 2=1,充分性不成立,故③错误.题型一 命题及其关系例1 (2016·扬州模拟)下列命题: ①“若a 2<b 2,则a <b ”的否命题; ②“全等三角形面积相等”的逆命题;③“若a >1,则ax 2-2ax +a +3>0的解集为R ”的逆否命题; ④“若3x (x ≠0)为有理数,则x 为无理数”的逆否命题. 其中正确的命题是________.(填序号) 答案 ③④解析 对于①,否命题为“若a 2≥b 2,则a ≥b ”,为假命题;对于②,逆命题为“面积相等的三角形是全等三角形”,为假命题;对于③,当a >1时,Δ=-12a <0,原命题正确,从而其逆否命题正确,故③正确;对于④,原命题正确,从而其逆否命题正确,故④正确. 思维升华 (1)写一个命题的其他三种命题时,需注意: ①对于不是“若p ,则q ”形式的命题,需先改写; ②若命题有大前提,写其他三种命题时需保留大前提.(2)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.(3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.(1)命题“若x>0,则x2>0”的否命题是__________.(2)(2016·徐州模拟)已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是______________________________.答案(1)若x≤0,则x2≤0(2)若a+b+c≠3,则a2+b2+c2<3解析(2)由于一个命题的否命题既否定题设又否定结论,因此原命题的否命题为“若a+b +c≠3,则a2+b2+c2<3”.题型二充分必要条件的判定例2 (1)(2016·江苏南京学情调研)已知直线l,m,平面α,m⊂α,则“l⊥m”是“l⊥α”的____________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)(2)(2016·泰州模拟)给出下列三个命题:①“a>b”是“3a>3b”的充分不必要条件;②“α>β”是“cos α<cos β”的必要不充分条件;③“a=0”是“函数f(x)=x3+ax2(x∈R)为奇函数”的充要条件.其中正确命题的序号为________.答案(1)必要不充分(2)③解析(1)根据直线与平面垂直的定义:若直线与平面内的任意一条直线都垂直,则称这条直线与这个平面垂直.现在是直线与平面内给定的一条直线垂直,而不是任意一条,故由“l⊥m”推不出“l⊥α”,但是由定义知“l⊥α”可推出“l⊥m”,故填必要不充分.(2)因为函数y=3x在R上为增函数,所以“a>b”是“3a>3b”的充要条件,故①错;由余弦函数的性质可知“α>β”是“cos α<cos β”的既不充分又不必要条件,故②错;当a=0时,f(x)=x3是奇函数,当f(x)是奇函数时,由f(-1)=-f(1)得a=0,所以③正确.思维升华充分条件、必要条件的三种判定方法(1)定义法:根据p⇒q,q⇒p进行判断,适用于定义、定理判断性问题.(2)集合法:根据p,q成立的对象的集合之间的包含关系进行判断,多适用于命题中涉及字母的范围的推断问题.(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题.(1)函数f(x)=13x-1+a (x≠0),则“f(1)=1”是“函数f(x)为奇函数”的________条件.(用“充分不必要”“必要不充分”“充要”“既不充分又不必要”填写)(2)(2017·镇江质检)已知p :关于x 的不等式x 2+2ax -a ≤0有解,q :a >0或a <-1,则p 是q 的________条件.(用“充分不必要”“必要不充分”“充要”“既不充分又不必要”填写)答案 (1)充要 (2)必要不充分 解析 (1)f (x )=13x-1+a (x ≠0)为奇函数,则f (-x )+f (x )=0,即13-x -1+a +13x -1+a =0,所以a =12,此时f (1)=13-1+12=1,反之也成立,因此填“充要”.(2)关于x 的不等式x 2+2ax -a ≤0有解,则4a 2+4a ≥0⇒a ≤-1或a ≥0,从而q ⇒p ,反之不成立,故p 是q 的必要不充分条件. 题型三 充分必要条件的应用例3 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.解 由x 2-8x -20≤0,得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2, ∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3]. 引申探究1.若本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件. 解 若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,方程组无解,即不存在实数m ,使x ∈P 是x ∈S 的充要条件.2.本例条件不变,若x ∈綈P 是x ∈綈S 的必要不充分条件,求实数m 的取值范围. 解 由例题知P ={x |-2≤x ≤10}, ∵綈P 是綈S 的必要不充分条件, ∴P ⇒S 且S ⇏P . ∴[-2,-m ,1+m ].∴⎩⎪⎨⎪⎧1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10.∴m ≥9,即m 的取值范围是[9,+∞).思维升华 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意: (1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解. (2)要注意区间端点值的检验.(2016·盐城期中)设集合A ={x |x 2+2x -3<0},集合B ={x ||x +a |<1}.(1)若a =3,求A ∪B ;(2)设p :x ∈A ,q :x ∈B ,若p 是q 成立的必要不充分条件,求实数a 的取值范围. 解 (1)解不等式x 2+2x -3<0, 得-3<x <1,故A =(-3,1). 当a =3时,由|x +3|<1, 得-4<x <-2,故B =(-4,-2), 所以A ∪B =(-4,1).(2)因为p 是q 成立的必要不充分条件,所以集合B 是集合A 的真子集. 又集合A =(-3,1),B =(-a -1,-a +1),所以⎩⎪⎨⎪⎧-a -1≥-3,-a +1<1或⎩⎪⎨⎪⎧-a -1>-3,-a +1≤1,解得0≤a ≤2,即实数a 的取值范围是0≤a ≤2.1.等价转化思想在充要条件中的应用典例 (1)已知p ,q 是两个命题,那么“p ∧q 是真命题”是“綈p 是假命题”的__________条件.(2)已知条件p :x 2+2x -3>0;条件q :x >a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是________.思想方法指导 等价转化是将一些复杂的、生疏的问题转化成简单的、熟悉的问题,在解题中经常用到.本题可将题目中条件间的关系和集合间的关系相互转化.解析 (1)因为“p ∧q 是真命题”等价于“p ,q 都为真命题”,且“綈p 是假命题”等价于“p 是真命题”,所以“p ∧q 是真命题”是“綈p 是假命题”的充分不必要条件. (2)由x 2+2x -3>0,得x <-3或x >1,由綈q 的一个充分不必要条件是綈p ,可知綈p 是綈q 的充分不必要条件,等价于q 是p 的充分不必要条件. 所以{x |x >ax |x <-3或x >1},所以a ≥1.答案 (1)充分不必要 (2)[1,+∞)1.下列命题中的真命题为________.(填序号) ①若1x =1y,则x =y ;②若x 2=1,则x =1; ③若x =y ,则x =y ; ④若x <y ,则x 2<y 2. 答案 ①2.(教材改编)命题“若a >b ,则2a>2b-1”的否命题为________________. 答案 若a ≤b ,则2a≤2b-1解析 ∵“a >b ”的否定是“a ≤b ”,“2a>2b-1”的否定是“2a≤2b-1”,∴原命题的否命题是“若a ≤b ,则2a≤2b-1”.3.(2016·南京模拟)给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限.在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是________. 答案 1解析 原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y =f (x )的图象不过第四象限,则函数y =f (x )是幂函数”,显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个. 4.(2015·重庆改编)“x >1”是“12log (x +2)<0”的____________条件.答案 充分不必要解析 由x >1⇒x +2>3⇒12log (x +2)<0,12log (x +2)<0⇒x +2>1⇒x >-1,故“x >1”是“12log (x +2)<0”的充分不必要条件.5.(2016·山东改编)已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的______________条件. 答案 充分不必要解析 若直线a 和直线b 相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b 可能平行或异面或相交.6.已知集合A ={x ∈R |12<2x<8},B ={x ∈R |-1<x <m +1},若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是__________. 答案 (2,+∞)解析 A ={x ∈R |12<2x<8}={x |-1<x <3},∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A B ,∴m +1>3,即m >2.7.设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的________条件. 答案 充要解析 由Venn 图易知充分性成立.反之,A ∩B =∅时,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.*8.(2015·湖北改编)设a 1,a 2,…,a n ∈R ,n ≥3.若p :a 1,a 2,…,a n 成等比数列;q :(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=(a 1a 2+a 2a 3+…+a n -1a n )2,则下列说法正确的是________.(填序号)①p 是q 的必要条件,但不是q 的充分条件; ②p 是q 的充分条件,但不是q 的必要条件; ③p 是q 的充分必要条件;④p 既不是q 的充分条件,也不是q 的必要条件. 答案 ②解析 若p 成立,设a 1,a 2,…,a n 的公比为q ,则(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=a 21(1+q 2+…+q2n -4)·a 22(1+q 2+…+q2n -4)=a 21a 22(1+q 2+…+q2n -4)2,(a 1a 2+a 2a 3+…+a n -1a n )2=(a 1a 2)2(1+q 2+…+q2n -4)2,故q 成立,故p 是q 的充分条件.取a 1=a 2=…=a n =0,则q成立,而p 不成立,故p 不是q 的必要条件.9.(2016·无锡模拟)设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的__________条件. 答案 充要解析 设f (x )=x |x |,则f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,所以f (x )是R 上的增函数,所以“a >b ”是“a |a |>b |b |”的充要条件. 10.有三个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题; ②“若a >b ,则a 2>b 2”的逆否命题;③“若x ≤-3,则x 2+x -6>0”的否命题. 其中真命题的序号为____________. 答案 ①解析 命题①为“若x ,y 互为相反数,则x +y =0”是真命题;因为命题“若a >b ,则a 2>b 2”是假命题,故命题②是假命题;命题③为“若x >-3,则x 2+x -6≤0”,因为x 2+x -6≤0⇔-3≤x ≤2,故命题③是假命题.综上知只有命题①是真命题.11.已知f (x )是定义在R 上的偶函数,且以2为周期,则“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”) 答案 充要解析 ∵x ∈[0,1]时,f (x )是增函数, 又∵y =f (x )是偶函数,∴当x ∈[-1,0]时,f (x )是减函数. 当x ∈[3,4]时,x -4∈[-1,0], ∵T =2,∴f (x )=f (x -4).故x ∈[3,4]时,f (x )是减函数,充分性成立. 反之,若x ∈[3,4]时,f (x )是减函数, 此时x -4∈[-1,0], ∵T =2,∴f (x )=f (x -4), 则当x ∈[-1,0]时,f (x )是减函数. ∵y =f (x )是偶函数,∴当x ∈[0,1]时,f (x )是增函数,必要性也成立.故“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的充要条件.12.若x <m -1或x >m +1是x 2-2x -3>0的必要不充分条件,则实数m 的取值范围是________. 答案 [0,2]解析 由已知易得{x |x 2-2x -x |x <m -1或x >m +1},又{x |x 2-2x -3>0}={x |x <-1或x >3},∴⎩⎪⎨⎪⎧-1≤m -1,m +1<3,或⎩⎪⎨⎪⎧-1<m -1,m +1≤3,∴0≤m ≤2.13.若“数列a n =n 2-2λn (n ∈N *)是递增数列”为假命题,则λ的取值范围是___________. 答案 [32,+∞)解析 若数列a n =n 2-2λn (n ∈N *)是递增数列,则有a n +1-a n >0,即2n +1>2λ对任意的n ∈N*都成立,于是可得3>2λ,即λ<32.故所求λ的取值范围是[32,+∞).*14.下列四个结论中:①“λ=0”是“λa =0”的充分不必要条件;②在△ABC 中,“AB 2+AC 2=BC 2”是“△ABC 为直角三角形”的充要条件; ③若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 全不为零”的充要条件; ④若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 不全为零”的充要条件. 正确的是________. 答案 ①④解析 由λ=0可以推出λa =0,但是由λa =0不一定推出λ=0成立,所以①正确; 由AB 2+AC 2=BC 2可以推出△ABC 是直角三角形,但是由△ABC 是直角三角形不能确定哪个角是直角,所以②不正确;由a 2+b 2≠0可以推出a ,b 不全为零, 反之,由a ,b 不全为零可以推出a 2+b 2≠0,所以“a 2+b 2≠0”是“a ,b 不全为零”的充要条件,而不是“a ,b 全不为零”的充要条件,所以③不正确,④正确.15.已知数列{a n }的前n 项和为S n =p n+q (p ≠0,且p ≠1).求证:数列{a n }为等比数列的充要条件为q =-1.证明 充分性:当q =-1时,a 1=p -1; 当n ≥2时,a n =S n -S n -1=p n -1(p -1),当n =1时也成立. ∴a n =pn -1(p -1),n ∈N *.又a n +1a n =p n p -p n -1p -=p ,∴数列{a n }为等比数列.必要性:当n =1时,a 1=S 1=p +q ; 当n ≥2时,a n =S n -S n -1=pn -1(p -1).∵p ≠0,且p ≠1,{a n }为等比数列, ∴a 2a 1=a n +1a n =p .∴p p -p +q=p ,即p -1=p +q ,∴q =-1.综上所述,q =-1是数列{a n }为等比数列的充要条件.。
通用版2019版高考数学一轮复习第一章集合与常用逻辑用语第二节命题及其关系充分条件与必要条件实用课件
2. [考点二]已知“x>k”是“x+3 1<1”的充分不必要条件,则k的
取值范围是
()
A.[2,+∞)
B.[1,+∞)
C.(2,+∞)
D.(-∞,-1]
解析:由
3 x+1
<1,得
3 x+1
-1=
-x+2 x+1
<0,解得x<-1或
x>2.因为“x>k”是“
3 x+1
<1”的充分不必要条件,所以
k≥2. 答案:A
②命题α是命题β的逆命题,且命题γ是命题β的否命题;
③命题β是命题α的否命题,且命题γ是命题α的逆否命题.
A.①③
B.②
C.②③ D.①②③
解析:命题的四种形式,逆命题是把原命题中的条件和结论
互换,否命题是把原命题的条件和结论都加以否定,逆否命
题是把原命题中的条件与结论先都否定,然后交换条件与结
论所得,因此①正确,②错误,③正确,故选A. 答案:A
题三个命题中,真命题只有一个.
答案:C
4.[考点一、二]有下列四个命题: ①“若xy=1,则x,y互为倒数”的逆命题; ②“面积相等的三角形全等”的否命题; ③“若m≤1,则x2-2x+m=0有实数解”的逆否命题; ④“若A∩B=B,则A⊆B”的逆否命题. 其中为真命题的是________(填写所有真命题的序号).
[全析考法]
充分条件与必要条件的判断
[例1] (1)(2017·浙江高考)已知等差数列{an}的公差为d,前
n项和为Sn,则“d>0”是“S4+S6>2S5”的
()
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[变式训练 2] 设集合 M={1,2},N={a2},则“a=1”是“N⊆M”的( )
A.必要不充分条件
B.充分不必要条件
C.充要条件
D.既不充分也不必要条件
B [若 a=1,则集合 N={1},此时满足 N⊆M.若 N⊆M,则 a2=1 或 2,所
以 a=±1 或 a=± 2.故“a=1”是“N⊆M”的充分不必要条件.]
[规律方法] 充分条件、必要条件的三种判断方法 (1)定义法:根据 p⇒q,q⇒p 进行判断,适用于定义、定理判断性问题. (2)集合法:根据 p,q 成立的对象的集合之间的包含关系进行判断,多适用 于命题中涉及字母的范围的推断问题. (3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化 为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题.
则 S⊆P,
∴11-+mm≥≤-102,, 1-m≤1+m,
∴0≤m≤3.8 分
综上,可知 0≤m≤3 时,x∈P 是 x∈S 的必要条件.14 分
[迁移探究 1] 本例条件不变,问是否存在实数 m,使 x∈P 是 x∈S 的充要 条件.
[解] 由例题知 P={x|-2≤x≤10}.2 分 若 x∈P 是 x∈S 的充要条件,则 P=S, ∴11- +mm= =- 102,, 8 分 ∴mm= =39, , 这样的 m 不存在.14 分
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)“x2+2x-3<0”是命题.( )
(2)命题“若 p,则 q”的否命题是“若 p,则綈 q”.( ) (3)当 q 是 p 的必要条件时,p 是 q 的充分条件.( ) (4)“若 p 不成立,则 q 不成立”等价于“若 q 成立,则 p 成立”.( )
[规律方法] 充分条件、必要条件的应用,一般表现在参数问题的求解上.解 题时需注意:
(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集 合之间的关系列出关于参数的不等式(组)求解.
(2)要注意区间端点值的检验.
[变式训练 3] (1)(2017·温州模拟)已知命题 p:a≤x≤a+1,命题 q:x2-4x<0, 若 p 是 q 的充分不必要条件,则 a 的取值范围是________.
充分条件与必要条件的判断
(1)函数 f(x)在 x=x0 处导数存在.若 p:f′(x0)=0;q:x=x0 是 f(x) 的极值点,则( )
A.p 是 q 的充分必要条件 B.p 是 q 的充分条件,但不是 q 的必要条件 C.p 是 q 的必要条件,但不是 q 的充分条件 D.p 既不是 q 的充分条件,也不是 q 的必要条件
2.四种命题及其相互关系 (1)四种命题间的相互关系
(2)四种命题的真假关系
图--
①两个命题互为逆否命题,它们有_相__同__的真假性;
②两个命题互为逆命题或互为否命题,它们的真假性_没__有__关__系பைடு நூலகம்__.
3.充分条件与必要条件 (1)如果 p⇒q,则 p 是 q 的_充__分__条件,q 是 p 的_必__要__条件. (2)如果 p⇔q,那么 p 与 q 互为__充__要__条__件__. (3)如果 pD q,且 qD p,则 p 是 q 的__既__不__充__分__也__不__必__要___条件. 4.集合与充要条件 设集合 A={x|x 满足条件 p},B={x|x 满足条件 q},则有: (1)若 A⊆B,则 p 是 q 的充分条件,若 A B,则 p 是 q 的充分不必要条件. (2)若 B⊆A,则 p 是 q 的必要条件,若 B A,则 p 是 q 的必要不充分条件. (3)若 A=B,则 p 是 q 的充要条件.
(2)当 a=0 时,原方程为 2x+1=0, ∴原方程有一个负实根 x=-12. 当 a≠0 时,ax2+2x+1=0 只有一个负实根. ∴方程有一个正根和一个负根或方程有两个相等的负根,当方程有一正一 负根时,则 x1x2<0, ∴1a<0,且 Δ=4-4a>0,解得 a<0. 当方程有两个相等的负根时,Δ=4-4a=0,a=1,此时方程的根为-1, 符合题意, 综上,方程的解集只有一个负实根的充要条件是 a≤0 或 a=1.]
充分条件、必要条件的应用
已知 P={x|x2-8x-20≤0},非空集合 S={x|1-m≤x≤1+m}.若 x ∈P 是 x∈S 的必要条件,求 m 的取值范围. 【导学号:51062008】
[解] 由 x2-8x-20≤0 得 -2≤x≤10, ∴P={x|-2≤x≤10}.4 分 ∵x∈P 是 x∈S 的必要条件,
4.命题“若 a>-3,则 a>-6”以及它的逆命题、否命题、逆否命题中
假命题的个数为( )
A.1
B.2
C.3
D.4
B [原命题正确,从而其逆否命题也正确;其逆命题为“若 a>-6,则 a
>-3”是假命题,从而其否命题也是假命题.
因此 4 个命题中有 2 个假命题.]
5.(2017·杭州学军中学模拟)若 p:“x>a”是 q:“x>1 或 x<-3”的充分不必
A.若 α≠π4,则 tan α≠1 B.若 α=π4,则 tan α≠1 C.若 tan α≠1,则 α≠π4 D.若 tan α≠1,则 α=π4 C [“若 p,则 q”的逆否命题是“若綈 q,则 綈 p”,显然綈 q:tan α≠1,
綈 p:α≠π4,所以该命题的逆否命题是“若 tan α≠1,则 α≠π4”.]
2.给出一个命题,要判断它是真命题,需经过严格的推理证明;而要说明 它是假命题,只需举一反例即可.
3.由于原命题与其逆否命题的真假性相同,所以有时可以利用这种等价性 间接地证明命题的真假.
[变式训练 1] 原命题为“若an+2an+1<an,n∈N*,则{an}为递减数列”,
关于其逆命题、否命题、逆否命题真假性的判断依次如下,正确的是( )
3.(2017·浙江五校第一次联考)设 x>0,则“a=1”是“x+ax≥2 恒成立”的
A.充分不必要条件
B.必要不充分条件
()
C.充要条件
D.既不充分也不必要条件
A [因为 x+ax≥2,x>0 恒成立⇔a≥(2x-x2)max=1,x>0,所以“a=1”是
“x+ax≥2 恒成立”的充分不必要条件,故选 A.]
[易错与防范] 1.当一个命题有大前提而要写出其他三种 命题时,必须保留大前提. 2.判断命题的真假及写四种命题时,一定 要明确命题的结构,可以先把命题改写成 “若 p,则 q”的形式. 3.判断条件之间的关系要注意条件之间关 系的方向,正确理解“p 的一个充分而不必要 条件是 q”等语言的含义.
抓
基
础
·
自
主 学
第一章 集合与常用逻辑用语 课
习
时
分
第二节 命题及其关系、充分条件与必要条件 层
明 考
训 练
向
·
题
型
突
破
1.命题 用 语 言 、 符 号 或 式 子 表 达 的 , 可 以 _判__断__真__假___ 的 陈 述 句 叫 做 命 题 , 其 中 _判__断__为__真___的语句叫做真命题,__判__断__为__假__的语句叫做假命题.
[思想与方法] 1.写出一个命题的逆命题、否命题及逆否 命题的关键是分清原命题的条件和结论,然后 按定义来写;在判断原命题及其逆命题、否命 题以及逆否命题的真假时,要借助原命题与其 逆否命题同真或同假,逆命题与否命题同真或 同假来判定.
2.充分条件、必要条件的几种判断方法 (1)定义法:直接判断“若 p,则 q”“若 q, 则 p”的真假. (2)等价法:对于条件或结论是否定形式的 命题,一般运用等价法. (3)利用集合间的包含关系判断:设 A= {x|p(x)},B={x|q(x)},若 A⊆B,则 p 是 q 的充 分条件或 q 是 p 的必要条件;若 A B,则 p 是 q 的充分不必要条件,若 A=B,则 p 是 q 的充 要条件.
(2)方程 ax2+2x+1=0(a∈R,a 为常数)的解集只有一个负实根的充要条件 是________.
(1)(0,3) (2)a≤0 或 a=1 [(1)令 M={x|a≤x≤a+1},N={x|x2-4x<0}= {x|0<x<4}.
∵p 是 q 的充分不必要条件,∴M N, ∴aa+>01,<4, 解得 0<a<3.
[迁移探究 2] 本例条件不变,若 x∉P 是 x∉S 的必要不充分条件,求实数 m 的取值范围.
[解] 由例题知 P={x|-2≤x≤10}. ∵x∉P 是 x∉S 的必要不充分条件,∴P 是 S 的充分不必要条件, ∴P⇒S 且 SD P,4 分 ∴[-2,10] [1-m,1+m], ∴11- +mm≤ >- 102, 或11+-mm≥<1-0,2, 8 分 ∴m≥9,即 m 的取值范围是[9,+∞).14 分
A.真,真,真
B.假,假,真
C.真,真,假
D.假,假,假
A [由an+2an+1<an,得 an+an+1<2an,即 an+1<an. 所以当an+2an+1<an 时,必有 an+1<an, 则{an}是递减数列. 反之,若{an}是递减数列,必有 an+1<an, 从而有an+2an+1<an. 所以原命题及其逆命题均为真命题,从而其否命题及其逆否命题也均是真 命题.]
(2)设 x∈R,则“|x-2|<1”是“x2+x-2>0”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
(1)C (2)A [(1)当 f′(x0)=0 时,x=x0 不一定是 f(x)的极值点, 比如,y=x3 在 x=0 时,f′(0)=0,但在 x=0 的左右两侧 f′(x)的符号相同, 因而 x=0 不是 y=x3 的极值点. 由极值的定义知,x=x0 是 f(x)的极值点必有 f′(x0)=0. 综上知,p 是 q 的必要条件,但不是充分条件. (2)|x-2|<1⇔1<x<3,x2+x-2>0⇔x>1 或 x<-2. 由于{x|1<x<3}是{x|x>1 或 x<-2}的真子集. 所以“|x-2|<1”是“x2+x-2>0”的充分不必要条件.]