再生电阻说明书
再生电阻
在伺服单元的P+、PB之间连接外置式再生电阻器;再生电阻器会达到高温。请使用耐热不燃的电线,配线时不要与再生电阻器接触。
再生电阻
当伺服电机由发电机模式驱动时,电力回归至伺服放大器侧,这被称为再生电力。再生电力通过在伺服放大器的平滑电容器的充电来吸收。超出可以充电的能量后,再用再生电阻器消耗再生电力。
伺服电机由再生(发电机)模式驱动的情况如下所示:
1.加速、减速运行时的减速停止期间
2.垂直轴上的ቤተ መጻሕፍቲ ባይዱ载
3.由负载侧形成的伺服电机不间断地连续运行(负负载)
再生电阻 选型及接线
关于PQM驱动器
常用的P6/30kw马达配置为 马达P60B2830KM+驱动器PQM1B600A +电源单元PQM0PA27000, 根据说明书的描述,电阻一般配5Ω,最大可配到3.4 Ω,2kw以内 具体的瓦数需计算
马达减速时,由于机械的惯性,马达被带动而成为发电机,驱动器需要消耗掉此能量,因 此需要采用再生电阻 驱动器电源为~220V,测量P和⊖ 之间的电压 电机减速停止时,在使用外置再生电阻情况下的波形如下: 产生的能量很快通过再生电阻得以消耗掉。
在不使用再生电阻时波形如下图: 产生的能量只能缓慢释放。 下图的情况下启停不太频繁,有足够时间将能量释放。
再生电阻的接线方法
接线方法有数种,但每一种方法最终接到RB1和RB2上的电阻值是相同的。功率不够时,可以 通过将电阻串联或并联来获得所需的阻值及功率 50Ω 25Ω ×2个 100Ω ×2个 50Ω ×4个
根据驱动器容量的不同,外置再生电阻的连接方法: 1.对于15A-50A驱动器,可以将内置再生电阻从RB1和RB2端子拆下后,直接连接外置再生电阻 2.对于100A-150A驱动器,使用内置再生电阻时,短接RB1和RB4。 使用外置再生电阻时,拆下RB1和RB4之间的短接片,然后将外置再生电阻连接到RB1和RB2端子 3.对于300A驱动器,直接将外置再生电阻连接到RB1和RB2端子
上述公式中: 跟动作相关的: N—运转速度 tb---减速时间 tD—下降时的减速时间 Tb—减速时的扭矩(跟负载惯量,摩擦扭矩,减速比等相关) Tub—上升减速时的扭矩 TD---下降时的扭矩 跟马达特性相关的:Keφ---马达的电压常数 KT—扭矩常数 Rφ---电机绕线电阻
再生电阻的计算方法2
关于RS1驱动器
再生电阻说明书
Xenus ™Regeneration GuideP/N 95-00306-000 Revision 2February 2007Xenus Regeneration GuideThis page for notes.TABLE OF CONTENTSAbout This Guide...................................................................................................................................... ............................................iii Overview and Scope...................................................................................................................................... ......................iii Related Documentation....................................................................................................................... .. (iii)Comments.............................................................................................................................. (iii)Copyrights.............................................................................................................................. .............................................iii Document Validity.................................................................................................................................. ..............................iii Product Warnings................................................................................................................................ ...............................iv Revision History.................................................................................................................................... (iv)Table of ContentsThis page for notes.ii Xenus Regeneration Guide Copley Controls Corp.A BOUT T HIS G UIDE Overview and ScopeThis guide describes the selection, installation, and configuration of external regen resistors for Xenus Amplifiers. Related DocumentationUsers should also read these Copley Controls documents:•Xenus User Guide•CME 2 User GuideNo part of this document may be reproduced in any form or by any means, electronic or mechanical, including photocopying, without express written permission of Copley Controls Corporation.Xenus and CME 2 are registered trademarks of Copley Controls Corporation. Document ValidityWe reserve the right to modify our products. The information in this document is subject to change without notice and does not represent a commitment by Copley Controls Corporation. Copley Controls Corporation assumes no responsibility for any errors that may appear in this document.Copley Controls Corp. iiiAbout this Guide Xenus Regeneration GuideProduct WarningsObserve all relevant state, regional, and local safety regulations when installing and using this product. For safety and to assure compliance with documented system data, only Copley Controls Corporation should perform repairs to amplifiers.Revision Date1.0July 2003DANGER: Hazardous voltages.DECO #Applies toXenus firmware version 2.16. CME 2 Software version 3.1 Xenus firmware version 4.0. CME 2 Software version 4.0. CME 2 Software version 5.0.CommentsInitial publication.Corrected model number in specifications table (p. 5. Updated to describe new Copley regen resistor models.2004 2February 2007 149881: REGEN R ESISTORS FOR X ENUSThis chapter provides an overview of regeneration and using regen resistors with Xenus. The contents of this chapter include:Title Page 1.1: Regen Resistor Theory.................................................................................................................................... .......................2 1.2: Amplifier Regen Circuit Output Specifications........................................................................................................................3 1.3: Copley Standard Regen Resistors................................................................................................................................. .........4 1.4: Regen Circuit Wiring.................................................................................................................................... (6)Regen Resistor Sizing and Configuration Xenus Regeneration Guide1.1: Regen Resistor TheoryWhen a load is accelerated electrical energy is converted into mechanical energy. During deceleration the conversion is reversed. This is called regeneration. Some of this regenerated energy is lost to friction in the mechanical system. More of this energy is2converted to heat due to IR losses in the motor windings, cabling and drive electronics. The remainder of the energy is added to the electrical energy already storedin the internal capacitor bank of the amplifier. The result of this energy being added is an increase in the voltage on the capacitor bank.If too much energy is added to the capacitor bank, the voltage will rise to a point where the amplifier's over voltage protection will shut down the amplifier. To prevent this, a regen circuit shunts some of the energy into an external resistor, known as a regen resistor, when the voltage rises too high.Xenus provides an internal transistor that is used in combination with an external resistor. Copley Controls supplies compatible external resistors. When using a resistor acquired from another source, be sure it meets the specifications described in Regen Resistor Sizing and Configuration (p. 11.The amplifier protects the regen circuit against short circuit, and uses I2T peak current/time algorithms to protect both the external resistor and internal transistor. NOTE: The Xenus micro panel model has its own internal regen circuit and does not use an external regen resistor.Xenus Regeneration Guide Regen Resistor Sizing and Configuration1.2: Amplifier Regen Circuit Output SpecificationsThis section describes the amplifier’s regen resistor circuit output specifications.Continuous Power Peak Power Minimum Resistance Minimum Resistor Wattage Turn On Voltage Turn Off Voltage DC Bus CapacitanceRegen Energy Absorption Capacity2 kW 5 kW 30 25 W +390 Vdc +380 Vdc 1760 µF nominal4 kW 10 kW 15 50 WModel XTL-230-18 XTL-230-36 XTL-230-40Input Voltage 120 Vac 108 joules208 Vac 57 joules 240 Vac 32 joulesRegen Resistor Sizing and Configuration Xenus Regeneration Guide1.3: Copley Standard Regen ResistorsCopley Controls provides two standard regen resistors for Xenus amplifiers:XTL-RA-03 and XTL-RA-04. XTL-RA-03 and XTL-RA-04 housing is shown below.The diagram below shows XTL-RA-03 and XTL-RA-04 mounting dimensions (in mm.Xenus Regeneration Guide Regen Resistor Sizing and ConfigurationSpecifications for Copley’s standard regen resistors are described below.Model Resistance Default MaxContinuousContinuous Power PowerXTL-RA-03 XTL-RA-04 30 ohms 15 ohms65 W 65 W400 W 400 WPeak PeakPower PowerTime5 kW 10 kW1000 ms 1000 msFor Use WithXTL-230-18 XTL-230-36XTL-230-40WARNINGHigh Temperature Risk.The following graph shows surface temperature rise vs. dissipated power for the XTL-RA-03 and XTL-RA-04 mounted to a control panel with the long surface of the resistor oriented vertically. Results may vary if the resistor is mounted differently.Copley Controls Corp. 5Regen Resistor Sizing and Configuration Xenus Regeneration Guide1.4: Regen Circuit WiringThis section describes the wiring of the regen resistor connections.Be sure that all wiring complies with the National Electrical Code (NEC or its national equivalent, and all prevailing local codes.DANGERDANGERWARNING6DANGER: Hazardous voltages.Exercise caution when installing and adjusting.Failure to heed this warning can cause equipment damage, injury, or death.Risk of electric shock.High-voltage circuits on J1, J2, and J3 are connected to mains power. Failure to heed this warning can cause equipment damage, injury, or death.Do not ground mains-connected circuits.Copley Controls Corp.Xenus Regeneration Guide Regen Resistor Sizing and ConfigurationConnector locations are shown below. The regen connector is J3.Copley Controls Corp. 7Regen Resistor Sizing and Configuration Xenus Regeneration GuideMating ConnectorDescription Manufacturer PN Wire SizeRecommended Wire Wire Insertion/Extraction ToolEuro-style, 5 position, 5.0 mm pluggable male terminal block. Wago 721-605/000-043 22 - 14 AWG 14 AWG, 600 V(Shielded cable used for CE compliance Wago 231-131Connector and tool are included in connector kit XTL-CKPin DescriptionPin Signal12345Regen + Regen - GroundFunction+ DC Bus to one side of regen resistorCollector of regen transistor to one side of regen resistor Enclosure ground and cable shieldconnection connectionRegen Resistor Wiring DiagramRegen Resistor FusingRecommended Fuses:Regen ResistorXTL-RA-03 XTL-RA-04 User SuppliedFuse typeCooper Bussman KLM-8 or equivalent Cooper Bussman KLM-12 or equivalent See Regen Resistor Sizing and Configuration (p. 11.8Copley Controls Corp.Xenus Regeneration Guide Regen Resistor Sizing and ConfigurationClick Configure Regen(to open the Regen Resistor screen.Select a resistor option.Option DescriptionNone XTL-RA-03 XTL-RA-04 Custom ResistorUser-supplied resistor. See Regen Resistor Sizing and Configuration (p. 11. No external regen resistor is used.Standard regen resistors supplied by Copley Controls.Click OK to save regen settings to flash memory and close the Regen Resistor screen ORclick Cancel to restore to previous values and close the screen.Copley Controls Corp. 9Regen Resistor Sizing and ConfigurationThis page for notes.10 Xenus Regeneration Guide Copley Controls Corp.A: REGEN R ESISTOR S IZING ANDC ONFIGURATIONThis chapter describes the formulas used to determine if a regen resistor is required and what the optimal resistor characteristics would be for a given application.The contents of this chapter include:Title PageA.1: Sizing a Regen Resistor.................................................................................................................................. .....................12 A.2: Configuring a Custom Regen Resistor.................................................................................................................................16 Copley Controls Corp. 11Regen Resistor Sizing and Configuration Xenus Regeneration GuideCalculating the power and resistance of the regen resistor requires information about the amplifier and the rotary or linear motor application.1Details of the complete motion profile, including times and velocities2345Amplifier model number Applied line voltage to the amplifier Torque constant of the motor Resistance (line-to-line of the motor windings.1Load inertia seen by the motor2Inertia of the motor.1Mass of the moving load2Mass of the motor forcer block if the motor rod is stationaryORMass of the motor rod if the motor forcer block is stationary.1Speed at the start of the deceleration23Speed at the end of the deceleration Time over which the deceleration takes place.12 Copley Controls Corp.Xenus Regeneration Guide Regen Resistor Sizing and ConfigurationUse the following formulas to calculate the energy returned during each deceleration: Rotary motor:E dec =½J t (I 12-I 22Where:E dec = Energy returned by the deceleration, in joules.Jt = Load inertia on the motor shaft plus the motor inertia in kg m2.I 1=Shaft speed at the start of deceleration in radians per second.I 2=Shaft speed at the end of deceleration in radians per second.I =2J RPS.Linear motor:E dec =½M t (V12-V 22Where:E dec = Energy returned by the deceleration, in joules.M t =Total mass of the load and the moving part of the motor in kg.V 1=Velocity at the start of deceleration in meters per second.Calculate the amount of energy dissipated by the motor due to current flow though themotor winding resistance using the following formulas.2P motor = 3/4 Rwinding (F / KtWhere:P motor = Power dissipated in the motor in watts.R winding = Line to line resistance of the motor.F =Force needed to decelerate the motor:Nm for rotary applicationsN for linear applicationsKt = Torque constant for the motor:Nm/Amp for rotary applicationsN/Amp for linear applicationsE motor = Pmotor TdecelWhere:E motor = Energy dissipated in the motor in joulesCalculate the amount of energy that will be returned to the amplifier for each deceleration using the following formula.E returned = Edec - EmotorWhere:E returned = Energy returned to the amplifier, in joulesE dec = Energy returned by the deceleration, in joulesE motor = Energy dissipated by the motor, in joulesCopley Controls Corp. 13Regen Resistor Sizing and Configuration Xenus Regeneration GuideCompare the amount of energy returned to the amplifier in each deceleration with theamplifier's energy absorption capacity. For related amplifier specifications, see AmplifierRegen Circuit Output Specifications (p. 3.For mains voltages not listed in the specification table, use the following formula todetermine the energy that can be absorbed by the amplifier.W capacity = ½ C (Vregen 2-(1.414 Vmains 2Where:W capacity = The energy that can be absorbed by the bus capacitors, in joules.C =Bus capacitance in farads.V regen = Voltage at which the regen circuit turns on, in volts.For each deceleration where the energy exceeds the amplifier’s capacity, use thefollowing formula to calculate the energy that must be dissipated by the regen resistor:E regen = Ereturned - EampWhere:E regen = Energy that must be dissipated in the regen resistor, in joules.E returned = Energy delivered back to the amplifier from the motor, in joules.E amp = Energy that the amplifier will absorb, in joules.For each deceleration where energy must be dissipated by the regen resistor, use thefollowing formula to calculate the pulse power that will be dissipated by the regen resistor:P pulse = Eregen / TdecelWhere:P pulse = Pulse power in watts.E regen = Energy that must be dissipated in the regen resistor, in joules.Using the maximum pulse power from the previous calculation, calculate the resistancevalue of the regen resistor required to dissipate the maximum pulse power: For relatedamplifier specifications, see Amplifier Regen Circuit Output Specifications (p. 3.R =V regen 2/P pulse maxWhere:R =Resistance in ohms.P pulse max =The maximum pulse power.V regen =The voltage at which the regen circuit turns on.Choose a standard value of resistance less than the calculated value. This value must be greater than the minimum regen resistor value specified in Amplifier Regen Circuit Output Specifications (p. 3.14 Copley Controls Corp.Xenus™ Regeneration Guide P/N 95-00306-000 Revision 2 February 2007 2003, 2004, 2006, 2007 Copley Controls Corporation 20 Dan Road Canton, MA 02021 USA All rights reserved。
再生电阻
伺服电机的资料伺服专用再生电阻特点: 1.对再生能量处理. 2.保护驱动器过载负荷. 3.防止驱动器因短路烧毁交流伺服电机的工作原理伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。
伺服电机的精度决定于编码器的精度(线数)。
4. 什么是伺服电机?有几种类型?工作特点是什么?答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。
分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降,请问交流伺服电机和无刷直流伺服电机在功能上有什么区别?答:交流伺服要好一些,因为是正弦波控制,转矩脉动小。
直流伺服是梯形波。
但直流伺服比较简单,便宜。
永磁交流伺服电动机20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。
交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。
90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。
交流伺服驱动装置在传动领域的发展日新月异。
永磁交流伺服电动机同直流伺服电动机比较,主要优点有:⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。
⑵定子绕组散热比较方便。
⑶惯量小,易于提高系统的快速性。
⑷适应于高速大力矩工作状态。
⑸同功率下有较小的体积和重量。
自从德国MANNESMANN的Rexroth公司的Indramat分部在1978年汉诺威贸易博览会上正式推出MAC永磁交流伺服电动机和驱动系统,这标志着此种新一代交流伺服技术已进入实用化阶段。
到20世纪80年代中后期,各公司都已有完整的系列产品。
电阻器使用方法说明书
电阻器使用方法说明书使用方法说明书一、产品概述电阻器是一种常见的电子元件,用于调节和限制电流的流动。
本说明书为您提供了电阻器的基本使用方法和注意事项,以帮助您正确地使用和安装电阻器。
二、产品特点1. 高耐高温性能,能够在高温环境下长时间稳定工作;2. 具有较低的内部电感和电容,对电路传输性能影响较小;3. 多种封装形式可选,便于与其他电子元件连接;4. 具备一定的功率耗散能力,能够稳定分散电路能量。
三、安装步骤1. 确认电路需求:在安装电阻器之前,确保您清楚电路需要的电阻值、功率要求和封装形式等信息。
2. 断电:在对电路进行任何更改或安装电子元件之前,请务必断开电源,以免触电或造成其他安全问题。
3. 选择合适的封装形式:根据电路结构和安装空间的要求,选择适合的电阻器封装形式,如贴片式、插件式或散热片式等。
4. 连接电阻器:根据电路连接图,将电阻器正确地连接到电路板上,注意接触良好且无松动。
5. 烙铁温度调整:如需使用烙铁连接电阻器引线与电路线路,请将烙铁温度调至适宜的温度,以免损坏电阻器或引线。
6. 散热处理:如果电阻器所在的环境温度较高或需要大功率的耗散能力,建议采取有效的散热措施,如安装散热片或采用散热容器等。
四、注意事项1. 避免过载使用:请确保电阻器在额定电压和功率范围内工作,过高的电压或功率可能导致电阻器损坏或发生火灾等安全问题。
2. 注意防护:在工作环境中,应注意防止灰尘、湿气或化学物质对电阻器的损害,可以采用适当的防护措施,如安装防尘罩或使用密封式电阻器等。
3. 避免长期露天安装:长期的露天安装容易受到恶劣天气等环境因素的影响,建议将电阻器安装在封闭的控制柜或机箱内。
4. 防止振动和冲击:请避免电阻器受到剧烈振动或冲击,以免引线断裂或引起其他损坏。
5. 定期检查:定期检查电阻器的连接状态、外观是否存在异常,如发现损坏或老化现象,请及时更换或修理。
五、故障排除如果在使用过程中遇到电阻器工作异常或其他故障,请按以下步骤进行排除:1. 检查连接:确认电阻器与电路连接是否良好,检查引线或连接点是否存在松动或短路现象。
E6、E12、E24、E48、E96、E192系列电阻说明书
E6、E12、E24、E48、E96、E192系列电阻说明“ E ”表示“指数间距”(Exponential Spacing)在上个20世纪的电子管时代,电子元器件厂商为了便于元件规格的管理和选用、大规模生产的电阻符合标准化的要求,同时也为了使电阻的规格不致太多,协商采用了统一的标准组成元件的数值。
它的基础是宽容一部定的误差,并以指数间距为标准规格。
这种标准已在国际上广泛采用,这一系列的阻值就叫做电阻的标称阻值。
电阻的标称阻值分为E6、E12、E24、E48、E96、E192六大系列,分别适用于允许偏差为±20%、±10%、±5%、±2%、±1%和±0.5%的电阻器。
其中E24系列为常用数系,E48、E96、E192系列为高精密电阻数系。
E6系列电阻标称阻值,对应允许偏差为±20%,查看E6系列电阻规格表。
E12系列电阻标称阻值,对应允许偏差为±10%,查看E12系列电阻规格表。
E24系列电阻标称阻值,对应允许偏差为±5%,查看E24系列电阻规格表。
E48系列电阻标称阻值,对应允许偏差为±2%,查看E48系列电阻规格表。
E96系列电阻标称阻值,对应允许偏差为±1%,查看E96系列电阻规格表。
E192系列电阻标称阻值,对应允许偏差为±0.5%, ±0.25%, ±0.1%,查看E192系列电阻规格表。
E6系列电阻规格表E代表指数间隔的意思,6表示只有6种数字系列E6系列的电阻格误差非常大,规定了六个基本数:1、1.5、2.2、3.3、4.7、6.8E6数系的公比为错误!未找到引用源。
6系列的电阻规定几个基本系数,这些系数再乘以错误!未找到引用源。
(其中n为整数),即为某一具体电阻器阻值。
如 1.5×101=15Ω因误差较大,电阻较少采用,电容中用的多一些,此系列可用于电阻、电容、电位器、电感等。
再生电阻
伺服专用再生电阻特点: 1.对再生能量处理. 2.保护驱动器过载负荷. 3.防止驱动器因短路烧毁伺服电机简介2007-03-06 17:05伺服电机的资料交流伺服电机的工作原理伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。
伺服电机的精度决定于编码器的精度(线数)。
4. 什么是伺服电机?有几种类型?工作特点是什么?答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。
分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降,请问交流伺服电机和无刷直流伺服电机在功能上有什么区别?答:交流伺服要好一些,因为是正弦波控制,转矩脉动小。
直流伺服是梯形波。
但直流伺服比较简单,便宜。
永磁交流伺服电动机20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。
交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。
90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。
交流伺服驱动装置在传动领域的发展日新月异。
永磁交流伺服电动机同直流伺服电动机比较,主要优点有:⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。
⑵定子绕组散热比较方便。
⑶惯量小,易于提高系统的快速性。
⑷适应于高速大力矩工作状态。
⑸同功率下有较小的体积和重量。
自从德国MANNESMANN的Rexroth公司的Indramat分部在1978年汉诺威贸易博览会上正式推出MAC永磁交流伺服电动机和驱动系统,这标志着此种新一代交流伺服技术已进入实用化阶段。
再生电阻选型及接线分析
计算例:输入电源电压200V,再生电阻50Ω, [再生回路动作率]=0.4%时 所需再生电阻为50 Ω 12.8W . 为保险起见,增大4倍,选用50W/50Ω再生电阻
如上所述,机器人的应用上,难以事先计算再生电阻的容量。 一般来说,先选择一较大容量的电阻,进行实际运转测试。
50Ω
25Ω ×2个
100Ω ×2个
50Ω ×4个
根据驱动器容量的不同,外置再生电阻的连接方法: 1.对于15A-50A驱动器,可以将内置再生电阻从RB1和RB2端子拆下后,直接连接外置再生电阻 2.对于100A-150A驱动器,使用内置再生电阻时,短接RB1和RB4。
使用外置再生电阻时,拆下RB1和RB4之间的短接片,然后将外置再生电阻连接到RB1和RB2端子 3.对于300A驱动器,直接将外置再生电阻连接到RB1和RB2端子
驱动器电源为~220V,测量P和⊖ 之间的电压
电机减速停止时,在使用外置再生电阻情况下的波形如下: 产生的能量很快通过再生电阻得以消耗掉。
在不使用再生电阻时波形如下图: 产生的能量只能缓慢释放。 下图的情况下启停不太频繁,有足够时间将能量释放。
如果频繁地启停,在电压还没有放完的情况下又再次减速,则电压越来越高,严 重的话【过电压】报警。
关于RS1驱动器
前述的资料,描述的是山洋RS2系列驱动器,对应山洋RS1驱动器,方法大同小异
例如: 对于监视[再生回路动作率], RS2驱动器是 ID16号参数,RS1驱动器是 12号参数
驱动器内置电阻 RS1A01A -----内置电阻100Ω,5w。外置电阻推荐100Ω,220w以内 RS1A03A -----内置电阻50Ω,5w。外置电阻推荐50Ω,220w以内 RS1A05A -----内置电阻17Ω,20w。外置电阻推荐17Ω,500w以内 RS1A10A -----内置电阻10Ω,90w。外置电阻推荐10Ω,500w以内 RS1A15A -----内置电阻6Ω,120w。外置电阻推荐6Ω,500w以内 RS1A30A -----内置电阻 无。外置电阻推荐6.7Ω,500w以内
MCCSEMI 5 Watt Zener 电阻说明书
•Operating Junction Temperature Range(Note2): -55°C to +200°C •Storage Temperature Range : -55°C to +200°C•Maximum T hermal R esistence: 15o C/W from J unction to L ead •Maximum Thermal Resistence: 83o C/W from Junction to Ambient Maximum Ratings•Zener Voltage From 5.1V to 200V•Halogen Free Available Upon Request By Adding Suffix "-HF"•Epoxy Meets UL 94 V-0 Flammability Rating•Lead Free Finish/RoHS Compliant (Note1)("P" Suffix Designates Compliant. See Ordering Information)FeaturesNote:1.High Temperature Solder Exemption Applied, S ee EU Directive Annex 7a.2.Max Operating Temperature for DC Conditions is 150°C, But not to Exceed 200°C for Pulsed Conditions With Low Duty Cycle or Non−Repetitive.Regulator Voltage Test Current Maximum Dynamic ImpedanceMaximum Reverse Current Test Voltage Maximum Regulator Current Maximum Dynamic Knee Impedance Maximum Surge Current V Z I Z Z ZT I R V R I ZM Z ZK @1.0mAI ZSM V mA ΩµA V mA ΩA V 1N5338B 5.1240 1.51193040014.40.391N5339B 5.622011286540013.40.251N5340B 620011379030012.70.191N5341B 6.220011376520012.40.11N5342B 6.8175110 5.270020011.50.151N5343B 7.5175 1.510 5.763020010.70.151N5344B 8.2150 1.510 6.2580200100.21N5345B 8.7150210 6.65452009.50.21N5346B 9.115027.5 6.95201509.20.221N5347B 10125257.64751258.60.221N5348B 11125 2.558.443012580.251N5349B 12100 2.529.13951257.50.251N5350B 13100 2.519.936510070.251N5351B 14100 2.5110.634075 6.70.251N5352B 1575 2.5111.531575 6.30.251N5353B 1675 2.5112.22957560.31N5354B 1770 2.50.512.928075 5.80.351N5355B 1865 2.50.513.726475 5.50.41N5356B 196530.514.425075 5.30.41N5357B 206530.515.223775 5.10.41N5358B 2250 3.50.516.721675 4.70.451N5359B 2450 3.50.518.2198100 4.40.551N5360B 255040.519190110 4.30.551N5361B 275050.520.6176120 4.10.61N5362B 285060.521.2170130 3.90.61N5363B 304080.522.8158140 3.70.61N5364B 3340100.525.1144150 3.50.61N5365B 3630110.527.4132160 3.30.651N5366B 3930140.529.7122170 3.10.651N5367B 4330200.532.7110190 2.80.71N5368B 4725250.535.8100210 2.70.81N5369B 5125270.538.893230 2.50.91N5370B 5620350.542.686280 2.311N5371B 6020400.545.579350 2.2 1.21N5372B 6220420.547.176400 2.1 1.351N5373B 6820440.551.7705002 1.51N5374B 7520450.55663620 1.9 1.61N5375B 8215650.562.258720 1.8 1.81N5376B 8715750.56654.5760 1.721N5377B 9115750.569.252.5760 1.6 2.21N5378B 10012900.57647.5800 1.5 2.31N5379B 110121250.583.6431000 1.4 2.51N5380B 120101700.591.239.51150 1.3 2.51N5381B 130101900.598.836.61250 1.2 2.51N5382B 14082300.5106341500 1.2 2.51N5383B 15083300.511431.61500 1.131N5384B 16083500.512229.41650 1.131N5385B 17083800.5129281750131N5386B 18054300.513726.41750141N5387B 19054500.51442518500.951N5388B20054800.515223.618500.95MCC Part NumberMaximum Voltage Regulation 1N5338B 1N5339B 1N5340B 1N5341B 1N5342B 1N5343B 1N5344B 1N5345B 1N5346B 1N5347B 1N5348B 1N5349B 1N5350B 1N5351B 1N5352B 1N5353B 1N5354B 1N5355B 1N5356B 1N5357B 1N5358B 1N5359B 1N5360B 1N5361B 1N5362B 1N5363B 1N5364B 1N5365B 1N5366B 1N5367B 1N5368B 1N5369B 1N5370B 1N5371B 1N5372B 1N5373B 1N5374B 1N5375B 1N5376B 1N5377B 1N5378B 1N5379B 1N5380B 1N5381B 1N5382B 1N5383B 1N5384B 1N5385B 1N5386B 1N5387B 1N5388BMARKING CODEElectrical Characteristics @ 25°C Unless Otherwise SpecifiedRemarks:1. Devices Listed Have a ± 5% Tolerance on Nominal VZ. Suffix C Denotes a +2%2.ZENER VOLTAGE(Vz)AND IMPEDANCE(Z ZT&Z ZK)-T est conditions for Zener voltage and impedance are asfollows;Iz is applied40+/-10ms prior to reading.Mounting contacts are located from the inside edge of mounting clips to the body of the diode(Ta=25o C)3.SURGE CURRENT(Ir)-Surge current is specified as the maximum allowable peak,non-recurrent square-wavecurrent with a pulse width,PW,of8.3ms.The data given in Figure5may be used to find the maximum surge current for a quare wave of any pulse width between1ms and1000ms by plotting the applicable points on logarithmic paper.Examples of this, using the 6.8v , is shown in Figure 6. Mountingcontact located as specified in Note3.(T A=25ć).4.VOLTAGE REGULATION(Vz)-Test conditions for voltage regulation are as follows:Vz measurements are madeat10%and then at50%of the Iz max value listed in the electrical characteristics table.The test currents are the same for the5%and10%tolerance devices.The test current time druation for each Vz measurement is40+/-10ms.(T A=25C).Mounting contact located as specified in Note2.5.MAXIMUM REGULATOR CURRENT(I ZM)-The maximum current shown is based on the maximum voltage of a5%type unit.Therefore,it applies only to the B-suffix device.The actual I ZM for any device may not exceed the value of5watts divided by the actual Vz of the device.T L=75Cat maximum from the device body.APPLICATION NOTE:Since the actual voltage available from a given Zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended:Lead Temperature, T L, should be determined from:T L = q LA P D + T Aq LA is the lead‐to‐ambient thermal resistance and P D is the power dissipation.Junction Temperature, T J, may be found from:T J = T L + D T JLD T JL is the increase in junction temperature above the lead temperature and may be found from Figure 7 for a train of power pulses or from Figure 1 for dc power.D T JL = q JL P DFor worst‐case design, using expected limits of I Z, limits of P D and the extremes of T J(D T J) may be estimated. Changes in voltage, V Z, can then be found from:D V = q VZ D T Jq VZ, the Zener voltage temperature coefficient. Under high power‐pulse operation, the Zener voltage will vary with time and may also be affected significantly by the zener resistance. For best regulation, keep current excursions as low as possible.Data of Figure 7 should not be used to compute surge capability. Surge limitations are given in Figure 5. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots resulting in device degradation should the limits of Figure 5 be exceeded.Curve Characteristics0255075100125150123456P o w e r D i s s i p a t i o n (W )Lead Temperature (°C)Fig. 1 - Power Derating Curve0.20.52520502005000.11101001000Zener Voltage (V)Z e n e r C u r r e n t (m A )Fig. 3 - Typical Zener Breakdown Characteristics0.111010010001000001237891011456Zener Voltage (V)Z e n e r C u r r e n t (m A )Fig. 2 - Typical Zener Breakdown Characteristics0.111040101003200Nominal Zener Voltage (V)P e a k S u r g e C u r r e n t (A )Fig. 5- Surge Current Characteristics0.111030Pulse Width (ms)P e a k S u r g e C u r r e n t (A )Fig. 6 - Peak Surge Current VS Pulse Width0.11101001000Z e n e r C u r r e n t (m A )Fig. 4 - Typical Zener Breakdown CharacteristicsZener Voltage (V)Curve Characteristics0102030400.20.80.01.00.4 0.6Lead Length to Heat Sink (inch)J u n c t i o n t o L e a d T h e r m a l R e s i s t a n c e (C /W )Fig. 7 - Typical Thermal ResistaceOrdering InformationDevice Packing(Part Number)-TP Note : Adding "-HF" Suffix For Halogen Free, eg . Part Number-TP-HF(Part Number)-AP (Part Number)-BPTape&Reel: 4Kpcs/Reel Ammo Packing: 3Kpcs/Ammo Box Bulk:500pcs/Box,25Kpcs/Carton。
MCCSEMI Zener 电阻说明书
•Zener Voltages from 2.4V - 75V •V Z – T olerance ± 5%•Planar Die C onstruction•ESD Rating of 16K V per Human Body Model •Halogen Free. “Green” Device (Note 1)•Moisture Sensitivity Level 1•Epoxy Meets UL 94 V-0 Flammability Rating•Lead Free Finish/RoHS Compliant ("P" Suffix D esignates RoHS Compliant. See O rdering I nformation)Features•Operating Junction Temperature Range : -65°C to +150°C •Storage Temperature Range : -65°C to +150°C•Thermal Resistance : 340°C/W Junction to Ambient (Note 2)Maximum RatingsNote: 2. On FR - 4 Board With Minimum Recommended Solder Pad Layout Note: 3. Mounted on 5.0mm2(0.013mm Thick) Land Areas.<900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.Electrical Characteristics @ 25°C Unless Otherwise SpecifiedV Z @ I ZTI ZT Z ZT @ I ZTZ Zk @ I ZKI ZK I R V R V mA ΩΩmA µA V %/o C MMSZ5221B 2.4203012000.25100 1.0-0.085C1MMSZ5222B 2.5203012500.25100 1.0-0.085C2MMSZ5223B 2.7203013000.2575 1.0-0.080C3MMSZ5225B 3.020*******.2550 1.0-0.075C5MMSZ5226B 3.3202816000.2525 1.0-0.070G1MMSZ5227B 3.6202417000.2515 1.0-0.065G2MMSZ5228B 3.9202319000.2510 1.0-0.060G3MMSZ5229B 4.3202220000.25 5.0 1.0±0.055G4MMSZ5230B 4.7201919000.25 5.0 2.0±0.030G5MMSZ5231B 5.1201716000.25 5.0 2.0±0.030E1MMSZ5232B 5.6201116000.25 5.0 3.0+0.038E2MMSZ5233B 6.0207.016000.25 5.0 3.5+0.040E3MMSZ5234B 6.2207.010000.25 5.0 4.0+0.045E4MMSZ5235B 6.820 5.07500.25 3.0 5.0+0.050E5MMSZ5236B 7.520 6.05000.25 3.0 6.0+0.058F1MMSZ5237B 8.2208.05000.25 3.0 6.5+0.062F2MMSZ5238B 8.7208.06000.25 3.0 6.5+0.065F3MMSZ5239B 9.120106000.25 3.07.0+0.068F4MMSZ5240B 1020176000.25 3.08.0+0.075F5MMSZ5241B 1120226000.25 2.08.4+0.076H1MMSZ5242B 1220306000.25 1.09.1+0.077H2MMSZ5243B 139.5136000.250.59.9+0.079H3MMSZ5244B 149.0156000.250.110.5+0.081H4MMSZ5245B 158.5166000.250.111+0.082H5MMSZ5246B 167.8176000.250.112+0.083J1MMSZ5248B 187.0216000.250.114+0.085J3MMSZ5250B 20 6.2256000.250.115+0.086J5MMSZ5251B 22 5.6296000.250.117+0.087K1MMSZ5252B 24 5.2336000.250.118+0.088K2MMSZ5254B 27 4.6416000.250.121+0.090K4MMSZ5255B 28 4.5446000.250.121+0.091K5MMSZ5256B 30 4.2496000.250.123+0.091M1MMSZ5257B 33 3.8587000.250.125+0.092M2MMSZ5258B 36 3.4707000.250.127+0.093M3MMSZ5259B 39 3.2808000.250.130+0.094M4MMSZ5260B 43 3.0939000.250.133+0.095M5MMSZ5261B 47 2.710510000.250.136+0.095N1MMSZ5262B 51 2.512511000.250.139+0.096N2MMSZ5263B 56 2.215013000.250.143+0.097M8MMSZ5265B 62 2.018514000.250.147+0.098N5MMSZ5267B751.727017000.250.156+0.099P2MCC Part Number Marking CodeNominal Zener Voltage (4,5)Maximum Zener Impedance (6)Maximum Reverse LeakageCurrentMaximum Zener Voltage TempNOTE:Note: 4 Standard Zener V oltage T olerance is ±5% W ith a "B" suffix (e.g.: MMSZ5225B),S uffix ''C'' is ± 2 % T oleranceNote: 5 Zener Voltage (V Z ) Measurement.Guarantees the Z ener V oltage W hen M easured at 90 S econds W hile M aintaining the L ead T emperature (T L ) at 25O C, F rom the D iode B ody.Note: 6 Zener Impedance (Z Z ) Derivation. The Z ener I mpedance is D erived F rom the 60 C ycle AC V oltage, W hich R esults W hen an AC C urrent H aving an R ms V alue E qual to 10% of the DC Z ener C urrent (I ZT or I ZK ) is S uperimposed on I ZT or I ZK .Electrical Characteristics @ 25°C Unless Otherwise SpecifiedV Z @ I ZTI ZT Z ZT @ I ZTZ Zk @ I ZKI ZK I R V R VmAΩΩmAµAV%/o C MCC Part NumberMarking CodeNominal Zener Voltage (4,5)Maximum Zener Impedance (6)Maximum Reverse LeakageCurrentMaximum Zener Voltage TempMMSZ5229C 4.3202220000.25 5.0 1.0±0.0552G4MMSZ5230C 4.7201919000.25 5.0 2.0±0.0302G5MMSZ5231C 5.1201716000.25 5.0 2.0±0.0302E1MMSZ5232C 5.6201116000.25 5.0 3.0+0.0382E2MMSZ5233C 6.0207.016000.25 5.0 3.5+0.0402E3MMSZ5234C 6.2207.010000.25 5.0 4.0+0.0452E4MMSZ5235C 6.820 5.07500.25 3.0 5.0+0.0502E5MMSZ5236C 7.520 6.05000.25 3.0 6.0+0.0582F1MMSZ5237C 8.2208.05000.25 3.0 6.0+0.0622F2MMSZ5238C 8.7208.06000.25 3.0 6.5+0.0652F3MMSZ5239C 9.120106000.25 3.0 6.5+0.0682F4MMSZ5240C 1020176000.25 3.08.0+0.0752F5MMSZ5241C 1120226000.25 3.08.4+0.0762H1MMSZ5242C 1220306000.25 2.09.1+0.0772H2MMSZ5243C 139.5136000.25 1.09.9+0.0792H3MMSZ5244C 149.0156000.250.510.5+0.0812H4MMSZ5245C 158.5166000.250.511+0.082H5MMSZ5246C 167.8176000.250.112+0.0832J1MMSZ5248C 187.0216000.250.114+0.0852J3MMSZ5250C 20 6.2256000.250.115+0.0862J5MMSZ5251C 22 5.6296000.250.117+0.0872K1MMSZ5252C 24 5.2336000.250.118+0.0882K2MMSZ5254C 27 4.6416000.250.121+0.0902K4MMSZ5255C 28 4.5446000.250.121+0.0912K5MMSZ5256C 30 4.2496000.250.123+0.0912M1MMSZ5257C 33 3.8587000.250.125+0.0922M2MMSZ5258C 36 3.4707000.250.127+0.093M3MMSZ5259C 39 3.2808000.250.130+0.0942M4MMSZ5260C 43 3.0939000.250.133+0.095M5MMSZ5261C472.710510000.250.136+0.095N1NOTE:Note: 4 Standard Zener V oltage T olerance is ±5% W ith a "B" suffix (e.g.: MMSZ5225B),S uffix ''C'' is ± 2 % T oleranceNote: 5 Zener Voltage (V Z ) Measurement.Guarantees the Z ener V oltage W hen M easured at 90 S econds W hile M aintaining the L ead T emperature (T L ) at 25O C, F rom the D iode B ody.Note: 6 Zener Impedance (Z Z ) Derivation. The Z ener I mpedance is D erived F rom the 60 C ycle AC V oltage, W hich R esults W hen an AC C urrent H aving an R ms V alue E qual to 10% of the DC Z ener C urrent (I ZT or I ZK ) is S uperimposed on I ZT or I ZK .Curve Characteristics25125150100200300400500600P o w e r D i s s i p a t i o n (m W )Fig. 1 - Power Derating Curve5075100Ambient Temperature (°C)Z e n e r C u r r e n t (m A )Fig. 2 - Typical Zener Breakdown CharacteristicsZener Voltage (V)515251020300100340Z e n e r C u r r e n t (m A )Fig. 3 - Typical Zener Breakdown Characteristics02Zener Voltage (V)510Z e n e r C u r r e n t (m A )Fig. 4 - Typical Zener Breakdown CharacteristicsZener Voltage (V)Ordering InformationDevice PackingPart Number-TP Tape&Reel:3Kpcs/ReelPart Number-13P Tape&Reel:10Kpcs/Reel。
再生电阻器的内接操作设置
再生电阻器的内接操作设置
要将外接再生电阻器连接到伺服单元时,必须对再生电阻容量Pn 600进行设定.
设定值因外接再生电阻器的冷却状态而异.
l 自冷(自然对流冷却)方式时:请设定实际安装的再生电阻容量(W)20%以下的值。
l 强制风冷方式时:请设定实际安装的再生电阻容量(W)50%以下的值。
用户参数Pn 600的设定单位:10W。
例如:强制风冷方式的外接再生电阻器的容量为100W时
可处理的再生电力为:100W*50%=50W
再生电阻容量Pn 600的设定值为:50W/10W=5
新晨阳
电容器
注:外接再生电阻器时,为了增加再生电阻器的容量(W),而将多个小容量的再生电阻器组合起来使用。
在选择方面请注意,包含电阻值的误差在内的值要大于下述表中的最小允许电阻值,否则流过再生电路的电流就会增大,有可能造成电路击穿。
*1、假定在自冷方式时的可处理再生电力(20%).
*2、()内所示的值表示专用选购件再生电阻单元JUSP-RA04的值。
*3、()内所示的值表示专用选购件再生电阻单元JUSP-RA05的值。
KEMET MC Series 和 ZC Series 电阻器说明书
1 Operation at or near full rated power (especially >1W) involves consideration of mounting geometry (solder pad and trace area/thickness, etc.). Request FA2623 for suggested mounting pad layouts.2Extended resistance range available . Most sizes available down to 0.01Ω 1%. 3 Up to 25A available. 4 Dim. t on MC2512B is .094[2.4] maximum.TYPICAL PERFORMANCETHICK FILM CHIP RESISTORS AND JUMPERSMC SERIES 50mW (0201) to 3W (2040)ZC SERIES Zero-ohm chip (1A - 25A)Industry’s widest selection & lowest prices- 0.1Ω to 22M , 50mW to 3W, 0.25% to 5%, TC’s to 50ppm 0402, 0603, 0805, 1206 sizes heavily stocked in 1% & 5% (other sizes available from stock in many popular values) Option V: +175° operating temperature Option U: User-trimmable chips Option P: Increased pulse capabilityMilitary screening, custom values & TC, microwave design, etc.RCD’s Series MC resistors utilize precision thick film technology offering inherently low inductance, exceptional reliability and superior performance. Heavy plating with NO LEACH TMnickel barrier assures superb solderability and long shelf life. State-of-the-art production line enables the industry’s most precise accuracies (0.25% & 50ppm!)thereby replacing more costly thin-film chips in many applications.RCD offers low cost offshore assembly of SM and leaded PCB’s (refer to RCD’s Assembly Services p.114 for more information).LtWTPulse capability is dependent on res. value, waveform, repetition, etc.Chart is a general guide for Opt. P version, single or infrequent pulses,with peak voltage levels not exceeding 150V for 0402 & 0603 size, 300V for 0805, 400V for 1206 & 1210, 450V for 2010 & 2512. Max pulse wattage for standard parts (w/o Opt.P) is 50% less, max pulse voltage is 50V less. Increased pulse levels available. For improved performance and reliability, pulse derating factor is recommended (30-50% typ., refer to #R-42). Verify selection by evaluating under worst-case conditions.C R TD e p y C Z ,C M e g a t t a W g n i t a R 1C T d t S 2,C °/m p p .p y t eg n a R .s i se R l o T %5.0±2d r a d n at S e g n a R .s i s e R l o T %1±2d r a d n a t Se g n a R .s i s e R l o T %5±2C M e g a t l o V g n i t a R 2C Z E P Y T r e p m u J 3s n o i s n e m i D ]m m [h c n I LWTt1020W50.00101ΩK 22o t ΩV52.x a M p m A 1m 05Ω.x a M 200.±420.]30.±6.0[200.±210.]30.±3.[200.±010.]30.±52.[200.±600.]50.±51.[002M 1o t K 1.22Ω01ΩM 1o t Ω0041.9-1ΩM 2.2-M 1.1,2040m e t i k c o t S W 360.00101ΩM 1o t ΩV05.x a M p m A 1m 05Ω.x a M 400.±040.1.±00.1[]400.±020.]1.±5.[400.±410.]1.±53.[400.±010.]1.±52.[00201ΩM 1o t Ω0041Ω67.9o t Ω1.9-1ΩM 7.4-M 1.1,3060m e t i k c o t S W 1.00101ΩM1o t 01ΩM 1o t ΩV05pm A 5.1.x a M m 05Ω.x a M 500.±160.]21.±55.1[400.±130.]1.±8.[600.±610.]51.±04.[600.±010.]51.±52.[00201ΩM 1o t Ω0041Ω67.9o t Ω1.9-1ΩM01-M 1.1,5080m e t i k c o t S W521.00101ΩM1o t 01ΩM 1o t Ω15V0.x a M p m A 2m 05Ω.x a M 500.±970.]51.±0.2[600.±050.]51.±52.1[600.±020.]51.±05.[800.±610.]2.±4.[00201ΩM 1o t Ω00467.9-1.0ΩM 01-M 20.1,1.9-1.0ΩM02-M 1.1,6021m e t i k c o t S W52.00101ΩM1o t 01ΩM 1o t ΩV002.x a M p m A 2m 05Ω.x a M 800.±621.]2.±2.3[600.±160.]51.±55.1[600.±420.]51.±16.[800.±020.]2.±15.[002M 6.5o t M 20.101ΩM 6.5o t Ω00467.9-1.0,ΩM 01-M 26.51.9-1.0ΩM22-M 2.6,0121W33.00101ΩM1o t 01ΩM 1o t ΩV 002.x a M p m A 3m 05Ω.x a M 800.±621.]2.±2.3[800.±890.]2.±5.2[800.±420.]2.±6.[010.±020.]52.±5.[002M 6.5o t M 20.101ΩM 6.5o t Ω00467.9-1.0,ΩM 01-M 26.51.9-1.0ΩM22-M 2.6,0102W 57.00101ΩM1o t 01ΩM 1o t ΩV 002(V 052)P .t p O .x a M p m A 3m 05Ω.x a M 800.±791.]2.±0.5[800.±201.]2.±6.2[800.±420.]2.±6.[010.±020.]52.±05.[002M 6.5o t M 20.101ΩM 6.5o t Ω00467.9-1.0,ΩM 01-M 26.51.9-1.0ΩM22-M 2.6,2152B 2152W 0.1W 0.200101ΩM1o t 01ΩM 1o t ΩV 05253(V 0)P .t p O .x a M p m A 4m 05Ω.x a M 10.±052.]52.±53.6[010.±521.]52.±2.3[800.±420.]2.±6.[210.±620..[63.±5]4002M 6.5o t M 20.101ΩM 6.5o t Ω00467.9-1.0,ΩM 01-M 26.51.9-1.0ΩM22-M 2.6,0402*0.3/0.200101ΩM 1o t ΩV053A/N 800.±102.]2.±1.5[800.±204.]2.±2.01[800.±420.]2.±6.[550.810.±]64.±4.1[00201ΩM 1o t Ω0041.9-1Ω)C °521+o t °55-(k c o h S l a m r e h T %2.0∆R )V d e t a r x 2E T N ,S 5,W x 5.2(d a o l r e v O %1∆R )C °55-(n o i t a r e p O .p m e T w o L %2.0∆R )s r h 001,C °521(e r u s o p x E .p m e T h g i H %5.0∆R t a e H r e d l o S o t e c n a t s i s e R %2.0∆R e c n a t s i s e R e r u t s i o M %5.0∆R ).s r h 0001(e f i L d a o L %0.1∆R .p m e T g n i t a r e p O )V .t p O C °571+(C°551+o t 55-)C °07e v o b a (g n i t a r eD C°/%81.1y b V &W e t a r e D Pulse DurationP e a k P o w e r (W a t t s )FA033E Sale of this product is in accordance with GF-061. Specifications subject to change without notice.Term.W is RoHS compliant & 260°C compatibleOptional TC RCD Type : MC or ZC Chip Size:Resis. Code (R100= .1Ω, 1R00=1Ω, 5% T 101=100Ω, 102=1K ΩTolerance Packaging Options: U, P Termination: RCD Components Inc, 520 E.Industrial Park Dr, Manchester, NH, USA 03109 Tel: 603-669-0054 Fax: 603-669-5455 Email:***********************RESISTORS CAP ACITORS C OILS DELAY LINES16。
伺服电机再生电阻
伺服电机再生电阻
伺服电机的再生电阻是指在电机运动时,产生的电能由电机内部的电阻器耗散掉的过程。
当伺服电机从高速运动转为低速运动或停止时,电机会产生反向电动势,将电能返回给电源。
如果这时没有采取措施来处理这些反向电动势,就会导致电机内部电压升高,可能损坏电机或其他电气设备。
为了处理这些反向电动势,可以在伺服电机系统中添加一个电阻器,将电能转化为热能并耗散掉。
这个电阻器通常是一个大功率电阻,通过在电机回路中串联连接,将电动势产生的电能转为热能,并通过散热方式进行散发。
伺服电机再生电阻的主要作用是保护电机和其他电气设备,防止电压升高损坏设备。
此外,再生电阻还可以提高电机系统的稳定性和控制性能,减少系统的振动和噪音。
需要注意的是,伺服电机再生电阻会产生一定的能量损耗,会消耗一部分电能并将其转化为热能进行散发。
因此,在设计伺服电机系统时需要合理选择再生电阻的容值和功率,以达到合理的能效和良好的系统性能。
E6、E12、E24、E48、E96、E192系列电阻说明书
E6、E12、E24、E48、E96、E192系列电阻说明书E6、E12、E24、E48、E96、E192系列电阻说明“ E ”表⽰“指数间距”(Exponential Spacing)在上个20世纪的电⼦管时代,电⼦元器件⼚商为了便于元件规格的管理和选⽤、⼤规模⽣产的电阻符合标准化的要求,同时也为了使电阻的规格不致太多,协商采⽤了统⼀的标准组成元件的数值。
它的基础是宽容⼀部定的误差,并以指数间距为标准规格。
这种标准已在国际上⼴泛采⽤,这⼀系列的阻值就叫做电阻的标称阻值。
电阻的标称阻值分为E6、E12、E24、E48、E96、E192六⼤系列,分别适⽤于允许偏差为±20%、±10%、±5%、±2%、±1%和±0.5%的电阻器。
其中E24系列为常⽤数系,E48、E96、E192系列为⾼精密电阻数系。
E6系列电阻标称阻值,对应允许偏差为±20%,查看E6系列电阻规格表。
E12系列电阻标称阻值,对应允许偏差为±10%,查看E12系列电阻规格表。
E24系列电阻标称阻值,对应允许偏差为±5%,查看E24系列电阻规格表。
E48系列电阻标称阻值,对应允许偏差为±2%,查看E48系列电阻规格表。
E96系列电阻标称阻值,对应允许偏差为±1%,查看E96系列电阻规格表。
E192系列电阻标称阻值,对应允许偏差为±0.5%, ±0.25%, ±0.1%,查看E192系列电阻规格表。
E6系列电阻规格表E代表指数间隔的意思,6表⽰只有6种数字系列E6系列的电阻格误差⾮常⼤,规定了六个基本数:1、1.5、2.2、3.3、4.7、6.8E6数系的公⽐为错误!未找到引⽤源。
6系列的电阻规定⼏个基本系数,这些系数再乘以错误!未找到引⽤源。
(其中n为整数),即为某⼀具体电阻器阻值。
如 1.5×101=15Ω因误差较⼤,电阻较少采⽤,电容中⽤的多⼀些,此系列可⽤于电阻、电容、电位器、电感等。
伺服再生电阻
伺服再生电阻伺服器是如今自动化设备中最常用的控制方式之一,可以使设备的运行达到更为精准的控制和高效的使用。
然而,伺服系统也面临着能效低,热量产生,对电网造成变压器负载过大的问题。
为了解决这个问题,伺服再生电阻被开发出来。
伺服再生电阻,是用来吸收伺服器转子中储存的能量并转化为电能的装置。
在伺服电机运行过程中,负载在某些时间会利用惯性产生能量,而伺服器则将这些能量吸收而不是直接扔回电源。
这样一来不仅可以提高伺服电机转矩的控制精度,而且可以最大限度地节省能源,减少能源消耗和对环境的污染。
伺服再生电阻基本上分为以下几个步骤:1. 检测能量:伺服再生电阻可以有效控制伺服电机转矩,从而避免对电源的负荷不稳定。
2. 转换电流:伺服再生电阻能将能量转换为电流,为发电提供足够的电源,同时也能够保存多余的能量。
3. 积累能量:伺服再生电阻在电机的运行过程中,能够将多余的能量进行积累,并保存至适当的时候再进行使用。
4. 释放能量:在适当的时候,将积累的能量释放出来,为电源提供稳定、可靠的电能。
伺服再生电阻还有一些其他的优点,例如对环境的保护。
在传统的伺服电机控制方式中,电机运行时电能停止转化为热能,并通过空气散发到环境中,导致了能源的浪费和环境的污染。
而伺服再生电阻则可以将多余的能量转化为电能来回收利用,不会对环境造成影响。
此外,伺服再生电阻在能源管理方面,也有很大的优势。
它能够更好地管理电机供电,并确保电力设备正常工作,节约能源消耗,降低生产成本。
同时还可以降低电力网压力,减少电压波动,延长电力设备的使用寿命,为电力设备提供更好的保障。
总之,伺服再生电阻是伺服系统中的重要组成部分,它可以提高伺服电机的效率,减少能源浪费,降低生产成本,并且更好的保护环境。
它的广泛应用将使得伺服器设计更加完善,运行更加稳定,也将为人们的生产和生活贡献更多的价值。
再生电阻工作原理
再生电阻工作原理再生电阻是一种可以根据电流或电压的变化而自动调整电阻值的元件。
它广泛应用于电子电路中,起到限制电流、分压和调整电路工作状态的作用。
本文将从再生电阻的工作原理、结构和应用等方面进行阐述。
再生电阻的工作原理可以通过热效应来解释。
当电流通过再生电阻时,电阻中会产生一定的热量,导致电阻温度升高。
根据电阻材料的特性,温度的升高会导致电阻值的增加。
这种机制被称为正温度系数效应。
当电流增大时,电阻产生的热量也会增加,进而导致电阻值的增加,从而限制电流的流动。
反之,当电流减小时,电阻产生的热量也会减小,电阻值也会随之减小。
这样,再生电阻可以根据电流的变化自动调整电阻值,以维持电路中的稳定工作状态。
再生电阻的结构通常由合金丝或薄膜制成。
合金丝再生电阻是将合金丝绕制成螺旋形,并固定在绝缘基座上。
这种结构可以提供较大的功率承受能力和较高的电阻值。
薄膜再生电阻则是将金属薄膜沉积在绝缘基座上,并通过刻蚀或蚀刻的方式形成电阻。
薄膜再生电阻具有体积小、响应快的优点,适用于高频电路和微小尺寸的电子元器件。
再生电阻在电子电路中有着广泛的应用。
首先,再生电阻可以用作限制电流的元件。
在电路中,通过将再生电阻与负载电阻串联,可以限制电流的大小,保护负载电阻免受过大电流的损坏。
其次,再生电阻可以用作分压元件。
当再生电阻与其他电阻组成电压分压电路时,根据电流的变化,再生电阻的电阻值也会相应变化,从而实现对电压的调整。
此外,再生电阻还可以用于自动控制电路的工作状态。
通过根据电流的变化调整电阻值,可以实现电路的自动调节和控制。
再生电阻还可以用于电子设备的温度补偿。
由于再生电阻的电阻值与温度密切相关,可以利用这一特性进行温度补偿。
例如,将再生电阻与温度传感器结合,可以实现温度的测量和补偿。
再生电阻还可以用于电子设备的稳压功能。
通过将再生电阻与稳压二极管等元件组成稳压电路,可以实现对电压的稳定输出。
再生电阻是一种根据电流或电压的变化自动调整电阻值的元件。
再生电阻选型
再生电阻选型
再生电阻是一种特殊的电阻器件,其特点是能够将电能转化为热能并散发出去,从而起到限制电流的作用。
再生电阻的选型对于电路的设计和性能有着重要的影响。
在选择再生电阻时,首先需要考虑的是其功率。
功率是指电阻器能够承受的最大功率,通常以瓦特(W)为单位表示。
在选择再生电阻时,需要根据电路中的电流和电压来计算所需的功率大小,然后选择功率适合的再生电阻。
还需要考虑再生电阻的阻值。
阻值是指再生电阻对电流的阻碍程度,通常以欧姆(Ω)为单位表示。
在选择再生电阻时,需要根据电路中的电流和所需的电压降来计算所需的阻值大小,然后选择阻值合适的再生电阻。
还需要考虑再生电阻的温度系数。
温度系数是指再生电阻的阻值随温度变化的程度,通常以ppm/°C为单位表示。
在选择再生电阻时,需要根据电路中的工作温度和所需的阻值稳定性来选择合适的温度系数。
还有一点需要注意的是,再生电阻的尺寸和外观也需要考虑。
尺寸和外观对于电路的安装和布局有着重要的影响,因此需要根据实际情况选择合适的尺寸和外观。
再生电阻的质量也是选择的关键因素之一。
质量好的再生电阻具有
较高的可靠性和稳定性,能够保证电路的正常工作。
再生电阻的选型需要考虑功率、阻值、温度系数、尺寸和外观以及质量等因素。
合理选择再生电阻,能够确保电路的性能和稳定性,提高电路的可靠性和使用寿命。
因此,在电路设计中,选型再生电阻是一个非常重要的环节,需要慎重考虑并根据实际需求进行选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Xenus™Regeneration GuideP/N 95-00306-000Revision 2February 2007Xenus Regeneration Guide This page for notes.TABLE OF CONTENTSAbout This Guide (iii)Overview and Scope (iii)Related Documentation (iii)Comments (iii)Copyrights (iii)Document Validity (iii)Product Warnings (iv)Revision History (iv)1:Regen Resistors for Xenus (1)1.1: Regen Resistor Theory (2)1.2: Amplifier Regen Circuit Output Specifications (3)1.3: Copley Standard Regen Resistors (4)1.3.1: Copley Standard Regen Resistor Dimensions (4)1.3.2: Copley Standard Regen Resistor Specifications (5)1.3.3: Copley Standard Regen Resistor Thermal Characteristics (5)1.4: Regen Circuit Wiring (6)1.4.1: Electrical Codes and Warnings (6)1.4.2: Amplifier Connector Locations (7)1.4.3: Regen Resistor (J3) Wiring (8)1.4.4: Regen Resistor Configuration with CME 2 (9)A:Regen Resistor Sizing and Configuration (11)A.1: Sizing a Regen Resistor (12)A.1.1: Gather Required Information (12)A.1.2: Observe the Properties of Each Deceleration During a Complete Cycle of Operation (12)A.1.3: Calculate Energy Returned for Each Deceleration (13)A.1.4: Determine the Amount of Energy Dissipated by the Motor (13)A.1.5: Determine the Amount of Energy Returned to the Amplifier (13)A.1.6: Determine if Energy Returned Exceeds Amplifier Capacity (14)A.1.7: Calculate Energy to be Dissipated for Each Deceleration (14)A.1.8: Calculate Pulse Power of Each Deceleration that Exceeds Amplifier Capacity (14)A.1.9: Calculate Resistance Needed to Dissipate the Pulse Power (14)A.1.10: Calculate Continuous Power to be Dissipated (15)A.1.11: Select Fuses (15)A.2: Configuring a Custom Regen Resistor (16)A.2.1: Regen Configuration Objective and Warning (16)A.2.2: Regen Configuration Instructions (16)Table of Contents Xenus Regeneration GuideThis page for notes.A BOUT T HIS G UIDEOverview and ScopeThis guide describes the selection, installation, and configuration of external regenresistors for Xenus Amplifiers.Related DocumentationUsers should also read these Copley Controls documents:•Xenus User Guide•CME 2 User GuideLinks to these publications, along with hardware manuals and data sheets, can be found under the Documents heading of /motion/downloads.Information on Copley Controls Software can be found at:/motion/softwareCommentsCopley Controls Corporation welcomes your comments on this guide. See for contact information.CopyrightsNo part of this document may be reproduced in any form or by any means, electronic ormechanical, including photocopying, without express written permission of CopleyControls Corporation.Xenus and CME 2 are registered trademarks of Copley Controls Corporation. Document ValidityWe reserve the right to modify our products. The information in this document is subjectto change without notice and does not represent a commitment by Copley ControlsCorporation. Copley Controls Corporation assumes no responsibility for any errors thatmay appear in this document.About this Guide Xenus Regeneration GuideProduct WarningsObserve all relevant state, regional, and local safety regulations when installing and using this product. For safety and to assure compliance with documented system data, onlyCopley Controls Corporation should perform repairs to amplifiers.DANGER: Hazardous voltages.Revision Date DECO # Applies to Comments1.0 July 2003 Xenus firmware version2.16.CME 2 Software version 3.1Initial publication.1.1 November2004 Xenus firmware version 4.0.CME 2 Software version 4.0.Corrected model number inspecifications table (p. 5).2February 2007 14988 CME 2 Software version 5.0. Updated to describe new Copleyregen resistor models.CHAPTER 1: R EGEN R ESISTORS FOR X ENUSThis chapter provides an overview of regeneration and using regen resistors with Xenus.The contents of this chapter include:Title Page 1.1: Regen Resistor Theory (2)1.2: Amplifier Regen Circuit Output Specifications (3)1.3: Copley Standard Regen Resistors (4)1.4: Regen Circuit Wiring (6)Regen Resistor Sizing and Configuration Xenus Regeneration Guide1.1: Regen Resistor TheoryWhen a load is accelerated electrical energy is converted into mechanical energy. During deceleration the conversion is reversed. This is called regeneration. Some of thisregenerated energy is lost to friction in the mechanical system. More of this energy isconverted to heat due to I2R losses in the motor windings, cabling and drive electronics.The remainder of the energy is added to the electrical energy already stored in theinternal capacitor bank of the amplifier. The result of this energy being added is anincrease in the voltage on the capacitor bank.If too much energy is added to the capacitor bank, the voltage will rise to a point wherethe amplifier's over voltage protection will shut down the amplifier. To prevent this, aregen circuit shunts some of the energy into an external resistor, known as a regenresistor, when the voltage rises too high.Xenus provides an internal transistor that is used in combination with an external resistor.Copley Controls supplies compatible external resistors. When using a resistor acquiredfrom another source, be sure it meets the specifications described inRegen Resistor Sizing and Configuration (p. 11).The amplifier protects the regen circuit against short circuit, and uses I2T peakcurrent/time algorithms to protect both the external resistor and internal transistor.NOTE: The Xenus micro panel model has its own internal regen circuit and does not usean external regen resistor.Xenus Regeneration Guide Regen Resistor Sizing and Configuration1.2: Amplifier Regen Circuit Output SpecificationsThis section describes the amplifier’s regen resistor circuit output specifications.Model XTL-230-18XTL-230-36XTL-230-40 Continuous Power 2 kW 4 kWPeak Power 5 kW 10 kWMinimum Resistance 30 15Minimum Resistor Wattage 25 W 50 WTurn On Voltage +390 VdcTurn Off Voltage +380 VdcDC Bus Capacitance 1760 µF nominalRegen Energy Absorption CapacityInput Voltage 120 Vac208 Vac240 Vac 108 joules 57 joules 32 joulesRegen Resistor Sizing and Configuration Xenus Regeneration Guide1.3: Copley Standard Regen ResistorsCopley Controls provides two standard regen resistors for Xenus amplifiers:XTL-RA-03 and XTL-RA-04. XTL-RA-03 and XTL-RA-04 housing is shown below.1.3.1: Copley Standard Regen Resistor DimensionsThe diagram below shows XTL-RA-03 and XTL-RA-04 mounting dimensions (in mm).Xenus Regeneration Guide Regen Resistor Sizing and Configuration1.3.2: Copley Standard Regen Resistor SpecificationsSpecifications for Copley’s standard regen resistors are described below.Model ResistanceDefaultContinuousPowerMaxContinuousPowerPeakPowerPeakPowerTimeFor Use WithXTL-RA-03 30 ohms 65 W 400 W 5 kW 1000 ms XTL-230-18 XTL-RA-04 15 ohms 65 W 400 W 10 kW 1000 ms XTL-230-36XTL-230-40High Temperature Risk.WARNINGThe following graph shows surface temperature rise vs. dissipated power for the XTL-RA-03 and XTL-RA-04 mounted to a control panel with the long surface of the resistor oriented vertically. Results may vary if the resistor is mounted differently.Regen Resistor Sizing and Configuration Xenus Regeneration Guide1.4: Regen Circuit WiringThis section describes the wiring of the regen resistor connections.1.4.1: Electrical Codes and WarningsBe sure that all wiring complies with the National Electrical Code (NEC) or its national equivalent, and all prevailing local codes.DANGER: Hazardous voltages.DANGERExercise caution when installing and adjusting.Failure to heed this warning can cause equipment damage, injury, or death.Risk of electric shock.DANGERHigh-voltage circuits on J1, J2, and J3 are connected to mains power. Failure to heed this warning can cause equipment damage, injury, or death.Do not ground mains-connected circuits.WARNINGXenus Regeneration Guide Regen Resistor Sizing and Configuration1.4.2: Amplifier Connector LocationsConnector locations are shown below. The regen connector is J3.Regen Resistor Sizing and Configuration Xenus Regeneration Guide 1.4.3: Regen Resistor (J3) WiringMating ConnectorDescription Euro-style, 5 position, 5.0 mm pluggable male terminal block.Manufacturer PN Wago 721-605/000-043Wire Size 22 - 14 AWGRecommended Wire 14 AWG, 600 V(Shielded cable used for CE compliance)Wire Insertion/Extraction Tool Wago 231-131Connector and tool are included in connector kit XTL-CKPin DescriptionPin Signal Function1Regen + + DC Bus to one side of regen resistorconnection2N/C No3Regen - Collector of regen transistor to one side of regen resistorconnection4N/C No5Ground Enclosure ground and cable shieldRegen Resistor Wiring DiagramRegen Resistor FusingRecommended Fuses:Regen Resistor Fuse typeXTL-RA-03 Cooper Bussman KLM-8 or equivalentXTL-RA-04 Cooper Bussman KLM-12 or equivalentUser Supplied See Regen Resistor Sizing and Configuration (p. 11).Xenus Regeneration Guide Regen Resistor Sizing and Configuration 1.4.4: Regen Resistor Configuration with CME 21.4.4.1 Click Configure Regen ()to open the Regen Resistor screen.1.4.4.2 Select a resistor option.Option DescriptionNone No external regen resistor is used.XTL-RA-03Standard regen resistors supplied by Copley Controls.XTL-RA-04Custom Resistor User-supplied resistor. See Regen Resistor Sizing and Configuration (p. 11).1.4.4.3 Click OK to save regen settings to flash memory and close the Regen Resistor screenORclick Cancel to restore to previous values and close the screen.Regen Resistor Sizing and Configuration Xenus Regeneration GuideThis page for notes.APPENDIX A: R EGEN R ESISTOR S IZING ANDC ONFIGURATIONThis chapter describes the formulas used to determine if a regen resistor is required and what the optimal resistor characteristics would be for a given application.The contents of this chapter include:Title Page A.1: Sizing a Regen Resistor (12)A.2: Configuring a Custom Regen Resistor (16)Regen Resistor Sizing and Configuration Xenus Regeneration GuideA.1: Sizing a Regen ResistorA.1.1: Gather Required InformationCalculating the power and resistance of the regen resistor requires information about theamplifier and the rotary or linear motor application.A.1.1.1 For all applications, gather the following information:1Details of the complete motion profile, including times and velocities2Amplifier model number3Applied line voltage to the amplifier4Torque constant of the motor5Resistance (line-to-line) of the motor windings.A.1.1.2 For rotary motor applications, gather this additional information:1Load inertia seen by the motor2Inertia of the motor.A.1.1.3 For linear motor applications, gather this additional information:1Mass of the moving load2Mass of the motor forcer block if the motor rod is stationaryORMass of the motor rod if the motor forcer block is stationary.A.1.2: Observe the Properties of Each Deceleration During a Complete Cycle of OperationA.1.2.1 For each deceleration during the motion cycle, determine:1Speed at the start of the deceleration2Speed at the end of the deceleration3Time over which the deceleration takes place.Xenus Regeneration Guide Regen Resistor Sizing and ConfigurationA.1.3: Calculate Energy Returned for Each DecelerationUse the following formulas to calculate the energy returned during each deceleration:Rotary motor:E dec=½J t(I12-I22)Where:E dec = Energy returned by the deceleration, in joules.Jt = Load inertia on the motor shaft plus the motor inertia in kg m2.I1=Shaft speed at the start of deceleration in radians per second.I2=Shaft speed at the end of deceleration in radians per second.I=2J RPS.Linear motor:E dec=½M t(V12-V22)Where:E dec = Energy returned by the deceleration, in joules.M t=Total mass of the load and the moving part of the motor in kg.V1=Velocity at the start of deceleration in meters per second.V2=Velocity at the end of deceleration in meters per second.A.1.4: Determine the Amount of Energy Dissipated by the MotorCalculate the amount of energy dissipated by the motor due to current flow though themotor winding resistance using the following formulas.P motor = 3/4 R winding (F / Kt)2Where:P motor = Power dissipated in the motor in watts.R winding = Line to line resistance of the motor.F=Force needed to decelerate the motor:Nm for rotary applicationsN for linear applicationsKt = Torque constant for the motor:Nm/Amp for rotary applicationsN/Amp for linear applicationsE motor = P motor T decelWhere:E motor = Energy dissipated in the motor in joulesT decel = Time of deceleration in secondsA.1.5: Determine the Amount of Energy Returned to the AmplifierCalculate the amount of energy that will be returned to the amplifier for each deceleration using the following formula.E returned = E dec - E motorWhere:E returned = Energy returned to the amplifier, in joulesE dec = Energy returned by the deceleration, in joulesE motor = Energy dissipated by the motor, in joulesRegen Resistor Sizing and Configuration Xenus Regeneration Guide A.1.6: Determine if Energy Returned Exceeds Amplifier CapacityCompare the amount of energy returned to the amplifier in each deceleration with theamplifier's energy absorption capacity. For related amplifier specifications, see AmplifierRegen Circuit Output Specifications (p. 3).For mains voltages not listed in the specification table, use the following formula todetermine the energy that can be absorbed by the amplifier.W capacity = ½ C (V regen2-(1.414 V mains)2)Where:W capacity = The energy that can be absorbed by the bus capacitors, in joules.C=Bus capacitance in farads.V regen = Voltage at which the regen circuit turns on, in volts.V mains = Mains voltage applied to the amplifier, in volts AC.A.1.7: Calculate Energy to be Dissipated for Each DecelerationFor each deceleration where the energy exceeds the amplifier’s capacity, use thefollowing formula to calculate the energy that must be dissipated by the regen resistor:E regen = E returned - E ampWhere:E regen = Energy that must be dissipated in the regen resistor, in joules.E returned = Energy delivered back to the amplifier from the motor, in joules.E amp = Energy that the amplifier will absorb, in joules.A.1.8: Calculate Pulse Power of Each Deceleration that Exceeds Amplifier CapacityFor each deceleration where energy must be dissipated by the regen resistor, use thefollowing formula to calculate the pulse power that will be dissipated by the regen resistor: P pulse = E regen / T decelWhere:P pulse = Pulse power in watts.E regen = Energy that must be dissipated in the regen resistor, in joules.T decel = Time of the deceleration in seconds.A.1.9: Calculate Resistance Needed to Dissipate the Pulse PowerUsing the maximum pulse power from the previous calculation, calculate the resistancevalue of the regen resistor required to dissipate the maximum pulse power: For relatedamplifier specifications, see Amplifier Regen Circuit Output Specifications (p. 3).R=V regen2/P pulse maxWhere:R=Resistance in ohms.P pulse max =The maximum pulse power.V regen =The voltage at which the regen circuit turns on.Choose a standard value of resistance less than the calculated value. This value must be greater than the minimum regen resistor value specified in Amplifier Regen Circuit Output Specifications (p. 3).Xenus Regeneration Guide Regen Resistor Sizing and ConfigurationA.1.10: Calculate Continuous Power to be DissipatedUse the following formula to calculate the continuous power that must be dissipated bythe regen resistor. Use each deceleration where energy is dissipated by the regenresistor.P cont = ( E regen 1 + E regen 2 +E regen …)/T cycleWhere:P cont = The continuous power that will be dissipated by the resistor in watts.E regen n = Energy being dissipated during decelerations, in joules.T cycle = Total cycle time in seconds.Choose a resistor with a power rating equal to or greater than the calculated continuouspower. Verify that the calculated power value is less than the continuous regen powerrating specified in Amplifier Regen Circuit Output Specifications (p. 3).A.1.11: Select FusesFor custom regen resistors, Cooper Bussman KLM fuses, or equivalent, should beselected. The peak and continuous currents, as well as the peak current time, must betaken into consideration for proper fuse selection. The duration of the peak current is thedeceleration time (T decel)associated with the maximum pulse power regen event.Use the following formulas to determine the minimum peak and continuous currentratings of the fuse. For related amplifier specifications, see Amplifier Regen Circuit Output Specifications (p. 3).The peak current is determined by the chosen regen resistor value.I peak = V regen / R regenWhere:I peak = The current though the regen resistor during regeneration in amps.V regen =The voltage at which the regen circuit turns on.R regen = The resistance value of the chosen regen resistor in ohms.The continuous current is determined by the continuous regen power.I cont =P cont / V regenWhere:I cont = The minimum continuous current rating the fuse requires in amps.P cont = The continuous power calculated in the previous step,in watts.V regen =The voltage at which the regen circuit turns on.Regen Resistor Sizing and Configuration Xenus Regeneration GuideA.2: Configuring a Custom Regen ResistorA.2.1: Regen Configuration Objective and WarningConfigure the amplifier to operate properly with the custom resistor.Incorrect values may damage amplifier or external regen resistor.WARNINGA.2.2.1 On the Main screen, click Configure Regen ()to open the Regen Resistorscreen.A.2.2.2 Select Custom Resistor and then click Configure to open the Custom RegenConfiguration screen.A.2.2.3 Enter a Resistance within the range described on the screen. Click Next for Step 2.Xenus Regeneration Guide Regen Resistor Sizing and Configuration A.2.2.4 Enter a Continuous Power within the range described. Click Next for Step 3.A.2.2.5 Enter a Peak Power within the range described. Click Next for Step 4.A.2.2.6 Click Next for Step 5.A.2.2.7 Review the configuration.A.2.2.8 Click Finish to save the configuration to volatile and flash memory and close thescreenORclick Prev to modify any valuesORclick Cancel to close the screen without saving any changes.Xenus™ Regeneration Guide P/N 95-00306-000Revision 2February 20072003, 2004, 2006, 2007 Copley Controls Corporation20 Dan RoadCanton, MA 02021 USAAll rights reserved。