复变函数积分方法总结
复变函数积分计算方法
一.复变函数积分计算方法:
1. 线积分法,udy vdx i vdy udx z f c c c ++-=⎰⎰⎰
)( 2. 参数方程法,就是将积分线段分成几段,每一段尽可能简单,并且可以用一个参数式表达出来。
参考课本37页例3.1(2) 3. 原函数法,要用此方法必须保证函数f(z)在单连通区域D 内解析,求出f(z)的原函数G
(z ),则)z ()z ()(00G G dt t f z z -=⎰
4. 柯西积分公式,)z (2z -z z)(00
if dz f c π=⎰,用这种方法的关键是找出函数)z (f ,有时候要进行一些变形。
二.课本难点
课本47页例3.10(2) 他在解答过程中,有一步是令2)z ()z (i e f z +=,开始看的时候很难看明白是为什么,后来细心一想,原来他用了一个很巧妙的变换:
2
2222)()z /()])(z [()1z (111i z i e i z i e dz e z c z c z c -+=-+=+⎰⎰⎰ 这样就可以凑成柯西积分公式的形式,令2)z ()z (i e f z +=,就可以轻松使用柯西积分公式求出答案。
作业题很多都要用到这个技巧。
三.错误更正
课本55页作业6(3)的答案是i e π,课本答案e π是错误的。
四.规律总结
在做作业过程中,我找到以下两个公式:
ishz iz =sin
ithz iz =tan
特别是z=1的时候,有sini=ish1,tani=ith1
上面的公式根据定义就可以证明。
复变函数与积分变换知识点
复变函数与积分变换知识点复变函数是数学中极具特色和深刻内涵的一个分支,其理论和应用不仅涉及到数学领域,也伸展至物理、工程、计算机等多个领域。
而积分变换则是复变函数中的一项重要技术,可应用于信号处理、控制系统等领域。
本文将介绍关于复变函数和积分变换的知识点。
1. 复数及其运算复数是一种拓展了实数的数学概念,其具有实部和虚部,记作z = x + yi(其中 x 和 y 均为实数,i 为虚数单位,满足 i² = -1)。
复数的加、减、乘法等运算法则与实数有所区别,例如:(1)加法:若 z = x + yi,w = u + vi,则 z + w = (x + u) + (y + v)i。
(2)减法:若 z = x + yi,w = u + vi,则 z - w = (x - u) + (y - v)i。
(3)乘法:若 z = x + yi,w = u + vi,则 z × w = (xu - yv) + (y u + x v)i。
(4)除法:若 z = x + yi,w = u + vi,则 z ÷ w = (xu + yv)/(u²+ v²) + (y u - x v)/(u² + v²)i。
2. 复变函数的概念复变函数是自变量为复数、因变量为复数的函数。
设 z = x + yi,w = u + vi,则复变函数 f(z) 的定义为: f(z) = u(x,y) + v(x,y)i (其中,u(x,y) 和 v(x,y) 均为实函数)。
复变函数的导数、积分、解析函数等概念与实函数也有所不同,例如:(1)导数:复变函数 f(z) 在点 z0 的导数定义为:f'(z0) = lim (f(z) - f(z0))/(z - z0) (其中,极限是沿着复平面中有向直线逼近 z0 时的极限)(2)积分:复变函数沿着简单曲线γ 的积分(记作∮γ f(z) dz)定义为:∮γ f(z) dz = ∫ab f(γ(t))γ'(t) dt (其中,γ(t) 为参数方程,γ'(t) 为γ(t) 的导数)(3)解析函数:对于复平面上的一个区域 D,若在 D 内的每一点都有导数,则称 f(z) 在 D 内为解析函数。
复变函数与积分变换公式
复变函数与积分变换公式复变函数是指定义在复数域上的函数。
复变函数与实变函数有很多相似之处,但也有着一些独特的性质和应用。
在实际问题中,经常会遇到求解复变函数的积分问题。
积分变换是一种通过对函数进行积分计算来求得更简单或者更易求解的函数的方法。
本文将介绍复变函数以及积分变换公式。
一、复变函数的定义和性质复变函数的定义:复变函数通常可以表示为 f(z) = u(x,y) +iv(x,y),其中 u(x,y) 和 v(x,y) 是实变量 x 和 y 的实函数,i 是虚数单位。
复变函数可以看作二元实函数的推广。
在复变函数的定义中,x 和 y 是自变量,而 u 和 v 是因变量。
复变函数的性质:复变函数具有以下性质:1.可微性:类似于实变函数中的导数,复变函数也有导数的概念,称为复导数。
如果复变函数f(z)在一些点z0处可导,则称f(z)在z0处可导。
2.全纯性:如果复变函数在一些区域上都可导,则称该函数在该区域上是全纯的。
3.古典解析性:如果复变函数在整个复平面上都可导,则称该函数是古典解析的。
4. 共轭性:对于复变函数 f(z) = u(x,y) + iv(x,y),可以定义其共轭函数 f*(z) = u(x,-y) - iv(x,-y)。
共轭函数与原函数在实部上相等,虚部上相反。
5.奇函数和偶函数:如果复变函数f(z)满足f(-z)=-f(z),则称f(z)是奇函数;如果f(-z)=f(z),则称f(z)是偶函数。
积分变换通常是求解复变函数积分的一种方法。
常见的积分变换公式有:1.单连通域中的柯西定理:设f(z)在单连通域D上是全纯的,则对于D的任意闭合曲线C,有∫[C] f(z)dz = 0这个公式是复变函数积分计算的基础。
2. 柯西-Goursat 定理:设 f(z) 在连通域 D 上是全纯的,则对于D 的任意简单闭合曲线 C,有∫[C] f(z)dz = 0这个公式是柯西定理的推广形式,适用于连通域D。
复变函数 第三章 复变函数的积分
{ u [ x ( t ), y ( t )] i [ v [ x ( t ), y ( t )]]}( x ' ( t ) iy ' ( t )) dt
i v x t,y () t) xt ' () u (()() x ty t) yt ' () } d t {(()
f[ z ( t)] z '( t) dt fz ( ) d z f [ z ( t ) ] zt ' ( ) d t
C
( 3 . 6 )
用(3.6)式计算复变函数的积分,是从积分路径的 参数方程着手,称为参数方程法.
例3.1 计算 z d z ,C : 从原点到点 3 4 i 的直线 . C y x3 t, 0t 1 , 解 直线方程为 A y 4 t ,
C C
u ( x , y ) d x v ( x , y ) d y iv ( x , y ) d x u ( x , y ) d y
C C
C
f ( z )d z
结 论 1 : 当是 fz () 连 续 函 数 , C 是 光 滑 曲 线 时 , () d z 一 定 存 在 。 fz 结 论 2 : () d z 可 以 通 过 两 个 二 元 实 函 数 的 fz
k k
证明 令 z x iy x x x y y y k k k k k k 1 k k k 1
n
k n k k k k k k
n
u (k, x v(k, y k) k k) k
k 1 k 1 n n
k 1 n
复变函数与积分变换
C f ( z )dz lim 1 f ( k ) zk . n k
n
3.积分的性质
g 设 f ( z ) , ( z ) 在曲线 C 上可积,则 C 1) C f ( z )dz C f ( z )dz , 与 C 反向; 2) C Kf ( z )dz K C f ( z )dz,K 为常数;
习题:
1.设C是正向圆周z 1, 计算下列各积分的值。 dz dz dz 1 ) ; 2) ; 3) ; i z2 cos z c c c ( z )( z 2) 2 解:
dz 1) 0; z2 c dz 2) 0; cos z c 4i 3) 2i ; i i c ( z )( z 2) 2 i4 2 2 dz 1
z re i
z x iy
(5)代数表示:
5.运算 1)相等; 2)四则运算,及运算规律; 3)共轭运算,及运算规律; 4) z z r r [cos( ) i sin( )]
1 2 1 2 1 2 1 2
5)
z1 r 1 [cos(1 2 ) i sin(1 2 )] z2 r2 r i (1 2 ) 1e . r2
2i
3.沿指定曲线计算下列各积分.
ez 1 ) z 2 dz, C : z 2 1; c ez 3) C ( z 1)( z 2) dz, C : z 3; eiz 3 2) 2 dz, C : z 2i ; z 1 2 c ez 4) 3 dz, C : z 2; C z
2 2
在区域x 0内连续,且 u v v u , 在区域x 0上成立时, 1, 2a x y x y 1 即,当a 时,函数f ( z )在区域x 0内是解析的。 2
复变函数积分方法总结()
4.4.1如果f(z)在扩充复平面上只有有限个孤立奇点(包括无穷远处在内)设为z1,z2,…,zn 则f(z)在各奇点的留数总和为零,即
+Res[f(z), ]=0;
4.4.2Res[f(z), ]=-Res[f( ) ,0]
例题:求下列Res[f(z), ]的值
复变函数积分方法总结
经营教育
乐享
[选取日期]
复变函数积分方法总结
数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数:
z=x+iy i²=-1,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。arg z=θ₁θ₁称为主值-π<θ₁≤π,Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z=rcosθ+irsinθ;利用欧拉公式eiθ=cosθ+isinθ。z=reiθ。
∑1= (zk-zk-1)
有可设k=zk,则
∑2= (zk-zk-1)
因为Sn的极限存在,且应与∑1及∑2极限相等。所以
Sn= (∑1+∑2)= =b2-a2
∴ =b2-a2
1.2定义衍生1:参数法:
f(z)=u(x,y)+iv(x,y), z=x+iy带入 得:
= - vdy + i + udy
再设z(t)=x(t)+iy(t) ( ≤t≤ )
= +
=
= + + +
=0+2πi+2πi+0
复变函数-总结
所 以 vx,y1y22xy-1x2c. 于是
2
2
27
fzx2-y2xy i 1 2y22 xy-1 2x2 c
由f00( x y 0 0) c0 从而
fz x 2- y 2 x y i 1 2 y 2 2 x y - 1 2 x 2 1 - 2 i z 2
即为所求解析函数。
等价定义:
设 f (z) = u(x,y) + iv(x,y) , A = u0+iv0 , z0 = x0+iy0 ,
那么
lim f (z)
zz0
运算性质:
limu(x, Axyxyl im xxyy0000 v(x,
y) y)
u0 v0
.
( 1 ) li (f m ( z ) g ( z ) ) lifm ( z ) lig ( m z )
例题1 一调和函数 ux,yx2-y2xy,
求一解析函数 fzuiv使 f00.
解:〔法一〕 ux2xy,uy-2yx
由 C-R 方程 v y u x 2 x y v 2 x y d y
由 v x - u y 2x2 yy 12c y2x c 2 xy - x v x c2xyc-12xx2,c,
9
对复平面内任一
x3
点z, 用直线将z
除了复数的平面表 示方法外, 还可以
与N相连, 与球面
N(0,0,2r) 用球面上的点来表
相交于P点, 那么
示复数.
球面上除N点外
x3
的所有点和复平
面上的所有点有
P(x1,x2,x3)
一一对应的关系,
而N点本身可代
表无穷远点, 记 作 .这样的球面
复数函数的积分
第三章 复数函数的积分重点:1.复变函数的积分的定义与计算方法)dx ()()()1(iay iv u dz z f c c ++=⎰⎰)vd ud ()v (x y i dy udx C ++-=⎰其中f(z)=u(z ,y)+iv(z ,y)(2)若曲线C 的方程为,),()()(βα≤≤+==t t iy t x t z z 则由公式,得dt t y t y t x v t x t y t x u dz z f c a )}()](),([)()](),([{)('-'=⎰⎰β,)}()](),([)()](),([{dt t x t y t x v t y t y t x u i a '+'+⎰β上式右端可以写成dt t y i t x t y t x wt y t x u a )]()()]}[(),([)](),([{'+'+⋅⎰ β dt t t z z a )()]([f ⎰=β因此复变函数的积分可利用公式t )()]([)(t z t z f dz z f a r '=⎰⎰β来进行计算.这是计算复变函数积分的参数方程法.2.柯西定理,0)(=⎰dz z f C 其中,(z)在D 内解析,C 在D 内。
推论1 设函数,(z)在单连通区域D 内解析,则积分dz z f c)(⎰只与曲线C 的起点和终点有关,而与曲线C 无关。
推论2 设闭曲线C 是在单连区域D 的边界,函数,(z)在D 内解析,在C 上连续,则.0)(=⎰dz z f c(1)原函数与不定积分设f(z)是单连通区域D 内的解析函数,则ζζd f x F z x )()(0⎰= 也是D 内的解析函数,且).()(z f z F ='若函数,(z)在区域D 内解析,)(z Φ是,(z)在D 内的一个原函数,21,z z 是D 内的两点,则)()()(1221z z dz z f z z Φ-Φ=⎰(2)柯西定理的推广设D 是由边界曲线---+++=Γn 21C C C C 所围成的多连通区域,,(z)在D 内解析,在r 上连续,则 0)(=⎰Γdz z f若函数f(z)在区域D 内除点0z 外都解析,则它在D 内沿任何一条围绕0z 的正向闭曲线的积分值都相等。
复变函数的积分
复变函数的积分复变函数的积分是复分析中的重要概念,它在数学和物理学等领域中都有着广泛的应用。
复变函数的积分与实变函数的积分有着很大的不同,它涉及到复数域上的积分运算,因此需要特殊的技巧和理论来处理。
本文将从基本概念开始,逐步介绍复变函数的积分,并探讨其在不同领域中的应用。
首先,我们来回顾一下复变函数的基本概念。
复变函数是定义在复数域上的函数,它可以表示为f(z) = u(x, y) + iv(x, y),其中z = x + iy,u(x, y)和v(x, y)分别是实部和虚部。
在复变函数中,我们引入了复数域上的积分运算,即复积分。
复积分的定义是在复平面上对复变函数的积分运算,它可以表示为∫f(z)dz,其中积分路径可以是曲线、环路或者区域。
复积分的计算需要用到复变函数的积分定理,其中最重要的是柯西积分定理和柯西-黎曼积分公式。
柯西积分定理指出,如果在一个简单闭合曲线内部的区域上f(z)是解析的,那么f(z)在这个区域上的积分为0。
柯西-黎曼积分公式则给出了解析函数在闭合曲线上的积分与函数在这个曲线内部的性质之间的关系。
这些定理为复积分的计算提供了重要的工具和方法。
在实际应用中,复变函数的积分在物理学、工程学和数学等领域中都有着广泛的应用。
在物理学中,复变函数的积分可以用来描述电磁场、流体力学和量子力学等问题。
在工程学中,复变函数的积分可以用来解决电路分析、信号处理和控制系统等问题。
在数学中,复变函数的积分可以用来研究解析函数的性质、级数和积分变换等问题。
除了在理论研究中的应用,复变函数的积分在实际计算中也有着重要的作用。
通过复变函数的积分,我们可以求解复杂的积分问题,计算曲线和曲面的长度、面积和体积等。
同时,复变函数的积分还可以用来解决微分方程、积分方程和边界值问题等。
因此,复变函数的积分在数学和物理学等领域中都有着重要的应用价值。
总之,复变函数的积分是复分析中的重要概念,它涉及到复数域上的积分运算,需要特殊的技巧和理论来处理。
(完整版)复变函数积分方法总结
复变函数积分方法总结[键入文档副标题]acer[选取日期]复变函数积分方法总结数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。
就复变函数: z=x+iy i²=-1 ,x,y 分别称为z 的实部和虚部,记作x=Re(z),y=Im(z)。
arg z =θ₁ θ₁称为主值 -π<θ₁≤π ,Arg=argz+2k π 。
利用直角坐标和极坐标的关系式x=rcos θ ,y=rsin θ,故z= rcos θ+i rsin θ;利用欧拉公式e i θ=cos θ+isin θ。
z=re i θ。
1.定义法求积分:定义:设函数w=f(z)定义在区域D 内,C 为区域D 内起点为A 终点为B 的一条光滑的有向曲线,把曲线C 任意分成n 个弧段,设分点为A=z 0 ,z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2…n)上任取一点ξk 并作和式S n =∑f(ξk )n k−1(z k -z k-1)= ∑f(ξk )n k−1∆z k 记∆z k = z k - z k-1,弧段z k-1 z k 的长度 δ=max 1≤k≤n {∆S k }(k=1,2…,n),当 δ→0时,不论对c 的分发即ξk 的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为:∫f(z)dz c=lim δ 0∑f(ξk )nk−1∆z k设C 负方向(即B 到A 的积分记作) ∫f(z)dz c−.当C 为闭曲线时,f(z)的积分记作∮f(z)dz c(C 圆周正方向为逆时针方向) 例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。
(1) 解:当C 为闭合曲线时,∫dz c=0.∵f(z)=1 S n =∑f(ξk)n k−1(z k -z k-1)=b-a ∴lim n 0Sn =b-a,即1)∫dz c=b-a. (2)当C 为闭曲线时,∫dz c =0. f(z)=2z;沿C 连续,则积分∫zdz c 存在,设ξk =z k-1,则∑1= ∑Z n k−1(k −1)(z k -z k-1) 有可设ξk =z k ,则∑2= ∑Z n k−1(k −1)(z k -z k-1)因为S n 的极限存在,且应与∑1及∑2极限相等。
复变函数与积分变换总结
复变函数与积分变换总结第一章小结一、复数及运算1.复数及代数运算2复数的几何表示复数与复平面上的点、向量一一对应;几何角度看唯一确定复数的两个概念为:模、辐角;复数加减乘积运算后对应的复数在坐标面上可通过画图做出;几何运算:积商的模等于模的积商,幅角等于幅角和差;复数差的模表示两个点间的距离;复数的三角表示在计算复数的乘幂及方根时较方便二、复数集概念:邻域、内点、开集、区域、简单曲线、单联通与多联通区域三、复变函数1.对应于两个二元实变函数,因此对复变函数的研究有两种方法1参考一元实变函数的研究方法在0连续,且f00,证明必存在0的一个邻域,使得在此邻域内f0f02证明:设imff0,则对任意的0,存在0使得当0时ff0f02f02,因此f0ff02,所以f02转化为两个二元实变函数的研究,如复变函数的极限与连续性的讨论四、几个特定的复数问题及求解的关键步骤1证明复数模的不等式关键步骤:1证明原不等式两端平方后的不等式2利用22.确定平面曲线的复数方程关键步骤:转化为求,满足的方程3确定复数方程对应图形关键步骤:利用复数差模的几何意义;转化为关于,的方程;转化为关于r,将平面上的图形映到w平面上的图形关键步骤:1写出wf对应的两个二元实变函数2的极限及连续性关键步骤:1将wf看成一些简单函数的运算2通过分析这些简单函数对应的两个二元实变函数得到这些简单函数的极限及连续性3利用极限及连续的一些运算法则得到原函数的极限及连续性扩展阅读:复变函数与积分变换重要知识点归纳复变函数复习重点一复数的概念1.复数的概念:i,,是实数,Re,Imi21注:一般两个复数不比较大小,但其模(为实数)有大小2复数的表示1)模:22;2)幅角:在0时,矢量与轴正向的夹角,记为Arg(多值函数);主值arg是位于,]中的幅角。
3)arg与arctan之间的关系如下:;当0,argarctan0,argarctan当0,0,argarctan;4)三角表示:coiin,其中arg;注:中间一定是“”号。
复变函数与积分变换总结
第一章小结一、 复数及运算1. 复数及代数运算2. 复数的几何表示复数与复平面上的点、向量一一对应;几何角度看唯一确定复数的两个概念为:模、辐角;复数加减乘积运算后对应的复数在坐标面上可通过画图做出;几何运算:积(商)的模等于模的积(商),幅角等于幅角和(差);复数差的模表示两个点间的距离;复数的三角表示在计算复数的乘幂及方根时较方便 二、 复数集概念:邻域、内点、开集、区域、简单曲线、单联通与多联通区域 三、复变函数1. 对应于两个二元实变函数,因此对复变函数的研究有两种方法 (1). 参考一元实变函数的研究方法例. 设函数()f z 在0z 连续,且0()0f z ≠,证明必存在0z 的一个邻域,使得在此邻域内()0f z ≠证明:设00lim ()()z z f z f z →=,则对任意的0(),2f z ε=存在0δ>使得当0z z δ-<时00()()(),2f z f z f z -<因此 00()()(),2f z f z f z -<所以 0()()0.2f z f z >>(2). 转化为两个二元实变函数的研究,如复变函数的极限与连续性的讨论 四、几个特定的复数问题及求解的关键步骤 1. 证明复数模的不等式 关键步骤:(1). 证明原不等式两端平方后的不等式 (2). 利用2zz z =2. 确定平面曲线的复数方程关键步骤:转化为求,x y 满足的方程 3. 确定复数方程对应图形关键步骤:利用复数差模的几何意义;转化为关于,x y 的方程;转化为关于,r θ的方程 4. 确定映射()w f z =将z 平面上的图形映到w 平面上的图形 关键步骤:(1). 写出()w f z =对应的两个二元实变函数(2). 利用z平面上的图形对应的方程将二元实变函数中的两个变量用同一个变量表示5. 讨论复变函数()=的极限及连续性w f z关键步骤:(1). 将()=看成一些简单函数的运算w f z(2). 通过分析这些简单函数对应的两个二元实变函数得到这些简单函数的极限及连续性(3). 利用极限及连续的一些运算法则得到原函数的极限及连续性。
复变函数与积分变换知识点总结
复变函数与积分变换知识点总结本文主要介绍复变函数与积分变换的相关知识点,包括基本概念、公式、定理及其应用。
复变函数是数学中重要的一门学科,它涉及到多种数学领域,如数学分析、微积分、拓扑学、数论等,具有广泛的应用价值和重要性。
一、复变函数和复数复变函数是指将复数作为自变量和函数值的函数,也就是输出值为复数的函数。
在复平面上,复数可以表示为 x+yi 的形式,其中 x 和 y 分别表示实部和虚部,i 是虚数单位。
从图形上看,复数可以看成是在平面坐标系上的点,其中实部 x 对应水平方向,虚部 y 对应垂直方向。
二、重要公式和定理1. 欧拉公式:e^(iθ)=cosθ+isinθ欧拉公式是复数理论中非常重要的公式,它表明了复数极坐标形式和直角坐标形式之间的关系。
欧拉公式常常被用来化简复数幂、求解复数方程等等。
2. 柯西-黎曼条件柯西-黎曼条件是指函数 f(z)=u(x,y)+iv(x,y) 在某一点处可导的充分必要条件。
它包括两个部分:一是实部和虚部的偏导数存在且相等;二是实部和虚部的偏导数在该点处连续。
3. 洛朗级数洛朗级数是指将复变函数在一个环域上展开成为一定形式的级数,它可以看成是泰勒级数的一种推广形式。
洛朗级数可以用来处理复变函数的奇点、留数及边界值等问题。
4. 度量定理度量定理是指一个可积函数的形式化定义,它对于研究函数的特殊性质和进行积分变换有很重要的作用。
度量定理是复变函数理论中的一个基本定理,它可用来刻画单复变函数的局部和全局性质。
三、应用及例子复变函数和积分变换广泛应用于数学、物理、工程、计算机科学等领域。
其中,最为著名的应用包括热传导方程、电动力学、量子力学等等。
下面列举一些具体的例子:1. 应用于调制技术调制技术是指将信息信号通过某种方式转换成为载波信号,以达到传输信号的目的。
而在调制过程中,使用的正交变换中的基函数,就是一种特殊的复变函数。
2. 应用于信号处理信号处理是指对信号进行数字化、滤波、噪声抑制等一系列工作,以提高信号的质量和准确度。
复变函数论第三章复变函数的积分
y(t )}dt iy(t)}dt [ z(t )]z(t )dt
如果 C 是由C1, C2 , , Cn 等光滑曲线依次
相互连接所组成的按段光滑曲线, 则
f (z)dz f (z)dz f (z)dz f (z)dz.
在C 今后讨论的C1 积分中, 总C2假定被积函数是Cn连续的,
P P
o
P
x
内部始终位于P点的左方.
与之相反的方向就是曲线的负方向.
分段光滑的简单闭曲线简称为周线.
2
2019/12/29
复变函数
华中科技大学数学与统计学院
2.积分的定义: 设函数 w f (z) 定义在区域
D内, C 为区域D内起点为A 终点为B的一条光
B
滑的有向曲线, 把曲线C任意分成n个y 弧段, 设分 点为A z0 , , zk1, zk ,, zn B,
f
( z )dz
{u[
x(t
),
y(t
)]x(t
)
v[
x(t
),
y(t )] y(t )}dt
i{fu[[z{x(vt([)tx])z(,ty()(t,t)yd)(]tt.)]i即xv[(xt()Ct)f,u(yz[()xtd)(z]t}){, xy((tt))f]
(3 4i )2
4i )dt
1
tdt
,
(3
4i
)2
.
C
0
0
又因为 zdz ( x iy)(dx idy)
2
zdz C
C
C
xdx ydy i
复变函数与积分变换知识点总结
复变函数与积分变换知识点总结复变函数与积分变换是数学中重要的概念和工具,广泛应用于物理、工程、经济等领域。
复变函数是指定义在复平面上的函数,具有复数作为自变量和函数值,积分变换是指通过对函数进行积分操作来获得新的函数。
本文将对复变函数与积分变换的相关知识进行总结,包括复变函数的定义与性质、积分变换的定义与性质、常见的复变函数以及常见的积分变换。
一、复变函数的定义与性质1. 复变函数的定义:复变函数是指定义在复平面上的函数,具有复数作为自变量和函数值。
一般来说,复变函数可以写成f(z)=u(x,y)+iv(x,y),其中z=x+iy表示复平面上的点,u(x,y)和v(x,y)分别是实部和虚部函数。
2.复变函数的性质:(1)连续性:复变函数在复平面上连续,当且仅当实部和虚部函数分别在该点连续。
(2)可微性:复变函数在复平面上可微,当且仅当实部和虚部函数具有一阶连续偏导数,并满足复合函数的求导法则。
(3)调和函数:实部和虚部函数都是二阶偏导数连续的函数,若满足拉普拉斯方程△u=0,则称u(x,y)为调和函数。
二、积分变换的定义与性质1. 积分变换的定义:积分变换是一种将函数通过积分操作转换为另一种函数的方法。
一般来说,积分变换可以写成F(s)=∫f(t)e^(-st)dt,其中s为复变量,f(t)为原函数。
2.积分变换的性质:(1)线性性:积分变换具有线性性质,即对于常数a和b,以及函数f(t)和g(t),有积分变换[a*f(t)+b*g(t)](s)=a*F(s)+b*G(s)。
(2)平移性:若对于函数f(t),其积分变换为F(s),则e^(at)*f(t)的积分变换为F(s-a)。
(3)卷积性:若函数f(t)和g(t)的积分变换分别为F(s)和G(s),则f(t)*g(t)的积分变换为F(s)*G(s)。
三、常见的复变函数1. 复指数函数:复指数函数的表达式为e^(z)=e^(x+iy)=e^x*cos(y)+ie^x*sin(y),其中x和y分别是实部和虚部。
复变函数积分计算方法
()()()011.limnkkT k Cf z dz f zλς→==∆∑⎰(定义法)2.()d d d d d CCCf z z u x v y v x u y=-++⎰⎰⎰1.计算函数()Re f z z =沿下列曲线的积分. (2)2C 为从点0z =到点11z =再到点21z i =+的折线.解:从点0z =到点11z =的直线段参数方程为z x =(01)x ≤≤,在它上有()1,Re z x z x '==,则 11210,101Re 1 22xI z dz x dx ==⋅==⎰⎰,从点11z =再到点21z i =+的直线段参数方程为1(01),z yi y =+≤≤在它上有(),z y i '=Re 1z =,则11201,10Re 1 iI z dz i dy iy i+==⋅==⎰⎰,于是由复积分对积分路径的可加性可得2121Re .2C z dz I I i =+=+⎰4.计算()||f z z =沿下列曲线的积分. (1)1C 为从11z =-到21z =的直线段; (2)2C 为从11z =-到21z =的上半圆周;(3)3C 为从11z =-到21z =的下半圆周.解:(1)直线段1C 的参数方程为(11),z x x =-≤≤在它上有()1,z x '=||||z x =,则110111011|| || 1;22C z dz x dx x dx x dx --==-+=+=⎰⎰⎰⎰(2)上半圆周2C 的参数方程为()(0),i z eπθθπ-=≤≤在它上有()(),i z ie πθθ-'=-||1z =,则2()()|| 1() 1(1)2;i i C z dz ied eπππθπθθ--=⋅-==--=⎰⎰(3)下半圆周3C 的参数方程为(0),i z e θπθ=-≤≤在它上有(),i z ie θθ'=||1z =,则20|| 1 1(1) 2.i i C z dz ied eθθππθ--=⋅==--=⎰⎰6.设C 为从0z =到11z i =+的直线段,计算函数2()f z x y ix =-+沿C 的积分. 解:直线段C 参数方程为0[(1)0] (01)z i t t it t =++-=+≤≤,在它上有()1, ,,z t i x t y t '=+== 则122130() ()(1)1 (1).33CCf z dz x y ix dz t t it i dtt ii i =-+=-++-+=+=⎰⎰⎰用Cauchy 积分定理计算积分||12z dzI z ==+⎰的值,且证明等式2012cos 0.54cos d πθθθ+=+⎰ (1)解:被积函数12z +的奇点2z =-在积分路径||1z =的外部,所以被积函数在闭区域||1z ≤上解析,于是由Cauchy 积分定理得 ||10.2z dz I z ===+⎰ (2)证明:圆周||1z =的参数方程为(02)i z e θθπ=≤≤,在它上有(),i z ie θθ'=于是2||102022202022(cos sin ) cos sin 2(sin cos )(cos 2sin ) (cos 2)sin 2sin (12cos ) 54cos i i z dz ieI d z e i i d i i i d i d θπθπππθθθθθθθθθθθθθθθθθ===+++=++-++-=++-++=+⎰⎰⎰⎰⎰22002sin 12cos 54cos 54cos d i d ππθθθθθθ-+=+++⎰⎰由(1)0I =得22002sin 12cos 054cos 54cos d i d ππθθθθθθ-++=++⎰⎰ 所以比较等式两边的虚部得2012cos 0.54cos d πθθθ+=+⎰注:此题常见错误:因为12cos 54cos θθ++在02θπ≤≤处处解析,所以2012cos 0.54cos d πθθθ+=+⎰非常数实函数在整个复平面上处处不解析!3.试讨论函数()1/f z z =沿正向圆周0||z z r -=的积分值,其中0,r >且00||,||0z r z ≠≠.解:函数()1/f z z =的奇点为0z =. (1)当0||r z <时,()f z 的奇点在圆周0||z z r -=的外部,所以()f z 在闭区域0||z z r -≤上解析,于是由Cauchy 积分定理得0||() 0;z z rf z dz -==⎰(2)当0||r z >时,0z =在圆周0||z z r -=的内部,则由解析函数积分的闭路变形原理可得00|||||0|11() 2,00z z r z z r z f z dz dz dz i z z επ-=-=-====--⎰⎰⎰(其中0ε>为任意实数).5.计算下列积分值,其中积分路径都取正向.(2)||3212(1)(2)z z idz z z i =++++⎰解:令212(1)(2)12z i A B z z i z z i ++=+++++,则有 212(1)212(2), 2211z i B z z i A z i A Bz i z i z z ++++++=+=+++++上面第一式令1z =-得2(1)12112i A i-++==-+;上面第二式令2z i =-得2(2)12121i i B i -++==-+.所以21211(1)(2)12z i z z i z z i ++=+++++,于是||3||3||3||321211()(1)(2)121112 22 4.z z z z z idz dzz z i z z i dz dzz z ii i i πππ====++=+++++=+++=+=⎰⎰⎰⎰1.计算下列积分,其中积分闭路取正向.(1)3|1|11z dz z -=-⎰ 解:23|1|1|1|1211/(1)1112123z z z dz z z dz z z i z z iππ-=-==++=--=++=⎰⎰(4)44||1(2)z dz z z =-⎰ 解:4444||1||14071/(2)(2)21 3!(2)1203(02)5 16z z z dz z dz z z z i z i iπππ===-=-'''⎡⎤=⎢⎥-⎣⎦-=⋅-=⎰⎰(6)41||2sin ()n z zdzz i +=-⎰ 解:[](4)41||2sin 2sin ()(4)!2 sin (4)!2 sin (4)!2 sh1(4)!n n z i z z izdz i z z i n iz n iin n ππππ+====-==-=⎰(8)43||2(1)(2)(16)z dzz z z =-++⎰解:被积函数41(1)(2)(16)z z z -++有6个奇点,只有1z =在圆||3/2z =的内部,于是函数41(2)(16)z z ++在闭圆域||3/2z ≤上解析,则由Cauchy 积分公式得4433||||22411/(2)(16)(1)(2)(16)112(2)(16)2 51z z z dzz z dz z z z z i z z iππ===++=-++-=++=⎰⎰4.用Cauchy 积分公式计算函数()/zf z e z =沿正向圆周||1z =的积分值,然后利用圆周||1z =的参数方程()i z e θπθπ=-≤≤证明下面积分cos 0cos(sin ).ed πθθθπ=⎰(1)解:函数()/zf z e z =的奇点0z =在积分路径||1z =的内部,而函数ze 在闭区域||1z ≤上解析,于是由Cauchy 积分公式得||122.zz z z e dz i ei z ππ====⎰(2)证明:圆周||1z =的参数方程为()i z e θπθπ=-≤≤,在它上有(),i z ie θθ'=于是||1cos sin cos cos cos cos cos 2 [cos(sin )sin(sin )] [sin(sin )cos(sin )] sin(sin )cos(sin )i ze i i z i e e iei dz d z ee id e i id eied ed i ed θθπθππθθππθππθθπππθθπππθθθθθθθθθθθθ=-+-----====+=-+=-+⎰⎰⎰⎰⎰⎰⎰比较等式两边的虚部得cos cos(sin )2e d πθπθθπ-=⎰又cos 0cos cos 0cos()cos 0coscos 0coscoscos(sin ) cos(sin )cos(sin )cos(sin())()cos(sin ) cos(sin )cos(sin ) cos(sin )cos(sin )e d e d ed e d e d e d e d e d e d πθππθθπωθπωθππωθππωθθθθθθθωωθθωωθθωωθ--=--=+=--+=-+=+⎰⎰⎰⎰⎰⎰⎰⎰0cos 02cos(sin )e d ππθθθθ=⎰⎰所以cos 0cos(sin ).ed πθθθπ=⎰10.设()f z 和()g z 在简单闭路C 上及其内部解析,试证:(1)若()f z 在C 上及其内部处处不为零,则有()0;()Cf z dz f z '=⎰(2)若在C 上有()(),f z g z =则在C 的内部有()().f z g z =证明:(1)因为()f z 在简单闭路C 上及其内部解析并且处处不为零,则()()f z f z '在简单闭路C 上及其内部处处解析,于是由Cauchy 积分定理得()0;()Cf z dz f z '=⎰ (2)若对于C 上的任意一点ζ有()(),f g ζζ=由于()f z 和()g z 在简单闭路C 上及其内部解析,则对于C 的内部的任意一点z ,由Cauchy 积分公式得1()1()()(),22C C f g f z d d g z i z i zζζζζπζπζ===--⎰⎰所以在C 的内部有()().f z g z =一、将下列函数在指定环域内展开成Laurent 级数,且计算其沿正向圆周||6z =的积分值I .(1)11()sin , 0|1|;1f z z z=<-<∞- 解:环域0|1|z <-<∞的中心01z =,对应的Laurent 级数展开式中0z 取1,于是1()f z 在环域0|1|z <-<∞内的Laurent 级数展开式为1210121011()sin sin11(1)1 (21)!1(1) (1),(21)!n n n n n n f z z z n z z n +∞=+∞--===----⎛⎫=- ⎪+-⎝⎭-=-+∑∑ 取0n =得1()f z 在环域0|1|z <-<∞内的Laurent 级数展开式的负一次幂系数11c -=-,又正向圆周||6z =为环域0|1|z <-<∞内围绕环心01z =的正向简单闭路,所以11||6()22.z I f z dz ic i ππ-====-⎰(3)361(), 1|1|;(1)f z z z z =<+<∞+ 解:环域1|1|z <+<∞的中心01z =-,对应的Laurent 级数展开式中0z 取-1,于是3()f z 在环域1|1|z <+<∞内的Laurent 级数展开式为()3666707111()(1)(1)(1)111 |1|11 |1/(1)|11(1)1111 (1)1 (1),n n n n f z z z z z z z z z z z z z ∞=∞--===⋅+++-+>+=⋅⇒+<+-+⎛⎫= ⎪++⎝⎭=+∑∑3()f z 在环域1|1|z <+<∞内的Laurent级数展开式不含有负一次幂,则负一次幂系数10c -=,又正向圆周||6z =在环域1|1|z <+<∞内部且正向围绕环心01z =-,所以31||6()20.z I f z dz ic π-====⎰(5)19251()2()cos , 0||.f z z i z i z i=+<+<∞+ 解:环域0||z i <+<∞的中心0z i =-,对应的Laurent 级数展开式中0z 取-i ,于是5()f z 在环域0||z i <+<∞内的Laurent 级数展开式为19251921901921911()2()cos2 ()(1cos )(1)2 ()(1)(2)!(1)4 2()(),(2)!n n n n n n n f z z i z i z i z iz i n z i z i z i n ∞=∞-+==++=+++-⎛⎫=++ ⎪+⎝⎭-=+++∑∑取10n =得5()f z 在环域0||z i <+<∞内的Laurent 级数展开式的负一次幂系数101420!c -=,又正向圆周||6z =在环域0||z i <+<∞内部且正向围绕环心0z i =-,所以1051||62()24.20!z i I f z dz ic ππ-====⎰2.利用留数计算下列沿正向圆周的积分.(2)2||31z z dz z =-⎰ 解:被积函数的奇点1z =和1z =-都在圆||3z =的内部,它们都是一级极点,且满足留数的计算规则3的条件,则由规则3得2212211Re ,1,1(1)21Re ,1,1(1)2z z z z s z z z z s z z ==-⎡⎤==⎢⎥'--⎣⎦⎡⎤-==⎢⎥'--⎣⎦于是由留数定理得 222||32{Re ,1Re ,1}111112{}222.z z z z dz i s s z z z i i πππ=⎡⎤⎡⎤=+-⎢⎥⎢⎥---⎣⎦⎣⎦=+=⎰(4)22||2(1)zz edz z =-⎰解:被积函数的奇点1z =在圆||2z =的内部,它是二级极点,则利用留数的计算规则2得22222211Re ,1lim (1)2,(1)(21)!(1)zzz e e s z e z z →'⎡⎤⎡⎤=-=⎢⎥⎢⎥---⎣⎦⎣⎦于是由留数定理得2222||2222Re ,1(1)(1) 22 4.zzz e edz i s z z i ee i πππ=⎡⎤=⎢⎥--⎣⎦=⋅=⎰(6)3||21cos m z zdz z =-⎰(其中m 为整数)解:当0m ≤时,被积函数在圆||3/2z =内部没有奇点,此时3||21cos 0;m z zdz z =-=⎰当0m >时,被积函数的奇点0z =在圆||3/2z =的内部,其中:当1,2m =时,0z =是可去奇点,此时[]2Re (1cos )/,00, Re (1cos )/,00,s z z s z z ⎡⎤-=-=⎣⎦于是由留数定理得3||21cos 1cos 2Re ,00;m m z z z dz i s z z π=--⎡⎤==⎢⎥⎣⎦⎰当3m ≥时,0z =是1m -级极点,则利用留数的计算规则2得(1)01cos 11cos Re ,0lim (0)(1)!1, 43,N (1)! 0, 44,N1, 45,N (1)! 0, 46m m m m z z z s z z m z m k k m m k k m k k m m k -→--⎡⎤⎡⎤=-⎢⎥⎢⎥-⎣⎦⎣⎦=+∈-=+∈=-=+∈-=+32,N(1), 23, N (1)!0, 24,N m k m k k m m k k -⎧⎪⎪⎪⎨⎪⎪∈⎪⎩⎧-⎪=+∈=⎨-⎪=+∈⎩于是由留数定理得3||2321cos 1cos 2Re ,02(1), 23, N (1)! 0, 24,N.m m z m z z dz i s z z i m k k m m k k ππ=---⎡⎤=⎢⎥⎣⎦⎧⎪-=+∈=⎨-⎪=+∈⎩⎰综合可得:当3m ≥且为奇数时,323||21cos 2(1);(1)!m m z zidz z m π-=-=--⎰当m 为其他整数时,3||21cos 0.m z zdz z =-=⎰4.计算下列各积分,C 为正向圆周.(1)10423 , : || 3.(2)(2)C zdz C z z z =+-⎰解:被积函数10423()/[(2)(2)]f z z z z =+-在环域2||z <<∞内解析,它的五个奇点都在圆周||3z =的内部,用留数定理计算比较困难.该积分满足5.2节定理2的条件,则由定理2得1042324234230()(2)(2)11 2Re ,012Re ,0(12)(12)12lim(12)(12) 2.C Czdz f z dz z z i s f i s i i ζπζζπζζζπζζπ→=+-⎡⎤⎛⎫=⎢⎥⎪⎝⎭⎣⎦⎡⎤=⎢⎥+-⎣⎦=+-=⎰⎰(2)13 , : || 2.1zC z e dz C z z =+⎰解:被积函数13()/(1)zf z z e z =+在环域1||z <<∞内解析,它的奇点121, 0z z =-=都在圆周||2z =的内部,其中11z =-为一级极点,20z =为本性奇点,由于()f z 在本性奇点20z =的留数不容易计算,故用留数定理计算比较困难.该积分满足5.2节定理2的条件,则由定理2得1324403240()111 2Re ,0 2Re ,0(1)2 lim 3!(1)2(42) lim 3!(1)z C Cz e dz f z dzz i s f e i s i ei e ζζζζζπζζπζζπζζπζζζζ→→=+⎡⎤⎛⎫=⎢⎥⎪⎝⎭⎣⎦⎡⎤=⎢⎥+⎣⎦'''⎛⎫= ⎪+⎝⎭---=+⎰⎰2 .3iπ=-.利用留数计算下列定积分.(1)20153sin d πθθ+⎰解:令i z e θ=,则dz d iz θ=,22112153sin 3103532izz z iz izθ==-++-+, 从而有22||11253sin 3103z d dz z iz πθθ==++-⎰⎰. 函数22()3103fzz iz =+-在||1z <内只有一个简单极点/3z i =-,在||1z =上无奇点,且2/321Re [(),/3](3103)4z i s f z i z iz i=--=='+-,由留数定理得220||11253sin 3103 2Re [(),/3]1 2.42z d dz z iz i s f z i i i πθθπππ==++-=-=⋅=⎰⎰(3)221(1)dx x +∞-∞+⎰ 解:221()(1)f z z =+满足5.3节定理2推论的条件,在上半平面内只有一个二级极点z i =,且22211Re [(),]lim ()(1)4z i s f z i z i z i →'⎡⎤=-=⎢⎥+⎣⎦, 因此得22112Re [(),]2.(1)42dx i s f z i i x i πππ+∞-∞==⋅=+⎰注:此类型题常见的错误:计算中取函数的所有奇点而不是只取上半平面的奇点: 错解:2212{Re [(),]Re [(),]}.(1)dx i s f z i s f z i x π+∞-∞=+-+⎰(5)2cos 45xdx x x +∞-∞++⎰解:函数2()45izizef z e z z =++在上半平面内只有一个简单极点2z i =-+,且1222Re [(),2](45)2iz iizz i e e s f z e i z z i--=-+-+=='++,由5.3节定理3推论得2122Re [(),2]45 2(cos2sin 2)2ixizi e dx i s f z e i x x e i i i eπππ+∞-∞--=-+++==-⎰,因此取其实部得22cos Re cos2.4545ix x edx dx x x x x eπ+∞+∞-∞-∞⎧⎫==⎨⎬++++⎩⎭⎰⎰注:此类型题常见的错误:① 计算中取函数的所有奇点而不是只取上半平面的奇点;② 计算出留数后取实部或虚部再乘以2iπ得出结果,而不是计算出留数乘以2i π后再取实部或虚部才得出结果。
复变函数的积分
C
C
C
一、复积分存在的条件
证 设 zk xk i yk , k k ik ,则 zk zk zk1 (xk xk1) i( yk yk1) xk i yk .
一、复积分存在的条件
k k ik ,
zk xk i yk ,
max
1kn
sk
0
n
n
f ( k )zk u(k ,k ) i v(k ,k )(xk i yk )
D内解析,C与C1是 D内任意两
条简单闭曲线,C1 在 C 的内部,
且以C1 及 C 为边界的区域 D1
A
全含于 D ,则
f (z)d z f (z)d z.
C
C1
C
F
D1
C1
F
A
B
B
E
E
D
2.闭路变形原理
f (z)d z 0, f (z)d z 0,
AE B B E A A
A A F B B F A
为正整数,
C 是以 z0 为中心,r 为半径的正向圆周(如图).
解 C的方程为 z z0 r ei,0 2 π,
d z
C (z z0 )n
2π 0
i r ei r n ein
d
i r n1
e d 2π i(n1)
0
y
i r n1
2π
[ cos(n 1)θ i sin(n 1) ]d
(2) 如果 f (z) 在 D 内解析,在 D 的边界曲线 C上
连续,结论还是成立的.
C
D
1
计算积分 |z|1
2
z
3
d
z
.
1 解 因为 2z 3 在 | z | 1 内解析,
关于复变函数求积分的方法总结
关于复变函数求积分的⽅法总结1. 利⽤参数化求解考虑实变函数积分中的第⼀型曲线积分——,选择合适的参数化表示曲线——,进⽽进⾏计算。
在计算积分的时候,注意在换元的时候不要漏了中对u、v的求导。
适⽤情况:积分函数⽆奇点,参数化便于寻找,⼀般为圆或者椭圆。
2. 利⽤柯⻄积分定理计算若是闭环积分,对于环内⽆奇点时,可以利⽤柯⻄积分定理,进⾏计算。
适⽤情况:闭环积分,环内⽆奇点。
3. 利⽤柯⻄积分公式/留数定理进⾏计算前两种情况适⽤范围较⼩,条件较严格。
⼤多数复变函数可能都含有奇点,或是不容易寻找合适的参数化。
⾯对有奇点的函数,我们可以应⽤柯⻄积分公式/留数定理进⾏计算。
由于留数定理的本质就是柯⻄积分公式,并且其⽤更统⼀的形式表述了柯⻄积分公式的结论,所以以下的讨论均使⽤留数定理进⾏说明。
留数定理——关键:留数的计算判断是否为孤⽴奇点只有孤⽴奇点才有留数,没有定义的点不⼀定为孤⽴奇点,如。
极点粗略估算极点的阶:在分⺟零点次数总和 - 分⼦零点次数总和。
关于零点次数,可以通过“求⼏次导不为0”判断。
需要注意的是,极点的阶数可能受到分⺟其他项与分⼦的影响,以及函数本身性质影响,如中,z = 0是的2次零点,是分⺟的4次零点,但也是分⼦的3次零点,所以z = 0是该级数的1阶零点。
确定极点的阶,使⽤公式,当为⾮零且有限值时,极点的阶为n。
本性奇点此时只能将函数展开为洛朗级数,获得。
类型⼀:从0到的三⻆积分将、进⾏换元,与。
适⽤范围:积分区间为0到。
类型⼆:从0到的三⻆积分将换成,将换成。
适⽤范围:积分区间为0到,且除了三⻆函数的部分应该为偶函数或者奇函数。
与类型⼀区别:当z趋近于时,、不⼀定有界,⽆法满⾜类型⼀的条件。
类型三:从到的积分寻找上半平⾯与实轴上奇点上半平面奇点实轴上奇点适⽤范围:普适性最强,所有积分区间为到的积分最后都可以⽤该公式解决。
复变函数的积分与留数定理
复变函数的积分与留数定理复变函数是研究复数域上的函数性质和变化规律的数学分支。
在复变函数中,积分和留数定理是两个重要的概念和工具,它们在解决实际问题和理论研究中发挥着关键作用。
一、复变函数的积分在复变函数中,积分可以看作是沿着复平面上的曲线或曲面对函数进行求和的操作,类似于实数域上的积分。
1. 曲线积分曲线积分是复平面上沿着曲线对复变函数进行积分的操作。
对于函数f(z),如果沿着曲线C对其进行积分,可以表示为∮C f(z)dz。
曲线积分的路径与起点和终点有关,因此需要对路径进行参数化表示。
常见的曲线积分路径有圆弧、折线等。
2. 曲面积分曲面积分是复平面上对函数在曲面S上进行积分的操作。
对于函数f(z),如果在曲面S上对其进行积分,可以表示为∬S f(z)dS。
曲面积分的计算需要对曲面进行参数化表示,并根据参数化表示的参数进行积分运算。
二、留数定理留数定理是复变函数理论中的一项重要定理,它通过计算函数在奇点处的留数,简化了曲线积分的计算过程。
1. 留数的定义对于复变函数f(z),如果其在点z0处解析且具有有限次可微性,那么点z0称为f(z)的一个孤立奇点。
在点z0处,可以展开f(z)的洛朗级数,其中最低次非常数项的系数即为f(z)在z0处的留数,通常用Res(f,z0)表示。
2. 留数定理的应用留数定理可以简化曲线积分的计算过程,使得某些积分可以通过计算留数来得到解析解。
根据留数定理,如果函数f(z)在曲线C内解析除了有限个奇点z1,z2,...,zn,那么沿着曲线C的积分∮C f(z)dz等于这些奇点处的留数之和,即∮C f(z)dz=2πi(Res(f,z1)+Res(f,z2)+...+Res(f,zn))。
三、复变函数的应用复变函数的积分和留数定理在物理学、工程学、计算机科学等领域都有广泛应用。
1. 物理学中的应用复变函数的积分在电磁场分析、热传导、流体力学等物理学问题的求解中起着重要作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复变函数积分方法总结经营教育乐享[选取日期]复变函数积分方法总结数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。
就复变函数:z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。
arg z=θ? θ?称为主值-π<θ?≤π,Arg=argz+2kπ。
利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式e iθ=cosθ+isinθ。
z=re iθ。
1.定义法求积分:定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B的一条光滑的有向曲线,把曲线C 任意分成n 个弧段,设分点为A=z 0 ,z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2…n)上任取一点?k 并作和式S n =∑f (?k )nk −1(z k -z k-1)= ∑f (?k )n k −1?z k 记?z k = z k - z k-1,弧段z k-1 z k 的长度 δ=max1≤k ≤n {?S k }(k=1,2…,n),当 δ→0时,不论对c 的分发即?k 的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为:∫f (z )dz c=limδ 0∑f (?k )nk −1?z k设C 负方向(即B 到A 的积分记作) ∫f (z )dz c −.当C 为闭曲线时,f(z)的积分记作∮f (z )dz c (C 圆周正方向为逆时针方向)例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。
(1) 解:当C 为闭合曲线时,∫dz c =0. ∵f(z)=1 S n =∑f (?k )nk −1(z k -z k-1)=b-a∴lim n 0Sn =b-a,即1)∫dz c =b-a.(2)当C 为闭曲线时,∫dz c =0. f(z)=2z;沿C 连续,则积分∫zdz c 存在,设?k =z k-1,则 ∑1= ∑Z n k −1(k −1)(z k -z k-1) 有可设?k =z k ,则∑2= ∑Z n k −1(k −1)(z k -z k-1)因为S n 的极限存在,且应与∑1及∑2极限相等。
所以S n = (∑1+∑2)= ∑k −1n z k (z k 2−z k −12)=b 2-a2∴ ∫2zdz c=b 2-a 2定义衍生1:参数法:f(z)=u(x,y)+iv(x,y), z=x+iy 带入∫f (z )dz c 得: ∫f (z )dz c = ∫udx c - vdy + i ∫vdx c + udy 再设z(t)=x(t)+iy(t) (α≤t ≤β)∫f (z )dz c =∫f (z (t ))z (t )dt βα参数方程书写:z=z 0+(z 1-z 0)t (0≤t ≤1);z=z 0+re i θ,(0≤θ≤2π)例题1: ∫z 2dz 3+i 0积分路线是原点到3+i 的直线段解:参数方程 z=(3+i )t∫z 2dz 3+i 0=∫[(3+i )t ]2[(3+i )t ]′dt 1=(3+i)3∫t 2dt 1=6+263i例题2: 沿曲线y=x 2计算∫(x 2+iy)dz 1+i解: 参数方程 {x =ty =t 2 或z=t+it 2 (0≤t ≤1)∫(x 2+iy )dz 1+i 0=∫(t 2+it 2)(1+2it )dt 1=(1+i)[∫(t 2dt )dt 10 + 2i ∫t 3dt 1] =-16+56i 定义衍生2 重要积分结果: z=z 0+ re i θ ,(0≤θ≤2π) 由参数法可得:∮dz (z −z 0)n +1c =∫ire iθei(n +1)θrn +12π0d θ=irn ∫e −inθ1+i 0d θ∮dz(z −z 0)n +1c={2πi n =00 n ≠0例题1:∮dzz −2|z |=1例题2:∮dzz −12|z |=1解: =0 解 =2πi 2.柯西积分定理法:柯西-古萨特定理:若f(z)dz 在单连通区域B 内解析,则对B 内的任意一条封闭曲线有:∮f (z )dz c=0定理2:当f 为单连通B 内的解析函数是积分与路线无关,仅由积分路线的起点z 0与终点z 1来确定。
闭路复合定理:设函数f(z)在单连通区域D 内解析,C 与C 1是D 内两条正向简单闭曲线,C 1在C 的内部,且以复合闭路Γ=C+C 1所围成的多连通区域G 全含于D 则有:∮f (z )dz Γ=∮f (z )dz c+∮f (z )dz c 1=0即∮f (z )dz c=∮f (z )dzc 1推论:∮f (z )dz c=∑∮f (z )dzc kn k =1例题:∮2z −1z 2−zdz cC 为包含0和1的正向简单曲线。
解: 被积函数奇点z=0和z=1.在C 内互不相交,互不包含的正向曲线c 1和c 2。
∮2z −1z 2−zdz c=∮2z −1z(1−z )dz c1+∮2z −1z(1−z )dzc2=∮1z −1+1zdz c1+∮1z −1+1zdzc2=∮1z −1dz c1+∮1zdz c1+∮1z −1dz c2+∮1zdzc2=0+2πi+2πi+0 =4πi原函数法(牛顿-莱布尼茨公式):定理可知,解析函数在单连通域B 内沿简单曲线C 的积分只与起点z 0与终点z 1有关,即∫f (?)c d ? = ∫f (?)z1z 0d ? 这里的z 1和z 0积分的上下限。
当下限z 0固定,让上限z 1在B 内变动,则积分∫f (?)z1zd ?在B 内确定了一个单值函数F(z),即F(z)= ∫f (?)z1z 0d ? 所以有若f(z)在单连通区域B 内解析,则函数F(z)必为B 内的解析函数,且F (z) =f(z).根据定理和可得∫f (k )z 1zd k = F(z 1) - F(z 0). 例题:求∫zcosz 1d k 解: 函数zcosz 在全平面内解析∴∫zcosz 1d k =zsinz |0i -∫sinz 10d k = isin i+cosz |0i =isin i+cos i-1 =ie −1−12i+e −1+12i-1=e -1-1此方法计算复变函数的积分和计算微积分学中类似的方法,但是要注意复变适合此方法的条件。
柯西积分公式法:设B 为以单连通区域,z 0位B 中一点,如f(z)在B 内解析,则函数f (z )z −z 0在z 0不解析,所以在B 内沿围绕z 0的闭曲线C 的积分∫f (z )z −z 0dz c一般不为零。
取z 0位中心,以δ>0为半径的正向圆周|z −z 0|=δ位积分曲线c δ,由于f(z)的连续性,所以∫f (z )z −z 0dz c=∫f (z )z −z 0dz c δ=2πif(z 0)定理:若f(z)在区域D 内解析,C 为D 内任何一条正向简单闭曲线,它的内部完全含于D ,z 0为C 内的任一点,有:f(z 0)=12πi∮f (z )z −z 0dz例题:1)∮|z |=22)∮z (9−z 2)(z +i )dz |z |=2解:=2π isin z|z=0=0 解: =∮z9−z 2z −(−i )dz |z |=2=2πi z9−z 2|z=-i =π5解析函数的高阶导数:解析函数的导数仍是解析函数,它的n 阶导数为f (n)(z 0)=n !2πi∮f (z )(z −z 0)n +1dz(n=1,2…)其中C 为f(z)的解析区域D 内围绕z 0的任一条正向简单闭曲线,而它的内部全含于D.例题:∮e zz5dz cC:|Z |=1解:由高阶导数的柯西积分公式:原式=2πi ?14!(e z )(4)|z=π2=πi123.解析函数与调和函数:定义:(1)调和函数:如果二元实函数φ(x,y)在区域D内具有二阶连续函数,且满足拉普拉斯方程:?2φ?x2+?2φ?y2=0,则称φ(x,y)为区域D内的调和函数。
若f(z)=u+iv为解析函数,则u和v都是调和函数,反之不一定正确(2)共轭调和函数:u(x,y)为区域内给定的调和函数,我们把是u+iv在D内构成解析函数的调和函数v(x,y)称为u(x,y)的共轭调和函数。
若v是u的共轭调和函数,则-u是v的共轭调和函数关系:任何在区域D内解析的函数,它的实部和虚部都是D内的调和函数;且虚部为实部的共轭调和函数。
求解方法:(1)偏积分法:若已知实部u=u(x,y),利用C-R方程先求得v的偏导数?u?x =?v?y,两边对y积分得v=∫?u?x dy+g(x).再由?u?y=−?v?x又得??x∫?v?xdy+g(x)=-?u?y从而g(x)=∫[−?u?y−? ?x ∫?u?xdy]dx + Cv=∫?u?x dy+ ∫[−?u?y−??x∫?u?xdy]dx + C同理可由v(x,y)求u(x,y).不定积分法:因为f(z)=U x+i V x= U x-iU y= V y+iV X所以f(z)=∫U(z)dz+c f(z)=∫V(z)dz+c线积分法:若已知实部u=u(x,y),利用C-R 方程可得的dv=?v?xdx+?v ?ydy=-?u?ydx+∫?u ?xdy 故虚部为v=∫−?u ?ydx +(x,y)(x0,y 0,)?u ?xdy +C该积分与路径无关,可自选路径,同理已知v(x,y)也可求u(x,y).例题:设u=x 2-y 2+xy 为调和函数,试求其共轭函数v(x,y)级解析函数f(z)=u(x,y)+iv(x,y) 解:利用C-R 条件?u ?x=2x+y ?u ?y=-2y+x ?2u ?x 2=2?2u ?y 2=-2所以满足拉普拉斯方程,有?v ?x=−?u ?y=2y-x ?v ?y=?u ?x=2x+y所以v=∫(2y −x )dx +φ(y )=2xy- x 22+φ(y )?v ?y=2x+φ(y)=2x+y φ(y)=y φ(y )=y 22+c v(x,y)=2xy- x 22+y 22+cf(z)=u(x,y)+iv(x,y)=12(2-i)z 2+iC 4.留数求积分:留数定义:设z 0为函数f(z)的一个孤立奇点,即f(z)在去心邻域、0<|z −z 0|<δ ,我们把f(z)在z 0处的洛朗展开式中负一次幂项系数c -1称为f(z)在z 0处的留数,记为Res[f(z),z 0]即Res[f(z),z 0]=c -1或者Res[f(z),z 0]=12πi ∮f (z )dz cC 为0<|z −z 0|<δ留数定理:设函数f(z)在区域D 内除有限个孤立奇点z 1z 2…z n,其中z k 表示函数f (z )的孤立奇点 孤立奇点:定义:如果函数k (k )在z 0不解析,但在z 0某个去心邻域0<|z −z 0|<δ内解析,则称z 0为f (z )的孤立奇点。