宁夏银川一中2019届高三第二次月考数学(理)试卷(含答案)

合集下载

2019届宁夏银川一中高三第二次模拟考试数学(文)试卷及答案

2019届宁夏银川一中高三第二次模拟考试数学(文)试卷及答案

绝密★启用前2019届宁夏银川一中高三第二次模拟考试数学(文)试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,务必将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知{}{}1|B 3,2,1,0,1-A >==x x ,,则A B 的元素个数为 A .0 B .2 C .3 D .52.复数ii z 2)2(-=(i 为虚数单位),则=||zA .5B .5C . 25D .41 3.函数1cos 22sin )(2+-=x x x f 的最小正周期为 A. πB. 2πC. 3πD. 4π4. 已知向量=(-1,2),=(3,1),)(4,x =,若c b a ⊥-)(,则x = A .1 B .2 C .3D .45.若双曲线12222=-by a x 的一条渐近线方程为x y 2=,则其离心率为A .2B .3C .2D .3 6.已知一个空间几何体的三视图及部分数据如图所示, 则该几何体的体积是A .1B .32 C .2 D .3 7.若x 、y满足约束条件,⎪⎩⎪⎨⎧≥≥-≤-+00203y y x y x 则y x z 34-=的最小值为A .0B .-1C .-2D .-38.已知x =ln π,y =log 52,12=e z -,则A .x <y <zB .z <x <yC .z <y <xD .y <z <x 9.在数学解题中,常会碰到形如“xyyx -+1”的结构,这时可类比正切的和角公式. 如:设b a ,是非零实数,且满足158tan 5sin5cos 5cos5sin π=π-ππ+πb a b a ,则ab = A .4 B .15 C .2 D .310.我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截 取一半,永远都截不完.现将该木棍依此规律截取,如图 所示的程序框图的功能就是计算截取20天后所剩木棍的 长度(单位:尺),则①②③处可分别填入的是 A .i i ,iS S ,i 2120=-=< B . i i ,iS S ,i 2120=-=≤ C .1220+==<i i ,SS ,i D .1220+==≤i i ,SS ,i 11.从分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数字不大于第二张卡片的概率是 A .101B .103C .53 D .5212. 已知点A (0,2),抛物线C 1:)0(2>=a ax y 的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N .若|FM |∶|MN |=1∶5,则a 的值为 A .14 B .12 C .1 D .4二、填空题:本大题共4小题,每小题5分.13.已知函数x x x f sin 2)(-=,当[]1,0∈x 时,函数)(x f y =的最大值为_________.14.已知函数)x (f 是奇函数,当))(f (f ,x lg )x (f x 10010则时,=>的值为_________. 15.已知直三棱柱111C B A ABC -的6个顶点都在球O 的球面上,若AB=6,AC=10,AC AB ⊥,,521=AA 则球O 的表面积为 .16.在△ABC 中,已知 (a +b )∶(c +a )∶(b +c )=6∶5∶4,给出下列结论:①由已知条件,这个三角形被唯一确定; ②△ABC 一定是钝角三角形; ③sin A ∶sin B ∶sin C =7∶5∶3; ④若b +c =8,则△ABC 的面积是1532. 其中正确结论的序号是 .三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:(共60分) 17.(12分)已知等差数列{}n a 中,1673-=a a ,064=+a a (1)求{}n a 的通项公式n a ; (2)求{}n a 的前n 项和n S . 18.(12分)如图所示,四棱锥S-ABCD 中,SA ⊥底面ABCD ,CD AB //,,3===AB AC AD ,4==CD SA P 为线段AB 上一点,,2PB AP = SQ=QC . (1)证明:PQ//平面SAD ; (2)求四面体C-DPQ 的体积. 19.(12分)某餐厅通过查阅了最近5次食品交易会参会人数x (万人)与餐厅所用原材料数量y (袋),得到如下统计表:(1)根据所给5组数据,求出y 关于x 的线性回归方程a x by ˆˆ+=;(2)已知购买原材料的费用C (元)与数量t (袋)的关系为⎩⎨⎧∈≥∈<<-=)(36,380)(360,20400N t t t N t t t C ,投入使用的每袋原材料相应的销售收入为700元,多余的原材料只能无偿返还,据悉本次交易大会大约有15万人参加.根据(1)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润L =销售收入-原材料费用).参考公式: x b y axn x yx n yx x x y y x xbni i ni ii ni i ni i iˆˆ,)())((ˆ1221121-=--=---=∑∑∑∑====. 参考数据:511343i i i x y ==∑,521558ii x ==∑,5213237i i y ==∑.20.(12分)已知椭圆14522=+y x 的右焦点为F ,设直线l :5=x 与 x 轴的交点为E ,过点F 且斜率为k 的直线1l 与椭圆交于A ,B 两点,M 为线段EF 的中点.(1)若直线1l 的倾斜角为π4,求|AB |的值; (2)设直线AM 交直线l 于点N ,证明:直线BN ⊥l . 21.(12分)已知函数).1ln()(+-=x a x x f (1)的单调区间;求时当)(,2x f a =;(2)当a =1时,关于x 的不等式)(2x f kx ≥在),∞+0[上恒成立,求k 的取值范围.(二)选考题:共10分.请考生在第22、23两题中任选一题做答,如果多做,则按所做的第一题记分.22.[选修4-4:坐标系与参数方程](10分)以直角坐标系原点O 为极点,x 轴正方向为极轴,已知曲线1C 的方程为1)1(22=+-y x ,2C 的方程为3=+y x ,3C 是一条经过原点且斜率大于0的直线.(1)求1C 与2C 的极坐标方程;(2)若1C 与3C 的一个公共点为A (异于点O ),2C 与3C 的一个公共点为B , 求OBOA 3-的取值范围.23.[选修4-5:不等式选讲](10分)(1),1,,,=++∈+c b a R c b a 且已知证明;9111≥++cba(2),abc ,R c ,b ,a 1=∈+且已知证明cb ac b a 111++≤++.2019届宁夏银川一中高三第二次模拟考试数学(文)参考答案一.选择题:13.2-sin1 14.2lg - 15. 16 ②③17解:设{a n }的公差为d ,则1111(2)(6)16,350,a d a d a d a d ++=-⎧⎨+++=⎩1212181216,4.a da d a d ⎧++=-⎪⎨=-⎪⎩即118,8,2 2.a a d d =-=⎧⎧⎨⎨==-⎩⎩解得或 (1)a n = 2n-10, a n= -2n +10.(2)S n =-8n +n (n -1)=n (n -9),或S n =8n -n (n -1)=-n (n -9). 18 解析:(1)证明: 由已知得AP =23AB =2.如图,取DS 的中点T ,连接AT ,TQ ,由N 为PC 中点知TQ ∥DC ,TQ =12DC =2.又AB ∥DC ,故TQ ||=AP ,,,//SAD AT AT MN 平面又⊂∴从而证得PQ//平面SAD ;(2)因为SA ⊥平面ABCD ,Q 为SC 的中点,所以Q 到平面ABCD 的距离为12SA .如图,取DC 的中点E ,连接AE .由AD =AC =3得AE ⊥DC ,则AE = 5.故S △BCP =12×4×5=2 5.所以四面体C-DPQ 的体积V C-DPQ =13×S △D CP ×PA 2=453.S 球=4πR 2=36π.19【答案】(1)15.2-=x y ;(2)餐厅应该购买36袋原材料,才能使利润获得最大,最大利润为11520元.【解析】 (1)由所给数据可得:1398101210.45x ++++==,3223182428255y ++++==,························2分515222151343510.4252.5558510.45i ii i i x yx yb x x==--⨯⨯===-⨯-∑∑,25 2.510.41a y bx =-=-⨯=-, 则y 关于x 的线性回归方程为 2.51y x =-(2)由(1)中求出的线性回归方程知,当15x =时,36.5y =,即预计需要原材料36.5袋, 因为40020,036,380,36,NN t t t C t t t -<<∈⎧=⎨≥∈⎩,所以当36t <时,利润()7004002030020L t t t =--=+, 当35t =时, 利润L=300×35+20=10520 当36t ≥时,利润L =700t -380t ,当36t =时,利润.L=700×36-380×36=11520 当t=37时,利润L=700×36.5-380×37=11490综上所述,餐厅应该购买36袋原材料,才能使利润获得最大,最大利润为11520元.20.由题意知,F (1,0),E (5,0),M (3,0).(1)∵直线l 1的倾斜角为π4,∴斜率k =1. ∴直线l 1的方程为y =x -1.代入椭圆方程,可得9x 2-10x -15=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=109,x 1x 2=-53. ∴|AB |=2·(x 1+x 2)2-4x 1x 2=2×354)910(2⨯+=1659.(2)证明:设直线l 1的方程为y =k (x -1). 代入椭圆方程,得(4+5k 2)x 2-10k 2x +5k 2-20=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=10k 24+5k 2,x 1x 2=5k 2-204+5k 2. 设N (5,y 0),∵A ,M ,N 三点共线, ∴-y 13-x 1=y 02,∴y 0=2y 1x 1-3.而y 0-y 2=2y 1x 1-3-y 2=2k (x 1-1)x 1-3-k (x 2-1) =3k (x 1+x 2)-kx 1x 2-5k x 1-3=3k ·10k 24+5k 2-k ·5k 2-204+5k 2-5k x 1-3=0. ∴直线BN ∥x 轴,即BN ⊥l .21.解:(1)当a=2时,),x ln(x )x (f 12+-=11121+-=+-=x x x )x (f ',()()是减函数,(时,当x f )x f ,x '011<-∈, 是增函数函数;,,,)x (f )x (f ),(x '01>+∞∈()),1[1,1)(+∞-,增区间为的减区间为所以,x f(1).0)1ln()()1ln()(122≥++-≥+-==x x kx x f kx x x x f a ,即,时,当.)0[0)(0)1ln()(2恒成立即可,在,则只需,设∞+≥≥++-=x g x x x kx x g易知.x xx x ]x k [x x kx )x (g )(g '0101112111200≥+≥+-+=++-==,所以,因为)(, )上单调递减,,在,此时时,当∞+<≤0[)(0)(0'x g x g k 与题设矛盾;所以,0)0()(=<g x g)(2110(02110)(210''<+-∈>+-==<<x g kx k x x g k )时,,,当得时,由当,与题设矛盾;时,,(上单调递减,所以,当,在,此时时,,当0)0()()2110)2110()(0)()211('=<+-∈+->∞++-∈g x g kx k x g x g k x 0)0()(0[)(0)(21'=≥∞+≥≥g x g x g x g k )上单调递增,所以,在,故时,当恒成立.综上,.21≥k22.解:(1)曲线1C 的方程为1)1(22=+-y x ,1C 的极坐标方程为θρcos 2=2C 的方程为3=+y x ,其极坐标方程为θθρsin cos 3+=(2)3C 是一条过原点且斜率为正值的直线,3C 的极坐标方程为⎪⎭⎫⎝⎛∈=20πααθ,, 联立1C 与3C 的极坐标方程⎩⎨⎧==αθθρcos 2,得αρcos 2=,即αcos 2=OA联立1C 与2C 的极坐标方程⎪⎩⎪⎨⎧α=θθ+θ=ρsin cos 3,得α+α=ρsin cos 3,即α+α=sin cos OB 3所以⎪⎭⎫ ⎝⎛π+α=α-α-α=-4223cos sin cos cos OB OA又⎪⎭⎫⎝⎛π∈α20,,所以),(OB OA 113-∈-23. 证明: (1)因为=++++++++=++ccb a bc b a a c b a c b a 111111++++++++c bc a b c b a a c a b 时等号成立,当3193===≥++++++=c b a a c c a b c c b b a a b (2)因为⎪⎪⎭⎫⎝⎛++⨯≥⎪⎭⎫⎝⎛+++++=++bc ac ab c b c a b a c b a 1212122111111121111 又因为,abc 1=所以c ab =1,b ac =1,a bc =1()ab c cb a ++≥++∴111当1===c b a 时等号成立,即原不等式成立2019届宁夏银川一中高三第二次模拟考试数学(文)试卷。

宁夏回族自治区银川一中2019届高三第一次月考数学(理)试卷(含答案)

宁夏回族自治区银川一中2019届高三第一次月考数学(理)试卷(含答案)

的值为
A.32
B.16
C.8
D.64
7.函数
y=f(x)与
g(x)

(1)x 2
的图像关于直线
y=x
对称,则
f
(4x

x2 )
的单调递增
区间为
A. (, 2)
B.(0,2)
C.(2,4) D.(2,+∞)
8.已知函数 f (x) 3x3 ax 2 x 5 在区间[1,2]上单调递增,则 a 的取值范围是
A.命题“若 x2 3x 2 0 ,则 x 1 ”的逆否命题为:“若 x 1 ,则 x2 3x 2 0 ”
B.“ x 1 ”是“ | x | 1”的充分不必要条件
C.若 p q 为假命题,则 p 、 q 均为假命题.
D.若命题 p :“ x R ,使得 x2 x 1 0 ”,则 p :“ x R ,均有 x2 x 1 0 ”
上单调递增,在 (1, e] 上单调递减
所以 f (x) 在区间 0,e上的最大值为 f (1) ,令 f (1) 1,解得 a 2 ……
当a

0,
x2

1 2a

0

1 2a

1
时,
f
(x) 在 (0,
1) 2a
(1 上单调递增, 2a
,1) 上单调递减, (1,e)
上单调递增
x 1 所以最大值 1 可能在 2a 或 x e 处取得
A. (,5]
B. (,5)
(, 37]
C.
4
D. (,3]
9.函数 y x 2 6x 5 的值域为

银川一中高三第二次月考数学(理科)试卷

银川一中高三第二次月考数学(理科)试卷

银川一中2016届高三年级第二次月考数 学 试 卷(理) 命题人:刘正泉第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数y=的定义域为A.{x|x≠} B.(,+∞) C.(-∞,) D.[,+∞)2.函数的值域为A、 B、 C、 D、3. 设函数f(x)=lo g a x(a>0且a≠1)满足f(9)=2,y=f-1(x)是y=f(x)的反函数,则f-1(lo g2)等于aA.2 B. C. D.lo g24. 函数y=cos2(2x+)-sin2(2x+)的最小正周期是( )A. B.2 C.4 D.5.已知等差数列满足,则有A. B. C. D.6.x为三角形的一个内角,且 sinx+cosx=,则sin2x等于A. B.- C.3 D.-37.函数f(x) =的零点所在的大致区间是A.(1, 2) B.(e,3) C.(2,e) D.(e,+∞)8.已知定义域为的函数为偶函数,且上是增函数,若的解集为A. B. C. D.9.下面能得出△ABC为锐角三角形的条件是A. B.C. D.10.在三角形ABC中,AB=2,AC=4.P是三角形ABC的外心,数量积等于A.6 B.-6 C.3 D.-311.已知函数在区间[1,2]上单调递增,则实数a的取值范围是A. B. C. D.12.已知可导函数在点处切线为(如图),设,则A.的极大值点B.的极小值点C.的极值点D.的极值点第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.13. 已知,,与的夹角为,要使与垂直,则= .14.已知函数在一个周期内的图象如图所示,要得到函数的图象,则需将函数的图象向_______平移 ________个单位。

O132-xy15. 向量=(-2,3),=(1,m),若、夹角为钝角,则实数m的范围是_________.16.关于的方程有负数根,则实数的取值范围为___________三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)已知A、B是△ABC的两个内角,,其中、为互相垂直的单位向量,若求的值.18.(本小题满分12分)数列各项均为正数,其前项和为,且满足.(1)求证:数列为等差数列(2)求数列的通项公式(3)设, 求数列的前n项和,并求使对所有的都成立的最大正整数m的值.19. (本小题满分12分)已知函数(1)若的表达式;(2)若函数上单调递增,求b的取值范围20.(本小题满分14分)已知数列{}中,在直线y=x上,其中n=1,2,3….(1)令求证数列是等比数列;(2)求数列(3)设的前n项和,是否存在实数,使得数列为等差数列?若存在,试求出.若不存在,则说明理由。

宁夏银川第一中学2019届高三上学期第二次月考数学(理)试题Word版含解析

宁夏银川第一中学2019届高三上学期第二次月考数学(理)试题Word版含解析

宁夏银川第一中学2019届高三上学期第二次月考数学(理)试题第I 卷一.选择题:本大题共12小题,每小题5分,共60分,在每小题的四个选项中,只有一项是符合要求的. 1.已知集合{}2|20A x x x =--≥,{}22|<≤-=x x B ,则=B A ( ) A.[]2,1- B.[]2,1-- C.[]1,1- D.[]2,1 【答案】B.考点:集合的交集.2.已知复数z 满足25)43(=+z i ,则=z ( )A. i 43-B. i 43+C. i 43--D. i 43+- 【答案】A.考点:复数的计算.3.下列命题中的假命题是( )A .021>∈∀-x R x , B .0)x ∀∈+∞(, ,122xx >C .0x R ∃∈,当0x x >时,恒有41.1x x <D .R ∈∃α,使函数αx y =的图像关于y 轴对称 【答案】A. 【解析】试题分析:A :根据指数函数的性质,可知A 正确; B :当01x <<时,有2(1,2)x∈,12(0,1)x ∈,显然122xx>成立,当1x ≥时,令12()2xf x x =-,∴1'()2ln 22ln 202xf x =⋅≥⋅->,∴()f x 在[1,)+∞上单调递增,∴()(1)10f x f ≥=>,综上,不等式122xx >对于任意(0,)x ∈+∞恒成立,B 正确;C :∵ 1.1x y =为底数大于1的指数函数,4y x =为幂函数,∴当x →+∞时,41.1x x -→+∞,∴不存在满足条件的0x ,C 错误;D :取2α=,可知函数2y x x α==的图象关于y 轴对称,D 正确. 考点:函数的性质.4.已知向量(3)a k =,,(14)b =,,(21)c =,,且(23)a b c -⊥,则实数k =( ) A. 29-B. 0C. 3D. 215【答案】C.考点:平面向量的数量积.5.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( ) A. )41,0( B. )21,41( C. )43,21( D. )1,43( 【答案】B.考点:函数的零点. 6.若⎥⎦⎤⎢⎣⎡∈24ππθ,, 8732sin =θ,则θsin =( ) A.53 B. 54C. 47D. 43【答案】D. 【解析】试题分析:∵sin 2θ=42ππθ⎡⎤∈⎢⎥⎣⎦,,∴22πθπ⎡⎤∈⎢⎥⎣⎦,,∴1cos 28θ==-, ∴21cos 29sin 216θθ-==,∴3sin 4θ=.考点:三角恒等变形.7.设)(x f 是定义在R 上的偶函数,对R x ∈,都有)2()2(+=-x f x f ,且当[]02,-∈x 时,1)21()(-=x x f ,若在区间(2,6]- 内关于x 的方程)1(0)2(log )(>=+-a x x f a 恰有3个不同的实数根,则a 的取值范围是( ) A. (1,2) B. (2,+∞) C. (1, 34) D. (34,2)【答案】D.考点:1.根的存在性;2.数形结合的数学思想.8.已知单位向量1e 与2e 的夹角为α,且1cos 3α=,1232a e e =-与123b e e =-的夹角为β,则cos β=( )A .31 B .322 C .13013011 D .91【答案】B.考点:平面向量的数量积.9.函数)220)(sin(2)(πϕπωϕω<<->+=,x x f 的部分图象如图所示,则ϕω,的值分别是( )A. 32π-, B. 62π-, C. 321π-, D. 621π,【答案】A.考点:函数sin()y A x ωϕ=+的图象和性质.10.函数2(),0()1,0x a x f x x a x x ⎧-≤⎪=⎨++>⎪⎩ ,若)0(f 是)(x f 的最小值,则a 的取值范围为( ). A .[]2,1- B .[]0,1- C. []2,1 D .[]2,0 【答案】D. 【解析】考点:分段函数的值域.11.若202παβπ<<<<-,1cos()43πα+=,cos()423πβ-=,则cos()2βα+=( ) A .33 B .33- C .935 D .96-【答案】C.考点:三角恒等变形. 12.已知函数)0(21)(2<-+=x e x x f x 与)ln()(2a x x x g ++=图象上存在关于y 轴对称的点,则 a 的取值范围是( )A. )1(ee ,- B. )1(e e,-C. )(e ,-∞D. )1(e ,-∞【答案】C. 【解析】考点:函数的性质与应用.第II 卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二.填空题:本大题共4个小题,每小题5分,共20分,把答案填在答卷对应的横线上. 13.11(2)1x dx x +=+⎰________. 【答案】ln21+. 【解析】 试题分析:121001(2)[ln(1)]ln 211x dx x x x +=++=++⎰. 考点:定积分的计算. 14.已知点)11(--,P 在曲线ax xy +=上,则曲线在点P 处的切线方程为_____________. 【答案】210x y -+=.考点:导数的运用.15.如图在平行四边形ABCD 中,已知58==AD AB ,,3CP PD =,2AP BP ⋅=,则AD AB ⋅的值是 .C【答案】22.考点:平面向量的数量积.16.已知函数x x x f sin cos )(⋅=,给出下列五个说法: ①41)121921(=πf . ②若)()(21x f x f -=,则21x x -=. ③)(x f 在区间⎥⎦⎤⎢⎣⎡-36ππ,上单调递增. ④将函数)(x f 的图象向右平移43π个单位可得到x y 2cos 21=的图象. ⑤)(x f 的图象关于点(,0)4π-成中心对称.其中正确说法的序号是. 【答案】①④.考点:三角函数的图象与性质.三.解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本题满分12分) 如图,在ABC △中,83==∠AB B ,π,点D 在BC 边上,且2=CD ,71cos =∠ADC . (1)求BAD ∠sin ; (2)求AC BD ,的长.【答案】(1)sin BAD ∠=(2)3BD =,7AC =.考点:1.三角恒等变形;2.正余弦定理解三角形. 18.(本题满分12分) 已知函数x m x m x x f )6()3(2131)(23+++-=,x R ∈.(其中m 为常数) (1)当4m =时,求函数的极值点和极值;(2)若函数()y f x =在区间(0,)+∞上有两个极值点,求实数m 的取值范围.【答案】(1)函数的极大值点是2x =,极大值是263;函数的极小值点是5x =,极小值是256;(2)3m >.考点:1.导数的运用;2.一元二次方程根的分布. 19.(本题满分12分) 已知函数)4sin()4sin(2)32cos()(πππ+-+-=x x x x f(1)求函数)(x f 的最小正周期和图象的对称轴方程; (2)求函数)(x f 在区间]212[ππ,-上的值域. 【答案】(1)最小正周期T π=,对称轴为:()3x k k Z ππ=+∈;(2)⎥⎦⎤⎢⎣⎡-123, . 【解析】试题分析:(1)首先对()f x 的表达式进行化简,利用两角和与差的正余弦公式,结合辅助角公式,即可将其化为形如sin()y A x ωϕ=+的形式,从而可知周期与对称轴方程;(2)根据题意可知当⎥⎦⎤⎢⎣⎡-∈212ππ,x ,得⎥⎦⎤⎢⎣⎡-∈-65362πππ,x ,结合正弦函数sin y x =在536ππ⎡⎤-⎢⎥⎣⎦,上的单调性可知,当263x ππ-=-,12x π=-时,m i n ()()122f x f π=-=-,当262x ππ-=,3x π=时,m a x()()13f x f π==,从而可知值域为⎥⎦⎤⎢⎣⎡-123, . 试题解析:(1)∵1()cos(2)2sin()sin()cos 223442f x x x x x x πππ=-+-+= 221(sin cos )(sin cos )cos 22sin cos 2x x x x x x x x +-+=++- 1cos 22cos 2sin(2)26x x x x π=+-=-, ∴周期T π=,函数图像的对称轴为:()3x k k Z ππ=+∈;….........6分(2)由⎥⎦⎤⎢⎣⎡-∈212ππ,x ,得⎥⎦⎤⎢⎣⎡-∈-65362πππ,x ,再令262x ππ-=,得3x π=,∵函数)(x f 在区间⎥⎦⎤⎢⎣⎡-312ππ,上单调递增,在区间⎥⎦⎤⎢⎣⎡23ππ,上单调递减, ∴当3π=x 时,取最大值1,又∵21)2(23)12(=<-=-ππf f ,即当12π-=x 时)(x f 所取最小值23-, ∴函数)(x f 的值域为⎥⎦⎤⎢⎣⎡-123, . 考点:1.三角恒等变形;2.三角函数的图象和性质. 20.(本题满分12分)设ABC ∆的内角A ,B ,C 所对的边分别为,,,c b a 且1cos 2a C cb -=. (1)求角A 的大小;(2)若1a =,求ABC ∆的周长的取值范围.【答案】(1)23A π=;(2)1]+.1sin )1sin())l a b c B C B A B =++=+=+++11(sin cos )1)223B B B π=+=+,∵23A π=,∴(0,)3B π∈,∴sin(),1]32B π+∈,故ABC ∆的周长的取值范围为1]+. ……12分 考点:1.三角恒等变形;2.正弦定理.21.(本题满分12分)已知函数2()(33)xf x x x e =-+⋅定义域为[2,](2)t t ->-,设(2),()f m f t n -==.(1)试确定t 的取值范围,使得函数()f x 在[2,]t -上为单调函数;(2)求证:m n >;(3)求证:对于任意的2t >-,总存在0(2,)x t ∈-,满足020()2(1)3x f x t e '=-,并确定这样的0x 的个数. 【答案】(1)20t -<≤;(2)详见解析;(3)详见解析.考点:1.利用导数判断函数的单调性;2.根的存在性与根的个数判断.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.(本小题满分10分)选修4—1;几何证明选讲.如图,EP 交圆于C E 、两点,PD 切圆于D ,G 为CE 上一点,且PD PG =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F .(1)求证:AB 为圆的直径;(2)若BD AC =,求证:ED AB =.【答案】(1)详见解析;(2)详见解析.考点:1.圆周角定理;2.垂径定理.23.(本小题满分10分)选修4—4;坐标系与参数方程.在平面直角坐标系xoy 中,曲线1C 的参数方程为⎩⎨⎧==ϕϕsin cos y x (ϕ为参数),曲线2C 的参数方程为 cos (0sin x a a b y b φφφ=⎧>>⎨=⎩,为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线αθ=:l 与12,C C 各有一个交点.当0=α时,这两个交点间的距离为2,当2πα=时,这两个交点重合.(1)分别说明21C C ,是什么曲线,并求出a 与b 的值;(2)设当4πα=时,l 与21C C ,的交点分别为11B A ,,当4πα-=时,l 与21C C ,的交点为22B A ,,求四边形1221B B A A 的面积.【答案】(1)1C 为圆,2C 为椭圆,3a =,1b =;(2)四边形1221A A B B 的面积为25考点:1.参数方程化为普通方程;2.圆与圆锥曲线的综合.24.(本小题满分10分)选修4—5;不等式选讲. 已知函数)(x f 是定义在R 上的奇函数,当0≥x 时,)3|2||(|21)(222a a x a x x f --+-=, (1)当1=a 时,求不等式1)(>x f 的解集;(2)若x R ∀∈,)()1(x f x f ≤-,求实数a 的取值范围.【答案】(1)1k =;(2)]66,66[-∈a .考点:1.奇函数的性质;2.分段函数;3.恒成立问题.。

2023届宁夏回族自治区银川一中高三下学期第二次模拟考试 数学(理)答案

2023届宁夏回族自治区银川一中高三下学期第二次模拟考试 数学(理)答案

银川一中2023届高三第二次模拟数学(理科)参考答案一、单选题1.【答案】A【分析】根据给定条件,求出复数z 及z ,再利用复数除法运算求解作答.【详解】依题意,12z i =+,则12i z =-,所以12i (12i)(12i)34i 34i 12i (12i)(12i)555z z +++-+====-+--+.故选:A2.【答案】D 【分析】由已知可推得2B ∈,代入即可解得2m =-,代入即可得出答案.【详解】由题意可知,2B ∈,即2220m -+=,所以2m =-,所以,{}{}2202,1B x x x =--==-.故选:D.3.【答案】C【分析】根据含量词命题的否定形式可得到原命题,通过反例可说明原命题为假命题.【详解】 命题P 的否定为特称命题,P ∴:x ∀∈R ,211x +>,当0x =时,211x +=,P ∴为假命题,ABD 错误,C 正确.故选:C.4.【答案】B【分析】求出基本事件总数,再求出和为奇数事件所包含的基本事件个数,根据古典概型求解.【详解】不超过17的质数有:2,3,5,7,11,13,17,共7个,随机选取两个不同的数,基本事件总数27C 21n ==,其和为奇数包含的基本事件有:(2,3),(2,5),(2,7),(2,11),(2,13),(2,17),共6个,所以62217P ==.故选:B 5.【答案】B【分析】执行程序即可算出其输出值结果.【详解】由题意可知,流程图的功能为计算111111223344556S =++++⨯⨯⨯⨯⨯的值,裂项求和可得:111111111122334455566S ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.故选:B.6.【答案】D【分析】根据一次函数、反比例函数、幂函数和分段函数的性质,逐个选项进行判断即可得到答案.【详解】对于A :函数2y x =-+的定义域为R ,值域也为R ,不符合题意;对于B:函数y =的定义域和值域都为[)0,∞+,不符合题意;对于C :2y x =的定义域和值域都为{}0x x ≠,不符合题意;对于D :2,02,0x x y x x -≤⎧=⎨+>⎩的定义域为R ;当0x ≤时,22y x =-≤-;当0x >时,22y x =+>;所以值域为(](),22,∞∞--⋃+,定义域和值域不相同,符合题意;故选:D .7.【答案】A【分析】利用向量垂直的坐标表示,结合数量积公式,即可求解.【详解】因为()2cos 75cos152sin 75sin152cos 15750a b ⋅=-=+=,2a = ,1b = .所以()()222280a b a b a b λλλ+⋅-=-=-= .所以8λ=.故选:A 8.【答案】A 【分析】由题意求出双曲线的一条渐近线的倾斜角,可得渐近线的斜率,根据离心率的计算公式可得答案.【详解】由题意设一条渐近线的倾斜角为π,(0,)2αα∈,则另一条渐近线的倾斜角为5α,由双曲对称性可得π5π,=6ααα+=∴,则一条渐近线的斜率为πtan 6=设双曲线的长半轴长为a ,短半轴长为b,则b a =,故离心率为3e ==,故选:A 9.【答案】C 【分析】根据已知条件求得123R h =,243R h =,代入体积公式计算即可.【详解】设小球缺的高为1h ,大球缺的高为2h ,则122h h R +=,①由题意可得:122π12π2Rh Rh =,即:212h h =,②所以由①②得:123R h =,243R h =,所以小球缺的体积23112228ππ333381R R R V R ⎛⎫⎛⎫=-⨯= ⎪ ⎝⎭⎝⎭,大球缺的体积23214480ππ333381R R R V R ⎛⎫⎛⎫=-⨯= ⎪ ⎪⎝⎭⎝⎭,所以小球缺与大球缺体积之比为313228π78180π2081R V R V ==.故选:C.10【答案】B 【分析】由判别式可解得6k ,由根与系数关系可得121212111331x x k x x x x k k ++===++ ,由k 的范围结合不等式的性质变形可得答案.【详解】由题意可得∆2()4(3)0k k =--+,解得6k 或2k ≤-,设两个为1x ,2x ,由两根为正根可得12120·30x x k x x k +=>⎧⎨=+>⎩,解得0k >,综上知,6k .故两个根的倒数和为12121211x x x x x x ++=1331kk k==++,6k ,∴1106k <,3102k <,故33112k <+,∴12331k+,故两个根的倒数和的最小值是23.故选:B 11.【答案】B 【分析】根据二倍角公式得到11tan 10γ=,代入式子得到22111061410hhD d ==++,解得答案.【详解】10sin 211cos 21γγ=+,即220sin cos 10tan 112cos γγγγ==,所以11tan 10γ=,22111061410h h D d ==++,解得66h =,故选:B.12.【答案】B【分析】结合229x y +≥可确定曲线上的点的位置,结合双曲线和圆的图象可确定曲线Γ的图象,采用数形结合的方式可求得结果.【详解】由题意得:2290x y +-≥,即229x y +≥,即曲线Γ上的点(),x y 为圆229x y +=上或圆229x y +=外的点,由221033x y ⎛⎫-- ⎪⎝⎭得:22133y x -=或229x y +=,由22221339x y x y ⎧-=⎪⎨⎪+=⎩得:xy ⎧=⎪⎨=⎪⎩x y ⎧=⎪⎨=⎪⎩x y ⎧⎪⎨⎪⎩x y ⎧=⎪⎨=⎪⎩由此可得曲线Γ的图象如下图所示,由图象可知:当()3,m ∈- 时,直线y m =与曲线Γ有四个不同交点;∴实数m的取值范围为()3,- .故选:B.二、填空题13.【答案】11【分析】根据题设的抽取方式,结合随机表法依次写出所得编号,即可得答案.【详解】由题设,依次取出的编号为08、02、14、07、11、05,所以第5个个体的编号为11.故答案为:1114.【答案】2【分析】由题,利用导数及韦达定理可得37a a,后利用等比中项性质可得答案.【详解】()284f x x x '=-+,由题37a a ,是方程2840x x -+=的两个不等实根,则由韦达定理373740,80a a a a =>+=>,所以370,0a a >>又5a 是37a a ,的等比中项且5a 与37a a ,同号,则2555402a a a =>⇒=,.故答案为:2.15.【答案】60︒【分析】把展开图恢复到原正方体,得到AE //DC ,从而得到∠BAE 或其补角是异面直线AB 与CD 所成的角,从而可解.【详解】如图所示,把展开图恢复到原正方体.连接AE ,BE .由正方体可得//CE AD 且CE AD =,∴四边形ADCE 是平行四边形,∴AE //DC .∴BAE ∠或其补角是异面直线AB 与CD 所成的角.由正方体可得:AB AE BE ==,∴ABE 是等边三角形,∴60=︒∠BAE .∴异面直线AB 与CD 所成的角是60°.故答案为:60°16.【答案】1【分析】构造函数()x f x e =,设切点为11(,)x y ,设()ln g x x =,设切点为22(,)x y ,结合条件得到12,x x 是函数()f x e x =和()ln g x x =的图象与曲线1y x =交点的横坐标,利用对称性得出1122(,),(,)x y x y 关于直线y x =对称,从而得出12e x x =,12ln x x =,然后计算出12k k .【详解】设()x f x e =,则()e x f x '=,设切点为11(,)x y ,则11e x k =,则切线方程为111e ()x y y x x -=-,即111e e ()x x y x x -=-,直线1(1)1y k x =+-过定点(1,1)--,所以1111e e (1)x x x --=--,所以11e 1x x =,设()ln g x x =,则1()g x x '=,设切点为22(,)x y ,则221k x =,则切线方程为2221()y y x x x -=-,即2221ln ()y x x x x -=-,直线1(1)1y k x =+-过定点(1,1)--,所以22211ln (1)x x x --=--,所以22ln 1x x =,则12,x x 是函数()f x e x =和()ln g x x =的图象与曲线1y x =交点的横坐标,易知()f x 与()g x 的图象关于直线y x =对称,而曲线1y x =也关于直线y x =对称,因此点1122(,),(,)x y x y 关于直线y x =对称,从而12e x x =,12ln x x =,所以1122e 1x k k x ==.故答案为:1.三、解答题17.【答案】(1)21n a n =+;(2)详见解析.【分析】(1)设数列{}n a 的公差为d ,将已知条件转化为1,a d 关系,即可求解;(2)根据{}n b 通项公式,用裂项相消法求出和n T ,即可证明结论.【详解】(1)由设数列{}n a 的公差为d ,则11393315a d a d +=⎧⎨+=⎩解得2d =,13a =,所以{}n a 是首项为3,公差为2的等差数列,所以21n a n =+;(2)由21n a n =+,可得111111()(21)(23)22123n n n b a a n n n n +===-++++,所以12n n T b b b =+++ 1111111()()()235572123n n ⎡⎤=-+-++-⎢⎥++⎣⎦11111()2323646n n =-=-++,又1046n >+,故.18.【答案】(1)12(2)分布列见解析,()87E X =(3)3月3日【分析】(1)根据古典概型公式求解即可.(2)根据题意得到0,1,2X =,()2327C 10C 7P X ===,()113427C C 41C 7P X ===,()2427C 22C 7PX ===,再写出分布列数学期望即可.(3)根据折线图和频率分布直方图求解即可.【详解】(1)令时间A 为“职工甲和职工乙微信记步数都不低于10000”,从3月2日至3月7日这6天中,3月2日、5日、7日这3天中,甲乙微信记步数都不低于10000,故()3162P A ==.(2)由(1)知:0,1,2X =,()2327C 10C 7P X ===,()113427C C 41C 7P X ===,()2427C 22C 7P X ===,X的分布列为:X 012P 174727()14280127777E X =⨯+⨯+⨯=(3)根据频率分步直方图知:微信记步数落在[]20,25,[)15,20,[)10,15,[)5,10,[)0,5(单位:千步)区间内的人数依次为2000.1530⨯=人,2000.2550⨯=人,2000.360⨯=人,2000.240⨯=人,2000.120⨯=人,由甲微信记步数排名第68,可知当天甲微信记步数在15000到20000万之间,根据折线图知:只有3月2日,3月3日,3月7日.由乙微信记步数排名第142,可知当天乙微信记步数在5000到10000万之间,根据折线图知:只有3月3日和3月6日,所以3月3日符合要求.19.【答案】(1)26y x =(2)证明见解析【分析】(1)将(6,6)M -代入抛物线即可求解;(2)设()()1122,,,A x y B x y ,直线l 的方程为,(0)my x t t =-≠,将直线l 与抛物线进行联立可得12126,6y y m y y t +==-,结合OA OB ⊥可得6t =,即可求证【详解】(1)因为抛物线C 过点(6,6)M -,∴2(6)26p -=⨯,解得3p =,∴抛物线C 的标准方程为26y x =.(2)设()()1122,,,A x y B x y ,直线l 的方程为,(0)my x t t =-≠,联立26my x ty x =-⎧⎨=⎩,化为2660y my t --=,236240m t ∆=+>,∴12126,6y y m y y t +==-,∵OA OB ⊥,∴()212121236y y OA OB x x y y ⋅=+= 12661036t y y t -⎛⎫+=-+= ⎪⎝⎭,0t ≠,16n T <解得6t =,满足236240m t ∆=+>,∴直线l的方程为6my x =-,∴直线过定点()6,0.20.【答案】(1)存在,理由见解析【分析】(1)根据面面平行的判定定理、性质定理分析证明;(2)根据题意结合长方体的外接球可得12AA =,建系,利用空间向量求二面角.【详解】(1)当点D 为AB 的中点时,1O D 平面1A AC ,证明如下:取AB 的中点D ,连接OD ,∵O ,D 分别为BC ,AB 的中点,则OD AC ,OD ⊄平面1A AC ,AC ⊂平面1A AC ,∴OD 平面1A AC ,又∵1OO 1AA ,1OO ⊄平面1A AC ,1AA ⊂平面1A AC ,∴1OO 平面1A AC ,1O O OD O ⋂=,1,O O OD ⊂平面1OO D ,∴平面1OO D 平面1A AC ,由于1O D ⊂平面1OO D ,故1O D ∥平面1A AC .(2)∵BC 是O 的直径,可得90BAC ∠=︒,即AB AC ⊥,且2BC =,30ABC ∠=︒,故AB =1AC =,又∵1AA ⊥平面ABC ,且,AB AC 平面ABC ,∴11,AA AB AA AC ⊥⊥,即AB ,AC ,1AA 两两垂直,且点1A ,A ,B ,C 可知该球为以AB 、AC 、1AA 则(22221AB AC AA ++=,可得12AA =,以A为原点,AB ,AC ,1AA 所在直线分别为x ,y ,z 轴建立直角坐标系,则()0,0,0A,)B ,()0,1,0C ,()10,0,2A ,得)12A B =- ,()10,1,2AC=- ,设(),,n x y z =r 为平面1A BC 的一个法向量,则112020n A B z n A C y z ⎧⋅=-=⎪⎨⋅=-=⎪⎩ ,令2x=,则y z =,可得(2,=r n ,且()0,1,0AC = 为平面1A AB 的一个法向量,设二面角1C A B A--为θ,则cos cos ,19AC n AC n AC n θ⋅===uuu r r uuu r r uuu r r ,所以二面角1C A B A --的余弦值为19.21.【答案】(1)存在,22m -≤≤;(2)①证明见解析;②证明见解析.【分析】(1)根据微积分基本定理求得()f x ,由()10f '=,求得参数a ;利用导数求函数的在区间上的最值,结合一次不等式在区间上恒成立问题,即可求得参数m 的范围;(2)①求得()F x ',利用导数求得()F x 的单调性,即可容易证明;②由①中所求,可得12ln()11k k k +>++,利用对数运算,即可证明.【详解】由题可知2()ln(1)(1)f x a x x =+++,∴()221a f x x x '=+++.(1)由()01f '=,可得2202a ++=,8a =-.又当8a =-时,()()()2311x x f x x +'-=+,故()f x 在区间()0,1单调递减,在()1,+∞单调递增.故函数()f x 在1x =处取得极值,所以8a =-.∵11e <-,82(1)(3)()2211x x f x x x x --+'=++=++.∴()0f x '>,当[]1,x e e ∈-时,由上述讨论可知,()f x 单调递增,故2min ()(1)8f x f e e =-=-+不等式2214()m tm e f x ++-≤对任意[]1,x e e ∈-及[]1,1t ∈-恒成立,即:22222min 14()148m tm e f x m tm e e ++-≤⇔++-≤-+,即:260m tm +-≤对[]1,1t ∈-恒成立,令2()6g t m mt =+-,(1)0g ⇒-≤,(1)0g ≤即260m m --≤,且260m m +-≤,整理得()()320m m -+≤,且()()320m m +-≤,解得:22m -≤≤,即为所求.(2)①∵2()()(1)ln(1)F x f x x x x x =-+-=+-,∴()1xF x x-'=+当0x >时,()0F x '<,∴()F x 在(0,)+∞上单调递减,()(0)0F x F ∴<=即证.②由①可得:ln(1)(0)x x x +<>令:11x k =+,得11ln(111k k +<++,即:12ln()11k k k +>++∴1112322ln ln ln 12(1)1221n n n n n n n n n n +++++⋅⋅⋅+>++⋅⋅⋅++++++++=ln 2即证.【点睛】本题考查由极值点求参数值,利用导数由恒成立问题求参数范围,以及利用导数证明不等式以及数列问题,属压轴题.22.【答案】(1)C 的极坐标方程为2sin22ρθλ=,ππ,Z 2k k θ≠+∈,l的直角坐标方程为40x +=(2)1λ=【分析】(1)消去参数得到C 的普通方程,再利用公式得到极坐标方程,注意定义域,再求出l 的直角坐标方程;(2)将()π12θρ=∈R 代入C 的极坐标方程,求出,A B 的坐标,得到AB 为直径的圆的圆心和半径,根据相切关系得到方程,求出答案.【详解】(1)将曲线C 的参数方程x ty tλ=⎧⎪⎨=⎪⎩消去t ,得C 的普通方程为xy λ=,且因为0t ≠,所以0x ≠,将cos ,sin x y ρθρθ==,ππ,Z 2k k θ≠+∈,代入xy λ=,得2sin cos ρθθλ=,即2sin22ρθλ=,ππ,Z 2k k θ≠+∈,即为C 的极坐标方程,由直线l 的方程πsin 26ρθ⎛⎫-= ⎪⎝⎭化简得1sin cos 222ρθρθ-=,化简得40x +=,即为l 的直角坐标方程.(2)将直线π12θ=代入2sin22ρθλ=,得24ρλ=,即12ρρ==-故以AB 为直径的圆圆心为O,半径r =圆心O 到直线l的距离2d =,由已知得2=,解得1λ=.23.【答案】(1)(0,4)【分析】(1)根据零点分区间,分类求解即可,(2)根据绝对值三角不等关系可得21a =,进而结合基本不等式即可求解.【详解】(1)当1a =-时,()4f x <等价于|1||3|4x x -+-<,当1x ≤时,13420x x x -+-<⇒-<,则01x <≤,当13x <<时,13424x x -+-<⇒<,则13x <<,当3x ≥时,134244x x x -+-<⇒-<,则34x ≤<,综上所述,不等式()4f x <的解集为(0,4).(2)()3(3)2f x x a x a x a x a a =+++≥+-+= ,当且仅当()(3)0x a x a ++≤等号成立,min ()|2|2f x a ∴==,即21a =,24()()a m a m n -+= ,∴22241a m n =+=,∴2222222211445()59()n n m mn m m n mn ⎛⎫⎛⎫+=++=++≥+ ⎪⎪⎝⎭⎝⎭,当且仅当224()()mn mn =,即2()2mn =,即213m =,26n =时,等号成立,故221n m +的最小值为9。

1905宁夏回族自治区银川一中2019高三二模理科数学试卷Word版含答案

1905宁夏回族自治区银川一中2019高三二模理科数学试卷Word版含答案

2019年普通高等学校招生全国统一考试理科数学试题卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,务必将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.如果复数iai+-21(R a ∈,i 为虚数单位)的实部与虚部相等,则a 的值为 A .1 B .-1 C .3 D .-32.若{}{}0,1,2,|2,aA B x x a A ===∈,则AB =A .{0,1,2}B. {0,1,23},C. {0,1,24},D. {1,24},3. 向量)3,1(),,2(-==b t a ,若b a,的夹角为钝角,则t 的范围是A .t<32 B .t>32 C .t<32且t≠-6 D .t<-6 4.直线kx-2y+1=0与圆x 2+(y-1)2=1的位置关系是 A .相交 B .相切 C .相离 D .不确定5.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有 A .60种B .70种C .75种D .150种6.已知某个几何体的三视图如下,根据图中 标出的尺寸,可得这个几何体的表面积是 A.16 B.12+ C.18+ D.16+7. 下列函数中,最小正周期为πA .y=2sin(2x+3π) B .y=2sin(2x-6π) C .y=2sin(32π+x ) D .y=2sin(2x-3π) 8.我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截 取一半,永远都截不完.现将该木棍依此规律截取,如图 所示的程序框图的功能就是计算截取20天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是 A .i i ,iS S ,i 2120=-=< B .i i ,i S S ,i 2120=-=≤C .1220+==<i i ,SS ,iD .1220+==≤i i ,SS ,i 9.已知α是第二象限角,且sin(53)-=+απ,则tan2α的值为 A .54B .723-C .724-D .924-10.已知函数xx x f -+=)1ln(1)(,则)(x f y =的图像大致为A.C. D.11.已知抛物线x 2=4y 焦点为F,经过F 的直线交抛物线于A(x 1,y 1),B(x 2,y 2),点A,B 在抛物线准线上的射影分别为A 1,B 1,以下四个结论:①x 1x 2=4-, ②AB =y 1+y 2+1, ③11FB A ∠=2π,④AB 的中点到抛物线的准线的距离的最小值为2 其中正确的个数为A .1B .2C .3D . 412.已知函数ax xe xf x -=)(,),0(∞+∈x ,当12x x >时,不等式1221)()(x x f x x f <恒成立,则实数a 的取值范围为A .],(e -∞B .),(e -∞C .)2,(e -∞D .]2,(e-∞二、填空题:本大题共4小题,每小题5分. 13.(x+y)(2x-y)5的展开式中x 3y 3的系数为_______.14.在锐角三角形ABC 中,c b a ,,分别为角A 、B 、C 所对的边,且A c a sin 23=c=7,且ΔABC 的面积为233,b a +的值为_______. 15.如图所示,有三根针和套在一根针上的n 个金属片,按下列规则,把金属片从一根针上全部移到另一根针上. (1)每次只能移动一个金属片;(2)在每次移动过程中,每根针上较大的金属片不能放在 较小的金属片上面.将n 个金属片从1号针移到3号针 最少需要移动的次数记为f (n ),则f (n )=________.16.一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是A (0,0,B 0,0),C (0,1,0),D 1,则该四面体的外接球的体积 为______.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答;第22、23题为选考题,考生根据要求作答。

银川一中2019届高三年级第二次月考数学(理科)试题及答案

银川一中2019届高三年级第二次月考数学(理科)试题及答案

银川一中2019届高三年级第二次月考数 学 试 卷(理)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{},6|≤∈=x N x A {},03|2>-∈=x x R x B 则B A ⋂=A .{}5,4,3B .{}6,5,4C .{}63|≤<x xD .{}63|<≤x x 2.命题“042,2≤+-∈∀x x R x ”的否定为A .042,2≥+-∈∀x x R xB .042,0200>+-∈∃x x R xC .042,2≤+-∉∀x x R x D .042,0200>+-∉∃x x R x 3.已知α的终边与单位圆的交点)23,(x P ,则αtan =A .3B .3±C .33D .33±4.⎰-+4223)30(dx x x =A .56B .28C .356D .145. 已知α为锐角,且03)tan(=+-απ,则αsin 等于 A .31B .10103 C .773 D .553 6.已知函数x xx f 2log 6)(-=,在下列区间中,包含f (x )的零点的区间是A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)7.某船开始看见灯塔在南偏东30°方向,后来船沿南偏东60°的方向航行15 km 后,看见灯塔在正西方向,则这时船与灯塔的距离是 A .5 kmB .25 kmC .35kmD .10 km8.已知偶函数)(x f 对任意R x ∈,都有),()1(x f x f -=+且)(x f 在区间[0,1]上是递减的,则)1(),0(),3.8(--f f f 的大小关系是A .)1()3.8()0(-<-<f f fB .)1()0()3.8(-<<-f f fC .)0()3.8()1(f f f <-<-D .)3.8()0()1(-<<-f f f9.函数x x x y 2)(3-=的图象大致是10.已知71cos =α,1411cos -=+)(βα,且),(20πα∈,),(ππβα2∈+,则βcos 的值为 A .23-B .23C .21D .21-11.设方程)lg(10x x -=的两个根分别为21,x x 则A .021<x xB .021=x xC .121>x xD .1021<<x x12.已知函数)ln 2()(2x x k xe xf x +-=,若x =2是函数f (x )的唯一一个极值点,则实数k 的取值范围为A .(-∞,e]B .[0,e]C .(-∞,e)D .[0,e)第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第23题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.共20分, 13.函数1-=x xy 的值域为_______. 14.若x <m -1或x >m +1是x 2-2x -3>0的必要不充分条件,则实数m 的取值范围是_______. 15.已知⎩⎨⎧≥<--=)1(log )1()3()(x x x a x a x f a是(-∞,+∞)上的增函数,那么实数a 的取值范围是______.16.已知函数)2,0)(sin(2)(πϕωϕω<>+=x x f 的图象过点)3,0(-B ,且在)3,18(ππ上单调,同时f (x )的图象向左平移π个单位长度后与原来的图象重合,当),,3234(21ππ--∈x x ,且21x x ≠时,)()(21x f x f =,则=+)(21x x f ______________.三、解答题:本大题共6小题,满分70分.解答须写出文字说明,证明过程和演算步骤. 17.(本小题满分12分)已知向量a =(2sin x ,3cos x ),b =(-sin x ,2sin x ),函数f (x )=b a ⋅ (1)求f (x )的单调递增区间;(2)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边且f (C)=1,c =1,ab =32,a >b ,求a 、b 的值.18.(本题满分12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c . (1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长.19.(本小题满分12分)已知3)1(21ln )(2++++=x a x x a x f (1)当1-=a 时,求函数f (x )的单调区间;(2)若函数f (x )在区间),(∞+0上是增函数,求实数a 的取值范围.20.(本小题满分12分)设函数)2sin()6sin()(πωπω-+-=x x x f ,其中0<ω<3,已知0)6(=πf ,(1)求ω.(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数y =g (x )的图象,求g (x )在]43,4[ππ-上的最小值.21.(本小题满分12分)已知函数cx bx x x f ++=23)(的图象在点))1(,1(f 处的切线方程为)(',0126x f y x =--为)(x f 的导函数,),,()(R c b a ae x g x ∈=. (1)求b ,c 的值;(2)讨论方程)(')(x f x g =解的个数.请考生在第22、23两题中任选一题做答,如果多做.则按所做的第一题记分.做答时请写清题号。

宁夏银川一中2019届高三第二次模拟考试数学(理)试卷(含答案)

宁夏银川一中2019届高三第二次模拟考试数学(理)试卷(含答案)

普通高等学校招生全国统一考试理 科 数 学第I 卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数2(1)i i-=A .22i -+B .2C .2-D .22i -2.设集合2{|0}M x x x =->,1|1N x x ⎧⎫=<⎨⎬⎩⎭,则A .φ=⋂N MB .φ=⋃N MC .M N =D .M N R =U3.已知1tan 2α=-,且(0,)απ∈,则sin 2α= A .45B .45-C .35 D .35-4.若两个单位向量a r ,b r 的夹角为120o,则2a b +=r rA .2B .3CD5.从标有数字1、2、3、4、5的五张卡片中,依次抽出2张(取后不放回),则在第一次抽到卡片是奇数的情况下,第二次抽到卡片是偶数的概率为 A .14B .12C .13D .236.已知233a -=,432b -=,ln3c =,则 A .a c b <<B .a b c <<C .b c a <<D .b a c <<7.中心在原点,焦点在y 轴上的双曲线的一条渐近线经过点()2,4-,则它的离心率为A B .2 C D8.三棱锥P-ABC 中,PA ⊥面ABC ,PA=2,AB=AC=3,∠BAC=60°,则该棱锥的外接球的表面积是 A .π12B .π8C .π38D .π349.20世纪70年代,流行一种游戏——角谷猜想,规则如下:任意写出一个自然数n ,按照以下的规律进行变换:如果n 是个奇数,则下一步变成31n +;如果n 是个偶数,则下一步变成2n,这种游戏的魅力在于无论你写出一个多么庞大的数字,最后必然会落在谷底,更准确地说是落入底部的4-2-1循环,而永远也跳不出这个圈子,下列程序框图就是根据这个游戏而设 计的,如果输出的i 值为6,则输入的n 值为 A .5B .16C .5或32D .4或5或32 10.已知P 是△ABC 所在平面外的一点,M 、N 分别是AB 、PC 的中点,若MN =BC =4,PA =43, 则异面直线PA 与MN 所成角的大小是A .30°B .45°C .60°D .90° 11.若将函数f (x )=sin(2x +φ)+3cos(2x +φ)(0<φ<π)的图象向左平移π4个单位长度,平移后的图象关于点⎝⎛⎭⎫π2,0对称,则函数g (x )=cos(x +φ)在⎣⎡⎦⎤-π2,π6上的最小值是A .-12B .-32C .22D .1212.已知函数f (x )=(3x +1)e x +1+mx (m ≥-4e),若有且仅有两个整数使得f (x )≤0,则实数m 的取值范围是A .⎥⎦⎤⎝⎛2,5e B .⎪⎭⎫⎢⎣⎡--238,25e e C .⎪⎭⎫⎢⎣⎡--238,21e D .⎪⎭⎫⎢⎣⎡--ee 25,4第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第23题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.123456月份代码x市场占有率y(%)2016年10月2016年11月2016年12月2017年1月2017年2月2017年3月20 15 5 10 25 13.已知函数f (x )=log 21-x 1+x ,若f (a )=12,则f (-a )=________.14.设221(32)a x x dx =⎰-,则二项式261()ax x-展开式中的第6项的系数为__________. 15.若目标函数2z kx y =+在约束条件2122x y x y y x -≤⎧⎪+≥⎨⎪-≤⎩下当且仅当在点(1,1)处取得最小值,则实数k 的取值范围是__________.16.已知点A (0,1),抛物线C :y 2=ax (a >0)的焦点为F ,连接FA ,与抛物线C 相交于点M ,延长FA ,与抛物线C 的准线相交于点N ,若|FM |∶|MN |=1∶3,则实数a 的值为________. 三.解答题17.(本小题满分12分){a n }的前n 项和S n 满足:a n +S n =1 (1)求数列{a n }的通项公式; (2)若1+=n nn a a C ,数列{C n }的前n 项和为T n ,求证:T n <1. 18.(本小题满分12分)随着互联网的快速发展,基 于互联网的共享单车应运而生, 某市场研究人员为了了解共享单 车运营公司M 的经营状况,对 该公司最近六个月的市场占有 率进行了统计,并绘制了相应 的折线图:(1)由折线图可以看出, 可用线性回归模型拟合月度市场占 有率y 与月份代码x 之间的关系, 求y 关于x 的线性回归方程,并 预测M 公司2017年4月的市场占 有率;(2)为进一步扩大市场,公司拟再采购一批单车,现有采购成本分别为1000元/辆和 1200元/辆的A 、B 两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致单车使 用寿命各不相同,考虑到公司运营的经济效益,该公司决定 先对这两款车型的单车各100辆进行科学模拟测试,得到两 款单车使用寿命的频数表如右表:经测算,平均每辆单车每年可以带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且以频率作为每辆单车使用寿命的概率,如果你是M 公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型? 参考公式:回归直线方程为$$y bx a =+$,其中2121121)())((ˆx n xyx n y xx xy y x xb n i ini i in i ii ni i--=---=∑∑∑∑====,$ay bx =-$. 19.(本小题满分12分)如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,∠BCD =135°,侧面PAB ⊥底面ABCD ,∠BAP =90°,AB =AC =PA =2,E 、F 分别为BC 、AD 的中点,点M 在线段PD 上.(1)求证:EF ⊥平面PAC ;(2)如果直线ME 与平面PBC 所成的角和直线ME 与平 面ABCD 所成的角相等,求PDPM的值. 20.(本小题满分12分)已知椭圆C 的中心在原点,焦点在x 轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形(记为Q )(1)求椭圆C 的方程;(2)设点P 是直线x = -4与x 轴的交点,过点P 的直线l 与椭圆C 相交于M 、N 两点,当线段MN 的中点落在正方形Q 内(包括边界)时,求直线l 斜率的取值范围. 21.(本小题满分12分)已知函数()()()21,ln f x x ax g x x a a R =++=-∈.(1)当1a =时,求函数()()()h x f x g x =-的极值;(2)若存在与函数()(),f x g x 的图象都相切的直线,求实数a 的取值范围.请考生在第22-23题中任选一题作答,如果多做,则按所做的第一题计分.22.【选修4-4:坐标系与参数方程】(本小题满分10分)在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :2sin 2cos (0)a a ρθθ=>,过点(24)P --,的直线l的参数方程为:24x y ⎧=-+⎪⎪⎨⎪=-+⎪⎩ (t 为参数),直线l 与曲线C 分别交于M 、N 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程; (2)若|PM |,|MN |,|PN |成等比数列,求a 的值 23选修4-5:不等式选讲(本小题满分10分)已知函数|1|||)(--=x x x f .(1)若|1|)(-≥m x f 的解集非空,求实数m 的取值范围;(2)若正数y x ,满足M y x =+22,M 为(1)中m 可取到的最大值,求证:xy y x 2≥+.银川一中2018届高三第二次模拟理科数学试题参考答案一、选择题:本大题共12小题,每小题5分. 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CCBDBDABCADB二.填空题:13. —2114. —24; 15. 24<<-k ; 16. 212.已知函数f (x )=(3x +1)e x +1+mx (m ≥-4e),若有且仅有两个整数使得f (x )≤0,则实数m 的取值范围是( )A.⎝⎛⎦⎤5e ,2B.⎣⎡⎭⎫-52e ,-83e 2C.⎣⎡⎭⎫-12,-83e 2D.⎣⎡⎭⎫-4e ,-52e 答案 B解析 由f (x )≤0,得(3x +1)·e x +1+mx ≤0,即 mx ≤-(3x +1)e x +1,设g(x )=mx ,h(x )=-(3x +1)e x +1, 则h′(x )=-[3e x +1+(3x +1)e x +1]=-(3x +4)e x +1,由 h′(x )>0,得-(3x +4)>0,即x <-43,由h′(x )<0, 得-(3x +4)<0,即x >-43,故当x =-43时,函数h(x ) 取得极大值.在同一平面直角坐标系中作出y =h(x ), y =g(x )的大致图象如图所示,当m ≥0时,满足 g(x )≤h(x )的整数解超过两个,不满足条件;当m <0时, 要使g(x )≤h(x )的整数解只有两个,则需满足()()()()⎩⎨⎧-<--≥-,33,22g h g h 即⎩⎪⎨⎪⎧5e -1≥-2m ,8e -2<-3m ,即⎩⎨⎧m ≥-52e ,m <-83e 2,即-52e ≤m <-83e 2,即实数m 的取值范围是⎪⎭⎫⎢⎣⎡--238,25ee ,故选B.16已知点A (0,1),抛物线C :y 2=ax (a >0)的焦点为F ,连接FA ,与抛物线C 相交于点M ,延长FA ,与抛物线C 的准线相交于点N ,若|FM |∶|MN |=1∶3,则实数a 的值为________.答案2解析 依题意得焦点F 的坐标为⎝⎛⎭⎫a 4,0,设M 在抛物线的准线上的射影为K ,连接MK ,由抛物线的定义知|MF |=|MK |,因为|FM |∶|MN |=1∶3,所以|KN |∶|KM |=22∶1,又k FN =0-1a 4-0=-4a ,k FN =-|KN ||KM |=-22,所以4a =22,解得a = 2.三.解答题:17.解析:(1)由a n +S n =1得a n -1+S n -1=1(n ≥2) 两式相减可得:2a n =a n -1即211=-n n a a ,又211=a ∴{a n }为等比数列,∴a n =n )21( (2)n n n nn C 211211)21()21(<+=+= 故12112112112121212121321<-=-⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛<++++=n n nn n C C C C T ΛΛ 18.解:(1)由题意: 3.5x =,16y =,()()6135i i i x x y y =--=∑,()62117.5i i x x=-=∑,35217.5b ==$,$162 3.59a y b x =-⋅=-⨯=$,∴$29y x =+, 7x =时,$27923y =⨯+=.即预测M 公司2017年4月份(即7x =时)的市场占有率为23%.(2)由频率估计概率,每辆A 款车可使用1年,2年,3年,4年的概率分别为0.2、0.35、0.35、0.1, ∴每辆A 款车的利润数学期望为()()()()50010000.2100010000.35150010000.35200010000.1175-⨯+-⨯+-⨯+-⨯=(元)每辆B 款车可使用1年,2年,3年,4年的概率分别为0.1,0.3,0.4,0.2, ∴每辆B 款车的利润数学利润为()()()()50012000.1100012000.3150012000.4200012000.2150-⨯+-⨯+-⨯+-⨯=(元)∵175150>, ∴应该采购A 款车. 19.(1)证明:在平行四边形中,因为,,所以.由分别为的中点,得, 所以.因为侧面底面,且,所以底面.又因为底面,所以.又因为,平面,平面,所以平面.(2)解:因为底面,,所以两两垂直,以分别为、、,建立空间直角坐标系,则,所以,,,设,则,所以,,易得平面的法向量.设平面的法向量为,由,,得 令, 得.因为直线与平面所成的角和此直线与平面所成的角相等,所以,即,所以,解得,或(舍). 综上所得:20.【解析】(1)依题意,设椭圆C 的方程为)0(12222>>=+b a by a x ,焦距为c 2。

宁夏银川一中2019届高三第一次月考数学(理)试题(解析版)

宁夏银川一中2019届高三第一次月考数学(理)试题(解析版)

银川一中2019届高三年级第一次月考数学试卷(理)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则=A. ﹛|<-5或>-3﹜B. ﹛|-5<<5﹜C. ﹛|-3<<5﹜D. ﹛|<-3或>5﹜【答案】A【解析】【分析】利用数轴,在数轴上画出集合,数形结合求得两集合的并集.【详解】在数轴上画出集合M={x|﹣3<x≤5},N={x|x<﹣5或x>5},则M∪N={x|x<﹣5或x>﹣3}.故选:A.【点睛】本题属于以数轴为工具,求集合的并集的基础题,也是高考常会考的题型.2.二次函数,对称轴,则值为A. B. C. D.【答案】D【解析】【分析】利用函数的对称轴求出m,然后求解函数值即可.【详解】函数f(x)=4x2﹣mx+5的图象的对称轴为x=﹣2,可得:,解得m=﹣16,则f(1)=4+16+5=25.故选:D.【点睛】本题考查二次函数的简单性质的应用,函数值的求法,考查计算能力.3. 下列说法错误的是( )A. 命题“若x2-4x+3=0,则x=3”的逆否命题是:“若x≠3,则x2-4x+3≠0”B. “x>1”是“|x|>0”的充分不必要条件C. 若p 且q 为假命题,则p 、q 均为假命题D. 命题p :“∃x 0∈R 使得+x 0+1<0”,则p :“∀x ∈R ,均有x 2+x +1≥0”【答案】C 【解析】 因为A .命题“若x 2-4x +3=0,则x =3”的逆否命题是:“若x≠3,则x 2-4x +3≠0”成立,B .“x>1”是“|x|>0”的充分不必要条件,成立C .若p 且q 为假命题,则p 、q 均为假命题,可能一真一假,故错误。

D .命题p :“∃x 0∈R 使得+x 0+1<0”,则p :“∀x ∈R ,均有x 2+x +1≥0”,成立。

故选C 4.当时,函数和的图象只能是A.B.C.D.【答案】B 【解析】 略5.下列函数中,既是偶函数又在上单调递增的是( )A.B.C.D.【答案】D 【解析】因为y=ln|x|是偶函数,并且当x>0时,y=lnx 在上单调递增.6.已知函数,那么的值为A. 32B. 16C. 8D. 64【答案】C【解析】【分析】根据自变量所属于的范围代入相应的解析式求出值.【详解】∵f(x)=,∴f(5)=f(4)=f(3)=23=8故选:C.【点睛】(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.7.函数y=f(x)与的图像关于直线y=x对称,则的单调递增区间为A. B. (0,2) C. (2,4) D. (2,+∞)【答案】C【解析】【分析】由条件求得f(4x﹣x2)=(4x﹣x2),令t=4x﹣x2>0,求得0<x<4,故f(4x﹣x2)的定义域为(0,4),本题即求函数f(4x﹣x2)在(0,4)上的减区间.再利用二次函数的性质可得函数f(4x﹣x2)在(0,4)上的减区间.【详解】由题意可得函数f(x)与g(x)=的互为反函数,故f(x)=,f(4x﹣x2)=(4x﹣x2).令t=4x﹣x2>0,求得0<x<4,故f(4x﹣x2)的定义域为(0,4),个本题即求函数f(4x﹣x2)在(0,4)上的减区间.再利用二次函数的性质可得函数f(4x﹣x2)在(0,4)上的减区间为(2,4),故选:C.【点睛】复合函数的单调性:对于复合函数y=f[g(x)],若t=g(x)在区间(a,b)上是单调函数,且y=f(t)在区间(g(a),g(b))或者(g(b),g(a))上是单调函数,若t=g(x)与y=f(t)的单调性相同(同时为增或减),则y=f[g(x)]为增函数;若t=g(x)与y=f(t)的单调性相反,则y=f[g(x)]为减函数.简称:同增异减.8.已知函数在区间[1,2]上单调递增,则a的取值范围是A. B. C. D.【答案】A【解析】【分析】先求出导函数,欲使函数f(x)在区间[1,2]上单调递增可转化成f′(x)≥0在区间[1,2]上恒成立,再借助参数分离法求出参数a的范围.【详解】f′(x)=9x2﹣2ax+1∵f(x)=3x3﹣ax2+x﹣5在区间[1,2]上单调递增∴f′(x)=9x2﹣2ax+1≥0在区间[1,2]上恒成立.即,即a≤5,故选:A【点睛】本题主要考查了利用导数研究函数的单调性,以及恒成立问题的转化,属于基础题.9.函数的值域为A. B. C. D.【答案】D【解析】【分析】先设μ=﹣x2﹣6x﹣5(μ≥0),将原根式函数的值域问题转化为二次函数的值域问题解决即可.【详解】设μ=﹣x2﹣6x﹣5(μ≥0),则原函数可化为y=.又∵μ=﹣x2﹣6x﹣5=﹣(x+3)2+4≤4,∴0≤μ≤4,故∈[0,2],∴y=的值域为[0,2].故选:D.【点睛】本小题主要考查函数的值域、二次函数的性质等基础知识,考查运算求解能力、转化能力.属于基础题.10.如果一个点是一个指数函数和一个对数函数的图像的交点,那么称这个点为"好点".下列四个点P1(1,1),P2(1,2),P3(,),P4(2,2)中,"好点"有()个A. 1B. 2C. 3D. 4【答案】B【解析】【分析】可设指数函数为y=a x,对数函数为y=log b x,容易判断P1,P2不在对数函数图象上,从而判断这两点不是“好点”,然后将P3的坐标分别代入指数函数和对数函数解析式,从而可解出a,b,进而判断出P3为“好点”,同样的方法可判断P4为好点,进而找出正确选项.【详解】设指数函数为y=a x,对数函数为y=log b x;对于对数函数,x=1时,y=0,则P1,P2不是对数函数图象上的点;∴P1,P2不是好点;将P3的坐标分别代入指数函数和对数函数解析式得:;解得;即P3是指数函数和对数函数的交点,即P3为“好点”;同样,将P4坐标代入函数解析式得:;解得;∴P4是“好点”;∴“好点”个数为2.故选:B.【点睛】本题考查指数函数和对数函数解析式的一般形式,理解“好点”的定义,以及指数式和对数式的互化.11.设,分别是定义在上的奇函数和偶函数,,为其导函数,当时,且,则不等式的解集是()A. B.C. D.【答案】D【解析】【分析】先根据f’(x)g(x)+f(x)g’(x)>0可确定[f(x)g(x)]'>0,进而可得到f(x)g(x)在x<0时递增,结合函数f(x)与g(x)的奇偶性可确定f(x)g(x)在x>0时也是增函数,最后根据g(﹣3)=0可求得答案.【详解】设F(x)=f (x)g(x),当x<0时,∵F′(x)=f′(x)g(x)+f (x)g′(x)>0.∴F(x)在当x<0时为增函数.∵F(﹣x)=f (﹣x)g (﹣x)=﹣f (x)•g (x)=﹣F(x).故F(x)为(﹣∞,0)∪(0,+∞)上的奇函数.∴F(x)在(0,+∞)上亦为增函数.已知g(﹣3)=0,必有F(﹣3)=F(3)=0.构造如图的F(x)的图象,可知F(x)<0的解集为x∈(﹣∞,﹣3)∪(0,3).故选:D.【点睛】本题主要考查复合函数的求导运算和函数的单调性与其导函数正负之间的关系.导数是一个新内容,也是高考的热点问题,要多注意复习.12.已知为常数,函数有两个极值点,则()A. B.C. D.【答案】D【解析】试题分析:,由有两个极值点得有两个不同的实数解,即有两个实数解,从直线与曲线有两个交点,过点作的切线,设切点为,则切线的斜率,切线方程为,切点在切线上,所以,又切点在曲线上,所以,,即切点为,切线方程为,又直线与曲线有两个交点,所以直线位于两直线与之间(如下图所示),所以,即,则这个函数的极值点满足,且函数的递减区间为,递增区间为,所以,,所以.考点:导数及其应用.【名师点晴】本题主要考查的是导数的应用,属于难题.利用导数求函数的单调性与极值的步骤:①确定函数的定义域;②对求导;③求方程的所有实数根;④列表格.由表格观察可不熟函数的极.二、填空题:本大题共4小题,每小题5分.13.函数y=的定义域是___________.【答案】【解析】【分析】根据偶次根号下的被开方数大于等于零,对数的真数大于零,列出不等式组,进行求解再用集合或区间的形式表示出来.【详解】要使函数有意义,则,解得,1<x<2,则函数的定义域是(1,2).故答案为:(1,2).【点睛】本题考查了函数定义域的求法,即根据函数解析式列出使它有意义的不等式组,最后注意要用集合或区间的形式表示出来,这是易错的地方.14.在同一平面直角坐标系中,函数的图象与的图象关于直线对称.而函数的图象与的图象关于轴对称,若,则的值是___________.【答案】【解析】【分析】利用两个图象间的对称性,建立方程组即可.【详解】∵函数y=f(x)的图象与y=e x的图象关于直线y=x对称∴函数y=f(x)与y=e x互为反函数则f(x)=lnx,又由y=f(x)的图象与y=g(x)的图象关于y轴对称∴g(x)=ln(﹣x),又∵g(m)=﹣1∴ln(﹣m)=﹣1,,故答案为﹣.【点睛】互为反函数的两个函数图象关于线y=x对称,有f(x)的图象上有(a,b)点,则(b,a)点一定在其反函数的图象上;如果两个函数图象关于 X轴对称,有f(x)的图象上有(a,b)点,则(a,﹣b)点一定在函数g(x)的图象上;如果两个函数图象关于 Y轴对称,有f(x)的图象上有(a,b)点,则(﹣a,b)点一定在函数g(x)的图象上;如果两个函数图象关于原点对称,有f(x)的图象上有(a,b)点,则(﹣a,﹣b)点一定在函数g(x)的图象上.15.设有两个命题:(1)不等式|x|+|x-1|>m的解集为R;(2)函数f(x)=(7-3m)x在R上是增函数;如果这两个命题中有且只有一个是真命题,则m的取值范围是_______.【答案】【解析】【分析】由绝对值得意义知,p:即 m<1;由指数函数的单调性与特殊点得,q:即 m<2.从而求得当这两个命题有且只有一个正确时实数m的取值范围.【详解】(1):∵不等式|x|+|x﹣1|>m的解集为R,而|x|+|x﹣1|表示数轴上的x到0和1的距离之和,最小值等于1,∴m<1.(2):∵f(x)=﹣(7﹣3m)x是减函数,∴7﹣3m>1,m<2.∴当 1≤m<2时,(1)不正确,而(2)正确,两个命题有且只有一个正确,实数m的取值范围为.故答案为:.【点睛】本题考查在数轴上理解绝对值的几何意义,指数函数的单调性与特殊点,分类讨论思想,化简这两个命题是解题的关键.16.已知函数,有三个不同的零点,则实数的取值范围是_____.【答案】【解析】【分析】由题意可得需使指数函数部分与x轴有一个交点,抛物线部分与x轴有两个交点,由函数图象的平移和二次函数的顶点可得关于a的不等式,解之可得答案.【详解】由题意可知:函数图象的左半部分为单调递增指数函数的部分,函数图象的右半部分为开口向上的抛物线,对称轴为x=,最多两个零点,如上图,要满足题意,必须指数函数的部分向下平移到与x轴相交,由指数函数过点(0,1),故需下移至多1个单位,故0<a≤1,还需保证抛物线与x轴由两个交点,故最低点<0,解得a<0或a>,综合可得<a≤1,故答案为:<a≤1【点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.三、解答题:本大题共6小题,满分70分.解答须写出文字说明,证明过程和演算步骤.17.设集合A={x||x-a|<2},B={x|<1},若A B,求实数a的取值范围.【答案】【解析】【分析】“A⊆B”说明集合A是集合B的子集,由此列端点的不等关系解得实数a的取值范围.【详解】由|x-a|<2,得a-2<x<a+2,所以A={x|a-2<x<a+2}.由<1,得<0,即-2<x<3,所以B={x|-2<x<3}.因为A B,所以,于是0≤a≤1.【点睛】(1)认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.(3)防范空集.在解决有关A∩B=∅,A⊆B等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.18.设函数(,为常数),且方程有两个实根为.(1)求的解析式;(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.【答案】(1);(2)见解析【解析】【分析】(1)把方程的两个实数根分别代入方程得到方程组,解此方程组求出待定系数,进而得到函数的解析式.(2)利用两个奇函数的和仍是奇函数,再利用图象平移找出所求函数的对称中心.【详解】(1)由解得故.(2)证明:已知函数,都是奇函数.所以函数也是奇函数,其图像是以原点为中心的中心对称图形.而.可知,函数的图像沿轴方向向右平移1个单位,再沿轴方向向上平移1个单位,即得到函数的图像,故函数的图像是以点为中心的中心对称图形.【点睛】题考查用待定系数法求函数解析式,函数图象的平移,属于中档题.19.设(1)求曲线在点(1,0)处的切线方程;(2)设,求最大值.【答案】(1);(2)见解析【解析】【分析】(1)求出函数的导数,求出切线的斜率,由点斜式方程,即可得到切线方程;(2)令f′(x)>0得增区间,令f′(x)<0得减区间;然后即可得到最值.【详解】(1),切线斜率切线方程即(2)令,列表:故,【点睛】函数的最值(1)在闭区间上连续的函数f(x)在上必有最大值与最小值.(2)若函数f(x)在上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.20.(本小题满分14分)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点. 已知函数f(x)=ax2+(b+1)x+b-1(a≠0)(1)当a=1,b=-2时,求f(x)的不动点;(2)若对于任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围【答案】(1)-1,3(2)0&lt;a&lt;1【解析】解(1)当a=1,b=–2时,f(x)=x2–x–3,。

宁夏银川一中2019届高三第二次模拟考试数学(理)试题

宁夏银川一中2019届高三第二次模拟考试数学(理)试题

宁夏银川一中2019届高三第二次模拟考试数学(理)试题绝密★启用前2019年普通高等学校招生全国统一考试理科数学(银川一中第二次模拟考试)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。

考生作答时,将答案答在答题卡上,在本试卷上答题无效。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,·2·字体工整、笔迹清楚。

3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4.保持卡面清洁,不折叠,不破损。

5.做选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的题号涂黑。

第I卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}5M Y=<=x-xN或,则Nx|>=x,53<|≤M,{}5x-A.﹛x|x<-5,或x>-3﹜B.﹛x|-5<x <5﹜C.﹛x|-3<x<5﹜D.﹛x|x<-3,或x>5﹜·3··4·2. 若复数z 满足i i z -=+1)1((i 是虚数单位),则z 的共轭复数z = A .i -B .i2- C .i D .i23. 已知映射B A f →:,其中R B A ==,对应法则21||:x y x f =→,若对实数B k ∈,在集合A 中不存在元素x 使得kx f →:,则k 的取值范围是A .0≤kB .0>kC .0≥kD . 0<k4. 已知函数)sin(2ϕω+=x y 满足)()(x f x f =-,其图象与直线2=y 的某两个交点横坐标为21,x x ,21x x -的最小值为π,则A. 21=ω,4πϕ=B. 2=ω,4πϕ=C. 21=ω,2πϕ= D. 2=ω,2πϕ=5. 实数y x ,满足条件⎪⎩⎪⎨⎧≥≥≥+-≤-+0,002204y x y x y x ,则yx -2的最小值为A .16B .4C .1D .21 6. 下列命题中正确命题的个数是理科数学试卷 第1·5·(1)0cos ≠α是)(22Z k k ∈+≠ππα的充分必要条件; (2)若,0,0>>b a 且112=+ba ,则4≥ab ; (3)若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变;(4)设随机变量ξ服从正态分布N(0,1),若pP =>)1(ξ,则.21)01(p P -=<<-ξ A .4 B .3 C . 2D .1 7. 10)31(xx -的展开式中含有x 的正整数幂的项的个数是A. 0B. 2C. 4D. 68. 在同一平面直角坐标系中,函数)(x f y =的图象与xe y =的图象关于直线x y =对称.而函数)(xf y =的图象与)(x g y =的图象关于y 轴对称,若1)(-=m g ,则m 的值是·6·A .eB . e 1C .e -D .e1- 9. 曲线2x y =和曲线xy=2围成的图形面积是( )A. 31B.32C. 1D. 3410. 过双曲线)0,0(12222>>=-b a b y a x 的左焦点)0)(0,(>-c c F ,作圆4222a y x =+的切线,切点为E ,延长FE 交双曲线右支于点P ,若)(21+=,则双曲线的离心率为A .10B .510 C .210 D .211. 在ABC ∆中,P 是BC 边中点,角A ,B ,C 的对边分别是a ,b ,c ,若AC c +0=+PB b PA a ,则ABC ∆的形状为 A.直角三角形B.钝角三角形C.等边三角形D.等腰三角形但不是等边三角形.12. 直线t x =(0>t )与函数1)(2+=xx f ,x x g ln )(=的图象分别交于A 、B 两点,当||AB 最小时,t 值是·7·INPUT x IF<xTHEN 2)^2(+=x yELSE IF 0=x THEN A. 1 B.22 C. 21 D. 33第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分. 13.已知21cos sin =-αα,)2,0(πα∈,则=-)4sin(2cos παα .14. 右图所示的程序是计算函数)(x f 函数值的程序,若输出的y 值为4,则输入的x 值是 . 15. 已知抛物线)0(22>=p px y,过其焦点且斜率为1的 直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为 . 16. 四棱锥ABCD P -的三视图如右图所示,四棱锥·8·ABCDP -的五个顶点都在一个球面上,E 、F 分别是 棱AB 、CD 的中点,直线EF被球面所截得的线段长为22,则该球表面积为 .三、解答题:本大题共6小题,满分70分.解答须写出文字说明,证明过程和演算步骤. 17. (本小题满分12分)已知公差不为零的等差数列}{na 的前4项和为10,且732,,a a a 成等比数列.(Ⅰ)求通项公式na ;(Ⅱ)设na nb 2=,求数列{}nb 的前n 项和nS .18.(本小题满分12分)某班甲、乙两名同学参加l00米达标训练,在相同条件下两人l0次训练的成绩(单位:秒)如下:(I)请作出样本数据的茎叶图;如果从甲、乙两名同学中选一名参加学校的100米比赛,从成绩的稳定性方面考虑,选派谁参加比赛更好,并说明理由(不用计算,可通过统计图直接回答结论).(Ⅱ)从甲、乙两人的10次训练成绩中各随机抽取一次,求抽取的成绩..中至少有一个比12.8秒差的·9··10·概率.(Ⅲ)经过对甲、乙两位同学的多次成绩的统计,甲、乙的成绩都均匀分布在[11.5,14.5]之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.8秒的概率.19.(本小题满分12分)如图,正方形ADEF 与梯形ABCD 所在的平面互相垂直,CD AD ⊥,AB ∥CD ,221===CD AD AB ,点M 在线段EC 上.(I )当点M 为EC 中点时,求证:BM ∥平 面ADEF ;(II )当平面BDM 与平面ABF 所成锐二面角的余弦值为66时,求三棱锥BDE M -的体积.20. (本小题满分12分)如图所示,点P 在圆O :422=+y x点M 在射线DP 上,且满足DP DM λ=)0(≠λ(Ⅰ)当点P 在圆O 上运动时,程,并根据λ取值说明轨迹C 的形状.(Ⅱ)设轨迹C 与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,直线032=-y x 与轨迹C 交于点E 、F ,点G 在直线AB 上,满足GF EG 6=,求实数λ的值. 21.(本小题满分12分)已知函数1)(2++=x bxax x f ,曲线)(x f y =在点()1(,1f )处的D切线方程是.0145=+-y x (Ⅰ)求b a ,的值;(Ⅱ)设),()1ln(2)(x mf x x g -+=若当[)+∞∈,0x 时,恒有0)(≤x g ,求m 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.(本小题满分10分)选修4—1:几何证明选讲如图,O ⊙是△ABC 的外接圆,D BD 交AC 于E .(Ⅰ)求证:DBDE DC⋅=2;(Ⅱ)若32=CD ,O 到AC 的距离为1,求⊙O 的半径r .23.(本小题满分10分)选修4—4:坐标系与参数方程平面直角坐标系中,直线l 的参数方程是⎪⎩⎪⎨⎧==ty tx 3(t为参数),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为-+θρθρ2222sin cos 03sin 2=-θρ.(Ⅰ)求直线l 的极坐标方程;(Ⅱ)若直线l 与曲线C 相交于A 、B 两点,求||AB .24.(本小题满分l0分)选修4—5:不等式选讲 已知函数|1||2|)(+--=x x x f . (Ⅰ)求证:3)(3≤≤-x f ;(Ⅱ)解不等式xx x f 2)(2-≥.数学(理科)答案一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A ;2C ;3D ;4D ;5D ;6B ;7B ;8D ;9A ;10C ;11C.;12B..二、填空题:本大题共4小题,每小题5分. 13.214-;14.-4,0,4;15.1-=x ;16.π12三、解答题:本大题共6小题,满分70分.解答须写出文字说明,证明过程和演算步骤. 17. (本小题满分12分) 解:(1)由题意知⎩⎨⎧++=+=+).6)(()2(,106411211d a d a d a d a …………………………3分解得⎩⎨⎧=-=321d a ……………………………………………………… 5分所以a n =3n-5.………………………………………………………… 6分 (Ⅱ)∵15384122--⋅===n n a nn b∴数列{b n }是首项为41,公比为8的等比数列,---------------------------9分所以;281881)81(41-=--=n n n S …………………………………………12分.18.(本小题满分12分) 解:(Ⅰ) 茎叶图………2分从统计图中可以看出,乙的成绩较为集中,差异程度较小,应选派乙同学代表班级参加比赛更好;………………4分(Ⅱ)设事件A 为:甲的成绩低于12.8,事件B 为:乙的成绩低于12.8,则甲、乙两人成绩至少有一个低于12.8秒的概率为:=P ))((1B A P -=541051041=⨯-;……………8分 (此部分,可根据解法给步骤分:2分)(Ⅲ)设甲同学的成绩为x ,乙同学的成绩为y ,则0.8x y -<,……………10分 得0.80.8x y x -+<<+,如图阴影部分面积即为33 2.2 2.2 4.16⨯-⨯=,则4.16104(0.8)(0.80.8)33225P x y P x y x -<=-+<<+==⨯. …………12分19.(本小题满分12分) 解:(1)以直线DA 、DC 、DE 分别为x 轴、y 轴、z 轴建立空间直角坐标系,则)0,0,2(A ,)0,2,2(B )0,4,0(C ,)2,0,0(E ,所以)1,2,0(M . ∴)1,0,2(-=BM ————————2分 又,)0,4,0(=OC 是平面ADEF 的一个法向量. ∵0=⋅OC BM 即OC BM ⊥∴BM ∥平面ADEF ——————4分 (2)设),,(z y x M ,则)2,,(-=z y x , 又)2,4,0(-=设10(<<=λλ,则,λλ22,4,0-===z y x 即)22,4,0(λλ-M .——6分设),,(111z y x n =是平面BDM 的一个法向量,则 02211=+=⋅y x 0)22(411=-+=⋅z y λλ 取11=x 得 λλ-=-=12,111z y 即 )12,1,1(λλ--=n又由题设,)0,0,2(=是平面ABF 的一个法向量,——————8分∴ 2166)1(4222|,cos |22=⇒=-+==><λλλn OA ————10分即点M 为EC 中点,此时,2=DEMS ∆,AD 为三棱锥DEMB -的高,∴ =-BDEM V342231=⋅⋅=-DEM B V ————————————12分20. (本小题满分12分) 解:(1)设),(y x M 、),(0y x P ,由于λ=和⊥PD x 轴,所以⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧==⇒==λλyy x x y y x x 0000 代入圆方程得:144222=+λy x --------------2分当11<<λ时,轨迹C 表示焦点在x 轴上的椭圆;当1=λ时轨迹C 就是圆O ;当1>λ时轨迹C 表示焦点是y 轴上的椭圆.---------------4分(2)由题设知)0,2(A ,)2,0(λB ,E ,F 关于原点对称,所以设)32,(11x x E ,)32,(11y x F --,)32,(0x x G ,不妨设01>x ---------------6分直线 AB 的方程为:122=+λyx 把点G 坐标代入得2360+=λλx 又,点E在轨迹C 上,则有⇒=+19422121λx x 49621+=λλx -------8分∵GF EG 6=即)(60110x x x x --=- 175x x =⇒-----------10分 ∴⋅=+75236λλ4962+λλ(>λ)⇒9821or=λ----------12分21.(本小题满分12分)解:(1)22)1()()1)(2()(++-++='x bx axxb ax x f .由于直线.0145=+-y x 的斜是45,且过点(23,1), ∴⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧==⇒=+=+⇒='=21454323245)1(23)1(b a b a b a f f 即1)(2++=x xx x f -------4分(2)由(1)知:),1(12)1ln(2)(2->++-+=x x xx m x x g 则22)(22)22()(+-+-+-='x mx m mx x g ,--------------------------6分令m x m mx x h 22)22()(2-+-+-=,当0=m 时,22)(+=x x h ,在[)+∞∈,0x 时,0)(>x h 0)(>'x g 即,)(x g 在[)+∞,0上是增函数,则0)0()(=≥g x g ,不满足题设.当0<m 时,∵011222<-=---m m m 且022)0(>-=m h ∴[)+∞∈,0x 时,0)(>x h 0)(>'x g 即,)(x g 在[)+∞,0上是增函数,则0)0()(=≥g x g ,不满足题设.----------------------------------8分当10<<m 时,则0)1(4)22(4)22(22>-==+-=m m m m ∆,由0)(=x h 得 01121<---=m m m x ; 01122>-+-=mm m x 则,),0[2x x ∈时,0)(>x h ,0)(>'x g 即,)(x g 在[)2,0x 上是增函数,则 0)0()(2=≥g x g ,不满足题设.--------------------------------------10分当1≥m 时,0)1(4)22(4)22(22≤-==+-=m m m m ∆,0)(≤x h 0)(≤'x g 即,)(x g 在[)+∞,0上是减函数,则0)0()(=≤g x g ,满足题设. 综上所述,),1[+∞∈m -------------------------------------------------12分请考生从第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分.做题时用2B 铅笔在答题卡上把所选题目的题号涂黑. (22)(本小题满分10分)选修4—1:几何证明选讲 解:(I )证明:∵CBD ABD ∠=∠,ECD ABD ∠=∠∴ECD CBD ∠=∠,又EDC CDB ∠=∠,∴△BCD ~△CED ,∴DBDCDC DE =, ∴CD 2=DE ·DB ; ………………(5分)23.(本小题满分10分)选修4—4:坐标系与参数方程 解:(Ⅰ)消去参数得直线l 的直角坐标方程:x y 3=---------2分由⎩⎨⎧==θρθρsin cos y x 代入得 θρθρcos 3sin =)(3R ∈=⇒ρπθ. ( 也可以是:3πθ=或)0(34≥=ρπθ)---------------------5分·21· (Ⅱ)⎪⎩⎪⎨⎧==--+303sin 2sin cos 2222πθθρθρθρ 得0332=--ρρ-----------------------------7分 设)3,(1πρA ,)3,(2πρB , 则154)(||||2122121=--=-=ρρρρρρAB .---------10分(若学生化成直角坐标方程求解,按步骤对应给分)24.(本小题满分l0分)选修4—5:不等式选讲 解:(1)⎪⎩⎪⎨⎧>-<<-+--≤=)2(3)21(12)1(3)(x x x x x f ,------------------3分又当21<<-x 时,3123<+-<-x ,∴3)(3≤≤-x f -----------------------------------------------5分(2)当1-≤x 时,121322=⇒≤≤-⇒≤-x x x x ;当21<<-x 时,11111222≤<-⇒≤≤-⇒+-≤-x x x x x ;当2≥x 时,φ∈⇒-≤-x x x 322;-------------------------8分综合上述,不等式的解集为:[]1,1-.-------------------------10分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

银川一中2019届高三年级第二次月考数学(理)试卷第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{},6|≤∈=x N x A {},03|2>-∈=x x R x B 则B A ⋂=A .{}5,4,3B .{}6,5,4C .{}63|≤<x xD .{}63|<≤x x 2.命题“042,2≤+-∈∀x x R x ”的否定为A .042,2≥+-∈∀x x R xB .042,0200>+-∈∃x x R x C .042,2≤+-∉∀x x R x D .042,0200>+-∉∃x x R x3.已知α的终边与单位圆的交点)23,(x P ,则αtan = A .3B .3±C .33 D .33±4.⎰-+4223)30(dx x x =A .56B .28C .356D .145. 已知α为锐角,且03)tan(=+-απ,则αsin 等于 A .31B .10103 C .773 D .553 6.已知函数x xx f 2log 6)(-=,在下列区间中,包含f (x )的零点的区间是 A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)7.某船开始看见灯塔在南偏东30°方向,后来船沿南偏东60°的方向航行15 km 后,看见灯塔在正西方向,则这时船与灯塔的距离是 A .5 kmB .25 kmC .35kmD .10 km8.已知偶函数)(x f 对任意R x ∈,都有),()1(x f x f -=+且)(x f 在区间[0,1]上是递减的,则)1(),0(),3.8(--f f f 的大小关系是A .)1()3.8()0(-<-<f f fB .)1()0()3.8(-<<-f f fC .)0()3.8()1(f f f <-<-D .)3.8()0()1(-<<-f f f9.函数xx x y 2)(3-=的图象大致是10.已知71cos =α,1411cos -=+)(βα,且),(20πα∈,),(ππβα2∈+,则βcos 的值为 A .23-B .23C .21D .21-11.设方程)lg(10x x -=的两个根分别为21,x x 则A .021<x xB .021=x xC .121>x xD .1021<<x x12.已知函数)ln 2()(2x x k xe xf x +-=,若x =2是函数f (x )的唯一一个极值点,则实数k 的取值范围为 A .(-∞,e]B .[0,e]C .(-∞,e)D .[0,e)第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第23题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.共20分, 13.函数1-=x xy 的值域为_______. 14.若x <m -1或x >m +1是x 2-2x -3>0的必要不充分条件,则实数m 的取值范围是_______. 15.已知⎩⎨⎧≥<--=)1(log )1()3()(x x x a x a x f a是(-∞,+∞)上的增函数,那么实数a 的取值范围是______.16.已知函数)2,0)(sin(2)(πϕωϕω<>+=x x f 的图象过点)3,0(-B ,且在)3,18(ππ上单调,同时f (x )的图象向左平移π个单位长度后与原来的图象重合,当),,3234(21ππ--∈x x ,且21x x ≠时,)()(21x f x f =,则=+)(21x x f ______________.三、解答题17.(本小题满分12分)已知向量a =(2sin x ,3cos x ),b =(-sin x ,2sin x ),函数f (x )=b a ⋅ (1)求f (x )的单调递增区间;(2)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边且f (C)=1,c =1,ab =32,a >b ,求a 、b 的值.18.(本题满分12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c . (1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长.19.(本小题满分12分)已知3)1(21ln )(2++++=x a x x a x f (1)当1-=a 时,求函数f (x )的单调区间;(2)若函数f (x )在区间),(∞+0上是增函数,求实数a 的取值范围.20.(本小题满分12分)设函数)2sin()6sin()(πωπω-+-=x x x f ,其中0<ω<3,已知0)6(=πf ,(1)求ω.(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数y =g (x )的图象,求g (x )在]43,4[ππ-上的最小值.21.(本小题满分12分)已知函数cx bx x x f ++=23)(的图象在点))1(,1(f 处的切线方程为)(',0126x f y x =--为)(x f 的导函数,),,()(R c b a ae x g x ∈=.(1)求b ,c 的值;(2)讨论方程)(')(x f x g =解的个数.请考生在第22、23两题中任选一题做答,如果多做.则按所做的第一题记分.做答时请写清题号。

22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-t ,y =1+t (t 为参数).在以坐标原点O 为极点,x轴正半轴为极轴的极坐标系中,曲线C :ρ=22cos ⎝⎛⎭⎫θ-π4. (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)求曲线C 上的点到直线l 的距离的最大值.23.(本小题满分10分)选修4-5:不等式选讲已知函数f (x )=|x -3|+|x +m |(x ∈R). (1)当m =1时,求不等式f (x )≥6的解集;(2)若不等式f (x )≤5的解集不是空集,求实数m 的取值范围.银川一中2019届高三第二次月考数学(理科)试题参考答案13.{}1|≠y y 14.[0,2] 15.)3,23[ 16. 3-17. 解 (1)由题意得f (x )=-2sin 2x +23sin x cos x =3sin 2x +cos 2x -1=2sin ⎝⎛⎭⎫2x +π6-1, 令2k π-π2≤2x +π6≤2k π+π2(k ∈Z),得k π-π3≤x ≤k π+π6(k ∈Z).∴f (x )的单调递增区间是⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z). (2)由(1)和条件可得f (C )=2sin ⎝⎛⎭⎫2C +π6-1=1,则sin ⎝⎛⎭⎫2C +π6=1. ∵角C 是三角形内角,∴2C +π6=π2,即C =π6.∴cos C =b 2+a 2-c 22ab =32,又c =1,ab =23,∴a 2+12a 2=7,解得a 2=3或a 2=4,∴a =3或2,b =2或3,∵a >b ,∴a =2,b = 3.18.解 (1)由已知及正弦定理得,2cos C (sin A cos B +sin B cos A )=sin C , 2cos C sin(A +B )=sin C ,故2sin C cos C =sin C .可得cos C =12,所以C =π3.(2)由已知,12ab sin C =332,又C =π3,所以ab =6,由已知及余弦定理得,a 2+b 2-2ab cos C =7,故a 2+b 2=13,从而(a +b )2=25.所以△ABC 的周长为5+7. 19.解:(1)减区间(0,1),增区间),(∞+1; (2)),∞+0[20.解:(1)因为f (x )=sin ⎝⎛⎭⎫ωx -π6+sin ⎝⎛⎭⎫ωx -π2, 所以f (x )=32sin ωx -12cos ωx -cos ωx =32sin ωx -32cos ωx =3⎝⎛⎭⎫12sin ωx -32cos ωx =3sin ⎝⎛⎭⎫ωx -π3. 因为f ⎝⎛⎭⎫π6=0,所以ωπ6-π3=k π,k ∈Z.故ω=6k +2,k ∈Z.,又0<ω<3,所以ω=2. ……………….6分 (2)由(1)得f (x )=3sin ⎝⎛⎭⎫2x -π3,所以g (x )=3sin ⎝⎛⎭⎫x +π4-π3=3sin ⎝⎛⎭⎫x -π12. 因为x ∈⎣⎡⎦⎤-π4,3π4,所以x -π12∈⎣⎡⎦⎤-π3,2π3, 当x -π12=-π3,即x =-π4时,g (x )取得最小值-32. ……………….12分2. 解:6. ,23)('c bx x x f ++=)1)(23()1(1)(-++=++-=∴x c b c b y x x f 处的切线方程为:在⎪⎩⎪⎨⎧-=--=++∴212323b c b 得⎪⎩⎪⎨⎧=-=323c b (2))()('x f x g =方程xx x xxx e x x e x x e x x x x h e x x x h e x x a x x ae )23(369333336)(,333)(333333222'222+--=-+-=-+--=∴+-=+-=∴+-=∴令2,1,0)(21'===x x x h 得令,列表讨论:x (-∞,1) 1 (1,2) 2 (2,+∞))('x h - 0 + 0 -h(x) 极小值 极大值29)2(,3)1(eh e h ==,当x →∞时,)(x h →0)(x h 的图象如右图所示:① a ≤0时,方程无解; ②②当0<a<e 3或a>29e时,方程只有一个实数解; ③当a=e 3或a=29e时,方程有2个不同的实数解;④当293ea e <<时,方程有3个不同的实数解. 22.解:(1)由⎩⎪⎨⎪⎧x =3-t ,y =1+t (t 为参数)消去t 得x +y -4=0,所以直线l 的普通方程为x +y -4=0.由ρ=22cos ⎝⎛⎭⎫θ-π4=22⎝⎛⎭⎫cos θcos π4+sin θsin π4=2cos θ+2sin θ, 得ρ2=2ρcos θ+2ρsin θ.将ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y 代入上式, 得x 2+y 2=2x +2y ,即(x -1)2+(y -1)2=2.所以曲线C 的直角坐标方程为(x -1)2+(y -1)2=2. ……………….5分 (2)设曲线C 上的点P (1+2cos α,1+2sin α), 则点P 到直线l 的距离d =|1+2cos α+1+2sin α-4|2=|2(sin α+cos α)-2|2=⎪⎪⎪⎪2sin ⎝⎛⎭⎫α+π4-22.当sin ⎝⎛⎭⎫α+π4=-1时,d max =2 2. ……………….10分 23.解:(1)当m =1时,f (x )≥6等价于⎩⎪⎨⎪⎧ x ≤-1,-(x -3)-(x +1)≥6或⎩⎪⎨⎪⎧ -1<x <3,-(x -3)+(x +1)≥6或⎩⎪⎨⎪⎧x ≥3,(x -3)+(x +1)≥6, 解得x ≤-2或x ≥4,所以不等式f (x )≥6的解集为{x |x ≤-2或x ≥4}.……………….5分 (2)∵|x -3|+|x +m |≥|(x -3)-(x +m )|=|m +3|, ∴f (x )min =|3+m |,∴|m +3|≤5, 解得-8≤m ≤2,∴实数m 的取值范围为[-8,2].……………….10分。

相关文档
最新文档