2019年辽宁省大连市中考数学一模考试试卷(解析版)
大连市2019年中考数学试卷及答案(WORD解析版)
![大连市2019年中考数学试卷及答案(WORD解析版)](https://img.taocdn.com/s3/m/8e61f00deefdc8d376ee3279.png)
辽宁省大连市2019年中考数学试卷一、选择题(共8小题,每小题3分,共24分)2.(3分)(2019•大连)如图的几何体是由六个完全相同的正方体组成的,这个几何体的主视图是()B3.(3分)(2019•大连)《2019年大连市海洋环境状况公报》显示,2019年大连市管辖海域4.(3分)(2019•大连)在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的6.(3分)(2019•大连)不等式组的解集是(),7.(3分)(2019•大连)甲口袋中有1个红球和1个黄球,乙口袋中有1个红球、1个黄球和1个绿球,这些球除颜色外都相同.从两个口袋中各随机取一个球,取出的两个球都是红C图,8.(3分)(2019•大连)一个圆锥的高为4cm,底面圆的半径为3cm,则这个圆锥的侧面积∴根据勾股定理得:圆锥的母线长为=5cm二、填空题(共8小题,每小题3分,共24分)9.(3分)(2019•大连)分解因式:x2﹣4=(x+2)(x﹣2).10.(3分)(2019•大连)函数y=(x﹣1)2+3的最小值为3.11.(3分)(2019•大连)当a=9时,代数式a2+2a+1的值为100.12.(3分)(2019•大连)如图,△ABC中,D、E分别是AB、AC的中点,若BC=4cm,则DE=2cm.中点,题主要考查对三角形的中位线定理的理解和掌握,13.(3分)(2019•大连)如图,菱形ABCD中,AC、BD相交于点O,若∠BCO=55°,则∠ADO=35°.14.(3分)(2019•大连)如图,从一般船的点A处观测海岸上高为41m的灯塔BC(观测点A与灯塔底部C在一个水平面上),测得灯塔顶部B的仰角为35°,则观测点A到灯塔BC的距离约为59m(精确到1m).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7)BAC=,代入数据即可求出观BAC=,AC=≈则该校女子排球队队员的平均年龄为15岁.16.(3分)(2019•大连)点A(x1,y1)、B(x2,y2)分别在双曲线y=﹣的两支上,若y1+y2>0,则x1+x2的范围是>0.﹣﹣﹣﹣﹣>三、解答题(本题共4小题,17.18.19各9分,20题12分,共39分)17.(9分)(2019•大连)(1﹣)++()﹣1.﹣+3=318.(9分)(2019•大连)解方程:=+1.19.(9分)(2019•大连)如图:点A、B、C、D在一条直线上,AB=CD,AE∥BF,CE∥DF.求证:AE=BF.AB=C D,20.(12分)(2019•大连)某地为了解气温变化情况,对某月中午12时的气温(单位:℃)(1)这个月中午12时的气温在8℃至12℃(不含12℃)的天数为6天,占这个月总天数的百分比为20%,这个月共有30天;(2)统计表中的a=3,这个月中行12时的气温在12≤x<16范围内的天数最多;(3)求这个月中午12时的气温不低于16℃的天数占该月总天数的百分比.)的天数,根据扇形统℃的天数占该月总天数的百分比是:×四、解答题(共3小题,其中21.22各9分,23题10分,共28分)21.(9分)(2019•大连)某工厂一种产品2019年的产量是100万件,计划2019年产量达到121万件.假设2019年到2019年这种产品产量的年增长率相同.(1)求2019年到2019年这种产品产量的年增长率;(2)2019年这种产品的产量应达到多少万件?长率)22.(9分)(2019•大连)小明和爸爸进行登山锻炼,两人同时从山脚下出发,沿相同路线匀速上山,小明用8分钟登上山顶,此时爸爸距出发地280米.小明登上山顶立即按原路匀速下山,与爸爸相遇后,和爸爸一起以原下山速度返回出发地.小明、爸爸在锻炼过程中离出发地的路程y1(米)、y2(米)与小明出发的时间x(分)的函数关系如图.(1)图中a=8,b=280;(2)求小明的爸爸下山所用的时间.23.(10分)(2019•大连)如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切,BD ∥AC.(1)图中∠OCD=90°,理由是圆的切线垂直于经过切点的半径;(2)⊙O的半径为3,AC=4,求CD的长.==2,,即∠BCO+==CD=3五、解答题(共3题,其中24题11分,25.26各12分,共35分)24.(11分)(2019•大连)如图,矩形纸片ABCD中,AB=6,BC=8.折叠纸片使点B落在AD上,落点为B′.点B′从点A开始沿AD移动,折痕所在直线l的位置也随之改变,当直线l经过点A时,点B′停止移动,连接BB′.设直线l与AB相交于点E,与CD所在直线相交于点F,点B′的移动距离为x,点F与点C的距离为y.(1)求证:∠BEF=∠AB′B;(2)求y与x的函数关系式,并直接写出x的取值范围.AE=B===BEF=x)=,.)BE=﹣﹣.25.(12分)(2019•大连)如图1,△ABC中,AB=AC,点D在BA的延长线上,点E在BC上,DE=DC,点F是DE与AC的交点,且DF=FE.(1)图1中是否存在与∠BDE相等的角?若存在,请找出,并加以证明,若不存在,说明理由;(2)求证:BE=EC;(3)若将“点D在BA的延长线上,点E在BC上”和“点F是DE与AC的交点,且DF=FE”分别改为“点D在AB上,点E在CB的延长线上”和“点F是ED的延长线与AC的交点,且DF=kFE”,其他条件不变(如图2).当AB=1,∠ABC=a时,求BE的长(用含k、a的式子表示).DA=AGAD=,即.易证△,则有∴AD=GE=AD=BE=.的长为.平行线分线段成比26.(12分)(2019•大连)如图,抛物线y=a(x﹣m)2+2m﹣2(其中m>1)与其对称轴l 相交于点P,与y轴相交于点A(0,m﹣1).连接并延长PA、PO,与x轴、抛物线分别相交于点B、C,连接BC.点C关于直线l的对称点为C′,连接PC′,即有PC′=PC.将△PBC绕点P逆时针旋转,使点C与点C′重合,得到△PB′C′.(1)该抛物线的解析式为y=(x﹣m)2+2m﹣2(用含m的式子表示);(2)求证:BC∥y轴;(3)若点B′恰好落在线段BC′上,求此时m的值.=,可得:=.(.解得:y=x+m=x 解得:.C==.=,.,都是分式方程的解...。
2019年辽宁省大连市中考数学一模试卷(解析版)
![2019年辽宁省大连市中考数学一模试卷(解析版)](https://img.taocdn.com/s3/m/492b7abe5727a5e9856a61ed.png)
2019年辽宁省大连市中考数学一模试卷一.选择题(共10小题)1.在3,﹣3,0,﹣2这四个数中,最小的数是()A.3 B.﹣3 C.0 D.﹣22.下列几何体中,左视图为三角形的是()A.B.C.D.3.下列各点中,在第二象限的点是()A.(﹣3,2)B.(﹣3,﹣2)C.(3,2)D.(3,﹣2)4.目前,粤港澳大湾区9个地级以上市中,城际轨道交通和城市轨道交通已开通运营总里程超过1100公里,规划总里程近6000公里,数6000用科学记数法表示为()A.6×103B.6×104C.0.6×104D.60×1025.如图,四边形ABCD中,AD∥BC,∠C=50°,则∠D的度数为()A.40°B.50°C.120°D.130°6.下列计算正确的是()A.a3﹣a=a2B.a2•a3=a6C.(a+b)2=a2+b2D.(﹣2a2)3=﹣8a67.如图,在▱ABCD中,对角线AC与BD相交于点O,AB=5,AC+BD=20,则△AOB的周长为()A.10 B.20 C.15 D.258.相同方向行驶的两辆汽车经过同一个“T”路口时,可能向左转或向右转.如果这两种可能性大小相同,则这两辆汽车经过该路口时,都向右转的概率是()A.B.C.D.9.抛物线y=x2﹣6x+2的顶点坐标是()A.(3,2)B.(﹣3,7)C.(3,﹣7)D.(6,2)10.如图,PA为⊙O的切线,A为切点,OP与⊙O相交于点B.若∠OPA=30°,PA=1,则的长为()A.B.C.D.二.填空题(共6小题)11.分解因式:xy+x=.12.某校10名学生参加书画大赛,他们的得分情况如下表所示:分数85 88 90 92 95人数 1 3 2 3 1则这10名学生所得分数的平均分是分.13.正六边形的每一个外角都是°.14.我国古代数学著作《增删算法统综》中有如下一道题:“直田七亩半,忘了长和短,记得立契时,长阔争一半,今特问高明,此法如何算”.意思是:有一块7亩半(即1800平方步)的矩形田,忘了长和宽各是多少,记得在立契约的时候,宽是长的一半,现在请问高明能算者,怎样计算出他的长与宽.若设此矩形田的宽为x步,依据题意,可列方程为.15.一司机驾驶汽车从甲地去乙地,他以80km/h的速度匀速行驶2小时到达乙地,当他按原路匀速返回甲地时,汽车的速度v(km/h)与时间t(h)的函数关系为.16.如图,△ABC中,AD⊥BC,垂足为D,∠ABC=2∠DAC,若AB=m,AC=n,则CD的长为(用含m,n的代数式表示)三.解答题(共10小题)17.计算:()﹣(3﹣π)+18.解方程:+=2.19.AB∥CD,∠AEC+∠ABD=180°,BD=CE,求证:AB=DE.20.为了解八年级女生韵律操测试情况,随机抽取了部分女生的测试成绩进行统计,根据评分标准,将她们的成绩分为A、B、C、D四个等级,以下是根据调查结果统计图表的一部分.等级成绩x(分)频数(人数)频率A9.0≤x≤10B7.0≤x<9.0C 6.0≤x<7.0 0.1D0≤x<6.0 4 0.08根据以上信息,解答下列同题:(1)调查的女生中,成绩等级为D的女生人数为人,成绩等级为C的女生人占被调查女生人数的百分比为;(2)本次调查的容量是,成绩等级为B的女生人数为;(3)该校八年级共有200名女生,根据调查结果,估计测试成绩不少于7.0分的女生人数21.某厂家生产的一种商品,有大小盒两种包装,3大盒、4小盒共装108瓶;2大盒3小盒共装76瓶.(1)大盒与小盒每盒各装多少瓶?(2)某单位决定从该厂采购大盒与小盒两种包装共11盒,如果总计不超过176瓶,那么最多可以购买多少个大盒商品?22.甲、乙两人同时从同一地点沿同一方向匀速行走,走了10分钟,甲加快速度后继匀速行走;乙一直匀速行走,两人都走了20分钟.甲、乙两人在行走过程中离出发地的路程y(m)与出发的时间x(min)的函数关系如图1所示,两人之间的距离S与出发时间x (min)的函数关系如图2所示.(1)图中a=,b=,c=;(2)出发多少分钟,两人所走的路程相等?23.如图,四边形ABCD是⊙O的内接四边形,∠ABC=60°,点D是的中点,点E在OC 的延长线上,且CE=AD,连接DE.(1)求证:四边形AOCD是菱形;(2)若AD=6,求DE的长.24.如图,在平面直角坐标系xOy中,矩形AOBC的顶点A、B在坐标轴上,点C的坐标为(5,3).将矩形AOBC绕点B顺时针旋得到矩形DEBF,点O的对应点E恰好落在AC上.将矩形DEBF沿射线EB平移,当点D到达x轴上时,运动停止,设平移的距离为m,平移后的图形在x轴下方部分的面积为S.(1)求AE的长;(2)求S与m的函数关系式,并直接写出自变量m的取值范围.25.阅读下列材料:数学课上,老师出示了这样一个问题如图1,△ABC中,AC=BC,∠ACB=90・点D、E在AB上,且AD=BE,DG⊥CE,垂足为G,DG的长线与BC相交于点F,探究线段AD、BD、DF之间的数量关系,并证明某学习小组的同学经过思考,交流了自己的想法:小明:“通过观察和度量,发现∠BCE与∠BDF存在某种数量关系”小强:“通过观察和度量,发现图1中有一条线段与CE相等”小伟:“通过构造三角形,证明三角形全等,进面可以得到线段AD、BD、DF之间的数量关系”…老师:保留原条件,再过点D作DH⊥BC.垂足为H,DH与CE相交于点M(如图2).如果给出的值,那么可以求出的值.(1)在图1中找出与线段CE相等的线段,并证明;(2)探究线段AD、BD、DF之间的数量关系,并证明;(3)若=n,求的值(用含n的代数式表示).26.定义:将函数l的图象绕点P(m,0)旋转180°,得到新的函数l'的图象,我们称函数l'是函数关于点P的相关函数.例如:当m=1时,函数y=(x+1)2+5关于点P(1,0)的相关函数为y=﹣(x﹣3)2﹣5.(1)当m=0时①一次函数y=x﹣1关于点P的相关函数为;②点(,﹣)在二次函数y=﹣ax2﹣ax+1(a≠0)关于点P的相关函数的图象上,求a的值.(2)函数y=(x﹣1)2+2关于点P的相关函数y=﹣(x+3)2﹣2,则m=;(3)当m﹣1≤x≤m+2时,函数y=x2﹣mx﹣m2关于点P(m,0)的相关函数的最大值为6,求m的值.参考答案与试题解析一.选择题(共10小题)1.在3,﹣3,0,﹣2这四个数中,最小的数是()A.3 B.﹣3 C.0 D.﹣2【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣3<﹣2<0<3,∴各数中最小的数是﹣3.故选:B.2.下列几何体中,左视图为三角形的是()A.B.C.D.【分析】根据几何体的左视图是否为三角形进行判断即可.【解答】解:A.圆柱的左视图是长方形,不合题意;B.圆锥的左视图是三角形,符合题意;C.长方体的左视图是长方形,不合题意;D.横放的圆柱的左视图是圆,不合题意;故选:B.3.下列各点中,在第二象限的点是()A.(﹣3,2)B.(﹣3,﹣2)C.(3,2)D.(3,﹣2)【分析】根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.【解答】解:A、(﹣3,2)在第二象限,故本选项正确;B、(﹣3,﹣2)在第三象限,故本选项错误;C、(3,2)在第一象限,故本选项错误;D、(3,﹣2)在第四象限,故本选项错误.故选:A.4.目前,粤港澳大湾区9个地级以上市中,城际轨道交通和城市轨道交通已开通运营总里程超过1100公里,规划总里程近6000公里,数6000用科学记数法表示为()A.6×103B.6×104C.0.6×104D.60×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6000用科学记数法表示为6×103,故选:A.5.如图,四边形ABCD中,AD∥BC,∠C=50°,则∠D的度数为()A.40°B.50°C.120°D.130°【分析】根据平行线的性质:两直线平行,同旁内角互补,可求出∠D的度数.【解答】解:∵AD∥BC,∠C=50°,∴∠D=180°﹣∠C=130°,故选:D.6.下列计算正确的是()A.a3﹣a=a2B.a2•a3=a6C.(a+b)2=a2+b2D.(﹣2a2)3=﹣8a6【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;完全平方公式:(a±b)2=a2±2ab+b2;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.【解答】解:A、a3和a不是同类项,不能合并,故原题计算错误;B、a2•a3=a5,故原题计算错误;C、(a+b)2=a2+2ab+b2,故原题计算错误;D、(﹣2a2)3=﹣8a6,故原题计算正确;故选:D.7.如图,在▱ABCD中,对角线AC与BD相交于点O,AB=5,AC+BD=20,则△AOB的周长为()A.10 B.20 C.15 D.25【分析】根据平行四边形对角线互相平分,求出OA+OB即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴AO=OC=AC,BO=OD=BD,∵AC+BD=20,∴AO+BO=10,∵AB=5,∴△AOB的周长为OA+OB+AB=10+5=15.故选:C.8.相同方向行驶的两辆汽车经过同一个“T”路口时,可能向左转或向右转.如果这两种可能性大小相同,则这两辆汽车经过该路口时,都向右转的概率是()A.B.C.D.【分析】画树状图列出所有等可能结果,找到符合条件的结果数,再利用概率公式计算可得.【解答】解:画树状图为:共有4种等可能的结果数,都向右转的只有1种结果,所以都向右转的概率为,故选:A.9.抛物线y=x2﹣6x+2的顶点坐标是()A.(3,2)B.(﹣3,7)C.(3,﹣7)D.(6,2)【分析】直接利用配方法将原式化为顶点式,进而求出二次函数的顶点坐标.【解答】解:y=x2﹣6x+2=(x2﹣6x)+2=(x﹣3)2﹣7,故抛物线y=x2﹣6x+2的顶点坐标是:(3,﹣7).故选:C.10.如图,PA为⊙O的切线,A为切点,OP与⊙O相交于点B.若∠OPA=30°,PA=1,则的长为()A.B.C.D.【分析】根据条件可求出∠AOP=60°,OA=,由弧长公式可求出的长.【解答】解:∵PA为⊙O的切线,∴OA⊥AP,∴∠OAP=90°,∵∠OPA=30°,PA=1,∴∠AOP=60°,OA=AP,∴的长为=.故选:D.二.填空题(共6小题)11.分解因式:xy+x=x(y+1).【分析】直接提取公因式x,进而分解因式得出即可.【解答】解:xy+x=x(y+1).故答案为:x(y+1).12.某校10名学生参加书画大赛,他们的得分情况如下表所示:分数85 88 90 92 95人数 1 3 2 3 1则这10名学生所得分数的平均分是90 分.【分析】根据算术平均数的定义计算可得.【解答】解:这10名学生所得分数的平均分是=90(分),故答案为:90.13.正六边形的每一个外角都是60 °.【分析】用正六边形的外角和360度除以边数6,求出外角的度数即可.【解答】解:∵六边形的外角和为360度,∴每一个外角的度数为360°÷6=60°.故答案为:60.14.我国古代数学著作《增删算法统综》中有如下一道题:“直田七亩半,忘了长和短,记得立契时,长阔争一半,今特问高明,此法如何算”.意思是:有一块7亩半(即1800平方步)的矩形田,忘了长和宽各是多少,记得在立契约的时候,宽是长的一半,现在请问高明能算者,怎样计算出他的长与宽.若设此矩形田的宽为x步,依据题意,可列方程为x•2x=1800 .【分析】根据题意列出方程即可求出答案.【解答】解:由题意可知:x•2x=1800,故答案为:x•2x=1800,15.一司机驾驶汽车从甲地去乙地,他以80km/h的速度匀速行驶2小时到达乙地,当他按原路匀速返回甲地时,汽车的速度v(km/h)与时间t(h)的函数关系为v=.【分析】根据速度×时间=路程,可以求出甲地去乙地的路程;再根据行驶速度=路程÷时间,得到v与t的函数解析式.【解答】解:根据“速度=路程÷时间”,可设汽车速度v(km/h)与时间t(h)之间的函数关系式为:v=.当v=80,t=2时,有80=,因此s=160.故v与t之间的函数关系式为:v=.16.如图,△ABC中,AD⊥BC,垂足为D,∠ABC=2∠DAC,若AB=m,AC=n,则CD的长为(用含m,n的代数式表示)【分析】如图,延长CB到E,使得BE=BA.证明△CAD∽△CEA,推出∠CDA=∠CAE=90°,再证明AB=BC=BE=m,利用相似三角形的性质求解即可.【解答】解:如图,延长CB到E,使得BE=BA.∵BE=BA,∴∠E=∠BAE,∵∠ABC=∠E+∠BAE,∴∠ABC=2∠E,∵∠ABC=2∠DAC,∴∠CAD=∠E,∵∠C=∠C,∴△CAD∽△CEA,∴∠CDA=∠CAE=90°,∴∠E+∠C=90°,∠BAE+∠BAC=90°,∴∠C=∠BAC,∴BA=BC=CE=M,∵=∴=∴CD=.故答案为.三.解答题(共10小题)17.计算:()﹣(3﹣π)+【分析】直接利用绝对值的性质以及二次根式的性质、立方根的性质分别化简得出答案.【解答】解:原式=3﹣3﹣3+π﹣2=﹣3﹣2+π.18.解方程:+=2.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+1=2x﹣2,解得:x=3,经检验x=3是分式方程的解.19.AB∥CD,∠AEC+∠ABD=180°,BD=CE,求证:AB=DE.【分析】利用AAS证明△ABD≌△DEC(AAS),可得结论.【解答】证明:∵∠AEC+∠ABD=180°,∠AEC+∠CED=180°,∴∠ABD=∠CED,∵AB∥CD,∴∠A=∠CDE,在△ABD和△DEC中,∵,∴△ABD≌△DEC(AAS),∴AB=DE.20.为了解八年级女生韵律操测试情况,随机抽取了部分女生的测试成绩进行统计,根据评分标准,将她们的成绩分为A、B、C、D四个等级,以下是根据调查结果统计图表的一部分.等级成绩x(分)频数(人数)频率A9.0≤x≤10B7.0≤x<9.0C 6.0≤x<7.0 0.1D0≤x<6.0 4 0.08根据以上信息,解答下列同题:(1)调查的女生中,成绩等级为D的女生人数为 4 人,成绩等级为C的女生人占被调查女生人数的百分比为10% ;(2)本次调查的容量是50 ,成绩等级为B的女生人数为20 ;(3)该校八年级共有200名女生,根据调查结果,估计测试成绩不少于7.0分的女生人数【分析】(1)根据表中0≤x<6.0的人数得到成绩等级为D的女生人数,根据被调查女生C等级的频率即可求得;(2)根据利用调查女生的总人数=D等级人数÷对应的频率求解即可;(3)求得A、B两等级人数所占的频率×被调查女生的总人数求解即可.【解答】解:(1)调查的女生中,成绩等级为D的女生人数为4人,成绩等级为C的女生人占被调查女生人数的百分比为10%;(2)本次调查的容量是4÷0.08=50,成绩等级为B的女生人数为50×(1﹣42%﹣0.1﹣0.08)=20人;(3)200×(1﹣0.08﹣0.1)=164人,答:估计测试成绩不少于7.0分的女生人数为164人.故答案为:4,10%,50,20.21.某厂家生产的一种商品,有大小盒两种包装,3大盒、4小盒共装108瓶;2大盒3小盒共装76瓶.(1)大盒与小盒每盒各装多少瓶?(2)某单位决定从该厂采购大盒与小盒两种包装共11盒,如果总计不超过176瓶,那么最多可以购买多少个大盒商品?【分析】(1)设大盒每盒装x瓶,小盒每盒装y瓶,根据“3大盒、4小盒共装108瓶;2大盒3小盒共装76瓶”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买大盒商品m盒,则购买小盒商品(11﹣m)盒,根据总瓶数=20×购买大盒商品数+12×购买小盒商品数结合总瓶数不超过176瓶,即可得出关于m的一元一次不等式,解之取其中的最大整数值即可得出结论.【解答】解:(1)设大盒每盒装x瓶,小盒每盒装y瓶,依题意,得:,解得:.答:大盒每盒装20瓶,小盒每盒装12瓶.(2)设购买大盒商品m盒,则购买小盒商品(11﹣m)盒,依题意,得:20m+12(11﹣m)≤176,解得:m≤,∵m为整数,∴m的最大值为5.答:最多可以购买5大盒商品.22.甲、乙两人同时从同一地点沿同一方向匀速行走,走了10分钟,甲加快速度后继匀速行走;乙一直匀速行走,两人都走了20分钟.甲、乙两人在行走过程中离出发地的路程y(m)与出发的时间x(min)的函数关系如图1所示,两人之间的距离S与出发时间x (min)的函数关系如图2所示.(1)图中a=10 ,b=100 ,c=1300 ;(2)出发多少分钟,两人所走的路程相等?【分析】(1)由走了10分钟后甲加快速度后继匀速行走求出a,由乙的速度=1200÷20=60m/min求出b,由当x=20时,S=100求出c;(2)分别求出直线OA和直线BC的解析式,则由两人所走的路程相等时列出关于x的方程,解出x即可.【解答】解:(1)由走了10分钟后甲加快速度后继匀速行走,得a=10,由图1知:乙的速度=1200÷20=60m/min,∴b=60×10﹣500=100,由图2知:当x=20时,S=100,∴c﹣1200=b=100∴c=1300;故答案为:10;100;1300.(2)设直线OA:y=kx,则有1200=20k,解得k=60,∴直线OA:y=60x,当10≤x≤20时,设直线BC:y=mx+n,则有,解得:,∴直线BC:y=80x﹣300,当两人所走的路程相等时,60x=80x﹣300,解得x=15,∴出发15分钟,两人所走的路程相等.23.如图,四边形ABCD是⊙O的内接四边形,∠ABC=60°,点D是的中点,点E在OC 的延长线上,且CE=AD,连接DE.(1)求证:四边形AOCD是菱形;(2)若AD=6,求DE的长.【分析】(1)根据等边三角形的判定和菱形的判定解答即可;(2)根据等边三角形的性质和直角三角形的性质解答即可.【解答】证明:(1)∵点D是AC的中点,连接OD,∴,∴AD=DC,∠AOD=∠DOC,∵∠AOC=2∠ABC=120°,∴∠AOD=∠DOC=60°,∵OC=OD,∴OA=OC=CD=AD,∴四边形AOCD是菱形;(2)由(1)可知,△COD是等边三角形.∴∠OCD=∠ODC=60°,∵CE=AD,CD=AD,∴CE=CD,∴∠CDE=∠CED=∠OCD=30°,∴∠ODE=∠ODC+∠CDE=90°,在Rt△ODE中,DE=OD•tan∠DOE=6×tan60°=6.24.如图,在平面直角坐标系xOy中,矩形AOBC的顶点A、B在坐标轴上,点C的坐标为(5,3).将矩形AOBC绕点B顺时针旋得到矩形DEBF,点O的对应点E恰好落在AC上.将矩形DEBF沿射线EB平移,当点D到达x轴上时,运动停止,设平移的距离为m,平移后的图形在x轴下方部分的面积为S.(1)求AE的长;(2)求S与m的函数关系式,并直接写出自变量m的取值范围.【分析】(1)由矩形的性质得出∠OBC=∠ACB=90°,AC=OB=5,BC=3,由旋转的性质得出BE=OB=5,由勾股定理求出CE==4,即可得出答案;(2)分三种情况①当0<m≤4时,证明△BB'G∽△ECB,得出=,求出B'G =m,由三角形面积公式即可得出答案;②当4<m≤5时,由平移性质得出FM=m﹣4,由梯形面积公式即可得出答案;③当5<m≤9时,证明△BE'H∽△ECB,得出=,求出E'H=(m﹣5),由梯形面积和三角形面积即可得出答案.【解答】解:(1)∵四边形AOBC是矩形,点C的坐标为(5,3).∴∠OBC=∠ACB=90°,AC=OB=5,BC=3,∵矩形AOBC绕点B顺时针旋得到矩形DEBF,∴BE=OB=5,∴CE===4,∴AE=AC﹣CE=1;(2)分三种情况:①当0<m≤4时,如图1所示:∵∠B'BG=90°﹣∠EBC=∠BEC,∠BB'G=∠ECB=90°,∴△BB'G∽△ECB,∴=,即=,解得:B'G=m,∴S=S△B'BG=BB'×B'G=m2;即S=m2(0<m≤4);②当4<m≤5时,如图2所示:由平移性质得:FM=m﹣4,∴S=S梯形MBB'F=(FM+BB')×B'F=(m﹣4+m)×3=3m﹣6;即S=3m﹣6(4<m≤5);③当5<m≤9时,如图3所示:∵∠E'BH=90°﹣∠EBC=∠BEC,∠BE'H=∠ECB=90°,∴△BE'H∽△ECB,∴=,即=,解得:E'H=(m﹣5),∴S△BE'M=BE'×E'H=×(m﹣5)×(m﹣5)=(m﹣5)2,∴S=S梯形MBB'F﹣S△BE'M=3m﹣6﹣(m﹣5)2=﹣m2+m﹣;即S=﹣m2+m﹣(5<m≤9).25.阅读下列材料:数学课上,老师出示了这样一个问题如图1,△ABC中,AC=BC,∠ACB=90・点D、E在AB上,且AD=BE,DG⊥CE,垂足为G,DG的长线与BC相交于点F,探究线段AD、BD、DF之间的数量关系,并证明某学习小组的同学经过思考,交流了自己的想法:小明:“通过观察和度量,发现∠BCE与∠BDF存在某种数量关系”小强:“通过观察和度量,发现图1中有一条线段与CE相等”小伟:“通过构造三角形,证明三角形全等,进面可以得到线段AD、BD、DF之间的数量关系”…老师:保留原条件,再过点D作DH⊥BC.垂足为H,DH与CE相交于点M(如图2).如果给出的值,那么可以求出的值.(1)在图1中找出与线段CE相等的线段,并证明;(2)探究线段AD、BD、DF之间的数量关系,并证明;(3)若=n,求的值(用含n的代数式表示).【分析】(1)先判断出△ACD≌△BCE(SAS),得出∠ACD=∠BCE,CD=CE,进而判断出∠DCB=∠DFC,即可得出结论;(2)先判断出△ACD≌△BCD'(SAS),得出BD'=AD,进而判断出∠ABD'=90°,即可得出结论;(3)先判断出CH=FH,∠DHC=∠DHF=90°,设CH=FH=a,GF=b,得出CF=2a,DG =nb,DF=(n+1)b,进而判断出△DFH∽△CFG,得出,进而得出=,再判断出△DMG∽△CMH,得出=n.即可得出结论.【解答】解:(1)DF=CE,证明:如图1,连接CD,∵AC=BC,∠ACB=90°,DG⊥CE,∴∠A=∠B=(180°﹣∠ACB)=45°,∠CGF=90°,∵AD=BE,AC=BC,∴△ACD≌△BCE(SAS),∴∠ACD=∠BCE,CD=CE,∵∠DCB=∠ACB﹣∠ACD=90°﹣∠ACD,∠DFC=90°﹣∠BCE,∴∠DCB=∠DFC,∴DC=DF,∴CE=DF;(2)结论:AD2+BD2=2DF2,证明:如图2,过点C作CD'⊥CD,截取CD'=CD,连接BD',DD',∴∠DCD'=90°,∴∠BCD'=90°﹣∠BCD=∠ACD,∵AC=BC,CD=CD',∴△ACD≌△BCD'(SAS),∴BD'=AD,∠CBD'=∠A=45°,∴∠ABD'=∠ABC+∠CBD'=90°,∴CD2+CD'2=DD'2=BD2+BD'2,∴AD2+BD2=2DF2;(3)如图2,连接CD,由(1)知,CD=CE,∵DH⊥BC,∴CH=FH,∠DHC=∠DHF=90°,设CH=FH=a,GF=b,∴CF=2a,DG=nb,DF=(n+1)b,∵DF⊥CE,∴∠DGC=∠FGC=90°,∴∠DHF=∠CGF=90°,∵∠DFH=∠CFG,∴△DFH∽△CFG,∴,∴,∴=,∵∠DMG=∠CMH,∠DGC=∠DHC=90°,∴△DMG∽△CMH,∴=n.26.定义:将函数l的图象绕点P(m,0)旋转180°,得到新的函数l'的图象,我们称函数l'是函数关于点P的相关函数.例如:当m=1时,函数y=(x+1)2+5关于点P(1,0)的相关函数为y=﹣(x﹣3)2﹣5.(1)当m=0时①一次函数y=x﹣1关于点P的相关函数为;②点(,﹣)在二次函数y=﹣ax2﹣ax+1(a≠0)关于点P的相关函数的图象上,求a的值.(2)函数y=(x﹣1)2+2关于点P的相关函数y=﹣(x+3)2﹣2,则m=﹣1 ;(3)当m﹣1≤x≤m+2时,函数y=x2﹣mx﹣m2关于点P(m,0)的相关函数的最大值为6,求m的值.【分析】(1)①由相关函数的定义,将y=x﹣1旋转变换可得相关函数为y=x+1;②将()代入可得a的值,(2)两函数顶点关于点P中心对称,可用中点坐标公式获得点P坐标,从而获得m的值;(3)在相关函数中,以对称轴在给定区间的左侧,中部,右侧,三种情况分类讨论,获得对应的m的值.【解答】解:(1)①y=x+1,②∵,∴y=﹣ax2﹣ax+1关于点P(0,0)的相关函数为,∵点A()在函数的图象上,∴,解得a=,(2)∵函数y=(x﹣1)2+2的顶点为(1,2),函数y=﹣(x+3)2﹣2的顶点为(﹣3,﹣2),这两点关于中心对称,∴,∴m=﹣1,故答案为:﹣1.(3)∵,∴关于点P(m,0)的相关函数为,①当,即m≤﹣2时,y有最大值是6,∴,∴,(不符合题意,舍去),②当时,即﹣2<m≤4时,当时,y有最大值是6,∴∴,(不符合题意,舍去),③当,即m>4时,当x=m+2时,y有最大值是6,∴,∴(不符合题意,舍去),综上,m的值为或.。
2019年辽宁省大连市中考数学试卷-答案
![2019年辽宁省大连市中考数学试卷-答案](https://img.taocdn.com/s3/m/1c33aa8a551810a6f524869b.png)
辽宁省大连市2019年初中毕业升学考试数学解析一、选择题1.【答案】A【解析】解:2-的绝对值是2.故选:A .2.【答案】B【解析】解:左视图有3列,每列小正方形数目分别为2,1,1.故选:B .3.【答案】D【解析】解:将数58 000用科学记数法表示为45.810⨯.故选:D .4.【答案】A【解析】解:将点(3,1)P 向下平移2个单位长度,得到的点P ′的坐标为(3,12)-,即(3,1)-, 故选:A .5.【答案】B【解析】解:5131x x +-≥,移项得5311x x ---≥,合并同类项得22x -≥,系数化为1得,1x -≥,在数轴上表示为:故选:B .6.【答案】C 【解析】解:A 、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误;B 、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;C 、菱形既是轴对称图形,又是中心对称图形,故本选项正确;D 、平行四边形不是轴对称图形,是中心对称图形,故本选项错误.故选:C .7.【答案】A【解析】解:33(2)8a a =--;故选:A .8.【答案】D【解析】解:两次摸球的所有的可能性树状图如下:∴14P =两次都是红球. 故选:D .9.【答案】C【解析】解:连接AC 交EF 于点O ,如图所示:∵四边形ABCD 是矩形,∴8AD BC ==,90B D ∠=∠=︒,AC ===∵折叠矩形使C 与A 重合时,EF AC ⊥,12AO CO AC === ∴90AOF D ∠=∠=︒,OAF DAC ∠=∠,∴则Rt Rt FOA ADC △∽△,∴AO ADAF AC= 解得:5AF =,∴853D F DF AD AF '==-=-=,故选:C .10.【答案】【解析】解:当0y =时,2112042x x -++=,解得:12x =-,24x =,∴点A 的坐标为(2,0)-;当0x =时,2112242y x x =++=, ∴点C 的坐标为(0,2); 当2y =时,2112242x x -++=, 解得:10x =,22x =,∴点D 的坐标为(2,2).设直线AD 的解析式为(0)y kx b k =+≠,将(2,0)A -,(2,2)D 代入y kx b =+,得:2022k b k b -+=⎧⎨+=⎩,解得:121k b ⎧=⎪⎨⎪=⎩, ∴直线AD 的解析式为112y x =+. 当(0x =时,1112y x =+=, ∴点E 的坐标为(0,1).当1y =时,2112142x x -++=,解得:11x =21x =+∴点P的坐标为(1-,点Q的坐标为(1+,∴1(1PQ ==故答案为:二、填空题11.【答案】130【解析】解:∵AB CD ∥,∴50B C ∠=∠=︒,∵BC DE ∥,∴180C D ∠+∠=︒,∴18050130D ∠=︒-︒=︒,故答案为:130.12.【答案】25【解析】解:观察条形统计图知:为25岁的最多,有8人,故众数为25岁,故答案为:25.13.【答案】【解析】解:∵ABC △是等边三角形,∴60B BAC ACB ∠=∠=∠=︒,∵CD AC =,∴CAD D ∠=∠,∵60ACB CAD D ∠=∠+∠=︒,∴30CAD D ∠=∠=︒,∴90BAD ∠=︒,∴tan30AB AD ︒===故答案为14.【答案】5352x y x y +=⎧⎨+=⎩【解析】解:设1个大桶可以盛酒x 斛,1个小桶可以盛酒y 斛,根据题意得:5352x y x y +=⎧⎨+=⎩, 故答案为5352x y x y +=⎧⎨+=⎩. 15.【答案】3【解析】解:在Rt BCD △中,tan BC BDC CD ∠=, 则tan 10BC CD BDC =∠=,在Rt ACD △中,tan AC ADC CD∠=, 则tan 10 1.3313.3AC CD ADC =∠⨯=≈,∴ 3.33(m)AB AC BC =-=≈,故答案为:3.16.【答案】12【解析】解:从图1,可见甲的速度为120602=, 从图2可以看出,当67x =时,二人相遇,即:6(60)1207V +⨯=已,解得:已的速度80V =己, ∵已的速度快,从图2看出已用了b 分钟走完全程,甲用了a 分钟走完全程,120120160802a b -=-=, 故答案为12. 三、解答题17.【答案】解:原式346=+-34=+-7=.18.【答案】解:原式2(1)(1)112(2)2a a a a a -+=⨯--- 1122a a a +=-- =.19.【答案】证明:∵BE CF =,∴BE EF CF EF +=+,即BF CE =,在ABF △和DCE △中,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩,∴()ABF DCE SAS △≌△∴AF DE =.20.【答案】解:(1)由统计图表可知,成绩等级为“优秀”的男生人数为15人, 被测试男生总数150.350÷=(人), 成绩等级为“及格”的男生人数占被测试男生总人数的百分比:505100%90%50-⨯=, 故答案为15,90;(2)被测试男生总数150.350÷=(人), 成绩等级为“不及格”的男生人数占被测试男生总人数的百分比:5100%10850⨯=, 故答案为50,10;(3)由(1)(2)可知,优秀30%,及格20%,不及格10%,则良好40%, 该校八年级男生成绩等级为“良好”的学生人数18040%72⨯=(人)答:该校八年级男生成绩等级为“良好”的学生人数72人.四、解答题21.【答案】解:(1)设2016年到2018年该村人均收入的年平均增长率为x , 根据题意得:220000(1)24200x +=,解得:10.110%x ==,2 1.1x =(不合题意,舍去).答:2016年到2018年该村人均收入的年平均增长率为10%.(2)24200(110%)26620⨯+=(元).答:预测2019年村该村的人均收入是26 620元.22.【答案】解:(1)∵点(3,2)A 在反比例函数(0)k y x x =>的图象上, ∴326k =⨯=, ∴反比例函数6y x=; 答:反比例函数的关系式为:6y x=; (2)过点A 作AE OC ⊥,垂足为E ,连接AC , 设直线OA 的关系式为y kx =,将(3,2)A 代入得,23k =, ∴直线OA 的关系式为23y x =, ∵点(,0)C a ,把x a =代入23y x =,得:23y a =,把x a =代入6y x=,得:6y a =, ∴2,3B a a ⎛⎫ ⎪⎝⎭,即23BC a =,6,D a a ⎛⎫ ⎪⎝⎭,即6CD a = ∵32ACD S =△, ∴1322CD EC =,即163(3)22a a ⨯⨯-=,解得:6a =, ∴2633BD BC CD a a =-=-=; 答:线段BD 的长为3.23.【答案】(1)证明:作DF BC ⊥于F ,连接DB ,∵AP 是O 的切线,∴90PAC ∠=︒,即90P ACP ∠+∠=︒,∵AC 是O 的直径,∴90ADC ∠=︒,即90PCA DAC ∠+∠=︒,∴P DAC DBC ∠=∠=∠,∵APC BCP ∠=∠,∴DBC DCB ∠=∠,∴DB DC =,∵DF BC ⊥,∴DF 是BC 的垂直平分线,∴DF 经过点O ,∵OD OC =,∴ODC OCD ∠=∠,∵2BDC ODC ∠=∠,∴22BAC BDC ODC OCD ∠=∠=∠=∠;(2)解:∵DF 经过点O ,DF BC ⊥,∴132FC BC ==, 在DEC △和CFD △中,DCE FDC DEC CFD DC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()DEC CFD AAS △≌△∴3DE FC ==,∵90ADC ∠=︒,DE AC ⊥,∴2DE AE EC =, 则292DE EC AE ==, ∴913222AC =+=, ∴O 的半径为134.五、解答题24.【答案】解:(1)当0x =时,3y =,当0y =时,4x =, ∴直线334y x =+与x 轴点交(4,0)A ,与y 轴交点(0,3)B ∴4OA =,3OB =,∴5AB ==,因此:线段AB 的长为5.(2)当CD OA ∥时,如图, ∵53BD OC =,OC m =, ∴53BD m =, 由BCD BOA △∽△得:BD BC BA BO=,即:53353m m -=,解得:32m =; ①当302m <≤时,如图1所示:32DE m =≤,此时点E 在AOB △的内部, 3002S m ⎛⎫= ⎪⎝⎭<≤; ②当332m <≤时,如图2所示:过点D 作DF OB ⊥,垂足为F ,此时在x 轴下方的三角形与CDF △全等,∵BDF BAO △∽△, ∴54BD BA DF OA ==, ∴4π3DF =,同理:BF m =, ∴23CF m =-, ∴2148(23)4233CDF S DF CF m m m π∆==-⨯=-, 即:2834332S m m m ⎛⎫=-< ⎪⎝⎭≤ ③当3m >时,如图3所示:过点D 作DF y ⊥轴,DG x ⊥轴,垂足为F 、G , 同理得:4π3DF =,BF m =, ∴3OF DG m ==-,443AG m =-, ∴111414(23)4(3)222323OGE ADG S S S OG GE AG GD m m m m ⎛⎫=-=⋅-=⨯⨯---- ⎪⎝⎭△△ ∴2226(3)3S m m m =+->答:223002834332226(3)3S m S S m m m S m m m ⎧⎛⎫= ⎪⎪⎝⎭⎪⎪⎛⎫==-⎨ ⎪⎝⎭⎪⎪=+-⎪⎩<≤<≤>25.【答案】证明:(1)∵AB AD =∴ABD ADB ∠=∠∵ADB ACB DAC ∠=∠+∠,ABD ABC ACB BAE ∠=∠=∠+∠∴BAE DAC ∠=∠(2)设DAC BAE α∠==∠,C β∠=∴ABC ADB αβ∠=∠=+∵290ABC C αββαβ∠+∠=++=+=︒,90BAE EAC EAC α∠+∠=︒=+∠ ∴2EAC β∠=∵AF 平分EAC ∠∴FAC EAF β∠=∠=∴FAC C ∠=∠,ABE BAF αβ∠=∠=+∴AF FC =,AF BF = ∴12AF BC BF == ∵ABE BAF ∠=∠,90BGA BAC ∠=∠=︒∴ABG BCA △∽△ ∴BG AB AC BC= ∵ABE BAF ∠=∠,ABE AFB ∠=∠∴ABF BAD △∽△ ∴AB BF BD AB =,且AB kBD =,12AF BC BF == ∴2BC k AB=,即12AB BC k = ∴12BG AC k = (3)∵ABE BAF ∠=∠,90BAC AGB ∠=∠=︒∴ABH C ∠=∠,且BAC BAC ∠=∠∴ABH ACB △∽△ ∴AB AH AC AB= ∴2AB AC AH =⨯设BD m =,AB km =, ∵12AB BC k= ∴22BC k m =∴AC ==∴2AB AC AH =⨯2()km AH =∴AH =∴242km k HC AC AH ⨯-=-==∴2142AH CH k =- 26.【答案】解:(1)22123(1:)4C y ax ax a a x a =--=--,顶点(1,4)a -围绕点(,0)P m 旋转180︒的对称点为(21,4)m a -,22(21):4C y a x m a =--++,函数的对称轴为:21x m =-,21t m =-,故答案为:21m -;(2)1a =-时,21(1)4:C y x --=,①当112t ≤<时, 12x =时,有最小值2154y =, x t =时,有最大值21(1)4y t =--+,则21215(1)414y y t -=-+-=,无解; ②312t ≤…时,1x =时,有最大值14y =,12x =时,有最小值22(1)4y t =--+, 12114y y -=≠(舍去); ③当32t >时, 1x =时,有最大值14y =,x t =时,有最小值22(1)4y t =--+,212(1)1y y t =-=-,解得:0t =或2(舍去0),故222(2)44:C y x x x =-=--;(3)0m =,22(14:)C y a x a =-++,点A 、B 、D 、A '、D '的坐标分别(1,0)、(3,0)-、(0,3)a 、(0,1)、(3,0)a -, 当0a >时,a 越大,则OD 越大,则点D '越靠左,当2C 过点A '时,2(01)41y a a =-++=,解得:13a =, 当2C 过点D '时,同理可得:1a =, 故:103a <≤或1a ≥;当0a <时,当2C 过点D '时,31a -=,解得:13a =, 故:13a ≤; 综上,故:103a <≤或1a ≥或13a -≤.。
大连市2019年中考数学试题含答案解析(word版)
![大连市2019年中考数学试题含答案解析(word版)](https://img.taocdn.com/s3/m/20712e52ddccda38376baf81.png)
2019辽宁省大连市中考数学试卷(解析版)(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(2019辽宁大连,1,3分)﹣2的绝对值是( ) A . 2 B .-2 C .21 D .-21 【答案】A【解析】解:根据负数的绝对值等于它的相反数,得|﹣2|=2.故选A .2. (2019辽宁大连,2,3分)如图是某几何体的三视图,则该几何体是( )(第2题)A .球B .圆柱C .圆锥D .三棱柱【答案】C【解析】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥,故选C.3.(2019辽宁大连,3,3分)下列长度的三条线段能组成三角形的是( ) A . 1,2,3 B .,1,2,3 C .3,4,8 D .4,5,6【答案】D【解析】解:根据三角形任意两边之和大于第三边,只要两条较短的边的和大于最长边即可。
故选D . 4. (2019辽宁大连,4,3分)在平面直角坐标系中,将点P (3,2)向右平移2个单位长度,所得到的点的坐标为( )A.(1,2)B.(3,0)C.(3,4)D.(5,2) 【答案】D【解析】解:根据点的坐标平移规律“左减右加,下减上加”,可知横坐标应变为5,而纵坐标不变,故选D. 5. (2019辽宁大连,5,3分)方程4)1(2x 3=-+x 的解是( )A. 52=x B. 65=x C.2=x D.1=x【答案】C【解析】解:4)1(2x 3=-+x ,去括号得:3x+2-2x=4.移项合并得:2=x 。
故选C.6. (2019辽宁大连,6,3分)计算()2x 3-的结果是( )A. 2x 6B.2x 6-C.2x 9D.2x 9- 【答案】C【解析】解:根据积的乘方,()2x 3-=()22x 3⋅-=2x 9,故选C.7. (2019辽宁大连,7,3分)某舞蹈队10名队员的年龄如下表所示:年龄(岁) 13 14 15 16 人数2431则这10名队员年龄的众数是( )A. 16B.14C.4D.3 【答案】B【解析】解:一组数据中出现次数最多的那个数据叫做众数,14出现的次数最多,故选B. 8. (2019辽宁大连,8,3分)如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上,∠ADC=2∠B,AD=5,则BC 的长为( )(第8题)A.3-1B.3+1C.5-1D.5+1【答案】D【解析】解:在△ADC 中,∠C=90°,AC=2,所以CD=()1252222=-=-AC AD ,因为∠ADC=2∠B ,∠ADC=∠B+∠BAD,所以∠B=∠BAD,所以BD=AD=5,所以BC=5+1,故选D.二、填空题(本大题共8小题,每小题3分,满分24分.)9.(2019辽宁大连,9,3分)比较大小:3__________ -2(填>、<或=)【答案】>【解析】解:根据一切正数大于负数,故答案为>。
2019届辽宁大连市中考模拟数学试卷(一)【含答案及解析】
![2019届辽宁大连市中考模拟数学试卷(一)【含答案及解析】](https://img.taocdn.com/s3/m/6445d604192e45361066f58c.png)
2019届辽宁大连市中考模拟数学试卷(一)【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. ﹣的相反数是()A. B.﹣ C.﹣ D.2. 据大连市公安局统计,2016年全市约有410000人换二代居民身份证,将410000用科学记数法表示应为()A.0.41×104 B.41×104 C.4.1×106 D.4.1×1053. 如图,点A、B、C都在⊙O上,若∠ACB=29°,则∠AOB的度数为()A.14.5° B.29° C.58° D.61°4. 不等式2x<﹣6的解集为()A.x<﹣3 B.x>﹣3 C.x>3 D.x<35. 在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y=﹣2x C.y=﹣ D.y=﹣x2+16. 如图,正方形ABCD的对角线AC、BD相交于点O,OA=3,则此正方形的面积为()A.3 B.12 C.18 D.367. 一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,然后放回,再随机摸出一个小球,两次摸出的小球标号的和为5的概率是()A. B. C. D.8. 如图,按照三视图确定该几何体的全面积为(图中尺寸单位:cm)()A.128πcm2 B.160πcm2 C.176πcm2 D.192πcm2二、填空题9. 因式分【解析】 x3﹣x= .10. 方程的解是.11. 某校男子足球队队员的年龄分布如表所示:12. 年龄(岁)1314151617人数26833td13. 如图,△ABC中,AB=AC,将△ABC绕点A逆时针旋转60°后得到△ADE,若AB=1,则CE的长为.14. 如图,平行线AB、CD被直线EF所截,过点E作EG⊥EF,与直线CD相交于点G,若∠AEF=39°,则∠EGF的度数为°.15. 如图,菱形ABCD的对角线BD与x轴平行,点B、C的坐标分别是(0,1)、(2,0),点A、D在函数y=(x>0)的图象上,则k的值为.16. 在平面直角坐标系中,点A、B的坐标分别是(﹣3,1)、(﹣1,﹣2),将线段AB 沿某一方向平移后,得到点A的对应点A′的坐标为(﹣1,0),则点B的对应点B′的坐标为.17. 某飞机模型的机翼形状如图所示,其中AB∥DC,∠BAE=90°,根据图中的数据计算CD的长为 cm(精确到1cm)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)三、计算题18. 计算:.四、解答题19. 先化简,再求值:a(a﹣2)﹣(a+1)(a﹣1),其中a=﹣.20. 如图,△ABC中,AB=AC,点D在AB上,过点D作BC的平行线,与AC相交于点E,点F在BC上,EF=EC.求证:四边形DBFE是平行四边形.21. 某校1200名学生参加了全区组织的“经典诵读”活动,该校随机选取部分学生,对他们在三、四两个月的诵读时间进行调查,下面是根据调查数据制作的统计图表的一部分.根据以上信息,解答下列问题:(1)本次调查的学生数为人;(2)图表中的a、b、c的值分别为,,;(3)在被调查的学生中,四月份日人均诵读时间在1<x≤1.5范围内的人数比三月份在此范围的人数多人;(4)试估计该校学生四月份人均诵读时间在1小时以上的人数.四月日人均诵读时间的统计表22. 日人均诵读时间x/h人数百分比0≤x≤0.56 0.5<x≤130 1<x≤1.550% 1.5<x≤21010%2<x≤2.5bctd23. 如图用一段长为30m的篱笆,围成一个一边靠墙的矩形花圃,若花圃面积为108m2,墙的长度不限,求矩形花圃的长和宽.五、计算题24. 如图,直线y=kx+b与双曲线y=相交于点A,B,与x轴相交于点C,矩形DEFG的端点D在直线AB上,E,F在x轴上,点G在双曲线上,若DE=,CE=2,点A的横坐标是1.(1)求点A,G的坐标;(2)求直线AB的解析式.六、解答题25. 如图,⊙O是△ABC的外接圆,AD是⊙O的直径,AD与BC相交于点M,且BM=MC,过点D作BC的平行线,分别与AB、AC的延长线相交于点E、F;(1)求证:EF与⊙O相切;(2)若BC=2,MD=,求CE的长.26. 如图1,两个全等的△ABC和△DEF中,∠ACB=∠DFE=90°,AB=DE,其中点B和点D 重合,点F在BC上,将△DEF沿射线BC平移,设平移的距离为x,平移后的图形与△ABC 重合部分的面积为y,y关于x的函数图象如图2所示(其中0≤x≤m,m<x≤3,3<x≤4时,函数的解析式不同)(1)填空:BC的长为;(2)求y关于x的函数关系式,并写出x的取值范围.27. 阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,∠A=90°,∠B=30°,点D,E分别在AB,BC上,且∠CDE=90°.当BE=2AD时,图1中是否存在与CD相等的线段?若存在,请找出并加以证明,若不存在,说明理由.小明通过探究发现,过点E作AB的垂线EF,垂足为F,能得到一对全等三角形(如图2),从而将解决问题.请回答:(1)小明发现的与CD相等的线段是.(2)证明小明发现的结论;参考小明思考问题的方法,解决下面的问题:(3)如图3,△ABC中,AB=AC,∠BAC=90°,点D在BC上,BD=2DC,点E在AD上,且∠BEC=135°,求的值.28. 在平面直角坐标系xOy中,抛物线y=ax2+bx经过点A(﹣3,4),直线l与x轴相交于点B,与∠AOB的平分线相交于点C,直线l的解析式为y=kx﹣5k(k≠0),BC=OB.(1)若点C在此抛物线上,求抛物线的解析式;(2)在(1)的条件下,过点A作y轴的平行线,与直线l相交于点D,设P为抛物线上的一个动点,连接PA、PD,当时,求点P的坐标.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】。
2019年辽宁省大连市中考数学试卷(含答案解析)
![2019年辽宁省大连市中考数学试卷(含答案解析)](https://img.taocdn.com/s3/m/1f49ce2bd1f34693dbef3e2d.png)
2019年辽宁省大连市中考数学试卷(含答案解析)一、选择题(本题共10小題,每小題3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.(3分)﹣2的绝对值是()A.2B.C.﹣D.﹣22.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.3.(3分)2019年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重58000kg,将数58000用科学记数法表示为()A.58×103B.5.8×103C.0.58×105D.5.8x1044.(3分)在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为()A.(3,﹣1)B.(3,3)C.(1,1)D.(5,1)5.(3分)不等式5x+1≥3x﹣1的解集在数轴上表示正确的是()A.B.C.D.6.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等腰三角形B.等边三角形C.菱形D.平行四边形7.(3分)计算(﹣2a)3的结果是()A.﹣8a3B.﹣6a3C.6a3D.8a38.(3分)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为()A.B.C.D.9.(3分)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕为EF,若AB=4,BC =8.则D′F的长为()A.2B.4C.3D.210.(3分)如图,抛物线y=﹣x2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为.二、填空题(本题共6小题,每小題分,共18分)11.(3分)如图AB∥CD,CB∥DE,∠B=50°,则∠D=°.12.(3分)某男子足球队队员的年龄分布如图所示,这些队员年龄的众数是.13.(3分)如图,△ABC是等边三角形,延长BC到点D,使CD=AC,连接AD.若AB =2,则AD的长为.14.(3分)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意,可列方程组为.15.(3分)如图,建筑物C上有一杆AB.从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为m(结果取整数,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33).16.(3分)甲、乙两人沿同一条直路走步,如果两人分别从这条多路上的A,B两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:m)与行走时x(单位:min)的函数图象,图2是甲、乙两人之间的距离(单位:m)与甲行走时间x (单位;min)的函数图象,则a﹣b=.三、解答题(本题共4小题,17、18、19题各9分,20题12分,共39分)17.(9分)计算:(﹣2)2++618.(9分)计算:÷+19.(9分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.20.(12分)某校为了解八年级男生“立定跳远”成绩的情况,随机选取该年级部分男生进行测试,以下是根据测试成绩绘制的统计图表的一部分.成绩等级频数(人)频率优秀150.3良好及格不及格5根据以上信息,解答下列问题(1)被测试男生中,成绩等级为“优秀”的男生人数为人,成绩等级为“及格”的男生人数占被测试男生总人数的百分比为%;(2)被测试男生的总人数为人,成绩等级为“不及格”的男生人数占被测试男生总人数的百分比为%;(3)若该校八年级共有180名男生,根据调查结果,估计该校八年级男生成绩等级为“良好”的学生人数.四、解答题(本共3小,其中21、22题各分,23题10分,共28分)21.(9分)某村2016年的人均收入为20000元,2018年的人均收入为24200元(1)求2016年到2018年该村人均收入的年平均增长率;(2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2019年村该村的人均收入是多少元?22.(9分)如图,在平面直角坐标系xOy中,点A(3,2)在反比例函数y=(x>0)的图象上,点B在OA的廷长线上,BC⊥x轴,垂足为C,BC与反比例函数的图象相交于点D,连接AC,AD.(1)求该反比例函数的解析式;(2)若S△ACD=,设点C的坐标为(a,0),求线段BD的长.23.(10分)如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP(1)求证:∠BAC=2∠ACD;(2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径.五、解答题(本题共3小题,其中24题11分,25、26題各12分,共35分)24.(11分)如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴,y轴分别相交于点A,B,点C在射线BO上,点D在射线BA上,且BD=OC,以CO,CD为邻边作▱COED.设点C的坐标为(0,m),▱COED在x轴下方部分的面积为S.求:(1)线段AB的长;(2)S关于m的函数解析式,并直接写出自变量m的取值范围.25.(12分)阅读下面材料,完成(1)﹣(3)题数学课上,老师出示了这样一道题:如图1,△ABC中,∠BAC=90°,点D、E在BC 上,AD=AB,AB=kBD(其中<k<1)∠ABC=∠ACB+∠BAE,∠EAC的平分线与BC相交于点F,BG⊥AF,垂足为G,探究线段BG与AC的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠BAE与∠DAC相等.”小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系.”……老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出的值.”(1)求证:∠BAE=∠DAC;(2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明;(3)直接写出的值(用含k的代数式表示).26.(12分)把函数C1:y=ax2﹣2ax﹣3a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数.C2的图象的对称轴与x轴交点坐标为(t,0).(1)填空:t的值为(用含m的代数式表示)(2)若a=﹣1,当≤x≤t时,函数C1的最大值为y1,最小值为y2,且y1﹣y2=1,求C2的解析式;(3)当m=0时,C2的图象与x轴相交于A,B两点(点A在点B的右侧).与y轴相交于点D.把线段AD原点O逆时针旋转90°,得到它的对应线段A′D′,若线A′D′与C2的图象有公共点,结合函数图象,求a的取值范围.2019年辽宁省大连市中考数学试卷参考答案与试题解析一、选择题(本题共10小題,每小題3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.(3分)﹣2的绝对值是()A.2B.C.﹣D.﹣2【分析】根据绝对值是实数轴上的点到原点的距离,可得答案.【解答】解:﹣2的绝对值是2.故选:A.【点评】本题考查了绝对值,正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值等于0.2.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:左视图有3列,每列小正方形数目分别为2,1,1.故选:B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(3分)2019年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重58000kg,将数58000用科学记数法表示为()A.58×103B.5.8×103C.0.58×105D.5.8x104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数58000用科学记数法表示为5.8×104.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为()A.(3,﹣1)B.(3,3)C.(1,1)D.(5,1)【分析】根据向下平移,横坐标不变、纵坐标相减列式计算即可得解.【解答】解:将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为(3,1﹣2),即(3,﹣1),故选:A.【点评】本题考查了坐标与图形变化﹣平移,熟记平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.5.(3分)不等式5x+1≥3x﹣1的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:5x+1≥3x﹣1,移项得5x﹣3x≥﹣1﹣1,合并同类项得2x≥﹣2,系数化为1得,x≥﹣1,在数轴上表示为:故选:B.【点评】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等腰三角形B.等边三角形C.菱形D.平行四边形【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误;B、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;C、菱形既是轴对称图形,又是中心对称图形,故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形,故本选项错误.故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.(3分)计算(﹣2a)3的结果是()A.﹣8a3B.﹣6a3C.6a3D.8a3【分析】利用积的乘方的性质求解即可求得答案.【解答】解:(﹣2a)3=﹣8a3;故选:A.【点评】此题考查了积的乘方的性质.此题比较简单,注意掌握指数的变化是解此题的关键.8.(3分)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为()A.B.C.D.【分析】用列表法或树状图法可以列举出所有等可能出现的结果,然后看符合条件的占总数的几分之几即可.【解答】解:两次摸球的所有的可能性树状图如下:∴P两次都是红球=.故选:D.【点评】考查用树状图或列表法求等可能事件发生的概率,关键是列举出所有等可能出现的结果数,然后用分数表示,同时注意“放回”与“不放回”的区别.9.(3分)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕为EF,若AB=4,BC =8.则D′F的长为()A.2B.4C.3D.2【分析】由矩形的性质得出∠B=∠D=90°,CD=AB=4,AD∥BC,得出∠AFE=∠CEF,由折叠的性质得:∠AEF=∠CEF,AE=CE,∠D'=∠D=90°,AD'=CD=4,∠AFE=∠AEF,得出AF=AE=CE,设AF=AE=CE=x,则BE=8﹣x,在Rt△ABE 中,由勾股定理得出方程,解方程得出AF=5,在Rt△AFD'中,由勾股定理即可得出结果.【解答】解:∵四边形ABCD是矩形,∴∠B=∠D=90°,CD=AB=4,AD∥BC,∴∠AFE=∠CEF,由折叠的性质得:∠AEF=∠CEF,AE=CE,∠D'=∠D=90°,AD'=CD=4,∴∠AFE=∠AEF,∴AF=AE=CE,设AF=AE=CE=x,则BE=8﹣x,在Rt△ABE中,由勾股定理得:AB2+BE2=AE2,即42+(8﹣x)2=x2,解得:x=5,∴AF=5,在Rt△AFD'中,由勾股定理得:D'F===3;故选:C.【点评】本题考查了折叠的性质、矩形的性质、等腰三角形的判定、勾股定理等知识,熟练掌握折叠的性质,由勾股定理得出方程是解题的关键.10.(3分)如图,抛物线y=﹣x2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为2.【分析】利用二次函数图象上点的坐标特征可求出点A,B,C,D的坐标,由点A,D 的坐标,利用待定系数法可求出直线AD的解析式,利用一次函数图象上点的坐标特征可求出点E的坐标,再利用二次函数图象上点的坐标特征可得出点P,Q的坐标,进而可求出线段PQ的长.【解答】解:当y=0时,﹣x2+x+2=0,解得:x1=﹣2,x2=4,∴点A的坐标为(﹣2,0);当x=0时,y=﹣x2+x+2=2,∴点C的坐标为(0,2);当y=2时,﹣x2+x+2=2,解得:x1=0,x2=2,∴点D的坐标为(2,2).设直线AD的解析式为y=kx+b(k≠0),将A(﹣2,0),D(2,2)代入y=kx+b,得:,解得:,∴直线AD的解析式为y=x+1.当x=0时,y=x+1=1,∴点E的坐标为(0,1).当y=1时,﹣x2+x+2=1,解得:x1=1﹣,x2=1+,∴点P的坐标为(1﹣,1),点Q的坐标为(1+,1),∴PQ=1+﹣(1﹣)=2.故答案为:2.【点评】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,利用二次函数图象上点的坐标特征求出点P,Q的坐标是解题的关键.二、填空题(本题共6小题,每小題分,共18分)11.(3分)如图AB∥CD,CB∥DE,∠B=50°,则∠D=130°.【分析】首先根据平行线的性质可得∠B=∠C=50°,再根据BC∥DE可根据两直线平行,同旁内角互补可得答案.【解答】解:∵AB∥CD,∴∠B=∠C=50°,∵BC∥DE,∴∠C+∠D=180°,∴∠D=180°﹣50°=130°,故答案为:130.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.两直线平行,内错角相等.12.(3分)某男子足球队队员的年龄分布如图所示,这些队员年龄的众数是25.【分析】根据条形统计图找到最高的条形图所表示的年龄数即为众数.【解答】解:观察条形统计图知:为25岁的最多,有8人,故众数为25岁,故答案为:25.【点评】考查了众数的定义及条形统计图的知识,解题的关键是能够读懂条形统计图及了解众数的定义,难度较小.13.(3分)如图,△ABC是等边三角形,延长BC到点D,使CD=AC,连接AD.若AB =2,则AD的长为2.【分析】AB=AC=BC=CD,即可求出∠BAD=90°,∠D=30°,解直角三角形即可求得.【解答】解:∵△ABC是等边三角形,∴∠B=∠BAC=∠ACB=60°,∵CD=AC,∴∠CAD=∠D,∵∠ACB=∠CAD+∠D=60°,∴∠CAD=∠D=30°,∴∠BAD=90°,∴AD===2.故答案为2.【点评】本题考查了等边三角形的性质,等腰三角形的性质以及解直角三角形等,证得△ABD是含30°角的直角三角形是解题的关键.14.(3分)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意,可列方程组为.【分析】设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据“5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛”即可得出关于x、y的二元一次方程组.【解答】解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意得:,故答案为.【点评】本题考查了由实际问题抽象出二元一次方程组,根据数量关系列出关于x、y的二元一次方程组是解题的关键.15.(3分)如图,建筑物C上有一杆AB.从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为3m(结果取整数,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33).【分析】根据正切的定义分别求出AC、BC,结合图形计算即可.【解答】解:在Rt△BCD中,tan∠BDC=,则BC=CD•tan∠BDC=10,在Rt△ACD中,tan∠ADC=,则AC=CD•tan∠ADC≈10×1.33=13.3,∴AB=AC﹣BC=3.3≈3(m),故答案为:3.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.16.(3分)甲、乙两人沿同一条直路走步,如果两人分别从这条多路上的A,B两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:m)与行走时x(单位:min)的函数图象,图2是甲、乙两人之间的距离(单位:m)与甲行走时间x (单位;min)的函数图象,则a﹣b=.【分析】从图1,可见甲的速度为=60,从图2可以看出,当x=时,二人相遇,即:(60+V已)×=120,解得:已的速度V已=80,已的速度快,从图2看出已用了b 分钟走完全程,甲用了a分钟走完全程,即可求解.【解答】解:从图1,可见甲的速度为=60,从图2可以看出,当x=时,二人相遇,即:(60+V已)×=120,解得:已的速度V=80,已∵已的速度快,从图2看出已用了b分钟走完全程,甲用了a分钟走完全程,a﹣b==,故答案为.【点评】本题考查了一次函数的应用,把一次函数和行程问题结合在一起,关键是能正确利用待定系数法求一次函数的解析式,明确三个量的关系:路程=时间×速度.三、解答题(本题共4小题,17、18、19题各9分,20题12分,共39分)17.(9分)计算:(﹣2)2++6【分析】直接利用完全平方公式以及结合二次根式的性质化简进而得出答案.【解答】解:原式=3+4﹣4+2+6×=3+4﹣4+2+2=7.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.18.(9分)计算:÷+【分析】直接利用分式的乘除运算法则化简,进而利用分式的加减运算法则计算得出答案;【解答】解:原式=×﹣=﹣=.【点评】此题主要考查了分式的混合运算,正确化简是解题关键.19.(9分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.【分析】利用SAS定理证明△ABF≌△DCE,根据全等三角形的性质证明结论.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS)∴AF=DE.【点评】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.20.(12分)某校为了解八年级男生“立定跳远”成绩的情况,随机选取该年级部分男生进行测试,以下是根据测试成绩绘制的统计图表的一部分.成绩等级频数(人)频率优秀150.3良好及格不及格5根据以上信息,解答下列问题(1)被测试男生中,成绩等级为“优秀”的男生人数为15人,成绩等级为“及格”的男生人数占被测试男生总人数的百分比为90%;(2)被测试男生的总人数为50人,成绩等级为“不及格”的男生人数占被测试男生总人数的百分比为10%;(3)若该校八年级共有180名男生,根据调查结果,估计该校八年级男生成绩等级为“良好”的学生人数.【分析】(1)由统计图表可知,成绩等级为“优秀”的男生人数为15人,被测试男生总数15÷0.3=50(人),成绩等级为“及格”的男生人数占被测试男生总人数的百分比:;(2)被测试男生总数15÷0.3=50(人),成绩等级为“不及格”的男生人数占被测试男生总人数的百分比:;(3)由(1)(2)可知,优秀30%,及格20%,不及格10%,则良好40%,该校八年级男生成绩等级为“良好”的学生人数180×40%=72(人).【解答】解:(1)由统计图表可知,成绩等级为“优秀”的男生人数为15人,被测试男生总数15÷0.3=50(人),成绩等级为“及格”的男生人数占被测试男生总人数的百分比:,故答案为15,90;(2)被测试男生总数15÷0.3=50(人),成绩等级为“不及格”的男生人数占被测试男生总人数的百分比:,故答案为50,10;(3)由(1)(2)可知,优秀30%,及格20%,不及格10%,则良好40%,该校八年级男生成绩等级为“良好”的学生人数180×40%=72(人)答:该校八年级男生成绩等级为“良好”的学生人数72人.【点评】本题考查的是表格统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.表格统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.四、解答题(本共3小,其中21、22题各分,23题10分,共28分)21.(9分)某村2016年的人均收入为20000元,2018年的人均收入为24200元(1)求2016年到2018年该村人均收入的年平均增长率;(2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2019年村该村的人均收入是多少元?【分析】(1)设2016年到2018年该村人均收入的年平均增长率为x,根据某村2016年的人均收入为20000元,2018年的人均收入为24200元,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由2019年村该村的人均收入=2018年该村的人均收入×(1+年平均增长率),即可得出结论.【解答】解:(1)设2016年到2018年该村人均收入的年平均增长率为x,根据题意得:20000(1+x)2=24200,解得:x1=0.1=10%,x2=﹣2.1(不合题意,舍去).答:2016年到2018年该村人均收入的年平均增长率为10%.(2)24200×(1+10%)=26620(元).答:预测2019年村该村的人均收入是26620元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.22.(9分)如图,在平面直角坐标系xOy中,点A(3,2)在反比例函数y=(x>0)的图象上,点B在OA的廷长线上,BC⊥x轴,垂足为C,BC与反比例函数的图象相交于点D,连接AC,AD.(1)求该反比例函数的解析式;(2)若S△ACD=,设点C的坐标为(a,0),求线段BD的长.【分析】(1)把点A(3,2)代入反比例函数y=,即可求出函数解析式;(2)直线OA的关系式可求,由于点C(a,0),可以表示点B、D的坐标,根据S△ACD =,建立方程可以解出a的值,进而求出BD的长.【解答】解:(1)∵点A(3,2)在反比例函数y=(x>0)的图象上,∴k=3×2=6,∴反比例函数y=;答:反比例函数的关系式为:y=;(2)过点A作AE⊥OC,垂足为E,连接AC,设直线OA的关系式为y=kx,将A(3,2)代入得,k=,∴直线OA的关系式为y=x,∵点C(a,0),把x=a代入y=x,得:y=a,把x=a代入y=,得:y=,∴B(a,),即BC═a,D(a,),即CD=∵S△ACD=,∴CD•EC=,即,解得:a=6,∴BD=BC﹣CD==3;答:线段BD的长为3.【点评】考查正比例函数的图象和性质、反比例函数的图象和性质,将点的坐标转化为线段的长,利用方程求出所设的参数,进而求出结果是解决此类问题常用的方法.23.(10分)如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP(1)求证:∠BAC=2∠ACD;(2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径.【分析】(1)作DF⊥BC于F,连接DB,根据切线的性质得到∠P AC=90°,根据圆周角定理得到∠ADC=90°,得到∠DBC=∠DCB,得到DB=DC,根据线段垂直平分线的性质、圆周角定理证明即可;(2)根据垂径定理求出FC,证明△DEC≌△CFD,根据全等三角形的性质得到DE=FC =3,根据射影定理计算即可.【解答】(1)证明:作DF⊥BC于F,连接DB,∵AP是⊙O的切线,∴∠P AC=90°,即∠P+∠ACP=90°,∵AC是⊙O的直径,∴∠ADC=90°,即∠PCA+∠DAC=90°,∴∠P=∠DAC=∠DBC,∵∠APC=∠BCP,∴∠DBC=∠DCB,∴DB=DC,∵DF⊥BC,∴DF是BC的垂直平分线,∴DF经过点O,∵OD=OC,∴∠ODC=∠OCD,∵∠BDC=2∠ODC,∴∠BAC=∠BDC=2∠ODC=2∠OCD;(2)解:∵DF经过点O,DF⊥BC,∴FC=BC=3,在△DEC和△CFD中,,∴△DEC≌△CFD(AAS)∴DE=FC=3,∵∠ADC=90°,DE⊥AC,∴DE2=AE•EC,则EC==,∴AC=2+=,∴⊙O的半径为.【点评】本题考查的是切线的性质、全等三角形的判定和性质、垂径定理、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.五、解答题(本题共3小题,其中24题11分,25、26題各12分,共35分)24.(11分)如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴,y轴分别相交于点A,B,点C在射线BO上,点D在射线BA上,且BD=OC,以CO,CD为邻边作▱COED.设点C的坐标为(0,m),▱COED在x轴下方部分的面积为S.求:(1)线段AB的长;(2)S关于m的函数解析式,并直接写出自变量m的取值范围.【分析】(1)由直线y=﹣x+3与令x=0,或y=0,分别求出对应的y、x的值,从而确定A、B两点的坐标;(2)分两种情况进行分别探究,①当<m≤3时,②当0<m≤时,分别画出相应的图象,根据三角形相似,求出相应的边的长用含有m的代数式表示,再表示面积,从而确定在不同情况下S与m的函数解析式.【解答】解:(1)当x=0时,y=3,当y=0时,x=4,∴直线y=﹣x+3与x轴点交A(4,0),与y轴交点B(0,3)∴OA=4,OB=3,∴AB=,因此:线段AB的长为5.(2)当CD∥OA时,如图,∵BD=OC,OC=m,∴BD=m,由△BCD∽△BOA得:,即:,解得:m=;①当<m≤3时,如图1所示:过点D作DF⊥OB,垂足为F,此时在x轴下方的三角形与△CDF全等,∵△BDF∽△BAO,∴,∴DF=,同理:BF=m,∴CF=2m﹣3,∴S△CDF==(2m﹣3)×=m2﹣2m,即:S=m2﹣2m,(<m≤3)②当0<m≤时,如图2所示:DE=m≤,此时点E在△AOB的内部,S=0 (0<m≤);③当﹣3<m≤0时,如图3所示:同理可得:点D(﹣m,m+3)设直线CD关系式为y=kx+b,把C(0,m)、D(﹣m,m+3)代入得:,解得:k=﹣,b=m,直线CD关系式为y=﹣x+m,当y=0时,0=﹣x+m,解得x=m2F(,0)∴S△COF=OC•OF=(﹣m)×=﹣m3,即:S=﹣m3,(﹣3<m≤0)④当m<﹣3时,如图4所示:同理可得:点D(﹣m,m+3)此时,DF=﹣m﹣3,OC=﹣m,OF=﹣,∴S梯形OCDF=(﹣m﹣3﹣m)×(﹣)=即:S=(m<﹣3)综上所述:S与m的函数关系式为:S=.【点评】考查了平行四边形的性质、相似三角形的性质,全等三角形等知识,分类讨论,分别探究在不同情况下,存在的不同函数解析式,根据不同情况,画出相应的图形,再利用所学的知识探究出不同函数解析式.25.(12分)阅读下面材料,完成(1)﹣(3)题数学课上,老师出示了这样一道题:如图1,△ABC中,∠BAC=90°,点D、E在BC 上,AD=AB,AB=kBD(其中<k<1)∠ABC=∠ACB+∠BAE,∠EAC的平分线与BC相交于点F,BG⊥AF,垂足为G,探究线段BG与AC的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠BAE与∠DAC相等.”小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系.”……老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出的值.”(1)求证:∠BAE=∠DAC;(2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明;(3)直接写出的值(用含k的代数式表示).【分析】(1)利用三角形的外角性质可求解;(2)由直角三角形的性质和角平分线的性质可得AF=FC,AF=BF,通过证明△ABG ∽△BCA和△ABF∽△BAD,利用相似三角形的性质可求解;(3)通过证明△ABH∽△ACB,可得AB2=AC×AH,设BD=m,AB=km,由勾股定理可求AC的长,可求AH,HC的长,即可求解.【解答】证明:(1)∵AB=AD∴∠ABD=∠ADB∵∠ADB=∠ACB+∠DAC,∠ABD=∠ABC=∠ACB+∠BAE∴∠BAE=∠DAC(2)设∠DAC=α=∠BAE,∠C=β∴∠ABC=∠ADB=α+β∵∠ABC+∠C=α+β+β=α+2β=90°,∠BAE+∠EAC=90°=α+∠EAC∴∠EAC=2β∵AF平分∠EAC∴∠F AC=∠EAF=β∴∠F AC=∠C,∠ABE=∠BAF=α+β∴AF=FC,AF=BF∴AF=BC=BF∵∠ABE=∠BAF,∠BGA=∠BAC=90°∴△ABG∽△BCA∴∵∠ABE=∠BAF,∠ABE=∠AFB∴△ABF∽△BAD∴,且AB=kBD,AF=BC=BF∴k=,即∴(3)∵∠ABE=∠BAF,∠BAC=∠AGB=90°∴∠ABH=∠C,且∠BAC=∠BAC∴△ABH∽△ACB∴∴AB2=AC×AH设BD=m,AB=km,∵∴BC=2k2m∴AC==km∴AB2=AC×AH(km)2=km×AH∴AH=∴HC=AC﹣AH=km﹣=∴【点评】本题是相似形综合题,考查了相似三角形的判定和性质,直角三角形的性质,灵活运用相似三角形的判定是本题的关键.26.(12分)把函数C1:y=ax2﹣2ax﹣3a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数.C2的图象的对称轴与x轴交点坐标为(t,0).。
2019年辽宁省大连市中考数学试卷(答案解析版)
![2019年辽宁省大连市中考数学试卷(答案解析版)](https://img.taocdn.com/s3/m/11645585f01dc281e43af097.png)
【解析】
解:5x+1≥3x-1,
移 项得5x-3x≥-1-1,
合并同类项得2x≥-2,
系数化 为1得,x≥-1,
在数轴上表示 为:
故选:B.
先求出不等式的解集,再在数 轴上表示出来即可.
本题考查了在数 轴上表示不等式的解集,把每个不等式的解集在数 轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数 轴 的某一段上面表示解集的 线的条数与不等式的个数一 样,那么这 段就是不等 式组的解集.有几个就要几个.在表示解集时“≥,”“≤要”用实心圆点表示;“<”,“>”要用空心圆点表示.
A. B. C.在平面直角坐标系中,将点P(3,1)向下平移 2个单位长度, 标为( )
A. B. C.
不等式5x+1 ≥3x-1的解集在数轴上表示正确的是
A.
B.
D.
得到的点P′的坐
D.
C.
下列所述图形中,既是轴对称图形又是中心对称图形的是(
A.等腰三角形B.等边三角形
计算(-2a)3的结果是()
答案和解析
1.【答案】A
【解析】
解:-2的绝对值是2.
故选:A.
根据绝对值 是实数轴上的点到原点的距离,可得答案. 本题考查了绝对值,正数的绝对值 等于它本身;负数的绝对值 等于它的相反 数;0的绝对值等于0.
2.【答案】B
【解析】
解:左视图有3列,每列小正方形数目分 别为2,1,1.
故选:B.
找到从正面看所得到的 图形即可,注意所有的看到的棱都 应表现在主视图 中. 本题考查了三视图的知识,主视图 是从物体的正面看得到的 视图 .
25.阅读下面材料,完成( 1) -(3)题
2019年大连市中考数学模拟试题及参考答案
![2019年大连市中考数学模拟试题及参考答案](https://img.taocdn.com/s3/m/2024ea294a7302768e9939f2.png)
2019年大连市中考模拟试题数学试卷第Ⅰ卷(选择题)一、选择题(每小题3分,共24分)1.(3分)已知mn<0且1﹣m>1﹣n>0>n+m+1,那么n,m ,,的大小关系是()A .B .C .D .2.(3分)如图是某几何体的三视图,则该几何体的全面积等于()A.112 B.136 C.124 D.843.(3分)观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A .B .C .D .4.(3分)若5x=125y,3y=9z,则x:y:z等于()A.1:2:3 B.3:2:1 C.1:3:6 D.6:2:15.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④6.(3分)不透明的袋子里装有2个红球和1个白球,这些球除了颜色外都相同.从中任意摸一个,放回摇匀,再从中摸一个,则两次摸到球的颜色相同的概率是()A .B .C .D .7.(3分)如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)8.(3分)梯形的两底角之和为90°,上底长为5,下底长为11,则连接两底中点的线段长是()A.3 B.4 C.5 D.6二、填空题(每小题3分,共24分)9.(3分)计算:﹣÷=.10.(3分)一组数据1、3、4、5、x、9的众数和中位数相同,那么x的值是.11.(3分)一个多边形的内角和等于1260°,则它的对角线的条数为.12.(3分)半圆形纸片的半径为1cm,用如图所示的方法将纸片对折,使对折后半圆弧的中点M与圆心O重合,则折痕CD的长为cm.13.(3分)已知关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,则m 的取值范围是.14.(3分)我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x,y人,则可以列方程组.15.(3分)如图,在一笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C 在码头A北偏东60°的方向,在码头B北偏西45°的方向,AC=4km.游客小张准备从观光岛屿C乘船沿CA回到码头A或沿CB回到码头B,设开往码头A、B的游船速度分别为v1、v2,若回到A、B所用时间相等,则=(结果保留根号).16.(3分)直线y=3x﹣1与直线y=x﹣k的交点在第四象限,k的取值范围是.三、解答题(17-19题各9分,20题12分,共39分)17.(9分)已知x=,y=,且19x2+123xy+19y2=1985.试求正整数n.18.(9分)解关于x 的不等式组:,其中a为参数.19.(9分)在▱ABCD中,E是AD上一点,AE=AB,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.(1)如图1,当EF与AB相交时,若∠EAB=60°,求证:EG=AG+BG;(2)如图2,当EF与AB相交时,若∠EAB=α(0°<α<90°),请你直接写出线段EG、AG、BG之间的数量关系(用含α的式子表示);(3)如图3,当EF与CD相交时,且∠EAB=90°,请你写出线段EG、AG、BG之间的数量关系,并证明你的结论.20.(12分)某校计划成立学生社团,要求每一位学生都选择一个社团,为了了解学生对不同社团的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个学生社团”问卷调查,规定每人必须并且只能在“文学社团”、“科学社团”、“书画社团”、“体育社团”和“其他”五项中选择一项,并将统计结果绘制了如下两个不完整的统计图表. 社团名称 人数 文学社团 18 科技社团 a 书画社团 45体育社团 72 其他b请解答下列问题:(1)a= ,b= ;(2)在扇形统计图中,“书画社团”所对应的扇形圆心角度数为 ; (3)若该校共有3000名学生,试估计该校学生中选择“文学社团”的人数.四、解答题(21、22小题各9分,23题10分,共28分) 21.(9分)甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?22.(9分)如图,在△AOB中,∠ABO=90°,OB=4,AB=8,反比例函数y=在第一象限内的图象分别交OA,AB于点C和点D,且△BOD的面积S△BOD=4.(1)求直线AO的解析式;(2)求反比例函数解析式;(3)求点C的坐标.23.(10分)如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC,BC于点D,E,BC的延长线与⊙O的切线AF交于点F.(1)求证:∠ABC=2∠CAF;(2)若AC=2,CE:EB=1:4,求CE,AF的长.五、解答题(24题11分,25、26题各12分,共35分)24.(11分)等腰直角三角形ABC中,∠BAC=90°,BC=12,点M为BC中点,含45°的直角三角板的锐角顶点与M重合,当三角板绕点M旋转时,三角板与两直角边交于点P、Q.P、Q分别在AB、AC边上,设BP=x,CQ=y.(1)求y与x的函数关系式;(2)写出x的取值范围.25.(12分)我们定义:如图1,在△ABC看,把AB点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.26.(12分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M (1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.试题解析一、选择题(每小题3分,共24分)1.(3分)已知mn<0且1﹣m>1﹣n>0>n+m+1,那么n,m ,,的大小关系是()A .B .C .D .【解答】解:∵mn<0,∴m,n异号,由1﹣m>1﹣n>0>n+m+1,可知m<0,0<n<1,|m|>|n|.假设符合条件的m=﹣4,n=0.2则=5,n +=0.2﹣=﹣则﹣4<﹣<0.2<5故m<n +<n <.故选D.2.(3分)如图是某几何体的三视图,则该几何体的全面积等于()A.112 B.136 C.124 D.84【解答】解:如图:由勾股定理=3,3×2=6,6×4÷2×2+5×7×2+6×7=24+70+42=136.故该几何体的全面积等于136.3.(3分)观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A .B .C .D .【解答】解:由上式可知+++…+=(1﹣)=.故选A.4.(3分)若5x=125y,3y=9z,则x:y:z等于()A.1:2:3 B.3:2:1 C.1:3:6 D.6:2:1【解答】解:∵5x=(53)y=53y,3y=(32)z=32z,∴x=3y,y=2z,即x=3y=6z;设z=k,则y=2k,x=6k;(k≠0)∴x:y:z=6k:2k:k=6:2:1.故选D.5.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④【解答】解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.6.(3分)不透明的袋子里装有2个红球和1个白球,这些球除了颜色外都相同.从中任意摸一个,放回摇匀,再从中摸一个,则两次摸到球的颜色相同的概率是()A .B .C .D .【解答】解:易得共有3×3=9种可能,两次摸到球的颜色相同的有5种,所以概率是.故选B.7.(3分)如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)【解答】解:由题意可知此题规律是(x+2,y﹣3),照此规律计算可知顶点P(﹣4,﹣1)平移后的坐标是(﹣2,﹣4).故选A.8.(3分)梯形的两底角之和为90°,上底长为5,下底长为11,则连接两底中点的线段长是()A.3 B.4 C.5 D.6【解答】解:如图梯形ABCD,AD∥BC,∠B+∠C=90°,AD=5,BC=11,E,F分别是AD,BC的中点.作EM∥AB,EN∥CD,分别交BC于M、N.∵EM∥AB,EN∥CD,∴∠B=∠EMN,∠C=∠ENM,∵AD∥BC,∴四边形AEMB是平行四边形,四边形EDCN是平行四边形,∴AE=BM,ED=NC,∵∠B+∠C=90°.∴∠EMN+∠ENM=90°,∴△EMN为直角三角形,∵BF=FC,BM=AE,NC=ED,AE=ED,∴BM=NC,∴MF=FN,∴F点为线段MN的中点,∵△MEN为直角三角形,∴EF=MN,∵MN=BC﹣BM﹣NC=BC﹣AE﹣ED=BC﹣(AE+ED)=BC﹣AD,∴EF=(BC﹣AD),∵AD=5,BC=11∴EF=3,故选A.二、填空题(每小题3分,共24分)9.(3分)计算:﹣÷=﹣.【解答】解:原式=﹣×3=﹣,故答案为:﹣10.(3分)一组数据1、3、4、5、x、9的众数和中位数相同,那么x的值是4.【解答】解:数据共有6个,中位数应是从业到大排列后的第3个和第4个数据的平均数,由题意知,第4个数可能是4或5,当是4时,中位数是4,当是5时,中位数是4.5,由题意知,x只能是4时,才能满足题意.故填4.11.(3分)一个多边形的内角和等于1260°,则它的对角线的条数为27.【解答】解:设此多边形的边数为n,则(n﹣2)•180°=1260°,解得n=9,此多边形的边数为9.则它的对角线的条数为:=27条.故答案为27.12.(3分)半圆形纸片的半径为1cm,用如图所示的方法将纸片对折,使对折后半圆弧的中点M与圆心O重合,则折痕CD的长为cm.【解答】解:作MO交CD于E,则MO⊥CD,连接CO,对折后半圆弧的中点M与圆心O重合,则ME=OE=OC ,在直角三角形COE中,CE==,折痕CD的长为2×=(cm).13.(3分)已知关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,则m 的取值范围是m>﹣1.【解答】解:整理方程得:x2﹣2x﹣m=0∴a=1,b=﹣2,c=﹣m,方程有两个不相等的实数根,∴△=b2﹣4ac=4+4m>0,∴m>﹣1.14.(3分)我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x,y人,则可以列方程组.【解答】解:设大、小和尚各有x ,y人,则可以列方程组:.故答案为:.15.(3分)如图,在一笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C 在码头A北偏东60°的方向,在码头B北偏西45°的方向,AC=4km.游客小张准备从观光岛屿C乘船沿CA回到码头A或沿CB回到码头B,设开往码头A、B的游船速度分别为v1、v2,若回到A、B 所用时间相等,则=(结果保留根号).【解答】解:作CD⊥AB于点B.∵在Rt△ACD中,∠CAD=90°﹣60°=30°,∴CD=AC•sin∠CAD=4×=2(km),∵Rt△BCD中,∠CBD=90°,∴BC=CD=2(km),∴===.故答案是:.16.(3分)直线y=3x﹣1与直线y=x﹣k的交点在第四象限,k的取值范围是<k<1.【解答】解:解方程组,得.∵交点在第四象限,∴,解得:<k<1.三、解答题(17-19题各9分,20题12分,共39分)17.(9分)已知x=,y=,且19x2+123xy+19y2=1985.试求正整数n.【解答】解:化简x 与y得:x=,y=,∴x+y=4n+2,xy=1,∴将xy=1代入方程,化简得:x2+y2=98,∴(x+y)2=x2+y2+2xy=98+2×1=100,∴x+y=10.∴4n+2=10,解得n=2.18.(9分)解关于x的不等式组:,其中a为参数.【解答】解:,解不等式①得:﹣3a<5x≤1﹣3a,﹣a<x ≤,解不等式②得:3a<5x≤1+3a,a<x ≤,∵当﹣a=a时,a=0,当=时,a=0,当﹣a=时,a=﹣,当a=时,a=,∴当或时,原不等式组无解;当时,原不等式组的解集为:;当时,原不等式组的解集为:.19.(9分)在▱ABCD中,E是AD上一点,AE=AB,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.(1)如图1,当EF与AB相交时,若∠EAB=60°,求证:EG=AG+BG;(2)如图2,当EF与AB相交时,若∠EAB=α(0°<α<90°),请你直接写出线段EG、AG、BG之间的数量关系(用含α的式子表示);(3)如图3,当EF与CD相交时,且∠EAB=90°,请你写出线段EG、AG、BG之间的数量关系,并证明你的结论.【解答】(1)证明:如图,作∠GAH=∠EAB交GE于点H.∴∠GAB=∠HAE.∵∠EAB=∠EGB,∠APE=∠BPG,∴∠ABG=∠AEH.在△ABG和△AEH中,,∴△ABG≌△AEH(ASA).∴BG=EH,AG=AH.∵∠GAH=∠EAB=60°,∴△AGH是等边三角形.∴AG=HG.∴EG=AG+BG.(2)如图,作∠GAH=∠EAB交GE于点H.作AM⊥EG于点M,∴∠GAB=∠HAE.∵∠EAB=∠EGB,∠APE=∠BPG,∴∠ABG=∠AEH.在△ABG和△AEH中,,∴△ABG≌△AEH(ASA).∴BG=EH,AG=AH.∵∠GAH=∠EAB=α,∴GM=MH=GH,∠GAM=∠HAM=α,∵GM=MH=AG•sin,∴EG=GH+BG.∴.(3).如图,作∠GAH=∠EAB交GE于点H.∴∠GAB=∠HAE.∵∠EGB=∠EAB=90°,∴∠ABG+∠AEG=∠AEG+∠AEH=180°.∴∠ABG=∠AEH.∵又AB=AE,∴△ABG≌△AEH.∴BG=EH,AG=AH.∵∠GAH=∠EAB=90°,∴△AGH是等腰直角三角形.∴AG=HG.∴.20.(12分)某校计划成立学生社团,要求每一位学生都选择一个社团,为了了解学生对不同社团的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个学生社团”问卷调查,规定每人必须并且只能在“文学社团”、“科学社团”、“书画社团”、“体育社团”和“其他”五项中选择一项,并将统计结果绘制了如下两个不完整的统计图表.社团名称人数文学社团18科技社团a书画社团45体育社团 72 其他b请解答下列问题:(1)a= 36,b= 9 ;(2)在扇形统计图中,“书画社团”所对应的扇形圆心角度数为 90° ; (3)若该校共有3000名学生,试估计该校学生中选择“文学社团”的人数.【解答】解:(1)调查的总人数是72÷40%=180(人), 则a=180×20%=36(人), 则b=180﹣18﹣45﹣72﹣36=9. 故答案是:36,9;(2)“书画社团”所对应的扇形圆心角度数是360×=90°;(3)估计该校学生中选择“文学社团”的人数是3000×=300(人).四、解答题(21、22小题各9分,23题10分,共28分)21.(9分)甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?【解答】解:设甲公司人均捐款x 元,则乙公司人均捐款x +20元,×=解得:x=80,经检验,x=80为原方程的根, 80+20=100(元)答:甲、乙两公司人均捐款分别为80元、100元.22.(9分)如图,在△AOB 中,∠ABO=90°,OB=4,AB=8,反比例函数y=在第一象限内的图象分别交OA ,AB于点C 和点D ,且△BOD 的面积S △BOD =4. (1)求直线AO 的解析式; (2)求反比例函数解析式;(3)求点C 的坐标.【解答】解:(1)∵OB=4,AB=8,∠ABO=90°, ∴A 点坐标为(4,8), 设直线AO 的解析式为y=kx , 则4k=8,解得k=2,即直线AO 的解析式为y=2x ;(2)∵OB=4,S △BOD =4,∠ABO=90°, ∴D 点坐标为(4,2),点D(4,2)代入y=,则2=,解得k=8,∴反比例函数解析式为y=;(3)直线y=2x与反比例函数y=构成方程组为,解得,(舍去),∴C点坐标为(2,4).23.(10分)如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC,BC于点D,E,BC的延长线与⊙O的切线AF交于点F.(1)求证:∠ABC=2∠CAF;(2)若AC=2,CE:EB=1:4,求CE,AF的长.【解答】(1)证明:如图,连接BD.∵AB为⊙O的直径,∴∠ADB=90°,∴∠DAB+∠ABD=90°.∵AF是⊙O的切线,∴∠FAB=90°,即∠DAB+∠CAF=90°.∴∠CAF=∠ABD.∵BA=BC,∠ADB=90°,∴∠ABC=2∠ABD.∴∠ABC=2∠CAF.(2)解:如图,连接AE.∴∠AEB=90°.设CE=x,∵CE:EB=1:4,∴EB=4x,BA=BC=5x,AE=3x.在Rt△ACE中,AC2=CE2+AE2.即(2)2=x2+(3x)2.∴x=2.∴CE=2,∴EB=8,BA=BC=10,AE=6.∵tan∠ABF=.∴.∴AF=.五、解答题(24题11分,25、26题各12分,共35分)24.(11分)等腰直角三角形ABC中,∠BAC=90°,BC=12,点M为BC中点,含45°的直角三角板的锐角顶点与M重合,当三角板绕点M旋转时,三角板与两直角边交于点P、Q.P、Q分别在AB、AC边上,设BP=x,CQ=y.(1)求y与x的函数关系式;(2)写出x的取值范围.【解答】解:(1)∵M为BC中点,∴BM=CM=BC=×12=6.∵△ABC是等腰直角三角形,∴∠B=∠C=∠PMQ=45°,∵△BPM中,∠B+∠BPM+∠BMP=180°,则∠BPM+∠BMP=135°,又∵∠BMP+∠PMQ+∠QMC=180°,则∠BMP+∠QMC=135°,∴∠BPM=∠QMC,又∵∠B=∠C,∴△BPM∽△CMQ,∴,即,∴y=;(2)直角△ABC中,AB=BC•sin45°=12×=6,则0<x≤6.25.(12分)我们定义:如图1,在△ABC看,把AB点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为4.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.【解答】解:(1)①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;理由:∵△ABC是等边三角形,∴AB=BC=AC=AB′=AC′,∵DB′=DC′,∴AD⊥B′C′,∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,∴AD=AB′=BC,故答案为.②如图3,当∠BAC=90°,BC=8时,则AD长为4.理由:∵∠BAC=90°,∠BAC+∠B′AC′=180°,∴∠B′AC′=∠BAC=90°,∵AB=AB′,AC=AC′,∴△BAC≌△B′AC′,∴BC=B′C′,∵B′D=DC′,∴AD=B′C′=BC=4,故答案为4.(2)猜想.证明:如图,延长AD至点Q,则△DQB'≌△DAC',∴QB'=AC',QB'∥AC',∴∠QB'A+∠B'AC'=180°,∵∠BAC+∠B'AC'=180°,∴∠QB'A=∠BAC,又由题意得到QB'=AC'=AC,AB'=AB,∴△AQB'≌△BCA,∴AQ=BC=2AD,即.26.(12分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M (1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x +)2﹣,∴抛物线顶点D 的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x﹣1)(ax+2a﹣2)=0,解得x=1或x=﹣2,∴N 点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<0,如图1,设抛物线对称轴交直线于点E,∵抛物线对称轴为x=﹣=﹣,∴E (﹣,﹣3),∵M(1,0),N (﹣2,﹣6),设△DMN的面积为S,∴S=S△DEN+S△DEM=|(﹣2)﹣1|•|﹣﹣(﹣3)|=,(3)当a=﹣1时,抛物线的解析式为:y=﹣x2﹣x+2=﹣(x ﹣)2+,有,﹣x2﹣x+2=﹣2x,解得:x1=2,x2=﹣1,∴G(﹣1,2),∵点G、H关于原点对称,∴H(1,﹣2),设直线GH平移后的解析式为:y=﹣2x+t,﹣x2﹣x+2=﹣2x+t,x2﹣x﹣2+t=0,△=1﹣4(t﹣2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t <.。
辽宁省大连市2019-2020学年中考一诊数学试题含解析
![辽宁省大连市2019-2020学年中考一诊数学试题含解析](https://img.taocdn.com/s3/m/2f1d8b7d10661ed9ad51f37a.png)
辽宁省大连市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列二次根式中,为最简二次根式的是()A.45B.22a bC.12D. 3.62.如图,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,则tan∠BCD的值为()A.45B.54C.43D.343.如果(x-2)(x+3)=x2+px+q,那么p、q的值是()A.p=5,q=6 B.p=1,q=-6 C.p=1,q=6 D.p=5,q=-6 4.下列实数中,为无理数的是()A.13B.2C.﹣5 D.0.31565.2012﹣2013NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是A.科比罚球投篮2次,一定全部命中B.科比罚球投篮2次,不一定全部命中C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小6.一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( )A.B.C.D.7.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=26°,则∠OBC的度数为()A.54°B.64°C.74°D.26°8.下列运算正确的是( )A .32()x =x 5B .55()x x -=-C .3x ·2x =6xD .32x +2 35x 5x =9.如图,已知反比函数ky x=的图象过Rt △ABO 斜边OB 的中点D ,与直角边AB 相交于C ,连结AD 、OC ,若△ABO 的周长为426+,AD=2,则△ACO 的面积为( )A .12B .1C .2D .410.将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,朝上一面上的数字分别为a ,b ,c ,则a ,b ,c 正好是直角三角形三边长的概率是( )A .1216B .172C .136D .11211.如图,在平面直角坐标系xOy 中,点A (1,0),B (2,0),正六边形ABCDEF 沿x 轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF 滚动2017次时,点F 的坐标是( )A .(2017,0)B .(2017,12) C .(2018,3)D .(2018,0)12.在△ABC 中,∠C =90°,AC =9,sinB =35,则AB =( ) A .15B .12C .9D .6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC 中,∠C=120°,AB=4cm ,两等圆⊙A 与⊙B 外切,则图中两个扇形的面积之和(即阴影部分)为 cm 2(结果保留π).14.估计无理数11在连续整数___与____之间.15.关于x的不等式组10x ax->⎧⎨->⎩的整数解共有3个,则a的取值范围是_____.16.如果将“概率”的英文单词probability中的11个字母分别写在11张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母b的概率是________.17.如图,甲和乙同时从学校放学,两人以各自送度匀速步行回家,甲的家在学校的正西方向,乙的家在学校的正东方向,乙家离学校的距离比甲家离学校的距离远3900米,甲准备一回家就开始做什业,打开书包时发现错拿了乙的练习册.于是立即步去追乙,终于在途中追上了乙并交还了练习册,然后再以先前的速度步行回家,(甲在家中耽搁和交还作业的时间忽略不计)结果甲比乙晚回到家中,如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图,则甲的家和乙的家相距_____米.18.若点A(1,m)在反比例函数y=3x的图象上,则m的值为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为_____件,图中d值为_____.(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?20.(6分)如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.(1)求证:BC是∠ABE的平分线;(2)若DC=8,⊙O的半径OA=6,求CE 的长.21.(6分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:组别成绩(分)频数(人数)频率一 2 0.04二10 0.2三14 b四 a 0.32五8 0.16请根据表格提供的信息,解答以下问题:本次决赛共有名学生参加;直接写出表中a= ,b= ;请补全下面相应的频数分布直方图;若决赛成绩不低于80分为优秀,则本次大赛的优秀率为.22.(8分)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.求证:∠C=90°;当BC=3,sinA=35时,求AF的长.23.(8分)如图,在平面直角坐标系xOy 中,已知正比例函数34y x =与一次函数7y x =-+的图像交于点A ,(1)求点A 的坐标;(2)设x 轴上一点P (a ,0),过点P 作x 轴的垂线(垂线位于点A 的右侧),分别交34y x =和7y x =-+的图像于点B 、C ,连接OC ,若BC=75OA ,求△OBC 的面积.24.(10分)如图,直角△ABC 内接于⊙O ,点D 是直角△ABC 斜边AB 上的一点,过点D 作AB 的垂线交AC 于E ,过点C 作∠ECP=∠AED ,CP 交DE 的延长线于点P ,连结PO 交⊙O 于点F .(1)求证:PC 是⊙O 的切线; (2)若PC=3,PF=1,求AB 的长.25.(10分)如图,在平面直角坐标系中,正方形OABC 的边长为4,顶点A 、C 分别在x 轴、y 轴的正半轴,抛物线212y x bx c =-++经过B 、C 两点,点D 为抛物线的顶点,连接AC 、BD 、CD .()1求此抛物线的解析式.()2求此抛物线顶点D的坐标和四边形ABCD的面积.26.(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C (3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)27.(12分)如图①是一副创意卡通圆规,图②是其平面示意图,OA是支撑臂,OB是旋转臂.使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18°时,求所作圆的半径(结果精确到0.01cm);(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度(结果精确到0.01cm,参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器).参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】最简二次根式必须满足以下两个条件:1.被开方数的因数是(整数),因式是(整式)(分母中不含根号)2.被开方数中不含能开提尽方的(因数)或(因式).【详解】A. 不是最简二次根式;B. ,最简二次根式;C. =2,不是最简二次根式;D.10,不是最简二次根式.故选:B【点睛】本题考核知识点:最简二次根式.解题关键点:理解最简二次根式条件. 2.D【解析】【分析】先求得∠A=∠BCD,然后根据锐角三角函数的概念求解即可.【详解】解:∵∠ACB=90°,AB=5,AC=4,∴BC=3,在Rt△ABC与Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tanA=BCAC=34,故选D.【点睛】本题考查解直角三角形,三角函数值只与角的大小有关,因而求一个角的函数值,可以转化为求与它相等的其它角的三角函数值.3.B【解析】【分析】先根据多项式乘以多项式的法则,将(x-2)(x+3)展开,再根据两个多项式相等的条件即可确定p、q的值.【详解】解:∵(x-2)(x+3)=x2+x-1,又∵(x-2)(x+3)=x2+px+q,∴x2+px+q=x2+x-1,∴p=1,q=-1.故选:B.【点睛】本题主要考查多项式乘以多项式的法则及两个多项式相等的条件.多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.两个多项式相等时,它们同类项的系数对应相等.4.B【解析】【分析】根据无理数的定义解答即可.【详解】选项A、13是分数,是有理数;选项B是无理数;选项C、﹣5为有理数;选项D、0.3156是有理数;故选B.【点睛】本题考查了无理数的判定,熟知无理数是无限不循环小数是解决问题的关键.5.A【解析】试题分析:根据概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生。
2019年初中毕业升学考试(辽宁大连卷)数学【含答案及解析】
![2019年初中毕业升学考试(辽宁大连卷)数学【含答案及解析】](https://img.taocdn.com/s3/m/454ff507192e45361066f58b.png)
2019年初中毕业升学考试(辽宁大连卷)数学【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. ﹣2的绝对值是()A.2 B.-2 C. D.-2. 如图是某几何体的三视图,则该几何体是()A.球 B.圆柱 C.圆锥 D.三棱柱3. 下列长度的三条线段能组成三角形的是()A.1,2,3 B.1,,3 C.3,4,8 D.4,5,64. 在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,所得到的点的坐标为()A.(1,2) B.(3,0) C.(3,4) D.(5,2)5. 方程3x+2(1-x)=4的解是()A.x= B.x= C.x=2 D.x=16. 计算的结果是()A. B. C. D.7. 某舞蹈队10名队员的年龄如下表所示:8. 年龄(岁)13141516人数2431td9. 如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.-1 B.+1 C.-1 D.+1二、填空题10. 比较大小:3__________ -2(填>、<或=)11. 若a=49,b=109,则ab-9a的值为:__________.12. 不等式2x+3<-1的解集是:__________.13. 如图,已知AB∥CD,∠A=56°,∠C=27°则∠E的度数为__________.14. 一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,将这枚骰子连续掷两次,其点数之和为7的概率为:__________.15. 在□ABCD中,点O是对角线AC、BD的交点,AC⊥BC,且AB=10cm,AD=8cm,则OB=___________cm.16. 如图,从一个建筑物的A处测得对面楼BC的顶部B的仰角为32°,底部C的俯角为45°,观测点与楼的水平距离AD为31cm,则楼BC的高度约为_______m(结果取整数).(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)17. 在平面直角坐标系中,点A、B的坐标分别是(m,3)、(3m-1,3).若线段AB与直线y=2x+1相交,则m的取值范围为__________.三、计算题18. 计算:四、解答题19. 解方程20. 在□ABCD中,点E、F在AC上,且∠ABE=∠CDF,求证:BE=DF.21. 某地区共有1800名初三学生,为解决这些学生的体质健康状况,开学之初随机选取部分学生进行体育测试,以下是根据测试成绩绘制的统计图表的一部分.根据以上信息,解答下列问题:(1)本次测试学生体质健康成绩为良好的有_________人,达到优秀的人数占本次测试人数的百分比为____%.本次测试学生人数为_________人,其中,体质健康成绩为及格的有________人,不及格的人数占本次测试总人数的百分比是__________%.试估计该地区初三学生开学之初体质健康成绩达到良好及以上等级的学生数.22. 甲乙两人制作某种机械零件.已知甲每小时比乙多做3个,甲做96个所用时间与乙做84个所用时间相等,求甲乙两人每小时各做多少个零件?23. 如图,在平面坐标系中,∠AOB=90°,AB∥x轴,OB=2,双曲线y=经过点B.将△AOB绕点B逆时针旋转,使点O的对应点D落在X轴的正半轴上.若AB的对应线段CB恰好经过点O.点B的坐标和双曲线的解析式.判断点C是否在双曲线上,并说明理由.24. 如图,AB是圆O的直径,点C、D在圆O上,且AD平分∠CAB.过点D作AC的垂线,与AC的延长线相交于E,与AB的延长线相交于点F.(1)求证:EF与圆O相切;(2)若AB=6,AD=4,求EF的长.25. 如图1,在△ABC中,∠C=90°,点D在AC上,且CD>DA,DA=2.点P、Q同时从D点出发,以相同的速度分别沿射线DC、射线DA运动.过点Q作AC的垂线段QR,使QR=PQ,联接PR.当点Q到达A时,点P、Q同时停止运动.设PQ=x.△PQR和△ABC重合部分的面积为S.S关于x的函数图像如图2所示(其中0<x≤,<x≤m时,函数的解析式不同)(1)填空:n的值为___________;(2)求S关于x的函数关系式,并写出x的取值范围.26. 如图,在△ABC中,点D、E、F分别在AB、BC、AC上,且∠ADF+∠DEC=180°,∠AFE=∠BDE.(1)如图1,当DE=DF时,图1中是否存在于AB相等的线段?若存在,请找出并加以证明.若不存在说明理由.(2)如图2,当DE=kDF(其中0<k<1)时,若∠A=90°,AF=m,求BD的长(用含k,m的式子表示).27. 如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴和y轴的正半轴上,顶点B的坐标为(2m,m),翻折矩形OABC,使点A与点C重合,得到折痕DE.设点B的对应点为F,折痕DE所在直线与y轴相交于点G,经过点C、F、D的抛物线为.(1)求点D的坐标(用含m的式子表示)(2)若点G的坐标为(0,-3),求该抛物线的解析式.(3)在(2)的条件下,设线段CD的中点为M,在线段CD上方的抛物线上是否存在点P,使PM=EA?若存在,直接写出P的坐标,若不存在,说明理由.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】。
2019大连市数学一模答案及评分标准
![2019大连市数学一模答案及评分标准](https://img.taocdn.com/s3/m/2a9abaf4a1c7aa00b42acb24.png)
大连市2019年初中毕业升学考试试测(一)数学参考答案与评分标准一、选择题1.A ; 2.C ; 3.C ; 4.B ; 5.C ; 6.D ; 7.B ; 8.D 二、填空题9.3; 10.x ≥2; 11.15; 12.—1; 13.30; 14.21<x <3; 15.41; 16.10; 17.(3,3) 三、解答题18.原式=4)2)(12(1222-++-⨯--a a a a a a …………………………………………………3分 =)2)(2()2()1(122-++-⨯--a a a a a a …………………………………………………………6分 =1-a ………………………………………………………………9分 当12+=a 时,原式=21)12(=-+……………………………………12分19.证明:∵四边形ABCD 是等腰梯形 ∴∠B =∠C …………………………………………………3分 ∵DE =DC∴∠DEC =∠C ……………………………………………6分 ∴∠B =∠DEC …………………………………………8分 ∴AB ∥DE ………………………………………………10分 ∵AD ∥BC∴四边形ABED 是平行四边形……………………………12分20.1.680…………………………………………………………………………………3分2.306…………………………………………………………………………………6分 3.20…………………………………………………………………………………9分 4.15×(1-35%-20%)=6.75(万人)……………………………………………11分 答:估计其中期望每平方米房价在5000~7000元的有6.75万人.……………12分 四、解答题 21.(1)如图,作AD ⊥BC 于点D …………………… ……1分在R t △ABD 中,AD =AB sin45°=42222=⨯…………2分(2)结论:货物MNPQ 应挪走.……………………………………………………5分 解:在R t △ABD 中,BD =AB cos45°=42222=⨯…………………………6分 在R t △ACD 中,CD =AC cos30°=622324=⨯……………………………7分 ∴CB =CD —BD =)26(22262-=-≈2.1…………………………………8分 ∵PC =PB —CB ≈4—2.1=1.9<2∴货物MNPQ 应挪走.………………………………………………………………9分 22.(1)结论:PC 是⊙O 的切线. ……………………………………………………1分证明:连接OC ∵CB ∥PO∴∠POA =∠B, ∠POC =∠OCB ∵OC=OB ∴∠OCB=∠B∴∠POA =∠POC ……………………………………………………………………2分 又∵OA=OC ,OP=OP ∴△APO ≌△CPO∴∠OAP =∠OCP …………………………………3分 ∵P A 是⊙O 的切线 ∴∠OAP=90°………………………………………4分∴∠OCP=90° ∴PC 是⊙O 的切线. ……………………………5分 (2)连接AC ∵AB 是⊙O 的直径 ∴∠ACB =90°………………………………………6分 由(1)知 ∠PCO=90°, ∠B=∠OCB=∠POC∴∠ACB =∠PCO ……………………………………………………………………7分 ∴△ACB ∽△PCO ……………………………………………………………………8分∴PCACOC BC =…………………………………………………………………………9分∴2534463432222=-=-=⋅=BC AB BC AC OC PC ………………………10分23.结论:AB =kCD ………………………………………………………………………1分 证明:(方法一)在OA 上取一点E ,使OE =k OC ,连接EB , …………………2分 ∵OB = k OD , ∴k OCOEOD OB ==……………………………………………………………………3分 ∵∠AOB =∠COD∴△OEB ∽△OCD ……………………………………………………………………4分 ∴k ODOBCD EB ==,即EB =kCD ∠OEB =∠OCD …………………………………………………………………………6分 ∵∠OAB +∠OCD =1800 ∴∠OAB +∠OEB =1800 ∵∠AEB +∠OEB =1800∴∠OAB=∠AEB ………………………………………………………………………7分 ∴EB =AB ………………………………………………………………………………8分 ∴AB =kCD …………………………………………………………………………9分 (方法二)延长OC 到点E ,使OE =k1OA ,连接DE .证明△DOE ∽△BOA ,再证 明△DCE 是等腰三角形,进而证出结论. (方法三)作DE ⊥OC 交OC 的延长线于E ,作BF ⊥OA 于F ,证明△DOE ∽△BOF , 再证明△DCE ∽△BAF ,进而证出结论. (评分标准参照证法一)选择(1)结论:AB =CD …………………………………………………………………………1分 证明:(方法一)在OA 上取一点E ,使OE = OC ,连接EB ……………………2分OAB (D )C图3 OABCD图2E O ABC D图1E∵OB =OD ,∠AOB =∠COD∴△OEB ≌△OCD ……………………………………………………………………3分 ∴EB =CD ,∠OEB =∠OCD ……………………………………………………………4分 ∵∠OAB +∠OCD =1800 ∴∠OAB +∠OEB =1800 ∵∠AEB +∠OEB =1800∴∠OAB=∠AEB ………………………………………………………………………5分 ∴EB =AB ………………………………………………………………………………6分 ∴AB =CD ………………………………………………………………………………7分 (方法二)延长OC 到点E ,使OE =OA ,连接DE .证明△DOE ≌△BOA ,再证明△DCE 是等腰三角形,进而证出结论。
2019-2020大连市中考数学一模试卷带答案
![2019-2020大连市中考数学一模试卷带答案](https://img.taocdn.com/s3/m/9cca10015e0e7cd184254b35eefdc8d376ee14a0.png)
2019-2020⼤连市中考数学⼀模试卷带答案2019-2020⼤连市中考数学⼀模试卷带答案⼀、选择题1.通过如下尺规作图,能确定点D 是BC 边中点的是()A .B .C .D .2.在如图4×4的正⽅形⽹格中,△MNP 绕某点旋转⼀定的⾓度,得到△M 1N 1P 1,则其旋转中⼼可能是()A .点AB .点BC .点CD .点D3.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 4.已知⼆次函数y =ax 2+bx+c(a≠0)的图象如图,则下列结论中正确的是( )A .abc >0B .b 2﹣4ac <0C .9a+3b+c >0D .c+8a <05.如图抛物线y =ax 2+bx +c 的对称轴为直线x =1,且过点(3,0),下列结论:①abc >0;②a ﹣b +c <0;③2a +b >0;④b 2﹣4ac >0;正确的有()个.A .1B .2C .3D .46.如图,在直⾓坐标系中,直线122y x =-与坐标轴交于A 、B 两点,与双曲线2k y x=(0x >)交于点C ,过点C 作CD ⊥x 轴,垂⾜为D ,且OA=AD ,则以下结论:①ΔADB ΔADC S S =;②当0<x <3时,12y y <;③如图,当x=3时,EF=83;④当x >0时,1y 随x 的增⼤⽽增⼤,2y 随x 的增⼤⽽减⼩.其中正确结论的个数是()A .1B .2C .3D .47.如图,某⼩区规划在⼀个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的⼩路,使其中两条与AB 平⾏,另⼀条与AD 平⾏,其余部分种草,如果使草坪部分的总⾯积为112m 2,设⼩路的宽为xm ,那么x 满⾜的⽅程是()A .2x 2-25x+16=0B .x 2-25x+32=0C .x 2-17x+16=0D .x 2-17x-16=08.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表⽰的有理数互为相反数,则图中表⽰绝对值最⼩的数的点是()A .点MB .点NC .点PD .点Q 9.若关于x 的⼀元⼆次⽅程kx 2﹣4x +3=0有实数根,则k 的⾮负整数值是() A .1B .0,1C .1,2D .1,2,310.在全民健⾝环城越野赛中,甲⼄两选⼿的⾏程y (千⽶)随时间(时)变化的图象(全程)如图所⽰.有下列说法:①起跑后1⼩时内,甲在⼄的前⾯;②第1⼩时两⼈都跑了10千⽶;③甲⽐⼄先到达终点;④两⼈都跑了20千⽶.其中正确的说法有()A.1 个B.2 个C.3 个D.4个11.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则⾄多可打()A.6折B.7折C.8折D.9折12.下列各式化简后的结果为32的是()A.6B.12C.18D.36⼆、填空题13.已知扇形的圆⼼⾓为120°,半径等于6,则⽤该扇形围成的圆锥的底⾯半径为_________.14.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转⾄△A′B′C,使得点A′恰好落在AB上,则旋转⾓度为_____.15.如图,添加⼀个条件:,使△ADE∽△ACB,(写出⼀个即可)16.在⼀个不透明的袋⼦中有若千个⼩球,这些球除颜⾊外⽆其他差别,从袋中随机摸出⼀球,记下其颜⾊,这称为⼀次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利⽤计算机模拟的摸球试验统计表:摸球实验次数100100050001000050000100000“摸出⿊球”的次数36387201940091997040008“摸出⿊球”的频率(结果保留⼩数点后三位)0.3600.3870.4040.4010.3990.400根据试验所得数据,估计“摸出⿊球”的概率是_______(结果保留⼩数点后⼀位).17.半径为2的圆中,60°的圆⼼⾓所对的弧的弧长为_____.18.不等式组3241112x xxx≤---<+的整数解是x=.19.当m=____________时,解分式⽅程533x mx x-=--会出现增根.20.正六边形的边长为8cm,则它的⾯积为____cm2.三、解答题21.已知222111x x xAx x++=---.(1)化简A;(2)当x满⾜不等式组1030xx-≥-<,且x为整数时,求A的值.22.如图,AB是半圆O的直径,AD为弦,∠DBC=∠A.(1)求证:BC是半圆O的切线;(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.23.对垃圾进⾏分类投放,能提⾼垃圾处理和再利⽤的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成⽴了甲、⼄两个检查组,采取随机抽查的⽅式分别对辖区内的A,B,C,D四个⼩区进⾏检查,并且每个⼩区不重复检查.(1)甲组抽到A⼩区的概率是多少;(2)请⽤列表或画树状图的⽅法求甲组抽到A⼩区,同时⼄组抽到C⼩区的概率.24.某旅⾏团32⼈在景区A游玩,他们由成⼈、少年和⼉童组成.已知⼉童10⼈,成⼈⽐少年多12⼈.(1)求该旅⾏团中成⼈与少年分别是多少⼈?(2)因时间充裕,该团准备让成⼈和少年(⾄少各1名)带领10名⼉童去另⼀景区B游玩.景区B的门票价格为100元/张,成⼈全票,少年8折,⼉童6折,⼀名成⼈可以免费携带⼀名⼉童.①若由成⼈8⼈和少年5⼈带队,则所需门票的总费⽤是多少元?②若剩余经费只有1200元可⽤于购票,在不超额的前提下,最多可以安排成⼈和少年共多少⼈带队?求所有满⾜条件的⽅案,并指出哪种⽅案购票费⽤最少.25.计算:()()()21a b a 2b (2a b)-+--;()221m 4m 421m 1m m -+?-÷ --.【参考答案】***试卷处理标记,请不要删除⼀、选择题 1.A 解析:A 【解析】【分析】作线段BC 的垂直平分线可得线段BC 的中点.【详解】作线段BC 的垂直平分线可得线段BC 的中点.由此可知:选项A 符合条件,故选A .【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.2.B解析:B 【解析】【分析】根据旋转中⼼的确认⽅法,作对应点连线的垂直平分线,再找到交点即可得到. 【详解】解:∵△MNP 绕某点旋转⼀定的⾓度,得到△M 1N 1P 1,∴连接PP 1、NN 1、MM 1,作PP 1的垂直平分线过B 、D 、C ,作NN 1的垂直平分线过B 、A ,作MM 1的垂直平分线过B ,∴三条线段的垂直平分线正好都过B ,即旋转中⼼是B .故选:B .【点睛】此题主要考查旋转中⼼的确认,解题的关键是熟知旋转的性质特点.3.A解析:A 【解析】【分析】直接根据“上加下减,左加右减”的原则进⾏解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A .4.D解析:D 【解析】【分析】【详解】试题分析:根据图象可知抛物线开⼝向下,抛物线与y 轴交于正半轴,对称轴是x=1>0,所以a <0,c >0,b >0,所以abc <0,所以A 错误;因为抛物线与x 轴有两个交点,所以24b ac ->0,所以B 错误;⼜抛物线与x 轴的⼀个交点为(-1,0),对称轴是x=1,所以另⼀个交点为(3,0),所以930a b c ++=,所以C 错误;因为当x=-2时,42y a b c =-+<0,⼜12bx a=-=,所以b=-2a ,所以42y a b c =-+8a c =+<0,所以D 正确,故选D.考点:⼆次函数的图象及性质.5.B解析:B 【解析】【分析】由图像可知a >0,对称轴x=-2ba=1,即2a +b =0,c <0,根据抛物线的对称性得x=-1时y=0,抛物线与x 轴有2个交点,故△=b 2﹣4ac >0,由此即可判断.【详解】解:∵抛物线开⼝向上,∴a >0,∵抛物线的对称轴为直线x =﹣2ba=1,∴b =﹣2a <0,∵抛物线与y 轴的交点在x 轴下⽅,∴c <0,∴abc >0,所以①正确;∵抛物线与x 轴的⼀个交点为(3,0),⽽抛物线的对称轴为直线x =1,∴抛物线与x 轴的另⼀个交点为(﹣1,0),∵x =﹣1时,y =0,∴a ﹣b +c =0,所以②错误;∵b =﹣2a ,∴2a +b =0,所以③错误;∵抛物线与x 轴有2个交点,∴△=b 2﹣4ac >0,所以④正确.故选B .【点睛】此题主要考查⼆次函数的图像,解题的关键是熟知各系数所代表的含义.6.C解析:C 【解析】试题分析:对于直线122y x =-,令x=0,得到y=2;令y=0,得到x=1,∴A (1,0),B (0,﹣2),即OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC ,OA=AD ,∴△OBA ≌△CDA (AAS),∴CD=OB=2,OA=AD=1,∴ΔADB ΔADC S S =(同底等⾼三⾓形⾯积相等),选项①正确;∴C (2,2),把C 坐标代⼊反⽐例解析式得:k=4,即24y x=,由函数图象得:当0<x <2时,12y y <,选项②错误;当x=3时,14y =,243y =,即EF=443-=83,选项③正确;当x >0时,1y 随x 的增⼤⽽增⼤,2y 随x 的增⼤⽽减⼩,选项④正确,故选C .考点:反⽐例函数与⼀次函数的交点问题.7.C解析:C 【解析】解:设⼩路的宽度为xm ,那么草坪的总长度和总宽度应该为(16-2x )m ,(9-x )m ;根据题意即可得出⽅程为:(16-2x )(9-x )=112,整理得:x 2-17x +16=0.故选C .点睛:本题考查了⼀元⼆次⽅程的运⽤,弄清“草坪的总长度和总宽度”是解决本题的关键.8.C解析:C 【解析】试题分析:∵点M ,N 表⽰的有理数互为相反数,∴原点的位置⼤约在O 点,∴绝对值最⼩的数的点是P 点,故选C .考点:有理数⼤⼩⽐较.9.A解析:A 【解析】【分析】【详解】由题意得,根的判别式为△=(-4)2-4×3k ,由⽅程有实数根,得(-4)2-4×3k≥0,解得k≤43,由于⼀元⼆次⽅程的⼆次项系数不为零,所以k≠0,所以k 的取值范围为k≤43且k≠0,即k 的⾮负整数值为1,故选A .10.C解析:C 【解析】【分析】【详解】解:①由纵坐标看出,起跑后1⼩时内,甲在⼄的前⾯,故①正确;②由横纵坐标看出,第⼀⼩时两⼈都跑了10千⽶,故②正确;③由横纵坐标看出,⼄⽐甲先到达终点,故③错误;④由纵坐标看出,甲⼄⼆⼈都跑了20千⽶,故④正确;故选C .11.B解析:B 【解析】【详解】设可打x 折,则有1200×10x-800≥800×5%,解得x≥7.即最多打7折.故选B .【点睛】本题考查的是⼀元⼀次不等式的应⽤,解此类题⽬时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.12.C解析:C【解析】A不能化简;B C,故正确;D,故错误;故选C.点睛:本题主要考查⼆次根式,熟练掌握⼆次根式的性质是解题的关键.⼆、填空题13.2【解析】分析:利⽤圆锥的底⾯周长等于侧⾯展开图的扇形弧长列出⽅程进⾏计算即可详解:扇形的圆⼼⾓是120°半径为6则扇形的弧长是:=4π所以圆锥的底⾯周长等于侧⾯展开图的扇形弧长是4π设圆锥的底⾯半解析:2【解析】分析:利⽤圆锥的底⾯周长等于侧⾯展开图的扇形弧长,列出⽅程进⾏计算即可.详解:扇形的圆⼼⾓是120°,半径为6,则扇形的弧长是:1206180π?=4π,所以圆锥的底⾯周长等于侧⾯展开图的扇形弧长是4π,设圆锥的底⾯半径是r,则2πr=4π,解得:r=2.所以圆锥的底⾯半径是2.故答案为2.点睛:本题考查了弧长计算公式及圆锥的相关知识.理解圆锥的底⾯周长等于侧⾯展开图的扇形弧长是解题的关键. 14.60°【解析】试题解析:∵∠ACB=90°∠ABC=30°∴∠A=90°-30°=60°∵△ABC绕点C顺时针旋转⾄△A′B′C时点A′恰好落在AB上∴AC=A′C∴△A′AC是等边三⾓形∴∠ACA解析:60°【解析】试题解析:∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC绕点C顺时针旋转⾄△A′B′C时点A′恰好落在AB上,∴AC=A′C,∴△A′AC是等边三⾓形,∴∠ACA′=60°,∴旋转⾓为60°.故答案为60°.15.∠ADE=∠ACB(答案不唯⼀)【解析】【分析】【详解】相似三⾓形的判定有三种⽅法:①三边法:三组对应边的⽐相等的两个三⾓形相似;②两边及其夹⾓法:两组对应边的⽐相等且夹⾓对应相等的两个三⾓形相似;解析:∠ADE=∠ACB(答案不唯⼀)【解析】【分析】【详解】相似三⾓形的判定有三种⽅法:①三边法:三组对应边的⽐相等的两个三⾓形相似;②两边及其夹⾓法:两组对应边的⽐相等且夹⾓对应相等的两个三⾓形相似;③两⾓法:有两组⾓对应相等的两个三⾓形相似.由此可得出可添加的条件:由题意得,∠A=∠A(公共⾓),则添加:∠ADE=∠ACB或∠AED=∠ABC,利⽤两⾓法可判定△ADE∽△ACB;添加:AD AEAC AB=,利⽤两边及其夹⾓法可判定△ADE∽△ACB.16.4【解析】【分析】⼤量重复试验下摸球的频率可以估计摸球的概率据此求解【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在04附近故摸到⽩球的频率估计值为04;故答案为:04【点睛】本题考查了利⽤频率解析:4【解析】【分析】⼤量重复试验下摸球的频率可以估计摸球的概率,据此求解.【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在0.4附近,故摸到⽩球的频率估计值为0.4;故答案为:0.4.【点睛】本题考查了利⽤频率估计概率的知识,解题的关键是了解⼤量重复试验中某个事件发⽣的频率能估计概率.17.【解析】根据弧长公式可得:=故答案为解析:2π3【解析】根据弧长公式可得:602180π=23π,故答案为23π.18.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x>﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【解析:﹣4.【解析】【分析】先求出不等式组的解集,再得出不等式组的整数解即可.【详解】解:3241112x xxx≤---<+①②,∵解不等式①得:x≤﹣4,解不等式②得:x>﹣5,∴不等式组的解集为﹣5<x≤﹣4,∴不等式组的整数解为x=﹣4,故答案为﹣4.【点睛】本题考查了解⼀元⼀次不等式组和不等式组的整数解,能根据不等式的性质求出不等式组的解集是解此题的关键.19.2【解析】分析:分式⽅程的增根是分式⽅程转化为整式⽅程的根且使分式⽅程的分母为0的未知数的值详解:分式⽅程可化为:x-5=-m由分母可知分式⽅程的增根是3当x=3时3-5=-m解得m=2故答案为:2解析:2【解析】分析:分式⽅程的增根是分式⽅程转化为整式⽅程的根,且使分式⽅程的分母为0的未知数的值.详解:分式⽅程可化为:x-5=-m,由分母可知,分式⽅程的增根是3,当x=3时,3-5=-m,解得m=2,故答案为:2.点睛:本题考查了分式⽅程的增根.增根问题可按如下步骤进⾏:①让最简公分母为0确定增根;②化分式⽅程为整式⽅程;③把增根代⼊整式⽅程即可求得相关字母的值.20.【解析】【分析】【详解】如图所⽰正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三⾓形∴OE=CE?tan60°=cm∴S△OCD【解析】【分析】【详解】如图所⽰,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD=60°;∵OC=OD,∴△COD是等边三⾓形,∴OE=CE?tan60°=83432=cm,∴S△OCD=12CD?OE=12×8×43=163cm2.∴S正六边形=6S△OCD=6×163=963cm2.考点:正多边形和圆三、解答题21.(1)1x-;(2)1【解析】【分析】(1)根据分式四则混合运算的运算法则,把A式进⾏化简即可.(2)⾸先求出不等式组的解集,然后根据x为整数求出x的值,再把求出的x的值代⼊化简后的A式进⾏计算即可.【详解】(1)原式=2(1)(1)(1)1x xx x x+-+--=111x xx x+---=11x xx+--=11(2)不等式组的解集为1≤x<3 ∵x为整数,∴x=1或x=2,①当x=1时,∵x﹣1≠0,∴A=11x-中x≠1,∴当x =1时,A =11x -⽆意义.②当x =2时, A =11x -=1=12-1考点:分式的化简求值、⼀元⼀次不等式组. 22.(1)见解析;(2)AD=4.5. 【解析】【分析】(1)若证明BC 是半圆O 的切线,利⽤切线的判定定理:即证明AB ⊥BC 即可;(2)因为OC ∥AD ,可得∠BEC=∠D=90°,再有其他条件可判定△BCE ∽△BAD ,利⽤相似三⾓形的性质:对应边的⽐值相等即可求出AD 的长.【详解】(1)证明:∵AB 是半圆O 的直径,∴BD ⊥AD ,∴∠DBA+∠A=90°,∵∠DBC=∠A ,∴∠DBA+∠DBC=90°即AB ⊥BC ,∴BC 是半圆O 的切线;(2)解:∵OC ∥AD ,∴∠BEC=∠D=90°,∵BD ⊥AD,BD=6,∴BE=DE=3,∵∠DBC=∠A ,∴△BCE ∽△BAD ,∴=CE BE BD AD ,即436=AD ;∴AD=4.5 【点睛】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆⼼与这点(即为半径),再证垂直即可.同时考查了相似三⾓形的判定和性质. 23.(1)甲组抽到A ⼩区的概率是14;(2)甲组抽到A ⼩区,同时⼄组抽到C ⼩区的概率为112.【解析】【分析】(1)直接利⽤概率公式求解可得;(2)画树状图列出所有等可能结果,根据概率公式求解可得.【详解】(1)甲组抽到A ⼩区的概率是14,故答案为:14.(2)画树状图为:共有12种等可能的结果数,其中甲组抽到A ⼩区,同时⼄组抽到C ⼩区的结果数为1,∴甲组抽到A ⼩区,同时⼄组抽到C ⼩区的概率为112.【点睛】此题考查列表法与树状图法,解题关键在于根据题意画出树状图.24.(1)该旅⾏团中成⼈17⼈,少年5⼈;(2)①1320元,②最多可以安排成⼈和少年共12⼈带队,有三个⽅案:成⼈10⼈,少年2⼈;成⼈11⼈,少年1⼈;成⼈9⼈,少年3⼈;其中当成⼈10⼈,少年2⼈时购票费⽤最少. 【解析】【分析】(1)设该旅⾏团中成⼈x ⼈,少年y ⼈,根据⼉童10⼈,成⼈⽐少年多12⼈列出⽅程组求解即可;(2)①根据⼀名成⼈可以免费携带⼀名⼉童以及少年8折,⼉童6折直接列式计算即可;②分情况讨论,分别求出在a 的不同取值范围内b 的最⼤值,得到符合题意的⽅案,并计算出所需费⽤,⽐较即可. 【详解】解:(1)设该旅⾏团中成⼈x ⼈,少年y ⼈,根据题意,得103212x y x y ++=??=+?,解得175x y =??=?. 答:该旅⾏团中成⼈17⼈,少年5⼈. (2)∵①成⼈8⼈可免费带8名⼉童,∴所需门票的总费⽤为:()10081000.851000.6108=1320?+??+??-(元).②设可以安排成⼈a ⼈、少年b ⼈带队,则11715a b ,剟剟. 当1017a 剟时,(ⅰ)当10a =时,10010801200b ?+?,∴52b ?,∴2b =最⼤值,此时12a b +=,费⽤为1160元. (ⅱ)当11a =时,10011801200b ?+?,∴54b ?,∴1b =最⼤值,此时12a b +=,费⽤为1180元.(ⅲ)当12a …时,1001200a …,即成⼈门票⾄少需要1200元,不合题意,舍去. 当110a(ⅰ)当9a =时,100980601200b ?++?,∴3b ≤,∴3b =最⼤值,此时12a b +=,费⽤为1200元.(ⅱ)当8a =时,100880601200b ?++?,∴72b ≤,∴3b =最⼤值,此时1112a b +=<,不合题意,舍去. (ⅲ)同理,当8a <时,12a b +<,不合题意,舍去.综上所述,最多可以安排成⼈和少年共12⼈带队,有三个⽅案:成⼈10⼈,少年2⼈;成⼈11⼈,少年1⼈;成⼈9⼈,少年3⼈;其中当成⼈10⼈,少年2⼈时购票费⽤最少. 【点睛】本题主要考查了⼆元⼀次⽅程组的应⽤,不等式的应⽤,关键是弄清题意,找出题⽬中的等量关系与不等关系,列出⽅程组与不等式组. 25.(1)223a 5ab 3b -+-;(2)mm 2-.【解析】【分析】()1根据多项式乘多项式、完全平⽅公式展开,然后再合并同类项即可; ()2括号内先通分进⾏分式的减法运算,然后再进⾏分式的除法运算即可.【详解】()()()21a b a 2b (2a b)-+--=2222a 2ab ab 2b 4a 4ab b +---+-223a 5ab 3b =-+-;(2)221m 4m 41m 1m m -+?-÷ --=()2m m 1m 2m 1(m 2)--?-- mm 2=-.【点睛】本题考查了整式的混合运算、分式的混合运算,熟练掌握它们的运算法则是解题的关键.。
2019-2020大连市中考数学一模试卷附答案
![2019-2020大连市中考数学一模试卷附答案](https://img.taocdn.com/s3/m/9257b2bccfc789eb172dc8e8.png)
14.关于 x 的一元二次方程 ax2 3x 1 0 的两个不相等的实数根都在-1 和 0 之间(不包
括-1 和 0),则 a 的取值范围是___________ 15.如图,在平面直角坐标系中,菱形 OABC 的边 OA 在 x 轴上,AC 与 OB 交于点 D
460 000 000=4.6×108. 故选 C. 【点睛】 此题考查科学记数法的表示方法.科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|< 10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.
2.A
解析:A 【解析】 试题解析:察表格,可知这组样本数据的平均数为:
(0×4+1×12+2×16+3×17+4×1)÷50= ;
(0,﹣2),即 OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠
DAC,OA=AD,∴△OBA≌△CDA(AAS),∴CD=OB=2,OA=AD=1,∴ SΔADB SΔADC (同
底等高三角形面积相等),选项①正确;
∴C(2,2),把
C
坐标代入反比例解析式得:k=4,即
请结合图中所给信息,解答下列问题:
(1)本次调查的学生共有
人;
(2)补全条形统计图;
(3)该校共有 1200 名学生,请估计选择“唱歌”的学生有多少人?
(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这
四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人
组别 班级
65.6~ 70.5
辽宁省大连市2019-2020学年中考第一次质量检测数学试题含解析
![辽宁省大连市2019-2020学年中考第一次质量检测数学试题含解析](https://img.taocdn.com/s3/m/1958b7ca02d276a200292eb2.png)
辽宁省大连市2019-2020学年中考第一次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线; Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线. 如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A .①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB .①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC .①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD .①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ2.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是( )A .B .C .D .3.小明解方程121x x x--=的过程如下,他的解答过程中从第( )步开始出现错误. 解:去分母,得1﹣(x ﹣2)=1① 去括号,得1﹣x+2=1② 合并同类项,得﹣x+3=1③ 移项,得﹣x =﹣2④ 系数化为1,得x =2⑤ A .①B .②C .③D .④4.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是( ) A .18B .16C .14D .125.如图,已知△ADE 是△ABC 绕点A 逆时针旋转所得,其中点D 在射线AC 上,设旋转角为α,直线BC 与直线DE 交于点F ,那么下列结论不正确的是( )A .∠BAC =αB .∠DAE =αC .∠CFD =α D .∠FDC =α6.把8a 3﹣8a 2+2a 进行因式分解,结果正确的是( ) A .2a (4a 2﹣4a+1) B .8a 2(a ﹣1)C .2a (2a ﹣1)2D .2a (2a+1)27.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是( ) A .25和30B .25和29C .28和30D .28和298.在平面直角坐标系xOy 中,若点P (3,4)在⊙O 内,则⊙O 的半径r 的取值范围是( ) A .0<r <3B .r >4C .0<r <5D .r >59.二次函数y=x 2+bx –1的图象如图,对称轴为直线x=1,若关于x 的一元二次方程x 2–2x –1–t=0(t 为实数)在–1<x<4的范围内有实数解,则t 的取值范围是A .t≥–2B .–2≤t<7C .–2≤t<2D .2<t<710.已知A (,1y ),B (2,2y )两点在双曲线32my x +=上,且12y y >,则m 的取 值范围是( ) A .m 0>B .m 0<C .3m 2>-D .3m 2<-11.若55+55+55+55+55=25n ,则n 的值为( ) A .10B .6C .5D .312.﹣18的倒数是( ) A .18B .﹣18C .-118D .118二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图1,在平面直角坐标系中,将▱ABCD 放置在第一象限,且AB ∥x 轴,直线y =﹣x 从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x 轴上平移的距离m 的函数图象如图2,那么ABCD 面积为_____.14.某校体育室里有球类数量如下表: 球类 篮球 排球 足球 数量354如果随机拿出一个球(每一个球被拿出来的可能性是一样的),那么拿出一个球是足球的可能性是_____.15.如图,已知直线1y k x b =+与x 轴、y 轴相交于P 、Q 两点,与2k y x=的图象相交于(2,)A m -、(1,)B n 两点,连接OA 、OB .给出下列结论: ①120k k <;②102m n +=;③AOP BOQ S S ∆∆=;④不等式21k k x b x+>的解集是2x <-或01x <<. 其中正确结论的序号是__________.16.如果当a≠0,b≠0,且a≠b 时,将直线y=ax+b 和直线y=bx+a 称为一对“对偶直线”,把它们的公共点称为该对“对偶直线”的“对偶点”,那么请写出“对偶点”为(1,4)的一对“对偶直线”:______.17.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是 .18.一只蚂蚁从数轴上一点 A 出发,爬了7 个单位长度到了+1,则点 A 所表示的数是_____ 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,甲、乙为两座建筑物,它们之间的水平距离BC 为30m ,在A 点测得D 点的仰角∠EAD 为45°,在B 点测得D 点的仰角∠CBD 为60°.求这两座建筑物的高度(结果保留根号).20.(6分) “扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围. 21.(6分)如图,在平面直角坐标系xOy 中,函数()0ky x x=>的图象与直线y =2x+1交于点A (1,m ). (1)求k 、m 的值;(2)已知点P (n ,0)(n≥1),过点P 作平行于y 轴的直线,交直线y =2x+1于点B ,交函数()0ky x x=>的图象于点C.横、纵坐标都是整数的点叫做整点.①当n =3时,求线段AB 上的整点个数; ②若()0ky x x=>的图象在点A 、C 之间的部分与线段AB 、BC 所围成的区域内(包括边界)恰有5个整点,直接写出n 的取值范围.22.(8分)(2016山东省烟台市)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)23.(8分)(5分)计算:.24.(10分)已知关于x的一元二次方程3x2﹣6x+1﹣k=0有实数根,k为负整数.求k的值;如果这个方程有两个整数根,求出它的根.25.(10分)一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.26.(12分)某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是;(2)请将条形统计图补充完整;(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有名.27.(12分)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5m.(计算结果精确到0.1m,参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)当吊臂底部A 与货物的水平距离AC 为5m 时,吊臂AB 的长为 m .(2)如果该吊车吊臂的最大长度AD 为20m ,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合; Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ, 故选D .【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键. 2.B 【解析】 【分析】根据相似三角形的判定方法一一判断即可. 【详解】解:因为111A B C 中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等, 故选:B .【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型. 3.A 【解析】 【分析】根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题. 【详解】12x x x--=1, 去分母,得1-(x-2)=x ,故①错误, 故选A . 【点睛】本题考查解分式方程,解答本题的关键是明确解分式方程的方法. 4.B 【解析】 【分析】根据简单概率的计算公式即可得解. 【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是16. 故选B.考点:简单概率计算. 5.D 【解析】 【分析】利用旋转不变性即可解决问题. 【详解】∵△DAE 是由△BAC 旋转得到, ∴∠BAC=∠DAE=α,∠B=∠D , ∵∠ACB=∠DCF , ∴∠CFD=∠BAC=α, 故A ,B ,C 正确, 故选D . 【点睛】本题考查旋转的性质,解题的关键是熟练掌握旋转不变性解决问题,属于中考常考题型.6.C【解析】【分析】首先提取公因式2a,进而利用完全平方公式分解因式即可.【详解】解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2,故选C.【点睛】本题因式分解中提公因式法与公式法的综合运用.7.D【解析】【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D.【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.8.D【解析】【分析】先利用勾股定理计算出OP=1,然后根据点与圆的位置关系的判定方法得到r的范围.【详解】∵点P的坐标为(3,4),∴OP==1.∵点P(3,4)在⊙O内,∴OP<r,即r>1.故选D.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系. 9.B 【解析】 【分析】利用对称性方程求出b 得到抛物线解析式为y=x 2﹣2x ﹣1,则顶点坐标为(1,﹣2),再计算当﹣1<x <4时对应的函数值的范围为﹣2≤y <7,由于关于x 的一元二次方程x 2﹣2x ﹣1﹣t=0(t 为实数)在﹣1<x <4的范围内有实数解可看作二次函数y=x 2﹣2x ﹣1与直线y=t 有交点,然后利用函数图象可得到t 的范围. 【详解】抛物线的对称轴为直线x=﹣2b=1,解得b=﹣2, ∴抛物线解析式为y=x 2﹣2x ﹣1,则顶点坐标为(1,﹣2), 当x=﹣1时,y=x 2﹣2x ﹣1=2;当x=4时,y=x 2﹣2x ﹣1=7, 当﹣1<x <4时,﹣2≤y <7,而关于x 的一元二次方程x 2﹣2x ﹣1﹣t=0(t 为实数)在﹣1<x <4的范围内有实数解可看作二次函数y=x 2﹣2x ﹣1与直线y=t 有交点, ∴﹣2≤t <7, 故选B . 【点睛】本题考查了二次函数的性质、抛物线与x 轴的交点、二次函数与一元二次方程,把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程是解题的关键. 10.D 【解析】 【分析】∵A (1-,1y ),B (2,2y )两点在双曲线32my x+=上, ∴根据点在曲线上,点的坐标满足方程的关系,得1232m 32my y 12++==-,. ∵12y y >,∴32m 32m >12++-,解得3m 2<-.故选D. 【详解】 请在此输入详解! 11.D 【解析】 【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案. 【详解】解:∵55+55+55+55+55=25n,∴55×5=52n,则56=52n,解得:n=1.故选D.【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.12.C【解析】【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【详解】∵-181()18⨯-=1,∴﹣18的倒数是1 18 -,故选C.【点睛】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是1时经过B,则AB=1-4=4,当直线经过D点,设其交AB与E,则,作DF⊥AB于点F.利用三角函数即可求得DF即平行四边形的高,然后利用平行四边形的面积公式即可求解【详解】解:由图象可知,当移动距离为4时,直线经过点A,当移动距离为7时,直线经过点D,移动距离为1时,直线经过点B,则AB=1﹣4=4,当直线经过点D,设其交AB于点E,则DE=,作DF⊥AB于点F,∵y =﹣x 于x 轴负方向成45°角,且AB ∥x 轴, ∴∠DEF =45°, ∴DF =EF ,∴在直角三角形DFE 中,DF 2+EF 2=DE 2, ∴2DF 2=1 ∴DF =2,那么ABCD 面积为:AB•DF =4×2=1, 故答案为1. 【点睛】此题主要考查平行四边形的性质和一次函数图象与几何变换,解题关键在于利用好辅助线 14.13【解析】 【分析】先求出球的总数,再用足球数除以总数即为所求. 【详解】解:一共有球3+5+4=12(个),其中足球有4个, ∴拿出一个球是足球的可能性=41123. 【点睛】本题考查了概率,属于简单题,熟悉概率概念,列出式子是解题关键. 15.②③④ 【解析】分析:根据一次函数和反比例函数的性质得到k 1k 2>0,故①错误;把A (-2,m )、B (1,n )代入y=2k x中得到-2m=n 故②正确;把A (-2,m )、B (1,n )代入y=k 1x+b 得到y=-mx-m ,求得P (-1,0),Q (0,-m ),根据三角形的面积公式即可得到S △AOP =S △BOQ ;故③正确;根据图象得到不等式k 1x+b >2k x的解集是x <-2或0<x <1,故④正确. 详解:由图象知,k 1<0,k 2<0, ∴k 1k 2>0,故①错误;把A (-2,m )、B (1,n )代入y=2k x中得-2m=n , ∴m+12n=0,故②正确; 把A (-2,m )、B (1,n )代入y=k 1x+b 得112m k bn k b-+⎧⎨+⎩==, ∴1323n m k n m b -⎧⎪⎪⎨+⎪⎪⎩==,∵-2m=n , ∴y=-mx-m ,∵已知直线y=k 1x+b 与x 轴、y 轴相交于P 、Q 两点, ∴P (-1,0),Q (0,-m ), ∴OP=1,OQ=m , ∴S △AOP =12m ,S △BOQ =12m , ∴S △AOP =S △BOQ ;故③正确; 由图象知不等式k 1x+b >2k x的解集是x <-2或0<x <1,故④正确; 故答案为:②③④.点睛:本题考查了反比例函数与一次函数的交点,求两直线的交点坐标,三角形面积的计算,正确的理解题意是解题的关键. 16.3,31y x y x =+=+ 【解析】 【分析】把(1,4)代入两函数表达式可得:a+b=4,再根据“对偶直线”的定义,即可确定a 、b 的值. 【详解】把(1,4)代入y ax b =+得:a+b=4 又因为0a ≠,0b ≠,且a b ≠, 所以当a=1是b=3所以“对偶点”为(1,4)的一对“对偶直线”可以是:3,31y x y x =+=+ 故答案为3,31y x y x =+=+此题为新定义题型,关键是理解新定义,并按照新定义的要求解答. 17.12. 【解析】 【分析】 【详解】根据题意可知,掷一次骰子有6个可能结果,而点数为奇数的结果有3个,所以点数为奇数的概率为12. 考点:概率公式. 18.﹣6 或 8【解析】试题解析:当往右移动时,此时点A 表示的点为﹣6,当往左移动时,此时点A 表示的点为8. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.甲建筑物的高AB 为(303-30)m ,乙建筑物的高DC 为303m 【解析】 【详解】如图,过A 作AF ⊥CD 于点F ,在Rt △BCD 中,∠DBC=60°,BC=30m , ∵CDBC=tan ∠DBC , ∴3, ∴乙建筑物的高度为3; 在Rt △AFD 中,∠DAF=45°, ∴DF=AF=BC=30m ,∴AB=CF=CD ﹣DF=(330)m , ∴甲建筑物的高度为(330)m .20.(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元. 【解析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.【详解】(1)由题意得:4030055150k bk b+=⎧⎨+=⎩10700kb=-⎧⇒⎨=⎩.故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.21.(1)m=3,k=3;(2)①线段AB上有(1,3)、(2,5)、(3,7)共3个整点,②当2≤n<3时,有五个整点.【解析】【分析】(1)将A点代入直线解析式可求m,再代入kyx=,可求k.(2)①根据题意先求B,C两点,可得线段AB上的整点的横坐标的范围1≤x≤3,且x为整数,所以x 取1,2,3.再代入可求整点,即求出整点个数.②根据图象可以直接判断2≤n<3.【详解】(1)∵点A(1,m)在y=2x+1上,∴m=2×1+1=3.∴A(1,3).∵点A(1,3)在函数kyx=的图象上,∴k=3.(2)①当n=3时,B、C两点的坐标为B(3,7)、C(3,1). ∵整点在线段AB上∴1≤x≤3且x为整数∴x=1,2,3∴当x=1时,y=3,当x=2时,y=5,当x=3时,y=7,∴线段AB上有(1,3)、(2,5)、(3,7)共3个整点.②由图象可得当2≤n<3时,有五个整点.本题考查反比例函数和一次函数的交点问题,待定系数法,以及函数图象的性质.关键是能利用函数图象有关解决问题.22.(1)甲型号的产品有10万只,则乙型号的产品有10万只;(2)安排甲型号产品生产15万只,乙型号产品生产5万只,可获得最大利润91万元.【解析】【分析】(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据销售收入为300万元可列方程18x+12(20﹣x)=300,解方程即可;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价﹣成本列出W与y的一次函数,根据y的范围确定出W的最大值即可.【详解】(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据题意得:18x+12(20﹣x)=300,解得:x=10,则20﹣x=20﹣10=10,则甲、乙两种型号的产品分别为10万只,10万只;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据题意得:13y+8.8(20﹣y)≤239,解得:y≤15,根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,当y=15时,W最大,最大值为91万元.所以安排甲型号产品生产15万只,乙型号产品生产5万只时,可获得最大利润为91万元.考点:一元一次方程的应用;一元一次不等式的应用;一次函数的应用.23..【解析】试题分析:利用负整数指数幂,零指数幂、绝对值、特殊角的三角函数值的定义解答.试题解析:原式==.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.24.(2)k=﹣2,﹣2.(2)方程的根为x2=x2=2.【解析】(2)根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值;(2)将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值.【详解】解:(2)根据题意,得△=(﹣6)2﹣4×3(2﹣k)≥0,解得k≥﹣2.∵k为负整数,∴k=﹣2,﹣2.(2)当k=﹣2时,不符合题意,舍去;当k=﹣2时,符合题意,此时方程的根为x2=x2=2.【点睛】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:(2)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.也考查了一元二次方程的解法.25.1 6【解析】分析:列表得出所有等可能的情况数,找出两次都摸到红球的情况数,即可求出所求的概率.详解:列表如下:红红白黑红﹣﹣﹣(红,红)(白,红)(黑,红)红(红,红)﹣﹣﹣(白,红)(黑,红)白(红,白)(红,白)﹣﹣﹣(黑,白)黑(红,黑)(红,黑)(白,黑)﹣﹣﹣所有等可能的情况有12种,其中两次都摸到红球有2种可能,则P(两次摸到红球)==.点睛:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.26.(1)120,30%;(2)作图见解析;(3)1.【解析】试题分析:(1)用安全意识分“一般”的人数除以安全意识分“一般”的人数所占的百分比即可得这次调查一共抽取的学生人数;用安全意识分“很强”的人数除以这次调查一共抽取的学生人数即可得安全意识“很强”的学生占被调查学生总数的百分比;(2)用这次调查一共抽取的学生人数乘以安全意识分“较强”的人数所占的百分比即可得安全意识分“较强”的人数,在条形统计图上画出即可;(3)用总人数乘以安全意识为“淡薄”、“一般”的学生一共所占的百分比即可得全校需要强化安全教育的学生的人数.试题解析:(1) 12÷15%=120人;36÷120=30%;(2)120×45%=54人,补全统计图如下:(3)1800×=1人.考点:条形统计图;扇形统计图;用样本估计总体.27.(1)11.4;(2)19.5m.【解析】【分析】(1)根据直角三角形的性质和三角函数解答即可;(2)过点D作DH⊥地面于H,利用直角三角形的性质和三角函数解答即可.【详解】解:(1)在Rt△ABC中,∵∠BAC=64°,AC=5m,∴AB=5÷0.4411.4 (m);故答案为:11.4;(2)过点D作DH⊥地面于H,交水平线于点E,在Rt△ADE中,∵AD=20m,∠DAE=64°,EH=1.5m,∴DE=sin64°×AD≈20×0.9≈18(m),即DH=DE+EH=18+1.5=19.5(m),答:如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是19.5m.【点睛】本题考查解直角三角形、锐角三角函数等知识,解题的关键是添加辅助线,构造直角三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年辽宁省大连市中考数学一模试卷一.选择题(共10小题)1.在3,﹣3,0,﹣2这四个数中,最小的数是()A.3 B.﹣3 C.0 D.﹣22.下列几何体中,左视图为三角形的是()A.B.C.D.3.下列各点中,在第二象限的点是()A.(﹣3,2)B.(﹣3,﹣2)C.(3,2)D.(3,﹣2)4.目前,粤港澳大湾区9个地级以上市中,城际轨道交通和城市轨道交通已开通运营总里程超过1100公里,规划总里程近6000公里,数6000用科学记数法表示为()A.6×103B.6×104C.0.6×104D.60×1025.如图,四边形ABCD中,AD∥BC,∠C=50°,则∠D的度数为()A.40°B.50°C.120°D.130°6.下列计算正确的是()A.a3﹣a=a2B.a2•a3=a6C.(a+b)2=a2+b2D.(﹣2a2)3=﹣8a67.如图,在▱ABCD中,对角线AC与BD相交于点O,AB=5,AC+BD=20,则△AOB的周长为()A.10 B.20 C.15 D.258.相同方向行驶的两辆汽车经过同一个“T”路口时,可能向左转或向右转.如果这两种可能性大小相同,则这两辆汽车经过该路口时,都向右转的概率是()A.B.C.D.9.抛物线y=x2﹣6x+2的顶点坐标是()A.(3,2)B.(﹣3,7)C.(3,﹣7)D.(6,2)10.如图,PA为⊙O的切线,A为切点,OP与⊙O相交于点B.若∠OPA=30°,PA=1,则的长为()A.B.C.D.二.填空题(共6小题)11.分解因式:xy+x=.12.某校10名学生参加书画大赛,他们的得分情况如下表所示:分数85 88 90 92 95人数 1 3 2 3 1则这10名学生所得分数的平均分是分.13.正六边形的每一个外角都是°.14.我国古代数学著作《增删算法统综》中有如下一道题:“直田七亩半,忘了长和短,记得立契时,长阔争一半,今特问高明,此法如何算”.意思是:有一块7亩半(即1800平方步)的矩形田,忘了长和宽各是多少,记得在立契约的时候,宽是长的一半,现在请问高明能算者,怎样计算出他的长与宽.若设此矩形田的宽为x步,依据题意,可列方程为.15.一司机驾驶汽车从甲地去乙地,他以80km/h的速度匀速行驶2小时到达乙地,当他按原路匀速返回甲地时,汽车的速度v(km/h)与时间t(h)的函数关系为.16.如图,△ABC中,AD⊥BC,垂足为D,∠ABC=2∠DAC,若AB=m,AC=n,则CD的长为(用含m,n的代数式表示)三.解答题(共10小题)17.计算:()﹣(3﹣π)+18.解方程:+=2.19.AB∥CD,∠AEC+∠ABD=180°,BD=CE,求证:AB=DE.20.为了解八年级女生韵律操测试情况,随机抽取了部分女生的测试成绩进行统计,根据评分标准,将她们的成绩分为A、B、C、D四个等级,以下是根据调查结果统计图表的一部分.等级成绩x(分)频数(人数)频率A9.0≤x≤10B7.0≤x<9.0C 6.0≤x<7.0 0.1D0≤x<6.0 4 0.08根据以上信息,解答下列同题:(1)调查的女生中,成绩等级为D的女生人数为人,成绩等级为C的女生人占被调查女生人数的百分比为;(2)本次调查的容量是,成绩等级为B的女生人数为;(3)该校八年级共有200名女生,根据调查结果,估计测试成绩不少于7.0分的女生人数21.某厂家生产的一种商品,有大小盒两种包装,3大盒、4小盒共装108瓶;2大盒3小盒共装76瓶.(1)大盒与小盒每盒各装多少瓶?(2)某单位决定从该厂采购大盒与小盒两种包装共11盒,如果总计不超过176瓶,那么最多可以购买多少个大盒商品?22.甲、乙两人同时从同一地点沿同一方向匀速行走,走了10分钟,甲加快速度后继匀速行走;乙一直匀速行走,两人都走了20分钟.甲、乙两人在行走过程中离出发地的路程y(m)与出发的时间x(min)的函数关系如图1所示,两人之间的距离S与出发时间x (min)的函数关系如图2所示.(1)图中a=,b=,c=;(2)出发多少分钟,两人所走的路程相等?23.如图,四边形ABCD是⊙O的内接四边形,∠ABC=60°,点D是的中点,点E在OC 的延长线上,且CE=AD,连接DE.(1)求证:四边形AOCD是菱形;(2)若AD=6,求DE的长.24.如图,在平面直角坐标系xOy中,矩形AOBC的顶点A、B在坐标轴上,点C的坐标为(5,3).将矩形AOBC绕点B顺时针旋得到矩形DEBF,点O的对应点E恰好落在AC上.将矩形DEBF沿射线EB平移,当点D到达x轴上时,运动停止,设平移的距离为m,平移后的图形在x轴下方部分的面积为S.(1)求AE的长;(2)求S与m的函数关系式,并直接写出自变量m的取值范围.25.阅读下列材料:数学课上,老师出示了这样一个问题如图1,△ABC中,AC=BC,∠ACB=90・点D、E在AB上,且AD=BE,DG⊥CE,垂足为G,DG的长线与BC相交于点F,探究线段AD、BD、DF之间的数量关系,并证明某学习小组的同学经过思考,交流了自己的想法:小明:“通过观察和度量,发现∠BCE与∠BDF存在某种数量关系”小强:“通过观察和度量,发现图1中有一条线段与CE相等”小伟:“通过构造三角形,证明三角形全等,进面可以得到线段AD、BD、DF之间的数量关系”…老师:保留原条件,再过点D作DH⊥BC.垂足为H,DH与CE相交于点M(如图2).如果给出的值,那么可以求出的值.(1)在图1中找出与线段CE相等的线段,并证明;(2)探究线段AD、BD、DF之间的数量关系,并证明;(3)若=n,求的值(用含n的代数式表示).26.定义:将函数l的图象绕点P(m,0)旋转180°,得到新的函数l'的图象,我们称函数l'是函数关于点P的相关函数.例如:当m=1时,函数y=(x+1)2+5关于点P(1,0)的相关函数为y=﹣(x﹣3)2﹣5.(1)当m=0时①一次函数y=x﹣1关于点P的相关函数为;②点(,﹣)在二次函数y=﹣ax2﹣ax+1(a≠0)关于点P的相关函数的图象上,求a的值.(2)函数y=(x﹣1)2+2关于点P的相关函数y=﹣(x+3)2﹣2,则m=;(3)当m﹣1≤x≤m+2时,函数y=x2﹣mx﹣m2关于点P(m,0)的相关函数的最大值为6,求m的值.参考答案与试题解析一.选择题(共10小题)1.在3,﹣3,0,﹣2这四个数中,最小的数是()A.3 B.﹣3 C.0 D.﹣2【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣3<﹣2<0<3,∴各数中最小的数是﹣3.故选:B.2.下列几何体中,左视图为三角形的是()A.B.C.D.【分析】根据几何体的左视图是否为三角形进行判断即可.【解答】解:A.圆柱的左视图是长方形,不合题意;B.圆锥的左视图是三角形,符合题意;C.长方体的左视图是长方形,不合题意;D.横放的圆柱的左视图是圆,不合题意;故选:B.3.下列各点中,在第二象限的点是()A.(﹣3,2)B.(﹣3,﹣2)C.(3,2)D.(3,﹣2)【分析】根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.【解答】解:A、(﹣3,2)在第二象限,故本选项正确;B、(﹣3,﹣2)在第三象限,故本选项错误;C、(3,2)在第一象限,故本选项错误;D、(3,﹣2)在第四象限,故本选项错误.故选:A.4.目前,粤港澳大湾区9个地级以上市中,城际轨道交通和城市轨道交通已开通运营总里程超过1100公里,规划总里程近6000公里,数6000用科学记数法表示为()A.6×103B.6×104C.0.6×104D.60×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6000用科学记数法表示为6×103,故选:A.5.如图,四边形ABCD中,AD∥BC,∠C=50°,则∠D的度数为()A.40°B.50°C.120°D.130°【分析】根据平行线的性质:两直线平行,同旁内角互补,可求出∠D的度数.【解答】解:∵AD∥BC,∠C=50°,∴∠D=180°﹣∠C=130°,故选:D.6.下列计算正确的是()A.a3﹣a=a2B.a2•a3=a6C.(a+b)2=a2+b2D.(﹣2a2)3=﹣8a6【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;完全平方公式:(a±b)2=a2±2ab+b2;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.【解答】解:A、a3和a不是同类项,不能合并,故原题计算错误;B、a2•a3=a5,故原题计算错误;C、(a+b)2=a2+2ab+b2,故原题计算错误;D、(﹣2a2)3=﹣8a6,故原题计算正确;故选:D.7.如图,在▱ABCD中,对角线AC与BD相交于点O,AB=5,AC+BD=20,则△AOB的周长为()A.10 B.20 C.15 D.25【分析】根据平行四边形对角线互相平分,求出OA+OB即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴AO=OC=AC,BO=OD=BD,∵AC+BD=20,∴AO+BO=10,∵AB=5,∴△AOB的周长为OA+OB+AB=10+5=15.故选:C.8.相同方向行驶的两辆汽车经过同一个“T”路口时,可能向左转或向右转.如果这两种可能性大小相同,则这两辆汽车经过该路口时,都向右转的概率是()A.B.C.D.【分析】画树状图列出所有等可能结果,找到符合条件的结果数,再利用概率公式计算可得.【解答】解:画树状图为:共有4种等可能的结果数,都向右转的只有1种结果,所以都向右转的概率为,故选:A.9.抛物线y=x2﹣6x+2的顶点坐标是()A.(3,2)B.(﹣3,7)C.(3,﹣7)D.(6,2)【分析】直接利用配方法将原式化为顶点式,进而求出二次函数的顶点坐标.【解答】解:y=x2﹣6x+2=(x2﹣6x)+2=(x﹣3)2﹣7,故抛物线y=x2﹣6x+2的顶点坐标是:(3,﹣7).故选:C.10.如图,PA为⊙O的切线,A为切点,OP与⊙O相交于点B.若∠OPA=30°,PA=1,则的长为()A.B.C.D.【分析】根据条件可求出∠AOP=60°,OA=,由弧长公式可求出的长.【解答】解:∵PA为⊙O的切线,∴OA⊥AP,∴∠OAP=90°,∵∠OPA=30°,PA=1,∴∠AOP=60°,OA=AP,∴的长为=.故选:D.二.填空题(共6小题)11.分解因式:xy+x=x(y+1).【分析】直接提取公因式x,进而分解因式得出即可.【解答】解:xy+x=x(y+1).故答案为:x(y+1).12.某校10名学生参加书画大赛,他们的得分情况如下表所示:分数85 88 90 92 95人数 1 3 2 3 1则这10名学生所得分数的平均分是90 分.【分析】根据算术平均数的定义计算可得.【解答】解:这10名学生所得分数的平均分是=90(分),故答案为:90.13.正六边形的每一个外角都是60 °.【分析】用正六边形的外角和360度除以边数6,求出外角的度数即可.【解答】解:∵六边形的外角和为360度,∴每一个外角的度数为360°÷6=60°.故答案为:60.14.我国古代数学著作《增删算法统综》中有如下一道题:“直田七亩半,忘了长和短,记得立契时,长阔争一半,今特问高明,此法如何算”.意思是:有一块7亩半(即1800平方步)的矩形田,忘了长和宽各是多少,记得在立契约的时候,宽是长的一半,现在请问高明能算者,怎样计算出他的长与宽.若设此矩形田的宽为x步,依据题意,可列方程为x•2x=1800 .【分析】根据题意列出方程即可求出答案.【解答】解:由题意可知:x•2x=1800,故答案为:x•2x=1800,15.一司机驾驶汽车从甲地去乙地,他以80km/h的速度匀速行驶2小时到达乙地,当他按原路匀速返回甲地时,汽车的速度v(km/h)与时间t(h)的函数关系为v=.【分析】根据速度×时间=路程,可以求出甲地去乙地的路程;再根据行驶速度=路程÷时间,得到v与t的函数解析式.【解答】解:根据“速度=路程÷时间”,可设汽车速度v(km/h)与时间t(h)之间的函数关系式为:v=.当v=80,t=2时,有80=,因此s=160.故v与t之间的函数关系式为:v=.16.如图,△ABC中,AD⊥BC,垂足为D,∠ABC=2∠DAC,若AB=m,AC=n,则CD的长为(用含m,n的代数式表示)【分析】如图,延长CB到E,使得BE=BA.证明△CAD∽△CEA,推出∠CDA=∠CAE=90°,再证明AB=BC=BE=m,利用相似三角形的性质求解即可.【解答】解:如图,延长CB到E,使得BE=BA.∵BE=BA,∴∠E=∠BAE,∵∠ABC=∠E+∠BAE,∴∠ABC=2∠E,∵∠ABC=2∠DAC,∴∠CAD=∠E,∵∠C=∠C,∴△CAD∽△CEA,∴∠CDA=∠CAE=90°,∴∠E+∠C=90°,∠BAE+∠BAC=90°,∴∠C=∠BAC,∴BA=BC=CE=M,∵=∴=∴CD=.故答案为.三.解答题(共10小题)17.计算:()﹣(3﹣π)+【分析】直接利用绝对值的性质以及二次根式的性质、立方根的性质分别化简得出答案.【解答】解:原式=3﹣3﹣3+π﹣2=﹣3﹣2+π.18.解方程:+=2.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+1=2x﹣2,解得:x=3,经检验x=3是分式方程的解.19.AB∥CD,∠AEC+∠ABD=180°,BD=CE,求证:AB=DE.【分析】利用AAS证明△ABD≌△DEC(AAS),可得结论.【解答】证明:∵∠AEC+∠ABD=180°,∠AEC+∠CED=180°,∴∠ABD=∠CED,∵AB∥CD,∴∠A=∠CDE,在△ABD和△DEC中,∵,∴△ABD≌△DEC(AAS),∴AB=DE.20.为了解八年级女生韵律操测试情况,随机抽取了部分女生的测试成绩进行统计,根据评分标准,将她们的成绩分为A、B、C、D四个等级,以下是根据调查结果统计图表的一部分.等级成绩x(分)频数(人数)频率A9.0≤x≤10B7.0≤x<9.0C 6.0≤x<7.0 0.1D0≤x<6.0 4 0.08根据以上信息,解答下列同题:(1)调查的女生中,成绩等级为D的女生人数为 4 人,成绩等级为C的女生人占被调查女生人数的百分比为10% ;(2)本次调查的容量是50 ,成绩等级为B的女生人数为20 ;(3)该校八年级共有200名女生,根据调查结果,估计测试成绩不少于7.0分的女生人数【分析】(1)根据表中0≤x<6.0的人数得到成绩等级为D的女生人数,根据被调查女生C等级的频率即可求得;(2)根据利用调查女生的总人数=D等级人数÷对应的频率求解即可;(3)求得A、B两等级人数所占的频率×被调查女生的总人数求解即可.【解答】解:(1)调查的女生中,成绩等级为D的女生人数为4人,成绩等级为C的女生人占被调查女生人数的百分比为10%;(2)本次调查的容量是4÷0.08=50,成绩等级为B的女生人数为50×(1﹣42%﹣0.1﹣0.08)=20人;(3)200×(1﹣0.08﹣0.1)=164人,答:估计测试成绩不少于7.0分的女生人数为164人.故答案为:4,10%,50,20.21.某厂家生产的一种商品,有大小盒两种包装,3大盒、4小盒共装108瓶;2大盒3小盒共装76瓶.(1)大盒与小盒每盒各装多少瓶?(2)某单位决定从该厂采购大盒与小盒两种包装共11盒,如果总计不超过176瓶,那么最多可以购买多少个大盒商品?【分析】(1)设大盒每盒装x瓶,小盒每盒装y瓶,根据“3大盒、4小盒共装108瓶;2大盒3小盒共装76瓶”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买大盒商品m盒,则购买小盒商品(11﹣m)盒,根据总瓶数=20×购买大盒商品数+12×购买小盒商品数结合总瓶数不超过176瓶,即可得出关于m的一元一次不等式,解之取其中的最大整数值即可得出结论.【解答】解:(1)设大盒每盒装x瓶,小盒每盒装y瓶,依题意,得:,解得:.答:大盒每盒装20瓶,小盒每盒装12瓶.(2)设购买大盒商品m盒,则购买小盒商品(11﹣m)盒,依题意,得:20m+12(11﹣m)≤176,解得:m≤,∵m为整数,∴m的最大值为5.答:最多可以购买5大盒商品.22.甲、乙两人同时从同一地点沿同一方向匀速行走,走了10分钟,甲加快速度后继匀速行走;乙一直匀速行走,两人都走了20分钟.甲、乙两人在行走过程中离出发地的路程y(m)与出发的时间x(min)的函数关系如图1所示,两人之间的距离S与出发时间x (min)的函数关系如图2所示.(1)图中a=10 ,b=100 ,c=1300 ;(2)出发多少分钟,两人所走的路程相等?【分析】(1)由走了10分钟后甲加快速度后继匀速行走求出a,由乙的速度=1200÷20=60m/min求出b,由当x=20时,S=100求出c;(2)分别求出直线OA和直线BC的解析式,则由两人所走的路程相等时列出关于x的方程,解出x即可.【解答】解:(1)由走了10分钟后甲加快速度后继匀速行走,得a=10,由图1知:乙的速度=1200÷20=60m/min,∴b=60×10﹣500=100,由图2知:当x=20时,S=100,∴c﹣1200=b=100∴c=1300;故答案为:10;100;1300.(2)设直线OA:y=kx,则有1200=20k,解得k=60,∴直线OA:y=60x,当10≤x≤20时,设直线BC:y=mx+n,则有,解得:,∴直线BC:y=80x﹣300,当两人所走的路程相等时,60x=80x﹣300,解得x=15,∴出发15分钟,两人所走的路程相等.23.如图,四边形ABCD是⊙O的内接四边形,∠ABC=60°,点D是的中点,点E在OC 的延长线上,且CE=AD,连接DE.(1)求证:四边形AOCD是菱形;(2)若AD=6,求DE的长.【分析】(1)根据等边三角形的判定和菱形的判定解答即可;(2)根据等边三角形的性质和直角三角形的性质解答即可.【解答】证明:(1)∵点D是AC的中点,连接OD,∴,∴AD=DC,∠AOD=∠DOC,∵∠AOC=2∠ABC=120°,∴∠AOD=∠DOC=60°,∵OC=OD,∴OA=OC=CD=AD,∴四边形AOCD是菱形;(2)由(1)可知,△COD是等边三角形.∴∠OCD=∠ODC=60°,∵CE=AD,CD=AD,∴CE=CD,∴∠CDE=∠CED=∠OCD=30°,∴∠ODE=∠ODC+∠CDE=90°,在Rt△ODE中,DE=OD•tan∠DOE=6×tan60°=6.24.如图,在平面直角坐标系xOy中,矩形AOBC的顶点A、B在坐标轴上,点C的坐标为(5,3).将矩形AOBC绕点B顺时针旋得到矩形DEBF,点O的对应点E恰好落在AC上.将矩形DEBF沿射线EB平移,当点D到达x轴上时,运动停止,设平移的距离为m,平移后的图形在x轴下方部分的面积为S.(1)求AE的长;(2)求S与m的函数关系式,并直接写出自变量m的取值范围.【分析】(1)由矩形的性质得出∠OBC=∠ACB=90°,AC=OB=5,BC=3,由旋转的性质得出BE=OB=5,由勾股定理求出CE==4,即可得出答案;(2)分三种情况①当0<m≤4时,证明△BB'G∽△ECB,得出=,求出B'G =m,由三角形面积公式即可得出答案;②当4<m≤5时,由平移性质得出FM=m﹣4,由梯形面积公式即可得出答案;③当5<m≤9时,证明△BE'H∽△ECB,得出=,求出E'H=(m﹣5),由梯形面积和三角形面积即可得出答案.【解答】解:(1)∵四边形AOBC是矩形,点C的坐标为(5,3).∴∠OBC=∠ACB=90°,AC=OB=5,BC=3,∵矩形AOBC绕点B顺时针旋得到矩形DEBF,∴BE=OB=5,∴CE===4,∴AE=AC﹣CE=1;(2)分三种情况:①当0<m≤4时,如图1所示:∵∠B'BG=90°﹣∠EBC=∠BEC,∠BB'G=∠ECB=90°,∴△BB'G∽△ECB,∴=,即=,解得:B'G=m,∴S=S△B'BG=BB'×B'G=m2;即S=m2(0<m≤4);②当4<m≤5时,如图2所示:由平移性质得:FM=m﹣4,∴S=S梯形MBB'F=(FM+BB')×B'F=(m﹣4+m)×3=3m﹣6;即S=3m﹣6(4<m≤5);③当5<m≤9时,如图3所示:∵∠E'BH=90°﹣∠EBC=∠BEC,∠BE'H=∠ECB=90°,∴△BE'H∽△ECB,∴=,即=,解得:E'H=(m﹣5),∴S△BE'M=BE'×E'H=×(m﹣5)×(m﹣5)=(m﹣5)2,∴S=S梯形MBB'F﹣S△BE'M=3m﹣6﹣(m﹣5)2=﹣m2+m﹣;即S=﹣m2+m﹣(5<m≤9).25.阅读下列材料:数学课上,老师出示了这样一个问题如图1,△ABC中,AC=BC,∠ACB=90・点D、E在AB上,且AD=BE,DG⊥CE,垂足为G,DG的长线与BC相交于点F,探究线段AD、BD、DF之间的数量关系,并证明某学习小组的同学经过思考,交流了自己的想法:小明:“通过观察和度量,发现∠BCE与∠BDF存在某种数量关系”小强:“通过观察和度量,发现图1中有一条线段与CE相等”小伟:“通过构造三角形,证明三角形全等,进面可以得到线段AD、BD、DF之间的数量关系”…老师:保留原条件,再过点D作DH⊥BC.垂足为H,DH与CE相交于点M(如图2).如果给出的值,那么可以求出的值.(1)在图1中找出与线段CE相等的线段,并证明;(2)探究线段AD、BD、DF之间的数量关系,并证明;(3)若=n,求的值(用含n的代数式表示).【分析】(1)先判断出△ACD≌△BCE(SAS),得出∠ACD=∠BCE,CD=CE,进而判断出∠DCB=∠DFC,即可得出结论;(2)先判断出△ACD≌△BCD'(SAS),得出BD'=AD,进而判断出∠ABD'=90°,即可得出结论;(3)先判断出CH=FH,∠DHC=∠DHF=90°,设CH=FH=a,GF=b,得出CF=2a,DG =nb,DF=(n+1)b,进而判断出△DFH∽△CFG,得出,进而得出=,再判断出△DMG∽△CMH,得出=n.即可得出结论.【解答】解:(1)DF=CE,证明:如图1,连接CD,∵AC=BC,∠ACB=90°,DG⊥CE,∴∠A=∠B=(180°﹣∠ACB)=45°,∠CGF=90°,∵AD=BE,AC=BC,∴△ACD≌△BCE(SAS),∴∠ACD=∠BCE,CD=CE,∵∠DCB=∠ACB﹣∠ACD=90°﹣∠ACD,∠DFC=90°﹣∠BCE,∴∠DCB=∠DFC,∴DC=DF,∴CE=DF;(2)结论:AD2+BD2=2DF2,证明:如图2,过点C作CD'⊥CD,截取CD'=CD,连接BD',DD',∴∠DCD'=90°,∴∠BCD'=90°﹣∠BCD=∠ACD,∵AC=BC,CD=CD',∴△ACD≌△BCD'(SAS),∴BD'=AD,∠CBD'=∠A=45°,∴∠ABD'=∠ABC+∠CBD'=90°,∴CD2+CD'2=DD'2=BD2+BD'2,∴AD2+BD2=2DF2;(3)如图2,连接CD,由(1)知,CD=CE,∵DH⊥BC,∴CH=FH,∠DHC=∠DHF=90°,设CH=FH=a,GF=b,∴CF=2a,DG=nb,DF=(n+1)b,∵DF⊥CE,∴∠DGC=∠FGC=90°,∴∠DHF=∠CGF=90°,∵∠DFH=∠CFG,∴△DFH∽△CFG,∴,∴,∴=,∵∠DMG=∠CMH,∠DGC=∠DHC=90°,∴△DMG∽△CMH,∴=n.26.定义:将函数l的图象绕点P(m,0)旋转180°,得到新的函数l'的图象,我们称函数l'是函数关于点P的相关函数.例如:当m=1时,函数y=(x+1)2+5关于点P(1,0)的相关函数为y=﹣(x﹣3)2﹣5.(1)当m=0时①一次函数y=x﹣1关于点P的相关函数为;②点(,﹣)在二次函数y=﹣ax2﹣ax+1(a≠0)关于点P的相关函数的图象上,求a的值.(2)函数y=(x﹣1)2+2关于点P的相关函数y=﹣(x+3)2﹣2,则m=﹣1 ;(3)当m﹣1≤x≤m+2时,函数y=x2﹣mx﹣m2关于点P(m,0)的相关函数的最大值为6,求m的值.【分析】(1)①由相关函数的定义,将y=x﹣1旋转变换可得相关函数为y=x+1;②将()代入可得a的值,(2)两函数顶点关于点P中心对称,可用中点坐标公式获得点P坐标,从而获得m的值;(3)在相关函数中,以对称轴在给定区间的左侧,中部,右侧,三种情况分类讨论,获得对应的m的值.【解答】解:(1)①y=x+1,②∵,∴y=﹣ax2﹣ax+1关于点P(0,0)的相关函数为,∵点A()在函数的图象上,∴,解得a=,(2)∵函数y=(x﹣1)2+2的顶点为(1,2),函数y=﹣(x+3)2﹣2的顶点为(﹣3,﹣2),这两点关于中心对称,∴,∴m=﹣1,故答案为:﹣1.(3)∵,∴关于点P(m,0)的相关函数为,①当,即m≤﹣2时,y有最大值是6,∴,∴,(不符合题意,舍去),②当时,即﹣2<m≤4时,当时,y有最大值是6,∴∴,(不符合题意,舍去),③当,即m>4时,当x=m+2时,y有最大值是6,∴,∴(不符合题意,舍去),综上,m的值为或.。