不同硬度鞋底在人体行走中的足底肌电变化
鞋的质地对中老年人健步走时足底压力的影响
鞋的质地对中老年人健步走时足底压力的影响作者:周玫侯勃屹来源:《当代体育科技》2016年第28期DOI:10.16655/ki.2095-2813.2016.28.137摘要:针对中老年人健步走过程中穿着不同质地底的鞋对足底压力的影响进行研究。
采用Codamotion红外动作捕捉系统、Footscan压力平板、信号同步设备等仪器,采集相关数据进行力学参数分析,探讨健步走过程中鞋对下肢的生物力学影响,为中老年人健身如何选择一双合理的鞋提供科学参考。
关键词:中老年人健步走足底压力中图分类号:G80-32 文献标识码:A 文章编号:2095-2813(2016)10(a)-0137-03根据世界卫生组织对年龄阶段的划分,中年人为45~59岁,老年人为60~74岁。
根据我国人口年龄的实际情况,目前女性工人退休年龄为50~60岁,男性的退休年龄为60岁。
所以50-60岁这个年龄段的人群闲余时间比较多,50~60岁也是身体各项机能减退的关键时期。
所以,这段时期是积极预防老年病、延缓衰老的重要阶段。
随着年龄的增长,肌肉力量日趋减弱、心血管功能逐渐衰减、关节活动度也不如从前,选择适宜的项目进行身体锻炼至关重要。
健步走是介于散步和慢跑之间的一种运动,动作简单、对场地没有特殊要求,平坦即可。
更不需要特别的装备,老少皆宜。
随时随地都可以进行。
是一项非常适合中老年人进行的低成本有氧运动。
长期坚持有助于心肺功能的提高。
走需要鞋,鞋的舒适由底的质地左右着。
该研究使用比利时研制的Footscan压力平板、英国生产的Codamotion红外动作捕捉系统测试20名中老年人穿着不同质地底的鞋进行健步走时的步态特征以及足底压力情况,给中老年人健步走提供科学的指导方案。
1 研究对象与方法1.1 研究对象随机选取参加健步走一年以上的健康中老年人(50~60岁)20名为受试者。
查阅相关文献可知,中老年人健步走适宜的速度一般为每小时5~6 km,每分钟120步左右。
鞋底表面图案分析与人体力学的关系
鞋底表面图案分析与人体力学的关系鞋底作为鞋子的重要组成部分,其设计对于人体力学影响极大。
而鞋底的表面图案是影响其性能的关键因素之一。
在运动和日常生活中,鞋底的表面图案对于人体的足部力学和运动状态有着重要的影响。
正面观察鞋底表面图案,我们可以发现,大部分的鞋底都具有明显的花纹,其中有的是线条形的,有的则是矩形、三角形的凸起。
这些图案是为了增强鞋底与地面的摩擦力,从而提高鞋子的抓地性能。
不同的品牌和类型的鞋底表面图案各不相同,但它们的设计都融入了人体力学方面的考虑。
首先,鞋底表面图案对于人体运动状态有着显著的影响。
比如,在追求速度的运动项目中,鞋底的表面图案一般以线条形状为主。
这样的设计可以让运动员在高速奔跑时更加稳定,同时让脚步更加准确和精确。
而在一些需要灵活转身和变换方向的体育项目中,鞋底表面则更加趋向于采用三角形或“X”字形的图案,这样的设计可以增加鞋底与地面的接触面积,提高减震性能,防止运动员受伤。
其次,鞋底的表面图案对于鞋子的舒适性和稳定性有着重要的作用。
鞋底表面图案的凸起和凹陷可以增加鞋底的稳定性,避免鞋子在运动中的滑动和晃动,同时也可以增加鞋底的弹性,让鞋子更加贴合足部。
除了上述的影响因素,鞋底图案的材质和硬度也是影响其抓地性和脚感的重要因素。
比如,一些具有高弹性的材质可以提高鞋底的减震效果,更加适合长时间的运动;而一些硬度较高的材质可以在追求速度的时候,让足部更加稳定和灵活。
总之,鞋底表面图案对于人体力学的影响是显著的,无论是在运动还是日常生活中,都需要根据不同的应用场景来选择适合的设计和材质。
在未来的设计中,应该更加注重将人体力学因素融入到鞋底的设计中,以便更好地为人体提供支撑和保护。
不同硬度的鞋底对人体行走中足底力值变化的影响
tes e do m/ nt epafr w t ed s n ds o sfr h x e i n n t h s l pa tr h p e f 2 s lt m i t ei e h e ee p r o h o hh g o t me t dwi tei oe l a a h n n
a e f l wig- t e s o so s a d e si ig rt a o ts o s wh c i g rt a h h e f — r o l n - h h e fmo th r n s sb g e h n s f h e , ih i b g e h n t e s o so o s me d u h r n s ; h a u fi sd d e o o tco s i c e s d wh l h au fo t i e d c e s d; h im a d e s t e v l e o n i e e g f s f l g n r a e i t e v l e o u sd e r a e t e e
mg
宋 雅伟 , 天瑜 , 孙 蔡奕玺 , 寇恒静
S oNG Ya i UN Ti y , AIYiiKOU n j g we, S a u C x, n He gi n
摘 要 : 过 足 底 压 力 测 量 系统 , 量 穿 不 同硬 度 鞋底 的 鞋 对 足 底 压 力 变化 的 影 响 , 一 步 丰 富 和 细 化 通 测 进 鞋 对人 们 健 身运 动 影 响 的 研 究 。通 过 自己设 计 的 实验 用鞋 , 用 德 国 No e公 司的 E dpd r系列 鞋 采 vl me e a 垫 式 足 底 压 力 测 量 系统 , 受试 者在 跑 台 上 以 2m/ 对 s的 速 度进 行 步行 6 n测 试 。 结 果 发 现 : 同硬 0mi 不 度 鞋 底 的 鞋 对 于 9个 区分 别 都 有 影 响 , 大 力 值 呈 现 如 下规 律 — — 硬 底 鞋 大 于软 底 鞋 大 于 中等 硬 度 鞋 ; 最 软 底 鞋 内侧 力 值 增 加 , 外侧 力值 降低 ; 底 鞋 内侧 力值 降低 , 侧 力值 增 加 。结 论 :) 的 软 硬 程 度 对 人 硬 外 1鞋 体在 行 走 时 动 作技 术 具 有 一 定 影 响 , 若足 底 压 力 分 布 均 匀, 以 降 低 运 动 伤 害 , 足 底 压 力 为 最 大 压 力 可 而 和 最 小 压 力 的 范 围越 小 越 好 ; 在 足 部 某 一部 位 , 受过 大压 力 时 , 易产 生 过 度 使 用伤 害 , 果 要 进 行 如 承 即 如 长 时 间 运 动 建议 穿 中等硬 度 鞋 。2 软 底 鞋 内侧 力 值 增 加 , 侧 力 值 降低 , 以 是 内侧 力 量 偏 大 , 易 引 ) 外 所 容 起 外翻 , 且 , 底鞋 内侧 力 值 降 低 , 并 硬 外侧 力值 增加 , 易 引起 内翻 , 容 因此 , 时 间行 走 要 注 意足 的健 康 。 长 关 键 词 : 同硬 度 鞋 底 ; 走 ; 底 压 力 不 行 足 中 图分 类号 : 0 . 文 章 编 号 :0 97 3 2 1) 60 8 4 文 献标 志 码 : G846 10 8X( O O 0—0 90 A
足底压力测试实验报告
足底压力测试实验报告一、实验目的本次实验旨在通过足底压力测试,探究不同鞋垫对于足底压力的影响,并为人们选择合适的鞋垫提供参考。
二、实验原理足底压力测试是通过测量脚底受力情况,来评估鞋垫对于足部支撑和舒适性的影响。
测试仪器通常采用压力敏感电子传感器,将脚底受力转化为电信号进行测量。
三、实验步骤1. 实验前准备:确保测试仪器正常工作,选择合适的鞋垫。
2. 测试者脱去鞋袜,将裸露的脚放置在测试仪器上。
3. 让测试者在测试仪器上行走数步,以产生足底受力。
4. 记录测试结果,并更换不同种类的鞋垫重复以上步骤。
四、实验结果分析根据本次实验的结果可以看出,不同种类的鞋垫对于足底压力有着不同程度的影响。
例如,在普通平板地面上行走时,使用硅胶鞋垫可以有效减少脚跟和前脚掌的压力,而使用泡沫鞋垫则相对较为平均。
此外,在不同地形和行走方式下,鞋垫的效果也会有所不同。
五、实验结论通过本次实验可以得出以下结论:1. 不同种类的鞋垫对于足底压力有着不同程度的影响。
2. 选择合适的鞋垫可以有效减少足部疲劳和受伤风险。
3. 足底压力测试是评估鞋垫舒适性和支撑性的一种有效方法。
六、实验注意事项1. 测试者应该保持放松状态,避免用力踩踏测试仪器。
2. 测试环境应该保持平稳和安静,避免干扰测试结果。
3. 测试者应该根据自己的需求选择合适的鞋垫,并进行多次测试以获取更准确的结果。
七、实验应用足底压力测试在运动医学、运动训练等领域有着广泛的应用。
例如,在运动训练中,可以根据测试结果为运动员提供个性化的鞋垫选择建议;在医学领域中,足底压力测试可以用于评估和治疗足部疾病。
八、实验展望随着人们对于健康生活的追求,足底压力测试将会有更广泛的应用。
未来,我们可以通过更加先进的测试仪器和算法,为人们提供更加精准的鞋垫选择建议,并在医学领域中发挥更大的作用。
四种女鞋的人因工程评估:鞋底在地板上之摩擦系数与穿著行走时之腿部肌电活动
472 Journal of the Chinese Institute of Industrial Engineers, Vol. 20, No. 5, pp. 472-480 (2003)AN ERGONOMIC ASSESSMENT OF FOUR FEMALE SHOES:FRICTION COEFFICIENTS OF THE SOLES ON THE FLOORS AND ELECTROMYOGRAPHIC ACTIVITIES INTHE SHANK WHEN WALKINGKai Way Li *Department of Industrial ManagementChung-Hua UniversityNo. 707, Sec.2, WuFu Rd., Hsinchu, Taiwan 300, R.O.CABSTRACTThere are two commonly held beliefs concerning high-heeled shoes for females. The first is that high-heeled shoes are prone to cause slipping accidents. The second is that high-heeled shoes heighten the muscular load on the lower legs more than low-heeled shoes. Reports on high-heeled shoe slip resistance assessment together with a discussion on leg muscular activities when wearing high heels are, however, rare in the literature. This study assessed four commonly used female shoes, two high heels and two flat-soled shoes on four floor tiles via friction measurements and a gait experiment. In the gait experiment, the electromyographic (EMG) activities of the four muscles on the right shank of the subjects were recorded. Subjective ratings for shoe/floor slipperiness and the muscular effort in the right shank were also collected. The friction measurement results showed that the coefficient of friction (COF) for the rubber-soled high-heeled shoes was significantly lower than that for the other three shoes. Conversely, the COF for the polyurethane-soled high-heeled shoes was significantly greater than that for the other three shoes. The gait experiment results showed that high-heeled shoes resulted in significantly greater normalized EMG for the tibialis anterior, peroneus longus and soleus in the right shank during walking. The subjective rating results showed that high heels were unfavorable in terms of both slip-resistance and muscular effort in the right shank. Based on assessment of the four shoes, wearing flat-soled shoes, compared to the high heels, has the benefits of lower shank muscular load and proper slip resistance. This study provides a scientific basis for shoe designers when designing suitable female footwear concerning slip resistance and the muscular load on the lower legs.Keywords : footwear assessment, coefficient of friction, EMG, subjective rating*Corresponding author: kai@.tw1. INTRODUCTIONWalking is the most common locomotion in our daily life. When walking, the slip-resistance of the footwear sole counter balances the slip motion tendency of the foot on the floor. This allows smooth center of gravity transmission for the body along the trajectory of movement. Footwear is an important interface for the foot on the floor when walking. Proper slip resistance in the footwear sole is required to enable equitable foot-floor interaction. A lack of slip-resistance in the footwear sole on the floor endangers the walker to slipping and falling.The slip resistance between the footwear and the floor is characterized by the term – coefficient of friction (COF). The COF may be determinedstatically or dynamically. The former is the static COF and the later the dynamic COF. The dynamic COF is expected to be a determining factor affecting slipperiness, as the foot is in motion when the shoe comes in contact with the floor [2,18]. In practice, during normal walking conditions, the contact time between the sole and the floor is so short that static COF might not be relevant [14]. Brungraber [3], conversely, claimed that the static COF was the most significant parameter affecting floor slip resistance. Perkins and Wilson [15] also suggested that static COF is a better indicator of slipperiness because it determines whether a slip will be initiated. The static COF measurement is usually easier than measuring dynamic COF, because the later involves complicated motion control between the two contact surfaces. AK. W. Li: An Ergonomic Assessment of Four Female shoes 473measured static COF of 0.5 was adopted as a safety standard in the USA [11].The test materials affect the COF between two contact surfaces. COF measurements between the footwear material and floor have been reported in the literature [4,9,16]. In addition to the footwear material, the geometric design of the heel could also affect the footwear slip resistance. Manning and Jones [10] measured the COF of six pairs of female shoes using a walking traction test on a variety of dry and wet floors. One flat-profiled, soft rubber sole (5 mm high) shoes and five high-heeled (25 to 50 mm) shoes (4 hard plastic and one steel soled) were tested. The mean COF of the flat sole shoes (0.42) was higher than that for the four high-heeled shoes (0.299 to 0.356) under both dry and wet conditions. No slip was observed for the flat-soled shoes on any surface, wet or dry. The five high-heeled shoes slipped on most wet and some dry walking surfaces. They concluded that high-heeled shoes were less slip-resistant and the commonly held belief that high-heeled shoes were less safe was true.In addition to the tribological effects, the subjective perception of floor slipperiness is also essential as the subject might manipulate her/his gait pattern when walking on a low COF surface to reduce the probability of a slip. The floor slipperiness is initially judged using visual perception. Myung et al. [13] compared the subjective slipperiness ranking and the dynamic COF of ceramic, steel, vinyl, plywood and sandpaper. Their results indicated that humans have a promising ability to subjectively differentiate floor slipperiness with a reliable confidence rating for the tested surfaces, even though the slipperiness difference might not be large. They concluded that humans were reliable, but risky, discriminators of floor slipperiness. Swenson et al.[17] compared the perceived slipperiness of steel beams by both iron workers and students. Their subjects were shown steel beams that were either uncoated or coated with water, clay, or oil. The subjects rated and ranked each beam for slipperiness. Then they walked across the beams and rated and ranked them again. The results showed that both the workers and the students were able to discern differences in slipperiness according to the measured COF of the beams.Cohen and Cohen [6] asked their subjects to visually compare 23 tested tiles to a standard tile with a static COF of 0.5 and judge whether the tile was more slippery. They found a significant number of disagreements between the subjective responses and the COF values for the tiles in contrast to the findings by Myung et al. [13]. In a follow-up study, Cohen and Cohen [7] exposed 8 subjects to 10 outdoor walking surfaces under both dry and wet conditions. The subjects watched and then walked over each surface under each condition before rating their perception of floor slipperiness on a one-to-seven scale. The Pearson’s@correlation coefficients between the dynamic COF of the surfaces and the subjective ratings were calculated. The authors found that the correlation was weak for the dry condition (r=0.045 and 0.241 for@the @“observed and@ experienced” ratings) and moderate for the wet condition (r=0.407 and 0.677 for the two ratings, respectively). The results from both studies [6,7] indicated that human perceptions of floor slipperiness might be quite different from the actual traction of the floor as measured by COF. A false perception of floor slipperiness may result in an inappropriate gait pattern and slipping on the floor.High-heeled shoes are common female footwear. There is a belief that high-heeled shoes are liable to cause a slipping accident. Manning and Jones [10] confirmed this using a walking traction test. Another commonly held belief regarding high-heeled shoes is that they increase the muscular activities of the lower extremities. In fact, the muscular activities of the lower extremities are not only related to the posture of the leg caused by the raised heel but also to the slip resistance of the shoes on the foot. The less slip resistant the shoes are, the higher the muscular activity required by the leg to maintain body stability during walking. A female footwear design assessment considering both the slip resistance and muscular activities in the lower leg has not been reported in the literature. The objective of this study is to assess the slip resistance and lower leg muscular activities when wearing four commonly used female shoes in terms of the static COF of the sole materials and the electromyographic activities of four shank muscles while walking in these shoes.2. METHOD2.1 Shoes and floorsFour common female shoe types were purchased from local shoe stores (see Figure 1). Shoe A had a raised heel with rubber soles. Shoe B was a high heel with polyurethane (PU) soles. Shoe C was a flat-soled work shoe with thermal polyurethane (TPU) soles. Shoe D was a flat-soled causal shoe with polyvinyl-chloride (PVC) soles. Each shoe type was purchased in 5 sizes to accommodate the foot sizes of the subjects. Table 1 shows the heel design and materials for the four shoe types. The heel height was measured at the rear-middle of the shoe heel. The fore-height was the height of the sole at the outer edge at the front end of the metatarsal. The raised angle was the angle between the raised heel and the sole of the shoes.Four floors were prepared for the friction measurement and the gait experiment: granite, vinyl,474 Journal of the Chinese Institute of Industrial Engineers, Vol. 20, No. 5 (2003)hardwood and terrazzo tile. A walking path 6 m long was delineated. On the walking path, lines perpendicular to the walking direction were drawn every 50 cm for the gait experiment. The spacing of these lines was used as the common step length of female college students.abShoe A Shoe BcShoe C Shoe DFigure 1. Experimental shoes (the a, b, and c in shoe A are the heel height, fore-height, and raised angle, respectively)Table 1. Sole design of the tested shoesShoe A Shoe B Shoe C Shoe D Heel height (cm) 6.12 (0.02) 5.51 (0.12) 3.06 (0.28) 2.76 (0.06)Fore- height (cm) 0.70 (0.01) 1.8 (0.03) 1.84 (0.29) 1.71 (0.06)Raised angle (°) 17.51 (0.29) 13.96 (0.27) 4.00 (0.28) 3.45 (0.16)Sole material Rubber PU TPU PVCNote: the mean (S.D.) of the heel height, fore-height, and raised angle were calculated from the five different sizes of each type of shoes2.2 Friction measurement for thefootwear and floorsThe static COF of the four floors using sole materials from the four shoes were measured using a Brungraber Mark II (BM II) tester. The BM II standard test method is published by the American Society for Testing and Materials (ASTM) [1]. Grönqvist et al. [9] and Chang and Matz [4] reported evaluations of this device. BM II operation requires footwear pad be attached to the bottom of a 4.54 kg inclined-strut and struck repetitively onto the floor. Ifa non-slip occurred, the inclined angle of the strut was increased. Conversely, the angle was decreased if a slip occurred. The tangent of the angle was the friction coefficient marked on the tester. A COF was recorded when a critical reading was detected. According to the ASTM testing standard [1], the critical reading is defined as the average of the maximum angle that a non-slip occurs and the minimum angle that a slip happens.The shoes suppliers supplied additional footwear pad materials (rubber, PU, TPU and PVC) for these four shoe types. A 7.6×7.6 cm footwear pad was prepared for each type of sole material for the friction measurement. To minimize the variation caused by the repetitive footwear pad striking, the footwear pad was sanded between measurements.K. W. Li: An Ergonomic Assessment of Four Female shoes 475 The footwear pad sanding procedure and slip/non-slip judgment criterion between repetitive strikes followed the recommendations by Chang [5]. Six measurements along the walking path were recorded for each footwear pad and each floor. This comprised 96 observations (4 soles × 4 floors × 6 repeated measures) of COF.2.3 Gait experimentA gait experiment was performed to measure the muscular activities of the leg during walking. Ten female college students participated in this study. All subjects were healthy without musculoskeletal problems. Their ages, stature and body weight were 23.5 (±1.86) years, 161.7 (±3.03) cm, and 50.6 (±2.37) kg, respectively. The subjects were required not to participate in any strenuous activity at least 12 hours before the experiment.The gait experiment was a three-factor (4 shoes × 4 floors × 2 cadences) randomized experiment. The subjects were instructed to walk along the walking path following the step length marked on the floor with two different cadences: 60 and 120 steps/min paced by a metronome. The subjects practiced walking in a one-hour training session prior to the experiment until they were familiar with the cadence and step length. During the experiment, the electromyographic activities of the tibialis anterior, gastrocnemius, peroneus longus and soleus of the right shank were recorded for five consecutive strides. Sets of MyoScan-Pro® EMG surface electrodes were attached to the muscles after standard skin preparation [19]. The electromyographic signals were picked up, amplified, filtered (band pass 20-500 Hz), rectified and integrated. Root mean square (RMS) values were generated. EMG data collection and data processing were performed via BioGraph® computer software installed in a laptop computer. A normalization procedure [12] was performed to compare the muscle activity between the experimental trials. The EMG values were normalized using the following equation:NEMG(%)= ()%100EMG EMG EMG EMG restmax rest×−− (1)where NEMG is the normalized EMG, EMG is the measured EMG value, EMGmax is the EMG under maximal voluntary contraction measured using the techniques proposed by Daniels & Worthingham [8], and EMGrest is the EMG at rest condition. Both the EMGmax and EMGrest were collected in a separate session from the experiment. After each experimental trial, the subject rated the slipperiness between the shoes and the floor on a five-point scale: from 1 – not slippery at all to 5 – extremely slippery. The subjects also rated the muscular effort in the right shank for the gait on a five-point scale: from 1 – extremely low to 5 – extremely high.2.4 Statistical analysisA two-way analysis of variance (ANOVA) was performed on the COF values obtained from the friction measurement. A three-way ANOVA was performed for the NEMG (%) obtained from the gait experiment. A Duncan’s¡@multiple range test was conducted if a significant result was obtained for any factor in the analyses of both COF and NEMG (%). The Kruskal-Wallis tests were performed on subjective ratings of the muscular effort in the right shank and the slipperiness between the shoes and the floor. A rank-based multiple comparison test was performed if a significant result was obtained from the Kruskal-Wallis test. The correlations between the COF and the NEMG (%) were calculated using Pearson’s¡@correlation coefficient. The correlations associated with the subjective ratings were calculated using Spearman’s¡@correlation coefficient.3. RESULTS3.1 Friction measurementThe means (S.D.) of the COF under different sole material and floor conditions are shown in Table 2. The ANOVA results for the measured COF were significant under both sole materials (p<0.001) and floor conditions (p<0.001). The Duncan’s¡@multiple range test results indicated that PU (shoes B) had a significantly (p<0.05) higher mean COF (0.81) than all other sole materials. The TPU (shoes C) and PVC (shoes D) had the second highest mean COF (0.63 for both). They were significantly (p<0.05) higher than that for the rubber (shoes A) (0.25). For the floor, hardwood had the highest mean COF (0.77). It was significantly (p<0.05) higher than that for all other floors. The terrazzo tile had the second highest mean COF (0.58), which was significantly (p<0.05) higher than that for the granite and vinyl. The granite tile had the third highest mean COF (0.50) and was significantly greater than that for the vinyl (0.46). In addition to the main effects, the two-way interaction effect between sole materials and floors was also significant (p<0.001) as shown in Figure 2.476 Journal of the Chinese Institute of Industrial Engineers, Vol. 20, No. 5 (2003)Table 2. Mean (S.D.) COF of the shoes and the floorsGraniteHardwoodVinylTerrazzo Shoe A (rubber)0.22(0.02) 0.25(0.02) 0.18(0.02) 0.32(0.02)Shoe B (PU) 0.84(0.05) 1.10(0.00) 0.57(0.02) 0.72(0.02)Shoe C (TPU) 0.38(0.02) 0.91(0.02) 0.55(0.09) 0.69(0.05)Shoe D (PVC) 0.58(0.06) 0.82(0.05) 0.53(0.05) 0.59(0.02)Figure 2. Interaction of the shoes and floor on COF3.2 Electromyographic activities of theshankThe ANOVA results showed that the NEMG (%) of the tibialis anterior were significantly different under cadence (p<0.001) and shoe conditions (p=0.043). The effect of the floor was not significant. The mean NEMG (%) under low and high cadence were 12.90% and 23.75%, respectively. The mean NEMG (%) for shoes A, B, C, and D were 16.56%, 13.80%, 15.14%, and 15.00%, respectively. The Duncan’s¡@multiple range test results indicated that the NEMG (%) of shoe A was significantly (p<0.05) higher than that for shoe B. The difference between all other shoe pairs was not statistically significant.The ANOVA results of NEMG (%) for the gastrocnemius were significant (p<0.001) under cadence conditions. The mean NEMG (%) for low and high cadence were 31.98% and 21.71%, respectively. The ANOVA results of NEMG (%) for the soleus showed that cadence and shoe were both significant (p<0.001) factors. The floor effect was not significant. For the low and high cadence conditions, the mean NEMG (%) were 34.22% and 54.15%, respectively. The mean NEMG (%) for shoes A, B, C, and D were 47.35%, 48.70%, 40.25%, and 40.46%, respectively. The Duncan’s¡@multiple range test results showed that the NEMG (%) for shoes A and B were significantly (p<0.05) greater than that for shoes C and D. However, both the difference between shoes A and B and shoes C and D had not reached a significant level.For the peroneus longus, the ANOVA results showed that the NEMG (%) were significantly different under cadence (p<0.001) and shoe conditions (p<0.001). The mean NEMG (%) under low and high cadence were 20.02%, and 25.32%, respectively. The mean NEMG (%) for shoes A, B, C, and D were 26.68%, 25.37%, 20.65%, and 17.98%, respectively. The Duncan’s¡@multiple range test results indicated that shoes A and B had significantly (p<0.05) greater NEMG(%) than shoes C and D. Both the difference between shoes A and B and shoes C and D did not reach a significant level. 3.3 Subjective ratingsThe Kruskal-Wallis test results showed that the subjective ratings for shoe/floor slipperiness were significantly different under various shoe (p<0.001) and floor (p<0.001) conditions. The rank-based multiple comparison test results indicated that Shoes A and B (both 2.68) were significantly (p<0.05) greater than Shoes C (1.88) and D (2.14). The mean rating for Shoe D was significantly greater than that for Shoe C. For the four floors, the mean subjectiveK. W. Li: An Ergonomic Assessment of Four Female shoes 477ratings for granite (2.68) and hardwood (2.65) were significantly (p<0.05) greater than that for vinyl (2.14) and terrazzo (1.90). However, both the difference between the granite and hardwood and between the vinyl and terrazzo did not reach a significant level.The Kruskal-Wallis test results showed that the subjective ratings of muscular effort in the right shank during walking was significantly (p<0.001) different under the shoe conditions. The multiple comparison test results showed that shoes A and B had a significantly (p<0.05) greater subjective muscular effort rating (3.54 and 3.21, respectively) than shoes C (2.45) and D (2.21). The difference between shoes A and B was not significant. Neither was the difference between shoes C and D.3.4 Correlations between variablesThe Pearson’s@correlation coefficients (r) between the COF and the NEMG (%) for the tibialis anterior, gastrocnemius, peroneus longus and soleus were -0.72 (p<0.001), -0.29, -0.17, and -0.32, respectively. The Spearman’s@correlation coefficient (ρ) between the subjective ratings for shoe/floor slipperiness and muscular effort in the right shank was 0.61 (p<0.05). The ρ between the subjective ratings for shoe/floor slipperiness and the COF, the NEMG (%) for the tibialis anterior, gastrocnemius, peroneus longus and soleus were -0.05, 0.10, 0.38, 0.52 (p<0.05), and 0.47, respectively. The ρ between the subjective ratings for the muscular effort in the right shank and the COF, the NEMG (%) for the tibialis anterior, gastrocnemius, peroneus longus, and soleus were -0.48, 0.32, 0.45, 0.75 (p<0.001), and 0.91 (p<0.001), respectively.4. DISCUSSIONIn using a BM II tester, a footwear sample was prepared for each sole material. The COF values measured using this tester under dry condition took mainly the sole material into account. The footwear pad size and heel height effect were not considered. Both shoes A and B were high-heeled shoes with different sole material. The result that shoe A had the lowest COF (0.25) and shoe B had the highest (0.81) implied that the heel height was not a significant factor for the COF. This was not totally consistent with the outcome from Manning and Jones [10]. The discrepancy between the two studies might be caused by the different friction measurement protocol. The COF measurement principle using a BM II tester, adopted in this study, is quite different from the walk traction test performed by Manning and Jones [10]. In their experiment, the authors had the subject wearing a pair of high-heeled shoes and walking on a test surface while pulling on a spring to generate a horizontal force to see if a slip occurred or not. The base areas of the heel of the shoes in their experiment were small compared to ordinary shoes. This might contribute to their finding that high heels were less slip resistant than flat-soled shoes. It is possible that small based- high-heeled shoes are less slip resistant, according to that walk traction test, even if the COF, measured using a BM II tester, of their soles are high.The NEMG (%) analysis for the four muscles in the right shank showed that cadence was the most significant factor affecting the electromyographic activities in the shank during walking. Cadence significantly affected the NEMG (%) for all four muscles. Higher cadences resulted in higher NEMG (%). However, there was one exception: the NEMG (%) at low cadence (31.98%) was higher than the high cadence (21.71%) condition for the gastrocnemius muscle.The shoe type was a significant factor for the NEMG (%) of the tibialis anterior, soleus and peroneus longus. For the tibialis anterior, the NEMG (%) for shoe A was significantly greater than that for all the other shoes. For the soleus and peroneus longus, the NEMG (%) for shoes A and B, both with high heels, were significantly greater than that for the other two flat-soled shoes. It was obvious, for the tibialis anterior, soleus, and peroneus longus that greater NEMG (%) were associated with wearing high heels. The high NEMG (%) might be attributed to the raised heel of the shank when wearing high heels. However, shoes B had the smallest NEMG (%) of the tibialis anterior among all shoes. This might be attributed to shoe B having the highest COF among all other shoe types. For the tibialis anterior muscle, the Pearson’s@correlation coefficient (-0.72) between the COF and the NEMG (%) was negatively strong (p<0.001). This implies the lower the COF is, the higher the NEMG (%) is. In other words, higher muscular effort on the tibialis anterior muscle is required when walking on slippery floor. This confirms the commonly held belief that high-heeled shoes heighten muscular load on the lower legs more than low-heeled shoes. For the other three muscles, the correlation coefficients between the COF and the NEMG (%) were either moderate or weak. The NEMG (%) for the shank muscles showed that high-heeled shoes are not suitable and that shoe D (the flat-soled causal shoes) is a better choice.The subjects rated shoe A as the most slippery shoes. This was consistent with the COF measurement findings. Shoe B, had the same rating score as shoe A, was also rated as the most slippery shoes. This was, however, in conflict with the outcome from the COF measurement where the sole material of shoe B had the highest COF among all shoes. Cohen and Cohen [6][7] reported that the478 Journal of the Chinese Institute of Industrial Engineers, Vol. 20, No. 5 (2003)subjective rating of floor slipperiness might be quite different from the actual friction of the floor as measured by COF especially on dry floor. The subjects rated the two high-heeled shoes with different measured COF on the soles implied that different high-heeled shoes may have the same slip resistance, according to the subjective rating of footwear/floor slipperiness, even if their soles have different COF values measured using the BM II tester. Heel height seemed to be an important factor for the subjective perception of floor slipperiness as the subjects rated the two high heeled shoes as significantly (p<0.05) more slippery than the other two flat-soled shoes. This was consistent with the results of Manning and Jones [10] that high-heeled shoes were less slip-resistant as compared with the low-heeled counterparts.The subjective and objective muscular activities correlated well in the gait experiment. The ρ between the subjective ratings for muscular effort and the NEMG (%) were high for the peroneus longus (0.75) and the soleus (0.91) and were moderate for the tibialis anterior (0.32) and the gastrocnemius (0.45). The subjective ratings for muscular effort were high when wearing high-heeled shoes compared to the two flat-soled shoes. This was consistent with the NEMG (%) findings for three of the muscles in general.5. CONCLUSIONHigh-heeled shoes are commonly worn in the workplace and for leisure activities. It is a common belief that high-heeled shoes produce a higher muscular load on the lower extremities. In this research, wearing high-heeled shoes resulted in higher NEMG (%) in the tibialis anterior, soleus and peroneus longus. This was consistent with the subjective ratings for muscular effort in the leg. The subjects felt higher muscular effort when wearing high-heeled shoes compared to flat-soled shoes. It was, therefore, concluded that high heels resulted in higher muscular load of the shank. High muscular load in the shank could cause fatigue in the lower extremities. It is also a belief that high-heeled shoes are more liable for slipping accidents. The COF measurements indicated that shoe A (rubber-soled) was the least slip-resistant shoe and shoe B (PU-soled), conversely, was the most slip resistant shoe. The COF measurement using a BM II tester simply tests the slip resistance of the sole material. The effects of the sample area and raised heel were not considered. Discrepancies, therefore, might exist between the friction coefficients and the subjective ratings for shoe/floor slipperiness. Based on the COF measurement data and the gait experiment, the two high-heeled shoes are not recommended. The flat-soled shoes, either shoes C (TPU-soled) or shoes D (PVC-soled) are a better choice for female to achieve both proper slip resistance and lower shank muscular load. This study provides valuable information not only for females in selecting proper shoes but also for the shoe designers in designing suitable female footwear concerning slip resistance and muscular load on the lower legs.ACKNOWLEDGEMENTSThis research was financially support by the National Science Council of ROC under the grant NSC 90-2218-E-216-008. The author thanks Yi-Ping Chen and Chung Jung Chen, research assistants of the research project, for their assistance in the study.REFERENCES1. American Society for Testing and Materials, F-1677-96, “Standard method of test for using a portable inclinable articulated strut slip tester (PIAST), ” Annual Book of ASTM Standards, 15.07, West Conshohochen, PA, American Society for Testing and Materials (2001).2. Andres, R. O. and D. B. Chaffin, “Ergonomic analysis of slip-resistance measurement devices,” Ergonomics, 28, 1065-1079 (1985).3. Brungraber, R. J., “An overview of floor slip-resistance research with annotated bibliography (NBS Technical Note 895)”. Washington, DC: National Bureau of Standards (1967).4. Chang, W. R. and S. Matz, “The slip resistance of common footwear materials measured with two slipmeters,” Applied Ergonomics, 32, 540-558 (2001).5. Chang, W. R., “The effects of slip criteria and time on friction measurements,” Safety Science, 40, 593-611 (2002).6. Cohen, H. H. and D. M. Cohen, “Psychophysical assessment of the perceived slipperiness of floor tile surfaces in a laboratory setting,” Journal of Safety Research,25 (1), 19-26 (1994).7. Cohen, H. H. and D. M. Cohen, “Perception of walking surface slipperiness under realistic conditions, utilizing a slipperiness rating scale,” Journal of Safety Research, 25 (1), 27-31 (1994).8. Daniels, L. and C. Worthingham, Muscle testing techniques of manual examination, W.B. Saunders Co. (1986).9. Gröqvist, R., M. Hirvonen and A. Tohv,¡@“Evaluation of three portable floor slipperiness testers,” International Journal of Industrial Ergonomics, 25, 85-95 (1999).10. Manning, D. P. and C. Jones,@“High heels andpolished floors: the ultimate challenge in research on slip-resistance,” Safety Science, 19, 19-29 (1995).11. Miller, J. M., “Slippery work surface: Toward aperformance definition and quantitative coefficient of friction criteria,” Journal of Safety Research, 14, 145-158 (1983).。
不稳定鞋底结构对下肢肌肉活动的影响
不稳定鞋底结构对下肢肌肉活动的影响作者: Illetschko Thomas & Knauder JuliaDr. Brian Horsak, St. Pölten GmbH应用科学大学, 圣•帕尔藤,奥地利本研究是一项独立的干预性研究。
通过肌电图测量三种不同条件下下肢臀中肌,股四头肌外侧肌,胫前肌和腓骨长肌的肌肉活动:赤脚、X10D鞋以及参照鞋。
本研究包括初始测量(T1)、五周干预期和最终第二次测量(T2)。
臀中肌模型-视图-控制器中的肌肉活动性百分比图表12:模型-视图-控制器在第一次测量(T1)和第二次测量(T2)中臀中肌对应三种不同的鞋子状态“普通鞋”(NS),赤脚(BF)和X10D型鞋(X10D)平均肌肉活动性的变化(柱状)和标准偏差(叉型)百分比橙色代表第一次测量值,蓝色代表第二次测量值。
在两次测量之间,臀中肌的肌肉活动增加了34%。
在为期五周的干预期间,受试者穿着X10D鞋行走了大约80个小时。
这种增加的活动值是显著的(p = 0.036)。
在五周的干预期后,在赤脚行走和普通鞋行走(第1和第2栏)时,臀中肌的活动也明显增加。
因此,再次证实了X10D鞋的可持续效果。
胫前肌模型-视图-控制器中的肌肉活动性百分比图表11:左侧:模型-视图-控制器在胫骨前肌(TA)第一次测量时(T1)肌肉活动性的中间值(柱状)以及标准偏差(在此表示为叉型)百分比。
右侧:模型-视图-控制器在胫骨前肌(TA)第二次测量(T2)肌肉活动性的四分位差中位数(在此表示为叉型)百分比。
与赤脚和参照鞋条件相比,当穿着X10D鞋行走时,胫前肌的活动增加。
增加的活动在第一次测量时表现显著,但在第二次测量时虽然增加明显,但并不显著。
步态参数步频表格3:在第一次测量时(T1)和第二次测量时(T2)的每分钟步数对应三种不同的鞋子状态“普通鞋”(NS),赤脚(BF)和X10D型鞋(X10D)的附带标准偏差的中间值,以及t检验的显著性水平步长表格4:在第一次测量时(T1)以厘米为单位的步距对应三种不同的鞋子状态“普通鞋”(NS),赤脚(BF)和X10D型鞋(X10D)的附带标准偏差的中间值。
穿着两种不同鞋行走时足底特征对比分析
趾 骨与 第二跖 骨及足跟 区存在非常显著 差异 ; 行走过程 中这两个 区域足底 平均压 力峰 值板鞋 组显著 大 于慢跑 鞋组 ( P < 0 . 0 5 ) 。慢 跑鞋较板 鞋表现 出跖 骨 区压 力小 、 足 中部 压力 大、 足跟区
压力小 , 均存在显著 差异 ( P < 0 . 0 5 ) 。 以期为健步走人群不 同速度行走 时提供 可行性建议 。 关键 词 : 行走 ; 足底 压力 ; 跑 鞋
第3 8 卷 第 6 期 2 0 1 6 年1 2 月
辽 宁 体 育 科 技
U A0NI N G S P OR T S C I E NC E AND T E C HNOL O GY
Vo 1 . 3 8 No . 6 De c .2 0 1 6
穿 着 两种不 同鞋 行 走时 足底特 征对 比分析
f e a s i b i l i t y a d v i c e f o r w a l k i n g a t d i f f e v e n t s p e e d s .
h u ma n l o w e r l i mb s a n d p l a n t r a me c h a n i c s a t d i f f e r e n t wa l k i n g s p e e d s . T h e r e s u l t s s h o w t h a t : c o mp a r e d we a r i n g r u n n i n g s h o e s wi t h s n e a k e r s ,t h e i f r s t a n d s e c o n d me t a t a r s a l a n d h e e l a r e a h a v e s i g n i i f c a n t d i f e r e n e e ,d u in r g
从鞋底看出你的走路姿势,姿势反映你的健康状况!
从鞋底看出你的走路姿势,姿势反映你的健康状况!鞋子跟我们的日常生活有非常密切的关系,我们最为关注的是鞋子的样式好不好看,穿着舒不舒服,这些都是关于鞋的外表和材质的。
然而,你有关注过你的鞋底吗?事实上,鞋底能够反映人体的健康状况。
因为鞋子穿久了,就可以从鞋底看出我们走路的姿态,而步态反映的就是我们身体的健康问题。
所以,这些与我们密不可分的鞋子,竟然隐藏着我们身体健康的秘密。
鞋底的磨损地方可以大致归为三种情况:内侧磨损、外侧磨损和两边磨损差异大。
鞋底外侧磨损较大:易引发关节炎这种走路方式有可能是两腿膝关节向内收,会导致小腿向外弯曲,易引起关节扭伤和损伤,长期受力不均会导致膝盖外软骨磨损,甚至患上关节炎。
另外,这种步态也会给髋骨施压,导致坐立时骨骼的长久疼痛,并且形成“X形腿”。
鞋底内侧磨损较大:膝关节疼痛、加速退化鞋底内测磨损较大可能是走路时两腿的膝关节向外分离,导致小腿胫骨向内翻转一定角度而形成的。
如果严重的话,就会形成“O形腿”或者“内八字”。
脚趾向外的角度过大,就会迈着外八字脚步,时间久了,膝盖可能外移,导致双腿变形。
随着年龄的增长,可能引起膝关节疼痛,加速关节退化,乃至引起腰椎不适。
双脚鞋底磨损不对称:双腿长短不一这种情况多是双膝受力情况不均所导致的,最典型的表现就是双腿长短不一。
当人的一只脚受伤后,就会有意地去避免受伤的一侧用力,长时间后会形成保护性跛足,这样的话双腿用力不均匀,就会导致两只脚的鞋底磨损情况明显不同。
有些人在运动损伤之后,担心受伤部位再被拉上,于是拖着腿走路,时间久了腰椎就会变形。
那么,什么样的磨损情况才是最正确的走路方式呢?前掌鞋底磨损较多是最健康规范的姿势,也是最美的走路姿势。
我们在看比赛的时候可以观察到,体操运动员走路时,脚跟是不落地的,运动员跑步时也是前脚掌先落地。
这是因为脚掌弹性好,脚掌落地对人体冲击力小。
所以,不管是跑步还是行走,都建议前脚掌先落地,用来缓冲地面的冲击力,这样有利于对保护关节。
浅谈鞋底磨损特征的特定性
学术论坛科技创新导报 Science and Technology Innovation Herald2391 鞋底磨损特征的形成1.1 鞋底磨损特征形成的基本条件人体的足骨具有很强的坚韧性,是鞋底磨损特征形成的基本条件。
骨是由无机物和有机物构成的,成人骨中有机物占骨重量的30%~40%,无机物约占骨重量的60%~70%。
骨的有机物使骨具有韧性,骨的无机物使骨具有坚固性。
骨的韧性使得在各种运动形式下组成足形的足骨本身变形或被破坏的可能性较小,即不易发生骨折。
同时,由于足骨具有很强的坚固性,比肌肉,鞋底坚固的多,使得足骨和鞋底的硬度差距很大,人体在站立行走运动中,在重力和肌力的作用下,其足底骨的形态结构能够通过硬度小的肌肉,所穿的鞋袜传递到鞋底、鞋印上面,使鞋底、鞋印上面反映出足底面形态结构的特征,即鞋底磨损特征。
1.2 鞋底磨损特征形成的决定因素人足底面具有凸凹不平的形态结构特征,是鞋底磨损特征形成的决定因素。
足是支撑人体的底座,是行走的工具,是形成足印,鞋底磨损特征的主体,起决定作用。
由于组成足型的骨的形态、大小不同及足的弓形结构,足底面组成的是凸凹不平的形态结构。
即使是平底足,其足底面也并不完全是一个平面。
足底面最突出的部位是足跟部、第一、第五跖部。
由于足底凸凹不平的形态结构,才使足底各部位的着力大小、方向不一样。
当人体站立行走时,足底面的形态结构,在重力和肌力的作用下,才传递到鞋底、鞋印上,使鞋印上反映出了与足底形态结构相对应的磨损特征,即鞋底磨损特征能够反映一定的赤足解剖结构。
1.3 鞋底磨损特征形成的影响因素人的行走运动具有习惯性,是鞋底磨损特征形成的主要影响因素。
人的行走运动是一种条件反射,它具有特定性和相对稳定性,正是由于这种特性,人体才得以维持正常的行走运动。
人的行走运动,是由两只足交互支撑和摆动,连续不断地向前运动而实现位移的周期性运动,人的行走习惯通过两只足必然能得到反映。
由于每个人的行走习惯不同,其走路的姿态、运步方式、运足的作用力也不一样,因而形成了每个人各自不同的起、落足特征。
不同足跟垫之足部生物力学分析
不同足跟墊之足部生物力學分析Biomechanical Analysis of the Foot on Different Heel Cushions林晉熯Jin-Han Lin物理治療暨輔助科技學系關鍵詞:足跟墊;有限元素分析;生物力學;Keyword:heel cushions;finite element analysis;biomechanical analysis;摘要:楔型構造的足跟墊的主要功能在於步行時分散足跟的壓力,同時減少足跟的能量衝擊以達到減緩足跟痛的效果。
然而,足跟墊的此種物理特性取決於它的材質選用以及厚度設計,在市面上不同品牌的足跟墊有不一樣的設計,但目前尚未有研究指出不同品牌的足跟墊對足部減壓效果如何以及對足部組織受力的影響,因此本研究的主要目的在於比較使用市面上常見的矽膠(Silicon)與熱塑性(TPE)足跟墊在步行時足跟有最大壓力瞬間下,足底各區域的力學影響。
同時,使用有限元素分析探討足部組織的力學效應。
本研究共有16位受測者參與此次人體試驗,受測者在穿上Silicon足跟墊、TPE足跟墊以及不穿足跟墊的情況之下,以舒適的速度步行在15公尺長廊。
同時使用Pedar足壓系統在每次測試時皆截取其中5步資料作足壓分析。
以組間相關係數和樣本配對T檢定來分析每次測試間的重複性和三組之間的足部力學差異。
足部亦被劃分為10個區域,分別比較垂直作用力、峰壓值、平均壓力和接觸面積。
而有限元素足部模型乃取其中一位受測者的足部建模完成,經過足壓實驗驗證通過後,再進行足後跟應變及應變能、足底筋膜受力及跟骨應力之生物力學分析。
研究結果顯示穿戴足跟墊後使得中足被墊高,地面反作用力前移,前足受力增加,而導致前足的峰壓、平均壓力、垂直作用力與接觸面積皆增加了,但是中足區域的卻減少了。
在足跟區域的比較上,穿Silicon足跟墊相對於不穿足跟墊之下可以顯著性的減少足跟峰壓值約10%;但使用TPE足跟墊卻沒有差異。
鞋底硬度对人体的影响测试详解
鞋底硬度对人体的影响测试详解行走是人们生活中重复最多的一种整体性运动,目前国际上最时兴的健身运动就是健身走,人一生行走的距离约为地球周长两周半以上,步行1公里,每一只脚要承受600~700次的重力冲击,如果运动激烈,则冲击力就更大。
鞋如果没有良好的减震系统,来缓解对足的冲击力,就会使双脚感到疲劳不堪负重,还会对踝关节、膝关节、腰背以及人体的大脑造成冲击伤害。
关于步态,科学工作者们已经做了大量的研究,网上有关步态的文章就有几千篇,而有关运动鞋也有大量的研究,但是,针对不同硬度鞋底的鞋在人体步行能力上的研究还未见报道。
因此,对人体穿不同硬度鞋底的鞋行走进行生物力学分析,用可靠的力学参数和科学的评价方法来衡量各种鞋的鞋底功能特性就尤为重要。
实验方法:(1)不同硬度鞋底鞋的制备及鞋底的力学性能测评:运用Instron材料试验机参照GB/T13634-92硫化橡胶或热塑性橡胶压缩、应力松弛的测定来进行实验。
挑选出3种不同硬度的鞋底,测量鞋底的弹性模量、应力松弛,找出能够进行步态实验的不同硬度鞋底,并制作成鞋,鞋重量均为103克。
(2)实验仪器:1、运用Vicon红外摄像系统,对受试者的静态和动态数据进行捕捉,找出穿不同硬度鞋底的鞋影响人体长时间步行能力的主要运动学参数。
2、运用Novel-Pedar与Zebris足底测量系统,对受试者的足底压力指标进行测量,找出穿不同硬度鞋底的鞋在人体长时间步行中,影响足底的力、压强、接触面积等主要动力学参数。
3、运用Biovision16通道肌电图机,对胫骨前肌、股外侧肌、腓肠肌和股二头肌进行肌肉电信号的IEMG与MF信号进行采集,找出穿不同硬度鞋底的鞋在人体长时间步行中对上述肌肉的时域和频域指标影响。
4、运用Cosmed运动心肺测试系统,通过耗氧量计算出耗能量,定量比较受试者穿同硬度鞋底的鞋引起的人体体能消耗情况。
(3)实验步骤与操作过程:1、在受试者特定部位贴上marker球,建立下肢的骨骼模型;在股外侧肌、股二头肌、胫骨前肌、腓肠肌的肌腹上贴上电极测定肌电,并在实验前对肌肉的IEMG进行标准化处理。
鞋底厚度对下肢生物力学参数的作用探究-运动生物力学论文-体育论文
鞋底厚度对下肢生物力学参数的作用探究-运动生物力学论文-体育论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——摘要:目的比较穿不同鞋底厚度运动鞋对人体行走、跑和跳跃过程中, 人体下肢相关生物力学参数的影响。
选取健康男性大学生12名作为受试对象。
方法使用VICON红外运动捕捉系统采集人体运动学参数; Noraxon表面肌电信号采集系统采集躯干及下肢表面肌电信号; AMTI三维测力台采集人体地面反作用力参数。
测试用鞋使用EVA材料对鞋底厚度进行调整, 分为普通厚度、增厚1 cm、2 cm 和3 cm共4种厚度。
结果(1) 跑步测试结果表明, 鞋底厚度增加2 cm 和3 cm时, 股直肌激活程度测试后比测试前分别增加124. 6%和146. 2%; (2) 与其他厚度相比, 鞋底厚度增加1 cm时, 测试前后的下肢肌肉共收缩指数(Co-contraction Index) 显着降低; (3) 鞋底厚度增加23 cm时, 人体步行支撑脚离地时刻膝关节角度将显着增加; (4) 在步行着地时刻, 踝关节背屈力矩显着增加(P=0. 049) 。
结论(1) 考虑到下肢肌肉协调和降低能耗因素, 鞋底厚度以1 cm左右为宜, 过厚或过薄, 都会对下肢肌肉协调性产生不利影响; (2) 鞋底厚度增加会使行走过程中足蹬离地面时的踝关节角度增大, 降低足部趾屈动作的效率; (3) 鞋底厚度的增加会增大跳跃过程中足部额状面方向的分力, 从而增加踝关节内、外侧副韧带损伤的风险。
关键词:鞋底厚度; 生物力学; 运动学;Abstract:Objective The purpose of this study is to compare the influence of different sole thickness on the biomechanical performance of lower extremity when walking, running and jumping. Method 12 male college students participated in the test. A VICON motion capture system was used to obtain the kinematic data. A Noraxon wireless EMG system was used to obtain the s EMG data. The AMTI platforms were used to obtain the ground reaction force. There are 4 sole thicknesses within the range of normal sole to 3 cm made by EVA. Results ( 1) Under the condition of 2 cm and 3 cm, the EMG of rectus femoris increased by 124. 6% and 146. 2% before and after running test. ( 2) The co-contraction index of lower extremity significantly reduced under the 1 cm sole thickness compared to the other sole thickness. ( 3) When walking with 2 cm and 3 cm, the knee angle of supporting leg in the take off instance increased significantly. ( 4) The dorsiflexion moment of ankle increased significantly when the foot touch down in walking. Conclusion ( 1) The sole thickness of 1 cm is suitable for muscle co-contraction reducing energy consumption. Neither too thick nor toothin is favorable for muscle co-contraction. ( 2) The angle of ankle joint will increase accompany with the increasing of sole thickness at the time of push off when walking. This will reduce the flexor movement efficiency of ankle joint. ( 3) The increasing of sole thickness will increase the frontal plane force of ankle joint when jumping, thereby increase the risk of ankle joint lateral and collateral ligament injury.Keyword:sole thickness; biomechanics; kinematic;运动鞋是人类从事体育锻炼和竞技比赛的必须装备, 适合的运动鞋不仅可以对人体起到缓冲和保护作用, 还可以达到改善动作效果和提高运动成绩的目的。
不同鞋型对身体姿势及足底压力的影响
Effects of Different Shoe Types on Body Posture and
Plantar Pressure
作者: 刘淑文[1];宋雅伟[1];辛东岭[1]
作者机构: [1]南京体育学院运动健康科学系,江苏南京210014
出版物刊名: 四川体育科学
页码: 48-52页
年卷期: 2020年 第3期
主题词: 专业防跌倒鞋;运动鞋;足底压力;身体姿势
摘要:研究目的:通过测量人体姿势,了解不同鞋型对身体姿势、足底压力的影响;研究方法:选取南京市老年人23名,男12名,女11名,采用PA200LE姿势评估系统,分别在穿着专业防跌倒鞋、运动鞋、裸足三种状态下进行测量,分析差异;研究结果:专业防跌倒鞋与裸足对比,男性左髌尖距离髂前上棘和踝关节中点连线的距离、右髌尖距离髂前上棘和踝关节中点连线的距离P<0.01,女性骨盆与地平线夹角P<0.05,男女均左前、左后P<0.01,女性左、右P<0.01;运动鞋与裸足对比,女性左髌尖距离髂前上棘和踝关节中点连线的距离P<0.05,骨盆与地平线夹角P<0.05,男性左前、左后、右后、左、右P<0.01;运动鞋与专业防跌倒鞋相比,男性耳偏离身体正中线距离
P<0.05,肩峰偏离正中线距离P<0.01,运动鞋与专业防跌倒鞋相比,左前、左后、右前、右后
P<0.01。
研究结论:专业防跌倒鞋可以降低膝关节的关节力矩、能量消耗,且女性更为明显;专业防跌倒鞋可以改善骨盆后倾调整身体姿势,使之更趋近于理想站立姿势;专业防跌倒鞋会前脚掌的受力比率增大,左、右脚受力更加均衡。
运动鞋的生物力学分析
运动鞋的生物力学分析班级:本硕121 姓名:孟宪章学号:5702112111摘要:运动鞋科技的每一项进步都离不开生物力学研究。
无论国际品牌Nike和Adidas,还是以李宁为代表的国内一线品牌,其核心技术的创新都必须遵循人体运动的生物力学原理。
足的结构与力学功能问题、“足—鞋—地”相互作用的力学问题、鞋体材料与结构的运动功效问题以及足的骨结构生物力学模型问题,一直以来都是运动鞋生物力学研究的主题。
国内外的品牌运动鞋的核心技术也都大同小异,主要是:模拟裸足、足跟控制、缓震减震。
能量回归。
1 足的生物力学研究足作为下肢的末端环节,通过直接或间接与外界接触,并发生力的相互作用,从而改变人体的运动状态。
因此,足的结构与运动功能的生物力学问题是运动鞋生物力学研究的基础。
足的生物力学研究主要涉及足的结构与形态分析、足的运动学测量分析、足的动力学测量分析和足的生物力学建模分析。
1.1足的形态与结构分析足的形态与结构测量,借助了现代影像技术及电子技术,如三维足部扫描系统、X光、CT和MRI动态扫描系统等都早已运用于不同功能运动鞋的设计与制作。
基于CAD计算机辅助设计并结合数字化技术的脚型测量系统,则使脚型测量更加简单快捷,个性化运动鞋的设计已变得十分方便。
1.2足的运动学测量分析Siegler等研究了人体踝关节和距下关节的三维运动学特征,提出的重要结论对认识踝关节、距下关节以及在旋转、内翻等足运动过程中的作用具有指导意义。
Sammarco利用瞬时旋转中心的方法考察了踝关节在背屈和内翻动作中的运动学特征。
EIlgsbe利用有限螺旋轴法研究了跟距关节的三维运动学特征。
Root等不仅提出了足部形态结构影响足部运动功能的观点,而且,采用三维影像技术研究了足的运动学特征,为足的运动学测量分析提供了理论与方法基础。
1.3足的动力学测量分析Vlorton是最早利用复印技术记录足部压力分布的学者,他所设计的运动图像技术,其原理是利用橡胶的弹性把压力转换为相应比例的变形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T e t d O l h n e o y e e t ii o l n a e i d  ̄n wa k n wi d fe e t a d e s oe f h su y i c a g s f m o- lc rc t y f p a t p d s u g li g t h i r n h r n s s ls o
sos O a e, U n j g h e/ NG Y w iKO Hegi ,Z NG X y a / hns o ra fRe a itt n M eiie 0 0 5 S n HA iu n/ iee J u n lo h blai dc ,2 1,2 C i o n
(2 :1 7 1 6 1) 5 - 1 0 1
sg as f ne o t il in l o a tr r i a mu c e ae a f mo a mu c e g s o n mi s i b s l ,l tr l e rl s l , a t e e u mu c e n fmo a b c p mu c e w r r s l a d e rl ie s sls ee me s r d t n e i f e c f ln i a k n i i e e t h r n s oe f s o s o h i o i n a u e o f d t n u n e o o g t i h l me w i g w t d f rn a d e s s ls o h e n t e t l h me d man a d
消 耗 的时 间 较 其他 两 种 硬 度 的鞋 长 。穿 中 等 硬度 鞋 行 走 时 股外 侧 肌 肌 肉收 缩 时长 最 短 。
结 论 : 底 的软 硬 程 度 对人 体 在 行 走 过 程 中下 肢 肌 电 变 化 具 有 一 定影 响 , 底 鞋 关 节 缓 冲 比较 差 , 能 小 , 关 节 保 鞋 硬 耗 对
中田 熏 学 参20 ,2卷第1期 I腐 匡 磐 0  ̄第 5 , 2 1
・
临床 研 究 ・
不同硬度鞋底在人体行走中的足底肌电变化
宋雅 伟
摘 要
寇 恒 静 张 曦 元
目的 : 对人 体 穿 不 同 硬 度鞋 底 的 鞋 行 走, 进行 生 物 力 学 分 析 , 过 人 体行 走 中的 肌 电 变 化 来评 价不 同硬 度 鞋 底 的 功 能 通
f q e c o i f a o e me t n d mu ce id x s r u n y d ma n o b v - n i e s l n e e . e o Re u t n ttl t e I s l:I oa h EMG au t w kn t ot s ls f s o s wa ih r t a h s t oh r t i d f v e a a i g wi s f o e o h e s h g e h n t o e wi l l h h t e wo k n s o
特性 。
方 法 : 受 试 者 ( 自行 设 计 的实 验 用 鞋) 跑 台上 以 2 / 对 着 在 m s的速 度 , 行 步 行 6 m n的测 试 , 用 Bo io 6通 道 肌 进 0i 运 i s n1 vi
电 图 机 、io V en红外 摄 像 系 统进 行 同步 测 试 ,对 胫 骨 前 肌 、股 外 侧 肌 、腓 肠 肌 和 股 二 头 肌 肌 肉 电 信 号 的 积 分肌 电值
s o s b ime h n c n l ss n e p o e t e d f r n u cin l c a a trsis o h e i i ee t h r n s h e y b o c a ia a ay i,a d x lr h i e e t f n t a h r ce t f s o s w t d f r n ad e s l o i c h
Ab t a t sr c
O jci :T td h h ne fmy- l tc yo lnap dsd r g w li i iee thrns sl f bet e o s y te cagso o e cr i fpat ei ui a n wt d rn ad es o so v u e it n kg h f e
(E IMG) 中位 频 率 ( ) 号 进行 采 集 , 出穿 不 同 硬 度 鞋底 的鞋 在 人 体 长 时 间 步 行 中 对 上 述 肌 肉 的 时域 和频 域 指 与 MF 信 找
标影响。
结 果 : 软底 鞋 IMG 总体 高 于 ห้องสมุดไป่ตู้ 他 两 种 硬 度 的鞋 , 中腓 肠 肌 的 表 现 尤 其 明显 , MG 为 (3 . 6 13 8 )V , 穿 E 其 I E 4 49  ̄ 3 . 2 USMF 4 7 为 (85 3 4 . 5 H , 电 活 动较 大 时 容 易疲 劳 。 软 底 鞋行 走时 在 全 掌 着 地 , 跟 离地 , 7 .  ̄ 53 ) z肌 6 4 穿 脚 脚尖 离 地 期 胫 骨 前肌 收 缩
s ls oe .
Meh dU ig i io 1 hn e eet m orp nertd E to :s Bo s n 6 ca nl l r ygah it ae MG ( M ) s n l a d m du rq ec ( . n vi eo g I G i a n e i f u nyMF E g s m e )
护 比较 差 , 弓不 易塌 陷 。 足 关键 词 鞋底 ; 度 ; 走 ; 底 ; 电 硬 行 足 肌 文 献 标 识 码 : A 文章 编 号 :o l 1 4 ( 0 0 一 2 l 5 — 4 1 o 一 2 2 2 1 ) 1 一 17 0
中 图分 类 号 : 8 4 1 G o. 6