大肠杆菌中分泌表达
大肠杆菌表达系统
大肠杆菌表达系统总结随着分子生物学和蛋白组学的迅猛发展,外源基因表达的遗传操作技术日趋成熟。
表达系统是外源基因表达的核心,常用表达系统一般为模式生物,包括真核表达系统和原核表达系统,其中真核系统包括了哺乳动物细胞表达系统、植物体表达系统、昆虫杆状病毒表达载体系统以及酵母表达系统,原核表达系统则主要为大肠杆菌表达系统。
大肠杆菌是目前应用最广泛的原核表达系统,也是最早进行研究的外源基因表达系统,其遗传学背景清晰、生长快、较易实现高密度培养、成本低、产量高,相较于其它表达系统具有难以比拟的优越性,是商业生产中应用最广泛的表达系统,取得了巨大的科研价值和经济效益。
大肠杆菌表达系统目前广泛应用于表达生产多种蛋白质/多肽类药物和生物化学产品,包括:重组人胰岛素、a2b型干扰素、兰尼单抗、紫色杆菌素和牡丹皮葡萄糖苷等。
据统计,1986-2018年由美国FDA和欧洲EMA批准上市的重组蛋白类药物中有26%来自于大肠杆菌。
与此同时,目前通过大肠杆菌表达的基因工程疫苗也进入市场或处于临床实验阶段,如戊型肝炎疫苗、人乳头瘤病毒疫苗、流感A型疫苗等。
常见的大肠杆菌表达系统有BL21系列、JM109系列、 W3110系列和K802系列等,其中大肠杆菌 BL21( DE3)菌株是目前应用于重组蛋白表达研究最广泛的菌株之一,BL21(DE3)是由大肠杆菌B系列与K-12系列的衍生菌株通过 P1 转导等遗传突变获得的。
该类菌株通常为宿主蛋白酶缺失型,以保证外源蛋白在表达过程中不被降解,维持表达的稳定性。
大肠杆菌表达系统在商业生产中具有巨大的优越性和价值,但建立高效匹配的表达系统是实现商业价值的关键,包括宿主菌、外源基因、载体的选择与匹配。
宿主菌的选择是第一步,对表达活性和表达量影响很大,理想的宿主菌株是蛋白酶缺陷型,避免蛋白酶过多引起的产物不稳定,常见的蛋白酶缺陷型菌株为BL21系列菌株。
其次是外源基因,外源基因决定了是否可获得目的产物,原核基因可在大肠杆菌中直接表达,而真核基因不能再大肠杆菌中直接表达。
短小芽孢杆菌β-1,4-葡聚糖内切酶基因的克隆及在大肠杆菌中的分泌表达
mi 5 n, 0C退 火 1 mi 7 ℃ 延 伸 2 mi 进 行 3 o n, 2 n; 0个 循
H1 2菌 株 , 离 自 土 壤 ; 肠 杆 菌 表 达 载 体 分 大
p T 0 , o ae E 2 b N v g n公 司 ; 限制 性 内切 酶 、 NA 连 接 TD 酶 、 a T qDNA聚合 酶 、MD 8T载 体及 蛋 白分子量 标 p 1一 准 , a R 公 司 ; 甲基纤 维素 ( MC , ima 司 ; T Ka a 羧 C ) Sg 公
葡 聚 糖 酶 , 广 泛 应 用 于 洗 涤 剂 、 染 、 墨 等 行 已 印 脱
业 ] 应用前 景 广 阔 。从 自然 界 中筛 选 高 活 力 的 , 1 4葡 聚糖 内切 酶产 生 菌 , 隆其 基 因并 利 用 强 启 动 ,一 克
子 进 行 表 达 是 提 高 酶 产 量 的 重 要 措 施 。到 目前 为 止 , 虽 然 已有 一 些 1 4葡 聚 糖 内 切 酶 基 因 被 克 隆 并 得 到 ,一
DNA 分 子 量 标 准 , ANGEN 公 司 ; 回 收 试 剂 盒 , TI 胶
环 , 后 7 ℃延伸 1 i。将 P R扩 增 得 到 的 2 k】 最 2 0r n a C } 条带 胶 回收 , 后与 p 然 MD1一 载体 连 接 , 化 大肠 杆 8T 转
E l 将 其 转 化 至 大 肠 杆 茵 B 2 ( E ) 株 中进 行 表 达 。结 果 表 明 , 基 因 大 小 为 1 8 p 共 编码 6 9个 氨 基 酸 ; g A, L ID 3茵 该 9 0b , 5 对
实验九 外源基因在大肠杆菌中的诱导表达和降解物阻遏作用
实验九外源基因在大肠杆菌中的诱导表达和降解物阻遏作用【实验目的】1.了解外源基因在原核细胞中表达的基础理论。
2.掌握乳糖操纵子的调节机制和操作方法。
【实验原理】1.外源基因在原核细胞中的表达蛋白质通常是研究的最终目标,因此蛋白质的表达在基因工程中占有非常重要的地位。
常用的表达系统有原核细胞和真核细胞。
原核细胞表达系统主要使用大肠杆菌,真核细胞表达系统主要有酵母细胞、哺乳动物细胞和昆虫细胞。
这些表达系统各有优缺点,应根据实验目的和实验室条件加以选择。
本实验主要介绍以大肠杆菌为代表的原核细胞表达系统。
(1)大肠杆菌表达系统的特点:生物学特性和遗传背景清楚,易于操作;已开发较多的克隆载体可供选择;容易获得大量的外源蛋白(外源蛋白可占细菌总蛋白50%左右)。
(2)蛋白质在原核细胞中的表达特点:原核细胞有其固有的RNA聚合酶,识别原核基因的启动子。
因此,在用原核细胞表达目的基因(无论是真核基因还是原核基因)时,一般应使用原核启动子。
原核基因的mRNA含有SD序列,启动蛋白质的合成。
而在真核基因上则缺乏该序列。
因此,一些商品化原核表达载体上设计有SD序列,以方便真核基因的表达。
原核细胞没有mRNA转录后加工的能力。
因此,在原核细胞中表达真核基因时,应使用cDNA 为目的基因。
原核细胞缺乏真核细胞对蛋白质进行翻译后加工的能力。
如表达产物的功能和蛋白质的糖基化、高级结构的正确折叠有关,必须慎重使用原核表达系统。
外源基因在大肠杆菌中高效表达时,表达产物往往在胞浆聚集,形成均一密度的包涵体。
包涵体的形成有利于保护表达产物不被胞内的蛋白酶降解,而且可以通过包涵体和胞内其他蛋白质密度不同来纯化包涵体蛋白。
但包涵体蛋白不具有该蛋白的所有生物学活性,往往需要通过变性复性的方法恢复活性,有时只能回复部分活性。
(3)蛋白质在原核细胞表达的调控启动子是转录水平调控的主要因素。
根据启动子起始mRNA合成效率的不同,可分为强、弱启动子,但是启动子的强弱是相对于不同基因而言的。
色氨酸酶在大肠杆菌周质中的分泌融合表达
宿主 E c eihacl B 2 ( E ) 成 功构 建分 泌 融合表 达 型 色氨 酸酶 基 因工程 菌. 过摇 瓶 培 养 sh rc i i L 1 D 3 , o 通
实验 研 究 了 诱 导 剂 浓 度 、 导 温 度 及 诱 导 时 间 对 色氨 酸 酶 活 性 的 影 响 . 程 菌 以 舍 2 甘 油 的 L 诱 工 B
Y U Zhe — he n z n。LI Che — hui N ns
( olg f h r a c uia S i c ,Z e a g Unv ri fT c n lg ,Ha g h u 3 0 3 , h n ) C l eo a I re t l c n e h j n ie s y o e h oo y e P n c e i t n z o 1 0 2 C ia
r c mb n n l s i s t a s o me n o Es h r c i o i 2 ( e o i a tp a m d wa r n f r d i t c e ih a c l BL DE3 1 ) The e gi e i g s r i n ne rn t an
为培 养基 , o一 0 5时 , 入 终 浓度 为 0 0 A6 o . 加 . 5 mmo/ 的 Io r p l - 一一t ig lco ya o ie lL s p o y D 1 ho aatp rn s 5 d
(P G) 3 I T ,0℃诱 导培 养 8h 可在 周 质 空 间 中表 达 高 活性 的 色氨 酸 酶 融合 蛋 白. 培 养 基 中添 加 , 在
s eAs— pAs~ pL s” 列的 D i ( pAs - pAs — y ) 序 t NA 序 列 , 用 重 叠延 伸 拼 接 技 术 , 其 与 色氨 酸 酶 基 因 利 将
大肠杆菌表达系统的研究
大肠杆菌表达系统的研究大肠杆菌表达系统是基因表达技术中发展最早,目前应用最广泛的经典表达系统。
大肠杆菌表达系统的发展历史可追溯到二十年前,Struhl等(1976)、Vapnek等(1977)和Chang等(1978)分别将酿酒酵母DNA片段、粗糙链孢霉DNA片段和哺乳动物cDNA片段导入大肠杆菌,引起其表型的改变,证明了外源基因在大肠杆菌中可以使现有功能的活性表达。
这些研究工作为大肠杆菌表达系统的发展奠定了理论基础。
Guarante等(1980)在Science杂志上发表了以质粒、乳糖操纵子为基础建立起来的大肠杆菌表达系统,这一发展构成了大肠杆菌系统的雏型。
随着80年代后期分子生物学技术的不断发展,大肠杆菌表达系统也不断得到发展和完善。
与其它表达系统相比,大肠杆菌表达系统具有遗传背景清楚,目的基因表达水平高,培养周期短,抗污染能力强等特点。
在基因表达技术中占有重要的地位,是分子生物学研究和生物技术产业化发展进程中的重要工具。
1 表达载体大肠杆菌质粒是一类独立于染色体外自主复制的双链、闭环DNA分子,大肠杆菌质粒可分为结合转移型和非结合转移型两种,非结合转移型质粒在通常培养条件下不在宿主间转移,整合到染色体上的频率也很低,具有遗传学上的稳定性和安全性。
又因其大小一般在2-50kb范围内,适合于制备和重组DNA的体外操作,因此几乎所有的大肠杆菌表达系统都选用非结合转移型质粒作为运载外源基因的载体,这些表达载体通过对天然质粒的改造获得。
理想的大肠杆菌表达载体要求具有以下特征:(1)稳定的遗传复制、传代能力,在无选择压力下能存在于大肠杆菌细胞内。
(2)具有显性的转化筛选标记。
(3)启动子的转录是可以调控的,抑制时本底转录水平较低。
(4)启动子的转录的mRNA能够在适当的位置终止,转录过程不影响表达载体的复制。
(5)具备适用于外源基因插入的酶切位点。
复制子、筛选标志、启动子、终止子和核糖体结合位点是构成表达载体的最基本元件。
大肠杆菌不耐热肠毒素B亚单位在干酪乳杆菌中的分泌表达及其GM1结合活性分析
节 苷脂 受 体( M1结 合 活性 ,本研 究将 编 码 L B蛋 白的 eb 因 片段 插 入 干 酪 乳 杆 菌 分 泌 型表 达 载 体 p G2中 , G ) T l基 t P.
构 建 重 组 质 粒 p G.一l 电转 化 于 干 酪 乳 杆 菌 3 3中 。 筛选 获 得 重 组 千 酪 乳 杆 菌 ,应 用 wetr lt 间接 P 2et b, 9 s n bo 和 e
e p e s d a d s ce e n o t e c l r d i . e r c mb n n r t i o s se e L n i e i p cfct n h x r s e n e r t d it h u t e me um Th e o i a tp o en p s e s d t TB a t n c s e i i a d te GM 1 u h g i y g n l s e r c p o i d n ci i s s o y GM 1 E I A.T e a p o c e c i e n t i s d l e a l h f ce t a g i i e e t r b n ig a t t a h wn b o d vy 一LS h p r a h d s r d i h s t y wi n be t e e i n b u l i
A src : oe a a efaiit o rc m ia t a tb c ls ae 3 3e p es g E c l h a l i neoo i B ( T ) b t t T v l t t e s ly f e o bn n L c a iu s i 9 x rs n . i e t a l e t txn L B a u eh bi o l c i o —b e r
大肠杆菌分泌表达
大肠杆菌分泌表达
大肠杆菌分泌表达是指将外源蛋白质分泌到细胞外的一种技术。
在这种技术中,目标蛋白质被克隆到大肠杆菌的表达载体中,并在大肠杆菌中进行表达。
表达蛋白质通过信号肽靶向到分泌途径,在经过膜转运后被分泌到细胞外。
大肠杆菌分泌表达技术通常采用信号肽和融合蛋白的策略。
信号肽通常是由靶向蛋白质本身所携带的,可以将其加入到表达载体的N端,使其与表达蛋白一同进行转录和翻译。
融合蛋白则是将表达蛋白与信号肽以及其他蛋白质进行融合,以此提高表达蛋白的稳定性和可溶性。
大肠杆菌分泌表达技术具有高效、易于操作、成本低等优点。
但是,由于大肠杆菌的分泌途径比较复杂,分泌表达的蛋白质也容易被降解和失去生物活性。
因此,在进行大肠杆菌分泌表达时,需要针对不同的表达蛋白和分泌途径进行优化,以提高表达效率和蛋白质稳定性。
大肠杆菌表达系统
(1)蛋白质的降解作用
在大肠杆菌的细胞中,含有大量的各种类型的蛋白酶, 广泛分布在细胞质、周质、内外膜等部位,参与许多方 面的代谢活动,包括选择性地酶解异常的蛋白质。
已知有许多因素,如不完全多肽、氨基酸取代突变、 多酶复合体亚基的超量合成、氧化作用或游离自由基的 作用而造成的翻译后损伤,以及基因工程技术的效应等, 都可以导致蛋白质分子受损或构型变化,形成异常蛋白 质。
* 使克隆基因表达的外源蛋白质分泌到胞外的 培养基中,是获得蛋白质稳定性的最佳途径。
到目前为止,这方面的技术还很不成熟,外泌率低。
2、外源蛋白质在大肠杆菌细胞中的稳定性
当一种克隆的外源基因在大肠杆菌中不能实 现其功能表达时,我们往往会认为这是由于转 录或翻译过程发生了问题。其实在早期的研究 中就有许多实验表明,克隆的外源基因即便是 在大肠杆菌中得到了表达,也并不一定就意味 着它的多家已经设计并构建了 一系列的以原核启动子取代真核启动子的质粒 表达载体系统。
最常用的:噬菌体的PL启动子,大肠杆 菌的Lac启动子、Trp启动子,以及pBR322 质粒的-内酰胺酶启动子等一批强启动子构 成的。
三、大肠杆菌的转化方法
1、Cohen转化法
第一节 基因的表达系统与表达策略
最佳的基因表达体系:
⑴目的基因的表达产量高; ⑵表达产物稳定; ⑶生物活性高; ⑷表达产物容易分离纯化。
宿主细胞的选择
适合目的基因表达的宿主细胞的要求:
1、容易获得较高浓度的细胞; 2、能利用易得廉价原料; 3、不致病、不产生内毒素; 4、发热量低、需氧低、适当的发酵温度和细胞形态; 5、容易进行代谢调控; 6、容易进行DNA重组技术操作; 7、产物的产量、产率高, 8、产物容易提取纯化。
一个新的葡萄糖淀粉酶基因在大肠杆菌中的分泌表达
杨 立 泉 马 春 晓 戴 晓 军 侯 建 华
摘 要 从 天 然 的 少根 根 霉 的基 因组 中, 隆 出一 个新 的 葡萄 糖 淀 粉 酶基 因。 克 对其 进 行 分 子 进 化 的研
究 , 大肠 杆 菌 中表 达 , 而给 实验 带 来很 大 方便 。设 计 引物 将 其 ( n ak登 录 号 : 在 从 Ge eB n DQ9 3 5 ) 隆 083 克 到 p T一 2 ( ) E 2 b + 载体 上 , 化 大肠 杆 菌 B 一 1 DE ) 达 。检 测 培 养 液 的 上 清 有较 高 的 葡 萄糖 淀 粉 酶 活 转 L 2 ( 3表
霉 ( s e iu. r 、 盛 曲 霉 ( seg ls w moi 、 A pr l s ) 泡 gl n A p riu. a r) l a
p n ) 司制 造 , 因 脉 冲 转 化仪 是 Bo rd产 品 。D — a y公 基 i— a F
D电 泳 仪 是北 京 东方 特 力 科 贸 中心 产 品 。 i—a Bo rd公 司
率 依然相 当低 。
第 l阶段 9 ℃ , i 。 7 lm n 第 2阶段 9 ℃, ;0C,0 S 7 o 2 m n 3 ; 5 4 S 5 o 5 ;2C, i 0 s 0
共 3 0个循 环 。
第 3阶 段 7 ℃ , n 2 5 mi。 12 3 P R产 物 的 回 收 按 上 海 华 舜 试 剂 盒 使 用 说 .. C 明书 操 作 。
T N iae 皆 为 美 国 Po g 4 D A Lgs , rmea公 司 产 品 ; 回 收 胶 及质粒提取试剂盒是 上海华舜公司产 品 ; 脂糖 购 自 琼
F MC 生 物制 品公 司 。其 余 产 品 均 为 国产 分 析纯 。
大肠杆菌的细胞间通讯及信号传递
大肠杆菌的细胞间通讯及信号传递大肠杆菌的细胞间通讯及信号传递在细菌的生活过程中,环境条件、细菌的密度及生理状态常常处于变化之中。
经过长期的进化过程,为了对外部环境及胞内生理状态的变化作出及时反应,细菌已经学会利用各种小分子化合物作为信号分子,并发展出各种信号传递机制去捕获及把这些信号传递到细胞中去。
细菌细胞间通迅能使细菌在多细胞水平上采取协调一致的行动,这一过程通常又称为群体感应或密度依赖的基因调控,即细菌在增殖的过程中,不断地向胞外分泌信号小分子,这种信号小分子被称为自诱导物。
随着细菌数量的增加,自诱导物就在周围环境中逐渐积累,当自诱导物达到一定的阈值浓度时,即可进入细胞,与受体结合,从而开启或关闭一些基因的转录。
在大肠杆菌K-12菌株中,存在两套群体感应信号系统,以AI-1为信号分子的群体感应系统一及以AI-2为信号分子的群体感应系统二。
群体感应系统一包括与LuxR及LuxI同源的一对蛋白。
群体感应系统一的信号分子为AI-1,它由LuxI合成,它的受体蛋白为LuxR。
大肠杆菌中的LuxR同源蛋白为SdiA,但无LuxI同源蛋白且不能合成任何AI-1信号分子。
但是大肠杆菌的SdiA蛋白能够感应来自其它细菌的AI-1信号分子。
最近有报道指出,大肠杆菌通过利用SdiA感应环境中的吲哚及AI-l的浓度变化来控制生物膜的形成,至于SdiA能否直接与吲哚结合,目前仍没有确切的答案。
研究表明,SdiA能够促进或抑制核糖核酸多聚酶与启动子的结合,从而控制目的基因的转录。
细胞中过量表达SdiA能够影响许多基因的表达,其中包括一些与细胞分裂、运动性、趋化性、及药物代谢相关的基因。
大肠杆菌有一个完整的群体感应系统二,共包括九个基因,即luxS、lsrR、IsrK、及lsrACDBFG。
cAMP-CRP复合体促进lsrR及lsr操纵子(lsrACDBFG)的表达,lsrR与lsr操纵子相邻但转录方向相反,LsrR 能够抑制lsrR及lsr操纵子的表达。
信号肽在大肠杆菌分泌系统中的研究与应用进展
D 01:10. 13523/j .cb . 2101018信号肽在大肠杆菌分泌系统中的研究与应用进展何若昱1>2林福玉2高向东“刘金毅(1中国药科大学生命科学与技术学院南京210009 2北京三元基因药业股份有限公司北京102600)摘要大肠杆菌以其明显的优势成为表达重组蛋白常用的系统,但是大肠杆菌本身不具备细胞 内形成二硫键的氧化条件和分子机制,而且高水平表达时常容易聚集形成包涵体,限制了其使 用,改善这一缺点的重要方法是通过信号肽实现蛋白质的分泌表达。
信号肽一般存在于分泌蛋 白的氨基端,能够引导蛋白质通过大肠杆菌中的Sec 或/和T a t 系统分泌至周质空间。
简要概述 了大肠杆菌中两种跨膜分泌系统和信号肽的结构,并结合近年来常用6种信号肽的研究与应用进 展,阐述了信号肽在使用中存在的问题及改进措施。
旨在为研究者合理选择信号肽、优化重组蛋 白的表达提供更多可用的信息与策略。
关键词信号肽大肠杆菌分泌系统 中图分类号Q 816大肠杆菌是表达重组蛋白最常用的宿主菌,拥有 操作方便、生长周期短、遗传背景清晰、表达水平高等 诸多优点。
但是大肠杆菌胞质内还原性环境不利于蛋 白质—•硫键的形成,并且局水平表达的蛋白质谷易聚 集形成包涵体。
这些因素导致重组蛋白需要经过后期 烦琐的变复性过程才能够恢复活性。
为了能够方便下 游工艺的处理,其中一个重要方法是利用信号肽将重 组蛋白引导至周质空间中分泌表达。
与细胞质相反,大肠杆菌周质空间中具备了形成二硫键所需的氧化环 境和分子机制。
Hajihassan 等〜借助信号肽将重组激 活素分泌至大肠杆菌的周质空间,使其形成了正确的 二硫键空间结构。
通常情况下,分泌蛋白的氨基末端有延伸的信号 肽,胞内与分泌相关的蛋白质可以通过识别信号肽将 其靶向细胞膜,最后信号肽酶将信号肽进行切除。
大 肠杆菌中介导信号肽分泌的系统主要包括一般分泌(the general secretory , Sec )系统和双精氛酸易位(twin -arginine translocation , Tat ) 系统,分泌 蛋白通过何 种系统分泌主要取决于自身信号肽结构。
融合表达和分泌表达有什么区别
融合表达和分泌表达有什么区别人们合成与生物相关的物质是从尿素开始的,1828年,德国化学家维勒人工合成了存在于生物体的这种有机物。
在1960年我国科学家采用化学方法首次成功地合成了具有生物活性的蛋白质——胰岛素。
随着内切酶的发现和基因工程技术的发展,人们发现用各种不同的载体在原核、真核系统中进行蛋白表达更为行之有效。
而这其中大肠杆菌表达系统发展得最为迅速、成熟。
原核表达具有操作方便、快捷,需时较短,表达量大,适合工业化生产等优点。
虽然也有缺少糖基化和表达后加工等问题,当有了其它多种表达系统后,原核系统仍是我们合成外源蛋白的首选。
在网上看到有人把原核表达技术分成四个等级:初次尝试扫盲、乱棍打枣入门、系统优化中级和自成一体高手,觉得十分有意思。
但是根据笔者自己的经验以及耳闻目睹的一些经历告诉我:做表达?那是谋事在人,成事在天。
有时候你把克隆做出来了,双酶切鉴定没问题,测序没问题,可是就是看不到表达带。
原因当然可以分析,实验也是可以改进,但是窜改一下戈尔泰的话:“成功的实验都是一样的,失败的实验各有各的不幸。
”在实验遇到瓶颈的时候要如何进行分析,找到问题的症结是我们的实验关键所在。
在准备进行原核表达的时候需要考虑的因素很多,市面上可供选择的载体、菌株也很多,要如何进行正确的选择,找到适合自己的载体是十分重要的。
所以,现在要对目前常用的一些载体进行介绍,让我们对其相关产品及其表达原理进行了解,以方便实验设计。
首先来一些大肠杆菌表达的基本概念:一个完整的表达系统通常包括配套的表达载体和表达菌株,如果是特殊的诱导表达还包括诱导剂,如果是融合表达还包括纯化系统或者Tag检测等等。
选择表达系统通常要根据实验目的来考虑,比如表达量高低,目标蛋白的活性,表达产物的纯化方法等等。
主要归结在表达载体的选择上。
表达载体:我们关心的质粒上的元件包括启动子,多克隆位点,终止密码,融合Tag(如果有的话),复制子,筛选标记/报告基因等。
大肠杆菌产物化学方程式
大肠杆菌产物化学方程式一、引言大肠杆菌是一种常见的肠道细菌,在人体肠道内发挥着重要的生理作用。
本文将详细介绍大肠杆菌产物的化学方程式,主要包括蛋白质合成、糖类代谢、脂肪代谢、能量代谢和合成代谢等方面的内容。
二、蛋白质合成大肠杆菌能够利用氨基酸合成蛋白质,其化学方程式如下:1. NH3 + CO2 + 4ATP + 2H2O → 2HCO3- + 4ADP + 4Pi + 3NTP该方程式表示大肠杆菌将氨基酸和二氧化碳转化成蛋白质的反应过程。
三、糖类代谢大肠杆菌能够利用葡萄糖进行糖类代谢,其化学方程式如下:1. C6H12O6 → 2C3H4O3 + 4ATP + 2CO2 + 4H2O该方程式表示大肠杆菌将葡萄糖氧化分解为乙酸盐、二氧化碳和ATP的反应过程。
四、脂肪代谢大肠杆菌能够利用脂肪酸进行脂肪代谢,其化学方程式如下:1. RCOOH + NAD+ → CH3COOH + CO2 + NADH + H+该方程式表示大肠杆菌将脂肪酸氧化分解为乙酸、二氧化碳和NADH的反应过程。
五、能量代谢大肠杆菌在呼吸过程中释放能量,其化学方程式如下:1. C6H12O6 + 6O2 → 6CO2 + 12H2O + 34ATP该方程式表示大肠杆菌在有氧条件下将葡萄糖完全氧化为二氧化碳和水,并释放能量的反应过程。
六、合成代谢大肠杆菌在合成代谢过程中需要消耗能量,其化学方程式如下:1.C55H70N10O15 + 3H2O → C53H71N9O12 + CO2 + 7NH3 + 8ATP七、其他代谢产物除了上述提到的产物外,大肠杆菌还可以产生其他重要的代谢产物,例如维生素和氨基酸等。
这些产物对于人体健康也具有重要的意义。
八、总结大肠杆菌在人体肠道内发挥着重要的生理作用,其产物的化学方程式涉及到多个方面的代谢过程。
了解这些方程式有助于深入理解大肠杆菌的生理功能和代谢机制,对于研究肠道微生物和人类健康具有重要意义。
酸性普鲁兰芽孢杆菌普鲁兰酶在大肠杆菌中分泌表达研究
酸性普鲁兰芽孢杆菌普鲁兰酶在大肠杆菌中分泌表达研究栗亚美;陈阿娜;杨艳坤;白仲虎【摘要】来自于酸性普鲁兰芽孢杆菌的普鲁兰酶,由于分子量较大,在大肠杆菌中难以实现高效分泌表达。
为研究其在E.coli中高效分泌表达策略,构建了带信号肽的pET-28a(+)-pelB-pul13A质粒,通过发酵过程控制及向发酵培养基中添加促分泌物质,系统地优化了分泌表达策略。
通过分子改造,带信号肽的表达系统实现了低水平的分泌性表达;进一步通过优化培养基、诱导温度、IPTG浓度、诱导时机及11种培养基添加物,促进普鲁兰酶最大限度的分泌到周质空间。
实验结果显示,连上pelB信号肽的pull3A在TB/SB培养基中,通过优化的诱导条件( IPTG浓度0.1 mmol /L,诱导温度20℃,诱导时机为接种后5 h),在诱导20 h时加入0.03%SDS,周质空间酶活达到最大值102.5 U/mL。
在此基础上,探究了化学添加剂对大肠杆菌细胞膜及膜通透性的影响,并应用优化后的系统实现了乙酰胆碱酯酶和单域抗体的分泌表达。
为大分子蛋白在大肠杆菌中分泌表达提供参考。
%The pullulanase of Bacillus acidopullulyticus has low secretory expression level as a macromolecule .For pullulanase secreto-ry in recombination Eschreichia coli BL21(DE3), BL21(DE3)-pET-28a(+)-pelB-pul 13A with PelB signal peptide was constructed , then fermentation optimization and medium additives were employed for bettersecretory .Through the construction of recombinant strain BL21(DE3) with pelB, pullulanase was secreted at a low level .By fermentation optimization including medium , induced temperature , the concentration of IPTG , induced time and medium additives , the extracellular pullulanase activity was markedly increased .pullu-lanase was secreted into periplasmicspace .Under the condition of 0.1 mmol/L IPTG, 20℃induced after D600nm was about 5.0-6.0 , the periplasmic pullulanase activity reached to 102.5 U/mL with addition of 0.03%SDS after induction for 20 h.【期刊名称】《生物学杂志》【年(卷),期】2017(034)001【总页数】7页(P23-29)【关键词】普鲁兰酶;分泌表达;信号肽;发酵优化;培养基添加物;十二烷基磺酸钠【作者】栗亚美;陈阿娜;杨艳坤;白仲虎【作者单位】江南大学粮食发酵工艺与技术国家工程实验室,无锡214122; 江南大学工业生物技术教育部重点实验室,无锡214122; 江南大学糖化学与生物技术教育部重点实验室,无锡214122;江南大学粮食发酵工艺与技术国家工程实验室,无锡214122; 江南大学工业生物技术教育部重点实验室,无锡214122; 江南大学糖化学与生物技术教育部重点实验室,无锡214122;江南大学粮食发酵工艺与技术国家工程实验室,无锡214122; 江南大学工业生物技术教育部重点实验室,无锡214122; 江南大学糖化学与生物技术教育部重点实验室,无锡214122;江南大学粮食发酵工艺与技术国家工程实验室,无锡214122; 江南大学工业生物技术教育部重点实验室,无锡214122; 江南大学糖化学与生物技术教育部重点实验室,无锡214122【正文语种】中文【中图分类】Q786;TQ925普鲁兰酶是一种淀粉脱支酶,能专一性的切开α-1,6糖苷键,是淀粉加工业和制糖工业必不可少的酶制剂[1-3]。
外源基因在大肠杆菌中的高效表达
实验十八外源基因在大肠杆菌中的高效表达一、实验目的1. 掌握外源基因在大肠杆菌中表达的特点和方法。
2. 复习SDS-PAGE的制备及其分离原理。
二、实验原理一种高效的原核表达载体需要包括一个强大并且可以严紧调节的启动子;一位于翻译起始密码子5’端大约9bp的SD序列;位于目的基因3’末端的一个高效转录终止子。
此外,载体还需要一个复制起点,筛选标记和利于对启动子活性进行严紧调节的基因。
这些元件的作用往往具有基因特异性,因此要根据不同的情况加以取舍。
E.coli表达载体的基本结构见下图:1.有效的转录起始与基因的高效表达有效的转录起始是外源基因能否在宿主细胞中高效表达的关键性步骤之一。
最理想的强的可调控的启动子应该是:在发酵的早期阶段表达载体的启动子被紧紧地阻遏,这样可以避免出现表达载体不稳定,细胞生长缓慢或由于产物表达而引起的细胞死亡等问题。
对于原核细胞而言,可分为可诱导型启动子,比如lac,trp,tac,phoA等,和组成型启动子如T7噬菌体启动子。
2.mRNA 的有效延伸和转录终止与基因的高效表达转录开始后,mRNA 开始进行有效延伸,终止以及稳定的积累,在这个过程中,转录物内的衰减和非特异性终止能诱发转录中的mRNA分子提前终止。
衰减子位点具有简单终止子的特性,在原核细胞中其处于操纵子的启动子和第一个结构基因之间,为保证mRNA转录安全,在表达载体的组建中要尽量避免其存在。
正常的转录终止子序列的存在也是外源基因高效表达的一个因素,其作用是防止不必要的转录,使mRNA的长度限制到最小,增加表达质粒的稳定性。
对于真核细胞而言,表达载体上含有转录终止序列和poly A加入位点,使外源基因高效表达的重要因素。
3.有效的翻译起始与基因的高效表达在原核细胞中使翻译起始达到最大效率的一般原则:1) AUG(ATG)是最首选的起始密码子。
GUG、UUG、AUU和AUA有时也用作起始密码子,但非最佳选择。
2) SD序列中至少含有AGGAGG序列中的四个碱基。
抗VEGF单克隆抗体Fab片段在E_coli中的分泌表达
檪檪檪檪檪檪檪檪檪檪檪檪殏
技术与方法
DOI: 10. 13523 / j. cb. 20140705
檪檪殏
檪檪殏
檪檪檪檪檪檪檪檪檪檪檪檪殏
抗 VEGF 单克隆抗体 Fab 片段 在 E. coli 中的分泌表达
1 材料和方法
1. 1 材 料 1. 1. 1 菌株及质粒 大肠杆菌 DH5α,BL21 ( DE3 ) , pET30a-OmpA-LC 和 pET30a-OmpA-HC 质粒由上 海 近 岸科技有限公司提供,原核表达载体 pET-30a( + ) 购自 Novagen 公司。 1. 1. 2 主要试剂 DNA 限制性核酸内切酶 Hind III、 Xho I、Nde I,Taq DNA 聚 合 酶,T4 DNA 连 接 酶 购 自 TaKaRa; PfuMastermix, Fast Mastermix, FastTaq Mastermix,DL2000 DNA Marker 蛋白质分子质量 Maker, VEGF165,Protein G 蛋白购自 Novoprotein; 质粒抽提试 剂盒购自 Bitech 公司,Protein G 填料购自 GE,辣根酶 标记山羊抗兔抗体 IgG( H + L) / HRP 购自北京鼎国昌 盛生物技术有限公司; 其他化学试剂为国产分析纯试 剂; PCR 引物合成和 DNA 测序由上海英潍捷基生物技 术有限公司完成。 1. 1. 3 培 养 基 LB: 1% Tryptone ( OXOID ) ,0. 5% Yeast Extract( OXOID) ,1% NaCl,pH 7. 0 ~ 7. 2; XY1: 1. 5% Tryptone ( OXOID) ,1% Yeast Extract ( OXOID) , 0. 5% Glucose,0. 15% NaCl,0. 1% NH4 Cl,0. 08% MgCl2 · 6H2 O 固 体 培 养 基 需 加 入 1. 5% Agar ( BIOSHARP) 。加有葡萄糖的培养基 需 115℃ ,20min 高温高压灭菌,其余 121℃ ,20min 高温高压灭菌。 1. 1. 4 引物序列
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Research review paperRecombinant protein secretion in Escherichia coliF.J.M.Mergulha ˜o a,*,D.K.Summers b ,G.A.Monteiro aaCentro de Engenharia Biolo ´gica e Quı´mica,Instituto Superior Te ´cnico,Av.Rovisco Pais,Lisbon 1049-001,PortugalbDepartment of Genetics,University of Cambridge,Cambridge CB23EH,United KingdomReceived 25August 2004;received in revised form 23November 2004;accepted 30November 2004Available online 8January 2005AbstractThe secretory production of recombinant proteins by the Gram-negative bacterium Escherichia coli has several advantages over intracellular production as inclusion bodies.In most cases,targeting protein to the periplasmic space or to the culture medium facilitates downstream processing,folding,and in vivo stability,enabling the production of soluble and biologically active proteins at a reduced process cost.This review presents several strategies that can be used for recombinant protein secretion in E.coli and discusses their advantages and limitations depending on the characteristics of the target protein to be produced.D 2004Elsevier Inc.All rights reserved.Keywords:Recombinant proteins;Escherichia coli ;Secretion;Periplasm;Type IIContents 1.Introduction......................................1782.Recombinant protein secretion ............................1782.1.Type I secretion mechanism..........................1802.2.Type II secretion mechanism.........................1820734-9750/$-see front matter D 2004Elsevier Inc.All rights reserved.doi:10.1016/j.biotechadv.2004.11.003*Corresponding author.Tel.:+351218419065;fax:+351218419062.E-mail address:filipem@alfa.ist.utl.pt (F.J.M.Mergulha ˜o).Biotechnology Advances 23(2005)177–202/locate/biotechadv2.2.1.Cytoplasmic membrane translocation .................1822.2.2.Extracellular secretion .........................1882.2.3.How are recombinant proteins really transported?...........1923.Conclusions ......................................192Acknowledgements .....................................193References (193)1.IntroductionMost bacteria secrete proteins such as degradative enzymes,toxins,and other pathogenicity factors into the extracellular environment (Fernandez and Berenguer,2000).In Gram-negative bacteria,secreted proteins have to cross the two membranes of the cell envelope,which differ substantially in both composition and function (Koebnik et al.,2000).The type I,II,III,IV ,and V secretion pathways are widespread among Gram-negative bacteria and their mechanisms differ significantly.Despite these differences,the systems have,in common,a need to recognise specifically their cognate substrates and promote secretion without compromising the barrier function of the cell envelope (Koster et al.,2000).This review discusses the type I and type II mechanisms that are used most commonly for recombinant protein secretion in Escherichia coli K-12or B strains.The type III secretion pathway is characteristic of several pathogenic Gram-negative bacteria and has been reviewed by Cornelis and Van Gijsegem (2000).Type IV secretion comprises those pathways usually found in bacterial conjugation systems (Pallen et al.,2003)and has been reviewed by Christie (2001).The type V mechanism includes the autotransporter and the two-partner secretion systems (Pallen et al.,2003),and has been reviewed by Jacob-Dubuisson et al.(2001).Finally,protein secretion to the culture medium may also occur by leakage of periplasmic contents,and thus is not always mediated by specific transport mechanisms as will be discussed in this review.2.Recombinant protein secretionSecretion of recombinant proteins to the culture medium or periplasm of E.coli has several advantages over intracellular production.These advantages include simplified downstream processing,enhanced biological activity,higher product stability and solubility,and N-terminal authenticity of the expressed peptide (Cornelis,2000;Makrides,1996;Mergulha ˜o et al.,2004b ).As E.coli does not naturally secrete high amounts of proteins (Sandkvist and Bagdasarian,1996),recovery of a recombinant gene product can be greatly simplified by a secretion strategy that minimises contamination from host proteins.Additionally,if the product is secreted to the culture medium cell disruption is not required for recovery and,F .J.M.Mergulha ˜o et al./Biotechnology Advances 23(2005)177–202178F.J.M.Mergulha˜o et al./Biotechnology Advances23(2005)177–202179 even in the case of periplasmic translocation,a simple osmotic shock or cell wall permeabilization can be used to obtain the product without the release of cytoplasmic protein contaminants(Mergulha˜o et al.,2004b;Shokri et al.,2003).Biological activity is dependent on protein folding and,particularly if disulfide bonds must be formed,proper folding is unlikely in the reducing environment of the cytoplasm. Additionally,the correct pair bonding of cysteines contributes to the thermodynamic stability of the proteins(Kadokura et al.,2003;Maskos et al.,2003;Raina and Missiakas, 1997).The E.coli periplasm contains a series of enzymes such as disulfide-binding proteins(DsbA,DsbB,DsbC,and DsbD)and petidyl-prolyl isomerases(SurA,RotA, FklB,and FkpA)that promote the appropriate folding of thiol-containing proteins(Shokri et al.,2003).Protein aggregation can result from chaperone limitation when gene expression is performed at nonphysiological levels(Hoffmann et al.,2004).In this situation,the intramolecular or intermolecular association of hydrophobic surfaces that are exposed prior to folding can cause the precipitation of folding intermediates(Carrio and Villaverde, 2002).Periplasmic or extracellular secretion can increase the solubility of a gene product as exemplified by the production of bacterial PNGaseF(Loo et al.,2002)and human granulocyte colony-stimulating factor(Jeong and Lee,2001).Obtaining a soluble protein often constitutes a bottleneck in the production of proteins for structural studies or proteomics(Goulding and Jeanne Perry,2003;Pedelacq et al.,2002;Yokoyama,2003). The increased solubility of secreted protein may in part be due to dilution as the periplasm and the extracellular medium have a lower protein content than the cytoplasm(Makrides, 1996).Additionally,the cosecretion of molecular chaperones and medium supplementa-tion with low molecular weight additives(such as l-arginine and glutathione)resulted in increased secretion and folding yields in the bacterial periplasm(Barth et al.,2000;Choi and Lee,2004;Joly et al.,1998;Qiu et al.,1998;Schaffner et al.,2001;Winter et al., 2001).Product secretion can provide a way to guarantee the N-terminal authenticity of the expressed polypeptide because it often involves the cleavage of a signal sequence (Mergulha˜o et al.,2000),thus avoiding the presence of an unwanted initial methionine on a protein that does not normally contain it.This extra methionine can reduce the biological activity and stability of the product(Liao et al.,2004)or even elicit an immunogenic response in the case of therapeutic proteins.Protein secretion can increase the stability of cloned gene products.For instance it was shown that the half-life of recombinant proinsulin is increased10-fold when the protein is secreted to the periplasmic space(Talmadge and Gilbert,1982).Secretion was also useful in the production of penicillin amidase from E.coli as intracellular product degradation was a severe problem(Ignatova et al.,2003).The increased stability of gene products on the periplasm and in the culture medium probably results from the lower levels of E.coli proteases that can be found in these locations(Gottesman,1996;Mergulha˜o et al.,2004b).Protein secretion in E.coli is a complex process(Economou,1999;Pugsley,1993)and attempts to secrete recombinant proteins can face several problems.The most frequent are incomplete translocation across the inner membrane(Baneyx,1999),insufficient capacity of the export machinery(Mergulha˜o and Monteiro,2004;Mergulha˜o et al.,2004a; Rosenberg,1998),and proteolytic degradation(Huang et al.,2001).Several factors caninfluence the secretion of a recombinant protein in E.coli .It has been reported that proteinsize may influence secretion efficiency (Koster et al.,2000;Palacios et al.,2001)and that large cytoplasmic proteins may be physically impossible to translocate (Baneyx,1999;Feilmeier et al.,2000).The amino acid composition of the leader peptide (Belin et al.,2004;Khokhlova and Nesmeyanova,2004;Nakai and Kanehisa,1991)and of the target protein (Kajava et al.,2000)is also important.There is an optimum rate of translation to achieve high-level secretion of heterologous proteins (Simmons and Yansura,1996),and secretion may drop off severely at higher rates.This effect is probably a consequence of the limited secretion capacity of the E.coli transport machinery (Rosenberg,1998).When this capacity is overwhelmed,the excess of expressed recombinant protein is likely to accumulate in inclusion bodies (Mergulha ˜o and Monteiro,2004;Mergulha ˜o et al.,2004a ).It is therefore important to optimise the expression level and one way to achieve this is by carefully balancing the promoter strength and gene copy number (Mergulha ˜o et al.,2003a,b,2004b ).The type I and type II secretion mechanisms are used by E.coli to secrete a number of native proteins.However,these systems have also been used widely for recombinant protein production.For this purpose,the choice between these two secretion mechanisms is dictated by the type of protein to be transported.2.1.Type I secretion mechanismType I secretion systems transport proteins in one step across the two cellular membranes,without a periplasmic intermediate (Binet et al.,1997).E.coli normally uses this pathway for the secretion of high-molecular-weight toxins and exoenzymes (Fernandez and de Lorenzo,2001).The type I secretion machinery is composed of two inner membrane proteins (HlyB and HlyD)that belong to the A TP b inding c assette (ABC)family of transporters,and an endogenous outer membrane protein,TolC (Fernandez and de Lorenzo,2001;Gentschev et al.,2002;Koronakis,2003).However,it has been reported that translocation can also be influenced by components of other secretion pathways including SecB (Sapriel et al.,2002,2003).Although several type I transporters can been used for recombinant protein production,the E.coli a -haemolysin (HlyA)transporter is by far the most popular (Table 1).The C-terminal region of HlyA contains all the information required for efficient translocation and can therefore be used as a signal sequence for recombinant protein targeting.This system is very versatile,allowing the secretion of up to 5%of the total cell protein (Blight and Holland,1994).In this pathway,the two ABC proteins HlyB and HlyD form a stable complex,which binds the recombinant protein bearing a C-terminal HlyA signal sequence and ATP in the cytoplasm (Fig.1).A TolC trimer with a single hydrophilic pore (Andersen et al.,2002)binds the complex formed by HlyB,HlyD,and the recombinant protein,forming a channel connecting both cellular membranes.ATP hydrolysis by HlyB is required for protein transport through the channel but not for complex assembly (Thanabalu et al.,1998).After translocation TolC separates from the HlyB/HlyD complex,thus disconnecting the membranes.Disulfide bond formation occurs during the passage of the polypeptide through the export conduit and is independent of inner membrane bound Dsb enzymes.The type IF .J.M.Mergulha ˜o et al./Biotechnology Advances 23(2005)177–202180F.J.M.Mergulha˜o et al./Biotechnology Advances23(2005)177–202181 Table1Examples of the secretion of recombinant proteins expressed as fusions to the HlyA signal sequenceProtein Organism of origin Promoter Referencesh-Galactosidase Escherichia coli lambda(Kenny et al.,1991)h-gal-OmpF E.coli lac(Mackman et al.,1987) Alkaline phosphatase E.coli lac(Gentschev et al.,1990) Chloramphenicol acetyltransferase E.coli cat(Kenny et al.,1991)c-Type cytochromes E.coli lac(Sanders et al.,2001) Dihydrofolate reductase E.coli tac(Nakano et al.,1992) Eukaryotic proteins a Various trc(Palacios et al.,2001) IgA fragments Mus musculus tac(Holland et al.,1990) Interleukin-6Homo sapiens lac(Li et al.,2002) OmpF E.coli lac(Holland et al.,1990) Prochymosin Bos taurus trp(Holland et al.,1990) Prochymosin B.taurus trp(Kenny et al.,1991) ScFv antibodies H.sapiens lac(Fernandez et al.,2000) a Endochitinase(Trichoderma harzianum),green fluorescent protein(Aequorea victoria),human erythropoetin, and trout growth hormone.pathway secretes proteins ranging from50to over4000amino acids,although the translocation channel can only accommodate globular proteins of up to200amino acids (Sapriel et al.,2003).The internal diameter of the channel is3.5nm and the length is14 nm;these dimensions appear to be compatible with the secretion of partially folded molecules(Fernandez and de Lorenzo,2001).Although the type I secretion mechanism is capable of exporting the target protein to the culture medium,it has two significant drawbacks.Firstly,the secreted peptide remains attached to the signal sequence and therefore an additional cleavage step is required to obtain the intact native protein(Blight and Holland,1994).Secondly,coexpression of the components of this system is often necessary to increase transport capacity.As in all coexpression systems,several proteins(i.e.,host proteins,coexpressed transport components,and target protein)will compete for the E.coli native protein transportFig.1.Type I secretion mechanism,recombinant protein secretion through the a-haemolysin pathway of E.coli. The recombinant protein bearing a C-terminal HlyA signal peptide binds the HlyB/HlyD complex.ATP hydrolysis by HlyB is necessary for transport through the TolC channel during which disulfide bond formation occurs.system and this can cause a severe production bottleneck.Very low protein translation rates must be used in order not to saturate the transport machinery(Shokri et al.,2003).2.2.Type II secretion mechanismThe general secretory pathway is a two-step process for the extracellular secretion of proteins mediated by periplasmic translocation(Koster et al.,2000).Three pathways can be used for secretion across the bacterial cytoplasmic membrane:the SecB-dependent pathway,the signal recognition particle(SRP),and the twin-arginine translocation(TAT) pathways.The second step(translocation across the outer membrane)involves specific protein machinery known as the secreton(see below).2.2.1.Cytoplasmic membrane translocation2.2.1.1.SecB-dependent pathway.The vast majority of secreted proteins uses the SecB-dependent pathway for translocation across the inner membrane.This pathway,whose constituents are listed in Table2,is also the most commonly used for recombinant protein production(see Section2.2.3).Ribosome-associated nascent chains of secreted proteins bind trigger factor(Fig.2),which is bound to the ribosomes(Maier et al.,2003).This association is maintained until the preprotein leaves the ribosome,thus preventing cotranslational binding of the nascent chain to SRP components(Beck et al.,2000;Maier et al.,2003).Table2Components of the SecB-dependent pathwayProtein M W(kDa)Function ReferenceTrigger factor48Prevents binding to SRPcomponents (Hesterkamp et al.,1996;Patzelt et al.,2001)SecA102Translocation ATPase(Eser and Ehrmann,2003;Wanget al.,2000)SecB16.6Preprotein targeting,retardsprotein folding,modulates theactivity of SecA (Dekker et al.,2003;Driessen, 2001;Randall and Hardy,2002; Ullers et al.,2004)SecY49Component of the translocationchannel,necessary for thehigh-affinity binding of SecA(Shimokawa et al.,2003)SecE13.6Component of the translocationchannel(Pugsley,1993)SecG11.4Facilitates SecA cycling throughtopology inversion,interacts withSecDF–YajC (de Keyzer et al.,2003a;Mori and Ito,2001)SecD67Maintaining the proton-motiveforce,affects protein release fromthe channel (de Gier and Luirink,2001; Manting and Driessen,2000)SecF35Modulation of SecA activity(Eichler,2003)YajC Accessory protein,associates withSecF (de Keyzer et al.,2003a;Nouwen and Driessen,2002)F.J.M.Mergulha˜o et al./Biotechnology Advances23(2005)177–202 182F.J.M.Mergulha˜o et al./Biotechnology Advances23(2005)177–202183Fig.2.Recombinant protein secretion by the type II mechanism and strategies for the extracellular release of recombinant proteins from the periplasm.On the SecB-dependent pathway,the protein emerges from the ribosome and binds to trigger factor(TF)(step A1).The protein is then recognised by SecB(step A2),which targets it to the membrane-bound SecA(step A3).At the translocation point,a group of proteins(Sec Y,SecE,and SecG)forms a translocation complex that threads the protein at the expense of ATP hydrolysis.At a later stage, the proton-motive force(PMF)can drive the translocation.On the SRP pathway,the nascent chain is recognised by SRP(step B1).The SRP–ribosome complex interacts with FtsY,thus releasing the nascent chain to the translocation site(step B2).On the TAT pathway,the protein is fully synthesized and folds in the cytoplasm where it can bind specific cofactors(step C1).The signal peptide is then recognised by TatC in the TatBC complex(step C2).Signal peptide binding promotes association of the complex with TatA oligomers at the expense of PMF. Protein translocation occurs through a channel formed by TatA and possibly TatE oligomers(step C3).Within the periplasm,the protein is folded and adopts tertiary or even quaternary structures(step D1).The protein is then transported by a secretion machinery named b secreton Q which is composed by12–16proteins(step D2). Extracellular release of periplasmic proteins can also be achieved by several strategies like the use of leaky strains,cell membrane permeabilization,or coexpression of release proteins.Secreted proteins targeted to the SecB-dependent pathway contain an amino-terminal signal peptide that functions as a targeting and recognition signal.These signal peptides are usually18–30amino acid residues long and are composed of a positively charged amino terminus(n-region),a central hydrophobic core(h-region),and a polar cleavageregion (c-region)(Choi and Lee,2004;Fekkes and Driessen,1999).The n-region isbelieved to be involved in targeting the preprotein to the translocase and binding to the negatively charged surface of the membrane lipid bilayer.Increasing the positive charge in this region has been shown to enhance translocation rates,probably by increasing the interaction of the preprotein with SecA (Fekkes and Driessen,1999;Wang et al.,2000).The h-region varies in length from 7to 15amino acids.Translocation efficiency increases with the length and hydrophobicity of the h-region,and a minimum hydrophobicity is required for function (Wang et al.,2000).Secreted proteins are kept in a translocation-competent state by the chaperone SecB (de Gier and Luirink,2001),which interacts with the mature region of the preprotein to prevent premature folding (Khokhlova and Nesmeianova,2003)and targets it to SecA (Fig.2).In the presence of preprotein,SecB binds SecA (Fekkes et al.,1998;Woodbury et al.,2000),thus releasing the precursor protein that is transferred to SecA (Fekkes and Driessen,1999).SecA binding to the preprotein is facilitated by the signal peptide,which it recognizes specifically (Kebir and Kendall,2002;Miller et al.,1998).At this point SecA is bound to the SecY subunit of the SecYEG complex.Binding of ATP at one of the two ATP-binding sites on SecA causes the release of SecB from the membrane (van der Wolk et al.,1998).There is no consensus on how the Sec components form a functional translocon (Pugsley et al.,2004),and monomeric (Yahr and Wickner,2000),dimeric (Breyton et al.,2002;Duong,2003;Tziatzios et al.,2004),and oligomeric (Manting et al.,2000)translocons have been proposed.Binding of the preprotein to membrane-bound SecA results in the translocation of approximately 20amino acids,and subsequent binding of ATP to SecA promotes SecA membrane insertion and translocation of an additional 15–20amino acids.ATP hydrolysis releases the preprotein from SecA into the translocation channel (Driessen et al.,1998).ADP is then released and SecA deinserts from the membrane where it can be exchanged with cytosolic SecA.Multiple rounds of SecA insertion and deinsertion promote protein translocation through the channel (de Keyzer et al.,2003b;Economou,1999).Proton-motive force (PMF)can complete translocation when the preprotein is halfway through the translocase,even in the absence of SecA (Nishiyama et al.,1999).The mechanism by which PMF drives translocation is unknown but it has been suggested that PMF assists in the initiation phase of protein translocation (Mori and Ito,2003)and that it accelerates SecA membrane deinsertion (Nishiyama et al.,1999;van der Wolk et al.,1998).It has been reported that the rate-limiting step for translocation is SecA release from the membrane (Manting and Driessen,2000).Since the limited capacity of the E.coli transport system is one of the most serious drawbacks in the secretory production of recombinant proteins,optimising SecA deinsertion may be a useful strategy to extend the export capacity of the cells.Since SecA synthesis increases when export is blocked or saturated (Pugsley,1993),overproduction of SecA could in principle enhance trans-location by promoting the exchange between cytosolic and membrane-bound SecA (thus stimulating SecA release)or by promoting complex formation between SecA and SecB.However,SecA expression is down-regulated by binding of SecA to its own mRNA (Schmidt et al.,2001),a control mechanism not seen in other components of the SecB-dependent pathway (Pugsley,1993),and one that might frustrate attempts to overexpress the protein.F .J.M.Mergulha ˜o et al./Biotechnology Advances 23(2005)177–202184F.J.M.Mergulha˜o et al./Biotechnology Advances23(2005)177–202185The situation is further complicated because SecA translation is also regulated by the product of a cotranscribed upstream gene,secM,which acts as a monitor of E.coli secretion proficiency(Oliver et al.,1998;Sarker et al.,2000).When SecM secretion is limiting,ribosomes translating the secM ORF stall,exposing the secA ribosome binding site in secM–secA mRNA and stimulating secA translation(Butkus et al.,2003;Mori and Ito,2001;Nakatogawa et al.,2004).However,when the cell has excess protein secretion capacity,translocation of SecM is efficient and secA translation is repressed.It has been reported(Sarker and Oliver,2002)that certain signal peptide mutations in SecM can prevent its translocation,thereby rendering SecA translation constitutive.However it has also been shown that the expression of signal sequence-defective SecM is extremely toxic to the cell(Nakatogawa and Ito,2002).In a final twist to this complex story,ectopic production of SecA from a secA gene in isolation from secM is less effective than expression from the wild-type secM–secA operon,possibly due to an inefficient membrane targeting of the SecA(Nakatogawa and Ito,2004).Another promising strategy to increase E.coli translocation capacity uses prl(pr otein l ocalisation)mutations.These mutations map to the secY(prlA),secE(prlG),secG (prlH),and secA(prlD)genes(Manting and Driessen,2000)and are thought to relax the protein-conducting channel,allowing the translocation of some proteins with defective signal sequences.One of the most effective mutations,prlA4(de Keyzer et al.,2002b;van der Wolk et al.,1998),has been shown to cause a10-fold increase in translocation efficiency compared to wild type(de Keyzer et al.,2002a).Although this pathway has been used extensively for recombinant protein production,it has one serious drawback.This system is not able to transport folded proteins and,since transport is largely posttranslational,the secretion of proteins that fold rapidly in the cytoplasm may not be possible.In these cases the protein should be targeted to the SRP or the TAT pathways.2.2.1.2.SRP pathway.The s ignal r ecognition p article(SRP)pathway is used by E.coli primarily for the targeting of inner membrane proteins(Economou,1999).This system has been exploited in the secretion of several recombinant proteins including Mtla–OmpA fusions(Neumann-Haefelin et al.,2000),MalF–LacZ fusions(Tian et al.,2000),maltose binding protein,chloramphenicol acetyl transferase(Lee and Bernstein,2001;Peterson et al.,2003),and haemoglobin protease(Sijbrandi et al.,2003).The system consists of several proteins and one RNA molecule(Table3and Fig.2). SRP recognises its substrates by the presence of a hydrophobic signal sequence(hence the name signal recognition particle).The presence of an N-terminal signal sequence with a highly hydrophobic core,combined with a lack of a trigger factor binding site(Patzelt et al.,2001),results in cotranslational binding of the nascent chain to Ffh(Beck et al.,2000). For a productive interaction between the preprotein and Ffh,4.5S RNA is required (Herskovits et al.,2000).It has been suggested(Fekkes and Driessen,1999)that the interaction between SRP and the signal sequence is dependent on the hydrophobicity of the nascent chain since preproteins with more hydrophobic signal sequences are translocated with higher efficiency.It has been shown(Gu et al.,2003)that SRP binds the ribosome at a site that overlaps the binding site of trigger factor.A discriminating process has been proposed in which SRP and trigger factor alternate in transient binding tothe ribosome until a nascent peptide emerges.Depending on the characteristics of the nascent peptide,the binding of either SRP or trigger factor is stabilised,thus determining whether the peptide is targeted to the membrane via the SRP pathway,or post-translationally by the SecB pathway (Gu et al.,2003).FtsY is found both in the cytoplasm and at the membrane (Herskovits et al.,2000),and can interact with ribosomal nascent chain–SRP complexes in the cytosol.Upon interaction with membrane lipids,the GTPase activities of FtsY and Ffh are stimulated,thus releasing the nascent chain to the translocation site (Nagai et al.,2003).This site may be the SecYEG translocon (Koch et al.,1999;Valent et al.,1998;Zito and Oliver,2003),although it has been demonstrated that membrane insertion can occur independently of SecYEG (Cristobal et al.,1999b ).Insertion of transmembrane segments can occur in the absence of SecA (Scotti et al.,1999)while translocation of large periplasmic loops is SecA-dependent (Neumann-Haefelin et al.,2000;Qi and Bernstein,1999;Tian et al.,2000).The protein YidC was also identified as a translocase-associated component during insertion (Scotti et al.,2000).It has been proposed that this protein facilitates the diffusion of transmembrane segments into the lipid phase (van der Laan et al.,2001).For recombinant protein production,SRP targeting can be achieved by engineering the hydrophobicity of the signal sequence (Bowers et al.,2003;de Gier et al.,1998;Peterson et al.,2003).This is advantageous if for instance the target protein folds too quickly in the cytoplasm,adopting a conformation incompatible with secretion by the SecB-dependent system (Lee and Bernstein,2001;Schierle et al.,2003).2.2.1.3.TAT pathway.Recently,a Sec-independent pathway was reported to be functional in E.coli (Santini et al.,1998;Sargent et al.,1998).This pathway has been termed the TAT (t win-a rginine t ranslocation)system because preproteins transported by it contain two consecutive and highly conserved arginine residues in their leader peptides.The TAT pathway is capable of transporting folded proteins across the inner membrane (Stanley et al.,2000)independently of ATP (Yahr and Wickner,2001)using the transmembrane PMF (de Leeuw et al.,2002).In most cases,the substrates of this pathway are proteins that bind specific cofactors in the cytoplasm and are folded prior to export (Bogsch et al.,1998;Santini et al.,1998).This system is related to the D pH-dependent protein import machinery of the plant chloroplast thylakoid membrane (Sargent et al.,Table 3Components of the SRP pathway Component Localisation FunctionReferences4.5S RNA Cytoplasm Binding of the nascent chain to Ffh (Driessen et al.,2001;Peterson et al.,2003;Wild et al.,2004)Ffh Cytoplasm Protein targeting to FtsY (Driessen et al.,2001;Keenan et al.,2001;Wild et al.,2004)FtsY Cytoplasm and membrane SRP receptor membrane targeting(Drew et al.,2003;Eitan and Bibi,2004;Koch et al.,2003)SecAYEG See Table 2YidCInner membraneLateral diffusion of proteins.Present at about 3000copies per cell(Nouwen and Driessen,2002;Serek et al.,2004;Urbanus et al.,2002;van der Laan et al.,2001)F .J.M.Mergulha ˜o et al./Biotechnology Advances 23(2005)177–202186。