高中不等式复习题
不等式练习题
不等式练习题一、基本不等式1. 已知a > b,求证:a + c > b + c。
2. 已知x > 3,求证:x^2 > 9。
3. 已知0 < x < 1,求证:x^3 < x。
4. 已知a, b均为正数,求证:a^2 + b^2 > 2ab。
5. 已知|x| > |y|,求证:x^2 > y^2。
二、一元一次不等式1. 解不等式:3x 7 > 2x + 4。
2. 解不等式:5 2(x 3) ≤ 3x 1。
3. 解不等式:2(x 1) 3(x + 2) > 7。
4. 解不等式:4 3(x 2) ≥ 2x + 5。
5. 解不等式:5(x 3) + 2(2x + 1) < 7x 9。
三、一元二次不等式1. 解不等式:x^2 5x + 6 > 0。
2. 解不等式:2x^2 3x 2 < 0。
3. 解不等式:x^2 4x + 4 ≤ 0。
4. 解不等式:3x^2 + 4x 4 > 0。
5. 解不等式:x^2 + 5x 6 < 0。
四、分式不等式1. 解不等式:x / (x 1) > 2。
2. 解不等式:1 / (x + 3) 1 / (x 2) ≤ 0。
3. 解不等式:(x 1) / (x + 1) < 0。
4. 解不等式:(2x + 3) / (x 4) ≥ 1。
5. 解不等式:(3x 2) / (x^2 5x + 6) > 0。
五、含绝对值的不等式1. 解不等式:|x 2| > 3。
2. 解不等式:|2x + 1| ≤ 5。
3. 解不等式:|3x 4| < 2。
4. 解不等式:|x + 3| |x 2| > 1。
5. 解不等式:|x 5| + |x + 1| < 6。
六、综合应用题1. 已知不等式组:$\begin{cases} 2x 3y > 6 \\ x + 4y ≤ 8 \end{cases}$,求x的取值范围。
(完整)高中数学不等式习题及详细答案
第三章 不等式一、选择题1.已知x ≥25,则f (x )=4-25+4-2x x x 有( ).A .最大值45B .最小值45C .最大值1D .最小值12.若x >0,y >0,则221+)(y x +221+)(xy 的最小值是( ).A .3B .27 C .4 D .29 3.设a >0,b >0 则下列不等式中不成立的是( ). A .a +b +ab1≥22B .(a +b )(a 1+b1)≥4 C22≥a +bD .ba ab+2≥ab 4.已知奇函数f (x )在(0,+∞)上是增函数,且f (1)=0,则不等式xx f x f )()(--<0的解集为( ).A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)5.当0<x <2π时,函数f (x )=x xx 2sin sin 8+2cos +12的最小值为( ).A .2B .32C .4D .346.若实数a ,b 满足a +b =2,则3a +3b 的最小值是( ). A .18B .6C .23D .2437.若不等式组⎪⎩⎪⎨⎧4≤ 34 ≥30 ≥y x y x x ++,所表示的平面区域被直线y =k x +34分为面积相等的两部分,则k 的值是( ).A .73B .37C .43D .348.直线x +2y +3=0上的点P 在x -y =1的上方,且P 到直线2x +y -6=0的距离为35,则点P 的坐标是( ).A .(-5,1)B .(-1,5)C .(-7,2)D .(2,-7)9.已知平面区域如图所示,z =mx +y (m >0)在平面区域内取得最优解(最大值)有无数多个,则m 的值为( ).A .-207B .207 C .21D .不存在10.当x >1时,不等式x +11-x ≥a 恒成立,则实数a 的取值范围是( ).A .(-∞,2]B .[2,+∞)C .[3,+∞)D .(-∞,3]二、填空题11.不等式组⎩⎨⎧ 所表示的平面区域的面积是 .12.设变量x ,y 满足约束条件⎪⎩⎪⎨⎧ 若目标函数z =ax +y (a >0)仅在点(3,0)处取得最大值,则a 的取值范围是 .13.若正数a ,b 满足ab =a +b +3,则ab 的取值范围是 . 14.设a ,b 均为正的常数且x >0,y >0,xa+y b =1,则x +y 的最小值为 .15.函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则m 1+n2的最小值为 . 16.某工厂的年产值第二年比第一年增长的百分率为p 1,第三年比第二年增长的百分率为p 2,若p 1+p 2为定值,则年平均增长的百分率p 的最大值为 .(x -y +5)(x +y )≥00≤x ≤3 x +2y -3≤0 x +3y -3≥0, y -1≤0(第9题)三、解答题17.求函数y =1+10+7+2x x x (x >-1)的最小值.18.已知直线l 经过点P (3,2),且与x 轴、y 轴正半轴分别交于A ,B 两点,当△AOB 面积最小时,求直线l 的方程.(第18题)19.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨;生产每吨乙产品要用A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨.那么该企业可获得最大利润是多少?20.(1)已知x <45,求函数y =4x -1+5-41x 的最大值; (2)已知x ,y ∈R *(正实数集),且x 1+y 9=1,求x +y 的最小值;(3)已知a >0,b >0,且a 2+22b =1,求2+1b a 的最大值.参考答案1.D解析:由已知f (x )=4-25+4-2x x x =)()(2-21+2-2x x =21⎥⎦⎤⎢⎣⎡2-1+2-x x )(, ∵ x ≥25,x -2>0, ∴21⎥⎦⎤⎢⎣⎡2-1+2-x x )(≥21·2-12-2x x ⋅)(=1, 当且仅当x -2=2-1x ,即x =3时取等号. 2.C 解析:221+)(y x +221+)(xy =x 2+22241+++41+x x y y yy x =⎪⎭⎫ ⎝⎛2241+x x +⎪⎪⎭⎫ ⎝⎛2241+y y +⎪⎪⎭⎫⎝⎛x y y x +. ∵ x 2+241x ≥22241x x ⋅=1,当且仅当x2=241x ,x =22时取等号; 41+22y y ≥22241y y ⋅=1,当且仅当y 2=241y ,y =22时取等号; x yy x +≥2x y y x ⋅=2(x >0,y >0),当且仅当y x =xy,y 2=x 2时取等号. ∴⎪⎭⎫ ⎝⎛2241+x x +⎪⎪⎭⎫ ⎝⎛2241+y y +⎪⎪⎭⎫ ⎝⎛x y y x +≥1+1+2=4,前三个不等式的等号同时成立时,原式取最小值,故当且仅当x =y =22时原式取最小值4. 3.D 解析:方法一:特值法,如取a =4,b =1,代入各选项中的不等式,易判断只有ba ab+2≥ab 不成立.方法二:可逐项使用均值不等式判断 A :a +b +ab1≥2ab +ab1≥2abab 12⋅=22,不等式成立.B :∵ a +b ≥2ab >0,a 1+b 1≥2ab 1>0,相乘得 (a +b )( a 1+b1)≥4成立.C :∵ a 2+b 2=(a +b )2-2ab ≥(a +b )2-222⎪⎭⎫ ⎝⎛+b a =222⎪⎭⎫⎝⎛+b a ,又ab ≤2b a +⇒ab1≥b a +222≥a +b 成立. D :∵ a +b ≥2ab ⇒b a +1≤ab 21,∴b a ab +2≤ab ab 22=ab ,即ba ab+2≥ab 不成立.4.D解析: 因为f (x )是奇函数,则f (-x )=-f (x ),x x f x f )()(--<0x x f )(2⇔<0⇔xf (x )<0,满足x 与f (x )异号的x 的集合为所求.因为f (x )在(0,+∞)上是增函数,且f (1)=0,画出f (x )在(0,+∞)的简图如图,再根据f (x )是奇函数的性质得到f (x ) 在(-∞,0)的图象.由f (x )的图象可知,当且仅当x ∈(-1,0)∪(0,1)时,x 与f (x )异号. 5.C解析:由0<x <2π,有sin x >0,cos x >0. f (x )=x x x 2sin sin 8+2cos +12=x x x x cos sin 2sin 8+cos 222=xx sin cos +x x cos sin 4≥2x x x x cos sin 4sin cos· =4,当且仅当xx sin cos =x xcos sin 4,即tan x =21时,取“=”. ∵ 0<x <2π,∴ 存在x 使tan x =21,这时f (x )min =4.6.B解析:∵ a +b =2,故3a +3b ≥2b a 33⋅=2b a +3=6,当且仅当a =b =1时取等号.(第4题)故3a +3b 的最小值是6.7.A解析:不等式组表示的平面区域为如图所示阴影部分 △ABC .由⎩⎨⎧4343=+=+y x y x 得A (1,1),又B (0,4),C (0,43).由于直线y =k x +43过点C (0,43),设它与直线 3x +y =4的交点为D ,则由S △BCD =21S △ABC ,知D 为AB 的中点,即x D =21,∴ y D =25, ∴ 25=k ×21+34,k =37.8.A解析:设P 点的坐标为(x 0,y 0),则⎪⎪⎩⎪⎪⎨⎧解得⎩⎨⎧. 1=, 5=-00y x∴ 点P 坐标是(-5,1). 9.B解析:当直线mx +y =z 与直线AC 平行时,线段AC 上的每个点都是最优解.∵ k AC =1-5522-3=-207, ∴ -m =-207,即m =207. 10.D 解析:由x +1-1x =(x -1)+1-1x +1, ∵ x >1,∴ x -1>0,则有(x -1)+1-1x +1≥21-11-x x )·(+1=3,则a ≤3.. 53=56+2, 0<1--, 0=3+2+000000-y x y x y x二、填空题 11.24.解析:不等式(x -y +5)(x +y )≥0可转化为两个 二元一次不等式组. ⎩⎨⎧⎪⎩⎪⎨⎧⇔ 或⎪⎩⎪⎨⎧这两个不等式组所对应的区域面积之和为所求.第一个不等式组所对应的区域如图,而第二个不等式组所对应的区域不存在.图中A (3,8),B (3,-3),C (0,5),阴影部分的面积为25+113)(⨯=24. 12.⎭⎬⎫⎩⎨⎧21 >a a .解析:若z =ax +y (a >0)仅在点(3,0)处取得最大值,则直线z =ax +y 的倾斜角一定小于直线x +2y -3=0的倾斜角,直线z =ax +y 的斜率就一定小于直线x +2y -3=0的斜率,可得:-a <-21,即a >21.13.a b ≥9.解析:由于a ,b 均为正数,等式中含有ab 和a +b 这个特征,可以设想使用2+ba ≥ab 构造一个不等式.∵ ab =a +b +3≥ab 2+3,即a b ≥ab 2+3(当且仅当a =b 时等号成立), ∴ (ab )2-ab 2-3≥0,∴ (ab -3)(ab +1)≥0,∴ab ≥3,即a b ≥9(当且仅当a =b =3时等号成立). 14.(a +b )2. 解析:由已知xay ,y bx 均为正数,(x -y +5)(x +y )≥0 0≤x ≤3x -y +5≥0 x +y ≥0 0≤x ≤3 x -y +5≤0 x + y ≤0 0≤x ≤3(第11题)∴ x +y =(x +y )(x a+y b )=a +b +x ay +y bx ≥a +b +ybx x ay ·2 =a +b +2ab , 即x +y ≥(a +b )2,当且仅当1=+ =yb x a y bxx ay 即 ab b y ab a x +=+=时取等号. 15.8.解析:因为y =log a x 的图象恒过定点(1,0),故函数y =log a (x +3)-1的图象恒过定点A (-2,-1),把点A 坐标代入直线方程得m (-2)+n (-1)+1=0,即2m +n =1,而由mn >0知mn ,n m 4均为正,∴m 1+n2=(2m +n )(m 1+n 2)=4+m n +n m 4≥4+n m m n 42⋅=8,当且仅当1=+24=n m n m m n 即 21=41=n m 时取等号. 16.221p p +. 解析:设该厂第一年的产值为a ,由题意,a (1+p )2=a (1+p 1)(1+p 2),且1+p 1>0, 1+p 2>0,所以a (1+p )2=a (1+p1)(1+p 2)≤a 2212+1++1⎪⎭⎫ ⎝⎛p p =a 2212++1⎪⎭⎫ ⎝⎛p p ,解得p ≤2+21p p ,当且仅当1+p 1=1+p 2,即p 1=p 2时取等号.所以p 的最大值是2+21pp . 三、解答题17.解:令x +1=t >0,则x =t -1,y =t t t 10+1-7+1-2)()(=t t t 4+5+2=t +t4+5≥t t 42⋅+5=9,当且仅当t =t4,即t =2,x =1时取等号,故x =1时,y 取最小值9.18.解:因为直线l 经过点P (3,2)且与x 轴y 轴都相交, 故其斜率必存在且小于0.设直线l 的斜率为k , 则l 的方程可写成y -2=k (x -3),其中k <0. 令x =0,则y =2-3k ;令y =0,则x =-k2+3. S △AOB =21(2-3k )(-k 2+3)=21⎥⎦⎤⎢⎣⎡)()(k k 4-+9-+12≥⎥⎦⎤⎢⎣⎡⋅)()(k k 4-9-2+1221=12,当且仅当(-9k )=(-k 4),即k =-32时,S △AOB 有最小值12,所求直线方程为 y -2=-32(x -3),即2x +3y -12=0. 19.解:设生产甲产品x 吨,生产乙产品y 吨,则有关系:A 原料用量B 原料用量甲产品x 吨 3x 2x 乙产品y 吨y3y则有⎪⎪⎩⎪⎪⎨⎧++>> 18≤3213≤ 30 0y x y x y x ,目标函数z =5x +3y作出可行域后求出可行域边界上各端点的坐标,可知 当x =3,y =4时可获得最大利润为27万元.20.解:(1)∵ x <45,∴ 4x -5<0,故5-4x >0. y =4x -1+541x -=-(5-4x +x-451)+4.∵ 5-4x +x-451≥x -x -451452)(=2,∴ y ≤-2+4=2, 当且仅当5-4x =x -451,即x =1或x =23(舍)时,等号成立, 故当x =1时,y max =2.xOAy P (3,2)B(第18题)(第18题)第 11 页 共 11 页 (2)∵ x >0,y >0,x1+y 9=1, ∴ x +y =(x 1+y 9)(x +y )=x y +y x 9+10≥2yx x y 9 · +10=6+10=16. 当且仅当x y =y x 9,且x 1+y 9=1,即⎩⎨⎧12=, 4=y x 时等号成立, ∴ 当x =4,y =12时,(x +y )min =16.(3)a 2+1b =a ⎪⎪⎭⎫ ⎝⎛2+2122b =2·a 2+212b ≤22⎪⎪⎭⎫ ⎝⎛2+21+22b a =423, 当且仅当a =2+212b ,即a =23,b =22时,a 2+1b 有最大值423.。
高考数学专题复习:不等式
高考数学专题复习:不等式一、单选题1.已知x ∈R ,则“2x <-”是“220x x +->"的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件2.已知a ,b ∈R ,如果a b >,那么( ) A .11a b> B .1a b> C .22a b >D .11a b ->-3.若0a b <<,则下列不等式中一定成立的是( ) A .a b <B .11a b< C .44a b < D .11a b a<- 4.若,a b c d >>,则下列关系一定成立的是( ) A .ac bd > B .ac bc > C .a c b d +>+D .a c b d ->-5.不等式()20x x -≥的解集是( ) A .()0,1B .()1,0-C .()(),30,-∞-⋃+∞D .(][),02,-∞+∞6.若不等式220ax bx ++>的解集是11,23⎛⎫- ⎪⎝⎭,则a b +的值为( )A .14B .10-C .12D .14-7.设0a b >>,则下列不等式一定成立的是( ) A .11b a a b+<+ B .2211ab a b< C .22ac bc >D .2211a b a b+>+83 )A 3B 3>C 3D .不确定9.已知p :0a b >> q :2211a b<,则p 是q 的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.记不等式220x x +->、210(0)x ax a -+≤>解集分别为A 、B ,A B 中有且只有两个正整数解,则a 的取值范围为( )A .1017,34⎛⎫ ⎪⎝⎭B .1017,34⎡⎫⎪⎢⎣⎭C .517,24⎛⎫ ⎪⎝⎭D .517,24⎡⎫⎪⎢⎣⎭11.已知11x y -≤+≤,13x y ≤-≤,则32x y -的取值范围是( ) A .[]28,B .[]3,8C .[]2,7D .[]5,1012.已知bg 糖水中含有ag 糖()0b a >>,若再添加g m 糖完全溶解在其中,则糖水变得更甜了(即糖水中含糖浓度变大).根据这个事实,下列不等式中一定成立的是( )A .a a m b b m+>+B .22m ma m ab m b ++<++ C .()()()()22a m b m a m b m ++<++ D .121313b a ->- 二、填空题13.已知x 、y 都是正数,且满足230x y xy ++=,则xy 的最大值为________. 14.已知正实数x ,y 满足2x y xy +=,则2xx y y++的最小值是________. 15.不等式1x x<的解集为________. 16.已知关于x 的不等式20(,,)ax bx c a b c ++>∈R 的解集为{}|34x x <<,则25c a b++的取值范围为________. 三、解答题17.已知函数()()21f x x a x a =-++,其中a 为实常数.(1)1a =时,求不等式()0f x <的解集;(2)若不等式()2f x x ≥-对任意实数x 恒成立,求a 的取值范围.18.已知函数()()()34f x x m x m =-++. (1)若1m =,求不等式()12f x >-的解集;(2)记不等式()0f x ≤的解集为A ,若4A -∉,求m 的取值范围.19.已知函数()2f x x ax b =++(a ,b R ∈)(1)若关于x 的不等式()0f x >的解集是()1,2,2⎛⎫-∞--+∞ ⎪⎝⎭,求实数a ,b 的值;(2)若2a =-,0b =函数()()x f x kx =-,[]0,2x ∈,不等式()<1F x 恒成立,求实数k 的取值范围;(3)若函数()0f x =在区间()1,2上有两个零点,求()1f 的取值范围.20.已知,,a b c ∈R ,满足a b c >>. (1)求证:1110a b b c c a++>---; (2)现推广:把1c a -的分子改为另一个大于1的正整数p ,使110pa b b c c a++>---对任意a b c >>恒成立,试写出一个p ,并证明之.21.已知关于x 的不等式230x bx c ++-<的解集为(1,2)-.(1)当[2,)x ∈+∞时,求2x bx cx++的最小值;(2)当[1,1]x ∈-时,函数2y x bx c =++的图象恒在直线2y x m =+的上方,求实数m 的取值范围.22.设函数()()()2230f x ax b x a =+-+≠,(1)若3b a =--,求不等式()42f x x <-+的解集;(2)若()14f =,1b >-,求11a ab ++的最小值.参考答案1.A 【分析】利用一元二次不等式的解法求出220x x +->,然后利用充分条件与必要条件的定义进行判断即可. 【详解】解:因为220x x +->,即()()210x x +->,解得2x <-或1x >, 因为()()(),2,21,-∞--∞-+∞,所以“2x <-”是“220x x +->”的充分不必要条件. 故选:A . 2.D 【分析】利用作差可以判断ABC ,利用不等式性质可以判断D. 【详解】对于A ,因为a b >,所以0a b ->,11b aa b ab--=,由于ab 的正负不确定,所以1a与1b的大小不确定,故错误; 对于B ,因为a b >,所以0a b ->, 1a a b b b--=,由于b 的正负不确定,所以 1与ab的大小不确定,故错误; 对于C ,因为a b >,所以0a b ->,()()22a b a b a b -=-+,由于a b +的正负不确定,所以2a 与2a 的大小不确定,故错误;对于D ,因为a b >,所以0a b ->,所以()110a b a b ---=->,所以11a b ->-,正确. 故选:D. 3.D 【分析】结合已知条件,利用做差法逐项证明即可. 【详解】A :因为0a b <<,所以0a b a b -=-+>,所以a b >,故A 错误;B :因为11b aa b ab--=,因为0a b <<,所以0,0b a ab ->>,所以110->a b ,即11a b>,故B 错误;C :因为()()()4422a b a b a b a b -=++-,因为0a b <<,所以220,0,0a b a b a b -<+<+>, 所以440a b ->,即44a b >,故C 错误;D :因为()()()11a a b b a b a a a b a a b ---==---, 因为0a b <<,所以0a b -<, 所以110a b a-<-,即11a b a <-,故D 正确; 故选:D. 4.C 【分析】利用基本不等式的性质,对选项进行一一验证,即可得到答案; 【详解】对A ,当0,0a b c d ac bd >>>>⇒>,故A 错误; 对B ,当0c >时,ac bc >,故B 错误; 对C ,同向不等式的可加性,故C 正确;对D ,若2,1,0,31,4a b c d a c b d ====-⇒-=-=,不等式显然不成立,故D 错误; 故选:C. 5.D 【分析】根据一元二次不等式的解法即可求解. 【详解】()20x x -=的两根为0,2,所以原不等式的解集为:(][),02,-∞+∞,故选:D. 6.D 【分析】根据一元二次方程的根与一元二次不等式的解集之间关系,列出方程组,求得,a b 的值,即可求解. 【详解】由不等式220ax bx ++>的解集是11,23⎛⎫- ⎪⎝⎭,可得11,23-是方程220ax bx ++=的两根,且0a <,所以112311223b a a⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,解得12,2a b =-=-,所以14a b +=-.故选:D. 7.A 【分析】根据不等式的性质判断,错误的不等式可举反例说明. 【详解】因为0a b >>,所以110ab<<,则11a b->-,所以11a b a b->-,故A 正确; 因为0a b >>,0c ≠,所以0b a -<,20c >,20a c +>,2222110a bab a b a b --=>, 2211ab a b∴>,故B 错误; 当0c ,得22ac bc =,故C 错误:取12a =,14b =,可得2194a a +=,211416b b +=,2211a b a b +<+,故D 错误.故选:A . 8.B 【分析】利用平方作差,再判断差的正负即可得解. 【详解】30>0>,则223)(16(160-=+-+==>,3故选:B 9.A 【分析】 根据0a b >>与2211a b<的互相推出情况判断出属于何种条件. 【详解】当0a b >>时,220a b >>,所以2211a b <,所以充分性满足, 当2211a b <时,取2,1a b =-=,此时0a b >>不满足,所以必要性不满足, 所以p 是q 的充分不必要条件, 故选:A. 10.B 【分析】求出集合A ,由分析知B ≠∅,求出集合B ,进而得出A B 中有且只有两个正整数解的等价条件,列不等式组即可求解. 【详解】由220x x +->可得:1x >或2x <-,所以{|2A x x =<-或}1x >, 因为A B 中有且只有两个正整数解,所以A B ⋂≠∅, 对于方程210(0)x ax a -+=>,判别式24a ∆=-,所以方程的两根分别为:1x,2x =,所以B x x ⎧⎪=≤≤⎨⎪⎪⎩⎭, 若A B 中有且只有两个正整数解,则134≤⎨⎪≤<⎪⎩即268a a a ⎧-≤⎪⎨--⎪⎩,可得2103174a a a ⎧⎪≥⎪⎪≥⎨⎪⎪<⎪⎩,所以101734a ≤<,当11x =>时,解得02a <<,此时240a ∆=-<,B =∅不符合题意, 综上所述:a 的取值范围为1017,34⎡⎫⎪⎢⎣⎭,故选:B. 11.A 【分析】设()()()()32x y m x y n x y m n x m n y -=+--=-++,利用待定系数法求得,m n ,利用不等式的性质即可求32x y -的取值范围.【详解】设()()()()32x y m x y n x y m n x m n y -=+--=-++, 所以32m n m n -=⎧⎨+=-⎩,解得:1252m n ⎧=⎪⎪⎨⎪=-⎪⎩,1532()()22x y x y x y -=+--,因为11x y -≤+≤,13x y ≤-≤,所以[]1532()()2,822x y x y x y -=+--∈, 故选:A. 12.B【分析】利用已知的事实以及作差法、特殊值法可判断各选项中不等式的正误. 【详解】对于A 选项,由题意可知a a mb b m+<+,A 选项错误; 对于B 选项,作出函数2x y =与y x =的图象如下图所示:由图可知,当0x >时,2x x >,0m >,则2m m >,所以,()()()()()()()()()()22220222mmmm m mma b m a m b a b m a a m b b mb b m b b m ++-++--++-==>++++++,即22mma m ab m b ++<++,B 选项正确; 对于C 选项,()()()()()220a m b m a m b m m b a ++-++=->, 所以,()()()()22a m b m a m b m ++>++,C 选项错误; 对于D 选项,取1a =,2b =,则121113143ba -=<=-,D 选项错误. 故选:B. 13.18. 【分析】根据基本不等式2x y +≥xy 的范围,求出答案. 【详解】因为,0x y >,且230x y xy ++=,所以302xy x y -=+≥(当且仅当2x y =时,取等号)即2030≤+,解得-180xy ≤<, 所以xy 的最大值是18.此时6x =,3y =. 故答案为:18. 【点睛】 关键点点睛:本题的关键点是运用基本不等式把230x y xy ++=转化为2030≤+.14.4 【分析】把给定等式两边都除以xy ,再利用“1”的妙用即可得解. 【详解】因为002x y x y xy >>+=,,,则121y x+=,所以()122422444x x x y x y x y y y x y y x ⎛⎫++=+++=++≥= ⎪⎝⎭,当且仅当24x y y x =时“=”, 由242x y y x x y xy ⎧=⎪⎨⎪+=⎩解得21x y ⎧=+⎪⎨=+⎪⎩所以21x y ⎧=⎪⎨=⎪⎩2x x y y ++有最小值4.故答案为:4.15.()()1,01,-⋃+∞【分析】根据分式不等式以及一元二次不等式解法即可求解.【详解】10,<x x -即21,<0x x- 即2(1)0,<x x -即(1)(1)0>x x x -+,所以()()0110x x x >⎧⎨-+>⎩或()()0110x x x <⎧⎨-+<⎩ 解得1x >或10x -<<所以不等式的解集为()()1,01,-⋃+∞.故答案为: ()()1,01,-⋃+∞16.)+∞【分析】由一元二次不等式的解集与一元二次方程根的关系,应用韦达定理把,b c 用a 表示,化待求式为一元函数,再利用基本不等式得结论.【详解】由不等式解集知0a <,由根与系数的关系知347,3412,b a c a⎧-=+=⎪⎪⎨⎪=⨯=⎪⎩7,12b a c a ∴=-=,则225144552466c a a a b a a ++==-+≥=+--当且仅当5246a a -=-,即a =时取等号.故答案为:)+∞.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方17.(1)∅;(2)[2,2]-.【分析】(1)确定相应二次方程的根,结合二次函数性质可得不等式的解;(2)由一元二次不等式恒成立可得.【详解】(1)由已知不等式为2210x x -+<,而2221(1)0x x x +=-≥-,所以原不等式解集为∅; (2)不等式()2f x x ≥-对任意实数x 恒成立,即2(2)(2)0x a x a -+++≥恒成立,所以2(2)4(2)0a a ∆=+-+≤,解得22a -≤≤.即a 的范围是[2,2]-.18.(1){1x x >或}3x <-;(2)403m m ⎧⎫-<<⎨⎬⎩⎭. 【分析】(1)当1m =时,代入整理得2230x x +->,解之可得解集.(2)由题意得() 40f ->,解之可求得m 的取值范围.【详解】解:(1)当1m =时,() 12f x >-,即(()()35120x x -++>,整理得2230x x +->,解得 >1x 或3x <-,所以()12f x >-的解集为{} 13x x x ><-或.(2)因为4A -∉,所以() 40f ->,即()430m m -->.所以()340 m m +<,解得403m -<<. 即m 的取值范围为403m m ⎧⎫-<<⎨⎬⎩⎭. 19.(1)52a =,1b =;(2)102k -<<;(3)()0,1. 【分析】(1)由()0f x >的解集知,()0f x =的两根为2-和12-,根据韦达定理求得参数值. (2)由题意得,2a =-,0b =,所以()22f x x x =-,不等式恒成立等价于2121x x kx -<--<在[]0,2恒成立.通过讨论x 的值,分离参数1122x k x x x--<<+-在(]0,2恒成立,根据函数单调性,求得最值,从而求得k 的取值范围.(3)方程()0f x =在区间()1,2有两个不同的实根,应满足条件()()2110242012240f a b f a b a a b ⎧=++>⎪=++>⎪⎪⎨<-<⎪⎪∆=->⎪⎩,把条件中的b 用(1)f 和a 表示,从而解得(1)f 的取值范围.【详解】(1)因为()0f x >的解集为()1,2,2⎛⎫-∞--+∞ ⎪⎝⎭, 所以()0f x =的两根为2-和12-, 由韦达定理得()()122122a b ⎧⎛⎫-+-=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪-⨯-= ⎪⎪⎝⎭⎩, 所以52a =,1b =. (2)由题意得,2a =-,0b =,所以()22f x x x =-,因为()()1f x g x -<在[]0,2恒成立,所以2121x x kx -<--<在[]0,2恒成立.①当0x =时,101-<<满足题意,②当(]0,2x ∈时,1122x k x x x--<<+-在(]0,2恒成立, 即max min1122x k x x x ⎛⎫⎛⎫--<<+- ⎪ ⎪⎝⎭⎝⎭, 因为12y x x =--在(]0,2单调递增,12y x x=+-在(]0,1上单调递减, 在(]1,2上单调递增,所以max 1122x x ⎛⎫--=- ⎪⎝⎭,min120x x ⎛⎫+-= ⎪⎝⎭, 所以102k -<<;(3)因为方程()0f x =在区间()1,2有两个不同的实根,所以()()2110242012240f a b f a b a a b ⎧=++>⎪=++>⎪⎪⎨<-<⎪⎪∆=->⎪⎩, 所以()11b f a =--,所以()()()()21042110424110f a f a a a f a ⎧>⎪++-->⎪⎨-<<-⎪⎪--->⎩, 由()131f a >-->-,由()()24110a f a --->得()()24124f a <+<,得()11f <, 综上所述:()011f <<.所以()1f 的取值范围是()0,1.20.(1)证明见解析;(2)2p =,证明见解析.【分析】(1)由分析法,只需证明111()()0a c a b b c c a -++>---即可, 利用基本不等式即可证明. (2)只需11()()0p a c a b b c c a -++>---,左边24b c a b p p a b b c --=-++---,进而可得结果. 【详解】(1)由于a b c >>,所以0a b ->,0b c ->,0a c ->, 要证1110a b b c c a++>---, 只需证明111()()0a c a b b c c a -++>---.左边111[()()]()a b b c a b b c c a=-+-++--- 130b c a b c a b a b b c b b a---=++≥=>--- (2)要使110p a b b c c a ++>---,只需11()()0p a c a b b c c a -++>---, 左边11[()()]()24p b c a b a b b c p p a b b c c a a b b c--=-+-++=-++------, 所以只需40p ->即可,即4p <,所以可以取2p =,3代入上面过程即可.21.(1)32;(2)(,1)-∞-. 【分析】(1)先求出b 、c ,再利用单调性求最小值;(2)用分离参数法,只需求出2()31h x x x =-+的最小值即可.【详解】(1)因为关于x 的不等式230x bx c ++-<的解集为(1,2)-,解得11b c =-⎧⎨=⎩, 所以22111x bx c x x x x x x++-+==+-,令1()1g x x x =+-,2x ≥,则21()10g x x '=->, 所以函数()g x 在[2,)+∞上单调递增,所以min13()(2)2122g x g ==+-=,所以2x bx c x++的最小值为32. (2)由(1)可知1b =-,1c =,因为当[1,1]x ∈-时,函数2y x bx c =++的图象恒在直线2y x m =+的上方,所以当[1,1]x ∈-时,212x x x m -+>+恒成立,即当[1,1]x ∈-时,231x x m -+>恒成立.令22()3135()24x h x x x +=--=-,易知函数()h x 在[1,1]-上的最小值为(1)1h =-, 所以1m <-,故实数m 的取值范围为(,1)-∞-.【点睛】(1)单调性法求最值是求值域最常用的方法;(2)求参数范围的问题,可以用分离参数法转化为求最值来解决.22.(1)详见解析;(2)34. 【分析】(1)本题首先可通过题意将不等式()42f x x <-+转化为()()110x ax --<,然后分为0a <、0a >两种情况进行讨论,0a >又分为1a =、1a >、01a <<三种情况进行讨论,即可得出结果;(2)本题首先可根据()14f =得出()14a b ++=,然后通过基本不等式得出1114a a a b a+≥++,最后分为0a >、0a <两种情况进行讨论,即可得出结果. 【详解】(1)因为()()223f x ax b x =+-+,所以()42f x x <-+即()22342ax b x x +-+<-+,因为3b a =--,所以不等式可以转化为()2110ax a x -++<,即()()110x ax --<,当0a <时,11a <,()()110x ax --<即()110x x a ⎛⎫--> ⎪⎝⎭,解得1x a <或1x >, 当0a >时,()()110x ax --<即()110x x a ⎛⎫--< ⎪⎝⎭, 若1a =,不等式()110x x a ⎛⎫--< ⎪⎝⎭的解集为∅, 若1a >,则11a<,解得11x a <<, 若01a <<,则11a >,解得11x a <<, 综上所述,不等式的解集为:当0a <时,()1,1,x a ⎛⎫∈-∞+∞ ⎪⎝⎭;当01a <<时,11x x a ⎧⎫<<⎨⎬⎩⎭; 当1a =时,解集为∅;当1a >时,11x x a ⎧⎫<<⎨⎬⎩⎭. (2)因为()14f =,所以()14a b ++=,则()111114144144a a a a b a b a a a b a b a a b a a++++=+=++≥+++++, 当0a >时,1a a =,1514a a b +≥+,当且仅当43a =、53b =时等号成立;当0a <时,1a a =-,1314a ab +≥+,当且仅当4a =-、7b =时等号成立, 综上所述,11a a b ++的最小值为34. 【点睛】易错点睛:本题考查含参数的一元二次不等式的解法以及基本不等式求最值,在求解含参数的一元二次不等式的时候,例如()()110x ax --<,既要注意1和1a的大小关系,也要注意a 的正负,在利用基本不等式求最值时,要注意取等号的情况,考查分类讨论思想,考查计算能力,是难题.。
高中数学等式与不等式练习题(含解析)
高中数学等式与不等式练习题(含解析)一、单选题1.不等式21560x x +->的解集为( ) A .{1x x 或1}6x <-B .116x x ⎧⎫-<<⎨⎬⎩⎭C .{1x x 或3}x <-D .{}32x x -<<2.已知正数x y ,满足 4x y +=,则xy 的最大值( ) A . 2B .4C . 6D .83.若53x >,则4335x x +-的最小值为( )A .7B .C .9D .4.下列命题正确的是( ) A .若ac bc >,则a b > B .若ac bc =,则a b = C .若a b >,则11a b <D .若22ac bc >,则a b >5.已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( ) A .{4,1}- B .{1,5} C .{3,5}D .{1,3}6.当x R ∈时,不等式2210x x a ---≥恒成立,则实数a 的取值范围是( ) A .(],2-∞- B .(),2-∞- C .(],0-∞D .(),0∞-7.设a<b<0,则下列不等式中不一定正确的是( )A .22ab>B .ac <bcC .|a|>-bD >8.小李从甲地到乙地的平均速度为a ,从乙地到甲地的平均速度为(0)b a b >>,他往返甲乙两地的平均速度为v ,则( )A .2a bv +=B .v =C 2a bv +<D .b v <<9.已知0a >,0b >,若44a b ab +=,则a b +的最小值是( )A .2B 1C .94D .5210.已知命题“R x ∀∈,214(2)04x a x +-+>”是假命题,则实数a 的取值范围为( ) A .(][),04,-∞+∞ B .[]0,4 C .[)4,+∞D .()0,4二、填空题11.已知54x >,则函数1445y x x =+-的最小值为_______. 12.已知21P x =- ,22Q x x =- ,则P _______Q .(填“>”或“<”) 13.已知22451(,)x y y x y R +=∈,则22x y +的最小值是_______.14.已知a ,b ∈R ,若对任意0x ≤,不等式()()22210ax x bx ++-≤恒成立,则a b +的最小值为___________.三、解答题15.若命题“方程ax 2-3x +2=0有两个不相等的实数根”为真,求实数a 的取值范围. 16.当前新冠肺炎疫情防控形势依然严峻,要求每个公民对疫情防控都不能放松.科学使用防护用品是减少公众交叉感染、有效降低传播风险、防止疫情扩散蔓延、确保群众身体健康的有效途径.某疫情防护用品生产厂家年投入固定成本150万元,每生产()x x N ∈万件,需另投入成本()C x (万元).当年产量不足60万件时,21()3802C x x x =+;当年产量不小于60万件时,81000()4103000C x x x=+-.通过市场分析,若每万件售价为400万元时,该厂年内生产的防护用品能全部售完.(利润=销售收入-总成本) (1)求出年利润()L x (万元)关于年产量()x x N ∈(万件)的解析式;(2)年产量为多少万件时,该厂在这一防护用品生产中所获利润最大?并求出利润的最大值.17.已知关于x 的不等式210ax x a -+-≤. (1)当a ∈R 时,解关于x 的不等式;(2)当[]2,3a ∈时,不等式210ax x a -+-≤恒成立,求x 的取值范围. 18.记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==. (1)求数列{}n a 的通项公式n a ; (2)求使n n S a >成立的n 的最小值.参考答案:1.B【分析】解一元二次不等式,首先确保二次项系数为正,两边同时乘1-,再利用十字相乘法,可得答案,【详解】法一:原不等式即为26510x x --<,即()()6110x x +-<,解得116x -<<,故原不等式的解集为116x x ⎧⎫-<<⎨⎬⎩⎭.法二:当2x =时,不等式不成立,排除A ,C ;当1x =时,不等式不成立,排除D . 故选:B . 2.B【分析】直接使用基本不等式进行求解即可. 【详解】因为正数x y ,满足 4x y +=,所以有424x y xy =+≥⇒≤,当且仅当2x y ==时取等号, 故选:B 3.C【分析】利用基本不等式即可求解. 【详解】解:53x >,∴350x ->,则()443355593535x x x x +=-++≥=--, 当且仅当352x -=时,等号成立, 故4335x x +-的最小值为9, 故选:C . 4.D【分析】由不等式性质依次判断各个选项即可.【详解】对于A ,若0c <,由ac bc >可得:a b <,A 错误; 对于B ,若0c ,则0ac bc ==,此时a b =未必成立,B 错误; 对于C ,当0a b >>时,110a b>>,C 错误; 对于D ,当22ac bc >时,由不等式性质知:a b >,D 正确.故选:D. 5.D【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ⋂,得到结果.【详解】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =, 故选:D.【点睛】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目. 6.A【分析】由题意,保证当x R ∈时,不等式2210x x a ---≥恒成立,只需2(2)4(1)0a ∆=-++≤,求解即可【详解】由题意,当x R ∈时,不等式2210x x a ---≥恒成立, 故2(2)4(1)0a ∆=-++≤ 解得2a ≤-故实数a 的取值范围是(],2-∞- 故选:A 7.B【分析】利用不等式的性质对四个选项一一验证: 对于A ,利用不等式的可乘性进行证明; 对于B ,利用不等式的可乘性进行判断; 对于C ,直接证明;对于D ,由开方性质进行证明. 【详解】对于A ,因为a<b<0,所以20ab >,对a<b 同乘以2ab ,则有22a b>,故A 成立; 对于B ,当c>0时选项B 成立,其余情况不成立,则选项B 不成立; 对于C ,|a|=-a>-b ,则选项C 成立;对于D ,由-a>-b>0>D 成立. 故选:B 8.D【分析】平均速度等于总路程除以总时间【详解】设从甲地到乙地的的路程为s ,从甲地到乙地的时间为t 1,从乙地到甲地的时间为t 2,则1s t a=,2s t b =,1222211s s v s s t t a b a b ===+++,∴221111v ba bb b=>=++,2211ab v a b a b==<++ 故选:D. 9.C【分析】将44a b ab +=,转化为144b a +=,由()11414544a b a b a b b a b a ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭,利用基本不等式求解.【详解】因为44a b ab +=, 所以144b a+=,所以()11414544a b a b a b b a b a ⎛⎫⎛⎫+=++=++ ⎪⎪⎝⎭⎝⎭,19544⎛≥+= ⎝, 当且仅当1444b a a b b a⎧+=⎪⎪⎨⎪=⎪⎩,即3234a b ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立,故选:C 10.A【分析】先求出命题为真时实数a 的取值范围,即可求出命题为假时实数a 的取值范围.【详解】若“R x ∀∈,214(2)04x a x +-+>”是真命题, 即判别式()21Δ24404a =--⨯⨯<,解得:04a <<,所以命题“R x ∀∈,214(2)04x a x +-+>”是假命题, 则实数a 的取值范围为:(][),04,-∞+∞.故选:A. 11.7 【分析】由54x >,得450x ->,构造导数关系,利用基本不等式即可得到. 【详解】法一:54x >,450x ∴->, 114(45)52574545y x x x x =+=-++≥+=--, 当且仅当14545x x -=-,即32x =时等号成立,故答案为:7. 法二:54x >,令2440(45)y x '=-=-得1x =或32x =, 当5342x <<时'0y <函数单调递减, 当32x >时'0y >函数单调递增, 所以当32x =时函数取得最小值为:314732452⨯+=⨯-, 故答案为:7.【点晴】此题考基本不等式,属于简单题. 12.<【分析】作差判断正负即可比较.【详解】因为()222213121024P Q x x x x x x ⎛⎫-=---=-+-=---< ⎪⎝⎭,所以P Q <.故答案为:<. 13.45【分析】根据题设条件可得42215y x y -=,可得4222222114+555y y x y y y y-+=+=,利用基本不等式即可求解.【详解】∵22451x y y +=∴0y ≠且42215y x y -=∴42222221144+5555y y x y y y y -+=+=≥,当且仅当221455y y =,即2231,102x y ==时取等号. ∴22x y +的最小值为45.故答案为:45.【点睛】本题考查了基本不等式在求最值中的应用.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立). 14【分析】考虑两个函数()2g x ax =+,2()21f x x bx =+-,由此确定0a >,0x <时,()f x ,()g x 有相同的零点,得出,a b 的关系,检验此时()f x 也满足题意,然后计算出a b +(用a 表示),然后由基本不等式得最小值.【详解】设()2g x ax =+,2()21f x x bx =+-,()f x 图象是开口向上的抛物线,因此由0x ≤时,()()0f x g x ≤恒成立得0a >,()0g x =时,2x a =-,2x a <-时,()0g x <,20x a-<≤时,()0g x >, 因此2x a <-时,()0f x >,20x a -<≤时,()0f x <,2()0f a-=,所以24410b a a --=①,2b a->-②, 由①得14a b a =-,代入②得124a a a ->-,因为0a >,此式显然成立.134a a b a +=+≥134a a =,即a =所以a b +【点睛】关键点点睛:本题考查不等式恒成立问题,考查基本不等式求最值.解题关键是引入两个函数()f x 和()g x ,把三次函数转化为二次函数与一次函数,降低了难度.由两个函数的关系得出参数,a b 的关系,从而可求得a b +的最小值.15.9|8a a ⎧<⎨⎩且}0a ≠.【分析】方程ax 2-3x +2=0有两个不相等的实数根,说明是一元二次方程,根的判别式大于0,进而求出结果.【详解】由题意知()2Δ34200a a ⎧=--⨯>⎪⎨≠⎪⎩,解得a <98,且a ≠0,故实数a 的取值范围是9|8a a ⎧<⎨⎩且}0a ≠.16.(1)()2120150,60,281000285010,60,x x x x N L x x x x N x ⎧-+-<∈⎪⎪=⎨⎛⎫⎪-+≥∈ ⎪⎪⎝⎭⎩(2)当年产量为90万件时,该厂在这一防护商品生产中所获利润最大为1050万元【分析】(1)根据题意直接利用利润=销售收入-总成本,写出分段函数的解析式即可; (2)利用二次函数及其基本不等式分别求出各段的最大值,再取两个最大的即可. (1)当60x <且x ∈N 时,2211()4003801502015022L x x x x x x =---=-+-,当60x ≥且x ∈N 时, 8100081000()4004103000150285010L x x x x x x ⎛⎫=--+-=-+ ⎪⎝⎭ 综上:()2120150,60,281000285010,60,x x x x N L x x x x N x ⎧-+-<∈⎪⎪=⎨⎛⎫⎪-+≥∈ ⎪⎪⎝⎭⎩ (2)当60x <且x ∈N 时,2211()20150(20)5022L x x x x =-+-=--+∴当20x时,()L x 取最大值(20)50L =(万元)当60x ≥且x ∈N时,81000()28501028501050L x x x ⎛⎫=-+≤- ⎪⎝⎭当且仅当8100010x x=,即90x =时等号成立. ∴当90x =时,()L x 取最大值(90)1050L =(万元)∵501050<,综上所述,当年产量为90万件时,该厂在这一防护商品生产中所获利润最大为1050万元. 17.(1)答案见解析;(2)1,12⎡⎤-⎢⎥⎣⎦.【分析】(1)不等式210ax x a -+-≤可化为()()110x ax a -+-≤,然后分0a =,a<0,102a <<,12a =,12a >五种情况求解不等式;(2)不等式210ax x a -+-≤对[]2,3a ∈恒成立,把a 看成自变量,构造函数()()()211f a x a x =-+-+,则可得()()2030f f ⎧≤⎪⎨≤⎪⎩,解不等式组可求出x 的取值范围【详解】解:(1)不等式210ax x a -+-≤可化为()()110x ax a -+-≤, 当0a =时,不等式化为10x -≥,解得1x ≥, 当a<0时,不等式化为()110a x x a -⎛⎫--≥ ⎪⎝⎭,解得1ax a-≤,或1x ≥; 当0a >时,不等式化为()110a x x a -⎛⎫--≤ ⎪⎝⎭;①102a <<时,11a a ->,解不等式得11a x a-≤≤, ②12a =时,11aa-=,解不等式得1x =, ③12a >时,11aa -<,解不等式得11a x a-≤≤. 综上,当0a =时,不等式的解集为{|1}x x ≥, 当a<0时,不等式的解集为{1|ax x a-≤或1}x ≥, 102a <<时,不等式的解集为1{|1}a x x a-≤≤, 12a =时,不等式的解集为{}|1x x =, 12a >时,不等式的解集为1{|}1a ax x ≤≤-. (2)由题意不等式210ax x a -+-≤对[]2,3a ∈恒成立,可设()()()211f a x a x =-+-+,[]2,3a ∈,则()f a 是关于a 的一次函数,要使题意成立只需:()()222021030320f x x f x x ⎧≤⎧--≤⎪⇒⎨⎨≤--≤⎪⎩⎩, 解得:112x -≤≤,所以x 的取值范围是1,12⎡⎤-⎢⎥⎣⎦.18.(1)26n a n =-;(2)7.【分析】(1)由题意首先求得3a 的值,然后结合题意求得数列的公差即可确定数列的通项公式;(2)首先求得前n 项和的表达式,然后求解二次不等式即可确定n 的最小值. 【详解】(1)由等差数列的性质可得:535S a =,则:3335,0a a a =∴=,设等差数列的公差为d ,从而有:()()22433a a a d a d d =-+=-,()()()41234333322S a a a a a d a d a a d d =+++=-+-+++=-,从而:22d d -=-,由于公差不为零,故:2d =, 数列的通项公式为:()3326n a a n d n =+-=-.(2)由数列的通项公式可得:1264a =-=-,则:()()214252n n n S n n n -=⨯-+⨯=-,则不等式n n S a >即:2526n n n ->-,整理可得:()()160n n -->, 解得:1n <或6n >,又n 为正整数,故n 的最小值为7.【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.。
不等式的基本性质习题
不等式的基本性质知识点:1、不等式的性质1:不等式的两边加上(或减去)同一个数(或式子),不等号的方向不变,用式子表示:如果a>b ,那么a ±c>b ±c.2、不等式的性质2:不等式的两边乘以(或除以)同一正数,不等号的方向不变,3、不等式的性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,用式子表示:a>b ,c<0,那么,ac < bc 或 a c < b c. 一.选择题1、若x >y,则ax >ay ,那么a 一定为( )。
A.a >0 B .a<0 C .a≥0 D .a ≤02、若m <n,则下列各式中正确的是( )。
A .m -3>n-3 B.3m >3n C.-3m >-3n D.m /3-1>n /3-13、若a <0,则下列不等关系错误的是( )。
A .a +5<a +7 B.5a >7a C.5-a <7-a D.a /5>a /74、下列各题中,结论正确的是( )。
A .若a >0,b <0,则b /a >0B .若a >b ,则a -b >0C .若a <0,b <0,则ab <0D .若a >b ,a <0,则b /a <05、下列变形不正确的是( )。
A .若a >b ,则b <aB .-a >-b ,得b >aC .由-2x >a ,得x >-a /2D .由x /2>-y ,得x >-2y6、有理数b 满足︱b ︱<3,并且有理数a 使得a <b 恒成立,则a 得取值范围是( )。
A .小于或等于3的有理数B .小于3的有理数C .小于或等于-3的有理数D .小于-3的有理数7、绝对值不大于2的整数的个数有( )A .3个B .4个C .5个D .6个8、如果m <n <0,那么下列结论中错误的是( )A 、m -9<n -9B 、-m >-nC 、11n m >D 、1m n> 9、若a -b <0,则下列各式中一定正确的是( )A 、a >bB 、ab >0C 、0a b< D 、-a >-b 10、由不等式ax >b 可以推出x <b a,那么a 的取值范围是( ) A 、a ≤0 B 、a <0 C 、a ≥0 D 、a >011、如果t >0,那么a +t 与a 的大小关系是( )A 、a +t >aB 、a +t <aC 、a +t ≥aD 、不能确定12、如果34a a <--,则a 必须满足( ) A 、a ≠0 B 、a <0 C 、a >0 D 、a 为任意数13、已知有理数a 、b 、c 在数轴上的位置如图所示,则下列式子正确的是( )a 0b cA 、cb >abB 、ac >abC 、cb <abD 、c +b >a +b14、有下列说法:(1)若a <b ,则-a >-b ; (2)若xy <0,则x <0,y <0;(3)若x <0,y <0,则xy <0; (4)若a <b ,则2a <a +b ;(5)若a <b ,则11a b >; (6)若1122x y --<,则x >y 。
高考数学压轴专题(易错题)备战高考《不等式》知识点总复习附答案
高中数学《不等式》期末考知识点(1)一、选择题1.已知点()4,3A ,点B 为不等式组00260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示平面区域上的任意一点,则AB 的最小值为( )A .5B .455C .5D .25【答案】C 【解析】 【分析】作出不等式组所表示的平面区域,标出点A 的位置,利用图形可观察出使得AB 最小时点B 的位置,利用两点间的距离公式可求得AB 的最小值.【详解】作出不等式组00260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示的平面区域如下图所示:联立0260x y x y -=⎧⎨+-=⎩,解得22x y =⎧⎨=⎩,由图知AB 的最小值即为()4,3A 、()2,2B 两点间的距离, 所以AB ()()2242325-+-=故选:C . 【点睛】本题考查目标函数为两点之间的距离的线性规划问题,考查数形结合思想的应用,属中等题.2.已知点(2,0)M ,点P 在曲线24y x =上运动,点F 为抛物线的焦点,则2||||1PM PF -的最小值为( ) A .3B .2(51)-C .45D .4【答案】D 【解析】 【分析】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则2||4||1PM x PF x=+-,利用均值不等式得到答案.【详解】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则()()22222224||||44||1x yx x PM P P M x F x Q P x x-+-+====+≥-,当4x x =,即2x =时等号成立. 故选:D .【点睛】本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力.3.变量,x y 满足约束条件1{2314y x y x y ≥--≥+≤,若使z ax y =+取得最大值的最优解不唯一,则实数a 的取值集合是( ) A .{3,0}- B .{3,1}-C .{0,1}D .{3,0,1}-【答案】B 【解析】若0a =,结合图形可知不合题设,故排除答案A ,C ,D ,应选答案B .4.若直线过点,则的最小值等于( )A .5B .C .6D .【答案】C 【解析】∵直线过点,∴,∴,∵,∴,,,当且仅当时,等号成立,故选C.点睛:本题主要考查了基本不等式.基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.5.若33log (2)1log a b ab +=+42a b +的最小值为( )A .6B .83C .163D .173【答案】C 【解析】 【分析】由33log (2)1loga b ab +=+213b a+=,且0,0a b >>,又由12142(42)3a b a b b a ⎛⎫+=++ ⎪⎝⎭,展开之后利用基本不等式,即可得到本题答案.【详解】因为33log (2)1loga b ab +=+()()3333log 2log 3log log 3a b ab ab +=+=,所以,23a b ab +=,等式两边同时除以ab 得213b a+=,且0,0a b >>,所以121182116 42(42)()(8)(8216)3333a ba b a bb a b a+=++=++≥+=,当且仅当82a bb a=,即2b a=时取等号,所以42a b+的最小值为163.故选:C.【点睛】本题主要考查利用基本不等式求最值,其中涉及对数的运算,考查计算能力,属于中等题. 6.若实数,x y满足不等式组2,36,0,x yx yx y+≥⎧⎪-≤⎨⎪-≥⎩则3x y+的最小值等于()A.4B.5C.6D.7【答案】A【解析】【分析】首先画出可行域,利用目标函数的几何意义求z的最小值.【详解】解:作出实数x,y满足不等式组236x yx yx y+≥⎧⎪-≤⎨⎪-≥⎩表示的平面区域(如图示:阴影部分)由20x yx y+-=⎧⎨-=⎩得(1,1)A,由3z x y=+得3y x z=-+,平移3y x=-,易知过点A时直线在y上截距最小,所以3114minz=⨯+=.故选:A.【点睛】本题考查了简单线性规划问题,求目标函数的最值先画出可行域,利用几何意义求值,属于中档题.7.在下列函数中,最小值是2的函数是( ) A .()1f x x x=+ B .1cos 0cos 2y x x x π⎛⎫=+<< ⎪⎝⎭C .()2f x =D .()42xx f x e e=+- 【答案】D 【解析】 【分析】根据均值不等式和双勾函数依次计算每个选项的最小值得到答案. 【详解】 A. ()1f x x x=+,()122f -=-<,A 错误; B. 1cos 0cos 2y x x x π⎛⎫=+<< ⎪⎝⎭,故()cos 0,1x ∈,2y >,B 错误; C. ()2f x ==,故()3f x ≥,C 错误; D. ()4222xx f x e e =+-≥=,当4xxe e =,即ln 2x =时等号成立,D 正确. 故选:D . 【点睛】本题考查了均值不等式,双勾函数求最值,意在考查学生的计算能力和应用能力.8.若,x y 满足约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则122yx ⎛⎫⋅ ⎪⎝⎭的最小值为( )A .116B .18C .1D .2【答案】A 【解析】 【分析】画出约束条件所表示的可行域,结合指数幂的运算和图象确定出目标函数的最优解,代入即可求解. 【详解】由题意,画出约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域,如图所示,其中可得(3,1)A -,(5,1)B ,(3,3)C ,因为1222yx x y -⎛⎫⋅= ⎪⎝⎭,令z x y =-,当直线y x z =-经过A 时,z 取得最小值, 所以z 的最小值为min 314z =--=-,则1222yxx y -⎛⎫⋅= ⎪⎝⎭的最小值为41216-=. 故选:A .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力.9.已知不等式组y x y x x a ≤⎧⎪≥-⎨⎪≤⎩表示的平面区域的面积为9,若点, 则的最大值为( )A .3B .6C .9D .12【答案】C 【解析】 【分析】 【详解】分析:先画出满足约束条件对应的平面区域,利用平面区域的面积为9求出3a =,然后分析平面区域多边形的各个顶点,即求出边界线的交点坐标,代入目标函数求得最大值. 详解:作出不等式组对应的平面区域如图所示:则(,),(,)A a a B a a -,所以平面区域的面积1292S a a =⋅⋅=, 解得3a =,此时(3,3),(3,3)A B -,由图可得当2z x y =+过点(3,3)A 时,2z x y =+取得最大值9,故选C.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.10.已知点P ,Q 分别是抛物线28x y =和圆22(2)1x y +-=上的动点,点(0,4)A ,则2||||PA PQ 的最小值为( ) A .10 B .4C .232D .421【答案】B 【解析】 【分析】设出点P 的坐标()00,x y ,用0y 表示出PA ;根据圆上一点到定点距离的范围,求得PQ 的最大值,再利用均值不等式求得目标式的最值. 【详解】设点()00,P x y ,因为点P 在抛物线上,所以()200080x y y =≥,因为点(0,4)A ,则()()2222200000||48416PA x y y y y =+-=+-=+.又知点Q 在圆22(2)1x y +-=上,圆心为抛物线的焦点(0,2)F ,要使2||||PA PQ 的值最小,则||PQ 的值应最大,即0max 13PQ PF y =+=+.所以()()222000003632516||||33y y y PA PQ y y +-+++==++ ()002536643y y =++-≥=+ 当且仅当02y =时等号成立.所以2||||PA PQ 的最小值为4.故选:B. 【点睛】本题考查抛物线上一点到定点距离的求解,以及圆上一点到定点距离的最值,利用均值不等式求最值,属综合中档题.11.已知实数x y ,满足1030350x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则()22(4)2z x y =-+-的最小值为( )A B .5C .3D .52【答案】D 【解析】 【分析】由题意作出其平面区域,22(4)(2)z x y =-+-可看成阴影内的点到点(4,2)P 的距离的平方,求阴影内的点到点(4,2)P 的距离的平方最小值即可. 【详解】解:由题意作出实数x ,y 满足1030350x y x y x y -+⎧⎪+-⎨⎪--⎩……„平面区域, 22(4)(2)z x y =-+-可看成阴影内的点到点(4,2)P 的距离的平方, 则22(4)(2)z x y =-+-的最小值为P 到350x y --=的距离的平方, 解得,2252d ⎛⎫==; 所以min 52z =故选:D .【点睛】本题考查了简单线性规划,作图要细致认真,用到了表达式的几何意义的转化,属于中档题.12.已知α,β均为锐角,且满足()sin 2cos sin αβαβ-=,则αβ-的最大值为( )A .12πB .6π C .4π D .3π 【答案】B 【解析】 【分析】利用两角差的正弦公式,将已知等式化简得到tan 3tan αβ=,由α,β均为锐角,则,22ππαβ⎛⎫-∈- ⎪⎝⎭,要求出αβ-的最大值,只需求出tan()αβ-的最大值,利用两角差的正切公式,将tan()αβ-表示为tan β的关系式,结合基本不等式,即可求解. 【详解】由()sin 2cos sin αβαβ-=整理得()sin 2cos sin αβαβ-=, 即sin cos cos sin 2cos sin αβαβαβ-=,化简得sin cos 3cos sin αβαβ=,则tan 3tan αβ=, 所以()2tan tan 2tan 2tan 11tan tan 13tan 3tan tan αββαβαββββ--===+++,又因为β为锐角,所以tan 0β>,根据基本不等式231233tan tan ββ≤=+当且仅当3tan 3β=时等号成立, 因为,22ππαβ⎛⎫-∈- ⎪⎝⎭,且函数tan y x =在区间,22ππ⎛⎫-⎪⎝⎭上单调递增, 则αβ-的最大值为6π. 故选:B . 【点睛】本题考查两角差最值,转化为求三角函数最值是解题的关键,注意应用三角恒等变换、基本不等式求最值,考查计算求解能力,属于中档题.13.若,,则( )A .B .C .D .【答案】C【解析】 【分析】 【详解】试题分析:用特殊值法,令,,得,选项A 错误,,选项B 错误,,选项D 错误,因为选项C 正确,故选C . 【考点】指数函数与对数函数的性质 【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.14.以A 为顶点的三棱锥A BCD -,其侧棱两两互相垂直,且该三棱锥外接球的表面积为8π,则以A 为顶点,以面BCD 为下底面的三棱锥的侧面积之和的最大值为( ) A .2 B .4C .6D .7【答案】B 【解析】 【分析】根据题意补全几何图形为长方体,设AB x =,AC y =,AD z =,球半径为R ,即可由外接球的表面积求得对角线长,结合侧面积公式即可由不等式求得面积的最大值.【详解】将以A 为顶点的三棱锥A BCD -,其侧棱两两互相垂直的三棱锥补形成为一个长方体,如下图所示:长方体的体对角线即为三棱锥A BCD -外接球的直径,设AB x =,AC y =,AD z =,球半径为R ,因为三棱锥外接球的表面积为8π,则284R π=π, 解得2R =,所以体对角线为2, 所以2228x y z ++=,111222S yz xy xz =++侧面积 由于()()()()222222240x y z S x y y x x z ++-=-+-+-≥,所以416S ≤,故4S ≤,即三棱锥的侧面积之和的最大值为4,故选:B.【点睛】本题考查了空间几何体的综合应用,三棱锥的外接球性质及应用,属于中档题.15.已知不等式240x ax -+≥对于任意的[1,3]x ∈恒成立,则实数a 的取值范围是( ) A .(,5]-∞B .[5,)+∞C .(,4]-∞D .[4,)+∞ 【答案】C【解析】若不等式240x ax -+≥对于任意的[1,3]x ∈恒成立,则4a x x ≤+对于任意的[1,3]x ∈恒成立,∵当[1,3]x ∈时,4[4,5]x x+∈,∴4a ≤,即实数a 的取值范围是(,4]-∞,故选C .【方法点晴】本题主要考查利用导数求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数. 本题是利用方法 ① 求得a 的取值范围的.16.在锐角ABC V 中,内角,,A B C 所对的边分别为,,a b c ,若222cos 3a ab C b +=,则tan 6tan tan tan A B C A+⋅的最小值为( )A .3B .2C .2D .32【答案】B【解析】【分析】根据余弦定理得到4cos c b A =,再根据正弦定理得到sin cos 3sin cos A B B A =,故tan 3tan A B =,3t 53tan 4an 6ta 3ta tan tan n n B A B C A B ⎛⎫=+ ⎪⎝+⎭⋅,计算得到答案. 【详解】由余弦定理及222cos 3a ab C b +=可得222223a a b c b ++-=,即22222a b b c -=+,得22222cos a b a bc A -=+,整理得22 2cos a b bc A =+.2222cos a b c bc A =+-Q ,2222cos 2cos b bc A b c bc A ∴+=+-,得4cos c b A =.由正弦定理得sin 4sin cos C B A =,又()sin sin C A B =+,()sin 4sin cos A B B A ∴+=, 整理得sin cos 3sin cos A B B A =.易知在锐角三角形ABC 中cos 0A ≠, cos 0B ≠,tan 3tan A B ∴=, 且tan 0B >.πA B C ++=Q , ()tan tan C A B =-+tan tan 1tan tan A B A B +=--⋅24tan 3tan 1B B =-,tan 6tan tan tan A B C A ∴+⋅()233tan 124tan tan B B B -=+353tan 43tan B B ⎛⎫=+ ⎪⎝⎭34≥⨯当且仅当tan B 时等号成立. 故选:B .【点睛】本题考查了正余弦定理,三角恒等变换,均值不等式,意在考查学生的计算能力和综合应用能力.17.已知实数,x y满足线性约束条件120xx yx y≥⎧⎪+≥⎨⎪-+≥⎩,则1yx+的取值范围为()A.(-2,-1]B.(-1,4]C.[-2,4) D.[0,4]【答案】B【解析】【分析】作出可行域,1yx+表示可行域内点(,)P x y与定点(0,1)Q-连线斜率,观察可行域可得最小值.【详解】作出可行域,如图阴影部分(含边界),1yx+表示可行域内点(,)P x y与定点(0,1)Q-连线斜率,(1,3)A,3(1)410QAk--==-,过Q与直线0x y+=平行的直线斜率为-1,∴14PQk-<≤.故选:B.【点睛】本题考查简单的非线性规划.解题关键是理解非线性目标函数的几何意义,本题1yx+表示动点(,)P x y与定点(0,1)Q-连线斜率,由直线与可行域的关系可得结论.18.若变量x,y满足2,{239,0,x yx yx+≤-≤≥则x2+y2的最大值是A.4 B.9 C.10 D.12【答案】C【解析】试题分析:画出可行域如图所示,点A (3,-1)到原点距离最大,所以22max ()10x y +=,选C.【考点】简单线性规划【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间的距离等,考查考生的绘图、用图能力,以及应用数学知识解决实际问题的能力.19.若均不为1的实数a 、b 满足0a b >>,且1ab >,则( )A .log 3log 3a b >B .336a b +>C .133ab a b ++>D .b a a b > 【答案】B【解析】【分析】举反例说明A,C,D 不成立,根据基本不等式证明B 成立.【详解】当9,3a b ==时log 3log 3a b <; 当2,1a b ==时133ab a b ++=; 当4,2a b ==时b a a b =; 因为0a b >>,1ab >,所以23323323236a b a b a b ab ++>=>>,综上选B.【点睛】本题考查比较大小,考查基本分析论证能力,属基本题.20.已知等差数列{}n a 中,首项为1a (10a ≠),公差为d ,前n 项和为n S ,且满足15150a S +=,则实数d 的取值范围是( )A .[3,3];B .(,3]-∞C .3,)+∞D .(,3]3,)-∞-⋃+∞【答案】D【解析】【分析】由等差数列的前n 项和公式转化条件得11322a d a =--,再根据10a >、10a <两种情况分类,利用基本不等式即可得解.【详解】 Q 数列{}n a 为等差数列, ∴1515455102a d d S a ⨯=+=+,∴()151********a S a a d +++==, 由10a ≠可得11322a d a =--, 当10a >时,1111332222a a d a a ⎛⎫=--=-+≤-= ⎪⎝⎭1a 时等号成立;当10a <时,11322a d a =--≥=1a =立; ∴实数d的取值范围为(,)-∞⋃+∞.故选:D.【点睛】本题考查了等差数列前n 项和公式与基本不等式的应用,考查了分类讨论思想,属于中档题.。
高三复习基本不等式练习题
高三复习基本不等式练习题不等式作为高中数学中的一个重要内容,占据了复习的重要一部分。
本文将提供一些基本不等式的练习题,供高三学生复习使用。
练习题1:解不等式组:{x+2>0, x-3<0}练习题2:求解不等式:(x+1)(x-3)<0练习题3:解不等式组:{x^2 - 4>0, x-1<0}练习题4:求解不等式:x^2 - 5x + 6>0练习题5:解不等式组:{x^2-4x+3>0, x^2+6x+8>0}练习题6:求解不等式:(x-2)(x+3)(x-7)<0练习题7:解不等式组:{x^3-9x^2+20x-12>0, x^2-4x+4>0}练习题8:求解不等式:(x-2)^2(x+4)>0练习题9:解不等式组:{x^3-x^2+4x-4>0, x^2 + 3x + 2>0}练习题10:求解不等式:(x-1)^3+8>0以上是关于高三复习基本不等式的一些练习题。
希望同学们能够认真思考,按照正确的解题步骤解答。
复习不等式时,应重点掌握不等式的基本性质和解不等式的方法,如辨别二次不等式的判别式、区间法等。
在解题过程中,也要注意进行化简和因式分解,以便于对不等式进行分类讨论。
基本不等式是高中数学中一个重要的内容,对于加深对不等式的理解和掌握不等式的解法有着重要的意义。
因此,同学们要多进行基本不等式的练习,理解和掌握不等式的性质和方法,为高考做好充分准备。
希望以上的练习题能够帮助到高三的同学们,祝大家能够在高三阶段取得优异的成绩!。
不等式的解法练习题及解析
不等式的解法练习题及解析1. 解下列不等式:2x - 5 < 3x + 4解析:我们可以通过移项和合并同类项的方式来求解不等式。
首先,将3x移到等式的左边,将-5移到等式的右边,得到2x - 3x < 4 + 5。
然后合并同类项,得到-x < 9。
由于系数为负数,所以我们需要将不等号翻转。
最终得到解为x > -9。
2. 解下列不等式:3(x - 2) ≥ 5x + 6解析:同样地,我们可以通过移项和合并同类项来求解不等式。
首先将5x移到等式的右边,将6移到等式的左边,得到3x - 5x ≥ 6 - 10。
然后合并同类项,得到-2x ≥ -4。
由于系数为负数,所以我们需要将不等号翻转。
最终得到解为x ≤ 2。
3. 解下列不等式:4 - 3x > 7x + 2解析:同样地,我们可以通过移项和合并同类项来求解不等式。
首先将7x移到等式的左边,将4移到等式的右边,得到-3x - 7x > 2 - 4。
然后合并同类项,得到-10x > -2。
由于系数为负数,所以我们需要将不等号翻转。
最终得到解为x < 0.2。
4. 解下列不等式:2(3x - 4) + 5 > 4(5 - x) - 7解析:同样地,我们可以通过移项和合并同类项来求解不等式。
首先将4(5 - x)移到等式的左边,将2(3x - 4)移到等式的右边,得到10 -4x > 6x - 8 - 7。
然后进行合并计算,得到10 - 4x > 6x - 15。
接着将4x和6x移到等式的右边,将10移到等式的左边,得到-4x - 6x > -15 - 10。
合并计算后得到-10x > -25。
由于系数为负数,所以我们需要将不等号翻转。
最终得到解为x < 2.5。
5. 解下列不等式:|2x - 3| < 7解析:这是一个绝对值不等式,我们需要分别考虑绝对值内部的正负情况。
不等式的性质练习题
不等式的性质练习题学校:___________姓名:___________班级:___________一、单选题1.若0a b >>,0c d <<,则一定有( ) A .ac bd <B .ac bd >C .b a d c> D .b a d c< 2.已知,,a b c ∈R ,a b >,则说法正确的是( ) A .ac bc > B .a c b c +>+C .11a b< D .22a b >3.设a b c ∈R 、、且a b >,则( ) A .ac bc > B .22a b > C .33a b >D .11a b< 4.如果a b <,那么下列不等式中一定成立的是( ) A .2a ab <B .2ab b <C .22a b <D .2a b b -<-5.已知a b >,则下列不等关系中一定成立的是( ) A .0a b ->B .2ab b <C .22a b <D .11a b> 6.若a b >,c ∈R ,则( ) A .ac bc >B .22ac bc <C .c c a b< D .0b a -<7.若0a b >>,c 为实数,则下列不等关系不一定成立的是( ). A .22ac bc > B .11a b< C .22a b >D .a c b c +>+8.下列命题中,是真命题的是( ) A .如果ac bc >,那么a b > B .如果22ac bc >,那么a b > C .如果a bc c>,那么a b > D .如果,a b c d >>,那么a c b d ->- 9.下列结论正确的是( ) A .若a b >,则ac bc > B .若a b >,则11a b> C .若a b >,则a c b c +>+D .若a b >,则22a b >10.若,,R a b c ∈,则下列命题为假命题的是( )A a b >B .若a b >,则ac bc >C .若0b a >>,则11a b> D .若22ac bc >,则a b >11.若110a b<<,则下列不等式正确的是( ) A .a b > B .a b < C .a b ab +> D .33a b >12.已知01,0a b <<<,则下列大小关系正确的是( ) A .2ab b a b <<B .2b ab a b <<C .2b a b ab <<D .2a b b ab <<13.已知120b a<<,则下列不等式正确的是( )A .11a b ab<+ B .21a b ab>+ C .2aba b>+ D .22ab b <14.已知实数,0a b c abc >>≠,则下列结论一定正确的是( ) A .a a b c> B .ab bc > C .11a c< D .2ab bc ac b +>+15.如果,,,R a b c d ∈,则正确的是( ) A .若a >b ,则11a b< B .若a >b ,则22ac bc > C .若a >b ,c >d ,则a +c >b +d D .若a >b ,c >d ,则ac >bd16.下列命题正确的是( ) A .若ac bc >,则a b > B .若ac bc =,则a b = C .若a b >,则11a b< D .若22ac bc >,则a b >17.若a ,b ,c 为实数,且a b <,0c >,则下列不等关系一定成立的是( ) A .a c b c +<+B .11a b< C .ac bc > D .b a c ->18.已知a ,b 是实数,且a b >,则( ) A .a b -<-B .22a b <C .11a b> D .||||a b >19.若0a b >>,0c d >>,则下列不等式一定成立的是( ) A .ac bd >B .ac bd <C .ad bd <D .ad bc >20.若,,a b c ∈R ,且0a b <<,则下列不等式正确的是( ) A .11a b< B .2ab b > C .||||a c b c > D .2a ab <21.已知 10a -<< ,那么 32a a a --,, 的大小关系是( ) A .23a a a >->- B .23a a a ->>- C .32a a a ->->D .23a a a >->-参考答案:1.B【分析】根据不等式的性质和特殊值法,逐项验证可得出答案 【详解】解:对于A ,如果ac bc >,0c <,那么a b <,故A 错误; 对于B ,易得0c ≠,所以20c >,所以22ac bc >化简得a b >,故B 正确; 对于C ,如果a bc c>,0c <,那么a b <,故C 错误; 对于D ,因为1,0,1,0a b c d ====满足,a b c d >>,那么0a c b d -=-=,故D 错误; 故选:B 2.C【分析】根据不等式的性质即可逐一求解.【详解】对于A;若a b >,0c ≤时,则ac bc ≤,故A 错; 对于B;若取1,0a b ==,则1b无意义,故B 错;对于C ;根据不等式的可加性可知:若a b >,则a c b c +>+,故C 正确; 对于D;若取1,2a b ==-,但22a b <,故D 错; 故选:C 3.B【分析】根据不等式的性质逐一分析各选项即可得答案.【详解】解:对A 0a b >≥,故选项A 正确;对B :因为a b >,R c ∈,所以当0c >时,ac bc >;当0c 时,ac bc =;当0c <时,ac bc <,故选项B 错误;对C :因为0b a >>,所以由不等式的性质可得110a b>>,故选项C 正确; 对D :因为22ac bc >,所以20c >,所以a b >,故选项D 正确. 故选:B. 4.D【分析】根据题意求得0b a <<,逐项判定,即可求解. 【详解】由110a b<<,可得0,0a b <<,110a b -<,即0b aab -<,可得0b a <<, 所以a b <,故A ,B 错误;由0,0a b <<,可得0a b +<,0ab >,则a b ab +<,故C 错误;由0b a <<,可得33a b >,故D 正确. 故选:D. 5.A【分析】直接利用不等式的基本性质,结合特殊值法,逐一进行判断,即可得到结论. 【详解】解:对于A 、B ,∵0c d <<, ∵0c d ->->, ∵0a b >> ,∵ac bd ->-,即ac bd <,故A 正确,B 错误;对于C 、D ,令3,1,3,1a b c d ===-=-,满足0,0a b c d >><<, 但1b ad c==-,故C 、D 错误. 故选:A . 6.B【分析】根据题意,结合不等式的性质,一一判断即可. 【详解】对于选项A ,当0c <时,ac bc <,故A 错; 对于选项B ,由a b >,得a c b c +>+,故B 正确; 对于选项C ,当0a b >>时,11a b>,故C 错; 对于选项D ,当0a b >>时,22a b <,故D 错. 故选:B. 7.B【分析】根据不等式性质,不等式两边同时乘负数,改变不等号,不等式两边同时乘正数,不改变不等号,可得答案.【详解】对于A ,因为01,0a b <<<,所以ab >b ,故错误;对于B ,因为01,0a b <<<,所以ab >b ,又因为0a <,所以2a b ab >, 则2b ab a b <<,故正确;易知C ,D 错误. 故选:B. 8.A【分析】由120b a <<,可得20a b <<,然后利用不等式的性质逐个分析判断即可.【详解】方法一:因为120b a<<,可知0,0a b <<,所以20a b <<,所以0ab >,0a b +<,所以11a b ab <+,21a b ab <+,0ab a b<+, 所以A 正确,B ,C 错误.因为20a b <<,所以22ab b >,所以D 错误, 故选:A方法二;因为120b a<<,设10a =-,2b =-,所以20ab =,12a b +=-,228b =,所以11a b ab <+,21a b ab <+,2ab a b<+,22ab b >, 所以A 正确,B ,C ,D 错误, 故选:A 9.D【分析】根据不等式的性质,逐项判断即可. 【详解】解:由题可知,0,0,0a b c ≠≠≠, A 项中,若0a b c >>>,则a ab c<,故A 项错误; B 项中,若0>>>a b c ,则0,0ab bc <>,故ab bc <,故B 项错误; C 项中,若0>>>a b c ,则11a c>,故C 项错误; D 项中,22()()ab ac b bc a ab bc b c b c a b c b ⇒->-⇒-+>->+, 因为,0a b c abc >>≠,则0b c ->,故2ab bc ac b +>+正确,故D 项正确. 故选:D. 10.C【分析】根据不等式的性质分别进行判断即可. 【详解】解:对于A ,当0c ≤时不成立, 对于B ,当0a =,1b =-时,不成立, 对于C ,33a b >成立,对于D ,当2a =,1b =-时不成立, 故选:C . 11.D【分析】利用不等式的基本性质逐一分析即可.【详解】A.当0,1a b ==时满足a b <,但此时20a ab ==,故A 选项错误; B.当2,0a b =-=时满足a b <,但此时20ab b ==,故B 选项错误;C.当2,0a b =-=时满足a b <,但此时22a b >,故C 选项错误;D.由a b <得:22a b b b -<-,即2a b b -<-,故D 选项正确. 故选:D. 12.C【分析】根据不等式的性质即可逐一求解. 【详解】对于A:取2,1a b ==-则11a b>,故A 错, 对于B:若0c ,则22=ac bc ,故B 错误,对于C:由同号可加性可知:a >b ,c >d ,则a +c >b +d,故C 正确,对于D:若2,1,2,3a b c d ===-=-,则4,3ac bd =-=-,ac bd <,故D 错误. 故选:C 13.A【分析】利用不等式的性质判断A ,利用特殊值判断B 、C 、D ; 【详解】解:因为a b >,所以0a b ->,故A 正确; 对于B :当0b =时20ab b ==,故B 错误;对于C :当2a =,0b =,显然满足a b >,但是22a b >,故C 错误; 对于D :当2a =,1b =,显然满足a b >,但是11a b<,故D 错误; 故选:A 14.D【分析】当0c 时,直接排除A 、B 、C 选项,再由不等式的性质得D 正确即可.【详解】对于选项A :当0c 时,不等式ac bc =,故A 不正确;对于选项B :当0c 时,22ac bc =,故B 不正确;对于选项C :当0c 时,0cc a b==,故C 不正确;对于选项D :因为a b >,所以0b a -<,故D 正确. 故选:D . 15.A【分析】根据不等式的性质判断各个选项即可. 【详解】A 选项中,若0c ,则不成立; B 选项中,110b aa b ab --=<,所以11a b<,成立;由不等式的可乘方性知选项C 正确; 由不等式的可加性知选项D 正确. 故选:A 16.D【分析】由不等式性质依次判断各个选项即可.【详解】对于A ,若0c <,由ac bc >可得:a b <,A 错误; 对于B ,若0c ,则0ac bc ==,此时a b =未必成立,B 错误; 对于C ,当0a b >>时,110a b>>,C 错误; 对于D ,当22ac bc >时,由不等式性质知:a b >,D 正确. 故选:D. 17.A【分析】由不等式的基本性质和特值法即可求解.【详解】对于A 选项,由不等式的基本性质知,不等式的两边都加上(或减去)同一个数或同一个整式,不等号方向不变,则a b a c b c <⇒+<+,A 选项正确;对于B 选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个负数,不等号方向改变,若2a =-,1b =-,则11a b>,B 选项错误; 对于C 选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个正数,不等号方向不变,0c >,0a b ac bc <<⇒<,C 选项错误;对于D 选项,因为0a b b a <⇒->,0c >,所以无法判断b a -与c 大小,D 选项错误. 18.A【分析】根据不等式的性质确定正确答案. 【详解】由于a b >,所以a b -<-,A 选项正确.221,1,,a b a b a b ==-==,BD 选项错误.112,1,a b a b==<,C 选项错误. 故选:A 19.A【分析】根据不等式的性质确定正确选项. 【详解】由于0a b >>,0c d >>,根据不等式的性质有ac bd >,A 选项正确,B 选项错误. 8,4,4,2a b c d ====,则,ad bd ad bc >=,所以CD 选项错误. 故选:A 20.B【分析】根据不等式的性质,对各选项逐一分析即可求解.【详解】解:对A :因为0a b <<,所以110b a<<,故选项A 错误;对B :因为0a b <<,所以2ab b >,故选项B 正确;对C :因为0a b <<,R c ∈,所以||||a c b c ≤,故选项C 错误; 对D :因为0a b <<,所以2a ab >,故选项D 错误. 故选:B. 21.B【分析】利用作差法比较大小. 【详解】解:10a -<<,10a ∴+>,01a <-<.2(1)0a a a a ∴--=-+>,232()(1)0a a a a --=+>.23a a a ∴->>-.故选:B .。
不等式复习题及答案
不等式复习题及答案1. 若不等式 \( ax^2 + bx + c > 0 \) 的解集为 \( (-1, 2) \),求 \( a \)、\( b \) 和 \( c \) 的值。
答案:根据解集 \( (-1, 2) \) 可知,\( -1 \) 和 \( 2 \) 是方程\( ax^2 + bx + c = 0 \) 的两个实根,且 \( a < 0 \)。
根据根与系数的关系,我们有 \( -1 + 2 = -\frac{b}{a} \) 和 \( -1\times 2 = \frac{c}{a} \)。
解得 \( b = -a \) 和 \( c = -2a \)。
由于 \( a < 0 \),我们可以取 \( a = -1 \),则 \( b = 1 \),\( c = 2 \)。
2. 已知 \( x \) 和 \( y \) 满足 \( x + y \geq 3 \) 且 \( x -y \leq 1 \),求 \( x^2 + y^2 \) 的最小值。
答案:要使 \( x^2 + y^2 \) 最小,\( x \) 和 \( y \) 应尽可能接近。
由 \( x + y \geq 3 \) 和 \( x - y \leq 1 \) 可得 \( 2x\leq 4 \),即 \( x \leq 2 \)。
当 \( x = 2 \) 时,\( y = 1 \)。
因此,\( x^2 + y^2 \) 的最小值为 \( 2^2 + 1^2 = 5 \)。
3. 若 \( a \)、\( b \) 和 \( c \) 是正实数,且满足 \( a + b +c = 1 \),求 \( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \) 的最小值。
答案:根据柯西-施瓦茨不等式,我们有 \( (a + b +c)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \geq(1 + 1 + 1)^2 = 9 \)。
高一数学复习考点题型专题讲解7 基本不等式
高一数学复习考点题型专题讲解第7讲 基本不等式一、单选题1.下列不等式恒成立的是( ) A .222a b ab +≤B .222a b ab +≥-C .a b +≥-.a b +≤【答案】B【分析】由基本不等式,可判定A 不正确;由2222()0a b ab a b ++=+≥,可判定B 正确;根据特例,可判定C 、D 不正确;【解析】由基本不等式可知222a b ab +≥,故A 不正确;由222a b ab +≥-,可得2220a b ab ++≥,即()20a b +≥恒成立,故B 正确; 当1,1a b =-=-时,不等式不成立,故C 不正确; 当0,1a b ==时,不等式不成立,故D 不正确. 故选:B.2.已知0x >,则2x x+的最小值为( ) A.2C ..4 【答案】C【分析】根据给定条件利用均值不等式直接计算作答.【解析】因为0x >,则2x x +≥2x x=,即x =“=”, 所以2xx+的最小值为故选:C3.已知a >0,b >0,a +b =4,则下列各式中正确的是( )A .1114ab+…B .111a b +…C 2D .11ab…【答案】B【分析】利用基本不等式逐个分析判断即可 【解析】解:因为a >0,b >0,a +b =4,所以111112(22)1444a b a b b a a b a b a b ++⎛⎫⎛⎫+=+=+++= ⎪ ⎪⎝⎭⎝⎭…, 当且仅当a =b =2时取等号,B 正确,A 错误;由基本不等式可知ab 22a b +⎛⎫⎪⎝⎭…=4,当且仅当a =b =2时取等号,2,C 错误;114ab …,D 错误. 故选:B .4.0ab >是2ba ab+>的( ) A .充分不必要条件B .必要不充分条件 C .充要条件D .既不充分也不必要条件 【答案】B【分析】解法一:根据充分条件与必要条件的概念,结合不等式的基本性质直接判断,即可得出结果.解法二:利用基本不等式的等号成立的条件可以否定充分性,利用代数变形,结合不等式的基本性质可以论证必要性.【解析】解法一:当1a b ==时,满足10ab =>,但2b a ab+=,2b a ab+>不成立,故0ab >是2b aa b+>的不充分条件; 当0ab <时02b a a b +<<,2b a a b +>不成立,当0ab =时b a a b +无意义,即2b a a b+>不成立,故0ab >是2b a a b+>的必要条件;综上,0ab >是2b a ab+>的必要不充分条件.解法二:当0ab >时,0,0b a ab>>,2b a ab+≥=,当且仅当a b =时取等号,所以0ab >是2ba a b+>的不充分条件;若2b a a b +>,则222b a b a a b ab++=>,所以0ab >,故0ab >是2b a a b +>的必要条件; 综上,0ab >是2b a a b+>的必要不充分条件. 故选:B.5.已知0x >,0y >,48x y +=,则x y的最大值为( )A..4C .6D .8 【答案】B【分析】利用基本不等式化简已知条件,由此求得x y的最大值【解析】因为48x y =+≥2,从而4x y ≤.当且仅当44,1x x y y=⇒==时等号成立. 故选:B6.若a >0,b >0,且a ≠b ,则( )A.2a b +2a b +C2a b +D 2a b + 【答案】B【解析】利用基本不等式或作差法判断选项. 【解析】∵a ,b ∈R +,且a ≠b ,∴a +b >2a b+, 而222()24a b a b ++-=2()4a b ->0,∴2a b +故选:B7.已知0x >,0y >,251x y +=,则1125x y+的最小值是( ) A .2B .8C .4D .6 【答案】C【分析】根据题意,结合“1”的妙用,即可求解. 【解析】解析:由251x y +=得()1111522522224252525y x x y x y x y x y ⎛⎫+=+⋅+=++≥=+= ⎪⎝⎭,当且仅当5225y x x y =,即14x =,110y =时,等号成立,所以1125x y +的最小值是4. 故选:C .8.《几何原本》中的几何代数法是以几何方法研究代数问题,这种方法是后西方数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称之为无字证明.下图是我国古代数学家赵爽创作的弦图,弦图由四个全等的直角三角形与一个小正方形拼成的一个大正方形.若直角三角形的直角边长分别为a 和b ,则该图形可以完成的无字证明为( ).A.)0,02a b a b +>>B .()22200a b ab a b +≥>>, C()20,011a b a b≥>>+D()002a ba b +>>,【答案】B【分析】由图可知大正方形的面积大于等于4个直角三角形的面积和,从而可得结论 【解析】解:因为直角三角形的直角边长分别为a 和b ,所以大正方形的面积为22a b + 由图可知大正方形的面积大于等于4个直角三角形的面积和,所以221422a b ab ab +≥⨯=(0,0a b >>)故选:B9.下列结论正确的是( )A .当0x >,0y >且21x y +=时,11x y+≤B .当0x >4≥ C .当2x ≥时,2x x+的最小值是D .当0a >时,11a a ++的最小值为1 【答案】B【分析】根据1122x y x yx y x y+++=+结合基本不等式,即可判断A ;直接利用基本不等式即可判断BC ,注意取等号的条件; 根据111111a a a a +=++-++结合基本不等式,即可判断D. 【解析】解:因为0x >,0y >且21x y +=,所以112221233x y x y y x xyx y x y +++=+=+++≥+=+当且仅当2y x x y =,21x y +=,即1x ,1y =113x y +≥+A 错误:当0x >4≥=4x =时等号成立,故B 正确;当0x >时,2x x +≥当且仅当2x x=.即x 但已知条件中2x ≥,故C 错误;当10a +>时,1111121111a a a a +=++-≥=-=++,当且仅当111a a +=+,即0a =时等号成立,但已知条件中0a >,故D 错误.故选:B.10.已知0a >,0b >,若不等式41ma b a b+≥+恒成立,则m 的最大值为( ) A .10B .12C .16D .9【答案】D【分析】利用参变分离的方法将不等式变形为41()m a b a b⎛⎫≤++ ⎪⎝⎭恒成立,再由基本不等式得出代数式的最值,可得选项.【解析】由已知0a >,0b >,若不等式41ma b a b+≥+恒成立, 所以41()m a b a b⎛⎫≤++ ⎪⎝⎭恒成立,转化成求41()y a b a b⎛⎫=++ ⎪⎝⎭的最小值,414()559b a y a b a b a b ⎛⎫=++=++≥+= ⎪⎝⎭,当且仅当4b aa b=时取等 所以9m ≤. 故选:D .11.若x >1,则22222x x x -+-有( )A .最小值1B .最大值1C .最小值-1D .最大值-1 【答案】A【分析】将给定表达式整理变形,再利用基本不等式即可作答.【解析】因x >1,则()()()2211221*********x x x x x x x -+-+⎡⎤=⋅=-+≥⎢⎥---⎣⎦1,当且仅当111x x -=-,即2x =时取等号. 所以22222x x x -+-有最小值为1.故选:A12.设a ,b ,c ,d 均为大于零的实数,且abcd =1,令m =a (b +c +d )+b (c +d )+cd ,则a 2+b 2+m 的最小值为( )A .8B ...【答案】B【分析】根据条件可得2222()()a b m a b a b c d ab cd ++=++++++,然后利用重要不等式和基本不等式可求出22a b m ++的最小值.【解析】解:a ,b ,c ,d 均大于零且1abcd =,()()m a b c d b c d cd =+++++,2222()()a b m a b a b c d ab cd ∴++=++++++ 2243ab ab cd ab cd ab cd +++=++…44++…当且仅当a b =,c d =,3ab cd=,即141()3a b ==,143c d ==时取等号,22a b m ∴++的最小值为4+故选:B .【点睛】本题考查了重要不等式和基本不等式在求最值中的应用,考查了转化思想,属中档题.二、多选题13.(多选题)下列不等式不一定成立的是( )A.x +1x ≥2B 2.2212x x +≥D .2-3x -4x ≥2【答案】AD【分析】取0x <可判断A ;2B ;由基本不等式可判断C ;取0x >可判断D.【解析】对于选项A :当x <0时,102x x+<<,故A 错误;对于选项B 2B 正确;对于选项C :221122x x x x+≥⋅=,故C 正确; 对于选项D :变形为430x x+≤,当x 取正数时不成立,故D 错误. 故选:AD.14.已知0,0a b >>,则下列不等式一定成立的是( )A .114ab+B .11()()4a b ab++≥C 22a b≥+D .2≥+aba b 【答案】ABC【分析】对A ,利用基本不等式a b +≥B ,将不等式左边展开,再利用基本不等式即可判断;对C ,利用()2222a b a b ++≥以及a b +≥D ,利用特殊值即可判断.【解析】解:对A ,114a b ++≥, 当且仅当“a b =”时“=”成立,故A 正确;对B ,11()224baa b a b a b ⎛⎫++=++≥+ ⎪⎝⎭,当且仅当“a b =”时“=”成立,故B 正确;对C ()2222a b a b a b a b ++≥≥=++, 当且仅当“a b =”时“=”成立,故C 正确;对D ,当1,2a b ==时,2224123ab a b ⨯==++=2≥+aba b 不成立,故D 错误; 故选:ABC.15.某公司一年购买某种货物800吨,现分次购买,设每次购买x 吨,运费为8万元/次.已知一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和y 最小,则下列说法正确的是( ) A .当40x =时,y 取得最小值 B .当45x =时,y 取得最小值 C .min 320y = D .min 360y = 【答案】AC【分析】根据题意列出总存储费用之和80084y x x=⨯+的表达式,再利用基本不等式求最值即可判断选项【解析】一年购买某种货物800吨,每次购买x 吨,则需要购买800x次,又运费是8万元/次,一年的总存储费用为4x 万元, 所以一年的总运费与总存储费用之和80084y x x=⨯+万元.因为80084320y x x =⨯+≥=,当且仅当64004x x =,即40x =时,等号成立, 所以当40x =时,y 取得最小值,min 320y =. 故选:AC .16.设0,0a b >>,则下面不等式中恒成立的是( ) A .221a b a b ++>+BC.211ab≤+.114a b a b+≤+ 【答案】ABC【解析】利用做差法可判断A ;讨论,a b ,平方作差可判断B ;利用基本不等式可判断C 、D.【解析】对于A ,()222222111110222a b a b a a b b a b ⎛⎫⎛⎫++-+=-+-+=-+-+> ⎪ ⎪⎝⎭⎝⎭,所以221a b a b ++>+,故A 正确;对于B ,当a b <当a b ≥时,2a b b a b b a =-+=-+≥,a b =时取等号,故B 正确;对于C ,0,0a b >>,2211ab a b ab=≤=++ 当且仅当a b =时取等号,故C 正确;对于D ,0,0a b >>,()11224b a a b ab ab⎛⎫∴++=++≥+ ⎪⎝⎭,114a b a b∴+≥+,当且仅当a b =时取等号,故D 错误. 故选:ABC【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 17.下列不等式正确的是( )A .若0x <,则12xx +≤-B .若x ∈R 22≥ C .若x ∈R ,则2111x <+D .若0x >,则()1114⎛⎫++≥ ⎪⎝⎭x x 【答案】ABD【解析】利用基本不等式可判断ABD 选项的正误;取0x =可判断C 选项的正误.【解析】对于A 选项,当0x <时,0x ->,则()()112x x xx ⎡⎤+=--+≤-=-⎢⎥-⎣⎦, 当且仅当1x =-时,等号成立,A 选项正确; 对于B 选项,x R ∈Q ,则222x ≥+,22212x ++==≥,时,即221x +=,显然不成立,等号不成立,22>,B 选项正确;对于C 选项,取0x =,可得2111x =+,C 选项错误;对于D 选项,0x >,()1111224x x x x⎛⎫++=++≥+= ⎪⎝⎭,当且仅当1x =时,等号成立,D 选项正确. 故选:ABD.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.18.若不等式()2232a b x a b ++≥+对任意正数a ,b 恒成立,则实数x 的可能取值为( ) A.2C.1 【答案】AD【分析】由题设可得()()2260,02a b a b a b x ++>>+≤恒成立,应用基本不等式求不等式右边的最小值,即可确定x 的范围.【解析】∵不等式()2232a b x a b ++≥+对任意正数a ,b 恒成立, ∴()()2260,02a b a b a b x ++>>+≤恒成立. ∵()()()2226632224a b a b a b a b a b a b +++++≥=+≥=+++a b =.∴x ≤A ,D. 故选:AD.三、填空题19.给出下面三个推导过程:①∵a ,b 为正实数,∴b a +a b 2;②∵a ∈R ,a ≠0,∴4a+a 4;③∵x ,y ∈R ,xy <0,∴xy +yx =-x y y x ⎡⎤⎛⎫⎛⎫-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦≤- 2.其中正确的推导过程为________. 【答案】①③【分析】①符合基本不等式的条件,故①的推导过程正确; ②不符合基本不等式的条件,所以②的推导过程错误;③x y⎛⎫- ⎪⎝⎭,y x ⎛⎫- ⎪⎝⎭均为正数,符合基本不等式的条件,故③的推导过程正确.【解析】①∵a ,b 为正实数,∴ba ,a b为正实数,符合基本不等式的条件,故①的推导过程正确;②a ∈R ,a ≠0,不符合基本不等式的条件,∴②的推导过程错误;③由xy <0,得xy ,y x均为负数,∴x y⎛⎫- ⎪⎝⎭,y x ⎛⎫- ⎪⎝⎭均为正数,符合基本不等式的条件,故③的推导过程正确.故选①③. 故答案为:①③【点睛】本题主要考查基本不等式的应用,意在考查学生对该知识的理解掌握水平. 20.若0a b <<,且1a b +=,则实数12、b 、2ab 、22a b +中最大的一个是______. 【答案】b【分析】由0a b <<,1a b +=,所以12a b <<,再结合222a b ab +>,则可判断22122a ab a b b <<<+<,得解.【解析】因为0a b <<,1a b +=,所以12a b <<,222ab a b <+,因为22222a b a b +⎛⎫+> ⎪⎝⎭,所以2212a b +>,又()222221a b a a b a b b b b b b +=⋅+<⋅+=-+=,所以2212a b b <+<,又212222a b ab +⎛⎫<= ⎪⎝⎭,1222ab a a >⨯=, 所以122a ab <<.所以22122a ab a b b <<<+<. 故答案为:b .21.若a 、b 、x 、y ∈R ,221x y +=,221a b +=,则ax by +的最大值是______. 【答案】1【分析】利用基本不等式得最大值. 【解析】因为221x y +=,221a b +=,所以22222222222222222()2()()1ax by a x abxy b y a x a y b x b y a b x y +=++≤+++=++=, 当且仅当ay bx =即a xb y =时等号成立.故答案为:1.22.设0,0a b >>,且不等式110ka b a b++≥+恒成立,则实数k 的最小值等于___________. 【答案】4-【分析】先分离出参数k ,得11()()k a b a b -++…,然后利用基本不等式求得11()()a b a b -++的最大值即可.【解析】解:由110ka b a b +++…,得11()()k a b a b-++…,11()()(2)(24b a a b a b a b -++=-++-+=-…, 当且仅当a b =时取等号,4k ∴-…,即实数k 的最小值等于4-.故答案为:4-.23.若一个三角形的三边长分别为a ,b ,c ,设()12p a b c =++,则该三角形的面积S =这就是著名的“秦九韶-海伦公式”若△ABC 的周长为8,2AB =,则该三角形面积的最大值为___________. 【答案】【分析】计算得到4p =,2c =,6a b +=,根据均值不等式得到9ab ≤,代入计算得到答案.【解析】()142p a b c =++=,2c =,6a b +=,6a b +=≥9ab ≤, 当3a b ==时等号成立.S ==故答案为:24.已知a b c >>2a c-的大小关系是____________2a c-. 【分析】将2a c -化为()()2a b b c -+-,然后运用基本不等式比较大小. 【解析】∵a b c >>,∴0a b ->,0b c ->,∴()()22a b b c a c -+--=a b b c -=-,即2b a c =+时取等号,2a c-. 【点睛】本题考查利用基本不等式的运用,属于简单题,将2a c -化为()()2a b b c -+-是关键.四、解答题25.已知实数a 和b ,判断下列不等式中哪些是正确的. (1)222a b ab +≥; (2)222a b ab +≥-(3)2a b+≥ (4)2b a a b+≥; (5)12a a +≥; (6)2b aa b+≥; (7)()()2222a b a b +≥+. 【答案】(1)正确 (2)正确 (3)错误 (4)错误 (5)错误 (6)正确 (7)正确【分析】(1)由()20a b -≥判断不等式成立. (2)由()20a b +≥判断不等式成立. (3)利用特殊值判断不等式错误. (4)利用特殊值判断不等式错误. (5)利用特殊值判断不等式错误. (6)结合基本不等式判断不等式成立. (7)利用差比较法判断不等式成立. (1)由于()20a b -≥,222220,2a ab b a b ab -+≥+≥,所以不等式正确. (2)由于()20a b +≥,222220,2a ab b a b ab ++≥+≥-,所以不等式正确. (3)当,a b 为负数时,不等式2a b+≥. (4)当,b a a b 为负数时,不等式2b a a b+≥不成立,所以不等式错误. (5)当a 为负数时,不等式12a a +≥不成立,所以不等式错误. (6)依题意,a b 不为零,,b a a b同号,2b a b a a b a b +=+≥,当且仅当1b a =±时等号成立,所以不等式正确.()()()222220a b a b a b +-+=-≥,所以()()2222a b a b +≥+,所以不等式正确.26.下列结论是否成立?若成立,试说明理由;若不成立,试举出反例.(1)若0ab >,则a b +≥(2)若0ab >2; (3)若0ab <,则2b a ab+≤-. 【答案】(1)不成立,理由见解析; (2)成立,理由见解析; (3)成立,理由见解析;【分析】取特殊值判断(1),由均值不等式判断(2)(3). (1)取1,2a b =-=-满足0ab >,此时a b +≥ (2)0ab >,0,0a bb a∴>>,2,当a b =时等号成立. (3)0ab <,0,0b aa b∴<<,2b a b a a b a b ⎡⎤⎛⎫⎛⎫∴+=--+-≤-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,当a b =-时等号成立. 27.证明下列不等式,并讨论等号成立的条件: (1)若0a >,则322a a a +≥; (2)若4ab =,则228a b +≥;(3)若11x -≤≤12; (4)若0ab ≠,则2b aa b+≥; (5)对任意实数a 和b ,2222431a b a b ++≥++.【答案】(1)证明见解析,当且仅当1a =时等号成立; (2)证明见解析,当且仅当2a b ==±时,等号成立.(3)证明见解析,当且仅当x = (4)证明见解析,当且仅当220a b =≠时,等号成立. (5)证明见解析,当且仅当221a b +=时等号成立.【分析】(1)直接利用作差法对关系式进行变换,进一步求出结果. (2)利用基本不等式的应用求出结果.(3)利用算术平均数和几何平均数的运用及整体思想的应用求出结果. (4)利用分类讨论思想的应用和均值不等式的应用求出结果. (5)利用关系式的变换和均值不等式的应用求出结果. (1)证明:由于3232222()()(1)a a a a a a a a a -+=---=-,当0a >时,2(1)0a -≥,所以20(1)a a -≥,即3202a a a -+≥,所以322a a a +≥,当且仅当1a =时,等号成立.(2)证明:因为4ab =,所以2228a b ab +≥=,当且仅当2a b ==±时,等号成立. (3)证明:因为11x -≤≤,所以201x ≤≤,210x -≥22(1)122x x +-=,当且仅当221x x =-,即x = (4)证明:因为0ab ≠,当0ab >时,2ba b a a b a b +=+…,当且仅当0a b =≠时,等号成立.当0ab <时,()()2b a b a a b a b +=-+-…,当且仅当0a b =-≠时,等号成立. 综上可得0ab ≠,则2b aa b+≥,当且仅当220a b =≠时,等号成立. (5)证明:对任意实数a 和b ,2211a b ++≥所以222222224411141311a b a b a b a b ++=+++-=-=++++.当且仅当221a b +=时等号成立.28.已知0a >,0b >,21a b +=,求23ab+的最小值.下面是某同学的解答过程:请指出上面解答过程中的错误,并给出正确解答.【答案】解答过程中没有给出取最小值的条件,事实上这个最小值是取不到的,原因是两次利用均值不等式,等号成立的条件不一致;正确解答见解析.【分析】根据基本不等式应用的条件: “一正”、“二定”、 “三相等” 即可得出答案. 【解析】解答过程中没有给出取最小值的条件,事实上这个最小值是取不到的, 原因是两次利用均值不等式,等号成立的条件不一致.具体情况如下:23a b +≥23a b =,即32a b =时,等号成立,2a b +≥2a b =时,等号成立,显然,32a b =和2a b =不可能同时成立. 正确的解答如下:因为0a >,0b >,21a b +=,所以()2323432888baa b a b a b a b ⎛⎫+=++=+++⎪≥+ ⎝⎭当且仅当43b aa b=时,等号成立,即2b =,代入21a b +=,得a =,从而b =因此23ab+的最小值为8+a =,b =29.已知1y x x=+.(1)已知x >0,求y 的最小值; (2)已知x <0,求y 的最大值. 【答案】(1)2;(2)-2.【分析】(1)直接利用基本不等式求解即可(2)由于x <0,所以先对式子变形()1y x x ⎡⎤=--+⎢⎥-⎣⎦,然后再利用基本不等式即可【解析】(1)因为x >0,所以12y x x=+≥,当且仅当1x x=,即x =1时等号成立.所以y 的最小值为2.(2)因为x <0,所以-x >0.所以()12y x x ⎡⎤=--+≤-=-⎢⎥-⎣⎦,当且仅当1x x -=-,即x =-1时等号成立. 所以y 的最大值为-2.【点睛】此题考查基本不等式的应用,属于基础题. 30.已知x ,y 都是正数.求证:()12y xx y+≥; ()2()()()2233338.x y x y x y x y +++≥【答案】()1证明见解析;()2证明见解析.【分析】()1运用基本不等式:a b +≥a b =时取得等号),即可求证;()2运用基本不等式和不等式的基本性质即可求证.【解析】解:()1证明:由x ,y 都是正实数,可得2y x xy+≥(当且仅当x y =时取得等号);()2证明:由基本不等式可知()()()(()(22332x y x y x y xy +++≥⋅⋅()23388xy xy x y =⋅=,(当且仅当x y =时取得等号).【点睛】本题考查不等式的证明,运用基本不等式,考查化简推理的能力,属于基础题.31.已知a ,b ,c 均为正数,且1abc =,求证: (1)()()()8a b b c a c +++≥;(2111a b c≤++.【答案】(1)证明见解析;(2)证明见解析. 【分析】(1)利用基本不等式直接证明即可. (2)利用基本不等式直接证明即可.【解析】证明:(1)因为a ,b ,c 均为正数,1abc =,所以a b +≥b c +≥a c +≥ 三式相乘,得()()()88a b b c a c abc +++≥=, 当且仅当1a b c ===时,等号成立. (2)因为a ,b ,c 均为正数,1abc =,所以11ab+≥=11b c +≥=11a c +≥=三式相加,得11122a b c⎛⎫++≥ ⎪⎝⎭,111a b c≤++,当且仅当1a b c ===时,等号成立.32.已知0a >,0b >,且(1a b +.(1)求3311a b +的最小值;(2)是否存在实数,a b ,使得1123a b +?若存在,求出,a b 的值;若不存在,请说明理由.【答案】(1)(2)不存在,理由见解析【分析】(1a b=+≥12≤ab ,再根据3311a b +≥=求解即可.(2)首先根据基本不等式得到1123a b +≥>,即可判断不存在实数,a b ,使得1123a b +. (1)因为0a >,0b >,(1a b +,a b=+≥a b == 所以12≤ab .因为3311a b +≥=≥a b == 所以3311a b +的最小值为 (2)因为0a >,0b >,又由(1)知12≤ab ,所以1123a b +≥=≥, 当且仅当23a b =时取等号.因为当且仅当a b ==12ab =,所以1123a b +><,a b ,使得1123a b +. 33.在城市旧城改造中,某小区为了升级居住环境,拟在小区的闲置地中规划一个面积为2200m 的矩形区域(如图所示),按规划要求:在矩形内的四周安排2m 宽的绿化,绿化造价为200元/2m ,中间区域地面硬化以方便后期放置各类健身器材,硬化造价为100元/2m .设矩形的长为(m)x ,总造价为y (元).(1)将y 表示为关于x 的函数;(2)当x 取何值时,总造价最低,并求出最低总造价. 【答案】(1)8000040018400,050y x xx=++<<;(2)当x =为18400.【解析】(1)根据题设先计算出绿化的面积和硬化地面的面积,从而可得y 表示为关于x 的函数;(2)利用基本不等式可求何时取何最值.【解析】(1)因为矩形区域的面积为2200m ,故矩形的宽为200x, 绿化的面积为20080022224416x x x x ⎛⎫⨯⨯+⨯⨯-=+-⎪⎝⎭,中间区域硬化地面的面积为()200800442164x x x x ⎛⎫--=--⎪⎝⎭,故8008004162002164100y x x x x ⎛⎫⎛⎫=+-⨯+--⨯ ⎪ ⎪⎝⎭⎝⎭, 整理得到8000040018400y x x=++, 由4020040x x->⎧⎪⎨->⎪⎩可得050x <<,故8000040018400,050y x x x=++<<. (2)由基本不等式可得80000400184004001840018400x x++≥⨯=,当且仅当x =故当x =18400.【点睛】方法点睛:利用基本不等式解决应用问题时,注意合理构建数学模型,求最值时注意“一正二定三相等”,特别是检验等号是否可取. 34.(1)已知01x <<,则(43)x x -取得最大值时x 的值为? (2)已知54x <,则1()4245f x x x =-+-的最大值为? (3)函数22(1)1x y x x +=>- 的最小值为? 【答案】(1)23;(2)1;(3)2【分析】(1)积的形式转化为和的形式,利用基本不等式求最值,并要检验等号成立的条件;(2)结构为和的形式转化为积的形式,并使积为定值,同时要检验等号成立的条件;(3)二次式除以一次式求最值,一般二次式用一次式表示出来,然后再分离,最后用基本不等式求解即可.【解析】(1)2113434(43)(3)(43)[]3323x x x x x x +--=⨯⨯-≤⨯=, 当且仅当343x x =-,即23x =时,取等号. 故所求x 的值为23.(2)因为54x <,所以540x ->,则11()42(54)332314554f x x x x x =-+=--++≤-=-+=--. 当且仅当15454x x-=-,即1x =时,取等号. 故1()4245f x x x =-+-的最大值为1. (3)2222122311x x x x y x x +-++-+==-- 2(1)2(1)31x x x -+-+=-3(1)221x x =-++≥-.当且仅当311x x -=-,即1x =时,取等号.故函数的最小值为2.。
完整版)高中数学不等式习题及详细答案
完整版)高中数学不等式习题及详细答案第三章不等式一、选择题1.已知 $x\geq 2$,则 $f(x)=\frac{x^2-4x+5}{2x-4}$ 的取值范围是()。
A。
最大值为 5,最小值为 1B。
最大值为 5,最小值为 $\frac{11}{2}$C。
最大值为 1,最小值为 $\frac{11}{2}$D。
最大值为 1,最小值为 02.若 $x>0$,$y>0$,则$(x+\frac{1}{y})^2+(y+\frac{1}{x})^2$ 的最小值是()。
A。
3B。
$\frac{7}{2}$C。
4D。
$\frac{9}{2}$3.设 $a>0$,$b>0$,则下列不等式中不成立的是()。
A。
$a+b+\frac{1}{ab}\geq 2\sqrt{2}$B。
$(a+b)(\frac{1}{a}+\frac{1}{b}+\frac{1}{2})\geq 4$C。
$\sqrt{a^2+b^2}\geq a+b-\sqrt{2ab}$D。
$\frac{2ab}{a+b}\geq \sqrt{ab}$4.已知奇函数 $f(x)$ 在 $(-\infty,+\infty)$ 上是增函数,且$f(1)=3$,则不等式 $f(x)-f(-x)<0$ 的解集为()。
A。
$(-1,+\infty)$B。
$(-\infty,-1)\cup (1,+\infty)$C。
$(-\infty,-1)\cup (1,+\infty)$D。
$(-1,1)$5.当 $0<x<\frac{\pi}{2}$ 时,函数 $f(x)=\frac{1+\cos^2 x+8\sin^2 x}{2\sin^2 x}$ 的最小值为()。
A。
2B。
$\frac{2}{3}$C。
4D。
$\frac{3}{2}$6.若实数 $a,b$ 满足 $a+b=2$,则 $3a+3b$ 的最小值是()。
A。
18B。
高一数学新教材不等式期末复习
高一数学不等式复习题一.选择题(共23小题)1.已知x>1,y>0,且+=1,则x+2y的最小值为()A.9B.10C.11D.7+2 2.已知a>0,b>0,且a+b=2,则+的最小值是()A.4B.6C.8D.23.已知x>0,y>0,且=1,则x+2y的最小值为()A.9B.12C.16D.204.已知正实数x,y满足x+2y=2xy.则x+y的最小值为()A.4B.C.D.5.若x>,则3x+的最小值为()A.7B.4C.9D.26.已知m,n>0,+=3,则m+n的最小值为()A.3B.9C.6D.47.若直线ax﹣by﹣1=0(a,b>0)过点(2,﹣1),则的最小值为()A.B.8C.D.8.若正数x,y满足2x+y=1,则+的最小值为()A.4B.3+2C.8D.99.关于x的不等式(x﹣1)(x+1)≤0的解集是()A.(﹣1,1)B.[﹣1,1)C.(﹣1,1]D.[﹣1,1] 10.关于x的一元二次不等式ax2+bx+c≤0的解集是空集的条件是()A.B.C.D.11.一元二次不等式(3﹣2x)(x+1)<0的解集是()A.B.C.D.12.关于x的不等式x2﹣mx+1>0的解集为R,则实数m的取值范围是()A.(0,4)B.(﹣∞,﹣2)∪(2,+∞)C.[﹣2,2]D.(﹣2,2)13.不等式x2+2x﹣3<0的解集为()A.(﹣3,1)B.(﹣1,3)C.(﹣∞,﹣3)∪(1,+∞)D.﹣3<x<114.不等式x2≤3x的解集为()A.[0,3]B.(﹣∞,3]C.(0,3)D.(﹣∞,3)15.关于x的不等式﹣x2+4x+5>0的解集为()A.(﹣5,1)B.(﹣1,5)C.(﹣∞,﹣5)∪(1,+∞)D.(﹣∞,﹣1)∪(5,+∞)16.若关于x的一元二次不等式ax2+2x+1>0的解集为R,则实数a的取值范围是()A.(1,+∞)B.(0,1)C.(﹣∞,1)D.(﹣∞,0)∪(0,1)17.不等式x2﹣5x﹣6<0的解集是()A.{x|x>6或x<﹣1} B.{x|﹣1<x<6}C.{x|x>1或x<﹣6}D.{x|﹣6<x<1} 18.不等式x2>8的解集是()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.(﹣4,4)D.(﹣∞,﹣4)∪(4,+∞)19.不等式ax2+bx+2>0的解集为{x|﹣<x<},则a﹣b等于()A.﹣10B.﹣14C.10D.1420.若集合A={x|(2x+1)(x﹣3)<0},B={x|x∈N*,x≤5},则A∩B等于()A.{1,2,3}B.{1,2}C.{4,5}D.{1,2,3,4,5} 21.若不等式ax2+bx﹣2>0的解集为则a+b等于()A.﹣18B.8C.﹣13D.122.不等式的解集是()A.{x|≤x≤2}B.{x|≤x<2}C.{x|x>2或x≤}D.{x|x≥}23.若两个正实数x,y满足,且存在这样的x,y使不等式有解,则实数m的取值范围是()A.(﹣1,4)B.(﹣4,1)C.(﹣∞,﹣4)∪(1,+∞)D.(﹣∞,﹣3)∪(0,+∞)二.解答题(共17小题)24.已知函数f(x)是奇函数,且x<0时,.(Ⅰ)求f(5)的值;(Ⅱ)求函数f(x)的解析式.25.函数f(x)在R上为奇函数,且x>0时,f(x)=|x|+1.(1)求f(﹣1)的值;(2)当x<0时,求f(x)的解析式.26.设f(x)是R上的偶函数,且当x∈[0,+∞)时,f(x)=x(1+)+1,求f(x)表达式.27.已知函数f(x)是定义在R上的偶函数,已知x≥0时,f(x)=x2﹣4x (1)当x<0时,求f(x)的解析式;(2)画出f(x)的图象;(3)根据图象写出f(x)的单调减区间和值域.28.关于x的不等式:x2﹣(a+1)x+a<0,a∈R.(1)当a=1时,解这个不等式;(2)当a≠1时,解这个不等式.29.已知f(x)=x2﹣(3+a)x+3a.(1)当a=1时,求不等式f(x)<0的解集;(2)解关于x的不等式f(x)≥0.30.已知a>0,b>0,+=2,求2a+8b的最小值.31.已知不等式ax2+3x﹣2<0(a≠0).(1)当a=2时,求不等式的解集;(2)若不等式的解集为{x|x<1或x>2},求a的值.32.已知二次函数f(x)=mx2﹣mx﹣6.(1)当m=1时,解不等式f(x)>0;(2)若不等式f(x)<0的解集为R,求实数m的取值范围.33.已知函数f(x)=ax2+(a﹣3)x+2(其中a∈R).(1)当a=﹣1时,解关于x的不等式f(x)<0;(2)若f(x)≥﹣1的解集为R,求实数a的取值范围.34.已知函数f(x)=x2+bx+3,且不等式f(x)≥0的解集为(﹣∞,1]∪[3,+∞).(1)求实数b的值;(2)求不等式f(x)≤9﹣x2的解集;35.若关于x的不等式(1﹣a)x2﹣4x+6<0的解集是{x|x<﹣3或x>1}.(1)求实数a的值;(2)解关于x的不等式2x2+(2﹣a)x﹣a>0.36.已知关于x的不等式2kx2+kx﹣<0,k≠0.(Ⅰ)若不等式的解集为(﹣,1),求k的值.(Ⅱ)若不等式的解集为R,求k的取值范围.37.(1)已知2<x<3<y<4,求各自的取值范围.(2)若关于x的不等式ax2﹣x+b>0的解集为,求不等式bx2+ax﹣1≤0的解集.38.已知关于x的不等式kx2﹣2x+6k<0.(1)若不等式的解集为(2,3),求实数k的值;(2)若k>0,且不等式对一切2<x<3都成立,求实数k的取值范围.39.已知关于x的不等式ax2﹣5x+2<0,a∈R.(1)当a=2时,解此不等式;(2)若此不等式的解集为{x|x<﹣2或x>},求实数a的值.40.解下列不等式:(1)x(7﹣x)≥12;(2)x2>2(x﹣1).一.选择题(共23小题)1.已知x>1,y>0,且+=1,则x+2y的最小值为()A.9B.10C.11D.7+2【分析】利用“乘1法”与基本不等式的性质即可得出.【解答】解:∵x>1,∴x﹣1>0,又y>0,且+=1,∴x+2y=(x﹣1)+2y+1=[(x﹣1)+2y](+)+1=6++≥6+2=10,当且仅当=,即x=4,y=3时等号成立,故x+2y的最小值为10.故选:B.【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题.2.已知a>0,b>0,且a+b=2,则+的最小值是()A.4B.6C.8D.2【分析】利用“乘1法”与基本不等式的性质即可得出.【解答】解:由题意可得,+==2=4,当且仅当a =b时取等号,故选:A.【点评】本题考查“乘1法”与基本不等式的性质,属于基础题.3.已知x>0,y>0,且=1,则x+2y的最小值为()A.9B.12C.16D.20【分析】利用“乘1法”与基本不等式的性质即可得出.【解答】解:x>0,y>0,且=1,则x+2y=(x+2y)()=5+≥5+4=9,当且仅当且=1,即x=y=3时取等号.故选:A.【点评】本题考查“乘1法”与基本不等式的性质,属于基础题.4.已知正实数x,y满足x+2y=2xy.则x+y的最小值为()A.4B.C.D.【分析】由题意求得+=2,故有x+y=()•(+)=+1++,再利用基本不等式求得它的最小值.【解答】解:∵正实数x,y满足x+2y=2xy,∴=2,即+=2,∴x+y=()•(+)=+1++≥+2=+,当且仅当x2=2y2时,等号成立,则x+y的最小值为+,故选:D.【点评】本题主要考查基本不等式的应用,式子的变形是解题的关键,属于中档题.5.若x>,则3x+的最小值为()A.7B.4C.9D.2【分析】把所给的等式变形并利用基本不等式,求出它的最小值.【解答】解:∵x>,∴3x﹣5>0,则3x+=(3x﹣5)++5≥2+5=9,当且仅当3x﹣5=2时,等号成立,故3x+的最小值为9,故选:C.【点评】本题主要考查基本不等式及其应用,属于基础题.6.已知m,n>0,+=3,则m+n的最小值为()A.3B.9C.6D.4【分析】利用“乘1法”与基本不等式的性质即可得出.【解答】解:∵m,n>0,+=3,则m+n=(m+n)()=(5+)=3,当且仅当且+=3即m=1,n=2时取等号,故选:A.【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题.7.若直线ax﹣by﹣1=0(a,b>0)过点(2,﹣1),则的最小值为()A.B.8C.D.【分析】利用“乘1法”与基本不等式的性质即可得出.【解答】解:由题意可得,2a+b=1,a>0,b>0,则==3,当且仅当且2a+b=1即a=1﹣,b=时取等号.故选:D.【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题.8.若正数x,y满足2x+y=1,则+的最小值为()A.4B.3+2C.8D.9【分析】利用“乘1法”与基本不等式的性质即可得解.【解答】解:∵2x+y=1,∴+=(+)(2x+y)=2+++1≥3+2=3+,当且仅当=,即y=x时,等号成立.∴+的最小值为3+.故选:B.【点评】本题考查了“乘1法”与基本不等式的性质,考查学生的逻辑推理能力和运算能力,属于基础题.9.关于x的不等式(x﹣1)(x+1)≤0的解集是()A.(﹣1,1)B.[﹣1,1)C.(﹣1,1]D.[﹣1,1]【分析】利用一元二次不等式(x﹣x1)(x﹣x2)≤0(x1<x2)的解集是{x|x1≤x≤x2}即可求出.【解答】解:不等式(x﹣1)(x+1)≤0,∴﹣1≤x≤1,∴原不等式的解集为[﹣1,1].故选:D.【点评】本题主要考查了一元二次不等式的解法,掌握三个“二次”的关系是解题的关键.属于基础题.10.关于x的一元二次不等式ax2+bx+c≤0的解集是空集的条件是()A.B.C.D.【分析】直接利用一元二次不等式解集是空集的条件得出答案.【解答】解:要使关于x的一元二次不等式ax2+bx+c≤0的解集是空集的条件是.故选:B.【点评】本题考查的知识要点:一元二次不等式解集是空集的条件,属于基础题型.11.一元二次不等式(3﹣2x)(x+1)<0的解集是()A.B.C.D.【分析】根据不等式对应方程的解,写出不等式的解集.【解答】解:不等式(3﹣2x)(x+1)<0⇒不等式(2x﹣3)(x+1)>0对应方程的解为和﹣1,所以不等式的解集为{x|x<﹣1或x>}.故选:B.【点评】本题考查了一元二次不等式的解法问题,是基础题.12.关于x的不等式x2﹣mx+1>0的解集为R,则实数m的取值范围是()A.(0,4)B.(﹣∞,﹣2)∪(2,+∞)C.[﹣2,2]D.(﹣2,2)【分析】根据一元二次不等式与二次函数的联系即可得解.【解答】解:不等式x2﹣mx+1>0的解集为R,所以△<0,即m2﹣4<0,解得﹣2<m<2.故选:D.【点评】本题考查根据一元二次不等式的解集求参数范围,理解一元二次不等式与二次函数之间的联系是解题的关键,考查学生的逻辑推理能力和运算能力,属于基础题.13.不等式x2+2x﹣3<0的解集为()A.(﹣3,1)B.(﹣1,3)C.(﹣∞,﹣3)∪(1,+∞)D.﹣3<x<1【分析】先因式分解,再解一元二次不等式即可.【解答】解:∵x2+2x﹣3<0,∴(x+3)(x﹣1)<0,解得﹣3<x<1.用集合表示为(﹣3,1).故选:A.【点评】本题考查一元二次不等式的解法,属于基础题.14.不等式x2≤3x的解集为()A.[0,3]B.(﹣∞,3]C.(0,3)D.(﹣∞,3)【分析】把不等式化为x2﹣3x≤0,求出解集即可.【解答】解:不等式x2≤3x可化为x2﹣3x≤0,即x(x﹣3)≤0,解得0≤x≤3,所以不等式的解集为[0,3].故选:A.【点评】本题考查了一元二次不等式解法与应用问题,是基础题.15.关于x的不等式﹣x2+4x+5>0的解集为()A.(﹣5,1)B.(﹣1,5)C.(﹣∞,﹣5)∪(1,+∞)D.(﹣∞,﹣1)∪(5,+∞)【分析】不等式可化为x2﹣4x﹣5<0,求出解集即可.【解答】解:不等式﹣x2+4x+5>0可化为x2﹣4x﹣5<0,即(x﹣5)(x+1)<0,解得﹣1<x<5,所以不等式的解集为(﹣1,5).故选:B.【点评】本题考查了一元二次不等式的解法与应用问题,是基础题.16.若关于x的一元二次不等式ax2+2x+1>0的解集为R,则实数a的取值范围是()A.(1,+∞)B.(0,1)C.(﹣∞,1)D.(﹣∞,0)∪(0,1)【分析】根据判别式列出不等式求得a的取值范围.【解答】解:关于x的一元二次不等式ax2+2x+1>0的解集为R,则,即,解得a>1,所以实数a的取值范围是(1,+∞).故选:A.【点评】本题考查了一元二次不等式的解法与应用问题,是基础题.17.不等式x2﹣5x﹣6<0的解集是()A.{x|x>6或x<﹣1}B.{x|﹣1<x<6}C.{x|x>1或x<﹣6}D.{x|﹣6<x<1}【分析】把不等式化为(x+1)(x﹣6)<0,求出解集即可.【解答】解:不等式x2﹣5x﹣6<0可化为(x+1)(x﹣6)<0,解得﹣1<x<6,所以不等式的解集是{x|﹣1<x<6}.故选:B.【点评】本题考查了一元二次不等式的解法与应用问题,是基础题.18.不等式x2>8的解集是()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.(﹣4,4)D.(﹣∞,﹣4)∪(4,+∞)【分析】通过因式分解,不等式x2>8化为x2﹣8>0,(x+2)(x﹣2)>0,可解得答案.【解答】解:不等式x2>8化为x2﹣8>0,即(x+2)(x﹣2)>0,解得x>2或x<﹣2.故选:B.【点评】本题考查了一元二次不等式的解法,属于基础题.19.不等式ax2+bx+2>0的解集为{x|﹣<x<},则a﹣b等于()A.﹣10B.﹣14C.10D.14【分析】先根据不等式的解集得到方程的解为,进而求出a与b的数值,即可得到答案.【解答】解:由题意可得:不等式ax2+bx+2>0的解集,所以方程ax2+bx+2=0的解为,所以a﹣2b+8=0且a+3b+18=0,所以a=﹣12,b=﹣2,所以a﹣b值是﹣10.故选:A.【点评】解决此类问题的关键是熟练掌握不等式的解集与方程的解之间的关系,并且结合正确的运算.20.若集合A={x|(2x+1)(x﹣3)<0},B={x|x∈N*,x≤5},则A∩B等于()A.{1,2,3}B.{1,2}C.{4,5}D.{1,2,3,4,5}【分析】根据交集的定义即可求出.【解答】解:集合A={x|(2x+1)(x﹣3)<0}=(﹣,3),B={x|x∈N*,x≤5}={1,2,3,4,5},则A∩B={1,2},故选:B.【点评】本题考查交集及运算,是基础题.解题时要认真审题,仔细解答.21.若不等式ax2+bx﹣2>0的解集为则a+b等于()A.﹣18B.8C.﹣13D.1【分析】通过不等式解集转化为对应方程的根,然后根据韦达定理求出方程中的参数a,b,即可求出a+b【解答】解:∵不等式ax2+bx﹣2>0的解集为∴是ax2+bx﹣2=0的两个根解得:∴a+b=﹣13故选:C.【点评】本题考查一元二次不等式解集的定义,实际上是考查一元二次不等式解集与所对应一元二次方程根的关系,属于基础题.22.不等式的解集是()A.{x|≤x≤2}B.{x|≤x<2}C.{x|x>2或x≤}D.{x|x≥}【分析】把原不等式的右边移项到左边,通分计算后,然后转化为两个一元一次不等式组,求出不等式组的解集即为原不等式的解集.【解答】解:不等式,移项得:,即≤0,可化为:或解得:≤x<2,则原不等式的解集为:≤x<2故选:B.【点评】此题考查了其他不等式的解法,考查了转化及分类讨论的数学思想,是高考中常考的题型.学生进行不等式变形,在不等式两边同时除以﹣1时,注意不等号方向要改变.23.若两个正实数x,y满足,且存在这样的x,y使不等式有解,则实数m的取值范围是()A.(﹣1,4)B.(﹣4,1)C.(﹣∞,﹣4)∪(1,+∞)D.(﹣∞,﹣3)∪(0,+∞)【分析】由x+=(x+)()=2,利用基本不等式可求其最小值,存在x,y使不等式有解,即<m2+3m,解不等式可求.【解答】解:∵正实数x,y满足,∴x+=(x+)()=2=4当且仅当且,即x=2,y=8时取等号,∵存在x,y使不等式有解,∴4<m2+3m,解可得m>1或m<﹣4,故选:C.【点评】本题主要考查了利用基本不等式求解最值及存在性问题与最值问题的相互转化思想的应用.二.解答题(共17小题)24.已知函数f(x)是奇函数,且x<0时,.(Ⅰ)求f(5)的值;(Ⅱ)求函数f(x)的解析式.【分析】(Ⅰ)根据f(x)是奇函数及x<0时的f(x)解析式,即可求出f(﹣5),从而得出f(5);(Ⅱ)可设x>0,从而得出﹣x<0,进而得出,从而可得出x>0时的f(x)解析式,进而得出f(x)的解析式.【解答】解:(Ⅰ)∵f(x)是奇函数,且x<0时,;∴;(Ⅱ)设x>0,﹣x<0,则:;∴;∴.【点评】考查奇函数的定义,已知函数求值的方法,奇函数求对称区间上解析式的方法.25.函数f(x)在R上为奇函数,且x>0时,f(x)=|x|+1.(1)求f(﹣1)的值;(2)当x<0时,求f(x)的解析式.【分析】(1)根据f(x)是奇函数,以及x>0时的f(x)解析式,即可得出f(﹣1)=﹣f(1)=﹣2;(2)可设x<0,得出﹣x>0,从而得出f(﹣x)=|x|+1=﹣f(x),解出f(x)即可.【解答】解:(1)∵f(x)为R上的奇函数,且x>0时,f(x)=|x|+1,∴f(﹣1)=﹣f(1)=﹣(1+1)=﹣2;(2)设x<0,﹣x>0,则:f(﹣x)=|x|+1=﹣f(x),∴f(x)=﹣|x|﹣1,即x<0时,f(x)=﹣|x|﹣1.【点评】本题考查了奇函数的定义,已知函数求值的方法,求奇函数在对称区间上的函数解析式的方法,考查了计算能力,属于基础题.26.设f(x)是R上的偶函数,且当x∈[0,+∞)时,f(x)=x(1+)+1,求f(x)表达式.【分析】根据条件,可设x<0,得出﹣x>0,从而可求出,然后利用分段函数即可表示出f(x).【解答】解:∵f(x)是R上的偶函数,且当x∈[0,+∞)时,f(x)=x(1+)+1,∴设x<0,﹣x>0,则:,∴.【点评】考查偶函数的定义,求偶函数对称区间上函数解析式的方法和过程,以及已知f (x)求f[g(x)]的方法,分段函数的定义.27.已知函数f(x)是定义在R上的偶函数,已知x≥0时,f(x)=x2﹣4x (1)当x<0时,求f(x)的解析式;(2)画出f(x)的图象;(3)根据图象写出f(x)的单调减区间和值域.【分析】(1)当x>0时,﹣x<0,由此利用函数f(x)是定义在R上的偶函数,x≥0时,f(x)=x2﹣4x,能求出当x<0时,f(x)的解析式.(2)由f(x)=,能求出函数f(x)的图象.(3)由f(x)的图象能求出f(x)的减区间和值域.【解答】解:(1)当x>0时,﹣x<0,∵函数f(x)是定义在R上的偶函数,x≥0时,f(x)=x2﹣4x∴当x<0时,f(x)=f(﹣x)=(﹣x)2﹣4(﹣x)=x2+4x.(2)由(1)得f(x)=,∴函数f(x)的图象如下所示:(3)由f(x)的图象知f(x)的减区间是(﹣∞﹣2),(0,2).f(x)的值域为[﹣4,+∞).【点评】本题考查函数的解析式的求法,考查函数的图象、减区间、值域的求法,考查函数的奇偶性、单调性等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.28.关于x的不等式:x2﹣(a+1)x+a<0,a∈R.(1)当a=1时,解这个不等式;(2)当a≠1时,解这个不等式.【分析】(1)a=1时不等式为x2﹣2x+1<0,求出解集即可;(2)a≠1时不等式化为(x﹣a)(x﹣1)<0,讨论a和1的大小,写出对应不等式的解集.【解答】解:(1)a=1时,不等式为:x2﹣2x+1<0,即(x﹣1)2<0,所以不等式的解集为∅;(2)当a≠1时,不等式化为(x﹣a)(x﹣1)<0,不等式对应方程的两个实数根为a和1,当a>1时,不等式的解集为{x|1<x<a};当a<1时,不等式的解集为{x|a<x<1}.【点评】本题考查了含有字母系数的不等式解法与应用问题,是基础题.29.已知f(x)=x2﹣(3+a)x+3a.(1)当a=1时,求不等式f(x)<0的解集;(2)解关于x的不等式f(x)≥0.【分析】(1)a=1时f(x)=x2﹣4x+3,求不等式f(x)<0的解集即可;(2)不等式化为x2﹣(3+a)x+3a≥0,求出不等式对应方程的实数根,讨论a的大小,写出对应不等式的解集.【解答】解:(1)a=1时,f(x)=x2﹣4x+3,不等式f(x)<0化为x2﹣4x+3<0,解得1<x<3;所以不等式f(x)<0的解集为(1,3);(2)不等式f(x)≥0,化为x2﹣(3+a)x+3a≥0,即(x﹣3)(x﹣a)≥0,不等式对应方程的实数根为3和a,所以当a>3时,不等式的解集为{x|x≤3或x≥a};当a=3时,不等式的解集为R;当a<3时,不等式的解集为{x|x≤a或x≥3}.【点评】本题考查了含有字母系数的不等式解法与应用问题,也考查了分类讨论思想,是中档题.30.已知a>0,b>0,+=2,求2a+8b的最小值.【分析】利用“乘1法”与基本不等式的性质即可得出.【解答】解:因为a>0,b>0,+=2,所以2a+8b=(2a+8b)()×==25,当且仅当即a=b=时取等号.故2a+8b的最小值25.【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题.31.已知不等式ax2+3x﹣2<0(a≠0).(1)当a=2时,求不等式的解集;(2)若不等式的解集为{x|x<1或x>2},求a的值.【分析】(1)a=2时解一元二次不等式即可;(2)由根与系数的关系求出a的值.【解答】解:(1)a=2时,不等式为2x2+3x﹣2<0,分解因式得(2x﹣1)(x+2)<0,解得﹣2<x<,所以不等式的解集为{x|﹣2<x<};(2)不等式的解集为{x|x<1或x>2},所以方程ax2+3x﹣2=0的两根为1和2,由根与系数的关系知,﹣=1+2,解得a=﹣1.【点评】本题考查了一元二次不等式的解法与应用问题,是基础题.32.已知二次函数f(x)=mx2﹣mx﹣6.(1)当m=1时,解不等式f(x)>0;(2)若不等式f(x)<0的解集为R,求实数m的取值范围.【分析】(1)求m=1时对应一元二次不等式的解集;(2)由题意知,求出解集即可.【解答】解:(1)当m=1时,不等式为x2﹣x﹣6>0,即(x+2)(x﹣3)>0,解得x<﹣2或x>3,所以不等式的解集为{x|x<﹣2或x>3};(2)若不等式f(x)<0的解集为R,则应满足,即,解得﹣24<m<0;所以m的取值范围是﹣24<m<0.【点评】本题考查了不等式的解法与应用问题,是基础题.33.已知函数f(x)=ax2+(a﹣3)x+2(其中a∈R).(1)当a=﹣1时,解关于x的不等式f(x)<0;(2)若f(x)≥﹣1的解集为R,求实数a的取值范围.【分析】(1)将a=﹣1代入关于x的不等式f(x)<0,由解一元二次不等式的解法可得答案;(2)若f(x)≥﹣1的解集为R,分类讨论a,根据一元二次不等式的解R时满足的条件可求实数a的取值范围.【解答】解:(1)当a=﹣1时,由f(x)<0得,﹣x2﹣4x+2<0,所以x2+4x﹣2>0,所以不等式的解集为;(2)因为f(x)≥﹣1解集为R,所以ax2+(a﹣3)x+2≥﹣1在R恒成立,当a=0时,得﹣3x+2≥﹣1,不合题意;当a>0时,由ax2+(a﹣3)x+3≥0在R恒成立,得,所以:,【点评】本题考查了一元二次不等式的解法、分类讨论方法,解题时应对字母系数进行分析,考查了推理能力与计算能力,属于中档题.34.已知函数f(x)=x2+bx+3,且不等式f(x)≥0的解集为(﹣∞,1]∪[3,+∞).(1)求实数b的值;(2)求不等式f(x)≤9﹣x2的解集;【分析】(1)根据二次函数与对应不等式和方程的关系,即可求出b的值;(2)由(1)知不等式化为x2﹣4x+3≤9﹣x2,解不等式即可.【解答】解:(1)函数f(x)=x2+bx+3,对应不等式f(x)≥0的解集为(﹣∞,1]∪[3,+∞);所以方程x2+bx+3=0的两个实数解为1和3,由根与系数的关系知,b=﹣(1+3)=﹣4;(2)由(1)知,不等式f(x)≤9﹣x2可化为x2﹣4x+3≤9﹣x2,即x2﹣2x﹣3≤0,解得﹣1≤x≤3,所以不等式f(x)≤9﹣x2的解集为[﹣1,3].【点评】本题考查了一元二次不等式与对应函数和方程的问题,是基础题.35.若关于x的不等式(1﹣a)x2﹣4x+6<0的解集是{x|x<﹣3或x>1}.(1)求实数a的值;(2)解关于x的不等式2x2+(2﹣a)x﹣a>0.【分析】(1)由题意知1﹣a<0且﹣3和1是对应方程的两根,由根与系数的关系列方程求出a的值;(2)由(1)化简不等式,求出解集即可.【解答】解:(1)由题意,知1﹣a<0且﹣3和1是方程(1﹣a)x2﹣4x+6=0的两根,所以,解得a=3.(2)由(1)得不等式2x2+(2﹣a)x﹣a>0,即为2x2﹣x﹣3>0,解得x<﹣1或x>.故所求不等式的解集为{x|x<﹣1或x>}.【点评】本题考查了一元二次不等式与对应方程的关系以及不等式的解法问题,是基础题.36.已知关于x的不等式2kx2+kx﹣<0,k≠0.(Ⅰ)若不等式的解集为(﹣,1),求k的值.(Ⅱ)若不等式的解集为R,求k的取值范围.【分析】(I)由题意可得,﹣和1是方程2kx2+kx﹣=0的两个根,由方程的根与系数关系可求,(II)由题意可得,2kx2+kx﹣<0恒成立,结合二次函数的性质可求.【解答】解:(I)由题意可得,﹣和1是方程2kx2+kx﹣=0的两个根,由方程的根与系数关系可得,﹣,解可得,k=,(II)由题意可得,2kx2+kx﹣<0恒成立,则,﹣3<k<0,故k的范围为(﹣3,0).【点评】本题主要考查了一元二次不等式的应用,以及根与系数的关系,同时考查了分析求解的能力和计算能力,属于中档题.37.(1)已知2<x<3<y<4,求各自的取值范围.(2)若关于x的不等式ax2﹣x+b>0的解集为,求不等式bx2+ax﹣1≤0的解集.【分析】(1)根据题意,利用不等式的基本性质,求出x﹣y、2x﹣y和的取值范围;(2)根据一元二次不等式与对应方程的关系,利用根与系数的关系求出b和a的值,再代入求不等式的解集.【解答】解:(1)因为2<x<3<y<4,所以4<2x<6,﹣4<﹣y<﹣3,,所以﹣2<x﹣y<0,0<2x﹣y<3,;(2)由题意可知方程ax2﹣x+b=0的两根为,所以,解得,∴不等式bx2+ax﹣1≤0,即为3x2﹣2x﹣1≤0,解得﹣≤x≤1,其解集为.【点评】本题考查了不等式的基本性质与一元二次不等式的解法和应用问题,是基础题.38.已知关于x的不等式kx2﹣2x+6k<0.(1)若不等式的解集为(2,3),求实数k的值;(2)若k>0,且不等式对一切2<x<3都成立,求实数k的取值范围.【分析】(1)由已知得2和3是相应方程kx2﹣2x+6k=0的两根且k>0,利用根与系数的关系即可得出;(2)设f(x)=kx2﹣2x+6k,利用二次函数的图象与性质把问题化为,即可求出k的取值范围.【解答】解:(1)不等式kx2﹣2x+6k<0的解集为(2,3),所以2和3是方程kx2﹣2x+6k=0的两根且k>0,由根与系数的关系得,2+3=,解得k=;(2)令f(x)=kx2﹣2x+6k,则原问题等价于,即,解得k≤,又k>0,所以实数k的取值范围是0<k≤.【点评】本题考查了一元二次不等式与与相应的一元二次方程以及二次函数的应用问题,是综合性题目.39.已知关于x的不等式ax2﹣5x+2<0,a∈R.(1)当a=2时,解此不等式;(2)若此不等式的解集为{x|x<﹣2或x>},求实数a的值.【分析】(1)求a=2时一元二次不等式的解集即可;(2)根据一元二次不等式与对应方程的关系,利用根与系数的关系求出a的值.【解答】解:(1)a=2时,不等式为2x2﹣5x+2<0,可化为(x﹣2)(2x﹣1)<0,解得<x<2,∴不等式的解集为{x|<x<2};(2)若不等式ax2﹣5x+2<0的解集为{x|x<﹣2或x>},则方程ax2﹣5x+2=0的实数根为﹣2和,∴﹣2+=,解得a=﹣3,即a的值为﹣3.【点评】本题考查了一元二次不等式与对应一元二次方程的应用问题,是基础题.40.解下列不等式:(1)x(7﹣x)≥12;(2)x2>2(x﹣1).【分析】(1)把不等式x(7﹣x)≥12化为x2﹣7x+12≤0,求出解集即可;(2)不等式x2>2(x﹣1)化为x2﹣2x+2>0,利用判别式△<0,求出不等式的解集来.【解答】解:(1)不等式x(7﹣x)≥12可化为x2﹣7x+12≤0,即(x﹣3)(x﹣4)≤0;解得3≤x≤4,∴不等式的解集为[3,4];(2)不等式x2>2(x﹣1)可化为,即x2﹣2x+2>0;∵△=(﹣2)2﹣4×1×2=﹣4<0,∴不等式的解集为R.【点评】本题考查了一元二次不等式的解法与应用问题,解题时应根据不等式的特点选择适当的方法进行解答,是基础题目.。
高考数学不等式练习题及答案解析
高考数学不等式练习题及答案解析:一、选择题1.已知定义域为 R 的函数 f (x) 满足 f (x) f (x 4) ,且当 x 2 时, f (x) 单调递增,如果 x1 x2 4 且 (x1 2)(x2 2) 0 ,则 f (x1) f (x2 ) 的值 ()A、恒大于 0 B、恒小于 0 C、可能为 0 D、可正可负2.已知函数 f (x) x x3 , x1 、 x2 、 x3 R ,且 x1 x2 0 , x2 x3 0 , x3 x1 0 ,则 f (x1 ) f (x2 ) f (x3 ) 的值()A、一定大于零B、一定小于零C、等于零D、正负都有 3.设 M x, y y x2 2bx 1 , P x, y y 2ax b, S a,bM P ,则 S 的面积是 ( )A. 1B. C. 4D. 44.设f (x) 是 (x2 1 )6 2x 展开式的中间项,若 f (x) mx 在区间 2, 2数 m 的取值范围是() 2 上恒成立,则实A. 0, B. 5 4, C. 5 4,5D. 5, 5.若不等式x2logmx0在 0,1 2 内恒成立,则实数m的取值范围是1 m1 A. 160m 1B.160m 1C.4m 1 D. 16()6.已知实数 x,y 满足 3x2+2y2=6x,则 x2+y2 的最大值是( )9 A、 2B、4C、5D、27.若 0 < a,b,c < 1,并且 a + b + c = 2,则 a 2 + b 2 + c 2 的取值范围是( )4 (A)[ 3 ,+ ∞ )4 (B)[ 3 ,2 ]4 (C)[ 3 ,2 )4 (D)( 3 ,2 )8.不等式 1 log2 x > 1 – log 2 x 的解是((A)x ≥ 2(B)x > 1) (C)1 < x < 8(D)x > 2sin cossin 29.设 a = f (2),b = f ( sin cos ),c = f ( sin cos ),其中 f ( x ) = log sin θ x, θ∈( 0, 2 ),那么( (A)a ≤ c ≤ b) (B)b ≤ c ≤ a(C)c ≤ b ≤ a(D)a ≤ b ≤ c11110.S = 1 + 2 + 3 + … + 1000000 ,则 S 的整数部分是( )(A)1997(B)1998(C)1999(D)200011n 11.设 a > b > c,n∈N,且 a b + b c ≥ a c 恒成立,则 n 的最大值为( )(A)2(B)3(C)4(D)51 12.使不等式 2 x – a > arccos x 的解是– 2 < x ≤ 1 的实数 a 的值是( ) (A)1 – 22 2 (B) 2 – 32 5 (C) 2 – 61 (D) 2 – π13.若不等式 a b m4 a2 b2 对所有正实数 a,b 都成立,则 m 的最小值是( )33A. 2 B. 2 2 C. 2 4 D. 45 xi R, xi 0(i 1,2,3,4,5)14.设 xii 11 ,则 ma xx1 x2 , x2 x3 , x3 x4, x4 x5的最小值等于()1 A. 41 B. 31 C. 61 D. 415.已知 x, y, z 满足方程 x2 ( y 2)2 (z 2)2 2 ,则 x2 y2 z2 的最大值是A.4 2B.2 3C. 3 2D. 216. 若 直 线 y kx 1 与 圆 x2 y 2 kx my 4 0 交 于 M , N 两 点 , 且 M , N 关 于 直 线kkxx y2 my 00x y 0 对称,动点 P a,b 在不等式组 y 0表示的平面区域内部及边界上运动,则w b2 a 1 的取值范围是()A.[2,) B. (,2] C.[2,2] D. (,2] [2,)17.已知x0,y0,且2 x1 y1,若x2ym22m 恒成立,则实数 m的取值范围是( )A. m 4或 m 2 B. m 2或 m 4 C. 2 m 4 D. 4 m 218.关于 x 的不等式 cos x lg(9 x2) cos x lg(9 x2) 的解集为()A. (3, 2 2) (2 2,3)(2 2, ) ( , 2 2)B.22C. (2 2, 2 2)D. (3,3)19. 已 知 满 足 条 件的点构成的平面区域的面积为 ,满足条件的点构成的平面区域的面积为 ,其中 、 分别表示不大于 、的最大整数,例如 (),, 则 与 的关系A.B.C.D.20. 已 知 满 足 条 件的点构成的平面区域的面积为 ,满足条件的点构成的平面区域的面积为 ,(其中 、 分别表示不大于 、的最大整数),则点一定在()A.直线左上方的区域内B.直线上C.直线右下方的区域内D.直线左下方的区域内0 21.根据程序设定,机器人在平面上能完成下列动作:先从原点 O 沿正东偏北(2)方向行走一段时间后,再向正北方向行走一段时间,但 的大小以及何时改变方向不定. 如右图. 假定机器人行走速度为 10 米/分钟,设机器人行走 2 分钟时的可能落点区域为 S,则北S 可以用不等式组表示为(0 x 20 A. 0 y 20x2 y2 400 x0 y0C.)x2 y2 400 B. x y 20x y 20 x 20 y 20D.yP. (x, y)东Ox(m)0 22.根据程序设定,机器人在平面上能完成下列动作:先从原点 O 沿正东偏北(2)方向行走一段时间后,再向正北方向行走一段时间,但 的大小以及何时改变方向不定. 如右图. 假定机器人行走速度为 10 米/分钟,设机器人行走 2 分钟时的可能落点区域为 S,则 S 的面积(单位:平方米)等于( )A. 100B. 100 200C. 400 100D. 200北yP. (x, y)东Ox(m)23.定义:若存在常数 ,使得对定义域 D 内的任意两个不同的实数 , 均有成立,则称函数在定义域 D 上满足利普希茨条件.对于函数满足利普希茨条件、则常数 k 的最小值应是A.2 B.1 C. D.24.如果直线 y=kx+1 与圆交于 M、N 两点,且 M、N 关于直线x+y=0 对称,则不等式组:表示的平面区域的面积是( )A.B.25. 给出下列四个命题:①若C.1 ;D.2②“a<2”是函数“无零点”的充分不必要条件;③若向量 p=e1+e2,其中 e1,e2 是两个单位向量,则|p|的取值范围是[0,2];④命题“若 lgx>lgy,则 x>y”的逆命题.其中正确的命题是()A.①②B.①③C.③④D.①②③26.已知点(x, y)构成的平面区域如图(阴影部分)所示, 区域内取得最大值优解有无数多个,则 m 的值为A.B.C.D.(m 为常数),在平面27. 若 A.228.2C.4B.3 D.229. 如果正数满足A、,且等号成立时B、,且等号成立时C、,且等号成立时的最大值为C.4D.5,那么 的取值唯一 的取值唯一 的取值不唯一()D、,且等号成立时的取值不唯一30. 设 变 量 ()最小值为A.9B.431.设两个向量C.3 和D.2其中为实数.若则的取值范围是()A.B.C.D.32.某厂生产甲产品每千克需用原料 和原料 分别为 ,生产乙产品每千克需用原料和原料 分别为千克,甲、乙产品每千克可获利润分别为元,月初一次性够进本月用原料 各 千克,要计划本月生产甲产品和乙产品各多少千克才能使月利润总 额达到最大;在这个问题中,设全月生产甲、乙两种产品分别为 千克, 千克,月利润总额为 元,那么,用于求使总利润最大的数学模型中,约束条件为(A) 33.若(B) 且(C) ,则(D) 的最小值是(A)(B)3 (C)2 (D)34.若且则的最小值为( )(A)(B)35. 对任意实数 x,不等式(C)(D)恒成立,则 的取值范围是( )A.B.C.D.二、填空题36.已知函数 y f x是定义在 R 上的偶函数,当 x <0 时, f x 是单调递增的,则不等式 f x 1 > f 1 2x 的解集是_________________________. 37.已知集合 A x x2 ax x a ,集合 B x1 log2 x 1 2 ,若 A B ,则实数a 的取值范围是________________________.38.设 A {x 1 x 2}, B {x f (x) m 3},若 f (x) x2 1, A B ,则 m 的取值范围是_____39.已知 x 0, y 0 ,且 x y xy ,则 u x 4 y 的取值范围是_____________. xy02x y 2 y040.若不等式组 x y a 表示的平面区域是一个三角形及其内部,则 a 的取值范围是. 41.不等式 loga x2 2x 3 1 在 R 上恒成立,则 a 的取值范围是_________________.42. 下 列 四 个 命 题 中 : ① a b 2ab②sin2x4 sin2x4③设x, y都是正整数,若1 x9 y1 ,则 x y的最小值为12④若x2,y2,则xy 2其中所有真命题的序号是___________________.a b 1 43.已知 x, y 是正数, a, b 是正常数,且 x y , x y 的最小值为______________.44.已知 a,b, a b 成等差数列, a,b, ab 成等比数列,且 0 logm ab 1,则 m 的取值范围是______.45.已知 a2+b2+c2=1, x2+y2+z2=9, 则 ax+by+cz 的最大值为 三、解答题 46.(本小题满分 12 分)已知数列{an }和{bn }中, a1 t(t 0), a2 t 2 .当x t时, 函数 f (x) 1 3(an1an )x3(anan1 )x(n2)取得极值。
(完整版)不等式的基本性质习题
不等式的基本性质习题一、选择题1.若m>n ,且am<an ,则a 的取值应满足条件( )A .a>0B .a<0C .a=0D .a ≥02.若m -n >0,则下列各式中一定正确的是( )A .m >nB .mn >0C .0mn < D .-m >-n3.下列说法正确的是 ( )A.若a 2>1,则a >1B.若a <0,则a 2>aC.若a >0,则a 2>a D .若,则4.如果x >0,那么a +x 与a 的大小关系是( )A .a +x >aB .a +x <aC .a +x≥aD .不能确定5.已知5<7,则下列结论正确的( )①5a <7a ②5+a <7+a ③5-a <7-aA. ①②B. ①③C. ②③D. ①②③6.如果a<b<0,下列不等式中错误的是( )A. ab >0B.C.D.7.-2a 与-5a 的大小关系( )A .-2a <-5aB .2a >5aC .-2a =-5bD .不能确定二、填空题1.用“<”或“>”填空.(1)若a -1>b -1,则a____b ; (2)若a+3>b+3,则a____b ;(3)若5a>5b ,则a____b ; (4)若-5a>-5b ,则a___b .2.x <y 得到ax >ay 的条件应是____________.3.若m +n >m -n ,n -m >n ,那么下列结论(1)m +n >0,(2)n -m <0,(3)mn≤0, 1<a a a <20<+b a 1<b a0<-b a(4)n m<0中,正确的序号为________. 4.满足-3x >-18的非负整数有________________________.5.若am <b ,ac 4<0,则m________.6.如果a -3>-5,则a ;如果-2a <0,那么n . 三、解答题1.如图所示,一个已倾斜的天平两边放有重物,其质量分别为a 和b ,如果在天平两边的盘内分别加上相等的砝码c ,看一看,盘子仍然像原来那样倾斜吗?2.同桌甲和同桌乙正在对7a>6a 进行争论,甲说:“7a>6a 正确”,乙说:“这不可能正确”,你认为谁的观点。
高一数学不等式部分经典习题及答案
3.不 等 式一.不等式的性质:1.同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减; 2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则a bc d>);3.左右同正不等式:两边可以同时乘方或开方:若0a b >>,则nna b >> 4.若0ab >,a b >,则11a b <;若0ab <,a b >,则11a b>。
如 (1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若; ②b a bc ac >>则若,22;③22,0b ab a b a >><<则若; ④ba b a 11,0<<<则若; ⑤baa b b a ><<则若,0; ⑥b a b a ><<则若,0; ⑦b c b a c a b a c ->->>>则若,0; ⑧11,a b a b>>若,则0,0a b ><。
其中正确的命题是______(答:②③⑥⑦⑧);(2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______(答:137x y ≤-≤);(3)已知c b a >>,且,0=++c b a 则ac的取值范围是______ (答:12,2⎛⎫--⎪⎝⎭) 二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法; 4.平方法;5.分子(或分母)有理化;6.利用函数的单调性; 7.寻找中间量或放缩法 ;8.图象法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式复习题题组一:不等式的性质1、已知,a b c d >>,则下列不等式:(1)a c b d +>+;(2)a c b d ->-;(3)ac bd >;(4)a b c d >中恒成立的个数是( ) A .1 B .2 C .3 D .4 2. 若,则下列不等式不成立...的是( ) A.B.C.D.3. 对于任意实数,下列结论正确的是( ) A. 若,则 B. 若,则C. 若,则D. 若,则4.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( )A .a 1<b 1B .a 2>b 2C .12+c a >12+c bD .c a >c b题组二:不等式的解法5.不等式x 2﹣x ﹣6<0的解集为( ) A . {x|x <﹣2或x >3}B .{x|x <﹣2}C .{x|﹣2<x <3}D .{x|x >3}6. 不等式 2x−1x+3≥0 的解集是 .7. 已知不等式ax 2-bx -1≥0的解集是[,],则不等式x 2-bx -a <0的解集是( )A.(2,3)B.(,)C. (-∞,)∪(,+∞)D. (-3,-2) 8. 已知不等式250ax x b -+>的解集为{|32}x x -<<,则不等式250bx x a -+>的解集为A.11{|}32x x -<< B. {|32}x x -<<C.11{|}32x x x <->或 D.{|32}x x x <->或9.关于x 的不等式0>-b ax 的解集是(1,+∞),则关于x 的不等式(ax b +)(2x -)>0的解集是 ( )A .()),2(1,+∞⋃∞-B .(-1,2)C . (1,2)D .()),2(1,+∞⋃-∞-10.若不等式()()21120m x m x -+-+>的解集是R ,则m 的范围是A. [)1,9B. ()1,9C. (](),19,-∞⋃+∞D. ()(),19,-∞⋃+∞ 题组三:线性规划11. 在平面直角坐标系中,以下各点位于不等式(21)(3)0x y x y +--+>表示的平面区域内的是A.(00),B.(20)-,C.(01)-,D. (02),12.已知x ,y 满足0,1,2,x y x x y +≥⎧⎪≤⎨⎪-≥-⎩那么2z x y =+的最小值是A. 1-B. 0C. 1D. 2 13.若x ,y 满足,则的最大值为A. 0B. 3C. 4D. 514.满足约束条件,若取得最大值的最优解不唯一,则实数的值为( )A .B .C .2D .15. 若不等式组 {y ≥a,x −y +5≥0,0≤x ≤2 表示的平面区域是一个三角形,则 a 的取值范围是 ( )A. a <5B. a ≥7C. 5≤a <7D. a <5 或 a ≥716.设x ,y 满足约束条件⎪⎩⎪⎨⎧≥≤+≤-m y y x x y 53,若y x z 4+=的最大值与最小值的差为5,则实数m 等于( )A. 2B. -2C.3D.-3 题组四:均值不等式15. 下列函数中,最小值为4的函数是( )y x ,⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ax y z -=a 121-或212或12-或A. y=x 3+34xB. y=sinx+x sin 4C. y=log 3 x+log x 81D. y=e x +4e -x14.已知,则函数的最小值为 A.B. 0C. 1D. 219. 设正实数 a ,b 满足 a +b =1,则 ( ) A. 1a +1b 有最大值 4 B. √ab 有最小值 12C. √a +√b 有最大值 √2D. a 2+b 2 有最小值 √2231.正数,a b 满足等式236a b +=,则23ab+的最小值为 ( )A .256B .83C .113D .416. 设函数,则 ( )A. 有最大值B. 有最小值C. 是增函数D. 是减函数 17.函数y =)511(log 2+-+x x (x >1)的最小值为( ) A .-3 B .3 C .—4 D .418.若正数,a b 满足111a b+=,则4a b +的最小值为( )A .7B .10C .9D .426.若直线x a +yb =1(a>0,b>0)过点(1,2),则2a+b 的最小值为( )A .4B .8C .22D .227. 空间直角坐标系中,点(1,2,3)A 关于 xOy 平面的对称点为点B ,关于原点的对称点为点C ,则 ,B C 间的距离为( )A B ..29. 下列结论正确的个数是( ) ①若正实数满足,则的最小值是16;②已知,则函数的最大值为;③若对任意实数,不等式恒成立,则实数的取值范围是。
A. 1个B. 2个C. 3个D. 4个30.设变量y x ,满足⎪⎩⎪⎨⎧≤+≤≥110y y x x ,则()122++y x 的最大值是( )A .4B .5C .16D .1732.若正数,x y 满足410x y +-=,则x yxy +的最小值为( )A .9B .10 C.11 D .12 33.若a ,b ,c >0且(a +c )(a +b )=,则2a +b +c 的最小值为A. B. C. D.34. 已知关于 x 的不等式 1a x 2+bx +c <0(ab >1) 的解集为空集,则 T =12(ab−1)+a (b+2c )ab−1的最小值为 ( )A. √3B. 2C. 2√3D. 435.如果圆上任意一点都能使成立,那么实数的取值范围是( ) A. B.C. D.36. 正实数,x y 满足2+30x y -=,则46y x xy-+的最小值为( ) A.4 B.9 C.12 D.161.已知集合}016{2<-=x x A ,}034{2>+-=x x x B ,则A ∩B = .2.已知不等式210ax bx +->的解集为{}34x x <<,则实数a = .3.已知的解集为,则 ______ .4.已知,,那么的取值范围是______ .5.不等式的解集为R,则实数的取值范围是 .6.不等式112x <的解集是 。
7.当时,函数的最小值为 8、已知正实数,,a b m ,满足a b <则b a 与 b ma m ++的大小关系是9.一元二次方程ax 2+bx +c =0的根为2,—1,则当a <0时,不等式ax 2+bx +c ≥0的解集为 ;11.若则的最小值是 .12.若x,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则z=x+2y 的最小值是 .13.设,0,5,a b a b >+=_________. 14. 已知,,,则的最小值为__________.15. 若x ,y 满足x +1≤y ≤2x ,则2y –x 的最小值是__________. 16. 已知,且,若恒成立,则实数的取值范围是_____________.22..已知变量x y ,满足约束条件2360,{25100,60,x y x y x -+≥-+≤-≤,则目标函数z x y =+的最大值为( )A. 12B. 525C. 465 D. 2012≥++ax x a 1>x 14-+=x x y ,1>a 11-+a a23.已知x ,y 满足不等式组4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,则函数2z x y =+的最小值是( )A .23B .132 C .12 D .317. 已知实数变量,x y 满足1,0,220,x y x y mx y +≥⎧⎪-≥⎨⎪--≤⎩且目标函数3z x y =+的最大值为8,则实数m 的值为_______________.18. 若正实数,x y 满足2+33xy x y =+,则4x y +的取值范围是 . 19.已知0,0x y >> 且241x y xy ++=,则2x y +的最小值是 . 8.已知,则( )A. B. C. D.9.若不等式220ax bx ++<的解集为1123x x x ⎧⎫<->⎨⎬⎩⎭或,则a b a -的值为( )A.16B.16-C.56D.56-1、(本小题满分12分)若不等式ax 2+5x ﹣2>0的解集是,(1)求实数a 的值;(2)求不等式ax 2﹣5x+a 2﹣1>0的解集. 2.(本题满分10分)不等式kx 2-2x +6k<0(1)若不等式的解集为{x|x<-3或x>-2},求k 的值; (2)若不等式的解集为R ,求k 的取值范围. 3. 已知不等式的解集为. (1)求,的值;(2)求函数的最小值.4.(本题满分10分)求函数223(),(0)x x f x x x-+-=>的最大值,以及此时x 的值.5.(本小题满分12分)已知不等式0232>+-x ax 的解集为{}b x x x ><或1,(1)求a 、b 的值;(2)若不等式0)3(2>-+-c x a b x 恒成立,则求出c 的取值范围. 6.(本小题满分12分)已知:22(31)y x a x a =+++ (Ⅰ) 当3a =-时,求使0y >的x 集合;(Ⅱ) 若对于一切实数x 都有0y >,求a 的取值范围; (Ⅲ)当(1,2)x ∈时,都有0y <,求a 的取值范围.7.(本小题满分12分) 某公司租赁甲、乙两种设备生产A ,B ,C 三类产品,甲种设备每天能生产A 类产品9件,B 类产品10件, C 类产品8件;乙种设备每天能生产A 类产品6件,B 类产品20件,C 类产品8件。
已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A 类产品150件,B 类产品360件, C 类产品180件,所需租赁费最少为多少元? w.w.w.k8、(12分)要将两种大小不同的钢板截成三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示: 今需要三种规格的成品分别15,18,27块,各截这两种钢板多少张可得所需三种规格的成品,且使所用钢板张数最少?9. (12分)某家具公司生产甲、乙两种型号的组合柜,每种柜的制造白坯时间、油漆时间及有关数据如下:问该公司如何安排甲、乙二种柜的日产量可获最大利润,并且最大利润是多少?A B C 、、A B C 、、A B C 、、213112C 规格B 规格A 规格第一种钢板第二种钢板规格类型钢板类型。