小儿气道异物麻醉
小儿麻醉的气道管理
小儿麻醉的气道管理一.小儿呼吸道的解剖生理学特点1.鼻孔小,是6个月内的主要呼吸通道;2.舌相对大,喉相对小,位置高;3.会厌短,常呈Q形或U形;4.环状软骨是小儿喉的最狭窄处;5. 3个月以下婴儿的气管短,平均长度仅5.7cm;6.小儿扁桃体和腺样体在4〜6岁时达最大形状;7.头大,颈短;8.氧耗增加和氧储蓄低;9.面罩通气容易胃扩张,易反流误吸、FRC、肺顺应性易下降;10.心动过缓是对缺氧的主要反应,心率是心排出量的主要决定因素;随着麻醉的加深,维持上呼吸道开放的肌肉逐渐松弛,咽气道易塌陷,导致上呼吸道梗阻;11.小儿呼吸道开放活动的调节。
二.面罩通气1.选择适合于小儿面部形状、死腔量最小的面罩透明面罩:最常用,小儿不易惊恐,可观察患儿口鼻部情况;Rendell-Baker面罩:形状符合小儿的面部轮廓,无效腔量较小,但没有充气密闭圈;Laerdal面罩:质地柔软的硅橡胶面罩,密闭性较好,能进行煮沸和高压蒸气消毒。
2.面罩通气的操作要点:①正确放置面罩:②手法:3.面罩通气时的监测—监测呼吸音或呼吸运动—监测P ET CO2波形—监测呼吸囊的运动4. 口咽通气道的使用:—小儿常选用Guedel和Berman 口咽通气道。
注意点:小山口咽遇省It• M就民* K.UI口后是,通»mui> 口唱通,单在插入口咽通气道前应达满意的麻醉深度;选择合适的口咽通气道,长度大约相当于从门齿至下颌角的长度。
三.气管内插管1 .插管前器械和物品准备 气管插管基本器械的准备预氧和通气器械1 .麻醉机或通气装置的准备2 .准备小、中、大号面罩3 .准备小、中、大号口咽和鼻咽通气道气管导管及相关物品4 .准备小、中、大三根经口插入的气管导管5 .准备柔韧的插管芯(大小各一)6 .准备润滑剂(最好含局麻药)7 .喷雾器(含局麻药)8 .准备注气注射器喉镜操作相关设备9 .打开吸引器,并连续硬质10 .插管钳11 .光源正常的1#、2#、3#Miller 喉镜片,新生儿应准备直喉镜片12 .置病人头部呈“嗅物位”的枕头或薄垫固定气管导管所需的物品13 .胶布(布质或丝质为好,不用纸质)或固定带14 .牙垫(大、小)确定气管导管位置所需的器械15 .听诊器16 . P ET CO 2监测仪17 .脉搏氧饱和度仪2 .喉镜检查① 保持头的正确位置:6岁以下小儿头置于水平位,以头圈固定,由于这种年龄组小 儿喉头位置高,如有必要可在环状软骨上加压,以更好地暴露声门。
气道异物取出术麻醉专家共识(全文)
气道异物取出术麻醉专家共识(全文)一、定义广义上讲,所有自口或鼻开始至声门及声门以下所有呼吸径路上的异物存留都可以称之为气道异物(airway foreign body)。
由于异物位置对于麻醉管理具有重要意义,本共识将气道异物按照异物所处的解剖位置分为以下四类:①鼻腔异物(nasal foreign body);②声门上(声门周围)异物(supraglottic foreign body);③声门下及气管异物(subglottic and trachea foreign body);④支气管异物(bronchial foreign body)。
狭义的气道异物定义是指位于声门下及气管和支气管的异物。
气道异物还可有多种分类方法。
按异物来源可分为内源性和外源性异物,血液、脓液、呕吐物及干痂等为内源性异物;而由口鼻误入的一切异物属外源性异物。
按照异物的物理性质可以分为固体和非固体异物,常见的是固体异物。
按照异物的化学性质又可分为有机类和无机类异物,有机类异物多于无机类异物,有机类异物中又以花生、西瓜子、葵花籽等植物种子最为多见;无机类异物中则常见玩具配件、纽扣、笔套等。
二、流行病学文献报道中所指的“气道异物”多指狭义的气道异物,即声门下、气管和支气管的异物。
气道异物多见于3岁以内的婴幼儿,所占比例约为70~80%,4~7岁的学龄前儿童约占20%。
男孩发病率高于女孩。
80%以上的气道异物位于一侧支气管内,少数位于声门下及总气道内,在极少数患儿异物位于多个部位;多数回顾性调查发现右侧支气管异物多于左侧,也有文献报道左右两侧发生率相似。
气道异物是导致4岁以内儿童意外死亡的主要原因。
在美国,每年约有500~2000个儿童因气道异物死亡,入院后死亡率为3.4%,国内报道的入院后死亡率在0.2~1%,尚缺乏入院前死亡率的资料。
三、病理生理学异物吸入气道造成的损伤可分为直接损伤和间接损伤。
直接损伤又包括机械损伤(如粘膜损伤、出血等)和机械阻塞。
三种麻醉方法在婴幼儿气道异物取出术中的临床观察
广东医学
21 00年 1 1月 第 3 卷 第 2 期 1 1
Gu n d n a g o gMeia o r a N v 0 0 Vo. 1 N .2 dcl u n l o.2 1 , 1 3 , o 1 J
・
2 831 ・
三种 麻 醉 方 法在 婴幼 儿 气 道异 物 取 出术 中 的 临床 观 察
醒 时问 ( 止 丙 泊 酚 输 注 至 患 儿 清 醒 的 时 问 ) 手 术 时 停 、 间及 术 中追 加 丙泊 酚 的剂 量 。 15 统计学方法 采用 S S 4 0统计软件 , 间 比 . P S 1. 组
组 问 比 较 P< . 5 0 0
12 术前 准 备 .
所 有 患 儿 的法 定 监 护 人 术 前 均 签 署
足 手术 需 求 。3组 患 儿 均 在 硬 质 气 管 镜 通 过 声 门 后 ,
1 资料 与 方 法
连接 国产 H P—B高频喷射器 输入氧气 , D 频率 8 0次/ mn 驱动氧压 0 0 0 1 P 。同时将麻醉机螺纹管 i, .8~ .0M a 选 取急诊 行气管支气 管异物取 出术 接硬质气 管镜 侧 孔 以 8 L r n的流 量为 患儿 提 供纯 / i a 氧 , 中根据患儿呼吸情 况行 辅助通气。S O 辅助通 术 p,
小儿麻醉气道管理指南
小儿麻醉气道管理指南一、前期准备1.医护人员应熟悉相关手术类型的气道管理要求和步骤,做好前期准备工作。
2.评估小儿的气道难度及风险,根据评估结果选择合适的气道管理措施。
3.准备麻醉气道设备和药品,确保其完整、清洁和正常工作。
二、气道评估1.根据小儿的年龄、体重和身体状况,评估气道的解剖结构、大小、可通气性和易堵塞程度等。
2.评估小儿是否存在气道畸形、狭窄、感染等情况,以及与麻醉相关的困难气道因素,如反射性喉痉挛、喉水肿等。
三、预防性气道管理1.对于预计气道通气困难的小儿,应选择合适的气道管理方法,如使用面罩通气或喉罩通气等。
2.在进行气道管理前,将小儿卧位调整至适合操作的位置,如头后仰位或侧卧位等。
3.保持小儿的唾液和呕吐物通畅,预防气道梗阻。
四、无创通气1.对于需要长时间麻醉或间断性通气的小儿,可以考虑无创通气,如面罩通气、喉罩通气等。
2.选择合适的面罩或喉罩尺寸,确保与小儿面部的密合度,避免漏气和气道堵塞。
3.监测小儿的呼吸频率、心率、氧饱和度等生命体征,及时调整通气压力和支持水平。
五、有创气道管理1.对于预估气道困难的小儿,应及时建立有创气道,如经口插管、经鼻插管或经气管切开等。
2.选择合适的插管尺寸和类型,确保与小儿气道的适配性和通气效果。
3.进行气管内插管或导管固定,保持气道通畅,防止误口腔插管。
六、气道并发症管理1.密切监测小儿的呼吸、循环、氧饱和度等生命体征,及时发现并处理气道并发症。
2.对于气道堵塞、胃胀气、误纳胃内容物等情况,应及时进行气道吸引或排空。
七、麻醉复苏期气道管理1.在麻醉复苏期,及时评估小儿的气道功能和保护能力,采取有效的气道管理措施,如拍背、口咽抽吸等。
2.确保小儿的唾液和异物排出通畅,避免气道阻塞。
3.在麻醉复苏期结束后,及时拔除插管或导管,保证小儿的自主呼吸。
总结:小儿麻醉气道管理指南是为了确保小儿麻醉过程中气道的畅通和管理,保障小儿的安全和有效手术而制定的一系列操作规范。
气道异物麻醉专家共识解读 [自动保存]
• 部位:80%以上位于一侧 支气管内(右侧多于左 侧)
• 死亡率:
– 500 ~2000例/年(美国),入院后 死亡率3.4%
– 国内报道入院后死亡率0.2 % ~ 1%,尚缺乏入院前死亡率的资料
一、定义 二、流行病学 三、病理生理学 四、诊断 五、病程 六、手术方式和手术时机 七、麻醉前评估 八、麻醉前准备 九、麻醉方法 十、麻醉监测 十一、常见并发症处理 十二、结语 十三、诊疗流程
一、定义 二、流行病学 三、病理生理学 四、诊断 五、病程 六、手术方式和手术时机 七、麻醉前评估 八、麻醉前准备 九、麻醉方法 十、麻醉监测 十一、常见并发症处理 十二、结语 十三、诊疗流程
• 广义(解剖):自口或鼻开 始至声门及声门以下所有 呼吸径路上的异物,按解 剖位置分为:
– 鼻腔异物 – 声门上(声门周围)异物 – 声门下及气管异物 – 支气管异物
一、定义 二、流行病学 三、病理生理学 四、诊断 五、病程 六、手术方式和手术时机 七、麻醉前评估 八、麻醉前准备 九、麻醉方法 十、麻醉监测 十一、常见并发症处理 十二、结语 十三、诊疗流程
鼻腔异物(多见于小儿)
• 异物位置浅、存留时间短、容易取出 时——经面罩吸入七氟醚,保留自主 呼吸
• 异物位置深、存留时间长、取出困难、 估计手术操作中有出血或异物进入气 管等风险时——置入可弯曲喉罩或插 入气管导管,行控制呼吸:不合作的 小儿以七氟烷吸入诱导后开放静脉, 合作的小儿直接开放静脉,静脉诱导, 丙泊酚或七氟烷维持
• 原则上SPO2 >95%
• 结束后,小儿侧卧,继续面罩吸氧至苏醒
保留自主呼吸的麻醉方案(2)
——右美托咪定方案
• 诱导同上
• 右美托咪定
气道异物取出术麻醉 (2)
谢谢
02
静脉麻醉的优点是起效快,麻醉深度容易
控制,对呼吸和循环系统的影响较小。
03
静脉麻醉的缺点是术后苏醒时间较长,可
能会出现恶心、呕吐等不良反应。
04
静脉麻醉适用于气道异物取出术,可以减
少患者的痛苦和恐惧,提高手术成功率。
吸入麻醉
01 吸入麻醉是一种通过呼吸 道吸入麻醉气体,使患者 失去意识的麻醉方法。
症。
3
麻醉可以保证手术 的顺利进行,提高
手术的成功率。
4
麻醉可以保护患者 的生命安全,防止 手术过程中出现意
外。
麻醉方法的选择
局部麻醉:适 用于浅表气道 异物取出术
静脉麻醉:适 用于深部气道 异物取出术
吸入麻醉:适 用于儿童气道 异物取出术
复合麻醉:适 用于复杂气道 异物取出术
麻醉风险及预防
麻醉风险:气道异 物取出术麻醉过程 中可能出现呼吸困 难、血压波动、心
02 吸入麻醉的优点是起效快、 苏醒快、对呼吸和循环系 统的影响较小。
03 吸入麻醉的缺点是维持时 间较短,需要持续给药。
04 吸入麻醉适用于气道异物 取出术,因为可以快速起 效,减少手术风险。
气道异物取出术麻醉 注意事项
麻醉剂量的控制
根据患者的年龄、体重、身体状况等因素,
01
合理选择麻醉剂的种类和剂量。
03
03
监测心率:观察心率变化,确保 心率稳定
04
04
监测血氧饱和度:观察血氧饱和 度变化,确保血氧饱和度正常
麻醉并发症的预防和处理
预防措施:严格遵循麻醉操作规程,确保麻醉药物 的用量和浓度准确无误
小儿麻醉气道和呼吸管理指南(2017版)
小儿麻醉气道和呼吸管理指南(2017版)0 1目的在已报道的与小儿麻醉相关并发症中,新生儿和婴幼儿、早产儿和极低体重儿、急诊手术、饱胃以及合并气道问题(气道梗阻、意外拔管、困难插管)等仍是高危因素。
气道和呼吸管理仍是小儿麻醉出现并发症甚至死亡的主要因素。
小儿麻醉医师必须了解并熟悉小儿的解剖生理特点,同时根据不同年龄选用合适的器械设备,采取相应的气道和呼吸管理措施,才能确保小儿手术麻醉的安全。
0 2小儿气道解剖特点1、头.颈婴幼儿头大颈短,颈部肌肉发育不完善,易发生上呼吸道梗阻,即使施行椎管内麻醉,若体位不当也可引发呼吸道阻塞。
展开剩余96%2、鼻鼻孔较狭窄,是6个月内小儿的主要呼吸通道,分泌物、黏膜水肿、血液或者不适宜的面罩易导致鼻道阻塞,出现上呼吸道梗阻。
3、舌.咽口小舌大,咽部相对狭小及垂直,易患增殖体肥大和扁桃体炎。
4、喉新生儿、婴儿喉头位置较高,声门位于颈3~4平面,气管插管时可压喉头以便暴露喉部。
婴儿会厌长而硬,呈“U”型,且向前移位,挡住视线,造成声门显露困难,通常用直喉镜片将会厌挑起易暴露声门。
由于小儿喉腔狭小呈漏斗形(最狭窄的部位在环状软骨水平,即声门下区),软骨柔软,声带及黏膜柔嫩,易发生喉水肿。
当气管导管通过声门遇有阻力时,不能过度用力,而应改用小一号导管,以免损伤气管,导致气道狭窄。
5、气管新生儿总气管长度约4~5cm,内径4~5mm,气管长度随身高增加而增长。
气管分叉位置较高,新生儿位于第3~4胸椎(成人在第5胸椎下缘)。
3岁以下小儿双侧主支气管与气管的成角基本相等,与成人相比,行气管内插管时导管插入过深或异物进入时,进入左或右侧主支气管的几率接近。
6、肺小儿肺组织发育尚未完善,新生儿肺泡数只相当于成人的8%,单位体重的肺泡表面积为成人的1/3,但其代谢率约为成人的两倍,因此新生儿呼吸储备有限。
肺间质发育良好,血管组织丰富,毛细血管与淋巴组织间隙较成人为宽,造成含气量少而含血多,故易于感染,炎症也易蔓延,易引起间质性炎症、肺不张及肺炎。
气道异物取出术麻醉专家共识(20中国麻醉学指南与专家共识)详细版.doc
气道异物取出术麻醉专家共识〔2021〕左云霞,冯春,刘金柱,李天佐〔负责人/共同执笔人〕,李文献〔共同执笔人〕,李丽伟,李梅,连庆泉,吴震〔共同执笔人〕,张旭,张诗海,张溪英,金立民,胡智勇,蔡一榕,裴凌一、定义所有自口或鼻开场至声门及声门以下呼吸径路上的异物存留,都可以称之为气道异物〔airway foreign body〕。
异物位置对于麻醉管理具有重要意义,本共识将气道异物按其所处的解剖位置分为以下四类:①鼻腔异物(nasal foreign body);②声门上〔声门周围〕异物(supraglottic foreign body) ;③声门下及气管异物(subglottic and tracheal foreign body);④支气管异物(bronchial foreign body)。
狭义的气道异物是指位于声门下、气管和支气管的异物。
此外,按照化学性质可将气道异物分为有机类和无机类异物。
有机类异物以花生、葵花籽、西瓜子等植物种子多见,无机类异物那么常见玩具配件、纽扣、笔套等[1-4]。
按异物来源可分为内源性和外源性异物,患者自身来源或承受手术时产生的血液、脓液、呕吐物及干痂等为内源性异物,而由口鼻误入的外界异物为外源性异物。
医源性异物是指在医院内实施诊断、手术、治疗等技术操作时造成的气道异物,常见的有患者脱落的牙齿、医用耗材和医疗器械配件等。
二、流行病学临床上的“气道异物〞一般多指狭义的气道异物。
气道异物多见于3岁以下的婴幼儿,所占比例约为70%~80%,男孩发病率高于女孩,农村儿童发病率高于城市儿童[1-4]。
80%以上的气道异物位于一侧支气管内,少数位于声门下及主气道内,极少数患儿异物位于多个部位。
右侧支气管异物多于左侧[1,3,4],但也有文献报道左右两侧支气管异物的发生率相似[5]。
气道异物是导致4岁以下儿童意外死亡的主要原因,国内报道的入院后死亡率在0. 2%~1%[4,6],美国报道的入院后死亡率为3.4%[7]。
气道异物麻醉专家共识解读
• 影像学检查:胸透、胸片、颈侧位片、CT 三维成像技术
• 纤维支气管镜 • 硬支气管镜 • 评分系统:综合病史、体格检查、影像学
检查等资料
一、定义 二、流行病学 三、病理生理学 四、诊断 五、病程 六、手术方式和手术时机 七、麻醉前评估 八、麻醉前准备 九、麻醉方法 十、麻醉监测 十一、常见并发症处理 十二、结语 十三、诊疗流程
• 对异物史不明确、临床表 现和影像学表现不典型的 病例,术前进行CT三维重 建检查以及纤维支气管镜 检查是可取的诊断方法
CT三维成像技 术可以显示第 6~7级支气管 内的异物
敏感度近100% 特异度约70%
CT检查为阴性 的患者不必进 行传统的支气 管镜检查术
根据医生的经验确诊病例行硬支气管镜检查,阴性率16% 根据医生的经验可疑病例行纤维支气管镜检查,阴性率63% 对可疑病例行纤维支气管镜检查可以使很多没有异物的患儿避免硬支 气管镜检查所带来的创伤和风险
– 鼻腔异物 – 声门上(声门周围)异物 – 声门下及气管异物 – 支气管异物
• 狭义:位于声门下及气管 和支气管的异物
一、定义 二、流行病学 三、病理生理学 四、诊断 五、病程 六、手术方式和手术时机 七、麻醉前评估 八、麻醉前准备 九、麻醉方法 十、麻醉监测 十一、常见并发症处理 十二、结语 十三、诊疗流程
一、定义 二、流行病学 三、病理生理学 四、诊断 五、病程 六、手术方式和手术时机 七、麻醉前评估 八、麻醉前准备 九、麻醉方法 十、麻醉监测 十一、常见并发症处理 十二、结语 十三、诊疗流程
• 异物吸入史(目击误吸异物后剧烈呛咳) ——最重要的诊断依据
• 临床表现:咳嗽、呼吸困难、喘息、喘鸣 、紫绀
七氟烷麻醉下小儿气道异物取出手术护理配合
34 加 强护士职业道德教育 .
以定期学 习 、 例分析 、 护理 案 写
感想 或工作 笔记 等形式 , 坚持 对护 士进行 护理 道德 教育 , 促使 护士转变理念 , 提高主动 服务意识 , 正把 “ 真 以人为本 , 以患者
的治疗情况 , 争取患者早 日康 复 患者和 护士之 间应密切 配合 , 首先护士应该取得患 者信 任。护士 在对患 者实 施治疗 、 理 、 护 健康教育等服务的过程 中 , 往往 只注重 程序化 的工作 , 时过 有
树立正确 的世界观 和价值 观 , 摒弃世 俗观 念 , 坚决抵 制各种 不 良风气 , 以高度负责的态度对待每一位患者。
参 考 文 献
1 Ur e , n a D. a in a i a to a u e n : ure tis e a d i d n Li d P te ts ts c in me s r me t C r n s u n m- f p ia in . t o s Ma a e n , 0 2, 3: 2 — 31 l t s Ou c me n g me t 2 0 6 1 5 1 . c o
河北 医药 2 1 0 0年 l 2月 第 3 2卷 第 2 4期
H bi d( o— l o o 墼 e N .4 ee Mej u , ma , 】 c— — o2
3 8 5 1
休息时间。对于存在有跌 倒隐患 因素者 , 做好 防跌倒告 知。介
绍 时 语 速 放 慢 , 听不 清 者 要 反 复 讲 解 直 到 患 者 掌 握 为 止 。 消 对
作为新型的吸人全身麻醉剂 , 氟烷具有 无呼吸道 刺激 性 、 七 麻醉诱导与苏醒迅速、 对肝 肾功能影响小等优点 , 适用 于患儿的 全身麻醉 。但在气管异物取 出麻醉过程中 由于吸人诱导会出 现咳嗽 、 屏气 等现象 , 进入麻醉期患儿可能 出现不 自主的肢体 运
临床麻醉学期末复习题四与答案
一、单选题1、一侧胸腔剖开后如果病人仍存在自主呼吸,在吸气时纵膈()。
A.移向剖胸侧肺B.在剖胸侧肺与非剖胸侧肺之间移动C.移向非剖胸侧肺D.与呼吸无关正确答案:C2、剖胸后出现的反常呼吸是()。
A.吸气时剖胸侧肺膨胀B.呼气时剖胸侧肺容量不变C.吸气时剖胸侧肺容量不变D.吸气时剖胸侧肺缩小正确答案:D3、关于摆动气()。
A.摆动气不增加血液中的二氧化碳B.摆动气量与反常呼吸的严重程度成反比C.是未与大气交换的气体D.是已与大气交换的气体正确答案:C4、长期吸烟的病人对机体的影响()。
A.不影响血红蛋白B.不影响病人的氧合C.不影响氧解离曲线的变化D.可使氧解离曲线左移正确答案:D5、防治支气管痉挛的药物不包括下列哪种()。
A.肾上腺糖皮质激素B. 异丙托溴铵C.氨茶碱D.α受体兴奋药正确答案:D6、关于动脉血气分析下列描述正确的是()。
A.通过PaO2可判断肺的通气功能B.通过PaO2可判断肺的弥散功能功能C.通过PaCO2可判断肺的通气功能D.通过A-aDO2可判断肺的通气功能正确答案:C7、关于单肺通气叙述正确的是()。
A.单肺通气是胸科手术经支气管导管只利用一侧肺进行通气的方法B.仅适用于湿肺的病人C.双腔支气管导管是唯一用于单肺通气的器具D.仅适用于成人正确答案:A8、下列单肺通气期间的呼吸管理正确的是()。
A.只要氧分压不低于50mmHg就不用处理B.SpO2 可长时间低于90%,对病人无影响C.氧分压必须维持在100mmHgD.SpO2 必须维持在95%以上正确答案:A9、以下关于小儿气道解剖特点的描述,错误的说法是()。
A.小儿的喉头位置较高,并且小儿喉腔最狭窄位于环状软骨水平B.小儿头颅偏大颈部偏短C.小儿气管分叉位置较高,且气管异物易进入左侧支气管D.小儿气管分叉位置较高,且气管异物易进入右侧支气管正确答案:D10、小儿气管异物使用支气管镜检查时最常见的麻醉方式()。
A.表面麻醉B.局部麻醉C.全身麻醉D.椎管内麻醉正确答案:C11、下列关于小儿气道不同于成人气道的结构特点,说法不正确是()。
小儿麻醉气道和呼吸管理指南(全文)
小儿麻醉气道和呼吸管理指南(全文)中华医学会麻醉学分会目录一、目的二、小儿气道解剖特点三、气道器具及使用方法四、通气装置及通气模式五、小儿困难气道处理原则和方法一、目的在已报道的麻醉相关并发症中,新生儿和婴幼儿、急诊手术以及合并呼吸问题(气道上梗阻、意外拔管、困难插管)等仍是高危因素。
气道和呼吸管理仍是小儿麻醉主要出现并发症和死亡的主要因素。
小儿麻醉科医师必须了解与熟悉小儿的解剖生理特点,并根据不同年龄选用合适的器械设备,采取相应的管理措施,才能确保患儿手术麻醉的安全。
二、小儿气道的解剖和生理特点1、头、颈婴幼儿头大颈短,颈部肌肉发育不全,易发生上呼吸道梗阻,即使施行椎管内麻醉,若体位不当也可引发呼吸道阻塞。
2、鼻鼻孔较狭窄,是6个月内小儿的主要呼吸通道,分泌物、黏膜水肿、血液或者不适宜的面罩导致鼻道阻塞,出现上呼吸道梗阻。
3、舌、咽口小舌大,咽部相对狭小及垂直,易患增殖体肥大和扁桃体炎。
4、喉新生儿、婴儿喉头位置较高,声门位于颈3~4平面,气管插管时可压喉头以便暴露喉部。
婴儿会厌长而硬,呈"U"型,且向前移位,挡住视线,造成声门显露困难,通常用直喉镜片将会厌挑起易暴露声门。
由于小儿喉腔狭小呈漏斗形(最狭窄的部位在环状软骨水平,即声门下区),软骨柔软,声带及黏膜柔嫩,易发生喉水肿。
当导管通过声门遇有阻力时,不能过度用力,而应改用细一号导管,以免损伤气管,导致气道狭窄。
5、气管新生儿总气管长度约 4~5cm,内径 4~5mm,气管长度随身高增加而增长。
气管分叉位置较高,新生儿位于 3~4 胸椎(成人在第 5 胸椎下缘)。
3 岁以下小儿双侧主支气管与气管的成角基本相等,与成人相比,行气管内插管导管插入过深或异物进入时,进入左或右侧主支气管的几率接近。
6、肺小儿肺组织发育尚未完善,新生儿肺泡数只相当于成人的8%,单位体重的肺泡表面积为成人的 1/3,但其代谢率约为成人的两倍,因此新生儿呼吸储备有限。
中国儿童气道异物呼吸介入诊疗专家共识(完整版)
中国儿童气道异物呼吸介入诊疗专家共识(完整版)目录前言1 病理生理2 临床表现3 影像学检查4 支气管镜检查5 诊断6 术前风险评估7 术前准备8 麻醉9 治疗9.1 经支气管镜负压吸引术9.2 异物钳取出术9.3 球囊介入异物取出术9.4 冷冻异物取出术9.5 支气管肺泡灌洗清除术9.6 硬质气管支气管镜异物取出术9.7 热消融技术辅助异物取出术9.8 胸腔镜术9.9 可弯曲支气管镜、硬质气管支气管镜结合9.10 外科手术9.11 其他10 支气管异物诊治流程11 并发症及处理12 术后管理13 内镜报告14 总结儿童气道异物是一种潜在的危及生命的急症,包括上气道异物及下气道异物。
既往气道异物的诊疗主要由耳鼻喉科完成,随着儿科呼吸介入专业的快速发展,多种介入技术被应用于气道异物取出术,尤其在下气道异物的诊疗中发挥了越来越重要的作用[1,2]。
为进一步规范诊疗行为,特撰写儿童气道异物呼吸介入诊疗专家共识。
本共识主要为下气道外源性异物的诊疗共识。
儿童气道异物多发生在3岁以下儿童,且1~2岁幼儿为发病高峰,男童多见。
研究表明因气道异物发生呼吸道阻塞的发生率为0.66/100 000,是造成儿童窒息死亡的主要原因[3,4,5]。
儿童气道异物因其多样性及隐匿性,临床医师易误诊及漏诊,进而导致患儿呼吸道阻塞、反复喘息、慢性咳嗽、迁延性肺炎和咯血等并发症,甚至危及生命,严重影响儿童的健康成长[6] 。
儿童气道异物的易发因素主要包括:(1)牙齿发育不全;(2)喉保护性反射功能不全;(3)咳嗽能力较弱;(4)口含物品不良习惯(儿童好奇心);(5)进食时哭笑或玩耍;(6)家长对危险物品监管不力,如误吸等;(7)其他:如医源性等。
气道异物的分类方法不一,按来源分为内源性异物和外源性异物;按气道阻塞程度分为部分阻塞和完全阻塞异物;亦可按气道异物嵌顿位置、异物性质(如固态、液态、活物)等分类[6]。
不同性质的异物可对机体造成不同的损伤。
全麻下经纤维支气管镜小儿呼吸道异物取出手术配合
镜, 面 罩 给 氧 或 人 工 通 气 后 血 氧 回升 至 9 5 %时再行检查 。
C T , 了解 肺 部 情 况 , 对 金 属 异 物 可 清 晰 定 位 。 临 床 表 现 为 阵
方案进行 术前访视 , 既 要 关 心 患 儿 的心 理感 受 , 减 少 患 儿 的 恐
咳、 呛 咳、 呼吸困难 、 发绀 、 发热、 咳 脓 痰 等 。体 检 听 诊 两 侧 呼
吸 音 不 对 称 并 闻及 哮 鸣音 , 纵 隔移 位 。
1 . 2 麻 醉 方 法 实 施 基 础 麻 醉 、 静 脉 麻 醉 或 基 础 加 静 脉 麻 醉。镜检麻醉不能行气 管 内插管 , 只 能 通 过 纤 支 镜 向 肺 内 吹
惧, 又要关注 家长的心理 感受 , 减少 家长 的焦虑 , 取 得 患 儿 家 属 理 解 和 支 持 J 。访 视 的 目的 包 括 : ① 了解 常规 、 血小 板计 数 、 出 凝
小 儿 呼 吸 道 异 物 是 常 见 的 临 床 急 危 重 症 之 一 。异 物 吸 人 呼吸道 可导致呼 吸 困难 、 肺 部感 染 及肺 不 张等 … , 异 物 对 呼 吸道 的刺激会给患者造成极 大痛苦 , 引起呼吸道梗 阻 , 严 重 者 导致 窒息 , 甚至危及 生命 , 必 须及 时诊 断 , 尽 早 取 出 。 经 纤 维 支 气 管镜 ( 以下 简 称 纤 支 镜 )下 取 异 物 具 有 柔 韧 性 好 、 视 野 大、 患者痛苦小 、 操 作 简 单 安 全 等 优 点 ,已 广 泛 应 用 于 临 床 ,
气道异物取出术麻醉专家共识(2017版中国麻醉学指南与专家共识)
气道异物取出术麻醉专家共识(2017版中国麻醉学指南与专家共识)气道异物是指误吸或吸入口咽部或呼吸道内无法自行排出的异物,能导致机体窒息甚至死亡。
气道异物取出术是一种紧急情况下使用的治疗方法,需要在侵入呼吸道的异物造成机体窒息之前尽快进行。
本文将介绍2017版中国麻醉学指南与专家共识中相关内容。
气道异物取出术的麻醉方式1.成人气道异物取出术成人气道异物取出术需要使用全身麻醉。
无论使用哪种麻醉药物,都需要确保患者的呼吸道通畅。
目前可供选择的麻醉药物包括以下几种:•硬膜外麻醉:适用于需要较强麻醉效果的情况,但需要有经验的医生操作。
•局部浸润麻醉:适用于简单的气道异物取出,但不适用于需要进行较长时间手术的情况。
•深度麻醉:适用于需要长时间手术的情况,但需要医生密切监测患者的生命体征。
总的来说,麻醉方式的选择应该按照患者的身体状态和手术所需时间等因素进行。
2.儿童气道异物取出术对于儿童,一般采用全身麻醉。
选择麻醉药物时,应该考虑到儿童对麻醉药物的过敏反应。
一般来说,儿童对于局部浸润麻醉反应较强,深度麻醉对儿童的风险比较高。
因此,一般会采用氧气和芬太尼结合的方式来实现麻醉效果。
此外,还应该注意选择合适的麻醉科医生来操作。
气道异物取出术的手术方式1.口咽部异物取出术对于口咽部异物取出术,一般采用局部麻醉。
麻醉药物可以通过喷雾或其他途径进行,其剂量需要按照患者的身体情况来确定。
手术操作者需将患者头部后仰,用器械直接将异物取出。
2.气管内容异物取出术对于较深部的气道异物取出术,需要采用全身麻醉。
手术者将支气管镜引入气道,通过器械进行操作来取出异物。
3.介入性取出术介入性取出术是指通过导管等介入性手术器械来取出气道异物。
这种方式需要较高的技术水平和经验,一般需要采用成人全身麻醉。
麻醉操作的安全措施进行气道异物取出术,需要对麻醉操作进行一定的安全措施。
这些措施包括:1.检查患者前往麻醉手术前的身体状态、过敏史和相关疾病史等。
气道异物取出术的麻醉管理方案
与气道操作有关的紧急情况
(1)气胸:异物取出过程中最凶险的并发症,其发生的概率为 0.04%~0.20%。 ▪ 造成气胸的非麻醉直接原因: ①异物存留时间较长,局部炎症导致气管-支气管树存在薄弱部位。 ②钳取异物时误伤组织。 ③喷射通气导管误入一侧支气管,局部通气压力过高。 ④麻醉深度不足导致“人机对抗”。
与气道操作有关的紧急情况
(3)取出过程中异物脱落致主气道完全梗阻。 (4)异物取出术后无法脱机。
异物取出后无法拔管的处理
▪ 建议1:果断气管插管,加深麻醉,必要时可以给予肌松药,保持 患儿足够的通气量。
▪ 建议2:确认患儿通气参数满意,具备脱机参数(EtCO2正常,正 常潮气量下气道压不高或可接受,不依赖高氧浓度),则开始在 给予右美托咪定镇静的条件下,逐步将患者过渡到自主呼吸,然 后中止其他吸入或静脉麻醉药,确保患者能在单纯右美托咪定镇 静条件下,耐受气管导管。
异物取出后无法拔管的处理
▪ 建议3:如果仅右美托咪定镇静条件下患儿自主呼吸满意,即可拔 除气管导管,若成功,停止右美托咪定镇静。
▪ 这一做法也已成为我科近年来处理复杂气道异物患儿脱机困难的 常规做法,效果良好。
谢谢观看
挑战:缺乏对气道的绝对掌控
提供外科操作空间
▪ 保留自主呼吸的麻醉方案一:右美托咪定复合丙泊酚方案 ▪ 右美托咪定+丙泊酚
右美托咪定负荷量4 μg/kg,维持量3 μg/(kg·h),丙泊酚 100~150 μg/(kg·min)。
提供外科操作空间
▪ 保留自主呼吸的麻醉方案二:瑞芬太尼复合丙泊酚方案 ▪ 瑞芬太尼+苏醒过程中发生喉痉挛。 ▪ 诱导过程中预防喉痉挛的方法: ①良好的气道表麻有助于降低气道激惹,但操作本身可以致气道痉 挛。 ②尽可能避免浅麻醉下做任何操作。 ③做好应急准备,必须在一切准备就绪、所有团队人员到位后再实 施麻醉诱导。
带你了解气道异物
气道异物包括气管和支气管异物,属于急危重症,在儿童中常见,由于其吞咽功能不够健全,在嬉戏玩耍时易将食物或者其他异物误吸入气道内。
异物吸入在老年人和成年人中也不少见,但多难以追踪明确病史,且症状不典型,易被误诊为其他呼吸系统疾病。
若不及时检查,可引起窒息、肺不张、气道狭窄、脓胸、支气管坏死等严重并发症。
气道异物有哪些气道异物种类多以食物为主,有机物和骨头占比最大。
各个年龄层常出现的异物种类也不同,儿童吞咽功能发育不全,处于对各类食物充满好奇的阶段,常常误食各类有机物和塑料制品。
成年人在酗酒、过快过急进食、昏迷等情况下,吞咽功能受影响,也可发生误吸。
老年人因牙齿脱落大多装有义齿,但由于呼吸道敏感性差,对于义齿的误吸也较常见。
此外还需警惕医源性气道异物,比如喉部全麻插管手术时,患者自主呼吸及咳嗽反射受到抑制,可能发生插管相关物品及消毒用物掉入气道。
气道异物吸入后的表现较大异物吸入后若发生阻塞,可出现急性剧烈咳嗽,若堵塞气管可立刻窒息,若堵塞主支气管,听诊可闻及一侧呼吸音消失等表现。
较小异物吸入后患者临床症状常不典型,儿童常无法准确表达病情,成年人可有咳嗽、咯痰、胸闷等表现。
对于高龄患者,咳嗽反射减退,咀嚼能力差,尤其存在肺部基础疾病者,症状更不典型。
异物吸入后的处理办法对于急性气道异物吸入,临床上最常用海姆立克急救法。
此法主要对腹部和膈肌下面的软组织进行冲击,产生向上的冲力,使胸腔内气体涌向气管,从而将气管和咽喉部的异物排出。
对于各个年龄段的婴幼儿,具体实施方式略有差异。
清醒的婴幼儿胸部拍击法。
将患儿竖放在操作者大腿上,头置于下方,一只手托住患儿,另一只手使用食指及中指对其胸骨下方行垂直用力按压,按压频率为每秒1次,深度为4厘米,重复5次。
背部拍击法。
操作者呈马步半蹲,将患儿面向操作者的大腿,一只手托住其头颈部,确保可自由活动,另一只手用倾斜向下的力道拍击其背部肩胛骨直接的位置,重复5次。
胸部和背部拍击法可联合使用。
小儿气管异物取出术的麻醉处理ppt文档
咪唑安定 氯胺酮 γ-羟基丁酸钠
缺点: 具有起效慢、苏醒延迟、咽喉反射恢复迟 等缺点[1]。而且氯胺酮、γ-羟基丁酸钠麻醉 不能消除气道保护性反射,气道分泌物较 多,对异物取出难度大、手术时间长,特 别是并发呼吸道炎症的患儿,氯胺酮麻醉 后出现支气管痉挛的病例不在少数[2]。
病例分享
患者术前常规肌注阿托品0.02mg/kg,常规 面罩吸氧同时坚持各项生命体征,待患儿 血氧饱和度监测升高后,静注1-2mg/kg,地 米2-5mg。患儿入睡后,肩部垫高头后仰, 再静注γ-羟基丁酸钠80-100mg/kg,吸氧后 待呼吸均匀血氧稳定后,再静注氯胺酮 2mg/kg,开始置入气管镜,而后经气管镜 侧孔接高频喷射呼吸机,驱动压0.401.:62k。g/cm2,频率60-80次/min,吸呼比1:1.5-
小儿气管异物取出术的麻醉处理
吸入的异物可能嵌顿在肺的各级支气管, 造成阻塞部位以下的肺叶或肺段不张或炎 症。
硬支气管镜至今仍作为钳取气道异物的首选方法。
麻醉方案关键
共享气道的处理,要做到 控制气道、减少气道反射、 防止误吸、镇静遗忘、交 感反射小、手术视野清晰 且无气道阻塞。
具体采用的麻醉方式主要 取决于麻醉医师的临床经 验及患儿气道梗阻情况。
面罩吸氧 监测血压、心率、 呼吸及血氧饱和度 开放外周静脉并给予地塞 米松0.5mg/kg
静脉通道给予:
+ 利多卡因0.5mg/kg
咪达唑仑0.1mg/kg 氯胺酮0.5-1mg/kg 丙泊酚缓慢1mg/kg 芬太尼1.5ug/kg
↓
喉镜于声门上下2%盐 酸利多卡因注射液充 分表面麻醉
继续面罩吸氧3-5分钟待呼吸平稳后开始手术
术中硬支气管镜侧管高 流量给氧;
密切观察患儿呼吸运动 及幅度,维持血氧饱和 度90%以上,并保证手 术操作顺利进行;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Anesthesia for removal of inhaled foreign bodies in childrenAMIT SOODAN M D,DILIP PAWAR M D AND RAJESHWARISUBRAMANIUM M DDepartment of Anaesthesiology,All India Institute of Medical Sciences,New Delhi,IndiaSummaryBackground:Foreign body aspiration may be a life-threatening emer-gency in children requiring immediate bronchoscopy under generalanesthesia.Both controlled and spontaneous ventilation techniqueshave been used during anesthesia for bronchoscopic foreign bodyremoval.There is no prospective study in the literature comparingthese two techniques.This prospective randomized clinical trial wasundertaken to compare spontaneous and controlled ventilation duringanesthesia for removal of inhaled foreign bodies in children.Methods:Thirty-six children posted for rigid bronchoscopy forremoval of airway foreign bodies over a period of2years and2months in our institution were studied.After induction with sleepdose of thiopentone or halothane,they were randomly allocated to oneof the two groups.In group I,17children were ventilated afterobtaining paralysis with suxamethonium.In group II,19childrenwere breathing halothane spontaneously in100%oxygen.Results:All the patients in the spontaneous ventilation group had tobe converted to assisted ventilation because of either desaturation orinadequate depth of anesthesia.There was a significantly higherincidence of coughing and bucking in the spontaneous ventilationgroup compared with the controlled ventilation group(P¼0.0012).Conclusion:Use of controlled ventilation with muscle relaxants andinhalation anesthesia provides an even and adequate depth ofanesthesia for rigid bronchoscopy.Keywords:anesthesia;anesthetic technique:bronchoscopy;ventila-tion;foreign body aspirationIntroductionThe aspiration of a foreign body in a child is a life threatening accident.Early diagnosis and broncho-scopic removal of the foreign body would protect the child from serious morbidity and even mortality. In infants and children,removal of airway foreign body is performed under general anesthesia and through a ventilating rigid bronchoscope.Anesthe-sia for rigid bronchoscopy is a challenging proce-dure for the anesthesiologist who must share the airway with the bronchoscopist and maintain ade-quate depth of anesthesia.It is often difficult to maintain adequate ventilation and oxygenation in these patients.During removal of foreign body in children,Fearson et al.(1),Chatterji et al.(2),Baraka (3),Kim et al.(4),Perrin et al.(5),and Ahmed(6)Correspondence to:Dilip Pawar,Department of Anaesthesia,AllIndia Institute of Medical Sciences,New Delhi110029,India(email:dkpawar@).Pediatric Anesthesia200414:947–952doi:10.1111/j.1460-9592.2004.01309.x Ó2004Blackwell Publishing Ltd947maintained spontaneous respiration whereas Koslo-ske(7),Blazer et al.(8)and Puhakka et al.(9) controlled the ventilation.Although both sponta-neous and controlled ventilation techniques have been used successfully by these workers,there is no way of knowing the superiority of one technique over the other,as there is no study comparing the two techniques in the literature.This prospective randomized clinical trial was performed to compare these two techniques,namely controlled ventilation using muscle relaxant and spontaneous ventilation with inhalational anesthesia for rigid bronchoscopy for removal of airway foreign bodies.MethodsThis study was conducted at the All India Institute of Medical Sciences,New Delhi from October1998to November2000.After approval by our institutional ethics committee and obtaining informed consent of the parents,36consecutive children who presented for rigid bronchoscopy for suspected foreign body aspiration either as routine or emergency procedure were included in the study.All the children were premedicated with atropine 0.01mg kg)1intravenously immediately prior to induction if intravenous access was present or otherwise after induction.Anesthesia was induced either by halothane inhalation by mask or by sleep dose of thiopentone.Vocal cords were sprayed with one puff(10mg)of lidocaine10%spray.After induction,the children were randomly allocated to one of the two groups,with the help of a computer generated random table.In group I the patient’s respiration was controlled where as group II patients were breathing spontaneously.In group I,introduc-tion of bronchoscope was facilitated by suxametho-nium 1.5mg kg)1whereas in group II it was performed under deep halothane.The children were maintained on intermittent positive pressure venti-lation(IPPV)with O2,halothane0.5%and intermit-tent doses of suxamethonium in group I and on spontaneous respiration with O2and halothane1.5–3%in group II.The fresh gasflow varied from5to 10lÆmin)1and was titrated so as to allow adequate filling of the reservoir bag.The concentration of halothane delivered to the patient was titrated to the clinical parameters of adequate anesthesia.Depth of anesthesia was assessed clinically by hemodyanamic parameters(heart rate,blood pressure),lacrimation, sweating,pattern of respiration,movement,cough-ing and bucking and tone of abdominal recti muscles.The dial setting of the vaporizer and fresh gasflows were recorded.Anesthesia was maintained through a‘T’piece connected to the side arm of the rigid bronchoscope (Storz,Germany).Whenever there was persistent hypoxemia(saturation<90%for>2min)or inability to maintain adequate depth of anesthesia leading to difficulty with bronchoscopy in a particular techni-que,it was decided to interrupt the technique and institute measures to restore normoxemia.In the spontaneous ventilation group,the respiration was assisted.In the controlled ventilation group the proximal end of bronchoscope was sealed and adequate ventilation ensured.All children were monitored continuously for heart rate(HR),electrocardiography(ECG),pulse oximetry(SpO2),and endtidal carbon dioxide (P E CO2)and noninvasive blood pressure(NIBP)at 5min intervals.A20%change in the value of heart rate,systolic and diastolic blood pressures from the basal value was taken as a significant change. Arterial desaturation was defined as SpO2value less than90%.The severity of desaturation was graded as mild(SpO2:80–90%;severity score1),moderate (SpO2:70–79%;severity score2),and severe (SpO2<70%;severity score3).Arterial blood gas (ABG)samples were taken immediately after induc-tion and at the end of the procedure.Significant events(if any),duration of anesthesia and instru-mentation,and laryngeal evaluation by the broncho-scopist and anesthesiologist at end of the procedure were recorded.Lidocaine 1.5mg kg)1was given intravenously to all patients at the end of the procedure to decrease the incidence of coughing in the postbronchoscopy period.The children were taken to the recovery room from the operating room after they achieved a Steward’s recovery score(10)of five or more.The children were nursed after the procedure with humidified oxygen for2h.Postop-eratively,heart rate,respiratory rate,SpO2and episodes of coughing were monitored up to1h after the procedure or as long as such care was needed. Outcome variables studied in the present study were:(a)incidence of hypoxemia(duration and degree of episodes of desaturation),(b)depth of anesthesia judged clinically,(c)evidence of pushing948 A.SOODAN ET AL.Ó2004Blackwell Publishing Ltd,Pediatric Anesthesia,14,947–952the foreign body deeper into the respiratory tree during controlled ventilation.The qualitative data such as sex,number of patients with intraoperative changes in heart rate and blood pressure,number of episodes of desatu-ration and incidence of complications in both groups were compared using chi-square test or Fisher’s exact test where appropriate.The quantitative data such as age,weight,severity score of desaturation, ABG results and induction and recovery times were compared using the Students t-test after determining the normal distribution of the data.The values wererepresented as mean±SD.The results were consid-ered significant if P-value was less than0.05. ResultsThe age,weight and sex distribution in the two groups were comparable.The foreign bodies were mostly organic in nature with history of aspiration varying from1day to2months.The location of the foreign bodies was in either of the bronchi,or both the bronchi or bronchi as well as trachea(Table1). There was no statistically significant difference in the number of patients with change in heart rate, systolic blood pressure and diastolic blood pressure in the two groups.There were a total of26episodes of desaturation in17patients in group I and21episodes of desaturation in19patients in group II,giving a value of1.5and1.1episodes of desaturation per patient in groups I and II,respectively.The break down of the number of episodes of desaturation according to severity is given in Table2.The means of severity scores in groups I and II were1.5and1.1, respectively.The number of episodes of desatura-tion and the severity scores were comparable in both the groups.The episodes of desaturation in the spontaneous ventilation group were clinically asso-ciated with hypoventilation,breath holding or apnea whereas those in the controlled ventilation group were clinically associated with inability to ventilate because of gross leak at the proximal end and/or apnea when the surgeon was trying to remove or localize the foreign body in the airway.All the patients breathing spontaneously had to be assisted to maintain adequate oxygen saturation. Two patients in the spontaneous ventilation group (group II)remained desaturated even after con-trolled ventilation throughout the procedure until the foreign body was removed from the airway.In these two patients,the respiration had to be assisted for a major duration of the procedure and later controlled.If we exclude these two patients from the spontaneous respiration group(group II),then the means of percentage time of procedure during which the patients remained desaturated in both groups were3.5±4.7%for group I and5.2±6.6%for group II.There was no statistically significant difference. The complications seen in our study were intra-operative bucking and coughing,ventricular arrhythmia,laryngospasm,convulsion and post-operative laryngeal edema and severe cough (Table3).Incidence of intraoperative coughing and bucking in spontaneous group was statis-tically highly significant(P¼0.0012).All other complications were equally distributed between the two groups.There was no clinical evidence of pushing the foreign body deeper into the respiratoryTable1Removed foreign bodiesForeign body Number of patients Group I Group II TypeOrganic271312 Inorganic514 LocationRight bronchus1679 Left bronchus853 Trachea413 Multiple sites419 Duration<3Days1349>3Days231310 Table showing the nature(organic or inorganic)and location of the foreign bodies removed and the duration of time for which these foreign bodies were in the respiratory tract in both groups.Table2Severity of desaturationSeverity score Group I Group II 1(Mild)*11102(Moderate)**533(Severe)***108 Table showing the number of patients with mild,moderate and severe desaturations in each group.*Severity score1(mild desaturation):SpO280–90%.**Severity score2(moderate desaturation):SpO270–80%.***Severity score3(severe desaturation):SpO2<70%.INHALED FOREIGN BODIES IN CHILDREN949Ó2004Blackwell Publishing Ltd,Pediatric Anesthesia,14,947–952tree reported by any of the bronchoscopists in our study.The ABG results showed that there was mild hypercarbia and acidosis both at the start and the end of procedure in all the patients.The ABG results were comparable between the two groups.The continuous endtidal carbon dioxide data could not be obtained in all cases due to leakage of the expired gases around the bronchoscope.The time taken for induction of anesthesia was significantly shorter in group I(4.4±4.0min)compared with group II(14.1±3.0min). Similarly,the recovery times were shorter in group I (9.1±4.7min)than in group II(22.4±8.6min).The differences in induction and recovery times were statistically significant(P<0.001).DiscussionThe presence of foreign body in the respiratory tract is a serious and on occasion fatal condition requiring immediate intervention.For the removal of aspirated foreign bodies in children there is no substitute for a rigid ventilating bronchoscope.It provides a much higher quality image and larger channels for instru-mentation.During rigid bronchoscopy it is often difficult to maintain adequate ventilation and oxy-genation in these patients as pulmonary gas exchange is already deranged.It is difficult to maintain an adequate depth of anesthesia during the procedure,as there is a constant leak of anesthetic gases through the proximal end and around the bronchoscope. Ahmed(6)studied the records of58children who underwent rigid bronchoscopy for inhaled foreign bodies.General anesthesia was employed and spon-taneous respiration was maintained when possible. The author found that all children suffered from some respiratory embarrassment intraoperatively, although the report does not comment on the number of patients who had impaired oxygenation. Perrin et al.(5)found that they had to assist respiration in spontaneously breathing patients undergoing rigid bronchoscopy because of pro-longed apnea or oxygen desaturation.Baraka(3) used assisted ventilation in63children undergoing bronchoscopy for removal of inhaled foreign bodies. He assisted the ventilation by intermittentflushing of oxygen via the sidearm of bronchoscope,without occluding the head of bronchoscope.In our study, we were unable to maintain any of the patients purely on spontaneous respiration and had to assist the respiration in all patients belonging to sponta-neous ventilation group.Litman et al.(11)in a retrospective analysis of 18years’data showed that11of26cases of spon-taneous and5of18cases of assisted ventilation had to be changed to controlled ventilation.It is possible that spontaneous ventilation used at the outset was not sufficient to maintain normoxia or paralysis was required because patients were moving.When there was a change in ventilatory technique it was always a change from spontaneous or assisted to controlled and not vice versa.In our study the respiration of all the patients in the spontaneous group had to be assisted and in two of them,later controlled. Kosloske(7),Blazer et al.(8)and Puhakka et al.(9) used controlled ventilation technique for removal of aspirated foreign bodies in children.They did not mention intraoperative problems because of positive pressure ventilation during bronchoscopy.In our study,in the controlled ventilation group patients, there was an even depth of anesthesia and there was no episode of the foreign body being dislodged or pushed distally during removal.It was possible to improve oxygenation by providing an effective seal. All the previously published reports are retro-spective data and have the inherent fault of incom-plete information of a retrospective analysis.This is thefirst prospective randomized study comparing spontaneous and controlled ventilation techniques. In our study the episodes of poor oxygenation and desaturation were because of bucking and coughing or from periods of shallow breathing,apnea or breath holding in the spontaneous respiration group. In the controlled ventilation group it was due to inadequate ventilation because of leakage of gas mixture from the proximal end of the bronchoscope or from prolonged apnea when the surgeon wasTable3ComplicationsComplications Group I(n¼17)Group II(n¼19)Intraop coughing and bucking112*Ventricular arrhythmia13Laryngospasm13Convulsions01Postop laryngeal edema54Postop severe cough52The number of patients with different complications in bothgroups.*P¼0.0012.950 A.SOODAN ET AL.Ó2004Blackwell Publishing Ltd,Pediatric Anesthesia,14,947–952attempting to localize or retrieve the foreign body from the airway.Assisting the respiration manually or sealing the proximal end of the bronchoscope improved oxygenation.The episodes of desaturation and their duration were comparable between the two groups after the respiration was assisted in group II.Had we not assisted the respiration,the duration of desaturation in these children would have been significantly longer.Pawar has demon-strated in puppies that during spontaneous respir-ation,the minute ventilation decreases by50%and the lung compliance tends to be low(personal communication).This could be due to the increased resistance of the bronchoscope telescope system.The inadequate ventilation and inability to maintain oxygenation could be because of these changes in the pulmonary mechanics imposed by the introduc-tion of bronchoscope and telescope during sponta-neous breathing.During controlled ventilation,as the work of breathing is taken over by the anesthet-ist,the resistance is easily overcome and adequate volumes can be delivered.Another cause of poor oxygenation could be inadequate depth of anesthesia,as evidenced by increased frequency of coughing and bucking.The leakage of anesthetic gases from the open end of the bronchoscope and around the bronchoscope com-bined with decreased ventilation leads to inadequate delivery of inhalational agent to maintain an even depth.One of the reasons given by Woods et al.(12),Kim et al.(4),and Ahmed(6)for avoiding controlled ventilation during bronchoscopic removal of foreign bodies is the possible complication of forcing the foreign body further into the bronchial tree.Pawar (13)has given an account of four cases in which the foreign body was dislodged14times during removal in both spontaneous as well as controlled ventilation,but there was no incidence of the foreign body being pushed distally.In our study there was no incidence of the foreign body being pushed down the bronchial tree during removal in either of the groups.The risk of pushing down a foreign body by positive pressure ventilation seems to be overstated and unsubstantiated.Attempts were made to maintain adequate depth of anesthesia in both groups.In the spontaneous venti-lation group,it was done by increasing the dial setting of delivered halothane from1.5to3%compared with 0.5%in the controlled ventilation group.There was even depth of anesthesia in the patients in the controlled ventilation group as evidenced by a lesser number of episodes of intraoperative coughing and bucking.This is because the patients were paralysed and constant positive pressure ventilation was provi-ded throughout the procedure delivering adequate anesthetic gases in oxygen to the lungs of the patient. Several complications are associated with rigid bronchoscopy such as coughing and bucking,pneu-mothorax,mediastinal and subcutaneous emphys-ema,laryngospasm,laryngeal edema,cardiac arrhythmia,cardiac arrest,convulsions and death (1–10,13).These could be due to many reasons such as inadequate depth of anesthesia,hypoxia,inad-equate ventilation and vagal stimulation.The com-plications reported by workers using controlled or spontaneous ventilation techniques are similar.In our study the complications in both the groups were comparable except for intraoperative coughing and bucking,which was worse in group II patients probably because of inadequate depth of anesthesia. In our study,the incidence of severe postoperative cough in the controlled ventilation group was higher although not statistically significant,in spite of the same dose of intravenous lidocaine administered as in the spontaneous ventilation group probably because of early recovery and awakening.During rigid bronchoscopy the airway is manipulated repeatedly leading to airway edema and irritation. As a result,coughing is very common afterwards.It can be prevented by application of local anesthetic on the airway mucosa or by intravenous adminis-tration of lidocaine.Coughing could not have been because of pain in these patients as rigid bronchos-copy is not a painful procedure.Convulsions under anesthesia are a serious and rare complication and can be due to factors such as hypoxia,hypercarbia or metabolic and electrolyte disturbances.In our study,one child in the sponta-neous respiration group had convulsions during bronchoscopy.This18-month-old girl was cyanosed, gasping and in respiratory distress on arrival.She had altered consciuosness withflaccid limbs and low saturations(50%).She had severe hypercarbia [PaCO2:13kPa(100mmHg)]and mild acidosis(BE: )7.5).The convulsions were manifested in the lighter plane of anesthesia.The exact cause of convulsion in this patient cannot be ascribed toINHALED FOREIGN BODIES IN CHILDREN951Ó2004Blackwell Publishing Ltd,Pediatric Anesthesia,14,947–952any particular factor as she had hypoxia,hypercar-bia,probable metabolic and electrolyte derange-ments.The lidocaine spray in to the cords might have contributed to the occurrence as its toxicity is manifested in the presence of metabolic disorders (14).It is very unlikely that the anesthetic technique contributed to the occurrence of seizures in this case. The number of patients required to identify significant incidence of various complications in any technique is high.The number of patients studied and reported by different workers is small. That is why it is difficult to make definite remarks on the contribution of any particular technique to the incidence of complications.However,most of the complications of bronchoscopy reported are due to inadequate depth of anesthesia.In spontaneously breathing patients,the depth of anesthesia has been shown to be inadequate and uneven compared with those on controlled ventilation.From this study,we conclude that it is not possible to maintain an adequate depth of anesthesia with spontaneous respiration during rigid bronch-oscopy for removal of inhaled foreign body in children and that respiration needs to be assisted. The use of controlled ventilation with muscle relax-ants and inhalational anesthesia provides an even and adequate depth of anesthesia for rigid bronch-oscopy.Considering the considerable morbidity and mortality associated with these procedures,they should not be taken lightly.We recommend routine use of controlled ventilation for bronchoscopy for the removal of inhaled foreign bodies.References1Fearson B.Anesthesia in pediatric per oral endoscopy.Ann Otol Rhinol Laryngol1969;78:470–475.2Chatterji S,Chatterji P.The management of foreign bodies in air passages.Anaesthesia1972;27:390–395.3Baraka A.Bronchoscopic removal of inhaled foreign bodies in children.Br J Anaesth1974;46:124–126.4Kim G,Brummitt WM,Humphry A et al.Foreign body in the airway:a review ryngoscope1973;83:347–354. 5Perrin G,Colt HG,Martin C et al.Safety of interventional rigid bronchoscopy using intravenous anesthesia and spontaneous assisted ventilation.A prospective study.Chest1992;102: 1526–1530.6Ahmed AA.Bronchoscopic extraction of aspirated foreign bodies in children in Harare.East Afr Med J1996;73:244–246. 7Kosloske AN.Bronchoscopic extraction of aspirated foreign bodies in children.Am J Dis Child1982;136:924–927.8Blazer S,Naveh Y,Friedman A.Foreign body in the airway.Am J Dis Child1980;134:68–71.9Puhakka H,Kero P,Valli P et al.Pediatric bronchoscopy.A report of methodology and results.Clin Pediatr1989;28:253–257.10Steward DJ.A simplified scoring system for the postoperative recovery room.Can Anaesth Soc J1975;22:111–113.11Litman RS,Ponnuri J,Trogan I.Anesthesia for tracheal or bronchial foreign body removal in children:an analysis of ninety-four cases.Anesth Analg2000;91:1389–1391.12Woods AM.Pediatric endoscopy.In:Berry FA,ed.Anesthetic Management of Difficult and Routine Pediatric Patients,2nd edn.New York:Churchill Livingstone,1990:199–242.13Pawar DK.Dislodgement of bronchial foreign body during retrieval in children.Paediatr Anaesth2000;10:333–335.14Englesson S,Matousek M.Central nervous system effects of local anaesthetic agents.Br J Anaesth1975;47(Suppl.): 241–246.Accepted3December2003952 A.SOODAN ET AL.Ó2004Blackwell Publishing Ltd,Pediatric Anesthesia,14,947–952。