高二数学椭圆测试题一答案

合集下载

高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析1.已知椭圆的中心在原点、焦点在轴上,抛物线的顶点在原点、焦点在轴上.小明从曲线、上各取若干个点(每条曲线上至少取两个点),并记录其坐标(.由于记录失误,使得其中恰有一个点既不在椭圆上,也不在抛物线上,小明的记录如下:据此,可推断抛物线的方程为_____________.【答案】【解析】:由题意可知:点是椭圆的短轴的一个端点,或点是椭圆的长轴的一个端点.以下分两种情况讨论:①假设点是椭圆的短轴的一个端点,则可以写成经验证可得:若点在上,代入求得,即,剩下的4个点中也在此椭圆上.假设抛物线的方程为,把点代入求得p=2,∴,则只剩下一个点既不在椭圆上,也不在抛物线上满足条件.假设抛物线的方程为y2=-2px,经验证不符合题意.②假设点是椭圆的长轴的一个端点,则可以写成,经验证不满足条件,应舍去.综上可知:可推断椭圆的方程为.【考点】椭圆、抛物线的标准方程及其性质和分类讨论的思想方法是解题的关键.2.已知椭圆的一个顶点为,焦点在轴上,若右焦点到直线的距离为.(Ⅰ)求椭圆的方程;(Ⅱ)是否存在斜率为,且过定点的直线,使与椭圆交于两个不同的点,且?若存在,求出直线的方程;若不存在,请说明理由.【答案】(1)(2)不存在【解析】(1)设椭圆的方程,用待定系数法求出的值;(2)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.试题解析:(I)依题意可设椭圆方程为,则右焦点,由题设:,解得:,故所求椭圆的方程为.(II)设存在直线符合题意,直线方程为,代入椭圆方程得:,设,为弦的中点,则由韦达定理得:,,因为不符合,所以不存在直线符合题意.【考点】(1)椭圆的方程;(2)直线与椭圆的综合问题.3.椭圆的焦距是()A.3B.6C.8D.10【答案】B【解析】由椭圆的方程知,∵a2=25,b2=16,∴c=∴的焦距2c=6.故选B.【考点】椭圆的性质.4.已知椭圆经过点,离心率为,过点的直线与椭圆交于不同的两点.(1)求椭圆的方程;(2)求的取值范围.【答案】(1);(2).【解析】(1)利用题干中的两个条件,和椭圆本身的性质,得然后求解,代入即可;(2)由题干“过点的直线与椭圆交于不同的两点”.设直线的方程为,由得,设,的坐标分别为,,然后利用根与系数的关系,代换出,注意:k的范围.试题解析:(1)由题意得解得,.椭圆的方程为.(2)由题意显然直线的斜率存在,设直线的方程为,由得. 直线与椭圆交于不同的两点,,,解得.设,的坐标分别为,,则,,,.的范围为.【考点】椭圆定义,转化与化归思想,舍而不求思想的运用.5.已知椭圆的对称中心为原点,焦点在轴上,左右焦点分别为和,且||=2,离心率. (1)求椭圆的方程;(2)过的直线与椭圆相交于A,B两点,若的面积为,求直线的方程.【答案】(1);(2)或.【解析】(1)设椭圆的方程,用待定系数法求出的值;(2)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.试题解析:(1)椭圆C的方程是 4分(2)当直线轴时,可得的面积为3,不合题意。

高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析1.已知椭圆:的左焦点,离心率为,函数,(Ⅰ)求椭圆的标准方程;(Ⅱ)设,,过的直线交椭圆于两点,求的最小值,并求此时的的值.【答案】(Ⅰ);(Ⅱ)的最小值为,此时.【解析】(Ⅰ)利用左焦点F(-1,0),离心率为,及求出几何量,即可求椭圆C的标准方程;(Ⅱ)分类讨论,设直线l的方程来:y=k(x-t)代入抛物线方程,利用韦达定理,结合向量的数量积公式,即可求的最小值,并求此时的t的值.试题解析:(Ⅰ),由得,椭圆方程为(Ⅱ)若直线斜率不存在,则=若直线斜率存在,设直线,由得所以故故的最小值为,此时.【考点】直线与圆锥曲线的综合问题.2.设分别是椭圆的左,右焦点.(1)若是椭圆在第一象限上一点,且,求点坐标;(5分)(2)设过定点的直线与椭圆交于不同两点,且为锐角(其中为原点),求直线的斜率的取值范围.(7分)【答案】(1);(2).【解析】(1)设,求点坐标,即要构建关于的两个方程,第一个方程可根据点在曲线上,点的坐标必须适合曲线的方程得到,即有,第二个方程可由通过坐标化得到,即有,联立方程组,可解得点坐标;(2)求直线的斜率的取值范围,即要构建关于的不等式,可通过为锐角,转化为不等关系,进而转化为关于的不等式,解出的取值范围.注意不要忽略,这是解析几何中常犯的错误.试题解析:(1)依题意有,所以,设,则由得:,即,又,解得,因为是椭圆在第一象限上一点,所以. 5分(2)设直线与椭圆交于不同两点的坐标为、,将直线:代入,整理得:(),则,,因为为锐角,所以,从而整理得:,即,解得,且()方程必须满足:,解得,因此有,所以直线的斜率的取值范围为. 12分【考点】1.直线与椭圆的位置关系;2.方程与不等式思想,3.设而不求的思想与等价转化思想.3.双曲线与椭圆的离心率互为倒数,则()A.B.C.D.【答案】B.【解析】由双曲线与椭圆的离心率的定义知,双曲线的离心率和椭圆的离心率分别为、,然后由题意得,即,将其两边平方化简即可得出结论.【考点】双曲线的几何性质;椭圆的几何性质.4.已知双曲线的渐近线方程为,则以它的顶点为焦点,焦点为顶点的椭圆的离心率等于()A.B.C.D.1【答案】A【解析】双曲线的焦点在轴上,又渐近线方程为,可设,则,由题意知在椭圆中,所以该椭圆的离心率等于。

高二数学椭圆练习题及答案

高二数学椭圆练习题及答案

高二数学椭圆练习题及答案一:选择题 1.已知方程表示焦点在x轴上的椭圆,则m的取值范围是2.已知椭圆,长轴在y轴上、若焦距为4,则m等于 4.已知点F1、F2分别是椭圆+=1的左、右焦点,弦AB过点F1,若△ABF26.方程=10,化简的结果是7.设θ是三角形的一个内角,且,则方程xsinθ﹣ycosθ=1表示的曲线221、22129.从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP,则该椭10.若点O和点F分别为椭圆的中心和左焦点,点P 为椭圆上的任意一点,则的最大值为11.如图,点F为椭圆=1的一个焦点,若椭圆上存在一点P,满足以椭圆短轴为直径的圆与线段PF相切于线段PF的中点,则该椭圆的离心率为12.椭圆顶点A,B,若右焦点F到直线AB的距离等于,则椭圆的离心率e=高二数学周测一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是满足题目要求的。

1.平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A.B 为焦点的椭圆”,那么 A.甲是乙成立的充分不必要条件B.甲是乙成立的必要不充分条件C.甲是乙成立的充要条件D.甲是乙成立的非充分非必要条件.若椭圆2kx?ky?1的一个焦点是,则k的是 A.2211B.C. D.3228D.3x2-y2=363.双曲线与椭圆4x2+y2=64有公共的焦点,它们的离心率互为倒数,则双曲线方程为 A.y2-3x2=36B.x2-3y2=36C.3y2-x2=364.已知F1、F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A、B两点,若△ABF2是正三角形,则这个椭圆的离心率是 A.23B.33C.22D.2x2y25.椭圆2?2?1的两个焦点F1,F2三等分它的两条准线间的距离,那么它的离心率abA.B. C. D.336x2y26.已知是直线l被椭圆??1所截得的线段的中点,则l 的方程为369A.x?2y?0B. x?2y?4?0C.x?3y?4?0D. x?2y?8?0x2y27.设F1,F2分别是椭圆2?2?1的左、右焦点,若在其右准线上存在P,ab使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是?A.?0 ?2???B.?01?C.?1?D.? ??x2y28.在椭圆,F为椭圆右焦点,在椭圆上有一点M,使|MP|+2|MF|??1内有一点P43的值最小,则这一最小值是 A.D.457B. 2C.3二、填空题.双曲线3mx2-my2=3的一个焦点是,则m的值是x2y210.已知方程??1表示椭圆,则k的取值范围是____________.3?k2?kx2y211.设F1、F2是椭圆C:+=1的焦点,在曲线C上满足PF1?PF2=0的点P的个数124为________x2y2?12. 已知椭圆+=1的两个焦点为F1、F2,P为椭圆上一点,满足∠F1PF2=,则△F1PF2433的面积为_________________.13.已知椭圆C的焦点F1和F2,长轴长6,设直线y?x?2交椭圆C于A、B两点,则线段AB的中点坐标 .14. 已知圆A:?x?2??y?16,圆B:?x?2??y?14.动圆C与圆A内切,且222与圆B外切.则动圆圆心的轨迹方程为.三、解答题 x2y215. 求以椭圆+1的两个顶点为焦点,以椭圆的焦点为顶点的169双曲线方程,并求此双曲线的实轴长、虚轴长、离心率及渐近线方程.16. 从双曲线C:x?y?1上一点Q引直线l:x?y?2的垂线,垂足为N,求线段QN的中点P的轨迹方程.17. 已知动点P与平面上两定点A,对应的准线方程为y??且离心率e为和42时,求直线l的方程.92,4234的等比中项.平分?2求椭圆方程,是否存在直线l与椭圆交于不同的两点M、N,且线段MN恰为直线x??若存在,求出直线l的斜率的取值范围,若不存在,请说明理由.x219. 设F1、F2分别是椭圆?y2?1的左、右焦点.4若P是该椭圆上的一个动点,求PF1?PF2的最大值和最小值;设过定点M的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角,求直线l的斜率k的取值范围.x2y220. 知椭圆2??1的左、右焦点分别为F1、F2,离心ab率e?x?2。

高二数学椭圆试题

高二数学椭圆试题

高二数学椭圆试题1.已知椭圆过和点.(1)求椭圆的方程;(2)设过点的直线与椭圆交于两点,且,求直线的方程.【答案】(1);(2).【解析】(1)由已知将已知两点的坐标代入椭圆G的方程中,可得到关于的方程组,解此方程组就可求得的值,进而就可写出椭圆G的方程.(2)首先注意到由题意可得到直线的斜率存在,且.从而可用斜截式设出直线的方程,代入椭圆G的方程消元得到一个一元二次方程,则此方程一定有两个不同的解,所以,可得到的取值范围;再由,得到,结合韦达定理可用的代数式表示出线段MN的中点的坐标,然后由就可求出的值,从而求得直线的方程.试题解析:(1)因为椭圆过点和点.所以,由,得.所以椭圆的方程为 4分(2)显然直线的斜率存在,且.设直线的方程为.由消去并整理得, 5分由, 7分设,,中点为,得, 8分由,知,所以,即.化简得,满足.所以 12分因此直线的方程为 14分【考点】1.椭圆的的方程;2.直线与椭圆的位置关系.2.已知椭圆的两个焦点分别为,且,点在椭圆上,且的周长为6.(1)求椭圆的方程;(2)若点的坐标为,不过原点的直线与椭圆相交于不同两点,设线段的中点为,且三点共线.设点到直线的距离为,求的取值范围.【答案】(1);(2).【解析】(1)本小题中为焦点三角形,其周长为,又,两式组成方程组从而易求出,即可写出椭圆方程;(2)本小题中直线的方程可设为(其中不存在是不可能的),与椭圆方程联立消y,利用韦达定理与中点坐标公式,可得M点坐标(用k,m表示),当三点共线,则有即可解出k的值,又消y后的方程的可得m的范围,而点到直线的距离可用m表示,利用函数观点可求出的取值范围.试题解析:(1)由已知得,且,解得,又,所以椭圆的方程为.(2)当直线与轴垂直时,由椭圆的对称性可知:点在轴上,且与原点不重合,显然三点不共线,不符合题设条件.所以可设直线的方程为,由消去并整理得:①则,即,设,且,则点,因为三点共线,则,即,而,所以,此时方程①为,且因为,所以.【考点】椭圆的定义及标准方程,性质,直线与椭圆相交问题,设而不解思想,韦达定理,方程与函数思想,化归思想.3.与椭圆有公共焦点,且离心率的双曲线方程是()A.B.C.D.【答案】C【解析】椭圆焦点为,又,则,所以,焦点在x轴上,故选C.【考点】椭圆与双曲线的标准方程与几何性质.4.若点分别为椭圆的中心和左焦点,点为椭圆上的任意一点,则的最大值为()A.B.C.D.【答案】A【解析】因为,设,则又因为,所以因为对称轴,而,因此当时,的最大值为.【考点】二次函数最值5.若椭圆上有个不同的点为右焦点,组成公差的等差数列,则的最大值为()A.199B.200C.99D.100【答案】B【解析】椭圆上的点到右焦点最大距离为:a+c=3,到右焦点最小距离是a-c=1,2=(n-1)d,要使,且n最大,有d=,由此能求出n的最大值.【考点】(1)椭圆的定义;(2)等差数列.6.已知椭圆过点,且离心率.(1)求椭圆的标准方程;(2)若直线与椭圆相交于,两点(不是左右顶点),椭圆的右顶点为,且满足,试判断直线是否过定点,若过定点,求出该定点的坐标;若不过定点,请说明理由.【答案】(1);(2).【解析】(1)本小题通过待定系数法列出两个关于的方程,通过解方程组求出椭圆的方程,包含着二次方的运算需掌握;(2)本小题是直线与椭圆的位置关系的问题,这类题目的常用思路就是联立直线方程和椭圆方程通过消元得到一个一元二次方程,确定判别式的情况,正确书写、利用韦达定理,由,两点(不是左右顶点),椭圆的右顶点为,且满足,根据向量的数量积为零,可得到关于两个根的等式,再利用韦达定理可得关于的等式,从而就可得出相应的结论.试题解析:(1)即∴椭圆方程为 4分又点在椭圆上,解得∴椭圆的方程为 6分(2)设,由得,8分所以,又椭圆的右顶点,,解得 10分,且满足当时,,直线过定点与已知矛盾 12分当时,,直线过定点综上可知,当时,直线过定点,定点坐标为 14分.【考点】1.直线与椭圆的位置关系;2.韦达定理;3.平面向量的数量积;4.过定点的问题;5.直线与椭圆的综合问题.7.已知点分别是椭圆为:的左、右焦点,过点作轴的垂线交椭圆的上半部分于点,过点作直线的垂线交直线于点,若直线与双曲线的一条渐近线平行,则椭圆的离心率为( )A.B.C.D.【答案】C【解析】将点代入:,得,∴,∵过点作直线的垂线交直线于点,,设,得,解得,∴.∵直线与双曲线的一条渐近线平行,∴,即,整理,得,解得,故选C.【考点】1、椭圆的几何性质;2、双曲线的性质.8.椭圆的焦距等于()A.20B.16C.12D.8【答案】B【解析】椭圆中的关系是,,焦距是,题中,所以,所以焦距为16,故选B.【考点】椭圆的几何性质(椭圆的焦距).9.如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且|MD|=|PD|,当P在圆上运动时,求点M的轨迹C的方程。

高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析1.已知椭圆G:过点,,C、D在该椭圆上,直线CD过原点O,且在线段AB的右下侧.(1)求椭圆G的方程;(2)求四边形ABCD 的面积的最大值.【答案】(1),(2)【解析】(1)求椭圆方程一般方法为待定系数法,将A,B两点坐标代入椭圆方程,联立方程组解得:,(2)四边形可分割成三个三角形,即,其中三角形OAB面积确定,OC=OD,因此可用直线CD斜率表示高及底:设直线CD方程为y = kx,代入椭圆方程得,解得:,,又,,则试题解析:解:(1)将点A(0,5),B(-8,-3)代入椭圆G 的方程解得(2)连结OB,则,其中,分别表示点A,点B 到直线CD 的距离.设直线CD方程为y = kx,代入椭圆方程得,解得:,,又,则.【考点】椭圆方程,直线与椭圆位置关系2.设是椭圆的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为()A.B.C.D.【答案】C【解析】如下图所示,是底角为的等腰三角形,则有所以,所以又因为,所以,,所以所以答案选C.【考点】椭圆的简单几何性质.3.双曲线与椭圆的离心率互为倒数,则()A.B.C.D.【答案】B.【解析】由双曲线与椭圆的离心率的定义知,双曲线的离心率和椭圆的离心率分别为、,然后由题意得,即,将其两边平方化简即可得出结论.【考点】双曲线的几何性质;椭圆的几何性质.4.已知双曲线的渐近线方程为,则以它的顶点为焦点,焦点为顶点的椭圆的离心率等于()A.B.C.D.1【答案】A【解析】双曲线的焦点在轴上,又渐近线方程为,可设,则,由题意知在椭圆中,所以该椭圆的离心率等于。

【考点】(1)椭圆、双曲线离心率的求法;(2)椭圆、双曲线中的三者关系。

5.已知定点A(1,0),B (2,0) .动点M满足,(1)求点M的轨迹C;(2)若过点B的直线l(斜率不等于零)与(1)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.【答案】(1)(2)(,1)【解析】(1)先对原函数求导,然后求出斜率,再利用进行整理即可.(2)先设方程为与联立,结合根与系数的关系以及判别式得到再由得,即可(1)由得, ∴.∴直线的斜率为,故的方程为,∴点A的坐标为(1,0). (2分)设,则(1,0),,,由得,整理,得. (4分)(2)方法一:如图,由题意知的斜率存在且不为零,设方程为①,将①代入,整理,得,设,,则②得(7分)令,则,由此可得,,且.∴由②知,.∴, (10分)∵,∴,解得且 (12分)又∵,∴,∴△OBE与△OBF面积之比的取值范围是(,1). (13分)方法二:如图,由题意知l’的斜率存在且不为零,设l’ 方程为①,将①代入,整理,得,设,,则② ; (7分)令,则,由此可得,,且.∴ (10分)∵, ∴,解得且 (12分)又∵,∴,∴△OBE与△OBF面积之比的取值范围是(,1). (13分)【考点】函数求导;根与系数的关系;斜率公式;不等式的解法.6.已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(1)求椭圆的方程;(2)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足(为坐标原点),当<时,求实数取值范围.【答案】(1);( Ⅱ).【解析】(1)由题意知,所以.由此能求出椭圆C的方程.(2)由题意知直线AB的斜率存在.设AB:y=k(x-2),A(x1,y1),B(x2,y2),P(x,y),由得(1+2k2)x2-8k2x+8k2-2=0再由根的判别式和嘏达定理进行求解.解:(1)由题意知,所以.即. 2分又因为,所以,.故椭圆的方程为. 4分(2)由题意知直线的斜率存在.设:,,,,由得.,. 6分,.∵,∴,,.∵点在椭圆上,∴,∴. 8分∵<,∴,∴∴,∴,∴. 10分∴,∵,∴,∴或,∴实数t取值范围为.(12分)【考点】1. 椭圆的方程;2.直线与椭圆的方程.7.已知椭圆的中心在原点,焦点在轴上,且长轴长为12,离心率为,则椭圆的方程是() A.B.C.D.【答案】D【解析】依题意可设,其中即,且,所以,从而,所以椭圆的标准方程为,故选D【考点】椭圆的标准方程及其几何意义.8.在椭圆中,左焦点为, 右顶点为, 短轴上方端点为,若,则该椭圆的离心率为___________.【答案】【解析】由题意,得,∴.∵,∴,∴,∴.又∵,∴.【考点】椭圆的离心率.9.在平面直角坐标系中,若,且.(1)求动点的轨迹的方程;(2)已知定点,若斜率为的直线过点并与轨迹交于不同的两点,且对于轨迹上任意一点,都存在,使得成立,试求出满足条件的实数的值.【答案】(1);(2).【解析】(1)设,则,,由可得,结合椭圆的定义可知,动点的轨迹是以为焦点,4为长轴长的椭圆,从而可以确定椭圆标准方程中的参数的取值,进而写出椭圆的方程即可;(2)设,直线:,联立直线的方程与(1)中椭圆的方程,消去得到,进而根据得,且,再计算出,然后由确定的横纵坐标,根据点在轨迹上,将点的坐标代入轨迹的方程并由的任意性,得到即,从中求解,并结合即可得到满足要求的的值.试题解析:(1)设,则,由可得∴动点到两个定点的距离的和为4∴轨迹是以为焦点的椭圆,且长轴长为设该椭圆的方程为则有且,所以所以轨迹的方程为(2)设,直线的方程为,代入消去得由得,且∴设点,由可得∵点在上∴∴又因为的任意性,∴∴,又,得代入检验,满足条件,故的值是.【考点】1.动点的轨迹问题;2.椭圆的定义及其标准方程;3.直线与圆锥曲线的综合问题.10.在平面直角坐标系xOy中,△ABC的顶点B、C的坐标为B(-2,0),C(2,0),直线AB,AC的斜率乘积为,设顶点A的轨迹为曲线E.(1)求曲线E的方程;(2)设曲线E与y轴负半轴的交点为D,过点D作两条互相垂直的直线l1,l2,这两条直线与曲线E的另一个交点分别为M,N.设l1的斜率为k(k≠0),△DMN的面积为S,试求的取值范围.【答案】(1);(2)【解析】(1)由于所求动点A满足直线AB,AC的斜率乘积为,所以直接设A的坐标,代入化简整理即得:,注意到△ABC中三个顶点不能共线,所以需去掉与轴相交的点,(2)要求的取值范围,首先求出函数解析式,由题意确定l1的斜率为k为自变量,因为M 为l1与曲线E的交点,所以列方程组解出点M坐标,从而得出弦长;同理,只需将代k就可得到,因此△DMN的面积S=,所以=,这可以看作关于1+k2的一个分式函数,即,可以利用函数单调性求出其取值范围.试题解析:解(1)设顶点A的坐标为(x,y),则kAB =,kAC= 2分因为kAB ×kAC=,所以,即.(或x2+4y2=4).所以曲线E的方程为. 4分(2)曲线E与y轴负半轴的交点为D(0,-1).因为l1的斜率存在,所以设l1的方程为y=kx-1,代入,得从而 6分用代k得所以△DMN的面积S= 8分则=因为k≠0且,k≠±2,令1+k2=t,则t>1,且,t≠5,从而=因为,且,所以且,从而且,,即∈ 10分.【考点】直接法求轨迹方程,直线与圆锥曲线关系,求函数范围11.椭圆的焦距为2,则m的取值是()A.7B.5C.5或7D.10【答案】C【解析】当时,当时,本题有两个注意点,一是焦距是即二是椭圆交点位置不定,需讨论.【考点】椭圆标准方程基本量12.平面内与两定点、()连线的斜率之积等于非零常数m的点的轨迹,加上、两点所成的曲线C可以是圆、椭圆或双曲线.求曲线C的方程,并讨论C的形状与m 值得关系.【答案】当时,曲线C的方程为,C是焦点在y轴上的椭圆;当时,曲线C的方程为,C是圆心在原点的圆;当时,曲线C的方程为, C是焦点在x轴上的椭圆;当时,曲线C 的方程为,C是焦点在x轴上的双曲线.【解析】设出动点M的坐标,利用斜率乘积求出曲线轨迹方程,然后讨论 m的值,判断曲线是圆、椭圆或双曲线时m的值的情况.试题解析:设动点为M,其坐标为,当时,由条件可得即,又的坐标满足,故依题意,曲线C的方程为. 4分当时,曲线C的方程为,C是焦点在y轴上的椭圆; 6分当时,曲线C的方程为,C是圆心在原点的圆; 8分当时,曲线C的方程为,C是焦点在x轴上的椭圆; 10分当时,曲线C的方程为,C是焦点在x轴上的双曲线. 12分【考点】(1)求轨迹方程;(2)圆锥曲线的综合应用.13.已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录如下:、、、.(1)经判断点,在抛物线上,试求出的标准方程;(2)求抛物线的焦点的坐标并求出椭圆的离心率;(3)过的焦点直线与椭圆交不同两点且满足,试求出直线的方程.【答案】(1);(2);(3)或.【解析】(1)先设抛物线,然后将或代入可得,从而确定了的方程,也进一步确定、不在上,只能在上;设:,把点、代入得,求解即可确定的方程;(2)由(1)中所求得的方程不难得到的焦点及椭圆的离心率;(3)先假设所求直线的方程(或,不过此时要先验证直线斜率不存在的情况),然后联立直线与椭圆的方程,消去消去,得,得到,再得到,要使,只须,从中求解即可得到,从而可确定直线的方程.试题解析:(1)设抛物线,则有,而、在抛物线上 2分将坐标代入曲线方程,得 3分设:,把点、代入得解得∴方程为 6分(2)显然,,所以抛物线焦点坐标为由(1)知,,所以椭圆的离心率为 8分(3)法一:直线过抛物线焦点,设直线的方程为,两交点坐标为,由消去,得 10分∴①② 12分由,即,得将①②代入(*)式,得,解得 14分所求的方程为:或 15分法二:容易验证直线的斜率不存在时,不满足题意 9分当直线斜率存在时,直线过抛物线焦点,设其方程为,与的交点坐标为由消掉,得, 10分于是,①即② 12分由,即,得将①、②代入(*)式,得解得 14分故所求的方程为或 15分.【考点】1.抛物线的标准方程及其几何性质;2.椭圆的标准方程及其几何性质;3.直线与圆锥曲线的综合问题.14.椭圆,为上顶点,为左焦点,为右顶点,且右顶点到直线的距离为,则该椭圆的离心率为()A.B.C.D.【答案】C【解析】由F(-c,0),B(0,b),可得直线FB:,利用点到直线的距离公式可得:A(a,0)到直线FB的距离=b,化简解出即可.【考点】椭圆的几何性质.15.已知点分别是椭圆为:的左、右焦点,过点作轴的垂线交椭圆的上半部分于点,过点作直线的垂线交直线于点,若直线与双曲线的一条渐近线平行,则椭圆的离心率为( )A.B.C.D.【答案】C【解析】将点代入:,得,∴,∵过点作直线的垂线交直线于点,,设,得,解得,∴.∵直线与双曲线的一条渐近线平行,∴,即,整理,得,解得,故选C.【考点】1、椭圆的几何性质;2、双曲线的性质.16.已知椭圆上一点到右焦点的距离是1,则点到左焦点的距离是()A.B.C.D.【答案】D【解析】根据椭圆的定义,点P到两个焦点距离和等于2a=即可.【考点】椭圆的定义.17.设是椭圆上一动点,是椭圆的两个焦点,则的最大值为 .【答案】4【解析】在中,设,由余弦定理可知,结合椭圆的性质化简得:;当点位于椭圆的上顶点时,有最大值,且,此时的最大值为4.【考点】椭圆的定义及性质、余弦定理、最值问题.18.椭圆焦点在x轴上,A为该椭圆右顶点,P在椭圆上一点,,则该椭圆的离心率e 的范围是()A.B.C.D.【答案】B【解析】设则.又由于,所以即可得.所以点P在以OA为直径的圆上.及椭圆与该圆有公共点. 消去y得.由于过点A所以有一个根为,另一个根设为,则由韦达定理可得.又因为.所以解得.故选B.【考点】1.线的垂直问题转化到向量垂直问题.2.曲线的公共点转化为方程组的解得问题.3.区间根的问题.19.若椭圆的短轴为,它的一个焦点为,则满足为等边三角形的椭圆的离心率是() A.B.C.D.【答案】B 【解析】由为等边三角形可知,在直角三角形中,,且,所以其离心率.【考点】本题考查的知识点是椭圆的离心率的定义,以及椭圆的几何性质.20. 在给定椭圆中,过焦点且垂直于长轴的弦长为,焦点到相应准线的距离为1,则该椭圆的离心率为( ) A .B .C .D .【答案】B【解析】由题意可知,,联立可得.【考点】椭圆的简单几何性质.21. 已知点P (4, 4),圆C :与椭圆E :有一个公共点A(3,1),F 1、F 2分别是椭圆的左、右焦点,直线PF 1与圆C 相切.(Ⅰ)求m 的值与椭圆E 的方程;(Ⅱ)设Q 为椭圆E 上的一个动点,求的取值范围.【答案】(1)。

高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析1.已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为和,且||=2,点(1,)在该椭圆上.(Ⅰ)求椭圆C的方程;(Ⅱ)过的直线与椭圆C相交于A,B两点,若A B的面积为,求以为圆心且与直线相切的圆方程.【答案】(1)(2)【解析】解:(Ⅰ)根据题意,由于椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为和,且||=2,点(1,)在该椭圆上,2c=2,利用定义可知椭圆C的方程为(Ⅱ)①当直线⊥x轴时,可得A(-1,-),B(-1,),A B的面积为3,不符合题意.②当直线与x轴不垂直时,设直线的方程为y=k(x+1).代入椭圆方程得:,显然>0成立,设A,B,则,,可得|AB|=又圆的半径r=,∴A B的面积=|AB| r==,化简得:17+-18=0,得k=±1,∴r =,圆的方程为【考点】直线与椭圆的位置关系点评:主要是考查了直线与椭圆的位置关系,属于中档题。

2.椭圆=1上一点M到左焦点F的距离为2, N是MF的中点,则=( )A.2B.4C.6D.【答案】B【解析】解:∵椭圆方程为,∴椭圆的a=5,长轴2a=10,可得椭圆上任意一点到两个焦点F1、F2距离之和等于10.∴|MF1|+|MF2|=10,∵点M到左焦点F1的距离为2,即|MF1|=2,∴|MF2|=10-2=8,∵△MF1F2中,N、O分别是MF1、F1F2中点,∴|ON|= |MF2|=4.故选B.【考点】三角形中位线定理和椭圆的定义点评:本题考查了三角形中位线定理和椭圆的定义等知识点,考查学生的计算能力,属于基础题3.过椭圆+=1内一点M(2,1)引一条弦,使弦被M点平分,求此弦所在直线方程。

【答案】x+2y-4=0,【解析】解:设直线与椭圆的交点为A(x1,y1)、B(x2,y2),∵M(2,1)为AB的中点,∴x1+x2=4,y1+y2=2,∵又A、B两点在椭圆上,则x12+4y12=16,x22+4y22=16,两式相减得(x12-x 22)+4(y12-y22)=0,于是(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0,故所求直线的方程为y-1=-(x-2),即x+2y-4=0.【考点】直线与椭圆的位置关系点评:本题考查直线与椭圆的位置关系,考查点差法的运用,考查学生的计算能力,属于中档题.4.设分别为椭圆的左、右焦点,点A,B在椭圆上,若,则点A的坐标是()A.B.C.D.【答案】D【解析】设,由椭圆可知点的坐标代入得,将A,B代入椭圆得关于的方程组,解得【考点】椭圆方程及性质,向量运算点评:圆锥曲线题目中出现的向量关系式常化为坐标表示,本题将所求A点设出,利用向量求得B点,两点在椭圆上即可代入5.已知椭圆的离心率为,右焦点为(,0),斜率为1的直线与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(-3,2).(I)求椭圆G的方程;(II)求的面积.【答案】(I)(II)【解析】(Ⅰ)由已知得解得,又所以椭圆G的方程为(3分)(Ⅱ)设直线l的方程为( 4分)由得 5分设A、B的坐标分别为AB中点为E,则;(7分)因为AB是等腰△PAB的底边,所以PE⊥AB.所以PE的斜率解得m=2。

高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析1.已知椭圆上存在两点、关于直线对称,求的取值范围.【答案】.【解析】解题思路:利用直线与直线垂直,设出直线的方程,联立直线与椭圆方程,消去,整理成关于的一元二次方程,利用中点公式和判别式求出的范围.规律总结:涉及直线与椭圆的位置关系问题,往往采用“设而不求”的方法进行求解..试题解析:设直线方程为,联立得从而则中点是,则解得由有实数解得即于是则的取值范围是.【考点】1.直线与椭圆的位置关系;2.对称问题.2.已知椭圆C:+=1(a>b>0)的离心率是,且点P(1,)在椭圆上.(1)求椭圆的方程;(2)若过点D(0,2)的直线l与椭圆C交于不同的两点E,F,试求△OEF面积的取值范围(O为坐标原点).【答案】(1);(2)【解析】⑴由得,椭圆方程为,又点在椭圆上,所以解得因此椭圆方程为;(2)由题意知直线的斜率存在,设的方程为 ,代入得:,由,解得设,,则,令,则,,所以 .试题解析:⑴,∵∴∴∵点在椭圆上,∴ ∴ ∴(2)由题意知直线的斜率存在,设的方程为 ,代入得:由,解得 设,,则令,所以所以【考点】1.椭圆的方程;2.用代数法研究直线与椭圆相交;3.基本不等式3. 设椭圆C :(a>b>0)的离心率为,过原点O 斜率为1的直线与椭圆C 相交于M ,N 两点,椭圆右焦点F 到直线l 的距离为. (1)求椭圆C 的方程;(2)设P 是椭圆上异于M ,N 外的一点,当直线PM ,PN 的斜率存在且不为零时,记直线PM 的斜率为k 1,直线PN 的斜率为k 2,试探究k 1·k 2是否为定值?若是,求出定值;若不是,说明理由. 【答案】(1);(2) k 1·k 2是为定值-.【解析】(1)由椭圆C : (a>b>0)的离心率为可得,又由椭圆右焦点F(c,0)到直线l 的距离为,由点到直线的距离公式得=,从而求得c 的值,代入求得a 的值;再注意到从而求得b 的值,因此就可写出所求椭圆C 的方程; (2)由过原点O 斜率为1的直线方程为:y=x ,联立椭圆C 与直线L 的方程就可求出M ,N 两点的坐标,再由过两点的直线的斜率公式就可用点P 的坐标表示出k PM ·k PN ,再注意点P 的坐标满足椭圆C 的方程,从而就可求出k 1·k 2=k PM ·k PN 是否与点P 的坐标有关,若与点P 的坐标无关则k 1·k 2的值为定值;否则不为定值.试题解析:(1)设椭圆的焦距为2c(c>0),焦点F(c,0),直线l :x -y =0, F 到l 的距离为=,解得c =2,又∵e ==,∴a =2,∴b =2. ∴椭圆C 的方程为.(2)由解得x =y =,或x =y =-,不妨设M,N,P(x ,y),∴k PM ·k PN =由,即,代入化简得k 1·k 2=k PM ·k PN =-为定值.【考点】1.椭圆的标准方程;2.直线与椭圆的位置关系.4. 已知动点在椭圆上,若点坐标为,,且,则的最小值是( ) A .B .C .D .【答案】B【解析】点为椭圆的右焦点,由于,.当最小时,最小,的最小值为,此时.【考点】椭圆的性质.5. 椭圆的对称中心在坐标原点,一个顶点为,右焦点F 与点 的距离为2。

(完整)高二数学椭圆试题(有答案)

(完整)高二数学椭圆试题(有答案)

高二数学椭圆试题一:选择题1.已知方程表示焦点在x轴上的椭圆,则m的取值范围是()A.m>2或m<﹣1 B.m>﹣2 C.﹣1<m<2 D.m>2或﹣2<m<﹣1 解:椭圆的焦点在x轴上∴m2>2+m,即m2﹣2﹣m>0解得m>2或m<﹣1又∵2+m>0∴m>﹣2∴m的取值范围:m>2或﹣2<m<﹣1故选D2.已知椭圆,长轴在y轴上、若焦距为4,则m等于()A.4B.5C.7D.8解:将椭圆的方程转化为标准形式为,显然m﹣2>10﹣m,即m>6,,解得m=8故选D3.椭圆(1﹣m)x2﹣my2=1的长轴长是()A.B.C.D.解:由椭圆(1﹣m)x2﹣my2=1,化成标准方程:由于,∴椭圆(1﹣m)x2﹣my2=1的长轴长是2a=2=.故选B.4.已知点F1、F2分别是椭圆+=1(k>﹣1)的左、右焦点,弦AB过点F1,若△ABF2的周长为8,则椭圆的离心率为()A.B.C.D.解:由椭圆定义有4a=8∴a=2,所以k+2=a2=4∴k=2.从而b2=k+1=3,c2=a2﹣b2=1,所以,故选A5.已知△ABC的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A的轨迹方程是()A.(x≠0)B.(x≠0)C.(x≠0)D.(x≠0)解:∵△ABC的周长为20,顶点B (0,﹣4),C (0,4),∴BC=8,AB+AC=20﹣8=12,∵12>8∴点A到两个定点的距离之和等于定值,∴点A的轨迹是椭圆,∵a=6,c=4∴b2=20,∴椭圆的方程是故选B.6.方程=10,化简的结果是()A.B.C.D.解:根据两点间的距离公式可得:表示点P(x,y)与点F1(2,0)的距离,表示点P(x,y)与点F2(﹣2,0)的距离,所以原等式化简为|PF1|+|PF2|=10,因为|F1F2|=2<10,所以由椭圆的定义可得:点P的轨迹是椭圆,并且a=5,c=2,所以b2=21.所以椭圆的方程为:.故选D.7.设θ是三角形的一个内角,且,则方程x2sinθ﹣y2cosθ=1表示的曲线是()A.焦点在x轴上的双曲线B.焦点在x轴上的椭圆C.焦点在y轴上的双曲线D.焦点在y轴上的椭圆解:因为θ∈(0,π),且sinθ+cosθ=,所以,θ∈(,π),且|sinθ|>|cosθ|,所以θ∈(,),从而cosθ<0,从而x2sinθ﹣y2cosθ=1表示焦点在y轴上的椭圆.故选D.8.设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是()A.B.C.D.解:设点P在x轴上方,坐标为,∵△F1PF2为等腰直角三角形∴|PF2|=|F1F2|,即,即故椭圆的离心率e=故选D9.从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是()A.B.C.D.解:依题意,设P(﹣c,y0)(y0>0),则+=1,∴y0=,∴P(﹣c,),又A(a,0),B(0,b),AB∥OP,∴k AB=k OP,即==,∴b=c.设该椭圆的离心率为e,则e2====,∴椭圆的离心率e=.故选C.10.若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则的最大值为()A.2B.3C.6D.8解:由题意,F(﹣1,0),设点P(x0,y0),则有,解得,因为,,所以==,此二次函数对应的抛物线的对称轴为x0=﹣2,因为﹣2≤x0≤2,所以当x0=2时,取得最大值,故选C.11.如图,点F为椭圆=1(a>b>0)的一个焦点,若椭圆上存在一点P,满足以椭圆短轴为直径的圆与线段PF相切于线段PF的中点,则该椭圆的离心率为()A.B.C.D.解:设线段PF的中点为M,另一个焦点F′,由题意知,OM=b,又OM是△FPF′的中位线,∴OM=PF′=b,PF′=2b,由椭圆的定义知PF=2a﹣PF′=2a﹣2b,又MF=PF=(2a﹣2b)=a﹣b,又OF=c,直角三角形OMF中,由勾股定理得:(a﹣b)2+b2=c2,又a2﹣b2=c2,可求得离心率e==,故答案选B.12.椭圆顶点A(a,0),B(0,b),若右焦点F到直线AB的距离等于,则椭圆的离心率e=()A.B.C.D.解:由题意可得直线AB的方程为即bx+ay﹣ab=0,F(c,0)∴F(c,0)到直线AB的距离d==,|AF|=a﹣c则∴a2=3b2∴a2=3a2﹣3c2即3c2=2a2∴=故选B13.已知椭圆+=1(a>b>0)的左、右焦点为F1,F2,P为椭圆上的一点,且|PF1||PF2|的最大值的取值范围是[2c2,3c2],其中c=.则椭圆的离心率的取值范围为()A.[,]B.[,1)C.[,1)D.[,]解:∵|PF1|•|PF2|的最大值=a2,∴由题意知2c2≤a2≤3c2,∴,∴.故椭圆m的离心率e的取值范围.故选A.14.在椭圆中,F1,F2分别是其左右焦点,若|PF1|=2|PF2|,则该椭圆离心率的取值范围是()A.B.C.D.解:根据椭圆定义|PF1|+|PF2|=2a,将设|PF1|=2|PF2|代入得,根据椭圆的几何性质,|PF2|≥a﹣c,故,即a≤3c,故,即,又e<1,故该椭圆离心率的取值范围是.故选B.二:填空题15.已知F1、F2是椭圆C:(a>b>0)的两个焦点,P为椭圆C上一点,且.若△PF1F2的面积为9,则b=3.解:由题意知△PF1F2的面积=,∴b=3,故答案为3.16.若方程表示焦点在y轴上的椭圆,则k的取值范围是4<k<7.解:∵+=1表示焦点在y轴上的椭圆,∴k﹣1>7﹣k>0.∴4<k<7.故k的取值范围是4<k<7.故答案为:4<k<7.17.已知椭圆的焦距为2,则实数t=2,3,6.解:当t2>5t>0即t>5时,a2=t2,b2=5t此时c2=t2﹣5t=6解可得,t=6或t=﹣1(舍)当0<t2<5t即0<t<5时,a2=5t,b2=t2此时c2=a2﹣b2=5t﹣t2=6解可得,t=2或t=3综上可得,t=2或t=3或t=6故答案为:2,3,618.在平面直角坐标系xOy中,已知△ABC顶点A(﹣4,0)和C(4,0),顶点B在椭圆上,则=.解:利用椭圆定义得a+c=2×5=10b=2×4=8由正弦定理得=故答案为19.在平面直角坐标系xOy中,椭圆的焦距为2c,以O为圆心,a 为半径作圆M,若过作圆M的两条切线相互垂直,则椭圆的离心率为.解:设切线PA、PB互相垂直,又半径OA垂直于PA,所以△OAP是等腰直角三角形,故,解得,故答案为.20.若椭圆的焦点在x轴上,过点(1,)做圆x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆的方程是.解:设切点坐标为(m,n)则即∵m2+n2=1∴m即AB的直线方程为2x+y﹣2=0∵线AB恰好经过椭圆的右焦点和上顶点∴2c﹣2=0;b﹣2=0解得c=1,b=2所以a2=5故椭圆方程为故答案为三:解答题21.已知F1,F2为椭圆的左、右焦点,P是椭圆上一点.(1)求|PF1|•|PF2|的最大值;(2)若∠F1PF2=60°且△F1PF2的面积为,求b的值.解:(1)∵P点在椭圆上,∴|PF1|+|PF2|=|2a=20,∵|PF1|>0,|PF2|>0,∴|PF1|•|PF2|≤=100,∴|PF1|•|PF2|有最大值100.(2)∵a=10,|F1F2|=2c.设|PF1|=t1,|PF2|=t2,则根据椭圆的定义可得:t1+t2=20①,在△F1PF2中,∠F1PF2=60°,所以根据余弦定理可得:t12+t22﹣2t1t2•cos60°=4c2②,由①2﹣②得3t1•t2=400﹣4c2,所以由正弦定理可得:=.所以c=6,∴b=8.22.如图,F1、F2分别是椭圆C:(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°.(Ⅰ)求椭圆C的离心率;(Ⅱ)已知△AF1B的面积为40,求a,b 的值.解:(Ⅰ)∠F1AF2=60°⇔a=2c⇔e==.(Ⅱ)设|BF2|=m,则|BF1|=2a﹣m,在三角形BF1F2中,|BF1|2=|BF2|2+|F1F2|2﹣2|BF2||F1F2|cos120°⇔(2a﹣m)2=m2+a2+am.⇔m=.△AF1B面积S=|BA||F1F2|sin60°⇔=40⇔a=10,∴c=5,b=5.23.已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.(1)求椭圆C的方程;(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由.解:(1)依题意,可设椭圆C的方程为(a>0,b>0),且可知左焦点为F(﹣2,0),从而有,解得c=2,a=4,又a2=b2+c2,所以b2=12,故椭圆C的方程为.(2)假设存在符合题意的直线l,其方程为y=x+t,由得3x2+3tx+t2﹣12=0,因为直线l与椭圆有公共点,所以有△=(3t)2﹣4×3(t2﹣12)≥0,解得﹣4≤t≤4,另一方面,由直线OA与l的距离4=,从而t=±2,由于±2∉[﹣4,4],所以符合题意的直线l不存在.24.设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E的方程解:(I)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得l的方程为y=x+c,其中.设A(x1,y1),B(x2,y2),则A、B两点坐标满足方程组化简的(a2+b2)x2+2a2cx+a2(c2﹣b2)=0则因为直线AB斜率为1,得,故a2=2b2所以E的离心率(II)设AB的中点为N(x0,y0),由(I)知,.由|PA|=|PB|,得k PN=﹣1,即得c=3,从而故椭圆E的方程为.25.设椭圆的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为.(Ⅰ)求椭圆的方程;(Ⅱ)设A,B分别为椭圆的左,右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若,求k的值.解:(I)根据椭圆方程为.∵过焦点且垂直于长轴的直线被椭圆截得的线段长为,∴=,∵离心率为,∴=,解得b=,c=1,a=.∴椭圆的方程为;(II)直线CD:y=k(x+1),设C(x1,y1),D(x2,y2),由消去y得,(2+3k2)x2+6kx+3k2﹣6=0,∴x1+x2=﹣,x1x2=,又A(﹣,0),B(,0),∴=(x1﹣,y1)•(﹣x2.﹣y2)+(x2+,y2)•(﹣x1.﹣y1)=6﹣(2+2k2)x1x2﹣2k2(x1+x2)﹣2k2,=6+=8,解得k=.26.设椭圆E:,O为坐标原点(Ⅰ)求椭圆E的方程;(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒在两个交点A,B且若存在,写出该圆的方程,关求|AB|的取值范围;若不存在,说明理由.解:(1)因为椭圆E:(a,b>0)过M(2,),N(,1)两点,所以解得所以椭圆E的方程为(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆的切线方程为y=kx+m解方程组得x2+2(kx+m)2=8,即(1+2k2)x2+4kmx+2m2﹣8=0,则△=16k2m2﹣4(1+2k2)(2m2﹣8)=8(8k2﹣m2+4)>0,即8k2﹣m2+4>0,要使,需使x1x2+y1y2=0,即,所以3m2﹣8k2﹣8=0,所以又8k2﹣m2+4>0,所以,所以,即或,因为直线y=kx+m为圆心在原点的圆的一条切线,所以圆的半径为,,,所求的圆为,此时圆的切线y=kx+m都满足或,而当切线的斜率不存在时切线为与椭圆的两个交点为或存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.因为,所以,①当k≠0时因为所以,所以,所以当且仅当时取”=”.2当k=0时,27.已知直线x﹣2y+2=0经过椭圆的左顶点A和上顶点D,椭圆C的右顶点为B,点S是椭圆C上位于x轴上方的动点,直线AS,BS与直线分别交于M,N两点.(1)求椭圆C的方程;(2)求线段MN的长度的最小值;(3)当线段MN的长度最小时,在椭圆C上是否存在这样的点T,使得△TSB的面积为?若存在,确定点T的个数,若不存在,说明理由.解:(1)由已知得,椭圆C的左顶点为A(﹣2,0),上顶点为D(0,1),∴a=2,b=1故椭圆C的方程为(4分)(2)依题意,直线AS的斜率k存在,且k>0,故可设直线AS的方程为y=k(x+2),从而,由得(1+4k2)x2+16k2x+16k2﹣4=0设S(x1,y1),则得,从而即,(6分)又B(2,0)由得,∴,(8分)故又k>0,∴当且仅当,即时等号成立.∴时,线段MN的长度取最小值(10分)(2)另解:设S(x s,y S),依题意,A,S,M三点共线,且所在直线斜率存在,由k AM=k AS,可得同理可得:又所以,=不仿设y M>0,y N<0当且仅当y M=﹣y N时取等号,即时,线段MN的长度取最小值.(3)由(2)可知,当MN取最小值时,此时BS的方程为,∴(11分)要使椭圆C上存在点T,使得△TSB的面积等于,只须T到直线BS的距离等于,所以T在平行于BS且与BS距离等于的直线l'上.设直线l':x+y+t=0,则由,解得或.又因为T为直线l'与椭圆C的交点,所以经检验得,此时点T有两个满足条件.(14分)。

椭圆练习题(含答案)

椭圆练习题(含答案)

高二年级数学周测试题出题人:XXX 日期2021年11月29日一、单选题(本大题共16小题,共80.0分)1.下列说法中正确的是()A. 已知F1(−4,0),F2(4,0),平面内到F1,F2两点的距离之和等于8的点的轨迹是椭圆B. 已知F1(−4,0),F2(4,0),平面内到F1,F2两点的距离之和等于6的点的轨迹是椭圆C. 平面内到点F1(−4,0),F2(4,0)两点的距离之和等于点M(5,3)到F1,F2的距离之和的点的轨迹是椭圆D. 平面内到点F1(−4,0),F2(4,0)距离相等的点的轨迹是椭圆【答案】C【解析】【分析】本题考查椭圆的定义,属于基础题.由椭圆的定义,逐一判断求解即可.【解答】解:A中,F1F2=8,则平面内到F1,F2两点的距离之和等于8的点的轨迹是线段,所以A错误;B中,到F1,F2两点的距离之和等于6,小于F1F2,这样的轨迹不存在,所以B错误;C中,点M(5,3)到F1,F2两点的距离之和为,则其轨迹是椭圆,所以C正确;D中,轨迹应是线段F1F2的垂直平分线,所以D错误.故选C.2.设P是椭圆上的动点,则P到该椭圆的两个焦点的距离之和为()A. 2√2B. 2√3C. 2√5D. 4√2【答案】C【解析】【分析】本题考查椭圆的定义,属于基础题.直接利用椭圆方程求出a,再利用椭圆定义求解即可.【解答】解:椭圆x25+y23=1的焦点在x轴,则a=√5,又P是椭圆x25+y23=1上的动点,由椭圆的定义可知,P到该椭圆的两个焦点的距离之和为2a=2√5.故选C.3.若椭圆x225+y24=1上一点P到焦点F1的距离为3,则点P到另一焦点F2的距离为()A. 6B. 7C. 8D. 9【答案】B【解析】【分析】本题主要考查椭圆的定义的应用,属于基础题.根据椭圆的定义知,|PF1|+|PF2|=2a=2×5=10,即可得.【解答】解:根据椭圆的定义知,|PF1|+|PF2|=2a=2×5=10,因为|PF1|=3,所以|PF2|=7.故选B.4.椭圆x2m +y24=1的焦距为2,则m的值等于()A. 5B. 3C. 5或3D. 8【答案】C【解析】【分析】本题主要考查了椭圆的简单性质,是基础题,要求学生对椭圆中长轴和短轴以及焦距的关系要明了.解题时要认真审题,本题焦点位置不确定,分情况求解.【解答】解:由椭圆x2m +y24=1得:2c=2得c=1.当m>4时,m−4=1,∴m=5;当0<m<4时,4−m=1,∴m=3,∴m的值为3或5,故选C.5.椭圆x2+2y2=4的焦点坐标为()A. (√2,0),(−√2,0).B. (0,√2),(0,−√2).C. (√6,0),(−√6,0).D. (0,√6),(0,−√6).【答案】A【解析】【分析】本题考查椭圆的标准方程,属于基础题.将椭圆x2+2y2=4化为x24+y22=1,利用椭圆的标准方程即可得出.【解答】解:由椭圆x2+2y2=4化为x24+y22=1,∴c=√4−2=√2,椭圆的焦点坐标为(±√2,0).故选A.6.若方程x2m +y22−m=1表示椭圆,则实数m的取值范围为()A. (0,1)B. (1,2)C. (0,2)D. (0,1)∪(1,2)【答案】D【解析】【分析】本题主要考查椭圆的标准方程,属于基础题.由条件根据椭圆的标准方程的特征,可求得所对应的m的范围.【解答】解:方程x2m +y22−m=1表示椭圆的充要条件是{m>02−m>0m≠2−m,即m∈(0,1)∪(1,2).故选D.7.已知椭圆的焦点为(−1,0)和(1,0),点P(2,0)在椭圆上,则椭圆的方程为()A. x24+y23=1 B. x24+y2=1 C. y24+x23=1 D. y24+x2=1【答案】A【解析】【分析】本题考查椭圆标准方程的求解,属于基础题.【解答】解:由题意,椭圆的焦点在x轴上,且半焦距c=1,设椭圆的方程为x2a2+y2b2=1(a>b>0),且a2−b2=1,又点P(2,0)在椭圆上,所以4a2=1,解得a2=4,b2=3,所以椭圆方程为x24+y23=1,故选A.8.与椭圆x29+y216=1有相同焦点的椭圆是()A. x27+y214=1 B. x26+y215=1 C. x26+y29=1 D. x212+y218=1【答案】A 【解析】【分析】本题主要考查了椭圆的焦点坐标,关键是分清焦点在x轴或在y轴上.由给出的椭圆方程,确定出a,b的值,再利用c与a,b之间的关系求出c的值,从而解答此题.【解答】解:根据椭圆的标准方程知c2=16−9=7,故焦点坐标为(0,±√7),A、x27+y214=1的焦点坐标为(0,±√7),B、x26+y215=1的焦点坐标为(0,±3),C、x26+y29=1的焦点坐标为(0,±√3),D、x212+y218=1的焦点坐标为(0,±√6).9.椭圆x24+y23=1的左右焦点为F1,F2,P为椭圆上第一象限内任意一点,F1关于P的对称点为M,关于F2的对称点为N,则△MF1N的周长为()A. 6B. 8C. 10D. 12【答案】D【解析】【分析】本题考查椭圆的定义的应用,考查数形结合以及计算能力,属于基础题.利用已知条件结合椭圆的定义,转化求解即可.【解答】解:椭圆x24+y23=1的左右焦点为F1,F2,可得a=2,c=1,P为椭圆上第一象限内任意一点,F1关于P的对称点为M,关于F2的对称点为N,如图:则△MF1N的周长为:|MF1|+|MN|+|F1N|=2(|F1P|+|PF2|+|F1F2|)=2(2a+2c)=12.故选:D.10.已知椭圆的一个焦点为F(−√3,0),则这个椭圆的方程是()A. B. C. D.【答案】C【解析】[分析]本题考查椭圆方程的求解,属于基础题。

高二数学椭圆试题(有答案)

高二数学椭圆试题(有答案)

高二数学椭圆试题一:选择题1.已知方程表示焦点在x轴上的椭圆,则m的取值范围是()A.m>2或m<﹣1 B.m>﹣2 C.﹣1<m<2 D.m>2或﹣2<m<﹣12.已知椭圆,长轴在y轴上、若焦距为4,则m等于()A.4B.5C.7D.83.椭圆(1﹣m)x2﹣my2=1的长轴长是()A.B.C.D.4.已知点F1、F2分别是椭圆+=1(k>﹣1)的左、右焦点,弦AB过点F1,若△ABF2的周长为8,则椭圆的离心率为()A.B.C.D.5.已知△ABC的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A的轨迹方程是()A.(x≠0)B.(x≠0)C.(x≠0)D.(x≠0)6.方程=10,化简的结果是()A.B.C.D.7.设θ是三角形的一个内角,且,则方程x2sinθ﹣y2cosθ=1表示的曲线是()A.焦点在x轴上的双曲线B.焦点在x轴上的椭圆C.焦点在y轴上的双曲线D.焦点在y轴上的椭圆8.设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是()A.B.C.D.9.从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是()A.B.C.D.10.若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则的最大值为()A.2B.3C.6D.811.如图,点F为椭圆=1(a>b>0)的一个焦点,若椭圆上存在一点P,满足以椭圆短轴为直径的圆与线段PF相切于线段PF的中点,则该椭圆的离心率为()A.B.C.D.12.椭圆顶点A(a,0),B(0,b),若右焦点F到直线AB的距离等于,则椭圆的离心率e=()A.B.C.D.13.已知椭圆+=1(a>b>0)的左、右焦点为F1,F2,P为椭圆上的一点,且|PF1||PF2|的最大值的取值范围是[2c2,3c2],其中c=.则椭圆的离心率的取值范围为()A.[,]B.[,1)C.[,1)D.[,]14.在椭圆中,F1,F2分别是其左右焦点,若|PF1|=2|PF2|,则该椭圆离心率的取值范围是()A.B.C.D.二:填空题15.已知F1、F2是椭圆C:(a>b>0)的两个焦点,P为椭圆C上一点,且.若△PF1F2的面积为9,则b=.16.若方程表示焦点在y轴上的椭圆,则k的取值范围是.17.已知椭圆的焦距为2,则实数t=.18.在平面直角坐标系xOy中,已知△ABC顶点A(﹣4,0)和C(4,0),顶点B在椭圆上,则=.19.在平面直角坐标系xOy中,椭圆的焦距为2c,以O为圆心,a为半径作圆M,若过作圆M的两条切线相互垂直,则椭圆的离心率为.20.若椭圆的焦点在x轴上,过点(1,)做圆x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆的方程是.三:解答题21.已知F1,F2为椭圆的左、右焦点,P是椭圆上一点.(1)求|PF1|•|PF2|的最大值;(2)若∠F1PF2=60°且△F1PF2的面积为,求b的值.22.如图,F1、F2分别是椭圆C:(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°.(Ⅰ)求椭圆C的离心率;(Ⅱ)已知△AF1B的面积为40,求a,b 的值.23.已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.(1)求椭圆C的方程;(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由.24.设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E的方程。

高二数学椭圆试题(有答案)

高二数学椭圆试题(有答案)

高二数学椭圆试题(有答案)一:选择题1.已知方程 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ 表示焦点在x轴上的椭圆,则m的取值范围是()A.m>2或m<﹣1B.m>﹣2C.﹣1<m<2D.m>2或﹣2<m<﹣1解:椭圆的焦点在x轴上,所以 $a^2>b^2$,即$\frac{b^2}{a^2}<1$。

根据焦点公式可得 $c=\sqrt{a^2-b^2}$,又因为焦点在x 轴上,所以 $c=a$。

所以 $a=b$,代入椭圆方程可得$\frac{x^2}{a^2}+\frac{y^2}{a^2}=1$。

解得 $m^2-2m>0$,即 $m2$。

所以 m 的取值范围为 $m>2$ 或 $-2<m<-1$,故选D。

2.已知椭圆 $\frac{x^2}{4}+\frac{y^2}{m-2}=1$,长轴在y 轴上、若焦距为4,则m等于()A.4B.5C.7D.8解:因为椭圆的长轴在y轴上,所以 $a^2=4$。

又因为焦距为4,所以 $c=2$。

根据焦点公式可得 $b^2=a^2(c^2-a^2)=12$。

代入椭圆方程可得 $\frac{x^2}{4}+\frac{y^2}{2}=1$,解得 $m=8$,故选D。

3.椭圆 $(1-m)x^2-my^2=1$ 的长轴长是()A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{6}$解:将椭圆的方程化为标准形式 $\frac{x^2}{\frac{1}{1-m}}+\frac{y^2}{\frac{1}{m}}=1$。

因为长轴长为 $2a$,所以 $2a=2$,解得长轴长为$\sqrt{2}$,故选A。

4.已知点 $F_1$、$F_2$ 分别是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$($k>﹣1$)的左、右焦点,弦AB过点 $F_1$,若△ABF2的周长为8,则椭圆的离心率为()A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{5}}{2}$解:因为弦AB过点 $F_1$,所以 $AB=2a$。

高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析1.设分别是椭圆的左,右焦点,过的直线与相交于两点,且成等差数列.(1)求; (2)若直线的斜率为1,求的值.【答案】(1);(2).【解析】本试题主要考查了椭圆的定义,以及直线与椭圆的位置关系的综合运用.(1)因为椭圆的左、右焦点分别为,过的直线交于两点,且成等差数列,结合定义得到的值;(2)联立方程组,然后结合韦达定理,得到根与系数的关系,然后利用直线的斜率为,得到弦长公式的表达式,从而得到参数的值.试题解析:(1)由椭圆定义知,又(2)的方程为,其中.设,则两点坐标满足方程组,消去得则,,因为直线的斜率为所以,即则解得.【考点】1.椭圆的标准方程及其几何性质;2.直线与椭圆的综合问题.2.若是椭圆与轴的两个交点,是该椭圆的两个焦点,则以为顶点的四边形的面积为()A.B.C.D.【答案】D【解析】椭圆16x2+25y2=400可变为=1,故a=5,b=4,由a2=b2+c2,可解得c=3,故焦距为6,短轴长为8又以A,B,C,D为顶点的四边形是一个菱形,且两对角线CD=6,AB=8故它的面积为×6×8=24,故选D。

【考点】本题考查椭圆的几何性质。

点评:简单题,解题的关键是利用椭圆的对称性,明确以A,B,C,D为顶点的四边形是一个菱形,并根据题设条件得出a,b,c三个量之间的关系,由此关系求出椭圆的焦距与短轴的长度。

3.椭圆()的左右顶点分别为、,左右焦点分别为、,若,,成等差数列,则此椭圆的离心率为()A.B.C.D.【答案】A【解析】易知=a-c,="2c," =a+c,又因为,,成等差数列,所以4c=a-c+a+c,即a=2c,所以e=.【考点】离心率的求法;等差数列的性质;椭圆的简单性质。

点评:求圆锥曲线的离心率是常见题型,常用方法:①直接利用公式;②利用变形公式:(椭圆)和(双曲线)③根据条件列出关于a、b、c的关系式,两边同除以a,利用方程的思想,解出。

高二数学椭圆试题

高二数学椭圆试题

高二数学椭圆试题1.过点M(1,1)作斜率为﹣的直线与椭圆C:+=1(a>b>0)相交于A,B,若M是线段AB的中点,则椭圆C的离心率为()A.B.C.D.【答案】A【解析】设A(x1,y1),B(x2,y2),则 ,∵过点M(1,1)作斜率为﹣的直线与椭圆C:+=1(a>b>0)相交于A,B,若M是线段AB的中点,∴两式相减可得 , .故选A.【考点】直线与圆锥曲线的综合问题2.已知椭圆的顶点与双曲线的焦点重合,它们的离心率之和为,若椭圆的焦点在y轴上.(1)求双曲线的离心率,并写出其渐近线方程;(2)求椭圆的标准方程.【答案】(1)e1=2,渐近线方程为y=±;(2).【解析】(1)首先由已知双曲线的标准方程求出双曲线的几何量,就可得焦点及离心率,渐近线方程;(2)根据已知条件求出椭圆的离心率及焦距,利用椭圆的三个参数的关系,求出椭圆中的三个参数,从而就可求出椭圆的方程.试题解析:(1)设双曲线的焦距为2c1,离心率为e1,(2分)则有:c12=4+12=16,c1=4 (4分)∴e1=2,渐近线方程为y=±;(6分)(2)椭圆的离心率为,∴.又a=4,∴c=;∵a2=b2+c2,(10分)∴b2=;∴所求椭圆方程为(12分)【考点】1.双曲线的简单性质;2.椭圆的标准方程.3.已知椭圆:的左焦点,离心率为,函数,(Ⅰ)求椭圆的标准方程;(Ⅱ)设,,过的直线交椭圆于两点,求的最小值,并求此时的的值.【答案】(Ⅰ);(Ⅱ)的最小值为,此时.【解析】(Ⅰ)利用左焦点F(-1,0),离心率为,及求出几何量,即可求椭圆C的标准方程;(Ⅱ)分类讨论,设直线l的方程来:y=k(x-t)代入抛物线方程,利用韦达定理,结合向量的数量积公式,即可求的最小值,并求此时的t的值.试题解析:(Ⅰ),由得,椭圆方程为(Ⅱ)若直线斜率不存在,则=若直线斜率存在,设直线,由得所以故故的最小值为,此时.【考点】直线与圆锥曲线的综合问题.4.(本小题满分12分)如图,椭圆上的点M与椭圆右焦点的连线与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行.(1)求椭圆的离心率;(2)过且与AB垂直的直线交椭圆于P、Q,若的面积是,求此时椭圆的方程.【答案】(1);(2).【解析】(1)点M与椭圆右焦点的连线与x轴垂直,可得,又,椭圆中,可得;(2)设直线PQ的方程为,代入椭圆方程整理得又,可得从而解得,可得椭圆的标准方程.解:(1)易得(2)令,设直线PQ的方程为.代入椭圆方程消去x得:,整理得:∴因此a2=50,b2=25,所以椭圆方程为【考点】椭圆的几何性质,直线与椭圆的位置关系,设而不求.5.若点P为共焦点的椭圆和双曲线的一个交点,、分别是它们的左右焦点.设椭圆离心率为,双曲线离心率为,若,则()A.4B.3C.2D.1【答案】C【解析】由题设中的条件,设焦距为2c,椭圆的长轴长2a,双曲线的实轴长为2m,根据椭圆和双曲线的性质以及勾弦定理建立方程,联立可得m,a,c的等式,整理即可得到结论,【考点】椭圆与双曲线的几何性质.6.椭圆的左、右顶点分别为,点在上且直线的斜率的取值范围是,那么直线斜率的取值范围是()A.B.C.D.【答案】B【解析】由椭圆可知其左顶点A1(-2,0),右顶点A2(2,0).设P(x,y)(x≠±2),代入椭圆方程可得.利用斜率计算公式可得,再利用已知给出的的范围即可解出.【考点】椭圆的性质.7.已知椭圆上一点到右焦点的距离是1,则点到左焦点的距离是()A.B.C.D.【答案】D【解析】根据椭圆的定义,点P到两个焦点距离和等于2a=即可.【考点】椭圆的定义.8.已知椭圆和双曲线有公共的焦点,那么双曲线的渐近线方程为A.B.C.D.【答案】D【解析】因为焦点相同所以有,解得,即。

高二数学椭圆试题

高二数学椭圆试题

高二数学椭圆试题1.已知椭圆的一个焦点为F(0,1),离心率,则该椭圆的标准方程为A.B.C.D.【答案】A【解析】由题意得,椭圆的焦点在轴上,标准方程为,且,,即椭圆的标准方程为.【考点】椭圆的标准方程.2.(本小题满分12分,(1)小问4分,(2)小问8分)已知为椭圆上两动点,分别为其左右焦点,直线过点,且不垂直于轴,的周长为,且椭圆的短轴长为.(1)求椭圆的标准方程;(2)已知点为椭圆的左端点,连接并延长交直线于点.求证:直线过定点.【答案】(1);(2)证明详见解析.【解析】(1)结合图形及椭圆的定义先得到的周长为,进而根据条件列出方程组,从中求解即可得出的值,进而可写出椭圆的方程;(2)由(1)确定,进而设点,设直线,联立直线与椭圆的方程,解出点,设直线,可得,进而根据三点共线得出,将点的坐标代入并化简得到,进而求出点的坐标,,然后写出直线的方程并化简得到,从该直线方程不难得到该直线恒通过定点,问题得证.(1)依题意有:的周长为所以,则椭圆的方程为 4分(2)由椭圆方程可知,点设直线,由得,从而,,即点同理设直线,可得 7分由三点共线可得,即,代入两点坐标化简可得9分直线,可得点,即从而直线的方程为化简得,即,从而直线过定点 12分.【考点】1.椭圆的标准方程及其几何性质;2.直线与椭圆的位置关系.3.已知对,直线与椭圆恒有公共点,则实数的取值范围是A.(0, 1)B.(0,5)C.[1,5)D.[1,5)∪(5,+∞)【答案】D【解析】由题意直线恒过定点,只要在椭圆内或椭圆上即可,故,选D【考点】点在椭圆上(内)的充要条件4.是方程表示椭圆或双曲线的()A.充分不必要条件B.必要不充分条件C.充要条件D.不充分不必要条件【答案】B【解析】因为时,方程不是椭圆也不是双曲线,所以若“方程表示椭圆或双曲线”,则一定有“”,因此是方程表示椭圆或双曲线的必要条件;又当时,方程不一定表示椭圆或双曲线,如,方程表示圆,因此是方程表示椭圆或双曲线不充分条件.【考点】充要关系确定5.平面内与两定点、()连线的斜率之积等于非零常数m的点的轨迹,加上、两点所成的曲线C可以是圆、椭圆或双曲线.求曲线C的方程,并讨论C的形状与m值得关系.【答案】当时,曲线C的方程为,C是焦点在y轴上的椭圆;当时,曲线C的方程为,C是圆心在原点的圆;当时,曲线C的方程为, C是焦点在x轴上的椭圆;当时,曲线C 的方程为,C是焦点在x轴上的双曲线.【解析】设出动点M的坐标,利用斜率乘积求出曲线轨迹方程,然后讨论 m的值,判断曲线是圆、椭圆或双曲线时m的值的情况.试题解析:设动点为M,其坐标为,当时,由条件可得即,又的坐标满足,故依题意,曲线C的方程为. 4分当时,曲线C的方程为,C是焦点在y轴上的椭圆; 6分当时,曲线C的方程为,C是圆心在原点的圆; 8分当时,曲线C的方程为,C是焦点在x轴上的椭圆; 10分当时,曲线C的方程为,C是焦点在x轴上的双曲线. 12分【考点】(1)求轨迹方程;(2)圆锥曲线的综合应用.6.已知,是椭圆的左、右焦点,过的直线交椭圆于两点,若△的周长为,则的值为 .【答案】【解析】由椭圆的方程,可知即,此时,而的周长等于,所以,所以即.【考点】椭圆的定义及其标准方程.7.已知F1,F2是椭圆+=1的两焦点,过点F2的直线交椭圆于A,B两点.在△AF1B中,若有两边之和是10,则第三边的长度为()A.6B.5C.4D.3【答案】A【解析】由椭圆方程知,椭圆的长轴,则周长为16,故第三边长为6.所以正确答案为A.【考点】1.椭圆定义;2.三角形周长.8.若椭圆的短轴为,它的一个焦点为,则满足为等边三角形的椭圆的离心率是() A.B.C.D.【答案】B【解析】由为等边三角形可知,在直角三角形中,,且,所以其离心率.【考点】本题考查的知识点是椭圆的离心率的定义,以及椭圆的几何性质.9.已知F1、F2是椭圆+=1的两焦点,经点F2的直线交椭圆于点A、B,若|AB|=5,则|AF1|+|BF1|等于()A.11 B.10 C.9 D.16【答案】A【解析】依据椭圆定义可知【考点】椭圆定义点评:椭圆定义在解题中应用非常广泛:椭圆上的点到焦点的距离之和为10.设椭圆的离心率为,焦点在x轴上且长轴长为30.若曲线上的点到椭圆的两个焦点的距离的差的绝对值等于10,则曲线的标准方程为()A.B.C.D.【答案】B【解析】椭圆的离心率为,焦点在x轴上且长轴长为30,所以所以曲线的两个焦点为(-7,0),(7,0),并且c=7,a=5,所以,所以曲线的标准方程为.【考点】椭圆的标准方程及几何性质,双曲线的定义及标准方程.点评:掌握椭圆及双曲线的标准方程及其几何性质是解决此问题的关键,本小题属于容易题. 11.(本题满分16分)如图,椭圆C:+=1(a>b>0)的焦点F1,F2和短轴的一个端点A构成等边三角形,点(,)在椭圆C上,直线l为椭圆C的左准线.(1)求椭圆C的方程;(2)点P是椭圆C上的动点,PQ ⊥l,垂足为Q.是否存在点P,使得△F1PQ为等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)+=1.(2)存在点P(-,±),使△PF1Q为等腰三角形【解析】本题主要考查了椭圆的标准方程.考查了学生综合分析问题和解决问题的能力(Ⅰ)设出椭圆方程,根据△AF1F2为正三角形可推断出a和b的关系,设b2=3λ,a2=4λ,代入椭圆方程,进而把点(,)代入即可求得λ,则椭圆的方程可得.(Ⅱ)根据(1)可求得椭圆的离心率,进而求得PF1和PQ的关系,假设PF1=F1Q根据PF1=PQ推断出PF1+F1Q=PQ,与“三角形两边之和大于第三边”矛盾,假设不成立,再看若F1Q=PQ,设出P点坐标,则Q点坐标可得,进而表示出F1Q和PQ求得x和y的关系,与椭圆方程联立求得P点坐标.判断出存在点P,使得△PF1Q为等腰三角形。

高二数学椭圆练习题答案

高二数学椭圆练习题答案

高二数学椭圆练习题答案1. 小题已知椭圆的长轴长度为10,短轴长度为6,求其离心率:解析:椭圆的离心率定义为e=c/a,其中c为焦点到椭圆中心的距离,a为长轴的一半。

根据题意,长轴a=10/2=5,焦距c对应的是长轴的一半,即c=5/2。

代入公式,得到离心率e=(5/2)/5=1/2。

因此,椭圆的离心率为1/2。

2. 小题已知椭圆的离心率为1/4,长轴焦点的坐标为(0, 3),求椭圆的方程。

解析:由于已知椭圆的离心率为1/4,离心率e=c/a=1/4,其中c为焦点到椭圆中心的距离,a为长轴的一半。

根据焦点的坐标(0, 3),可知焦距c=3。

代入公式,得到1/4=3/a,解方程可得a=12。

椭圆的方程为x^2/144+y^2/36=1。

3. 小题已知椭圆与x轴的交点为(-6, 0)和(6, 0),焦点到椭圆上一点的距离为10,求椭圆的方程。

解析:由已知椭圆与x轴的交点可得长轴的一半为6。

焦点到椭圆上一点的距离为10,由于椭圆是关于x轴对称的,焦点坐标可以设为(0, c)和(0, -c),其中c为焦点到椭圆中心的距离。

根据题意可得c=10/2=5。

根据椭圆定义的离心率e=c/a,解方程可得c=ae,代入已知值可得5=6e,解方程可得e=5/6。

椭圆的方程为x^2/36+y^2/16=1。

4. 小题已知椭圆的焦千差为8,焦点到椭圆的某一点的距离为6,求椭圆的方程。

解析:由焦千差可得2ae=8,焦点到椭圆某一点的距离为6,由于椭圆是关于y轴对称的,焦点坐标可以设为(c, 0)和(-c, 0),其中c为焦点到椭圆中心的距离。

根据题意可得2a=6/2=3。

代入第一个等式可以求得2e=8/3,即e=4/3。

椭圆的方程为x^2/9+y^2/16=1。

5. 小题已知椭圆长轴与x轴交于点A,焦点到点A和点A到点B的距离之和为6,求椭圆的方程。

解析:由已知条件可得椭圆长轴的一半为3(6/2=3)。

设焦点坐标为(c, 0)和(-c, 0),点A的坐标为(a, 0),点B的坐标为(a+2c, 0)。

高二椭圆练习题及答案

高二椭圆练习题及答案

高二椭圆练习题及答案椭圆是高中数学中的一个重要的几何概念,它在解析几何和微积分等数学分支中有着广泛的应用。

为了帮助高二学生巩固和提高对椭圆的理解和应用能力,以下提供一些高二椭圆练习题及其答案。

练习题一:1. 椭圆的离心率等于0的特殊情况是什么?该椭圆的形状如何?2. 某椭圆的焦点坐标为(2,0)和(-2,0),长轴长度为8. 求该椭圆的方程。

3. 某椭圆的长轴长度为10,短轴长度为8. 如果该椭圆的焦点到椭圆上任意点的距离之和为15,求该椭圆的方程。

4. 某椭圆的方程为(x-1)²/25 + y²/16 = 1,求该椭圆的焦点坐标及离心率。

5. 某椭圆的离心率为1/2,焦点为(0,-4)和(0,4)。

求该椭圆的方程。

答案一:1. 当椭圆的离心率等于0时,它的焦点和中心重合,长轴和短轴相等,椭圆变为一个圆。

2. 根据焦点坐标和长轴的长度,我们可以确定椭圆的中心坐标和短轴的长度。

所以该椭圆的方程为(x-2)²/16 + y²/4 = 1。

3. 根据题目信息,我们可以利用椭圆的定义来求解。

假设该椭圆的焦点为(c, 0),根据定义可得2a = 10,2ae = 15。

解方程组得a = 5/2,c = 3/2。

所以该椭圆的方程为(x-3/2)²/25 + y²/16 = 1。

4. 根据方程的形式,我们可以直接确定椭圆的中心坐标和长短轴长度。

所以该椭圆的焦点坐标为(1±√9, 0),离心率为√(1-16/25) = 3/5。

5. 根据焦点坐标和离心率的信息,我们可以利用椭圆的定义来求解。

假设该椭圆的焦点为(c, 0),根据定义可得2a = 2e,a = 4,c = 2。

所以该椭圆的方程为(x-2)²/16 + y²/9 = 1。

练习题二:1. 已知椭圆的离心率为2/3,焦点坐标为(±4,0),求该椭圆的方程。

高二数学椭圆试题

高二数学椭圆试题

高二数学椭圆试题1.椭圆的离心率为,则。

【答案】3或【解析】主要考查椭圆的几何性质。

解:椭圆的离心率为,即=,所以=,解得3;或=,解得,综上知3或。

2.已知圆为圆上一点,AQ的垂直平分线交CQ于M,则点M的轨迹方程为。

【答案】【解析】主要考查椭圆的定义、椭圆方程的求法。

解:如图所示,由已知,MC+MA=MC+MQ=CQ=5>CA,所以点M的轨迹是椭圆,且2c=2,2a=5, =,所以点M的轨迹方程为。

3.已知三角形的两顶点为,它的周长为,求顶点轨迹方程.【答案】【解析】主要考查椭圆的定义、椭圆方程的求法。

解:由已知点A的轨迹是椭圆,且2c=,2a=6,所以=5,又点A不能落在直线BC上,所以椭圆标准方程为。

4.椭圆的一个顶点为A(2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.【答案】或【解析】主要考查椭圆的几何性质及椭圆方程的求法。

利用待定系数法。

解:(1)当为长轴端点时,,,椭圆的标准方程为:;(2)当为短轴端点时,,,椭圆的标准方程为:;5.中心在原点,一焦点为F(0,5)的椭圆被直线y=3x-2截得的弦的中点横坐标是,求此1椭圆的方程。

【答案】=1【解析】主要考查椭圆的几何性质及椭圆方程的求法。

利用待定系数法。

解:设椭圆:(a>b>0),则a2+b2=50…①又设A(x1,y1),B(x2,y2),弦AB中点(x,y)∵x0=,∴y=-2=-由…②解①,②得:a2=75,b2=25,椭圆为:=16.椭圆上不同三点与焦点F(4,0)的距离成等差数列.(1)求证;(2)若线段的垂直平分线与轴的交点为,求直线的斜率.【答案】(10见解析;(2)【解析】主要考查椭圆的几何性质及直线与椭圆的位置关系。

证明:(1)由椭圆方程知,,.由圆锥曲线的统一定义知:,∴.同理.∵,且,∴,即.(2)因为线段的中点为,所以它的垂直平分线方程为又∵点在轴上,设其坐标为,代入上式,得又∵点,都在椭圆上,∴∴.将此式代入①,并利用的结论得7.椭圆的焦距为()A.5B.3C.4D.8【答案】D【解析】因为根据的方程可知,a=5,b=3,c=4,故焦距为2c=8,选 D8.F1,F2分别为椭圆的左、右焦点,点P在椭圆上,△POF2是面积为的正三角形,则b2的值是 .【答案】【解析】因为△POF2是面积为,所以.9.分别求满足下列条件的椭圆标准方程.(1)过点P(1,),Q(). (2)焦点在x轴上,焦距为4,并且过点【答案】(1)(2)【解析】(1)设椭圆方程为,根据椭圆过点P,Q,得到关于a,b的两个方程联立解方程组可得a,b的值,从而椭圆方程确定.(2)由题意知c=4,即设椭圆方程为将点代入椭圆方程可得另一个关于a,b的方程,再与前一个方程联立解出a,b的值.从而确定出椭圆的方程.10.若等轴双曲线的左、右顶点分别为椭圆的左、右焦点,点是双曲线上异于的点,直线的斜率分别为,则________【答案】1【解析】双曲线方程为所以。

高二数学椭圆测试题(含答案)

高二数学椭圆测试题(含答案)

高二数学椭圆测试题(一)一.选择题(每小题5分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线1y kx =+和椭圆2241x y +=相切, 则2k 的值是………………………[ C ]A.1 / 2B.2 / 3C.3 / 4D.4 / 52.椭圆221mx ny +=与直线x +y -1=0交于M 、N 两点,过原点与线段MN 中点的直线斜率为 ,则 的值是…………………………………………………………………[ B ] A .B .C D .3.椭圆22221x y a b+=上对两焦点张角为90的点可能有………………………………[ C ] 4.12,B B 是椭圆短轴的两端点,过左焦点1F 作长轴的垂线,交椭圆于P,若12|FF |是1|OF|和12|B B |的比例中项,则1|PF|:2|OB |的值是……………………………………………[ B ]5.椭圆221123x y +=的一个焦点为1F ,点P 在椭圆上,如果线段1PF 的中点M 在y 轴上,那么点M 的纵坐标是…………………………………………………………………………[ A ]A .B .C .D . 6.设A(-2,F 为椭圆221612x y +=1的右焦点,点M 在椭圆上移动,当|AM|+2|MF|取最小值时,点M 的坐标为…………………………………………………………………[ C ]A .(0,B .(0,-C .D .(-二.填空题(每题5分,满分20分,把答案填在题中横线上)7.椭圆22259x y +=1上有一点P 到左准线的距离为2.5,则P 到右焦点的距离为 . 8. 9. 10.P 是椭圆2243x y +=1上的点,F 1和F 2是焦点,则k =|PF 1|·|PF 2|的最大值和最小值分别是________ 1.8 2.1/2 3.(6, 4.k max =4,k mix =3 A.4 B.24 C.02,4 D.个个或个个或个个还有其它情况3B C D 若椭圆的一个焦点到相应准线的距离为离心率为则椭圆的半短轴长为用分数表示5, 2, 5. ()432212(4,)(8,):1,1449,________.x y A y B C y B +=若点、、是椭圆上的三点它们关于右焦点的三条焦点半径长成等差数列那么点的坐标是±±±34±n m三.解答题(11,12题每题15分,13题20分,满分50分,解答应写出文字说明,证明过程或演算步骤)11.已知椭圆的焦点在坐标轴上,短轴的一个端点与两焦点构成正三角形,若焦点到椭圆的最短距离为解:如图所示,设点P (0x ,0y )为椭圆上位于第一象限的任一点,其到焦点距离20||PF a ex =-,显然0x a =时,2||PF最小,故有a c -b ,a =2c ,解之得a =,b =3. 故221129x y +=与221912x y +=为所求椭圆方程. 12. 设中心在原点,焦点在x轴上的椭圆的离心率为2,并且椭圆与圆x 2+y 2-4x-2y+52=0交于A 、B 两点,若线段AB 的长等于圆的直径.(1)求直线AB 的方程;(2)求椭圆的方程. 解:(1)设椭圆的方程为22221x y a b +=,由c e a ==222a b c =+得224a b =, 设()()1122,,,A B x y x y ,由于线段AB 的长等于圆的直径,所以线段AB 的中点为圆心(2,1),且AB =则22112222222211x y a b x y ab ⎧+=⎪⎨⎪+=⎩,两式相减得 ()()()()1212121222x x x x y y y y a b -+-+=-,()()2121221212b x x y y x x a y y -+-=-+,又12122212x x y y +⎧=⎪⎨+⎪=⎩,所以()()222122*********b x x b b a a b y y -+--===-+,121212y y x x -=--,直线AB 的方程为y=-12x+2; (2)由222212214y x x y bb ⎧=-+⎪⎨⎪+=⎩,消去x 得222440y y b -+-=,12212242y y b y y +=⎧⎪∴-⎨=⎪⎩, ()221224b y y ∴=--,又()12122x x y y -=--,所以()()2212124x x y y =--,AB ∴==又AB =()251024b ∴=-, 223,12b a ∴==,所求椭圆的方程为212x +23y =1.13.设椭圆22x a +22y b =1的两焦点为F 1、F 2,长轴两端点为A 1、A 2.(1)P 是椭圆上一点,且∠F 1PF 2=600,求ΔF 1PF 2的面积;(2)若椭圆上存在一点Q ,使∠A 1QA 2=1200,求椭圆离心率e 的取值范围.解:(1)设|PF 1|=r 1,|PF 2|=r 2,则S 12PF F ∆=12r 1r 2sin ∠F 1PF 2,由r 1+r 2=2a , 4c 2=r 12+r 22-2cos ∠F 1PF 2,得r 1r 2=21221cos b F PF +∠.代入面积公式,得S 12PF F ∆=1212sin 1cos F PF F PF ∠+∠b 2=b 2tan ∠122F PFb 2.(2)设∠A 1QB=α,∠A 2QB=β,点Q(x 0,y 0)(0<y 0<b).tan θ=tan(α+β)= tan α+tanβ1-tan αtanβ= 000022021a x a x y y a x y -++--=0222002ay x y a +-.∵202x a +202y b =1,∴x 02=a 2-22a b y 02.∴tan θ=0222022ay a b y b -- =2202ab c y-2ab 22y 02b , 即3c 4+4a 2c 2-4a 4≥0,∴3e 4+4e 2-4≥0,解之得e 2≥23e<1为所求.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.若直线y
kx 1和椭圆x 2 4y 2
1相切,则k 2的值是
A.1 / 2
B.2 / 3
C.3 / 4
D.4 / 5
2.椭圆mx 2
上2,则二的值是
2
ny 2 1与直线x + y — 1 = 0交于M N 两点,过原点与线段MN 中点的直线斜率为 n — 3.椭圆
m
2 B .
2 c .
2
x 2
y 2
、 、
2
2
1上对两焦点张角

a b 90°的点可能有 A.4个
B.2个或4个
C.0个或2个,4个
D.还有其它情况
4. B I ,B 2是椭圆短轴的两端点,过左焦点F i 作长轴的垂线,交椭圆于P,若|FE|是|OFJ 和
IB 1B 2I 的比例中项,则|PF|:|OB 2|的值是
B 还。


5
2
A. .. 2
2 2
5.椭圆X 匚 1的一个焦点为 R ,点P 在椭圆上,如果线段 PR 的中点M 在y 轴上,那
12 3
么点M 的纵坐标是
A .
3
B. -
C. - D .
3
4
2
4
4
_ 2 2
6 .设A ( — 2, 、、3) , F 为椭圆 —+ y = 1的右焦点,点M 在椭圆上移动,当|AM| + 2|MF|
16 12
取最小值时,点M 勺坐标为
A . (0, 2、3)
B . (0, - 2 3)
C . (2 3 ,
■ 3 ) D . (-2 . 3 , 、、3 )
二.填空题(每题5分,满分20分,把答案填在题中横线上)
X 2
7.椭圆—— 25 —=1上有一点P 到左准线的距离为 2.5 ,则P 到右焦点的距离为
9
&若椭圆
5
2
的一个焦点到相应准线的距离为一,离心率为一, 厂
4
3
5.(用分数表示)
的半短轴长为
涟西南中学高二数学椭圆测试题(一)
一.选择题(每小题 5分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要 求的)
2 2
x y
9
若点A(4, y) B 、C(8, y 2)是椭圆:
1上的三点,它们关于右焦点
144 9
的三条焦点半径长成等差数列
,那么点B 的坐标是 _________ .
2 2
x y
10. P 是椭圆才+ = 1上的点,F [和F 2是焦点,贝y k = |PF 1| • |PF 2|的最大值和最小值
分别是
2 乞 且
AB l 00,则 a

x 2
2
a
1. 8 2 . 1/2 3
. (6,
4
. k max = 4,
k mix = 3
三•解答题(11,12题每题15分,13题20分,满分50分,解答应写出文字说明,证明过程或演 算步
骤)
11.
已知椭圆的焦点在坐标轴上,短轴的一个端点与两焦点构成正三角形,若焦点到椭圆 的最短距离为 3,求椭圆的标准方程. 解:如图所示,设点 P( X o , y o )为椭圆上位于第一象限的任一点,其到焦点距离
| PF 2 | = a — ex 0,显然 x 0= a 时,| PF 2 |最小,故有a — c = . 3,由短轴端点与两焦点构 成正三角形得b = . 3c , a = 2c ,解之得 a = 2,3 , 2 2 故—+ — =1与—+ — =1为所求椭圆方程.
12 9 9 12 12.设中心在原点,焦点在x 轴上的椭圆的离心率为 —3,并且椭圆与圆x 2+y 2-4x-2y+ — =0
2 2
交于A 、B 两点,若线段 AB 的长等于圆的直径. ⑴求直线AB 的方程; (2)求椭圆的方程. 解:(1)设椭圆的方程为 2 X 2
a
仝及a 2 b 2
2
2 2 2
c 得 a 4b ,
设 A x i ,y i ,B X 2,y 2 ,
由于线段AB 的长等于圆的直径,所以线段 AB 的中点为圆心(2,1),
2 1 2
b
2
,两式相减

址1
2
x i x 2 x i x 2
2 a
y i Y 2 y i
Y 2
Y I y 2
b 2
X 2
b 2 x
x 2
~2
a
Y i Y 2
x i x 2
2 Y i Y 2
2
,所以 1 b 2
x X 2 2b 2 2b 2 Y i 4b 2
y i y 2
1
,直线 2
AB 的方程
为 y=- - x+2;
2
(2) Y 2 x 4b" 1
x 22
Y b 2
2
,消去X 得2y 2
1 4y 4
b 2 0,
4 b 2 ,
Y
i
2
Y 2
2b 2
4,又 X i X 2
2 Y i
Y 2 ,所以X i
2
X
2
2
4 Y i Y 2 ,
AB 2
2
X i X 2 Y i Y 2
,5 2b 2
4 ,又 AB
5 2b 2 4 io ,
b 2 3, a 2 i2,所求椭圆的方程为
2 2 x_+y-=i.
i2 3 2 2 i 3.设椭圆 笃+丫7= i 的两焦点为F i 、F 2,长轴两端点为A 、 a 2 b 2
A.
(1)P 是椭圆上一点,且/ F i PF 2=60°,求厶F i PH 的面积; ⑵ 若椭圆上存在一点 Q 使/ A i QA=120°,求椭圆离心率
e 的取值范围.
1
解:(i )设 |PF i |=r i , |PF 2|=r 2,则 S PF F = rzsin / F i PH ,由 r i +r 2=2a , i 2
2 2b 2
4c 2=r i 2+r 22-2cos / F i PF 2,得 r i r 2=
.代入面积公式,得
cos F ,PF 2
PF i F 2 sin FiP F 2
b 2=b 2tan Z ^2 =
b 2.
2 3
i cos R PF 2
(2)设/ AQB=x ,Z A 2QB 邛, 占 八、、
Q(x o , y o )(O<y o <b).
tan a +tan J3 tan 0=tan( a + 3 )=
-tan a tan 3
a X 。

a X o Y
o Y o 2 2 a X o
Y o
2ay 。

222 X o y o a 2 2
X ) y o
7
+ 2 = i ,二 x o =a -〒 y o .
a b
b
••• tan (=一2ay°一=
2 72
a b 2
2 y o b 3e4+4e2-4 > 0,解之得
2ab2.- —_
=-腐• • 2ab2=V3 c2y°w V3 c2b,即3c4+4a2c2-4a4>0, 2
c y o
e2> 2,
3。

相关文档
最新文档