第6章 统计假设检验

合集下载

概率与数理统计第六章

概率与数理统计第六章

t


W {T t (n 1)}
2021/3/11
t
x 16
6.2.1 单个正态总体均值的假设检验
例6.2 正常人的脉搏平均每分钟72次,某医生测得10例四乙基铅 中毒患者的脉搏数(次/分)如下:54,67,68,78,70,66, 67,70,65,69.已知人的脉搏次数服从正态分布.试问四乙基铅
在取6份水样,测定该有害物质含量,得如下数据: 0.530‰,0.542‰,0.510‰,0.495‰,0.515‰,0.530‰
能否据此抽样结果说明有害物质含量超过了规定? 0.05
练习2 一公司声称某种类型的电池的平均使用寿命至少为21.5小 时,有一实验室检验了该公司制造的6套电池,得到如下的寿命数 据(单位:小时):19 18 22 20 16 25 设电池寿命服202从1/3/正11 态分布,试问这种类型的电池寿命是否低于该18 公
即提出假设: H0 : p 0.02 若 H0 正确,则取到次品为小概率事件.
2021/3/11
在一次试验中, 小概率事件是 几乎不可能发 生的.
小概率原理
2
6.1 假设检验的基本概念
2. 两类错误
犯了“弃真”错误 第一类错误
犯了“纳伪”错误 第二类错误
P(拒绝H0 | H0为真)
P(接受H0 | H0为假)
注意:我们总把含 有“等号”的情形 放在原假设.
在原假设 H0 为真的前提下,确定统计量
U
X 0
~
N (0,1)
n
2021/3/11
因为X
~
N
,
2
n
,
所以
X
~
N (0,1)

第六章 假设检验2006

第六章 假设检验2006

第六章参数假设检验假设检验(test of hypothesis)亦称显著性检验(test of statistical significance),就是先对总体的参数或分布做出某种假设,如假设两个总体均数相等,总体服从正态分布或两总体分布相同等,然后用适当的统计方法计算某检验统计量,根据检验统计量的大小来推断此假设应当被接受或拒绝,它是统计推断的另一重要方面。

假设检验可以分为两类:一类是已知总体分布类型,对其未知总体参数的假设作假设检验,称为参数检验(parametric test),主要讨论总体参数(均值、方差、总体率等)的检验;另一类是对未知总体分布类型的总体假设作假设检验,称为非参数检验(non-parametric test),主要包括总体分布形式的假设检验、随机变量独立性的假设检验等。

本章主要介绍有关总体参数(均值、方差、总体率等)的参数检验问题。

第一节假设检验的基本概念一、假设检验问题及基本原理(一)假设检验问题我们先来看个具体的例子。

例6.1某药厂用自动包装机包装葡萄糖,按规定每袋葡萄糖的标准重量为500克,若已知包装机包装的每袋葡萄糖重量服从正态分布,且按以往标准知总体方差σ2=6.52,某日开工后,为检验包装机工作是否正常,随机抽取6袋葡萄糖,测得其平均重量x=504.5(克),问该日自动包装机包装的平均重量是否还是500克?某日随机抽取的6袋葡萄糖的平均重量x=504.5(克),与标准重量500克相比差4.5克,造成该差异的原因有两种可能:①这日自动包装机工作正常,其包装的总体平均重量μ=500克,此6袋葡萄糖的平均重量这一样本均值与总体均值不同,是随机抽样误差造成的;②这日自动包装机工作不正常,其包装的总体平均重量μ≠500克,故从此总体中随机抽取的6袋葡萄糖的平均重量与标准重量存在实质性差异,而不仅仅是抽样误差造成的。

上述两种可能是相互对立的、互不相容的,究竟哪一种可能是对的,可用假设检验的方法来判断。

统计学第六章 假设检验

统计学第六章  假设检验

X 0 z n
3、确定显著性水平及拒绝域
1)、确定显著性水平α 2)、双侧检验时,拒绝域为Z<-Zα/2或Z> Zα/2,即在 Z<-Zα/2或Z> Zα/2时拒绝原假设,接受备选假设,反 之接受原假设,拒绝备选假设。如Z= Zα/2 或Z=-Zα/2 为了慎重,一般先不下结论,应再进行一次抽检。 3)、单侧检验时,左单侧检验时,拒绝域为Z<–Zα,即 Z<–Zα时拒绝原假设,接受备选假设;右单侧检验 时,拒绝域为Z> Zα,即Z> Zα时,拒绝原假设,接 受备选假设
H 0 : u u0 H 0 : u u0 H 0 : u u0
H1 : u u0 双侧检验 H1 : u u0 左侧检验 H1 : u u0 右侧检验
2、确定适当的检验统计量
确定适当的统计量,且能在原假设成立的条件下知其分布。 一般来说,检验统计量的基本形式可表示如下:
样本统计量 被假设参数 检验统计量 统计量的标准差
4、计算统计量z的值 5、根据统计量的值与临界值的关系,进行判定是接 受原假设还是拒绝备选假设
1、根据长期经验和资料的分析,某砖瓦厂生产的砖的“抗断 强度”服从正态分布,方差为1.21。从该厂产品中随机抽取 6块,测得抗断强度如下(单位:KG/ ):32.56 29.66 31.64 30.00 31.87 31.03 检验这批砖的平均抗断强度为32.50是否成立?(α=0.05) CM 2 2、某厂生产一种产品,原月产量服从平均值为u=75,方差为 14的正态分布,设备更新后,为了考察产量是否提高,抽 查了6个月产量,求得平均产量为78,假定方差不变,问在 显著性水平α=0.05下,设备更新后的月产量是否有显著性 提高? 3、某批发商欲从厂家购进一批灯泡,根据合同规定灯泡的使 用寿命平均不能低于1000小时。已知灯泡燃烧寿命服从正 态分布,标准差为200小时。在总体中随机抽取了100个灯 泡,得知样本均值为960小时,批发商是否应购买这批灯泡?

卫生统计学课件_第六章_假设检验

卫生统计学课件_第六章_假设检验
2020/10/7
1
统计推断
用样本信息推论总体特征的过程。
包括: 参数估计: 运用统计学原理,用从样本计算出来的统计
指标量,对总体统计指标量进行估计。
假设检验:又称显著性检验,是指由样本间存在的差
别对样本所代表的总体间是否存在着差别做出判断。
第一节 假设检验
▲显著性检验;
▲科研数据处理的重要工具;
与正常人血清 ß脂旦白均数不同; 两样 本均数差别有显著性。
2020/10/7
▲计算公式: t 统计量: 自由度:n - 1
2020/10/7
11
▲ 适用条件:
(1) 已知一个总体均数; (2) 可得到一个样本均数及该样本标准误; (3) 样本量小于100; (4) 样本来自正态或近似正态总体。
2020/10/7
12
例:已知一般婴儿平均出生体重为3.20kg,某医生 调查了25个难产婴儿出生体重,并计算其平均出生 体重为3.42kg ,标准差为0.42kg,试分析难产儿出 生体重与一般婴儿出生体重有假设 • 拒绝检验假设 正确理解结论的概率性(都隐含着犯错误的
可能性)。
2020/10/7
8
第二节 t 检验
▲ t 值表
横标目:自由度, υ
纵标目:概率, p, 即曲线下阴影部分的面积;
表中的数字:相应的 |t | 界值
▲ t 值表规律:
(1) 自由度(υ)一定时,p 越小, t 越大;
▲某事发生了:
是由于碰巧?还是由于必然的原 因?统计学家运用显著性检验来 处理这类问题。
2020/10/7
3
假设检验的主要内容
1、原因 2、目的 3、原理 4、过程(步骤) 5、结果

概率论与数理统计 南京大学 6 第六章假设检验 (6.1.1) 假设检验的基本概念

概率论与数理统计 南京大学 6  第六章假设检验 (6.1.1)  假设检验的基本概念
原因:犯第一类错误的后果比犯第二类错误 的后果更为严重。
客观 主观
H0真
H0不真
拒绝H0
第一类错 误(弃真)
不 H0真) P(第一类错误)= P(不拒绝H0 | H0不真) P(第二类错误)=
一般情况下,犯两类错误的概率存在此消彼 长的关系,不能同时达到最小,我们通常的 做法是首先控制犯第一类错误的概率,然后 尽量降低犯第二类错误的概率。 (奈曼-皮 尔逊原则)
假设检验的基本概念
2019/1/6
假设检验=假设+检验。
首先对总体提出某种推断或猜测,即假设;
然后通过试验,抽取样本,根据样本信息 对“假设”的正确性进行判断,即检验。
例1 :某厂生产的一种保健食品。已知在正常的情况 下,每瓶保健品的重量(单位:千克)服从均值为 25.0的正态分布(方差为0.01 )。某天开工后, 随机抽取9瓶,测得其平均重量为24.94,试问 该天生产是否正常?
H0: =25;
H1: 25
例2 :某厂生产一批产品,要求次品率不超过5%。 随机抽取50件,发现有4件次品,问产品能 否出厂?
H0:p0.05;
H1: p>0.05
原假设:记为H0 备择假设(或对立假设):记为H1 。
简单假设:只含一个结论。 复合假设:包含多个结论。
假设检验中的两类错误

第六部分假设检验

第六部分假设检验
假设Z分布为正态, 则 ( Z ) 1 P ( Z Z ) 如经抽样所获样本的

Z
接受域
统计量Z Z , 则就拒 绝原假设H 0 , 反之, Z Z , 则应接受原假 设H 0
拒绝域
第六部分 假设检验
四、统计检验中的名词 5、双边检验和单边检验
1)双边检验 如果拒绝域选择为统计量分布的两侧, 那么, 当显著性水平为时, 每侧拒 绝域的概率应各为 / 2.现在假定所用统计量分布以0点为对称, 则临界值 Z / 2和显著性水平有如下的关系式 : P( Z Z / 2 ) 双边检验的假设如下 : H 0 : 0 H1 : 0 若 Z Z / 2 , 则应拒绝H 0 ; 若 Z Z / 2 , 则应接受H 0
10 C10 如果H 0成立,P( 10) 10 10 7 C100
抽10人都为非本地人的概率极小, 而这样的小概率事件在 现实中发生了, 只能拒绝原假设, 接受备择假设。
第六部分 假设检验
四、统计检验中的名词 1、假定 在运用各种统计技术时,首先需要假定,例如总体 是否要求满足正态分布或其他形态的分布,总体间的方 差是否要求相等,或抽样是否要求独立等。除了这些具 体要求外,还有一个不言而喻的假定,那就是抽样必须 是随机抽样。
第六部分 假设检验
五、假设检验的步骤 1、根据实际问题作出假设。包括原假设 H 0和备择假设 H1 两部分; 2、根据样本构成合适的、能反映 H 0 的统计量,并在 H 0 条件下确定统计量的分布; 3、根据问题的需要,给出小概率 的大小,并求出拒 绝域和临界值; 4、根据上述检验标准,用样本统计量的观测值进行判 断。若样本统计量的值落入拒绝域,则拒绝 H 0 ,否则 接受 H 0

第六章--假设检验基础课件

第六章--假设检验基础课件
两样本所属总体方差相等且两总体均为正态分布
H 0 : 1 2H 1 :1 2 ( 单 1 2 或 侧 1 2 )
当H0成立时,检验统计量:
t X1X2 ~t, n1n22
Sc2n 11n12
第六章 假设检验基础
Sc2
n1
1S12 n2 1S22
n1 n2 2
X1 X1 2 X2 X2 2 n1 n2 2
第六章 假设检验基础
55、作出推断结论:当P≤时,结论为 按所取检验水准α拒绝H0,接受H1,差异有 统计学显著性意义。如果P> ,结论为按 所取检验水准α不拒绝H0,差异无统计学显 著性意义。其间的差异是由抽样误差引起
的。
第六章 假设检验基础
1.建立检验假设
原 假 设 H0:0 14.1 备 择 假H设1 :0(单 侧 ) 检 验 水 准: 0.05
第六章 假设检验基础
检验假设为:
H 0 : d 0H 1 :d 0 ( 单 d 0 或 侧 d 0 )
当H0成立时,检验统计量:
td0 ~t, n1
Sd n
第六章 假设检验基础
表6第-1二用节药前t后检患儿验血清中免疫球蛋白IgG(mg/dl)含量
二、序号配对设计资用料药前的t 检验 用药后
n1 20, X1 17.15,S1 1.59,n1 34, X2 16.92,S2 1.42
Sc2
n1
1S12 n2 1S22
n1 n2 2
2011.592 3411.422
20342
2.2 0
t X1 X2 17.1516.92 0.550
Sc2
1 n1
1 n2
2.20 1 1 20 34
得治疗前后舒张压(mmHg)的差值(前–后)如下表。问新药和标准药的疗效

第6章 假设检验

第6章  假设检验

2
2
n2 7.5 2 / 120 6.3 2 / 153 0.8533
u
X1 X 2 s X1X 2

139.9 143.7 0.8533
4.4353 u 0.05 2.58
P<0.01,差别有统计学意义,可认为该市1993年12岁男童平均身高比1973年高。
假设检验应注意的问题
t 检 验
样本均数与总体均数的比较

目的:推断该样本是否来自某已知总体; 样本均数代表的总体均数与0是否相等。

总体均数0一般为理论值、标准值或经大量观察所得并为人们接
受的公认值、习惯值。

解决思路:

区间估计

判断样本信息估计的总体均数之可信区间是否覆盖已知的 总体均数0 ?若不覆盖,则可推断该样本并非来自已知均 数的总体。
样本信息不支持H0,便拒绝之并接受H1,否则不拒绝H0 。
假设检验的基本步骤

建立假设 确定检验水准 计算检验统计量 计算概率P 结论

当P≤ 时,拒绝H0,接受H1,差别有统计学意义。
当P> 时,不拒绝H0,差别尚无统计学意义。
不论,拒绝拒绝H0,还是不拒绝H0都可能范错误。
同?
μ0 =132(g/L)
n=25
? =
μ
X 150 ( g / L) S 16.5( g / L)
已知总体
未知总体

目的:推断病人的平均血红蛋白(未知总体均
数)与正常女性的平均血红蛋白(已知总体均
数0)间有无差别
μ =μ0 ?
X 0 150 132 18

手头样本对应的未知总体均数 μ等于已知总体均数μ0,

(卫生统计学)第六章 假设检验基础

(卫生统计学)第六章 假设检验基础

药前后患儿血清中免疫球蛋白IgG(mg/dl)含量
编号 1 2 3 4 5 6 7 8 9 10 11 12
用药前 1206.4 921.69 1294.08 945.36 721.36 692.32 980.01 691.01 910.39 568.56 1105.52 757.43
用药后 1678.44 1293.36 1711.66 1416.70 1204.55 1147.30 1379.59 1091.46 1360.34 1091.83 1728.03 1398.86
目的
H0
H1
双侧检验 是否μ1≠μ2
μ1=μ2
μ1≠μ2
单侧检验 是否μ1>μ2
μ1=μ2
μ1>μ2
或是否μ1<μ2
μ1=μ2
μ1<μ2
返回
选定检验方法和计算检验统计量
要根据研究设计的类型和统计推断的目的选用不同的检验方法。如 成组设计的两样本均数的比较用t检验(小样本)或Z检验(大样本), 两样本方差的比较用F检验。
(卫生统计学)第六章 假设检验基础
第一节、假设检验的概念与原理 一、假设检验的思维逻辑
1.小概率原理 小概率事件在一次随机试验中几乎是不可能发生
2.假设检验处理问题的特点 ⑴从全局的范围,即从总体上对问题作出判断 ⑵不可能对总体的每个个体均作观察
二、假设检验步骤
例6-1 已知北方农村儿童前囟门闭合月龄为14.1月。某研究者从东北某县抽取36名 儿童,得囟门闭合月龄均值为14.3月,标准差为5.08月。问该县儿童前囟门闭合月 龄的均数是否大于一般儿童?
四、方差齐性检验 homogeneity of variance test

贾俊平统计学第6章假设检验

贾俊平统计学第6章假设检验

正态分布
01
正态分布是一种常见的概率分布 ,其概率密度函数呈钟形曲线, 具有对称性、连续性和可加性等 性质。
02
正态分布广泛存在于自然界和人 类社会中,许多随机变量都服从 或近似服从正态分布。
t分布
t分布是正态分布在自由度不同时的 另一种表现形式,其形状与正态分布 相似,但尾部概率不同。
在假设检验中,t分布在样本量较小或 总体标准差未知时常常被用来代替正 态分布进行统计分析。
界值,判断是否拒绝原假设。
双侧Z检验
总结词
双侧Z检验是用于检验一个总体均数是否与已知值存在显著差异的统计方法。
详细描述
双侧Z检验的步骤与单侧Z检验类似,但需要计算双尾Z值,并根据临界值判断是否拒绝原假设。例如,要检验某 产品的质量是否合格,可以提出原假设为产品质量合格,备择假设为产品质量不合格,然后通过计算Z值和临界 值,判断是否拒绝原假设。
03
样本统计量与抽样分布
样本均值和样本方差
样本均值
表示样本数据的平均水平,计算公式为 $bar{x} = frac{1}{n}sum_{i=1}^{n} x_i$,其中 $n$ 为样本容量, $x_i$ 为第 $i$ 个样本数据。
样本方差
表示样本数据的离散程度,计算公式为 $S^2 = frac{1}{n-1}sum_{i=1}^{n} (x_i - bar{x})^2$,其中 $S^2$ 为样本方差,$bar{x}$ 为样本均值。
假设检验的逻辑
小概率事件原理
如果一个事件在多次试验中发生的概 率很小,那么在一次试验中该事件就 不太可能发生。
反证法
先假设原假设成立,然后根据样本数 据和统计原理,推导出与已知事实或 概率相矛盾的结论,从而拒绝原假设 。

应用统计学第六章参数假设检验

应用统计学第六章参数假设检验

•临界值
•样本统计量
右侧检验示意图 (显著性水平与拒绝域 )
•抽样分布
•置信水平
•1 - a •接受域
•拒绝域
•a
•H0值
•样本统计量 •临界值
•观察到 的样本 统计量
•4 给出拒绝域
•在确定显著性水平后,可以确定检验的拒绝域W. 如在上面例1中, 取α=0.05, 要使对任意的θ≥110 有
•P155
•临界值
•H0值
•观察
到的样
本统计
•临界值
•样本统计量
双侧检验示意图 (显著性水平与拒绝域 )
•抽样分布
•拒绝域 •a/2
•1 - a •接受域
•置信水平 •拒绝域 • a/2
•临界值
•H0值
•临界值 •样本统计量
•观察 到的样 本统计
双侧检验示意图 (显著性水平与拒绝域 )
•抽样分布
•拒绝域 •a/2
•假设检验的思想:
•1、有一个明确的命题或假设 H;
•2、当 H 成立时,考虑某一变量 X 的性质,在女 士品茶问题中,考虑 X 为该女士说对的杯数,注意 此时 X 的分布已知;
•3、以 x 表示 X 的观测值,考虑 P(X=x)=px,px 越 小,试验结果越不利于 H;
•4、根据规定的小概率事件,做出最后的决策。
•若该女士只说对了 3 杯,又会得到怎样的结论?
•参数假设检验举例
例1:根据1989年的统计资料,某地女性新生儿的平 均体重为3190克。为判断该地1990年的女性新生儿 体重与1989年相比有无显著差异,从该地1990年的 女性新生儿中随机抽取30人,测得其平均体重为 3210克。从样本数据看,1990年女新生儿体重比 1989年略高,但这种差异可能是由于抽样的随机性 带来的,也许这两年新生儿的体重并没有显著差异 。究竟是否存在显著差异?可以先假设这两年新生 儿的体重没有显著差异,然后利用样本信息检验这 个假设能否成立。这是一个关于总体均值的假设检 验问题。

统计学原理-假设检验

统计学原理-假设检验

两独立样本均值之差的抽样分布
(1)正态总体,总体方差已知
两个正态总体

中分别独立地抽取容
量为n1和n2的样本,x1、x2分别为其样本均值, 则x1-x2也服从正态分布,那么
第六章 假设检验
Excel操作
l运用函数NORMSDIST计算Z检验的P值 l运用函数TDIST计算t检验的P值
37*/6
第六章
第三节 两总体参数的假设检验 假设检验 学习要点
l 1. 两独立样本均值的抽样分布 l 2. 两独立总体均值之差的假设检验
38*/6
1. 两独立样本均值的抽样分布
第六章 假设检验
9*/6
2. 假设检验的步骤
第六章 假设检验
例6-3
分析:以前的产品废品率在1%以上,改进生产工艺可以使产 品废品率下降是需要支持的命题,故,
予以否定的命题 予以支持的命题
10*/6
2. 假设检验的步骤
第六章 假设检验
(2)检验统计量
检验统计量需要满足以下两个条件
l一是检验统计量中必须含有要检验的总体参数 l二是检验统计量的概率分布必须是明确可知的
31*/6
1. 总体均值的假设检验
检验规则:
条件 原假设与备择假设 检验统计量及其分布
第六章 假设检验
拒绝域
小样本 (n<30)σ2已

小样本 (n<30)σ2未

32*/6
1. 总体均值的假设检验
第六章 假设检验
例6-9 小样本,总体方差未知
设立原假设和备择假设分别为:H0:μ=5600; H1:μ≠5600 检验统计量为:
标准化检验统计量
11*/6
2. 假设检验的步骤

第六章 假设检验

第六章 假设检验

所以有 C0 = 6 × 1.65 + 250 = 因此犯第二类错误的概率是
259.9
X − 270 C0 − 270 β = P{ X ≤ C0 } = P{ } ≤ 6 6 259.9 − 270 = P{z ≤ = −1.68} = φ (−1.68) 6 = 1 − φ (1.68) = 0.0465
y
0.0044
2.61
x
从(1)的计算结果可以看出,在超市提出的假设成立的 )的计算结果可以看出, 情况下,随机抽取的200件产品中,有6件是次品的概率 件产品中, 情况下,随机抽取的 件产品中 件是次品的概率 为0.0044,显然这是一个小概率事件,认为在一次抽查中 ,显然这是一个小概率事件, 不应该发生,现在它发生了, 不应该发生,现在它发生了,我们怀疑超市提出的假设不 应该成立。也就是拒绝这批产品进入超市。 应该成立。也就是拒绝这批产品进入超市。 在这个例子中,超市提出了假设, 在这个例子中,超市提出了假设,通过抽样获得样本数
这两类错误之间的关系是:在样本容量一定时,犯第一类 这两类错误之间的关系是:在样本容量一定时, 错误概率较大时,犯第二类错误地概率较小;反之, 错误概率较大时,犯第二类错误地概率较小;反之,犯第 一类错误概率较小时,犯第二类错误概率较大。 一类错误概率较小时,犯第二类错误概率较大。要想两类 错误的概率都减小,只有增加样本容量。 错误的概率都减小,只有增加样本容量。 5、显著性水平 、 显著性水平:是指人们犯第一类错误概率的最大允许值。 显著性水平:是指人们犯第一类错误概率的最大允许值。 注意:显著性水平是人们根据自己所研究的问题来确定, 注意:显著性水平是人们根据自己所研究的问题来确定, 在经济学和其他社会科学中,常用选择的显著性水平是5% 在经济学和其他社会科学中,常用选择的显著性水平是 或者10%,在卫生和医药统计中,常用选择的显著性水平 或者 ,在卫生和医药统计中, 是1%。在我们经济学中,除非特别声明,一般都以 。在我们经济学中,除非特别声明,一般都以5% 作 为显著性水平。 为显著性水平。 6、临界值和拒绝域 、 拒绝域: 所围城的区域。 拒绝域:拒绝域就是由显著性水平 α 所围城的区域。 临界值:由给定的显著性水平确定的拒绝域的边界值, 临界值:由给定的显著性水平确定的拒绝域的边界值,称 为临界值。 分位点所对应的值。 为临界值。实际上临界值就是 α 分位点所对应的值。

第六章 假设检验习题答案

第六章 假设检验习题答案

不拒绝H0
P值 2P(t(19) 1.9323
| u 0.618) 0.06837 结论:
样本提供的证据表明:在显著性水平=0.05时能认为 该厂生产的工艺品框架宽与长的平均比率为0.618
• 一个著名的医生声称75%的女性所穿过的 鞋子过小,一个研究组织对356名女性进 行了研究,发现其中有313名女性所穿的
• 某种纤维原有的平均强度不超过6克,现希望通过改进工艺来提高 其平均强度。研究人员测得了100个关于新纤维的强度数据,发现其均 值为6.35。假定纤维强度的标准差仍保持为1.19不变,在5%的显著性 水平下对该问题进行假设检验。
1)选择检验统计量并说明其抽样分布是什么样的? 2)检验的拒绝规则是什么? 3)计算检验统计量的值,你的结论是什么?
•H0 : =0.618 •H1 : ≠ 0.618 • = 0.05
•n = 20 •临界值(c):
检验统计量:
t(19) x 0
sn
0.6583 0.618 1.9323 0.09327 20
拒绝 H0
0.025
拒绝 H0
0.025
-2.0930 0 2.0930
t
决策:
显著性水平=0.05时能否认为该厂生产的工艺
品框架宽与长的平均比率为0.618?
0.668
0.749 0.615 0.611
0.654 0.606 0.606
0.670 0.690 0.609
0.612 0.628 0.601
0.553 0.570 0.844 0.576 0.933
根据题意,提出假设:
根据题意,提出假设:
•H0 : ≤ 6 •H1 : > 6 • = 0.05

《卫生统计学》第6章假设检验

《卫生统计学》第6章假设检验

配对设计(paired design)是一种比较特殊 的设计方式,能够很好地控制非实验因素对 结果的影响,有自身配对和异体配对之分。
配对设计资料的分析着眼于每一对观察值之 差,这些差值构成一组资料,用检验推断差 值的总体均数是否为“0”。
.
1. 建立检验假设,确定检验水准
H0 : d 0 H1 : d 0 2. 计算统计量
方差不相等。
.
第三节 大样本资料的z检验
1.单样本资料的 Z 检验(非正态、大样本)
X 近似地服从正态分布,
X

N
,
2
n
H0: μ=μ0

H0 成立时,统计量
H1: μ≠μ0 (双侧) H1:μ>μ0 (单侧) H1:μ<μ0 (单侧)
Z X 0 ~ N ( 0,1 )
S/ n
.
2.两独立样本资料的 Z 检验(非正态、大样本)
t' X1 X2 S12 S22 n1 n2
0.5592 0.1467
2.733
0.51102 0.11072
12
12
( S12 n1
( S12 )2
S22 )2 n2
(
S
2 2
)2
( 0.51102 0.11072 )2
12
12
( 0.65102 )2 ( 0.11072 )2
12.03 12
.
4. Poisson分布资料的z检验
Z X1 X2 X1 X2
Z X1 X2 X1 X2 n1 n2
.
例 6-10 某市在对不同性别成年人(18 岁以上)意外伤害死亡情况有 无差异的研究中,监测数据显示该市 2002 年男女疾病监测各 10 万人,因 意外伤害死亡的人数男女分别为 51 人和 23 人。试问,2002 年不同性别每 10 万人口意外伤害死亡平均人数是否相等?

第6章假设检验补充题

第6章假设检验补充题

第6章 假设检验6.1下列哪个原假设是正确的?A B C. D .500:0μH 500:0=μH 500:0=x H 500:0≤x H 6.2 下列哪个备则假设正确?A B C. D.500:1≤μH 500:1≤x H 500:1 μH 500:1=μH 6.3 某食品厂规定其袋装商品每包的标准重量为500克。

现对一批产品进行抽样检验,从中抽取100包进行称量,检验其是否符合质量标准,其原假设和备择假设应该是( )。

A.,B.,500:0=μH 500:1≠μH 500:0≥μH 500:1<μH C., D.,500:0≤μH 500:1>μH 500:0>μH 500:1≤μH 6.4某乐器厂以往生产的乐器采用的是一种镍合金弦线,这种弦线的平均抗拉强度不超过1035Mpa ,现产品开发小组研究了一种新型弦线,他们认为其抗拉强度得到了提高并想寻找证据予以支持。

在对研究小组开发的产品进行检验时,应该采取以下哪种形式的假设?为什么?6.5 按设计标准,某自动食品包装机所包装食品的平均每袋重量应为500克。

若要检验该机实际运行状况是否符合设计标准,应该采用( )。

A.左侧检验B.右侧检验C.双侧检验D.左侧检验或右侧检验6.6 在假设检验中,不拒绝原假设意为着()。

A. 原假设肯定是正确的B. 原假设肯定是错误的C. 没有证据证明原假设是正确的D. 没有证据证明原假设是错误的6.7研究人员发现,当禽类被拘禁在一个很小的空间内时,就会发生同类相残的现象。

一名孵化并出售小鸡的商人想检验某一品种的小鸡因为同类相残而导致的死亡率是否小于0.04。

试帮助这位商人定义检验参数并建立适当的原假设和备择假设。

6.8一条产品生产线用于生产玻璃纸,正常状态下要求玻璃纸的横向延伸率为65,质量控制监督人员需要定期进行抽检,如果证实玻璃纸的横向延伸率不符合规格,该生产线就必须立即停产调整。

监控人员应该怎样提出原假设和备择假设,来达到判断该生产线是否运转正常的目的?6.9某药品生产企业采用一种新的配方生产某种药品,并声称新配方药的疗效远好于旧的配方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 标准化的检验统计量
6 - 29
统计学
STATISTICS
显著性水平和拒绝域
(双侧检验 )
置信水平 拒绝H0 1-
抽样分布
拒绝H0
/2
/2
临界值
6 - 30
0
临界值
样本统计量
统计学
STATISTICS
显著性水平和拒绝域
(双侧检验 )
置信水平
抽样分布
拒绝H0
拒绝H0 1-
/2
/2
/2
临界值
6 - 33
0
临界值
样本统计量
统计学
STATISTICS
显著性水平和拒绝域
(单侧检验 )
置信水平
抽样分布
拒绝H0

1-
临界值
6 - 34
0
样本统计量
统计学
STATISTICS
显著性水平和拒绝域
(左侧检验 )
置信水平
抽样分布
拒绝H0

1-
临界值
6 - 35
0
样本统计量
观察到的样本统计量
假设这批灯泡是好的那批,那么“任抽一只是坏的”这样的随机 事 件发生的概率应是0.01%,这样小的概率在一次抽样中几乎不可能发 生,而今任抽一只是坏的,这样的事件居然发生,于是拒绝接受“这 是好的那批”的假设,肯定地认为将买到坏的那批,于是坚决拒买
6-6
商场拒买的理由是什么呢?
他会犯错误吗?
统计学


H1 : <某一数值,或 某一数值
例如, H1 : < 10cm,或 10cm
6 - 16
统计学
STATISTICS
提出假设
(例题分析)
【例】设某企业生产的某种产品,其产品寿命t(小时)遵从
均值、方差为2的正态分布,记为t~N(,2)据过去的资 料,已知均值为55万小时,方差为1,000小时2,现在由于改 进了工艺流程和方法,出现均值大于55万小时,方差不变。 但有时仍存在均值不超过55万小时的可能性,怎样来作假设
6 - 39
统计学
STATISTICS
假设检验步骤的总结
设立零假设H0和备择假设H1; 选择统计量,计算被检验的实际统计量之值; 确定统计量的抽样分布; 确定显著性水平,根据显著性水平确定临界值 根据临界值(或者 p 值),确定检验准则,即 给出拒绝域和接受域; 6. 将计算的被检验实际统计量之值与临界值比较 (或者根据 p 值大小判断),从而判定接受或 拒绝零假设,完成统计假设检验 1. 2. 3. 4. 5.
H0 : =200
6 - 18
H1 : ≠200
统计学
STATISTICS
提出假设
(结论与建议)
1. 原假设和备择假设是一个完备事件组,而且 相互对立

在一项假设检验中,原假设和备择假设必有一 个成立,而且只有一个成立
2. 先确定备择假设,再确定原假设
3. 等号“=”总是放在原假设上
4. 因研究目的不同,对同一问题可能提出不同 的假设(也可能得出不同的结论)
STATISTICS
假设检验中的小概率原理
什么是小概率? 1. 在一次试验中,一个几乎不可能发生的 事件发生的概率
2. 在一次试验中小概率事件一旦发生,我 们就有理由拒绝原假设
3. 小概率由研究者事先确定
什么是小 概率?
6-7

统计学
STATISTICS
假设检验的基本思想
抽样分布
这个值不像我 们应该得到的 样本均值 ...
... 因此我们拒 绝假设 = 50
... 如果这是总 体的真实均值 20
6-8
= 50 H0
样本均值
统计学
STATISTICS
假设检验的基本思想
这是一个带有概率性质的反证法:先假定一
个假设是成立的,在这种假设下,将构成一个小 概率事件,根据实际推断原理:“小概率事件在 一 次试验中几乎是不可能发生的”。然而这样的事 件 在一次试验中却发生了,那么我们自然要怀疑“ 假
临界值
6 - 31
0
临界值
样本统计量
统计学
STATISTICS
显著性水平和拒绝域
(双侧检验 )
置信水平 拒绝H0 1-
抽样分布
拒绝H0
/2
/2
临界值
6 - 32
0
临界值
样本统计量
统计学
STATISTICS
显著性水平和拒绝域
(双侧检验 )
置信水平 拒绝H0 1-
抽样分布
拒绝H0
/2
6 - 12
统计学
STATISTICS
假设检验的过程
提出假设 作出决策
拒绝假设 别无选择!
我认为人口的平 均年龄是50岁
总体


抽取随机样本
6 - 13
均值 x = 20
统计学
STATISTICS
原假设与备择假设
6 - 14
统计学
STATISTICS
原假设
(null hypothesis)
6 - 19
统计学
STATISTICS
两类错误与显著性水平
6 - 20
统计学
STATISTICS
假设检验中的两类错误
1. 第Ⅰ类错误(弃真错误)

原假设为真时拒绝原假设 第Ⅰ类错误的概率记为

被称为显著性水平
2. 第Ⅱ类错误(取伪错误)




原假设为假时未拒绝原假 设 第Ⅱ类错误的概率记为 (Beta)
6 - 21
统计学
STATISTICS
假设检验中的两类错误
(决策结果)
假设检验就好像一场审判过程
H0: 无罪
统计检验过程
陪审团审判 实际情况 裁决 无罪 无罪 有罪
6 - 22
H0 检验 决策 有罪 错误 正确 未拒绝H0 拒绝H0 实际情况
H0为真
H0为假
正确 错误
正确决策 第Ⅱ类错 误() (1 – ) 第Ⅰ类错 正确决策 误() (1-)
6 - 是假设检验?
(hypothesis test)
1. 先对总体的参数(或分布形式)提出某种假 设,然后利用样本信息判断假设是否成 立的过程 2. 有参数检验和非参数检验
一种是当总体分布类型已知,所涉及到的是分布中所包含 3. 逻辑上运用反证法,统计上依据小概率原 的几个未知参数的假设检验,这种假设检验叫参数假设检 理 验。另外一种是除上述假设检验以外的其它假设检验,称 为非参数假设检验
6设”的正确性,于是“拒绝假设”。如果“小概 -9
统计学
STATISTICS
假设的陈述
6 - 10
统计学
STATISTICS
什么是假设?
(hypothesis)
我认为这种新药的疗效 比原有的药物更有效!
对总体参数的具体数 值所作的陈述

总体参数包括总体均 值、比例、方差等 分析之前必需陈述

统计学
STATISTICS
错误和 错误的关系
和 的关系就像 翘翘板,小 就 大, 大 就小
你不能同时减 少两类错误!


6 - 23
统计学
STATISTICS
显著性水平
(significant level)
1. 是一个概率值
2. 原假设为真时,拒绝原假设的概率

被称为抽样分布的拒绝域
6-4
统计学 假设检验在统计方法中的地位
STATISTICS
统计方法
描述统计 推断统计
参数估计
6-5
假设检验
统计学
STATISTICS
例子
【例6.1.1】有一厂家生产了两批灯泡各10,000只,其中一批 9,999只好的,仅有一只坏的,而另一批灯泡恰好相反,有 9,999只是坏的,仅1只是好的,现卖给某一商场,据说这是 好的那一批,可商场从这批灯泡中任抽一只发觉是坏的,于是 拒绝买下这批货物

备择假设的方向为“<”,称为左侧检验 备择假设的方向为“>”,称为右侧检验
6 - 26
统计学
STATISTICS
双侧检验与单侧检验
(假设的形式)
单侧检验
左侧检验
H0 : 0 H1 : < 0
假设
原假设 备择假设
双侧检验
H0 : = 0 H1 : ≠0
右侧检验
H0 : 0 H1 : > 0
1. 研究者想收集证据予以反对的假设 2. 又称“0假设” 3. 总是有符号 , 或 4. 表示为 H0

6 - 15
H0 : = 某一数值 指定为符号 =, 或
为什么叫 0假设?

统计学
STATISTICS
备择假设
(alternative hypothesis)
1. 研究者想收集证据予以支持的假设 2. 也称“研究假设” 3. 总是有符号 , 或 4. 表示为 H1
(右侧检验 )
置信水平 拒绝H0
抽样分布

1-
0
6 - 38
临界值
样本统计量
统计学
STATISTICS
决策规则
1. 给定显著性水平,查表得出相应的临界 值z或z/2, t或t/2 2. 将检验统计量的值与 水平的临界值进 行比较 3. 作出决策

双侧检验:I统计量I > 临界值,拒绝H0 左侧检验:统计量 < -临界值,拒绝H0 右侧检验:统计量 > 临界值,拒绝H0
解:生产者想收集证据予以证明的 假设应该是“产品寿命有提高”。 建立的原假设和备择假设为 H0 : 55 H1 : 55
相关文档
最新文档