2020高考物理一轮复习 考点大通关 专题4-3 圆周运动学案
2019-2020【提分必做】高考物理一轮复习 考点大通关 专题4.3 圆周运动学案
专题4.3 圆周运动考点精讲1.匀速圆周运动(1)定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动.(2)特点:加速度大小不变,方向始终指向圆心,是变加速运动.(3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心.2.描述圆周运动的物理量描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等,现比较如下表:二、 匀速圆周运动的向心力 1.作用效果向心力产生向心加速度,只改变速度的方向,不改变速度的大小. 2.大小F =m r v2=m ω2r =m T24π2r =m ωv =4π2mf 2r .3.方向始终沿半径方向指向圆心,时刻在改变,即向心力是一个变力. 4.来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力.2.轨道的确定确定圆周运动的轨道所在的平面,确定圆心的位置.寻找与半径相关的已知量. 3.受力分析分析物体的受力,画出物体受力示意图,利用力的合成或分解把力分解到三个方向上. (1)与轨道圆垂直的方向,此方向受力平衡.(2)轨道圆的切线方向,匀速圆周运动中此方向受力平衡;变速圆周运动中速度最大或最小的点,此方向也受力平衡.(3)轨道圆的径向,此方向合力指向圆心即向心力,使用牛顿第二定律. 根据三个方向上所列方程求解. 三、离心现象1.定义做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动.2.本质做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞出去的趋势. 3.受力特点当F =mr ω2时,物体做匀速圆周运动;当F =0时,物体沿切线方向飞出;当F <mr ω2时,物体逐渐远离圆心,F 为实际提供的向心力,如图431所示.考点精练 题组1圆周运动1.做匀速圆周运动的物体,下列不变的物理量是( ) A .速度 B .速率 C .角速度 D .周期 【答案】BCD【解析】物体做匀速圆周运动时,速度的大小虽然不变,但它的方向在不断变化,选项B 、C 、D 正确。
2020高考物理一轮总复习第四章第3讲圆周运动讲义含解析新人教版
圆周运动[基础知识·填一填][知识点1] 描述圆周运动的物理量 1.匀速圆周运动(1)定义:线速度大小 不变 的圆周运动.(2)性质:加速度大小 不变 ,方向总是指向 圆心 的变加速曲线运动.(3)条件:有初速度,受到一个大小不变,方向始终与速度方向 垂直 且指向圆心的合外力.2.描述圆周运动的物理量判断正误,正确的划“√”,错误的划“×”.(1)匀速圆周运动是匀变速曲线运动.(×)(2)做匀速圆周运动的物体所受合外力大小、方向都保持不变.(×)(3)做匀速圆周运动的物体角速度与转速成正比.(√)[知识点2] 匀速圆周运动与非匀速圆周运动 匀速圆周运动非匀速圆周运动运动特点线速度的大小 不变 ,角速度、周期和频率都 不变 ,向心加速度的大小 不变 线速度的大小、方向都 变 ,角速度 变 ,向心加速度的大小、方向都变,周期可能变也 可能不变 受力特点所受到的 合力 为向心力,大小不变,方向变,其方向时刻 指向圆心 所受到的合力 不指向圆心 ,合力产生两个效果:①沿半径方向的分力 F n ,即向心力,它改变速度的 方向 ;②沿切线方向的分力F τ,它改变速度的 大小 运动性质变加速曲线运动(加速度大小不变,方向变化)变加速曲线运动(加速度大小、方向都变化)判断正误,正确的划“√”,错误的划“×”.(1)做圆周运动的物体,一定受到向心力的作用,所以分析做圆周运动物体的受力时,除了分析其受到的其他力,还必须指出它受到向心力的作用.(×)(2)做圆周运动的物体所受到的合外力不一定等于向心力.(√)[知识点3] 离心现象 1.离心运动(1)定义:做 圆周运动 的物体,在所受合外力突然消失或不足以提供圆周运动所需 向心力 的情况下,所做的逐渐远离圆心的运动.(2)本质:做圆周运动的物体,由于本身的 惯性 ,总有沿着圆周 切线方向 飞出去的倾向.(3)受力特点:F n 为提供的向心力.①当F n =mω2r 时,物体做 匀速圆周 运动;②当F n =0时,物体沿 切线 方向飞出;③当F n <mω2r 时,物体逐渐 远离 圆心,做离心运动.2.近心运动:当F n >mω2r 时,物体将逐渐 靠近 圆心,做近心运动.判断正误,正确的划“√”,错误的划“×”.(1)做圆周运动的物体所受合外力突然消失,物体将沿圆周的半径方向飞出.(×)(2)在绝对光滑的水平路面上汽车可以转弯.(×)(3)火车转弯速率小于规定的数值时,内轨受到的压力会增大.(√)(4)飞机在空中沿半径为R 的水平圆周盘旋时,飞机机翼一定处于倾斜状态.(√)[教材挖掘·做一做]1.(人教版必修2 P19第2题、3题改编)如图所示,两个啮合齿轮,小齿轮半径为10 cm ,大齿轮半径为20 cm ,大齿轮上C 点到圆心O 2的距离为10 cm ,A 、B 分别为两个齿轮边缘上的点,则A 、B 、C 三点的( )A .线速度之比为1∶1∶1B .角速度之比为1∶1∶1C .线速度之比为2∶2∶1D .转动周期之比为2∶1∶1解析:C [同缘转动时,边缘各点的线速度大小相等,故v A =v B ;同轴转动时,角速度相等,故ωB =ωC ;根据题意,有r A ∶r B ∶r C =1∶2∶1;根据v =ωr ,由于ωB =ωC ,故v B ∶v C =r B ∶r C =2∶1;故v A ∶v B ∶v C =2∶2∶1,故选项A 错误,C 正确;根据v =ωr ,由于v A =v B ,故ωA ∶ωB =r B ∶r A =2∶1;故ωA ∶ωB ∶ωC =2∶1∶1,故选项B 错误;由T =,得转动周期之比为T A ∶T B ∶T C =∶∶=1∶2∶2,故选项D 错误.]2πω1ωA 1ωB 1ωC 2.(人教版必修2 P19第4题改编)如图是自行车传动装置的示意图,其中Ⅰ是半径为r 1的大齿轮,Ⅱ是半径为r 2的小齿轮,Ⅲ是半径为r 3的后轮,假设脚踏板的转速为n r/s ,则自行车前进的速度为( )A.B.πnr 1r 3r 2πnr 2r 3r 1C.D.2πnr 2r 3r 12πnr 1r 3r 2答案:D3.(人教版必修2 P25第3题改编)如图所示,小物体A 与水平圆盘保持相对静止,跟着圆盘一起做匀速圆周运动,则A 的受力情况是( )A .重力、支持力B .重力、向心力C .重力、支持力、指向圆心的摩擦力D .重力、支持力、向心力、摩擦力答案:C4.(人教版必修2 P25第2题改编)如图所示,—个内壁光滑的圆锥形筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相等的小球A 和B 紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则以下说法中正确的是( )A .A 球的角速度等于B 球的角速度B .A 球的线速度大于B 球的线速度C .A 球的运动周期小于B 球的运动周期D .A 球对筒壁的压力大于B 球对筒壁的压力解析:B [先对小球受力分析,如图所示,由图可知,两球的向心力都来源于重力mg 和支持力F N 的合力,建立如图所示的坐标系,则有:F N sin θ=mg ①F N cos θ=mrω2②由①得F N =,小球A 和B 受到的支持力F N 相等,由牛顿第三定律知,选项D 错mgsin θ误.由于支持力F N 相等,结合②式知,A 球运动的半径大于B 球运动的半径,故A 球的角速度小于B 球的角速度,A 球的运动周期大于B 球的运动周期,选项A 、C 错误.又根据F N cos θ=m 可知:A 球的线速度大于B 球的线速度,选项B 正确.]v 2r考点一 圆周运动的运动学分析[考点解读]1.圆周运动各物理量间的关系2.对公式v =ωr 的理解当r 一定时,v 与ω成正比;当ω一定时,v 与r 成正比;当v 一定时,ω与r 成反比.3.对a n ==ω2r 的理解v 2r当v 一定时,a n 与r 成反比;当ω一定时,a n 与r 成正比.4.常见的三种传动方式及特点(1)皮带传动:如图甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即v A =v B .(2)摩擦传动:如图丙所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即v A =v B .(3)同轴传动:如图丁所示,两轮固定在一起绕同一转轴转动,两轮转动的角速度大小相等,即ωA =ωB .[典例赏析][典例1] (2018·江苏卷)(多选)火车以60 m/s 的速率转过一段弯道,某乘客发现放在桌面上的指南针在10 s 内匀速转过了约10°.在此10 s 时间内,火车( )A .运动路程为600 mB .加速度为零C .角速度约为1 rad/sD .转弯半径约为3.4 km[审题指导] 解答本题的突破口为“指南针在10 s 内匀速转过了约10°”,从中求出火车做匀速圆周运动的角速度.[解析] AD [火车的角速度ω== rad/s = rad/s ,选项C 错误;θt 2π×1036010π180火车做匀速圆周运动,其受到的合外力等于向心力,加速度不为零,选项B 错误;火车在10 s 内运动的路程s =vt =600 m ,选项A 正确;火车转弯半径R == m≈3.4 km ,v ω60π180选项D 正确.][题组巩固]1.如图所示,当正方形薄板绕着过其中心O 并与板垂直的转动轴转动时,板上A 、B 两点( )A .角速度之比ωA ∶ωB =∶12B .角速度之比ωA ∶ωB =1∶2C .线速度之比v A ∶v B =∶12D .线速度之比v A ∶v B =1∶2解析:D [板上A 、B 两点的角速度相等,角速度之比ωA ∶ωB =1∶1,选项A 、B 错误;线速度v =ωr ,线速度之比v A ∶v B =1∶,选项C 错误,D 正确.]22.明代出版的《天工开物》一书中就有牛力齿轮翻车的图画(如图),记录了我们祖先的劳动智慧.若A 、B 、C 三齿轮半径的大小关系如图,则( )A .齿轮A 的角速度比C 的大B .齿轮A 与B 角速度大小相等C .齿轮B 与C 边缘的线速度大小相等D .齿轮A 边缘的线速度比C 边缘的大解析:D [齿轮A 与齿轮B 是同缘传动,边缘点线速度相等,根据公式v =ωr 可知,半径比较大的A 的角速度小于B 的角速度.而B 与C 是同轴转动,角速度相等,所以齿轮A 的角速度比C 的小,选项A 、B 错误.B 与C 两轮属于同轴传动,故角速度相等,根据公式v =ωr 可知,半径比较大的齿轮B 比C 边缘的线速度大,选项C 错误.齿轮A 与B 边缘的线速度相等,因为齿轮B 比C 边缘的线速度大,所以齿轮A 边缘的线速度比C 边缘的线速度大,选项D 正确.]3.(多选)如图甲所示是中学物理实验室常用的感应起电机,它是由两个大小相等直径约为30 cm 的感应玻璃盘起电的,其中一个玻璃盘通过从动轮与手摇主动轮连接如图乙所示,现玻璃盘以100 r/min 的转速旋转,已知主动轮的半径约为8 cm ,从动轮的半径约为2 cm ,P 和Q 是玻璃盘边缘上的两点,若转动时皮带不打滑,下列说法正确的是( )A .P 、Q 的线速度相同B .玻璃盘的转动方向与摇把转动方向相反C .P 点的线速度大小约为1.6 m/sD .摇把的转速约为400 r/min解析:BC [由于线速度的方向沿曲线的切线方向,由图可知,P 、Q 两点的线速度的方向一定不同,故A 错误;若主动轮做顺时针转动,从动轮通过皮带的摩擦力带动转动,所以从动轮逆时针转动,所以玻璃盘的转动方向与摇把转动方向相反,故B 正确;玻璃盘的直径是30 cm ,转速是100 r/min ,所以线速度v =ωr =2n πr =2××π× m/s 100600.32=0.5π m/s≈1.6 m/s ,故C 正确;从动轮边缘的线速度v c =ω·r c =2××π×0.02 10060m/s =π m/s ,由于主动轮的边缘各点的线速度与从动轮边缘各点的线速度的大小相等,115即v z =v c ,所以主动轮的转速n z === r/s =25 r/min ,故D 错误.]ω2πv z r z2π115π2π×0.08考点二 圆周运动的动力学分析[考点解读]向心力公式是牛顿第二定律对圆周运动的应用,求解圆周运动的动力学问题与应用牛顿第二定律的解题思路相同,但要注意几个特点:(1)向心力是沿半径方向的合力,是效果力,不是实际受力.(2)向心力公式有多种形式:F =m =mω2r =m r ,要根据已知条件选用.v 2r 4π2T 2(3)正交分解时,要注意圆心的位置,沿半径方向和切线方向分解.(4)对涉及圆周运动的系统,要用隔离法分析,不要用整体法.[典例赏析][典例2] (2017·江苏卷)如图所示,一小物块被夹子夹紧,夹子通过轻绳悬挂在小环上,小环套在水平光滑细杆上.物块质量为M ,到小环的距离为L ,其两侧面与夹子间的最大静摩擦力均为F .小环和物块以速度v 向右匀速运动,小环碰到杆上的钉子P 后立刻停止,物块向上摆动.整个过程中,物块在夹子中没有滑动.小环和夹子的质量均不计,重力加速度为g .下列说法正确的是( )eA .物块向右匀速运动时,绳中的张力等于2FB .小环碰到钉子P 时,绳中的张力大于2FC .物块上升的最大高度为2v 2g D .速度v 不能超过 (2F -Mg )LM[解题关键] 静摩擦力变化的判断分析夹子与物块间的静摩擦力随着物块运动情况的变化而变化.在匀速阶段,静摩擦力与物块重力平衡,碰到钉子后,由于向心力的需要,摩擦力会突然变大,当摩擦力达到最大值后,仍无法满足向心力的需要,物块就会从夹子中滑落.[解析] D [设夹子与物块间静摩擦力为f ,匀速运动时,绳中张力T =Mg =2f .摆动时,物块没有在夹子中滑动,说明匀速运动过程中,夹子与物块间的静摩擦力没有达到最大值,A 错误;碰到钉子后,物块开始在竖直面内做圆周运动,在最低点,对整体T ′-Mg=M ,对物块2f -Mg =M ,所以T ′=2f ,由于f ≤F ,所以选项B 错;由机械能守恒得,v 2L v 2LMgH max =Mv 2,所以H max =,选项C 错;若保证物块不从夹子中滑落,应保证速度为最大12v 22g值v m 时,在最低点满足关系式2F -Mg =M ,所以v m = ,选项D 正确.]v 2m L (2F -Mg )L M 解决圆周运动问题的主要步骤1.审清题意,确定研究对象;明确物体做圆周运动的平面是至关重要的一环.2.分析物体的运动情况,即物体的线速度、角速度、周期、轨道平面、圆心、半径等.3.分析物体的受力情况,画出受力分析图,确定向心力的来源.4.根据牛顿运动定律及向心力公式列方程.[母题探究]探究1.圆锥摆问题探究2.转台上的圆周运动母题典例2探究3.车辆转弯问题[探究1] 圆锥摆问题 (2019·枣庄模拟)质量分别为M 和m 的两个小球,分别用长2l 和l 的轻绳拴在同一转轴上,当转轴稳定转动时,拴质量为M 和m 小球的悬线与竖直方向夹角分别为α和β,如图所示,则( )A .cos α=B .cos α=2cos βcos β2C .tan α=D .tan α=tan βtan β2解析:A [以M 为研究对象受力分析,由牛顿第二定律得:Mg tan α=M2l sin α4π2T 21得:T 1=2π 2l cos αg同理:以m 为研究对象:T 2=2π l cos βg因T 1=T 2,所以2cos α=cos β,故A 正确.][探究2] 转台上的圆周运动 (2019·沧州模拟)如图所示,在一个水平圆盘上有一个木块P 随圆盘一起绕过O 点的竖直轴匀速转动,下面说法中错误的是( )A.圆盘匀速转动的过程中,P受到的静摩擦力的方向指向O点B.圆盘匀速转动的过程中,P受到的静摩擦力为零C.在转速一定的条件下,P受到的静摩擦力的大小跟P到O点的距离成正比D.在P到O点的距离一定的条件下,P受到的静摩擦力的大小跟圆盘匀速转动的角速度平方成正比解析:B [圆盘在匀速转动的过程中,P靠静摩擦力提供向心力,方向指向O点,故A正确,B错误;在转速一定的条件下,角速度不变,根据F f=mω2r知,静摩擦力的大小跟P到O点的距离成正比,故C正确;在P到O点的距离一定的条件下,根据F f=mω2r 知,静摩擦力的大小与圆盘转动的角速度平方成正比,故D正确.][探究3] 车辆转弯问题 (多选)在设计水平面内的火车轨道的转弯处时,要设计为外轨高、内轨低的结构,即路基形成一外高、内低的斜坡(如图所示),内、外两铁轨间的高度差在设计上应考虑到铁轨转弯的半径和火车的行驶速度大小.若某转弯处设计为当火车以速率v通过时,内、外两侧铁轨所受轮缘对它们的压力均恰好为零.车轮与铁轨间的摩擦可忽略不计,则下列说法中正确的是( )A.当火车以速率v通过此弯路时,火车所受各力的合力沿路基向下方向B.当火车以速率v通过此弯路时,火车所受重力与铁轨对其支持力的合力提供向心力C.当火车行驶的速率大于v时,外侧铁轨对车轮的轮缘施加压力D.当火车行驶的速率小于v时,外侧铁轨对车轮的轮缘施加压力解析:BC [火车转弯时,内、外两侧铁轨所受轮缘对它们的压力均恰好为零,靠重力和支持力的合力提供向心力,方向水平指向圆心,故A错误,B正确;当速度大于v时,重力和支持力的合力小于所需向心力,此时外轨对车轮轮缘施加压力,故C正确;当速度小于v时,重力和支持力的合力大于向心力,此时内轨对车轮轮缘施加压力,故D错误.]考点三 圆周运动中的多解问题[考点解读]1.多解原因:因匀速圆周运动具有周期性,使得前一个周期中发生的事件在后一个周期中同样可能发生,这将造成多解.2.多解问题模型:常涉及两个物体的两种不同的运动,其中一个物体做匀速圆周运动,另一个物体做其他形式的运动.由于涉及两个物体的运动是同时进行的,因此求解的基本思路是依据等时性,建立等式,求出待求量.[题组巩固]1.(多选)如图所示,直径为d 的竖直圆筒绕中心轴线以恒定的转速匀速转动.一子弹以水平速度沿圆筒直径方向从左侧射入圆筒,从右侧射穿圆筒后发现两弹孔在同一竖直线上且相距为h ,则( )A .子弹在圆筒中的水平速度为v 0=dg 2h B .子弹在圆筒中的水平速度为v 0=2d g 2hC .圆筒转动的角速度可能为ω=πg 2hD .圆筒转动的角速度可能为ω=3πg2h解析:ACD [子弹从左侧射入圆筒后做平抛运动,通过的水平位移等于圆筒直径,到达圆筒右侧打下第二个弹孔,由于两弹孔在同一竖直线上,说明在子弹这段运动时间内圆筒必转过半圈的奇数倍,即d =v 0t 、h =gt 2、(2n +1)π=ωt (n =0,1,2,3…),联立可得12v 0=d,ω=(2n +1)π(n =0,1,2,3…),故A 、C 、D 正确,B 错误.]g 2h g2h2.半径为R 的水平圆盘绕过圆心O 的竖直轴匀速转动,A 为圆盘边缘上一点.在O 的正上方有一个可视为质点的小球以初速度v 水平抛出时,半径OA 方向恰好与v 的方向相同,如图所示.若小球与圆盘只碰一次,且落在A 点,重力加速度为g ,则小球抛出时距O 的高度h = ________ ,圆盘转动的角速度大小ω= ________ .解析:小球做平抛运动:h =gt 2、R =vt ,解得h =.由题意知ωt =2π×n (n ∈N *),12gR 22v 2故联立R =vt 可得ω=(n =1,2,3,…).2n πvR答案: (n =1,2,3,…)gR 22v 22n πvR3.如图所示,在水平放置的圆盘上,其边缘C 点固定一个小桶,桶的高度不计,圆盘半径为R =1 m ,在圆盘直径CD 的正上方,与CD 平行放置一条水平滑道AB ,滑道右端B 与圆盘圆心O 在同一竖直线上,且B 点距离圆盘圆心的竖直高度h =1.25 m ,在滑道左端静止放置质量为m =0.4 kg 的物块(可视为质点),物块与滑道的动摩擦因数为μ=0.2,现用力F =4 N 的水平作用力拉动物块,同时圆盘从图示位置,以角速度ω=2π rad/s ,绕通过圆心O 的竖直轴匀速转动,拉力作用在物块一段时间后撤掉,最终物块由B 点水平抛出,恰好落入圆盘边缘的小桶内.重力加速度g 取10 m/s 2.(1)若拉力作用时间为0.5 s ,求所需滑道的长度;(2)求拉力作用的最短时间.解析:物块平抛:h =gt 2;t ==0.5 s122hg 物块离开滑道时的速度:v ==2 m/sRt拉动物块的加速度,由牛顿第二定律:F -μmg =ma 1得:a 1=8 m/s 2撤去外力后,由牛顿第二定律:-μmg =ma 2得:a 2=-2 m/s 2(1)物块加速获得速度:v 1=a 1t 1=4 m/s则板长L =x 1+x 2=a 1t +=4 m1221v 2-v 212a 2(2)盘转过一圈时落入,拉力作用时间最短盘转过一圈时间:T ==1 s2πω物块在滑道上先加速后减速,最终获得:v =a 1t 1+a 2t 2物块滑行时间、抛出在空中时间与圆盘周期关系:t 1+t 2+t =T由以上两式得:t 1=0.3 s 答案:(1)4 m (2)0.3 s物理模型(五) 竖直平面内圆周运动绳、杆模型[模型阐述]1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管)约束模型”.2.绳、杆模型涉及的临界问题绳模型杆模型常见类型均是没有支撑的小球均是有支撑的小球过最高点的临界条件由mg =mv 2r得v 临=gr由小球恰能做圆周运动得v 临=0讨论分析(1)过最高点时,v ≥,F Ngr +mg =m ,绳、圆轨道v 2r对球产生弹力F N ;(2)不能过最高点时,v <gr,在到达最高点前小球已经脱离了圆轨道(1)当v =0时,F N =mg ,F N 为支持力,沿半径背离圆心;(2)当0<v <时,gr -F N +mg =,F N 背离圆mv 2r心,随v 的增大而减小;(3)当v =时,F N =0;gr (4)当v >时,F N +mg =gr mv 2r,F N 指向圆心并随v 的增大而增大[典例赏析][典例] (2019·新乡模拟)如图所示,轻杆长3L ,在杆两端分别固定质量均为m 的球A 和B ,光滑水平转轴穿过杆上距球A 为L 处的O 点,外界给系统一定能量后,杆和球在竖直平面内转动,球B 运动到最高点时,杆对球B 恰好无作用力.忽略空气阻力,则球B 在最高点时( )A .球B 的速度为零B .球A 的速度大小为2gLC .水平转轴对杆的作用力为1.5mgD .水平转轴对杆的作用力为2.5mg [审题指导](1)杆和球在竖直平面内转动→两球做圆周运动.(2)杆对球B 恰好无作用力→重力恰好提供向心力.[解析] C [球B 运动到最高点时,杆对球B 恰好无作用力,即重力恰好提供向心力,有mg =m ,解得v =,故A 错误;由于A 、B 两球的角速度相等,则球A 的速度大小v 22L 2gL v ′=,故B 错误;球B 到最高点时,对杆无弹力,此时球A 受重力和拉力的合力提供2gL 2向心力,有F -mg =m ,解得:F =1.5mg ,故C 正确,D 错误.]v ′2L 解决“轻绳、轻杆”模型问题的思路1.定模型:首先判断是轻绳模型还是轻杆模型,两种模型在最高点的临界条件不同,其原因主要是“绳”不能支持物体,而“杆”既能支持物体,也能拉物体.2.确定临界点:v 临=,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模gr 型来说是F N 表现为支持力还是拉力的临界点.3.受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程:F合=F 向.4.过程分析:应用动能定理或机械能守恒定律列式,将初、末两个状态联系起来.[题组巩固]1.(多选)如图甲所示,用一轻质绳拴着一质量为m 的小球,在竖直平面内做圆周运动(不计一切阻力),小球运动到最高点时绳对小球的拉力为F T ,小球在最高点的速度大小为v ,其F T -v 2图象如图乙所示,则( )A .轻质绳长为am bB .当地的重力加速度为a mC .当v 2=c时,轻质绳的拉力大小为+aacbD .只要v 2≥b ,小球在最低点和最高点时绳的拉力差均为6a解析:BD [最高点由牛顿第二定律得:F T +mg =,则F T =-mg .对应图象有:mv 2L mv 2L mg =a ,得g =,故B 正确.=得:L =,故A 错误.当v 2=c 时,F T =·c -mg =·ca m m L ab mb a m L ab-a ,故C 错误.只要v 2≥b ,绳子的拉力大于0,根据牛顿第二定律得:最高点:T 1+mg =m ①v 21L最低点:T 2-mg =m ②v 2L从最高点到最低点的过程中,根据机械能守恒定律得:mv -mv =2mgL ③1221221联立①②③式得:T 2-T 1=6mg ,即小球在最低点和最高点时绳的拉力差为6a ,故D 正确.]2.(2019·晋城模拟)如图所示,一内壁光滑、质量为m 、半径为r 的环形细圆管,用硬杆竖直固定在天花板上.有一质量为m 的小球(可看做质点)在圆管中运动.小球以速率v 0经过圆管最低点时,杆对圆管的作用力大小为( )A .m B .mg +mv 2r v 20r C .2mg +mD .2mg -mv 20rv 20r解析:C [小球做圆周运动,若圆管对它的作用力为F N ,根据牛顿第二定律F N -mg =m ,可得F N =mg +m ,小球对圆管的压力F N ′=F N ,以圆管为研究对象,若杆对圆管的v 20r v 20r 作用力为F ,则F =mg +mg +m ,即F =2mg +m ,选项C 正确.]v 20r v 2r3.如图所示,长度均为l =1 m 的两根轻绳,一端共同系住质量为m =0.5 kg 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间的距离也为l ,重力加速度g 取10 m/s 2.现使小球在竖直平面内以AB 为轴做圆周运动,若小球在最高点速率为v 时,每根绳的拉力恰好为零,则小球在最高点速率为2v 时,每根绳的拉力大小为( )A .5 N B. N320 33C .15 ND .10 N3解析:A [小球在最高点速率为v 时,两根绳的拉力恰好均为零,由牛顿第二定律得mg =m ,当小球在最高点的速率为2v 时,由牛顿第二定律得mg +2F T cos 30°=m ,v 2r (2v )2r解得F T =mg =5 N ,故选项A 正确.]33。
2020届高考物理人教版一轮复习 圆周运动学案Word版
第3讲圆周运动1匀速圆周运动、角速度、线速度、向心加速度(1)匀速圆周运动①定义:物体做圆周运动,若在相等的时间内通过的圆弧长相等,这种运动就是匀速圆周运动。
②特点:加速度大小不变,方向始终指向圆心,是变加速运动。
③条件:合力大小不变,方向始终与速度方向垂直且指向圆心。
(2)非匀速圆周运动①定义:物体沿着圆周运动,但线速度大小发生变化。
②合力的作用a.合力沿速度方向的分量F t产生切向加速度,F t=ma t,它只改变速度的大小。
b.合力沿半径方向的分量F n产生向心加速度,F n=ma n,它只改变速度的方向。
(3)描述匀速圆周运动的物理量=单位:m/s=单位:rad/sT=,单位:m/s的是()。
贵州贵阳高三模拟)物体做匀速圆周运动时,下列说法中不正确...B.向心力一定是由物体受到的合外力提供的C.向心加速度的大小一定不变D.向心力的方向一定不变【答案】D湖南长沙第三次质量调研)科技馆的科普器材中常有如图所示的匀速率的传动装置:在大齿轮盘内,大齿轮的半径(内径)是小齿轮半径的3倍,则当大齿轮沿顺时针方向匀速转动时,下列说法正确的是()。
A.小齿轮逆时针转动B.小齿轮每个齿的线速度均相同C.小齿轮的角速度是大齿轮角速度的3倍D.大齿轮每个齿的向心加速度大小是小齿轮的3倍【答案】C2匀速圆周运动的向心力(1)作用效果向心力产生向心加速度,只改变速度的方向,不改变速度的大小。
(2)大小F=m=mrω2=m r=mωv=4π2mf2r。
(3)方向始终沿半径方向指向圆心,时刻在改变,即向心力是一个变力。
(4)来源向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供。
在北京开学考试)如图所示,一个内壁光滑的圆锥形筒的轴线垂直于水平面,圆锥筒固定不动,有两个A和B紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则以下说法中正确的是()。
A.A球的角速度等于B球的角速度B.A球的线速度大于B球的线速度C.A球的运动周期小于B球的运动周期D.A球对筒壁的压力大于B球对筒壁的压力【答案】B3离心现象(1)定义:做圆周运动的物体,在所受合力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动。
2020届高三物理一轮复习第4章第3课时圆周运动导学案(无答案)
第3课时圆周运动考纲解读】1. 掌握描述圆周运动的物理量及它们之间的关系.2. 理解向心力公式并能应用;了解物体做离心运动的条件.【知识要点】2 nr 13•周期和频率:描述物体绕圆心 ________ 的物理量.T =—厂,T = f.5. 向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是 几个力的 ____ 或某个力的 _______ ,因此在受力分析中要避免再另外添加一个向心 力.6. 向心力的确定(1) 确定圆周运动的轨道所在的平面,确定圆心的位置.⑵ 分析物体的受力情况,找出所有的力沿半径方向指向圆心的合力」是向心力. 2 2V24 n 2 2 7. 向心力的公式 F n = ma = mr = m 3 r = mr~r = mr4n f8.相互关系: 2 2“2 n v 2 4 n,22(1)v — 3 r — T r — 2 n rf . (2)a n — — r 3 —3 v — — 4 n f r9. 有些题目中有“刚好”、“恰好”、“正好”等字眼,明显表明题述的过程中存 在着临界点..若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过 程中存1.线速度:描述物体圆周运动快慢的物理量.A s 2 n rV —— A t T '2 •角速度:描述物体绕圆心转动快慢的物理量.3二 A0 2n TT =〒4•向心加速度:描述 _______ 变化快慢的物理量.T 2 r.在着“起止点”,而这些起止点往往就是临界点.•若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程中存在着极值,这些极值点也往往是临界点.10. 竖直平面内圆周运动绳、杆模型(1).在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管)约束模型”.(2).绳、杆模型涉及的临界问题【典型例题】例 1】如图1所示,轮0、O固定在同一转轴上,轮0、Q用皮带连接且不打滑.在O、Q、Q三个轮的边缘各取一点A、B、C,已知三个轮的半径之比r i :r :r = 2 :1 :1,求:(1)A、B、C三点的线速度大小之比V A:V:V; (2)A、B、C三点的角速度之比3 A :3 B :3 C;(3)A、B、C三点的向心加速度大小之比a A:aB:a C例2拗图用一根长为I = 1 m的细线,一端系一质量为1 kg的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角9= 37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为3时,细线的张力为F「(g取10 m/s2,结果可用根式表示)求:;'(1) 若要小球刚好离开锥面,则小球的角速度3 0至少为多大? A o f(2) 若细线与竖直方向的夹角为60°,则小球的角速度3‘为■多大?例3或口图所示,细绳一端系着质量M= 8 kg的物体,静止在水平桌面上,另一端通过光滑小孔吊着质量2 kg的物体,M与圆孔的距离r = 0.5 m,已知M与桌面间的动摩擦因数为0.2(设物体受到的最大静摩擦力等于滑动摩擦力),现使物体M随转台绕中心轴转动,问转台角速度3在什么范围时m会处于静止状态.(g = 10 m/s2)【拓展训练】、单项选择题1.质量为m的木块从半径为R的半球形的碗口下滑到碗的最低点的过程中,如果由于摩擦力的作用使木块的速率不变,那么()A. 因为速率不变,所以木块的加速度为零B •木块下滑过程中所受的合外力越来越大C•木块下滑过程中所受的摩擦力大小不变D.木块下滑过程中的加速度大小不变,方向始终指向球心2•如图所示,光滑水平面上,小球m在拉力F作用下做匀速圆周运动.若小球运动到P点时,拉力F发生变化,下列关于小球运动情况的说法正确的是( )A. 若拉力突然消失,小球将沿轨道 Pa 做离心运动B. 若拉力突然变小,小球将沿轨迹 Pa 做离心运动 C •若拉力突然变大,小球将沿轨迹 Pb 做离心运动 D.若拉力突然变小,小球将沿轨迹 Pc 运动3. 如图所示,在双人花样滑冰运动中,有时会看到被男运动员拉着的女运动员离开 地面在空中做圆锥摆运动的精彩场面,目测体重为G 的女运动员做圆锥摆运动时和水平冰面的夹角约为30°,重力加速度为g ,估算该女运动员( )A.受到的拉力为,:3G B •受到的拉力为2G C •向心加速度为「2gD.向心加速度 为2g 4•如图3所示是一个玩具陀螺,a 、b 和c 是陀螺表面上的三个点•当陀螺绕垂直 于地面的轴线以角速度3稳定旋转时,下列表述正确的是 A. a 、b 和c 三点的线速度大小相等 B . b 、c 两点的线速度始终相同C. b 、c 两点的角速度比a 点的大 D . b 、c 两点的 加速度比a 点的大5. 雨天野外骑车时,在自行车的后轮轮胎上常会粘附一些泥巴, 行驶时感觉很“沉 重” •如果将自行车后轮撑起,使后轮离开地面而悬空,然后 匀速摇脚踏板,使后轮飞速转动,泥巴就被甩下来•如图 4所中a 、b 、c 、d 为后轮轮胎边缘上的四个特殊位置,则( )A.泥巴在图中a 、c 位置的向心加速度大于b 、d 位置的向心加B. 泥巴在图中的b 、d 位置时最容易被甩下来C.泥巴在图中的 时最容易被甩下来 D .泥巴在图中的a 位置时最容易被甩 下来 6. 用一根细线一端系一可视为质点的小球,另一端固定在一 光滑圆锥顶上,如图所示,设小球在水平面内做匀速圆周运 动的角速度为3,细线的张力为F T ,则F T 随3 2变化的图象是选项中的()c 位置示,速度7 •下列关于匀速圆周运动的说法,正确的是()A. 匀速圆周运动的速度大小保持不变,所以做匀速圆周运动的物体没有加速度B. 做匀速圆周运动的物体,虽然速度大小不变,但方向时刻都在改变,所以必有加速度C. 做匀速圆周运动的物体,加速度的大小保持不变,所以是匀变速曲线运动速度的方向时刻都在改变,所以匀速圆周运动一定是变加速曲线运动D.匀8. 在高级沥青铺设的高速公路上,汽车的设计时速是108 km/h.汽车在这种路面上行驶时,它的轮胎与地面的最大静摩擦力等于车重的0.6倍.(1) 如果汽车在这种高速公路的水平弯道上拐弯,假设弯道的路面是水平的,其弯道的最小半径是多少?(2) 如果高速公路上设计了圆弧拱形立交桥,要使汽车能够以设计时速安全通过圆弧拱桥,这个圆弧拱形立交桥的半径至少是多少?(取g= 10 m/s2)9.物体做圆周运动时所需的向心力F需由物体运动情况决定,合力提供的向心力F卩供,物体将供由物体受力情况决定.若某时刻F需=F供,则物体能做圆周运动;若F需>做离心运动;若F需<F供,物体将做近心运动.现有一根长L= 1 m的刚性轻绳,其一端固定于O点,另一端系着质量m= 0.5 kg的小球(可视为质点),将小球提至O点正上方的A点处,此时绳刚好伸直且无张力,如图8所示.不计空气阻力,g取10 m/s2,贝(1)为保证小球能在竖直面内做完整的圆周运动,在A点至少应施加•-给小球多大的水平速度?(2)在小球以速度V1= 4 m/s水平抛出的瞬间,中的张力为多少?(3) 在小球以速度V2= 1 m/s水平抛出的瞬间,绳中若有张力,求其大小;若无张力, 试求绳子再次伸直时所经历的时间.。
高考物理人教版一轮总复习配套课件 4.3 圆 周 运 动
物体A受重力、支持力、静摩擦力;由静摩擦力提供向心 力;向心力时刻指向圆心,是效果力;F向=ma向=mv2/R =mRω2;当物体受到的静摩擦力达到最大时,随盘运动的线速 度最大,μmg=mv2/R,v=μgR。
方法点拨:(1)两个隐含条件:两轮上与皮带接触的各点线速度大小 相等;同一转轮上的各点的角速度大小相同,这是解决问题的突破口。 (2)熟练应用关系v= r,a=v2/r=2r=v是解决此类问题的关键。
1.无级变速在变速范围内任意连续地变换速度,性能优于传统的挡位变速,很多种高档汽车都 应用了无级变速。如图4-3-3是截锥式无级变速模型示意图,两个锥轮之间有一个滚轮,主动 轮、滚轮、从动轮之间靠着彼此之间的摩擦力带动。以下判断中正确的是 ( B C) A.当位于主动轮与从动轮之间的滚轮从右向左移动时从动轮转速 降低,滚轮从左向右移动时从动轮转速增加 B.当位于主动轮与从动轮之间的滚轮从左向右移动时从动轮转速 降低,滚轮从右向左 移动时从动轮转速增加 C.当滚轮位于主动轮直径为D1、从动轮直径为D2的位置上时,则 主动轮转速为n1、从动轮转速为n2之间的关系为:n2=n1D1/D2 D.当滚轮位于主动轮直径为D1、从动轮直径为D2的位置上时,则 图4-3-3 主动轮转速为n1、从动轮转速为n2之间的关系为:n2=n1D2/D1
[例1] 图4-3-2为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左 侧是同轴的两个轮,大轮的半径为4r,小轮的半径为2r,b点在小轮上,到 小轮中 心的距离为r,c点和d点分别位于小轮和大轮的边缘上,若在传动过 程中, 皮带不打滑,则 ( CD ) A.a点与b点的线速度大小相等 B.a点与b点的角速度大小相等 C.a点与c点的线速度大小相等 D.a点与d点的向心加速度大小相等 a、c两点为同皮带上的两点,速率一样, 图4-3-2 它们的线速度大小相等,C正确;c和b为同一轮轴上 两点,它们的角速度相同,由线速度公式v= r可知,c点与b点线速度大小不 同,故a点与b点线速度不同,A错误;由va=vc得a=2c,b=c,B错误;由 于d=c,d点向心加速度为ad=d2· 4r,a点的向心加速度为aa=a2· r=4d2r, D正确。
高三物理4.3 圆周运动一轮复习学案
『夯实基础知识』一、描述匀速圆周运动的物理量1、线速度:(1)定义:(2)公式: (3)单位: 量性:2、角速度:(1)定义:(2)公式: (3)单位: 量性:3、周期:(1)定义: (2)单位: 频率:(1)定义: (2)公式: (3)单位: 转速:(1)定义: (2)公式: (3)单位:4、关系:T v =,πω2==T,ω=v ;5、向心加速度:(1)意义:(2)大小:(3)方向:总是指向 ,与线速度方向 ,方向时刻变化,不论a 的大小是否变化,a 都是变加速度6、向心力:(1)作用效果:产生 ,只改变线速度的 ,不改变线速度的 。
(2)大小:(3)方向:总是沿半径指向 ,时刻变化,即向心力是个变力。
(4)来源:向心力是按作用效果命名的力,它可以是作圆周运动的物体受到的某一个力或是几个力的合力,或者是某一个力的分力。
(5)怎样分析向心力:无论物体做匀速圆周运动还是变速圆周运动。
只需将物体受到的合力沿半径方向和垂直于半径方向进行正交分解,然后,沿半径方向所有力的合力就等于向心力。
二、圆周运动 1、匀速圆周运动(1)运动特点:线速度 不变,向心加速度 不变,角速度和周期均恒定。
(2)受力特点:合外力 向心力,且合外力 不变,方向时刻指向圆心。
2、变速圆周运动(1)运动特点:v 、ω、a 、T 的大小均会发生变化(2)受力特点:合外力 向心力,而是沿半径方向所有力的合力提供向心力。
垂直于半径方向的力如果与速度同向,则做加速圆周运动,反之,做减速圆周运动。
圆周运动关键是找到向心力!注意:做变速圆周运动的物体,在每一点的向心力大小、来源都不一定相同,在高中范围内,我们只研究某些特殊点的向心力 三、离心运动1、定义:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力情况下,就做远离圆心的运动,这种运动叫离心运动。
2、本质:①离心现象是物体惯性的表现。
②离心运动并非沿半径方向飞出的运动,而是运动半径越来越大的运动或沿切线方向飞出的运动。
高考物理一轮复习计划第四章第3讲圆周运动及其应用学案含解析
圆周运动及其应用主干梳理对点激活知识点匀速圆周运动、角速度、线速度、向心加速度Ⅰ匀速圆周运动的向心力Ⅱ1.匀速圆周运动定义:线速度大小□01不变的圆周运动。
性质:加速度大小□02不变,方向总是指向□03圆心的变加速曲线运动。
条件:有初速度,受到一个大小不变,方向始终与速度方向□04垂直且指向圆心的合外力。
2.描述圆周运动的物理量描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等,具体如下:12知识点匀速圆周运动与非匀速圆周运动Ⅰ3高考物理一轮复习方案第四章第3讲圆周运动及其应用学案含解析知识点离心现象Ⅰ1.离心运动012(1)定义:做□圆周运动的物体,在所受合外力突然消失或缺乏以提供圆周运动所需□心力的情况下,所做的逐渐远离圆心的运动。
本质:做圆周运动的物体,由于本身的□03惯性,总有沿着圆周□04切线方向飞出去的倾向。
4受力特点:Fn为提供的向心力。
205①当F=mωr时,物体做□匀速圆周运动。
n2 r 06②当F n<mω时,物体逐渐□远离圆心,做离心运动。
F07③当n=0时,物体沿□切线方向飞出。
2.近心运动:当F n>mω2r时,物体将逐渐□08靠近圆心,做近心运动。
一思维辨析1.做圆周运动的物体,一定受到向心力的作用,所以分析受力时,必须指出受到的向心力。
()2.匀速圆周运动是匀变速曲线运动,非匀速圆周运动是变加速曲线运动。
()3.匀速圆周运动的向心加速度与半径成反比。
()4.在光滑的水平路面上汽车不可以转弯。
()5.摩托车转弯时速度过大就会向外发生滑动,这是摩托车受沿转弯半径向外的离心力作用的缘故。
()6.火车转弯速率小于规定的数值时,内轨受到的压力会增大。
()答案1.× 2.× 3.× 4.√ 5.× 6.√二对点激活1.(人教版必修2·P25·T3改编)如下列图,小物体A与水平圆盘保持相对静止,跟着5圆盘一起做匀速圆周运动,那么A受力情况是()A.重力、支持力B.重力、向心力C.重力、支持力、指向圆心的摩擦力D.重力、支持力、向心力、摩擦力答案C解析A受三个力作用,重力和支持力平衡,指向圆心的摩擦力充当向心力,故C正确。
2020高考物理一轮复习 考点大通关 专题4-3 圆周运动学案
【2019最新】精选高考物理一轮复习考点大通关专题4-3 圆周运动学案考点精讲1.匀速圆周运动(1)定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动.(2)特点:加速度大小不变,方向始终指向圆心,是变加速运动.(3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心.2.描述圆周运动的物理量描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等,现比较如下表:二、匀速圆周运动的向心力1.作用效果向心力产生向心加速度,只改变速度的方向,不改变速度的大小.2.大小F=m=mω2r=mr=mωv=4π2mf2r.3.方向始终沿半径方向指向圆心,时刻在改变,即向心力是一个变力.4.来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力.2.轨道的确定确定圆周运动的轨道所在的平面,确定圆心的位置.寻找与半径相关的已知量.3.受力分析分析物体的受力,画出物体受力示意图,利用力的合成或分解把力分解到三个方向上.(1)与轨道圆垂直的方向,此方向受力平衡.(2)轨道圆的切线方向,匀速圆周运动中此方向受力平衡;变速圆周运动中速度最大或最小的点,此方向也受力平衡.(3)轨道圆的径向,此方向合力指向圆心即向心力,使用牛顿第二定律.根据三个方向上所列方程求解.三、离心现象1.定义做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动.2.本质做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞出去的趋势.3.受力特点当F=mrω2时,物体做匀速圆周运动;当F=0时,物体沿切线方向飞出;当F<mrω2时,物体逐渐远离圆心,F为实际提供的向心力,如图431所示.考点精练题组1圆周运动1.做匀速圆周运动的物体,下列不变的物理量是( )A.速度 B.速率 C.角速度 D.周期【答案】BCD【解析】物体做匀速圆周运动时,速度的大小虽然不变,但它的方向在不断变化,选项B、C、D正确。
高考物理一轮复习总教案:4.3匀速圆周运动
匀速圆周运动第3课概念:质点做沿着圆周运动,如果在相等时间内通过的弧长相等,这种运动叫匀速圆周运动。
知识简析一、描述圆周运动的物理量1.线速度:做匀速圆周运动的物体所通过的弧长与所用的时间的比值。
(1)物理意义:描述质点沿切线方向运动的快慢.(2)方向:某点线速度方向沿圆弧该点切线方向.(3)大小:V=S/t说明:线速度是物体做圆周运动的即时速度,其方向时刻改变,所以匀速圆周运动是变速运动。
2.角速度:做匀速圆周运动的物体,连接物体与圆心的半径转过的圆心角与所用的时间的比值。
(l)物理意义:描述质点绕圆心转动的快慢.(2)大小:ω=φ/t 单位:(rad/s)3.周期T,频率f:做圆周运动物体一周所用的时间叫周期.周期的广范含义:做圆周运动的物体单位时间内沿圆周绕圆心转过的圈数,叫做频率,也叫转速4.转速:单位时间内绕圆心转过的圈数。
r/min5.V、ω、T、f的关系T=1/f,ω=2π/T= v /r=2πf,v=2πr/T=2πrf=ωr.T、f、ω三个量中任一个确定,其余两个也就确定了.但v还和半径r有关.6.向心加速度(1)物理意义:描述线速度方向改变的快慢的物理量。
(2)大小:a=v2/r=ω2r=4π2fr=4π2r/T2=ωv,(3)方向:总是指向圆心,方向时刻在变化.不论a的大小是否变化,a都是个变加速度.(4)注意:a与r是成正比还是反比,要看前提条件,若ω相同,a与r成正比;若v相同,a与r成反比;若是r相同,a与ω2成正比,与v2也成正比.7.向心力(1)作用:产生向心加速度,只改变线速度的方向,不改变速度的大小.因此,向心力对做圆周运动的物体不做功.(2)大小:F=ma=mv2/r=mω2 r=m4π2fr=m4π2r/T2=mωv(3)方向:总是沿半径指向圆心,时刻在变化.即向心力是个变力.说明: 向心力是按效果命名的力,不是某种性质的力,因此,向心力可以由某一个力提供,也可以由几个力的合力提供,要根据物体受力的实际情况判定.F心= m a心= m 2 R= m m4n2 R=mωv二、匀速圆周运动1.特点:线速度的大小恒定,角速度、周期和频率都是恒定不变的,向心加速度和向心力的大小也都是恒定不变的.2.性质:是速度大小不变而速度方向时刻在变的变速曲线运动,并且是加速度大小不变、方向时刻变化的变加速曲线运动.3.加速度和向心力:由于匀速圆周运动仅是速度方向变化而速度大小不变,故仅存在向心加速度,因此向心力就是做匀速圆周运动的物体所受外力的合力.4.质点做匀速圆周运动的条件:合外力大小不变,方向始终与速度方向垂直且指向圆心.三、变速圆周运动(非匀速圆周运动)典型是:竖直平面的圆周运动。
2020版高考物理(人教版)一轮复习课件:4.3圆周运动
二、匀速圆周运动的向心力 1.作用效果 向心力产生向心加速度,只改变速度的方向,不改变速度的大 小. 2.大小 2 v2 4π F=m r =mrω2=m T2 r=mωv=4π2mf2r. 3.方向 始终沿半径方向指向圆心, 时刻在改变, 即向心力是一个变力. 4.来源 向心力可以由一个力提供,也可以由几个力的合力提供,还可 以由一个力的分力提供.
三、离心运动和近心运动 1.离心运动定义:做圆周运动的物体,在所受合外力突然消 失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心 的运动. 2.受力特点 (1)当 F=mrω2 时,物体做匀速圆周运动. (2)当 F=0 时,物体沿切线方向飞出. (3)当 F<mrω2 时,物体逐渐远离圆心. (4)当 F>mrω2 时,物体逐渐向圆心靠近,做近心运动. 3.本质:离心运动的本质并不是受到离心力的作用,而是提 供的力小于做匀速圆周运动需要的向心力.
教材回扣· 夯实基础 一、匀速圆周运动及描述 1.匀速圆周运动 (1)定义:做圆周运动的物体,若在任意相等的时间内通过的圆 弧长相等,就是匀速圆周运动. (2)特点: 加速度大小不变, 方向始终指向圆心, 是变加速运动. (3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆 心.
2.描述匀速圆周运动的物理量 定义、意义 线速度 描述做圆周运动的物体运动快 慢的物理量(v)
多维练透 1.如图所示,a、b 是地球表面上不同纬度上的两个点,如果把 地球看作是一个球体,a、b 两点随地球自转做匀速圆周运动,这两 个点具有大小相同的( )
A.线速度 B.加速度 C.角速度 D.轨道半径
答案:C
2.明代出版的《天工开物》一书中就有牛力齿轮翻车的图画(如 图),记录了我们祖先的劳动智慧.若 A、B、C 三齿轮半径的大小 关系如图,则( ) A.齿轮 A 的角速度比 C 的大 B.齿轮 A 与 B 角速度大小相等 C.齿轮 B 与 C 边缘的线速度大小相等 D.齿轮 A 边缘的线速度比 C 边缘的大
2020年高考物理一轮复习课件4.3 第3节 圆周运动
关闭
做匀D.速向圆心周力运和动向的心物加体速所度受的的向方心向力都是是物不体变所的受的合外力,由于指向圆心,
且与线速度垂直,所以向心力不能改变线速度的大小,只用来改变线速度
的方向;向心力大小虽不变,但方向时刻改变,不是恒力,由此产生的向心加
速度也是变化的,故A、D错误,B、C正确。
关闭
BC
解析 答案
(2)令 ωA=ω,由于共轴转动,所以 ωC=ω。因 vA=vB,由公式 ω=������������知,当
线速度一定时,角速度跟半径成反比,故 ωB=2ω,所以 ωA∶ωB∶ωC=1∶
2∶1。
(3)令
A
点向心加速度为
aA=a,因
vA=vB,由公式
a=������
2
知
������
,当线速度一定
时 a=,ω((向122))r心AA知、、加,当BB速、 、角度CC速跟三 三度半点 点一径的 的定成线角时反速速,比向度度,心大之所加小比以速之ωaAB度比∶=2跟vωaAB。 半∶∶v又 径ωBC∶因成; v为正C;比ωA,故=ωaCC,由=12公a。式所 关闭
考点一
第四章
第3节 圆周运动
基础夯实
多维课堂
考点二 考点三 考点四
3.向心力来源分析
实例展示
受力分析
正交分解
不需分解
模型方法
-21-
方程解析
FN=mg Ff=mω2r
Fcos θ=mg Fsin θ= mω2lsin θ
考点一
第四章
第3节 圆周运动
基础夯实
多维课堂
考点二 考点三 考点四
模型方法
实例展示
第四章
第3节 圆周运动
2020届高考物理大一轮精品复习课件:第四章 第3讲 圆周运动
(5) 线速度 v:物体通过的弧长与所用时间的比值.定义式 v=st.计算式 v=2πTR=
__ω__R____=2πnR.
第5页
栏目导航
高考总复习 一轮复习导学案 ·物理(江苏)
第四章 曲线运动
(6)
向
心
加
速
度
:
描
述
线
速
度
改
变
快
慢
的
物
理
量
.
an
=
v2 R
=
ω2R
=
4π2 ___T_2_R___
=
第13页
栏目导航
高考总复习 一轮复习导学案 ·物理(江苏)
第四章 曲线运动
圆周运动中的动力学问题 1. 求解圆周运动的动力学问题做好“三分析” 一是几何关系的分析,目的是确定圆周运动的圆心、半径等; 二是运动分析,目的是表示出物体做圆周运动所需要的向心力公式(用运动学量来 表示); 三是受力分析,目的是利用力的合成与分解的知识,表示出物体做圆周运动时外界 所提供的向心力.
典题演示 1 (2016·金陵中学)如图所示,B 和 C 是一组塔轮,即 B 和 C 半径不同, 但固定在同一转动轴上,其半径之比为 RB∶RC=3∶2,A 轮的半径大小与 C 轮相同, 它与 B 轮紧靠在一起,当 A 轮绕过其中心的竖直轴转动时,由于摩擦作用,B 轮也随 之无滑动地转动起来.a、b、c 分别为三轮边缘的三个点,则 a、b、c 三点在运动过程 中的( D )
___ω_v____,方向始终指向圆心,只改变 v 的方向,不改变 v 的大小.
4. 向心力:做匀速圆周运动的物体始终受到的指向圆心的_合__外__力___.F 向=mvR2= mω2R=m4Tπ22R=___m__a_n __.向心力是根据力的__效__果____命名的力,方向时刻变化,始终
(名师导学)2020版高考物理总复习第四章第3节圆周运动教学案新人教版
第3节 圆周运动考点1匀速圆周运动的运动学问题夯实基础1.匀速圆周运动(1)定义:做圆周运动的物体,若在相等的时间内通过的圆弧长__相等__,就是匀速圆周运动.(2)特点:加速度大小__不变__,方向始终指向__圆心__,是变加速运动.(3)条件:合外力大小__不变__、方向始终与__线速度__方向垂直且指向圆心. 2.描述圆周运动的物理量常用的有:线速度、角速度、周期、转速、频率、向心加速度等.它们的比较见下表:3.对公式v =r ω和a =v r =r ω2的理解(1)v =r ω⎩⎪⎨⎪⎧r 一定时v 与ω成正比ω一定时v 与r 成正比v 一定时ω与r 成反比(2)a =v 2r =r ω2⎩⎪⎨⎪⎧v 一定时a 与r 成反比ω一定时a 与r 成正比4.几种常见的传动装置 (1)传动装置的分类 主要有四种:①共轴传动(图甲);②皮带传动(图乙);③齿轮传动(图丙);④摩擦传动(图丁).(2)传动装置的特点传动问题包括皮带传动(链条传动、齿轮传动、摩擦传动)和同轴传动两类,其中运动学物理量遵循下列规律.①共轴转动的轮子或同一轮子上的各点的角速度大小__相等__.②皮带传动的两轮,皮带不打滑时,皮带接触处的线速度大小__相等__.链条传动、摩擦传动也一样.③齿轮的齿数与半径成正比,即周长=齿数×齿间距(大小齿轮的齿间距相等). ④在齿轮传动中,大、小齿轮的转速跟它们的齿数成__反比__.考点突破例1自行车运动是治疗帕金森病有效、廉价的方法,对提高患者总体健康状况、改善平衡能力和协调能力,缓解焦虑和抑郁等都有重要作用.图示是某自行车的部分传动装置,其大齿轮、小齿轮、后轮的半径分别为R 1、R 2、R 3,A 、B 、C 分别是三个轮子边缘上的点.当三个轮子在踏板杆的带动下一起转动时,下列说法中正确的是( )A .A 、B 两点的角速度大小之比为1∶1 B .A 、C 两点的周期之比为R 1∶R 2C .B 、C 两点的向心加速度大小之比为R 22∶R 23D .A 、C 两点的向心加速度大小之比为R 22∶(R 1R 3)【解析】大齿轮边缘的A 点和小齿轮边缘上的B 点线速度的大小相等,根据v =ωR 可知R 1ω1=R 2ω2,所以ω1ω2=R 2R 1,A 错误;小齿轮边缘的B 点和后轮边缘的C 点共轴,所以转动的角速度相等即ω3=ω2,根据T =2πω.所以B 与C 的周期相等,即T 2=T 3;根据T =2πω,则A 与B 的周期之比:T 1T 2=ω2ω1=R 1R 2,所以A 、C 两点的周期之比为T 1T 3=R 1R 2,B 正确;小齿轮边缘的B 点和后轮边缘的C 点共轴,所以转动的角速度相等,根据a =ω2r ,可知B 、C 两点的向心速度大小之比为a 2∶a 3=R 2∶R 3,C 错误;大齿轮边缘的A 点和小齿轮边缘上的B 点线速度的大小相等,根据a =v 2r ,所以a 1∶a 2=R 2∶R 1.所以a 1a 3=a 1R 3R 2a 2=R 2R 2R 1R 3=R 22R 1R 3,D 正确.【答案】BD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【2019最新】精选高考物理一轮复习考点大通关专题4-3 圆周运动学案考点精讲1.匀速圆周运动(1)定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动.(2)特点:加速度大小不变,方向始终指向圆心,是变加速运动.(3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心.2.描述圆周运动的物理量描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等,现比较如下表:二、匀速圆周运动的向心力1.作用效果向心力产生向心加速度,只改变速度的方向,不改变速度的大小.2.大小F=m=mω2r=mr=mωv=4π2mf2r.3.方向始终沿半径方向指向圆心,时刻在改变,即向心力是一个变力.4.来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力.2.轨道的确定确定圆周运动的轨道所在的平面,确定圆心的位置.寻找与半径相关的已知量.3.受力分析分析物体的受力,画出物体受力示意图,利用力的合成或分解把力分解到三个方向上.(1)与轨道圆垂直的方向,此方向受力平衡.(2)轨道圆的切线方向,匀速圆周运动中此方向受力平衡;变速圆周运动中速度最大或最小的点,此方向也受力平衡.(3)轨道圆的径向,此方向合力指向圆心即向心力,使用牛顿第二定律.根据三个方向上所列方程求解.三、离心现象1.定义做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动.2.本质做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞出去的趋势.3.受力特点当F=mrω2时,物体做匀速圆周运动;当F=0时,物体沿切线方向飞出;当F<mrω2时,物体逐渐远离圆心,F为实际提供的向心力,如图431所示.考点精练题组1圆周运动1.做匀速圆周运动的物体,下列不变的物理量是( )A.速度 B.速率 C.角速度 D.周期【答案】BCD【解析】物体做匀速圆周运动时,速度的大小虽然不变,但它的方向在不断变化,选项B、C、D正确。
2.一质点做匀速圆周运动时,圆的半径为r,周期为4 s,那么1 s内质点的位移大小和路程分别是( )πrA.r和 B.和2πrC.r和rD.r和2【答案】D【解析】质点在1 s内转过了圈,画出运动过程的示意图可求出这段时间内的位移为r,路程为,所以选项D正确。
3.如图所示,当正方形薄板绕着过其中心O并与板垂直的转动轴转动时,板上A、B 两点( )A.角速度之比ωA∶ωB=∶1B.角速度之比ωA∶ωB=1∶C.线速度之比vA∶vB=∶1D.线速度之比vA∶vB=1∶【答案】D【解析】板上A、B两点的角速度相等,角速度之比ωA∶ωB=1∶1,选项A、B错误;线速度v=ωr,线速度之比vA∶vB=1∶,选项C错误,D正确.4.下列关于向心加速度的说法中正确的是 ( )A.向心加速度表示做圆周运动的物体速率改变的快慢B.向心加速度表示角速度变化的快慢C.向心加速度描述线速度方向变化的快慢D.匀速圆周运动的向心加速度不变【答案】C5.在水平冰面上,狗拉着雪橇做匀速圆周运动,O点为圆心。
能正确地表示雪橇受到的牵引力F及摩擦力Ff的图是 ( )【答案】C【解析】由于雪橇在冰面上滑动,故滑动摩擦力方向必与运动方向相反,即方向应为圆的切线方向,因做匀速圆周运动,合外力一定指向圆心,由此可知C正确。
6. 如图所示,一个匀速转动的圆盘上有a、b、c三点,已知Oc=Oa,则下面说法中错误的是( )A.a、b、c三点的角速度相同B.a、b两点线速度相同C.c点的线速度大小是a点线速度大小的一半D.a、b、c三点的运动周期相同【答案】B题组2 匀速圆周运动与变速圆周运动1. 如图甲所示,在匀速转动的圆筒内壁上,有一物体随圆筒一起转动而未滑动。
当圆筒的角速度逐渐增大时(不滑动),下列说法正确的是( )。
A.物体所受弹力增大,摩擦力也增大了B.物体所受弹力增大,摩擦力减小了C.物体所受弹力和摩擦力都减小了D.物体所受弹力增大,摩擦力不变【答案】D【解析】物体随圆筒一起转动时,受到三个力的作用:重力G、弹力FN和摩擦力Ff(如图乙所示)。
其中G和Ff是一对平衡力,筒壁对它的弹力FN提供它做圆周运动的向心力。
根据向心力公式,FN=mrω2,当角速度ω增大时FN也增大,D项正确。
2.甲、乙两物体分别做匀速圆周运动,如果它们转动的半径之比为1∶5,线速度之比为3∶2,则下列说法正确的是 ( )A.甲、乙两物体的角速度之比是2∶15B.甲、乙两物体的角速度之比是10∶3C.甲、乙两物体的周期之比是2∶15D.甲、乙两物体的周期之比是10∶3【答案】C【解析】由v=ωr得=∶=·=×=,A、B错误;由ω=得==,C正确、D错误。
3. 有一种杂技表演叫“飞车走壁”,由杂技演员驾驶摩托车沿光滑圆台形表演台的侧壁高速行驶,在水平面内做匀速圆周运动。
图14中粗线圆表示摩托车的行驶轨迹,轨迹离地面的高度为h。
如果增大高度h,则下列关于摩托车说法正确的是( )图14A.对侧壁的压力FN增大B.做圆周运动的周期T不变C.做圆周运动的向心力F增大D.做圆周运动的线速度增大【答案】 D【解析】摩托车做匀速圆周运动,提供圆周运动的向心力是重力mg和支持力FN的合力,作出受力分析图。
4.铁路在弯道处的内外轨道高度是不同的,已知内外轨道平面与水平面的夹角为θ,如图所示,弯道处的圆弧半径为R,若质量为m的火车转弯时速度等于,则( )A.内轨对内侧车轮轮缘有挤压B.外轨对外侧车轮轮缘有挤压mgC.这时铁轨对火车的支持力等于cosθmgD.这时铁轨对火车的支持力大于cosθ【答案】C【解析】由牛顿第二定律F合=m,解得F合=mgta nθ,此时火车受重力和铁路轨道的支持力作用,如图所示,FNcosθ=mg,则FN=,内、外轨道对火车均无侧压力,故C正确,A、B、D错误。
5.按照科学家的设想,将来人类离开地球到宇宙中生活,可以住在如图所示的宇宙村,它是一个圆环形的密封建筑,人们生活在圆环形建筑的内壁上.为了使人们在其中生活不至于有失重感,可以让它旋转.若这个建筑物的直径d=200 m,要让人类感觉到像生活在地球上一样,该建筑物绕其中心轴转动的转速为 r/s。
(g 取10 m/s2,π2=10)【答案】0.056.如图所示,一个内壁光滑的圆锥筒,其轴线垂直于水平面,圆锥筒固定不动.有一个质量为m的小球A紧贴着筒内壁在水平面内做匀速圆周运动,筒口半径和筒高分别为R和H,小球A所在的高度为筒高的一半.已知重力加速度为g,则( )2gHA.小球A做匀速圆周运动的角速度ω=RB.小球A受到重力、支持力和向心力三个力作用mgRC.小球A受到的合力大小为HD.小球A受到的合力方向垂直于筒壁斜向上【答案】A【解析】小球A受到重力、支持力两个力作用,合力的方向水平且指向转轴,则mgtan θ=mω2r(设漏斗内壁倾角为θ),半径r=,tan θ=,解得角速度ω=,选项A 正确,选项B、C、D错误。
7.在加拿大温哥华举行的第二十一届冬奥会花样滑冰双人自由滑比赛中,中国选手申雪、赵宏博获得冠军。
如图所示,如果赵宏博以自己为转动轴拉着申雪做匀速圆周运动。
若赵宏博的转速为30r/min,手臂与竖直方向夹角为60°,申雪的质量是50kg ,她触地冰鞋的线速度为4.7m/s,则下列说法正确的是( )A.申雪做圆周运动的角速度为π rad/sB.申雪触地冰鞋做圆周运动的半径约为2mC.赵宏博手臂拉力约是850ND.赵宏博手臂拉力约是500N【答案】AC【解析】申雪做圆周运动的角速度等于赵宏博转动的角速度。
则ω=30r/min=rad/s =π rad/s,由v=ωr得:r=1.5m,A正确,B错误;由Fcos30°=mrω2解得F =850N,C正确,D错误。
题组3 离心运动1.下列关于离心现象的说法中,正确的是( )A.当物体所受的离心力大于向心力时产生离心现象B.做匀速圆周运动的物体,当它所受的一切力都消失时,它将做远离圆心的圆周运动C.做匀速圆周运动的物体,当它所受的一切力都突然消失时,它将沿切线做直线运动D.做匀速圆周运动的物体,当它所受的一切力都突然消失时,它将做曲线运动【答案】C【解析】原来运动的物体不受力时将做匀速直线运动,故B、D错误,C正确。
向心力、离心力是按效果命名的力,并非物体实际受到的力,故A错误。
物体所受指向圆心的合力立即消失或小于向心力时,物体将做离心运动。
2.如图所示,光滑水平面上,小球m在拉力F作用下做匀速圆周运动,若小球运动到P点时,拉力F发生变化,关于小球运动情况的说法不正确的是( )A.若拉力突然消失,小球将沿轨迹Pa做离心运动B.若拉力突然变小,小球将沿轨迹Pa做离心运动C.若拉力突然变小,小球将可能沿轨迹Pb做离心运动D.若拉力突然变大,小球将可能沿轨迹Pc做近心运动【答案】B【解析】由F=知,拉力变小,F提供的向心力不足,R变大,小球做离心运动;反之,F变大,小球做近心运动。
3.在世界一级方程式锦标赛中,赛车在水平路面上转弯时,常常在弯道上冲出跑道,其原因是( )A.是由于赛车行驶到弯道时,运动员未能及时转动方向盘造成的B.是由于赛车行驶到弯道时,没有及时加速造成的C.是由于赛车行驶到弯道时,没有及时减速造成的D.是由于在弯道处汽车受到的摩擦力比在直道上小造成的【答案】C4.中央电视台《今日说法》栏目报道了一起发生在湖南长沙某区湘府路上的离奇交通事故。
家住公路拐弯处的张先生和李先生家在三个月内连续遭遇了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲撞进李先生家,造成三死一伤和房屋严重损毁的血腥惨案。
经公安部门和交通部门协力调查,画出的现场示意图如图所示。
交警根据图示作出以下判断,你认为正确的是( )A.由图可知汽车在拐弯时发生侧翻是因为车做离心运动B.由图可知汽车在拐弯时发生侧翻是因为车做向心运动C.公路在设计上可能内(东北)高外(西南)低D.公路在设计上可能外(西南)高内(东北)低【答案】AC【解析】由题图可知发生事故时,卡车在做圆周运动,从图可以看出卡车冲入民宅时做离心运动,故选项A正确,选项B错误;如果外侧高,卡车所受重力和支持力提供向心力,则卡车不会做离心运动,也不会发生事故,故选项C正确。
方法突破方法1 分析传动问题的方法诠释:传动问题包括皮带传动(也包括链条传动、摩擦传动、齿轮传动)和同轴传动两类。
常见的三种传动方式及特点(1)皮带传动:如图甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即vA=vB,但图甲中两轮转动方向相同,图乙中两轮转动方向相反.(2)摩擦传动:如图丙所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即vA=vB.(3)同轴传动:如图丁所示,两轮固定在一起绕同一转轴转动,两轮转动的角速度大小相等,即ωA=ωB.题组4 分析传动问题的方法1.(多选)如图所示,水平放置的两个用相同材料制成的轮P和Q靠摩擦传动,两轮的半径R∶r=2∶1.当主动轮Q匀速转动时,在Q轮边缘上放置的小木块恰能相对静止在Q轮边缘上,此时Q轮转动的角速度为ω1,木块的向心加速度为a1;若改变转速,把小木块放在P轮边缘也恰能静止,此时Q轮转动的角速度为ω2,木块的向心加速度为a2,则( )2A.=B.=11C.=D.=2【答案】AC【解析】根据题述,a1=ωr,ma1=μmg,联立解得μg=ωr,小木块放在P轮边缘也恰能静止,μg=ω2R=2ω2r,ωR=ω2r,联立解得=,选项A正确、B错误;a2=μg=ω2R,=,选项C正确、D错误.2.如图所示,自行车的大齿轮、小齿轮、后轮的半径不一样,它们的边缘有三个点A、B、C。