Successive Wyner-Ziv Coding Scheme and its Application to the Quadratic Gaussian CEO Proble

合集下载

人工智能领域中英文专有名词汇总

人工智能领域中英文专有名词汇总

名词解释中英文对比<using_information_sources> social networks 社会网络abductive reasoning 溯因推理action recognition(行为识别)active learning(主动学习)adaptive systems 自适应系统adverse drugs reactions(药物不良反应)algorithm design and analysis(算法设计与分析) algorithm(算法)artificial intelligence 人工智能association rule(关联规则)attribute value taxonomy 属性分类规范automomous agent 自动代理automomous systems 自动系统background knowledge 背景知识bayes methods(贝叶斯方法)bayesian inference(贝叶斯推断)bayesian methods(bayes 方法)belief propagation(置信传播)better understanding 内涵理解big data 大数据big data(大数据)biological network(生物网络)biological sciences(生物科学)biomedical domain 生物医学领域biomedical research(生物医学研究)biomedical text(生物医学文本)boltzmann machine(玻尔兹曼机)bootstrapping method 拔靴法case based reasoning 实例推理causual models 因果模型citation matching (引文匹配)classification (分类)classification algorithms(分类算法)clistering algorithms 聚类算法cloud computing(云计算)cluster-based retrieval (聚类检索)clustering (聚类)clustering algorithms(聚类算法)clustering 聚类cognitive science 认知科学collaborative filtering (协同过滤)collaborative filtering(协同过滤)collabrative ontology development 联合本体开发collabrative ontology engineering 联合本体工程commonsense knowledge 常识communication networks(通讯网络)community detection(社区发现)complex data(复杂数据)complex dynamical networks(复杂动态网络)complex network(复杂网络)complex network(复杂网络)computational biology 计算生物学computational biology(计算生物学)computational complexity(计算复杂性) computational intelligence 智能计算computational modeling(计算模型)computer animation(计算机动画)computer networks(计算机网络)computer science 计算机科学concept clustering 概念聚类concept formation 概念形成concept learning 概念学习concept map 概念图concept model 概念模型concept modelling 概念模型conceptual model 概念模型conditional random field(条件随机场模型) conjunctive quries 合取查询constrained least squares (约束最小二乘) convex programming(凸规划)convolutional neural networks(卷积神经网络) customer relationship management(客户关系管理) data analysis(数据分析)data analysis(数据分析)data center(数据中心)data clustering (数据聚类)data compression(数据压缩)data envelopment analysis (数据包络分析)data fusion 数据融合data generation(数据生成)data handling(数据处理)data hierarchy (数据层次)data integration(数据整合)data integrity 数据完整性data intensive computing(数据密集型计算)data management 数据管理data management(数据管理)data management(数据管理)data miningdata mining 数据挖掘data model 数据模型data models(数据模型)data partitioning 数据划分data point(数据点)data privacy(数据隐私)data security(数据安全)data stream(数据流)data streams(数据流)data structure( 数据结构)data structure(数据结构)data visualisation(数据可视化)data visualization 数据可视化data visualization(数据可视化)data warehouse(数据仓库)data warehouses(数据仓库)data warehousing(数据仓库)database management systems(数据库管理系统)database management(数据库管理)date interlinking 日期互联date linking 日期链接Decision analysis(决策分析)decision maker 决策者decision making (决策)decision models 决策模型decision models 决策模型decision rule 决策规则decision support system 决策支持系统decision support systems (决策支持系统) decision tree(决策树)decission tree 决策树deep belief network(深度信念网络)deep learning(深度学习)defult reasoning 默认推理density estimation(密度估计)design methodology 设计方法论dimension reduction(降维) dimensionality reduction(降维)directed graph(有向图)disaster management 灾害管理disastrous event(灾难性事件)discovery(知识发现)dissimilarity (相异性)distributed databases 分布式数据库distributed databases(分布式数据库) distributed query 分布式查询document clustering (文档聚类)domain experts 领域专家domain knowledge 领域知识domain specific language 领域专用语言dynamic databases(动态数据库)dynamic logic 动态逻辑dynamic network(动态网络)dynamic system(动态系统)earth mover's distance(EMD 距离) education 教育efficient algorithm(有效算法)electric commerce 电子商务electronic health records(电子健康档案) entity disambiguation 实体消歧entity recognition 实体识别entity recognition(实体识别)entity resolution 实体解析event detection 事件检测event detection(事件检测)event extraction 事件抽取event identificaton 事件识别exhaustive indexing 完整索引expert system 专家系统expert systems(专家系统)explanation based learning 解释学习factor graph(因子图)feature extraction 特征提取feature extraction(特征提取)feature extraction(特征提取)feature selection (特征选择)feature selection 特征选择feature selection(特征选择)feature space 特征空间first order logic 一阶逻辑formal logic 形式逻辑formal meaning prepresentation 形式意义表示formal semantics 形式语义formal specification 形式描述frame based system 框为本的系统frequent itemsets(频繁项目集)frequent pattern(频繁模式)fuzzy clustering (模糊聚类)fuzzy clustering (模糊聚类)fuzzy clustering (模糊聚类)fuzzy data mining(模糊数据挖掘)fuzzy logic 模糊逻辑fuzzy set theory(模糊集合论)fuzzy set(模糊集)fuzzy sets 模糊集合fuzzy systems 模糊系统gaussian processes(高斯过程)gene expression data 基因表达数据gene expression(基因表达)generative model(生成模型)generative model(生成模型)genetic algorithm 遗传算法genome wide association study(全基因组关联分析) graph classification(图分类)graph classification(图分类)graph clustering(图聚类)graph data(图数据)graph data(图形数据)graph database 图数据库graph database(图数据库)graph mining(图挖掘)graph mining(图挖掘)graph partitioning 图划分graph query 图查询graph structure(图结构)graph theory(图论)graph theory(图论)graph theory(图论)graph theroy 图论graph visualization(图形可视化)graphical user interface 图形用户界面graphical user interfaces(图形用户界面)health care 卫生保健health care(卫生保健)heterogeneous data source 异构数据源heterogeneous data(异构数据)heterogeneous database 异构数据库heterogeneous information network(异构信息网络) heterogeneous network(异构网络)heterogenous ontology 异构本体heuristic rule 启发式规则hidden markov model(隐马尔可夫模型)hidden markov model(隐马尔可夫模型)hidden markov models(隐马尔可夫模型) hierarchical clustering (层次聚类) homogeneous network(同构网络)human centered computing 人机交互技术human computer interaction 人机交互human interaction 人机交互human robot interaction 人机交互image classification(图像分类)image clustering (图像聚类)image mining( 图像挖掘)image reconstruction(图像重建)image retrieval (图像检索)image segmentation(图像分割)inconsistent ontology 本体不一致incremental learning(增量学习)inductive learning (归纳学习)inference mechanisms 推理机制inference mechanisms(推理机制)inference rule 推理规则information cascades(信息追随)information diffusion(信息扩散)information extraction 信息提取information filtering(信息过滤)information filtering(信息过滤)information integration(信息集成)information network analysis(信息网络分析) information network mining(信息网络挖掘) information network(信息网络)information processing 信息处理information processing 信息处理information resource management (信息资源管理) information retrieval models(信息检索模型) information retrieval 信息检索information retrieval(信息检索)information retrieval(信息检索)information science 情报科学information sources 信息源information system( 信息系统)information system(信息系统)information technology(信息技术)information visualization(信息可视化)instance matching 实例匹配intelligent assistant 智能辅助intelligent systems 智能系统interaction network(交互网络)interactive visualization(交互式可视化)kernel function(核函数)kernel operator (核算子)keyword search(关键字检索)knowledege reuse 知识再利用knowledgeknowledgeknowledge acquisitionknowledge base 知识库knowledge based system 知识系统knowledge building 知识建构knowledge capture 知识获取knowledge construction 知识建构knowledge discovery(知识发现)knowledge extraction 知识提取knowledge fusion 知识融合knowledge integrationknowledge management systems 知识管理系统knowledge management 知识管理knowledge management(知识管理)knowledge model 知识模型knowledge reasoningknowledge representationknowledge representation(知识表达) knowledge sharing 知识共享knowledge storageknowledge technology 知识技术knowledge verification 知识验证language model(语言模型)language modeling approach(语言模型方法) large graph(大图)large graph(大图)learning(无监督学习)life science 生命科学linear programming(线性规划)link analysis (链接分析)link prediction(链接预测)link prediction(链接预测)link prediction(链接预测)linked data(关联数据)location based service(基于位置的服务) loclation based services(基于位置的服务) logic programming 逻辑编程logical implication 逻辑蕴涵logistic regression(logistic 回归)machine learning 机器学习machine translation(机器翻译)management system(管理系统)management( 知识管理)manifold learning(流形学习)markov chains 马尔可夫链markov processes(马尔可夫过程)matching function 匹配函数matrix decomposition(矩阵分解)matrix decomposition(矩阵分解)maximum likelihood estimation(最大似然估计)medical research(医学研究)mixture of gaussians(混合高斯模型)mobile computing(移动计算)multi agnet systems 多智能体系统multiagent systems 多智能体系统multimedia 多媒体natural language processing 自然语言处理natural language processing(自然语言处理) nearest neighbor (近邻)network analysis( 网络分析)network analysis(网络分析)network analysis(网络分析)network formation(组网)network structure(网络结构)network theory(网络理论)network topology(网络拓扑)network visualization(网络可视化)neural network(神经网络)neural networks (神经网络)neural networks(神经网络)nonlinear dynamics(非线性动力学)nonmonotonic reasoning 非单调推理nonnegative matrix factorization (非负矩阵分解) nonnegative matrix factorization(非负矩阵分解) object detection(目标检测)object oriented 面向对象object recognition(目标识别)object recognition(目标识别)online community(网络社区)online social network(在线社交网络)online social networks(在线社交网络)ontology alignment 本体映射ontology development 本体开发ontology engineering 本体工程ontology evolution 本体演化ontology extraction 本体抽取ontology interoperablity 互用性本体ontology language 本体语言ontology mapping 本体映射ontology matching 本体匹配ontology versioning 本体版本ontology 本体论open government data 政府公开数据opinion analysis(舆情分析)opinion mining(意见挖掘)opinion mining(意见挖掘)outlier detection(孤立点检测)parallel processing(并行处理)patient care(病人医疗护理)pattern classification(模式分类)pattern matching(模式匹配)pattern mining(模式挖掘)pattern recognition 模式识别pattern recognition(模式识别)pattern recognition(模式识别)personal data(个人数据)prediction algorithms(预测算法)predictive model 预测模型predictive models(预测模型)privacy preservation(隐私保护)probabilistic logic(概率逻辑)probabilistic logic(概率逻辑)probabilistic model(概率模型)probabilistic model(概率模型)probability distribution(概率分布)probability distribution(概率分布)project management(项目管理)pruning technique(修剪技术)quality management 质量管理query expansion(查询扩展)query language 查询语言query language(查询语言)query processing(查询处理)query rewrite 查询重写question answering system 问答系统random forest(随机森林)random graph(随机图)random processes(随机过程)random walk(随机游走)range query(范围查询)RDF database 资源描述框架数据库RDF query 资源描述框架查询RDF repository 资源描述框架存储库RDF storge 资源描述框架存储real time(实时)recommender system(推荐系统)recommender system(推荐系统)recommender systems 推荐系统recommender systems(推荐系统)record linkage 记录链接recurrent neural network(递归神经网络) regression(回归)reinforcement learning 强化学习reinforcement learning(强化学习)relation extraction 关系抽取relational database 关系数据库relational learning 关系学习relevance feedback (相关反馈)resource description framework 资源描述框架restricted boltzmann machines(受限玻尔兹曼机) retrieval models(检索模型)rough set theroy 粗糙集理论rough set 粗糙集rule based system 基于规则系统rule based 基于规则rule induction (规则归纳)rule learning (规则学习)rule learning 规则学习schema mapping 模式映射schema matching 模式匹配scientific domain 科学域search problems(搜索问题)semantic (web) technology 语义技术semantic analysis 语义分析semantic annotation 语义标注semantic computing 语义计算semantic integration 语义集成semantic interpretation 语义解释semantic model 语义模型semantic network 语义网络semantic relatedness 语义相关性semantic relation learning 语义关系学习semantic search 语义检索semantic similarity 语义相似度semantic similarity(语义相似度)semantic web rule language 语义网规则语言semantic web 语义网semantic web(语义网)semantic workflow 语义工作流semi supervised learning(半监督学习)sensor data(传感器数据)sensor networks(传感器网络)sentiment analysis(情感分析)sentiment analysis(情感分析)sequential pattern(序列模式)service oriented architecture 面向服务的体系结构shortest path(最短路径)similar kernel function(相似核函数)similarity measure(相似性度量)similarity relationship (相似关系)similarity search(相似搜索)similarity(相似性)situation aware 情境感知social behavior(社交行为)social influence(社会影响)social interaction(社交互动)social interaction(社交互动)social learning(社会学习)social life networks(社交生活网络)social machine 社交机器social media(社交媒体)social media(社交媒体)social media(社交媒体)social network analysis 社会网络分析social network analysis(社交网络分析)social network(社交网络)social network(社交网络)social science(社会科学)social tagging system(社交标签系统)social tagging(社交标签)social web(社交网页)sparse coding(稀疏编码)sparse matrices(稀疏矩阵)sparse representation(稀疏表示)spatial database(空间数据库)spatial reasoning 空间推理statistical analysis(统计分析)statistical model 统计模型string matching(串匹配)structural risk minimization (结构风险最小化) structured data 结构化数据subgraph matching 子图匹配subspace clustering(子空间聚类)supervised learning( 有support vector machine 支持向量机support vector machines(支持向量机)system dynamics(系统动力学)tag recommendation(标签推荐)taxonmy induction 感应规范temporal logic 时态逻辑temporal reasoning 时序推理text analysis(文本分析)text anaylsis 文本分析text classification (文本分类)text data(文本数据)text mining technique(文本挖掘技术)text mining 文本挖掘text mining(文本挖掘)text summarization(文本摘要)thesaurus alignment 同义对齐time frequency analysis(时频分析)time series analysis( 时time series data(时间序列数据)time series data(时间序列数据)time series(时间序列)topic model(主题模型)topic modeling(主题模型)transfer learning 迁移学习triple store 三元组存储uncertainty reasoning 不精确推理undirected graph(无向图)unified modeling language 统一建模语言unsupervisedupper bound(上界)user behavior(用户行为)user generated content(用户生成内容)utility mining(效用挖掘)visual analytics(可视化分析)visual content(视觉内容)visual representation(视觉表征)visualisation(可视化)visualization technique(可视化技术) visualization tool(可视化工具)web 2.0(网络2.0)web forum(web 论坛)web mining(网络挖掘)web of data 数据网web ontology lanuage 网络本体语言web pages(web 页面)web resource 网络资源web science 万维科学web search (网络检索)web usage mining(web 使用挖掘)wireless networks 无线网络world knowledge 世界知识world wide web 万维网world wide web(万维网)xml database 可扩展标志语言数据库附录 2 Data Mining 知识图谱(共包含二级节点15 个,三级节点93 个)间序列分析)监督学习)领域 二级分类 三级分类。

Sennheiser IE 100 PRO Wireless产品说明书

Sennheiser IE 100 PRO Wireless产品说明书

with Bluetooth® connectorFEATURES• Dynamic full-range transducer for high-resolution,powerful monitoring sound• Reduces acoustic stress factors through natural anddistortion-free reproduction• 2 in 1 bundle: Bluetooth® module for wireless connec-tion to mobile devices, PCs or tablets, with a built-inmicrophone for calls or standard 3,5 mm jack-plugcable• Excellent shielding through optimized earpiece shapeand flexible silicone and foam attachmentsFor the stage. For massive sound. For the road.Developed for high expectations on live stages, the specially designed driver of the IE 100 PRO creates precise audio cla-rity for musicians in live sessions. Typical for the new type of membrane is a powerful, high-resolution and warm monito-ring sound. With the included Bluetooth® module, the in-ears become comfortable everyday companions for your mobile phone, PC or tablet. With the built-in mic, phone calls or Webcasts are also possible.Musicians and DJs choose the IE 100 PRO wireless set for its exceptional sound and high wearing comfort. Not only for live sessions, but also for producing on the road or as an everyday companion.The in-ears come with 4 earpiece adapters that optimize the fit for every ear size and shape. The setup is stage-safe from the connection to the cable conduit.Sophisticated monitoring sound for mixing on live stages, producing in the studio and everywhere in between.DELIVERY INCLUDES• IE 100 PRO (BLACK, CLEAR or RED)• Bluetooth connector• black cable for IE 100 PRO• USB-A to USB-C cable• soft pouch• cleaning tool• foam and silicone ear adapters• quick guide• safety guide• compliance sheetwith Bluetooth® connectorPRODUCT VARIANTSIE 100 PRO WIRELESS BLACKArt. no. 509171IE 100 PRO WIRELESS CLEAR Art. no. 509172IE 100 PRO WIRELESS RED Art. no. 509173SPECIFICATIONS IE 100 PROFrequency response 20 - 18,000 Hz Impedance20 ΩSound pressure level (SPL)115 dB (1 kHz / 1 V rms )Total harmonic distortion (THD)< 0.1 % (1 kHz, 94 dB)Noise attenuation < 26 dB Magnetized field strength 1.63 mT Operating temperature Storage temperature –5 °C to +50 °C (23 °F to 122 °F)–20 °C to +70 °C (–4 °F to 158 °F)Relative humidity< 95 %Bluetooth ® ConnectorWearing style Bluetooth® neckband cable Microphone principle MEMS Microphone frequency response100 - 8,000 HzMicrophone sensitivity -42 dBV/Pa (ITU-T P.79)Microphone pick-up pattern (speech audio)omni-directional Power supply - built-in rechargeable lithium- polymer battery 3.7 V ⎓, 100 mAhUSB charging 5 V ⎓, 100 mA max.Operating time10 h (music playback via SBC) with rechargeable battery;240 h in standby mode Charging time ofrechargeable batteries approx. 2.5 hOperating temperature Charging temperature Storage temperature +5 °C to +40 °C ± 5 °C (41 °F to 104 °F ± 9 °F)+10 °C to +40 °C ± 5 °C (50 °F to 104 °F ± 9 °F)–20 °C to +70 °C (–4 °F to 158 °F)Relative humidity Operation: Storage:10 - 80 %, non-condensing 10 - 90 %Magnetized field strength1.63 mT (with IE 100 PRO)0.23 mT (without headphone)Weight approx. 13 gBluetooth®VersionBluetooth 5.0 compatible,class 1, BLETransmission frequency 2,402 - 2,480 MHz Modulation GFSK, π/4 DQPSK, 8DPSK Profiles HSP, HFP, AVRCP, A2DP Output power 10 mW (max)CodecSBC, aptX®, aptX LL®, AACThe Bluetooth® word mark and logos are registered trade-marks owned by Bluetooth SIG, Inc. and any use of such marks by Sennheiser electronic GmbH & Co. KG is under license.with Bluetooth® connectorSennheiser electronic GmbH & Co. KG · Am Labor 1 · 30900 Wedemark · Germany · ACCESSORIESIE PRO Bluetooth Connector Art. no. 508943IE PRO Mono cable Art. no. 508944Twisted cable Art. no. 507478Black straight cableArt. no. 508584。

Probabilistic model checking of an anonymity system

Probabilistic model checking of an anonymity system

Probabilistic Model Checking ofan Anonymity SystemVitaly ShmatikovSRI International333Ravenswood AvenueMenlo Park,CA94025U.S.A.shmat@AbstractWe use the probabilistic model checker PRISM to analyze the Crowds system for anonymous Web browsing.This case study demonstrates howprobabilistic model checking techniques can be used to formally analyze se-curity properties of a peer-to-peer group communication system based onrandom message routing among members.The behavior of group mem-bers and the adversary is modeled as a discrete-time Markov chain,and thedesired security properties are expressed as PCTL formulas.The PRISMmodel checker is used to perform automated analysis of the system and ver-ify anonymity guarantees it provides.Our main result is a demonstration ofhow certain forms of probabilistic anonymity degrade when group size in-creases or random routing paths are rebuilt,assuming that the corrupt groupmembers are able to identify and/or correlate multiple routing paths originat-ing from the same sender.1IntroductionFormal analysis of security protocols is a well-establishedfield.Model checking and theorem proving techniques[Low96,MMS97,Pau98,CJM00]have been ex-tensively used to analyze secrecy,authentication and other security properties ofprotocols and systems that employ cryptographic primitives such as public-key en-cryption,digital signatures,etc.Typically,the protocol is modeled at a highly ab-stract level and the underlying cryptographic primitives are treated as secure“black boxes”to simplify the model.This approach discovers attacks that would succeed even if all cryptographic functions were perfectly secure.Conventional formal analysis of security is mainly concerned with security against the so called Dolev-Yao attacks,following[DY83].A Dolev-Yao attacker is a non-deterministic process that has complete control over the communication net-work and can perform any combination of a given set of attacker operations,such as intercepting any message,splitting messages into parts,decrypting if it knows the correct decryption key,assembling fragments of messages into new messages and replaying them out of context,etc.Many proposed systems for anonymous communication aim to provide strong, non-probabilistic anonymity guarantees.This includes proxy-based approaches to anonymity such as the Anonymizer[Ano],which hide the sender’s identity for each message by forwarding all communication through a special server,and MIX-based anonymity systems[Cha81]that blend communication between dif-ferent senders and recipients,thus preventing a global eavesdropper from linking sender-recipient pairs.Non-probabilistic anonymity systems are amenable to for-mal analysis in the same non-deterministic Dolev-Yao model as used for verifica-tion of secrecy and authentication protocols.Existing techniques for the formal analysis of anonymity in the non-deterministic model include traditional process formalisms such as CSP[SS96]and a special-purpose logic of knowledge[SS99].In this paper,we use probabilistic model checking to analyze anonymity prop-erties of a gossip-based system.Such systems fundamentally rely on probabilistic message routing to guarantee anonymity.The main representative of this class of anonymity systems is Crowds[RR98].Instead of protecting the user’s identity against a global eavesdropper,Crowds provides protection against collaborating local eavesdroppers.All communication is routed randomly through a group of peers,so that even if some of the group members collaborate and share collected lo-cal information with the adversary,the latter is not likely to distinguish true senders of the observed messages from randomly selected forwarders.Conventional formal analysis techniques that assume a non-deterministic at-tacker in full control of the communication channels are not applicable in this case. Security properties of gossip-based systems depend solely on the probabilistic be-havior of protocol participants,and can be formally expressed only in terms of relative probabilities of certain observations by the adversary.The system must be modeled as a probabilistic process in order to capture its properties faithfully.Using the analysis technique developed in this paper—namely,formalization of the system as a discrete-time Markov chain and probabilistic model checking of2this chain with PRISM—we uncovered two subtle properties of Crowds that causedegradation of the level of anonymity provided by the system to the users.First,if corrupt group members are able to detect that messages along different routingpaths originate from the same(unknown)sender,the probability of identifyingthat sender increases as the number of observed paths grows(the number of pathsmust grow with time since paths are rebuilt when crowd membership changes).Second,the confidence of the corrupt members that they detected the correct senderincreases with the size of the group.Thefirstflaw was reported independently byMalkhi[Mal01]and Wright et al.[W ALS02],while the second,to the best ofour knowledge,was reported for thefirst time in the conference version of thispaper[Shm02].In contrast to the analysis by Wright et al.that relies on manualprobability calculations,we discovered both potential vulnerabilities of Crowds byautomated probabilistic model checking.Previous research on probabilistic formal models for security focused on(i)probabilistic characterization of non-interference[Gra92,SG95,VS98],and(ii)process formalisms that aim to faithfully model probabilistic properties of crypto-graphic primitives[LMMS99,Can00].This paper attempts to directly model andanalyze security properties based on discrete probabilities,as opposed to asymp-totic probabilities in the conventional cryptographic sense.Our analysis methodis applicable to other probabilistic anonymity systems such as Freenet[CSWH01]and onion routing[SGR97].Note that the potential vulnerabilities we discovered inthe formal model of Crowds may not manifest themselves in the implementationsof Crowds or other,similar systems that take measures to prevent corrupt routersfrom correlating multiple paths originating from the same sender.2Markov Chain Model CheckingWe model the probabilistic behavior of a peer-to-peer communication system as adiscrete-time Markov chain(DTMC),which is a standard approach in probabilisticverification[LS82,HS84,Var85,HJ94].Formally,a Markov chain can be definedas consisting in afinite set of states,the initial state,the transition relation such that,and a labeling functionfrom states to afinite set of propositions.In our model,the states of the Markov chain will represent different stages ofrouting path construction.As usual,a state is defined by the values of all systemvariables.For each state,the corresponding row of the transition matrix de-fines the probability distributions which govern the behavior of group members once the system reaches that state.32.1Overview of PCTLWe use the temporal probabilistic logic PCTL[HJ94]to formally specify properties of the system to be checked.PCTL can express properties of the form“under any scheduling of processes,the probability that event occurs is at least.”First,define state formulas inductively as follows:where atomic propositions are predicates over state variables.State formulas of the form are explained below.Define path formulas as follows:Unlike state formulas,which are simplyfirst-order propositions over a single state,path formulas represent properties of a chain of states(here path refers to a sequence of state space transitions rather than a routing path in the Crowds speci-fication).In particular,is true iff is true for every state in the chain;is true iff is true for all states in the chain until becomes true,and is true for all subsequent states;is true iff and there are no more than states before becomes true.For any state and path formula,is a state formula which is true iff state space paths starting from satisfy path formula with probability greater than.For the purposes of this paper,we will be interested in formulas of the form ,evaluated in the initial state.Here specifies a system con-figuration of interest,typically representing a particular observation by the adver-sary that satisfies the definition of a successful attack on the protocol.Property is a liveness property:it holds in iff will eventually hold with greater than probability.For instance,if is a state variable represent-ing the number of times one of the corrupt members received a message from the honest member no.,then holds in iff the prob-ability of corrupt members eventually observing member no.twice or more is greater than.Expressing properties of the system in PCTL allows us to reason formally about the probability of corrupt group members collecting enough evidence to success-fully attack anonymity.We use model checking techniques developed for verifica-tion of discrete-time Markov chains to compute this probability automatically.42.2PRISM model checkerThe automated analyses described in this paper were performed using PRISM,aprobabilistic model checker developed by Kwiatkowska et al.[KNP01].The toolsupports both discrete-and continuous-time Markov chains,and Markov decisionprocesses.As described in section4,we model probabilistic peer-to-peer com-munication systems such as Crowds simply as discrete-time Markov chains,andformalize their properties in PCTL.The behavior of the system processes is specified using a simple module-basedlanguage inspired by Reactive Modules[AH96].State variables are declared in thestandard way.For example,the following declarationdeliver:bool init false;declares a boolean state variable deliver,initialized to false,while the followingdeclarationconst TotalRuns=4;...observe1:[0..TotalRuns]init0;declares a constant TotalRuns equal to,and then an integer array of size,indexed from to TotalRuns,with all elements initialized to.State transition rules are specified using guarded commands of the form[]<guard>-><command>;where<guard>is a predicate over system variables,and<command>is the tran-sition executed by the system if the guard condition evaluates to mandoften has the form<expression>...<expression>, which means that in the next state(i.e.,that obtained after the transition has beenexecuted),state variable is assigned the result of evaluating arithmetic expres-sion<expression>If the transition must be chosen probabilistically,the discrete probability dis-tribution is specified as[]<guard>-><prob1>:<command1>+...+<probN>:<commandN>;Transition represented by command is executed with probability prob,and prob.Security properties to be checked are stated as PCTL formulas (see section2.1).5Given a formal system specification,PRISM constructs the Markov chain and determines the set of reachable states,using MTBDDs and BDDs,respectively. Model checking a PCTL formula reduces to a combination of reachability-based computation and solving a system of linear equations to determine the probability of satisfying the formula in each reachable state.The model checking algorithms employed by PRISM include[BdA95,BK98,Bai98].More details about the im-plementation and operation of PRISM can be found at http://www.cs.bham. /˜dxp/prism/and in[KNP01].Since PRISM only supports model checking offinite DTMC,in our case study of Crowds we only analyze anonymity properties offinite instances of the system. By changing parameters of the model,we demonstrate how anonymity properties evolve with changes in the system configuration.Wright et al.[W ALS02]investi-gated related properties of the Crowds system in the general case,but they do not rely on tool support and their analyses are manual rather than automated.3Crowds Anonymity SystemProviding an anonymous communication service on the Internet is a challenging task.While conventional security mechanisms such as encryption can be used to protect the content of messages and transactions,eavesdroppers can still observe the IP addresses of communicating computers,timing and frequency of communi-cation,etc.A Web server can trace the source of the incoming connection,further compromising anonymity.The Crowds system was developed by Reiter and Ru-bin[RR98]for protecting users’anonymity on the Web.The main idea behind gossip-based approaches to anonymity such as Crowds is to hide each user’s communications by routing them randomly within a crowd of similar users.Even if an eavesdropper observes a message being sent by a particular user,it can never be sure whether the user is the actual sender,or is simply routing another user’s message.3.1Path setup protocolA crowd is a collection of users,each of whom is running a special process called a jondo which acts as the user’s proxy.Some of the jondos may be corrupt and/or controlled by the adversary.Corrupt jondos may collaborate and share their obser-vations in an attempt to compromise the honest users’anonymity.Note,however, that all observations by corrupt group members are local.Each corrupt member may observe messages sent to it,but not messages transmitted on the links be-tween honest jondos.An honest crowd member has no way of determining whether6a particular jondo is honest or corrupt.The parameters of the system are the total number of members,the number of corrupt members,and the forwarding probability which is explained below.To participate in communication,all jondos must register with a special server which maintains membership information.Therefore,every member of the crowd knows identities of all other members.As part of the join procedure,the members establish pairwise encryption keys which are used to encrypt pairwise communi-cation,so the contents of the messages are secret from an external eavesdropper.Anonymity guarantees provided by Crowds are based on the path setup pro-tocol,which is described in the rest of this section.The path setup protocol is executed each time one of the crowd members wants to establish an anonymous connection to a Web server.Once a routing path through the crowd is established, all subsequent communication between the member and the Web server is routed along it.We will call one run of the path setup protocol a session.When crowd membership changes,the existing paths must be scrapped and a new protocol ses-sion must be executed in order to create a new random routing path through the crowd to the destination.Therefore,we’ll use terms path reformulation and proto-col session interchangeably.When a user wants to establish a connection with a Web server,its browser sends a request to the jondo running locally on her computer(we will call this jondo the initiator).Each request contains information about the intended desti-nation.Since the objective of Crowds is to protect the sender’s identity,it is not problematic that a corrupt router can learn the recipient’s identity.The initiator starts the process of creating a random path to the destination as follows: The initiator selects a crowd member at random(possibly itself),and for-wards the request to it,encrypted by the corresponding pairwise key.We’ll call the selected member the forwarder.The forwarderflips a biased coin.With probability,it delivers the request directly to the destination.With probability,it selects a crowd member at random(possibly itself)as the next forwarder in the path,and forwards the request to it,re-encrypted with the appropriate pairwise key.The next forwarder then repeats this step.Each forwarder maintains an identifier for the created path.If the same jondo appears in different positions on the same path,identifiers are different to avoid infinite loops.Each subsequent message from the initiator to the destination is routed along this path,i.e.,the paths are static—once established,they are not altered often.This is necessary to hinder corrupt members from linking multiple7paths originating from the same initiator,and using this information to compromise the initiator’s anonymity as described in section3.2.3.3.2Anonymity properties of CrowdsThe Crowds paper[RR98]describes several degrees of anonymity that may be provided by a communication system.Without using anonymizing techniques, none of the following properties are guaranteed on the Web since browser requests contain information about their source and destination in the clear.Beyond suspicion Even if the adversary can see evidence of a sent message,the real sender appears to be no more likely to have originated it than any other potential sender in the system.Probable innocence The real sender appears no more likely to be the originator of the message than to not be the originator,i.e.,the probability that the adversary observes the real sender as the source of the message is less thanupper bound on the probability of detection.If the sender is observed by the adversary,she can then plausibly argue that she has been routing someone else’s messages.The Crowds paper focuses on providing anonymity against local,possibly co-operating eavesdroppers,who can share their observations of communication in which they are involved as forwarders,but cannot observe communication involv-ing only honest members.We also limit our analysis to this case.3.2.1Anonymity for a single routeIt is proved in[RR98]that,for any given routing path,the path initiator in a crowd of members with forwarding probability has probable innocence against collaborating crowd members if the following inequality holds:(1)More formally,let be the event that at least one of the corrupt crowd members is selected for the path,and be the event that the path initiator appears in8the path immediately before a corrupt crowd member(i.e.,the adversary observes the real sender as the source of the messages routed along the path).Condition 1guarantees thatproving that,given multiple linked paths,the initiator appears more often as a sus-pect than a random crowd member.The automated analysis described in section6.1 confirms and quantifies this result.(The technical results of[Shm02]on which this paper is based had been developed independently of[Mal01]and[W ALS02],be-fore the latter was published).In general,[Mal01]and[W ALS02]conjecture that there can be no reliable anonymity method for peer-to-peer communication if in order to start a new communication session,the initiator must originate thefirst connection before any processing of the session commences.This implies that anonymity is impossible in a gossip-based system with corrupt routers in the ab-sence of decoy traffic.In section6.3,we show that,for any given number of observed paths,the adversary’s confidence in its observations increases with the size of the crowd.This result contradicts the intuitive notion that bigger crowds provide better anonymity guarantees.It was discovered by automated analysis.4Formal Model of CrowdsIn this section,we describe our probabilistic formal model of the Crowds system. Since there is no non-determinism in the protocol specification(see section3.1), the model is a simple discrete-time Markov chain as opposed to a Markov deci-sion process.In addition to modeling the behavior of the honest crowd members, we also formalize the adversary.The protocol does not aim to provide anonymity against global eavesdroppers.Therefore,it is sufficient to model the adversary as a coalition of corrupt crowd members who only have access to local communication channels,i.e.,they can only make observations about a path if one of them is se-lected as a forwarder.By the same token,it is not necessary to model cryptographic functions,since corrupt members know the keys used to encrypt peer-to-peer links in which they are one of the endpoints,and have no access to links that involve only honest members.The modeling technique presented in this section is applicable with minor mod-ifications to any probabilistic routing system.In each state of routing path construc-tion,the discrete probability distribution given by the protocol specification is used directly to define the probabilistic transition rule for choosing the next forwarder on the path,if any.If the protocol prescribes an upper bound on the length of the path(e.g.,Freenet[CSWH01]),the bound can be introduced as a system parameter as described in section4.2.3,with the corresponding increase in the size of the state space but no conceptual problems.Probabilistic model checking can then be used to check the validity of PCTL formulas representing properties of the system.In the general case,forwarder selection may be governed by non-deterministic10runCount goodbad lastSeen observelaunchnewstartrundeliver recordLast badObserve4.2Model of honest members4.2.1InitiationPath construction is initiated as follows(syntax of PRISM is described in section 2.2):[]launch->runCount’=TotalRuns&new’=true&launch’=false;[]new&(runCount>0)->(runCount’=runCount-1)&new’=false&start’=true;[]start->lastSeen’=0&deliver’=false&run’=true&start’=false;4.2.2Forwarder selectionThe initiator(i.e.,thefirst crowd member on the path,the one whose identity must be protected)randomly chooses thefirst forwarder from among all group mem-bers.We assume that all group members have an equal probability of being chosen, but the technique can support any discrete probability distribution for choosing for-warders.Forwarder selection is a single step of the protocol,but we model it as two probabilistic state transitions.Thefirst determines whether the selected forwarder is honest or corrupt,the second determines the forwarder’s identity.The randomly selected forwarder is corrupt with probability badCbe next on the path.Any of the honest crowd members can be selected as the forwarder with equal probability.To illustrate,for a crowd with10honest members,the following transition models the second step of forwarder selection: []recordLast&CrowdSize=10->0.1:lastSeen’=0&run’=true&recordLast’=false+0.1:lastSeen’=1&run’=true&recordLast’=false+...0.1:lastSeen’=9&run’=true&recordLast’=false;According to the protocol,each honest crowd member must decide whether to continue building the path byflipping a biased coin.With probability,the forwarder selection transition is enabled again and path construction continues, and with probability the path is terminated at the current forwarder,and all requests arriving from the initiator along the path will be delivered directly to the recipient.[](good&!deliver&run)->//Continue path constructionPF:good’=false+//Terminate path constructionnotPF:deliver’=true;The specification of the Crowds system imposes no upper bound on the length of the path.Moreover,the forwarders are not permitted to know their relative position on the path.Note,however,that the amount of information about the initiator that can be extracted by the adversary from any path,or anyfinite number of paths,isfinite(see sections4.3and4.5).In systems such as Freenet[CSWH01],requests have a hops-to-live counter to prevent infinite paths,except with very small probability.To model this counter,we may introduce an additional state variable pIndex that keeps track of the length of the path constructed so far.The path construction transition is then coded as follows://Example with Hops-To-Live//(NOT CROWDS)////Forward with prob.PF,else deliver13[](good&!deliver&run&pIndex<MaxPath)->PF:good’=false&pIndex’=pIndex+1+notPF:deliver’=true;//Terminate if reached MaxPath,//but sometimes not//(to confuse adversary)[](good&!deliver&run&pIndex=MaxPath)->smallP:good’=false+largeP:deliver’=true;Introduction of pIndex obviously results in exponential state space explosion, decreasing the maximum system size for which model checking is feasible.4.2.4Transition matrix for honest membersTo summarize the state space of the discrete-time Markov chain representing cor-rect behavior of protocol participants(i.e.,the state space induced by the abovetransitions),let be the state in which links of the th routing path from the initiator have already been constructed,and assume that are the honestforwarders selected for the path.Let be the state in which path constructionhas terminated with as thefinal path,and let be an auxiliary state. Then,given the set of honest crowd members s.t.,the transi-tion matrix is such that,,(see section4.2.2),i.e.,the probability of selecting the adversary is equal to the cumulative probability of selecting some corrupt member.14This abstraction does not limit the class of attacks that can be discovered using the approach proposed in this paper.Any attack found in the model where indi-vidual corrupt members are kept separate will be found in the model where their capabilities are combined in a single worst-case adversary.The reason for this is that every observation made by one of the corrupt members in the model with separate corrupt members will be made by the adversary in the model where their capabilities are combined.The amount of information available to the worst-case adversary and,consequently,the inferences that can be made from it are at least as large as those available to any individual corrupt member or a subset thereof.In the adversary model of[RR98],each corrupt member can only observe its local network.Therefore,it only learns the identity of the crowd member imme-diately preceding it on the path.We model this by having the corrupt member read the value of the lastSeen variable,and record its observations.This cor-responds to reading the source IP address of the messages arriving along the path. For example,for a crowd of size10,the transition is as follows:[]lastSeen=0&badObserve->observe0’=observe0+1&deliver’=true&run’=true&badObserve’=false;...[]lastSeen=9&badObserve->observe9’=observe9+1&deliver’=true&run’=true&badObserve’=false;The counters observe are persistent,i.e.,they are not reset for each session of the path setup protocol.This allows the adversary to accumulate observations over several path reformulations.We assume that the adversary can detect when two paths originate from the same member whose identity is unknown(see sec-tion3.2.2).The adversary is only interested in learning the identity of thefirst crowd mem-ber in the path.Continuing path construction after one of the corrupt members has been selected as a forwarder does not provide the adversary with any new infor-mation.This is a very important property since it helps keep the model of the adversaryfinite.Even though there is no bound on the length of the path,at most one observation per path is useful to the adversary.To simplify the model,we as-sume that the path terminates as soon as it reaches a corrupt member(modeled by deliver’=true in the transition above).This is done to shorten the average path length without decreasing the power of the adversary.15Each forwarder is supposed toflip a biased coin to decide whether to terminate the path,but the coinflips are local to the forwarder and cannot be observed by other members.Therefore,honest members cannot detect without cooperation that corrupt members always terminate paths.In any case,corrupt members can make their observable behavior indistinguishable from that of the honest members by continuing the path with probability as described in section4.2.3,even though this yields no additional information to the adversary.4.4Multiple pathsThe discrete-time Markov chain defined in sections4.2and4.3models construc-tion of a single path through the crowd.As explained in section3.2.2,paths have to be reformulated periodically.The decision to rebuild the path is typically made according to a pre-determined schedule,e.g.,hourly,daily,or once enough new members have asked to join the crowd.For the purposes of our analysis,we sim-ply assume that paths are reformulated somefinite number of times(determined by the system parameter=TotalRuns).We analyze anonymity properties provided by Crowds after successive path reformulations by considering the state space produced by successive execu-tions of the path construction protocol described in section4.2.As explained in section4.3,the adversary is permitted to combine its observations of some or all of the paths that have been constructed(the adversary only observes the paths for which some corrupt member was selected as one of the forwarders).The adversary may then use this information to infer the path initiator’s identity.Because for-warder selection is probabilistic,the adversary’s ability to collect enough informa-tion to successfully identify the initiator can only be characterized probabilistically, as explained in section5.4.5Finiteness of the adversary’s state spaceThe state space of the honest members defined by the transition matrix of sec-tion4.2.4is infinite since there is no a priori upper bound on the length of each path.Corrupt members,however,even if they collaborate,can make at most one observation per path,as explained in section4.3.As long as the number of path reformulations is bounded(see section4.4),only afinite number of paths will be constructed and the adversary will be able to make only afinite number of observa-tions.Therefore,the adversary only needsfinite memory and the adversary’s state space isfinite.In general,anonymity is violated if the adversary has a high probability of making a certain observation(see section5).Tofind out whether Crowds satisfies16。

Linus的十大名言

Linus的十大名言

Linus的⼗⼤名⾔Linus Torvalds,Linux核⼼的创作者,于1969 年12⽉28 ⽇出⽣在芬兰的赫尔⾟基。

“有些⼈⽣来就具有统率百万⼈的领袖风范;另⼀些⼈则是为写出颠覆世界的软件⽽⽣。

唯⼀⼀个能同时做 linus到这两者的⼈,就是托⽡兹。

”美国《时代》周刊对Linux之⽗李纳斯·托⽡兹(Linus Torvalds)给出了极⾼的评价。

甚⾄,在《时代》周刊根据读者投票评选出的⼆⼗世纪100位最重要⼈物中,李纳斯居然排到了第15位,⽽从20世纪的最后⼏年就开始霸占全球⾸富称号的盖茨不过才是第17位。

当Linus⼗岁时,他的祖⽗,赫尔⾟基⼤学的⼀位统计教授,购买了⼀台Commodore VIC-20计算机。

Linus帮助他祖⽗把数据输⼊到他的可编程计算器⾥,做这些仅仅是为了好玩,他还通过阅读计算机⾥的指令集来⾃学⼀些简单的BASIC程序。

当他成为赫尔⾟基⼤学的计算机科学系的学⽣的时候,Linus Torvalds 已经是⼀位成功的程序员了。

Linux的最初研发 1991年4⽉,芬兰赫尔⾟基⼤学学⽣Torvalds开始对 Minix(⼀个Andrew S. Tanenbaum开发的以教学⽬的的类似Unix的操作系统)感兴趣起来,但不满意Minix这个教学⽤的操作系统。

出于爱好,他根据可在低档机上使⽤的MINIX设计了⼀个系统核⼼Linux 0.01,但没有使⽤任何MINIX或UNIX的源代码。

他通过USENET(就是新闻组)宣布这是⼀个免费的系统,主要在x86电脑上使⽤,希望⼤家⼀起来将它完善,并将源代码放到了芬兰的FTP站点上代⼈免费下载。

本来他想把这个系统称为freax,意思是⾃由( free)和奇异(freak)的结合字,并且附上了"X"这个常⽤的字母,以配合所谓的Unix-like的系统。

可是FTP的⼯作⼈员认为这是Linus的MINIX,嫌原来的命名“Freax”的名称不好听,就⽤Linux这个⼦⽬录来存放,于是它就成了“Linux”。

conversation用法总结

conversation用法总结

Conversation用法总结1. 概述Conversation是一种人与机器之间进行对话的方式,它允许用户提出问题或发表陈述,并从机器中获取有关特定主题的信息。

在人工智能领域,Conversation被广泛应用于各种任务,如聊天机器人、智能助手和客服系统等。

通过理解和生成自然语言,Conversation使得机器能够模拟人类对话,为用户提供个性化的服务和支持。

2. Conversation的重要观点2.1 自然语言理解(Natural Language Understanding, NLU)自然语言理解是Conversation中的重要环节,它涉及将用户输入的自然语言文本转换为可理解和处理的形式。

NLU技术通常包括词法分析、句法分析、语义分析等子任务,旨在从文本中提取出关键信息,并确定用户意图和上下文。

2.2 对话管理(Dialog Management)对话管理是Conversation中的关键组成部分,它负责根据用户输入和系统状态来决定如何生成回复。

对话管理涉及到对上下文进行建模和维护,以便能够正确地响应用户,并采取适当的行动。

常用的对话管理方法包括基于规则、基于有限状态机和基于强化学习的方法。

2.3 自然语言生成(Natural Language Generation, NLG)自然语言生成是Conversation中的另一个重要环节,它负责将机器生成的信息转换为自然语言文本,以便向用户传达回复。

NLG技术通常涉及到文本生成、语音合成等任务,旨在产生流畅、连贯且符合语法规则的输出。

2.4 多轮对话(Multi-turn Conversation)多轮对话是Conversation中常见的场景之一,它涉及到用户和机器之间进行多次交互来完成一个任务。

在多轮对话中,对话管理起着至关重要的作用,需要能够正确地理解上下文、处理用户意图并生成合适的回复。

2.5 评估与优化(Evaluation and Optimization)评估与优化是Conversation系统开发过程中必不可少的一环。

Wyner-Ziv视频编码中边信息估计研究

Wyner-Ziv视频编码中边信息估计研究

息, Байду номын сангаас化 Wy e Zv nr i视频编码的编解 码性能 。 -
不断涌现 , : 如 无线视频监控 、 无线 P C相机 、 移动视频 电话 、 多 媒体传感 器网络等 。在这些视频应用 中, 码器的存储 、 编 计算 和电力资源均 有限 , 往往需要低复杂度 的编码器 。传统 的视 频编 码( H_ X, E 已经不再适 用 , 如 2 MP G) 6 针对这种情况 , 出现 了一种 新 的视频 编码 —— 分布 式视 频编 码 ( ir ue i. D s b t V d t i d

要 : n r i视 频 编码 是 一种 典 型 的 分 布 式视 频 编码 。 为 了产 生较 为精 确 的 边 信 息 , 出 了一 种 基 于运 动 估 计 双 向预 测 边 wy e. v z 提
信 息 的 方 法 , 造 了运 动 补 偿 内插 框 架 以及 改进 了算 法 。Ma a 仿 真 结 果 表 明 , 构 tb l 改进 方 法 的 率 失 真 性 能 比 H. 4帧 内编 码 高 出 2 6 01 .d 比基 于 T ro 的 D so e软 件 高 出00 ~O9 B。 . ~9 0 B, ub 码 i vr c .1 . d 0 关键 词 : n r i视 频 编 码 ; 动估 计 ; 动 补偿 内插 ; 信 息 Wy e- v Z 运 运 边
e oig D o C dn , VC)】 。它建 立在 2 世纪 7 年代提 出的 由无损 0 O 分布式编码的 Sei . l以及有损分布式编码的Wy e-it l a wof pn nr v Z
Ema :hn 1 3 n @ 13cm — i z ag 6 t g 6 . l i o

无反馈分布式视频编码中Wyner-Ziv帧码率控制算法

无反馈分布式视频编码中Wyner-Ziv帧码率控制算法
t o lp r m e e sby t ani he m de a a t r r i ng. W ih t e pr os d t h op e RD EM , t l ort he a g ihm s a e t s i a e t o ng i bl o e tm t he c di
QI a , QU i S N H o Be, ON G n Y Bi , AN G i g i g M n m n
( t t y L b.o n e r t d S r ie Ne wo k ,Xi i n Un v ,Xi n 7 0 7 ,Ch n ) S a e Ke a fI t g a e e v c t r s da i . ’ 10 1 a ia Ab ta t A a e c n r lag rt m o y e - v f a s f rn —e d a k d s rb t d vd o c d n y t m src : r t o to l o i h f rW n rZi r me o o f e b c iti u e i e o i g s s e i r p s d.B s d o h a e d so to h o y a d e p rme t l e u t ,t ea g rt m is s a l h st e sp o o e a e n t er t- it ri n t e r n x e i n a s ls h l o ih f te t b i e h r r s r t, it ri n e tma i n mo e RDEM ) f r e c o fiin a d o y e - i r me , a d d t r n s a e d so t s i t d l( o o o a h c e f e t b n fW n r Z v fa s n e e mi e c

一种基于Wyner-Ziv结构的贝尔模板图像编码方法

一种基于Wyner-Ziv结构的贝尔模板图像编码方法

c o mp o n e n t i m a g e i s t r a n s f o r me d i n t o ̄ e q u e n c y d o ma i n b y D i s c r e t e d C o s i n e T r a n s f o r m( D C T ) . A c c o r d i n g t o t h e
i ma g e i s p r o p o s e d.F i r s t ,Ba y e r p a t t e r n i ma g e i s s e p a r a t e d a n d c o n v e r t e d i n t o f o u r c o mp o n e n t i ma g e ,a n d e a c h
Ch e n g Yo n g ・ - q i a n g Zh e n g Ti n g - y i Ha o Ru n - - f a n g
( C o l l e g e o f I n f o r ma t i o n E n g i n e e r i n g ,T a i y u a n U n i v e r s i t y f o T e c h n o l o g y , T a i y u a n 0 3 0 0 2 4 ,C h i n a ) A b s t r a c t : B a s e d o n Wy n e r — Z i v( WZ ) c o d e c s t r u c t u r e , a f o u r — c h a n n e l d i s t r i b u t e d c o d e c me t h o d s f o r Ba y e r p a t t e r n

分布式视频编码在视频压缩和容错视频传输中的应用

分布式视频编码在视频压缩和容错视频传输中的应用

和 y进行 联合编码 时可 获得 更好 的 效果 ,即 R +R ≥日( ,Y),这是 因为联 合编码可 利用 和 y之 间的 统计 相 关 性 。Slepian—Wolf理论 j指 出,当对 长 序 列进行编码时 ,若允许存在一个任意小(但通常不为 零 )的解码错误概 率 ,则 对 X 和 y分 别 进行 编 码 、然 后进行联 合解码 ,可 获得与联合 编码相 同 的信 息传输 率 。这 种 方 式 即 为 分 布 式 信 源 编 码 (Distributed Source Coding:DSC),它相 当于 只在 解码 端利用 和 y的统计相 关性 。Slepian—Wolf理论 确定 了无 损分 布式信源编 码 中信息 传输 率 的下 界 :
图 1 两个统计相关独立同分布随机序 列 X、Y进行 分布式编码 时可达 到的信息传输率下界
Slepian—Wolf的 无 损 分 布 式 信 源 编 码 理 论 提 出不久 ,Wyner和 Ziv便将 其 扩 展 到有 损 情 况 ,建立 了解码 端使 用边信 息 (Side Information)的有 损 分 布 式信 源编码 率 失 真理 论 J。设 和 y为 两 个 统 计 相关独 立 同分布 的 随机 序 列 的样 本 ,分 别 代 表 信 源 数据 和 边 信 息 ,取 自有 可 能 是 无 限 的样 本 空 问 x、 Y。信源 在 编码 时 不 能使 用 边 信 息 y,但 解 码 时 可使用 y。解 码 后 得 到 在样 本 空 问 x 上 的 重 建 值 )^/ -失真度 为 D =E[d(X,)^ / -)]。Wyner—ziv率 失 真
ot.

K ey words:distributed video coding; video com pression;error— resilient video transmission;W yner—

Wyner-Ziv视频编码中边信息生成算法研究

Wyner-Ziv视频编码中边信息生成算法研究
宋彬 ,贺 红 ,刘 海华 ,秦 浩
( 安 电子科 技大 学 IN 国家重 点实 验室 , 陕西 西 安 7 0 7 ) 西 S 10 1

要 :在 Wy e-i 频 编 码 系பைடு நூலகம்统 中 ,针 对 生 成 边 信 息 容 易 出现 块 效 应和 重 影 现 象 的 问 题 , 提 出 了一 种 基 于 原 n r v视 Z
始 图像 相 关 性 的 重 叠 块 双 向运 动 补 偿 算 法 。在编 码 端 计 算 原 始 图像 相 关 性 ,并将 相 关 性 数 据 发 送 到解 码 端 辅 助 运 动 估 计 ,得 到较 精 确 的运 动 矢 量 , 最后 通 过 重 叠 块 双 向运 动 补 偿 生 成 边 信 息 。实 验 结 果 表 明 ,与现 有 的 双 向运 动
aea eP N (eks n — —os t ) y1  ̄ d , n l inf at rv esbet eq at f es e vrg S R p a i a t n i r i b . 3 B a das s i c l i o et jc v u i o i gl o e ao 5 o g i n y mp h u i ly t d h
if r a i no m ton.
Ke r s d s i u e i e o i g W y e - v c d n ; i ei f r ai n moi n e t t n f a e i tr o ai n y wo d : it b t d vd o c d n ; r n rZi o i g sd o n m t ; t si i ; r o o ma o m ep lt n o
Re e r h o sdei o m a i n g ne a i n s a c n i nf r to e r to a g r t o y r Zi i o c di l o ihm f rW ne - v v de o ng

基于内容的视频检索

基于内容的视频检索
基于内容旳视频检索
1
主要内容
问题旳引入 国内外研究现状 基于内容旳视频检索简介 视频构造旳分析 关键技术 视频检索和浏览 目前研究中存在旳问题及将来旳发展趋势
2
一、问题旳引入
近年来,数字视频信息出现了飞速膨胀, 新旳视频应用,如数字图书馆、视频点 播、数字电视等,已经为越来越多旳人 所接受和熟悉。
在运动量取局部最小值处选用关键帧, 它反应了视频数据中旳一种“静止”特 点,视频中经过摄像机在一种新旳位置 上停留或经过人物旳某一运动旳短暂停 留来强调其主要性。 光流 光流场
40
首先经过Horn-Schunck法计算光流,对 每个像素光流分量旳模求和,作为第k 帧旳运动量M(k),即
其中 Ox(i,j,k)是k帧内(i ,j)像素光 流旳X分量,Oy(i,j,k)是k帧内像素(i,j) 光流旳Y分量。
44
颜色特征
颜色是图像最明显旳特征,与其他特征 相比,颜色特征计算简朴、性质稳定, 对于旋转、平移、尺度变化都不敏感, 体现出很强旳鲁棒性。
颜色特征涉及颜色直方图、主要颜色、 平均亮度等。
45
其中利用主要颜色和平均亮度进行图像 旳相同匹配是很粗略旳,但是它们能够 作为层次检索措施旳粗查,对粗查旳成 果再利用子块划分旳颜色直方图匹配进 行进一步旳细查。
8
三、基于内容旳视频检索简介
我们需要研究旳是,信息检索系统怎样 适本地表达用户所要求旳内容,并在视 频数据库中找出符合这个查询要求旳信 息返回给用户。
Content-Based Video Retrieval,CBVR 根据视频旳内容和上下文关系,对大规
模视频数据库中旳视频数据进行检索 提供这么一种算法:在没有人工参加旳
9
目前,基于内容旳视频检索研究,除了 辨认和描述图像旳颜色、纹理、形状和 空间关系外,主要旳研究集中在视频分 割、特征提取和描述(涉及视觉特征、 颜色、纹理和形状及运动信息和对象信 息等)、关键帧提取和构造分析等方面

RISC-V指令集手册说明书

RISC-V指令集手册说明书
前言 .......................................................................................................................................................10
翻译团队 ................................................................................................................................................ 12
3.5 静态链接和动态链接 ................................................................................................................. 49
3.6 加载器 ............................................................................................................................................. 49
3.2 函数调用规范(Calling convention) ................................................................................. 41
3.3 汇编器 ............................................................................................................................................. 43

泛在网络中基于压缩感知的Wyner-Ziv空域可分级视频编码

泛在网络中基于压缩感知的Wyner-Ziv空域可分级视频编码

h cmeta e it cv rdtevdos n l s gc mpes esnigapoc ae njit p r dl f n a e n l ronl r o ee ie i a u i o rs v e s p rahb sdo n as mo e y j ye h g n i n o s e o
i trfa s Th o e c l n y i n x e me t l e u t s o t a e p o o e i e o i g meh d c n fe i l d n e r me . e r t a a ssa d e p r i al i n a s ls h w h tt r p s d v d o c d n t o a xb y a — r h l
● ● ’ ・ - ・ ’
Naj g iesy f otadTlcmm nct n, nig20 1, hn) ni vrt P s e o u iao sNaj 10 6C ia n Un i o sn e i n
Ab t a t A o e y e — v s ai ls a a l i e o i g u i g c mp e sv e sn sp o o e o e u i u t u sr c : n v l W n rZi p t c lb e v d o c d n sn o r s i e s n i g wa r p s d f rt b q i s a h o
强层之间独立编码 ,基本层编码器将视频信 号下采样 ,然 后进行 H. 4视频编码 ,增强层编码器采用 自适应 的压 2 6
缩感知测量、量化和熵编码 。在解码端 ,利用 时域稀疏模 型,基本 层和增强层联合进行压缩感 知重 建。理论分析

【计算机应用】_wyner-ziv编码_期刊发文热词逐年推荐_20140727

【计算机应用】_wyner-ziv编码_期刊发文热词逐年推荐_20140727

科研热词 分布式视频编码 wyner-ziv编码 边信息 运动估计 深度图 帧内插 块分类 双向运动补偿 加权判决 不等错误保护
推荐指数 3 3 2 1 1 1 1 1 1 1
2013年 序号 1 2 3 4 5 6 7 8 9
பைடு நூலகம்
科研热词 分布式视频编码 运动估计 边信息 解码优化 编码端 码率控制 相关噪声 无线噪声信道 wyner-ziv编码
推荐指数 2 1 1 1 1 1 1 1 1
2014年 序号 1 2 3 4
科研热词 离散余弦变换 无线多媒体传感器网络 变换域wyner-ziv 关键帧
推荐指数 1 1 1 1
2009年 序号 1 2 3 4
科研热词 边信息 视频通信 无线传感器网络 分布式视频编码
推荐指数 1 1 1 1
2010年 序号 1 2 3 4
科研热词 边信息 纹理能量 图像组 wyner-ziv编码
推荐指数 1 1 1 1
2012年 序号 1 2 3 4 5 6 7 8 9 10

分布式算术码解码器设计与优化研究

分布式算术码解码器设计与优化研究

分布式算术码解码器设计与优化研究摘 要分布式信源编码以Slepian-Wolf理论和Wyner-Ziv理论为基础,是编码领域的热点研究方向之一。

分布式算术码是以分布式信源编码的基本理论为基础,通过引入算术码作为编解码核心产生的一种编码方案,由于在处理小数据块时展现出接近压缩极限的性能,而得到广泛的认可和应用。

分布式算术码由于存在叠区,随着解码的进行将形成一棵不完全二叉解码树。

传统的分布式算术码解码方案是基于广度优先搜索实现的,在到达叶节点之前最小全路径与边信息之间的汉明距离是未知的,因此需要访问大量的节点来实现解码树的全搜索。

同时,为了防止溢出,解码器需要为所有路径的端节点分配存储空间,在解码结束后才能释放内存,造成了资源的浪费。

本文针对这一问题,提出了深度优先解码器,弥补了传统解码器中的不足。

本文具体研究内容如下:(1)传统分布式算术码编解码器的实现。

运用不断更新区间上下界的办法对输入的信源序列进行压缩编码,选择最终区间中的一个数值作为编码结果。

传统的解码器设计方案是利用广度优先算法对解码形成的二叉树进行遍历,选择与边信息之间汉明距最小的路径作为最终解码结果。

并运用码谱对分布式算术码的性能进行分析。

(2)深度优先解码器的设计。

运用深度优先算法对解码形成的二叉树进行遍历,进入叠区时,选择路径度量较大的分支继续进行搜索,路径度量较小的分支则进入暂停队列,直到暂停队列为空,输出与边信息之间汉明距离最小的路径作为解码结果。

本文从两个方面评估了基于深度优先算法的分布式算术码解码器,实验数据分析表明,深度优先解码器可以通过访问部分节点达到了解码树的全搜索,同时,深度优先解码复杂度随着尾长的增长呈指数增长,解码产生的节点数随着码长的增长也呈指数增长。

深度优先解码的特殊性在于,通过提高边信息的质量,可以降低解码复杂度,边信息质量越好,解码复杂度就越低。

通过对深度优先解码器和广度优先解码器的仿真对比,本文分析得出深度优先解码器在处理短码和中码,且边信息质量较好的情况下,表现出优于广度优先解码器的性能。

一季度面试题及答案英语

一季度面试题及答案英语

一季度面试题及答案英语1. What does the abbreviation "CEO" stand for?Answer: Chief Executive Officer.2. How do you handle a situation where you have too much work on your plate?Answer: Prioritize tasks based on urgency and importance, delegate when possible, and communicate with your supervisor about the workload.3. Can you explain the difference between "active" and "passive" voice in English?Answer: In the active voice, the subject of the sentence performs the action, while in the passive voice, the subject of the sentence receives the action.4. What is the significance of the phrase "think outside the box"?Answer: It means to think creatively and unconventionally, rather than following standard or predictable ways of thinking.5. How would you describe your communication style?Answer: My communication style is clear, concise, and respectful. I listen actively and ensure that my messages are easily understood.6. What is the role of a project manager in a softwaredevelopment team?Answer: A project manager oversees the planning, execution, and completion of a project, ensuring that it is delivered on time, within scope, and within budget.7. How do you approach problem-solving?Answer: I approach problem-solving by first identifyingthe issue, gathering relevant information, brainstorming possible solutions, selecting the most viable option, and implementing it while monitoring the results.8. Can you provide an example of a situation where you had to adapt to a significant change?Answer: [Provide a specific example from your experience where you had to adapt to a significant change and describe how you handled it.]9. What are the key skills required for a successful salesperson?Answer: Key skills include effective communication, negotiation, persuasion, relationship building, and theability to handle rejection.10. How do you stay updated with the latest industry trends?Answer: I regularly read industry publications, attend conferences and seminars, and participate in online forumsand discussions to stay informed about the latest trends.。

IC验证工程师招聘笔试题与参考答案(某大型央企)2025年

IC验证工程师招聘笔试题与参考答案(某大型央企)2025年

2025年招聘IC验证工程师笔试题与参考答案(某大型央企)(答案在后面)一、单项选择题(本大题有10小题,每小题2分,共20分)1、以下哪项描述不属于IC(集成电路)验证工程师的工作内容?A、模拟电路功能验证B、数字电路行为建模C、编写测试平台(TP)和测试用例D、进行产品市场推广2、在硬件描述语言(HDL)中,用于描述模块外部接口的标准关键字是?A、interfaceB、architectureC、entityD、endmodule3、在VHDL语言中,哪一种数据类型不可以用于信号赋值?A. STD_LOGICB. INTEGERC. BOOLEAND. FILE4、在Verilog HDL中,下面哪个关键字用于定义一个模块?B. inputC. outputD. assign5、在IC验证过程中,以下哪项技术不属于常用的验证方法?A、仿真(Simulation)B、形式验证(Formal Verification)C、制造测试(Manufacturing Test)D、静态分析(Static Analysis)6、验证工程师在验证FPGA设计时,通过模拟器进行验证,如果希望通过自动化的测试覆盖率报告来加快验证过程,应使用以下哪种工具?A、逻辑综合工具(Logic Synthesis Tool)B、约束指定工具(Constraint Specification Tool)C、静态时序分析工具(Static Timing Analysis Tool)D、覆盖率工具(Coverage Tool)7、在IC验证过程中,以下哪个工具不是用于仿真测试的?A. Verilog/VHDLB. SystemVerilogC. MATLABD. ModelSim8、在IC验证的OVM(Open Verified Methodology)框架中,以下哪个组件是用来实现激励生成的?B. EnvironmentC. AgentD. Scoreboard9、在IC设计流程中,哪一步骤通常用于确保逻辑设计的功能正确性?A. 综合B. 布局布线C. 功能验证D. 物理验证 10、在VHDL语言中,哪个关键字用于声明进程(process)的敏感信号列表?A. BEGINB. PROCESSC. SENSITIVITYD. WITH二、多项选择题(本大题有10小题,每小题4分,共40分)1、当使用Verilog或VHDL进行IC验证时,以下哪些技术被广泛应用于逻辑功能验证?()A、MHS(门级HDL仿真)B、FPGA原型验证C、Benchmarks(基准测试)D、Formal Verification(形式验证)2、在进行IC验证时,以下哪些方法能够有效提高验证覆盖率?()A、穷尽测试B、Property CheckingC、指导测试向量生成D、随机测试3、IC验证工程师在进行硬件描述语言(HDL)选择时,通常考虑哪些因素?A、开发成本B、市场占有量C、运行效率D、设计团队的熟悉程度4、在进行IC(集成电路)验证规划时,以下哪些是常见的验证策略?A、组合验证B、序列验证C、自顶向下D、自底向上5、以下哪些技术可以在IC验证中用于验证时序问题?()A. 时间戳技术B. 寄存器传输级(RTL)仿真C. 斜坡(Ramp)测试D. 逻辑综合6、在以下IC验证流程中,哪些步骤可能产生不正确的测试向量?()A. 设计描述(Design Description)B. 测试向量生成(Test Vector Generation)C. 测试平台搭建(Testbench Development)D. 测试执行(Test Execution)7、以下哪种方法不属于TLM(Transaction Level Modeling)验证方法的范畴?()A、UPF(Universal Protocol Framework)B、CML(Component Modeling Language)C、SV(SystemVerilog)D、UVM(Universal Verification Methodology)8、在UVM(Universal Verification Methodology)中,以下哪个类不属于UVM 的主要组件?A、Sequence:负责生成测试向量序列B、Scoreboard:用于验证所期待的输出与实际情况是否一致C、Driver:将生成的事务发送到DUTD、SV(SystemVerilog)9、以下哪些是IC验证工程师在工作中需要熟悉的验证方法?()A. 功能验证B. 仿真验证C. 性能验证D. 时序验证E. 结构验证F. 寄生당루检查 10、在IC验证过程中,以下哪些阶段可能会使用到验证语言?()A. 验证计划阶段B. 验证环境搭建阶段C. 验证用例编写阶段D. 验证执行和调试阶段E. 验证报告撰写阶段三、判断题(本大题有10小题,每小题2分,共20分)1、IC验证工程师的工作主要集中在硬件设计阶段。

大GOP下基于混合更新的边信息生成算法

大GOP下基于混合更新的边信息生成算法

大GOP下基于混合更新的边信息生成算法王艳营;冯进玫;张文祥【摘要】在分布式视频编码中,边信息的质量对系统整体的率失真性能有着至关重要的影响.在大GOP(图像组)条件下,外推算法因其具有良好的实用性而被广泛采用.为了进一步提高在大GOP条件下利用外推算法生成边信息的质量和系统的率失真性能,提出了一种基于混合更新的边信息生成算法.该算法将外推算法和内插算法混合使用,在利用外推算法生成边信息的基础上,通过运动估计、矢量滤波和运动补偿生成内插边信息,再对两者进行自适应加权生成混合边信息并更新,同时对更新后的混合边信息和解码WZ帧进行二次重建.实验结果表明:该算法在大GOP和编码端同等复杂度的情况下,能够显著提高边信息的质量以及系统的率失真(RD)性能,且性能稳定,适用于不同运动强度的视频序列.%In the distributed video coding,the quality of side information plays an important role in the rate distortion performance of the system.The extrapolation method is widely used because of its good practicability in large GOP.In order to further improve the quality of the generated side information and the rate distortion performance with extrapolation algorithm in large GOP,an algorithm of side information generation based on hybrid updating is proposed.It is a hybrid one which consists of both extrapolation and interpolation algorithm.On the basis of the generated side information resulted from the extrapolation algorithm,the interpolation side information has been produced with motion estimation,vector filtering and motion compensation.While hybrid side information has been generated and updated via self-adaptive weight with the two algorithms the updatedhybrid side information and WZ frame are reconstructedagain.Experimental results show that the hybrid algorithm can significantly improve both the quality of side information and system rate distortion performance,and that performance of hybrid algorithm is stable,which is suit for video sequences with diverse exercise intensity.【期刊名称】《计算机技术与发展》【年(卷),期】2017(027)004【总页数】5页(P55-59)【关键词】边信息;混合更新;外推算法;内插算法;率失真【作者】王艳营;冯进玫;张文祥【作者单位】黑龙江科技大学电子与信息工程学院,黑龙江哈尔滨 150027;黑龙江科技大学电子与信息工程学院,黑龙江哈尔滨 150027;黑龙江科技大学电子与信息工程学院,黑龙江哈尔滨 150027【正文语种】中文【中图分类】TP37随着计算机和视频信息技术的飞速发展,出现了如无线视频、多媒体传感器网络等新型视频应用。

像素域Wyner-Ziv视频编码的码率控制

像素域Wyner-Ziv视频编码的码率控制

像素域Wyner-Ziv视频编码的码率控制I. 引言A. 背景和目标B. Wyner-Ziv视频编码的概述C. 研究问题的意义和必要性II. 码率控制的现状和方案A. 码率控制的概述B. 码率控制的常用算法C. Wyner-Ziv视频编码的码率控制方案研究III. 像素域Wyner-Ziv视频编码原理A. Wyner-Ziv视频编码的基本原理B. 像素域Wyner-Ziv视频编码的实现和优化C. 码率控制对Wyner-Ziv视频编码的影响IV. 像素域Wyner-Ziv视频编码的码率控制方案A. 基于贪心算法的码率控制B. 基于模型预测的码率控制C. 基于深度学习的码率控制V. 算法效果与分析A. 实验设计和结果分析B. 使用不同算法的码率控制效果比较C. 各种算法的优缺点分析和总结VI. 结论A. 技术总结和启示B. 对未来工作的展望C. 心得体会和感言注:以上只是提纲,要完整的论文需要补充探讨。

第一章节引言A. 背景和目标随着数字技术的快速发展,视频编码技术已经得到广泛应用,并被广泛用于直播、视频会议、网络传输、云存储等多个领域。

传统的视频编码技术如H.264, H.265等基于帧内编码(Intra-coding)和帧间编码(Inter-coding),在压缩视频压缩率方面取得了很好的效果。

但是,将这些传统的编码算法用于压缩低码率视频,还是存在很大的困难。

因为低码率视频编码时,质量和码率之间的平衡会变得更加关键和敏感。

Wyner-Ziv (WZ)视频编码是一种新颖的视频编码方法。

Wyner和Ziv创造了一种新颖的编码理论,即使用不同的信息源-信源(source)和信道模型 (channel) 。

这一理论不同于传统的视频编码方法,WZ 压缩算法将视频分为两部分:参考帧和后续帧。

参考帧由编码器进行编码,再用Wyner-Ziv分割定理分割成两部分。

后续帧由解码器进行编码,解码器通过参考帧以及后续帧自身的相似性逆向解码。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 (π ), · · · , RL (π )) is a vertex of the Slepian-Wolf region for every permutation π . It is known that vertices of the Slepian-Wolf region can be achieved with a complexity which is significantly lower than that of a general point. It was observed in [8] that by splitting a source into two virtual sources one can reduce the problem of coding an arbitrary point in a L-dimensional Slepian-Wolf region to that of coding a vertex of a (2L − 1)dimensional Slepian-Wolf region. The source-splitting approach was also adopted in distributed lossy source coding [9]. In the distributed lossy source coding scenario, we shall refer to source splitting as quantization splitting (from the encoder viewpoint) or description refinement (from the decoder viewpoint) since it is the quantization output, not the source, that gets split. Finally we want to point out that the source-splitting idea has a dual in the problem of coding for multiple access channels, which is referred to as rate-splitting [10]–[13]. The rest of this paper is divided into 3 sections. In Section II, we introduce a low complexity successive WynerZiv coding schemem and prove that any point in the rate region of the quadratic Gaussian CEO problem can be achieved via this scheme. The duality between the superposition coding in multiaccess communication and the successive Wyner-Ziv coding is briefly discussed. The concept of distributed successive refinement is introduced in Section III. The quadratic Gaussian CEO problem is used as an example, for which the necessary and sufficient condition for the distributed successive refinement is established. We conclude the paper in Section IV. In this paper, we use boldfaced letters to indicate (n-dimensional) vectors, capital letters for random objects, and small letters for their realizations. For example, we let X = (X (1), · · · , X (n))T and x = (x(1), · · · , x(n))T . Calligraphic letters are used to indicate a set (say, A). We use UA to denote the vector (Ui )i∈A with index i in an increasing order and use UA,B to denote (UA,j )j ∈B 1 . For example, if A = B = {1, 2}, then UA = (U1 , U2 ) and UA,B = (U1,1 , U2,1 , U1,2 , U2,2 ). Here Ui (and Ui,j ) can be a random variable, a constant or a function. We let UA be a constant if A is an empty set. We use IK to denote the set {1, 2, · · · , K } for any positive integer K . II. S UCCESSIVE W YNER -Z IV C ODING S CHEME In this paper, we adopt the model of the CEO problem. But some of our results also hold for many other distributed source coding models. The CEO problem has been studied for many years [14]–[16]. Here is a brief description of this problem (also see Fig. 1). Let {X (t), Y1 (t), · · · , YL (t)}∞ t=1 be a temporally memoryless source with instantaneous joint probability distribution P (x, y1 , · · · , yL ) on X × Y1 × · · · × YL , where X is the common alphabet of the random variables X (t) for t = 1, 2, · · · , and Yi (i = 1, 2, · · · , L) is the common alphabet of the random variables Yi (t) for t = 1, 2, · · · . {X (t)}∞ t=1 is the target data sequence that the decoder is interested in. This data sequence cannot be observed directly. L encoders are deployed, where encoder i observes {Yi (t)}∞ t=1 , i = 1, 2, · · · , L. The data rate at which encoder i (i = 1, 2, · · · , L) may communicate information about its observations to the decoder is limited to ˆ (t)}∞ Ri bits per second. The encoders are not permitted to communicate with each other. Finally, the decision {X t=1 is computed from the combined data at the decoder so that a desired fidelity can be satisfied.
Jun Chen and Toby Berger are supported in part by NSF Grant CCR-033 0059 and a grant from the National Academies Keck Futures Initiative (NAKFI).
DRAFT
1
Successive Wyner-Ziv Coding Scheme and its Application to the Quadratic Gaussian CEO Problem
arXiv:cs/0604077v1 [cs.IT] 19 Apr 2006
Jun Chen, Member, IEEE, Toby Berger, Fellow, IEEE
Abstract We introduce a distributed source coding scheme called successive Wyner-Ziv coding. We show that any point in the rate region of the quadratic Gaussian CEO problem can be achieved via the successive Wyner-Ziv coding. The concept of successive refinement in the single source coding is generalized to the distributed source coding scenario, which we refer to as distributed successive refinement. For the quadratic Gaussian CEO problem, we establish a necessary and sufficient condition for distributed successive refinement, where the successive Wyner-Ziv coding scheme plays an important role. Index Terms CEO problem, contra-polymatroid, rate splitting, source splitting, successive refinement, Wyner-Ziv coding.
相关文档
最新文档