智爱高中数学 求函数值域十六法

合集下载

例说求函数值域的十种基本方法

例说求函数值域的十种基本方法

例说求函数值域的十种基本方法求函数值域是数学中的一个重要问题,涉及到了函数的性质和特点。

接下来,我将为您介绍求函数值域的十种基本方法。

1.函数特性法首先,我们可以通过函数的特性来判断其值域。

例如,如果函数是线性函数,那么它的值域是整个实数集;如果函数是二次函数,那么它的值域可以通过求解二次方程得到。

2.函数图像法通过绘制函数的图像,可以直观地看出函数的值域。

值域可以通过观察函数图像的最高点、最低点以及其他特殊点得出。

3.函数解析式法通过函数的解析式,可以对其进行分析,确定函数的值域。

例如,对于一个多项式函数,可以通过求导,找出函数的极值点,从而得到值域。

4.函数区间法将函数的定义域划分为若干个区间,在每个区间内分别求出函数的最大值和最小值,然后取这些最值的并集,即可得到函数的值域。

5.函数性质法根据函数的性质,判断其值域。

例如,若函数是奇函数,那么其值域与定义域对称;若函数是周期函数,那么值域只需要求出一个周期内的值。

6.函数导数法通过求函数的导数,可以找出函数的极值点,然后确定函数的值域。

导数为零的点是函数的极值点,其中最大值和最小值即为函数的值域的上界和下界。

7.函数符号法通过研究函数的符号变化,可以确定函数值域。

例如,对于一个有理函数,可以研究当自变量趋于正无穷和负无穷时,函数值的变化情况。

8.函数求导法对于一些复杂的函数,可以通过对函数进行求导,并求出导函数的零点,从而找到函数的极值点。

极值点即为函数的值域的边界点。

9.函数的逆函数法若函数的逆函数存在,可以通过研究逆函数的定义域来确定函数的值域。

逆函数与原函数的值域相同,因此可以求出函数的逆函数,然后通过研究逆函数的值域来确定函数的值域。

10.函数的一些特点法对于一些具有特殊特点的函数,可以通过对这些特点进行分析,来确定函数的值域。

例如,对于一个增函数,函数的值域是从函数图像的最低点到最高点。

函数值域的十种求法

函数值域的十种求法

函数值域的十种求法函数值域是一种数学概念,它描述了一个函数的结果范围,是数学研究的基础。

求函数值域的方法有多种,每种方法都有不同的优劣。

本文介绍了求函数值域的十种方法,及其优势和劣势,以供参考。

一、定义法定义法是求取函数值域最为简单的方法,只要将函数的定义式扩大至所有可能被求出的范围即可。

定义法最大的优势在于可以精确求出函数值域,大大减少误差,使得函数值域的求解更有可靠性。

但是,定义法也有其缺点,即求解过程会很繁琐,在有多个参数的函数中,会消耗大量的计算时间。

二、图像法图像法是一种简单易行的求函数值域的方法,它只需要将函数的图像表示出来,然后从图像中观察出函数值域的范围即可。

图像法的优势在于求解速度快,只需要对函数的图像做一次有限次的绘制,就可以直观了解函数的值域,而无需进行耗时的计算。

但是,图像法本身并不能精确求出函数值域,无法判断一些细微的函数特征,从而可能导致求得的函数值域不够准确。

三、五行式五行式是一种常见的求函数值域的方法,它将参数组合为五个不同的行,分别代表不同的极限情况,然后从五行式中求取函数值域。

五行式的最大优势就在于可以根据函数本身的特征,从而排除掉一些不必要的计算,减少运算量,大大提高求解的效率。

但是,五行式也存在一定的局限性,它无法正确处理复杂的函数,也不能处理参数过多的函数。

四、三角形法三角形法是一种求函数值域的经典方法,它将参数抽象出来,将参数空间细分为多个三角形,并将每个三角形中的值域分别求取出来。

三角形法的最大优势在于可以将参数空间剖分为有结构的模块,并在不同模块之间建立联系,从而大大减少计算量。

但是,三角形法也有其不足,即它只能处理二元函数的值域求解,而且在一些复杂函数的情况下,其求解精度也无法保证。

五、基于函数本质的求法基于函数本质的求法是一种综合的求值域的方法,它的原理是从函数的定义本质出发,抽象出函数的特征,并对参数和函数值域之间的联系进行分析,最后求解出函数值域。

函数值域的求法总结

函数值域的求法总结

函数值域的求法总结引言函数是数学中一个非常重要的概念,广泛应用于各个领域。

在分析函数时,除了研究其定义域和解析性质外,了解函数的值域也是很有意义的。

本文将从不同的角度总结函数值域的求法,并通过例子加以说明。

1. 图像法图像法是最常用的求函数值域的方法之一。

可以通过绘制函数的图像来观察函数的取值范围。

具体步骤如下:1.根据函数的定义域,选择恰当的自变量值。

2.分别计算这些自变量对应的函数值。

3.绘制函数的图像。

4.观察图像的纵坐标范围,即为函数的值域。

下面以函数f(x) = x^2 - 3为例进行说明:import matplotlib.pyplot as pltimport numpy as npx = np.linspace(-5, 5, 100) # 定义自变量的取值范围y = x **2-3# 计算函数值plt.plot(x, y)plt.xlabel('x')plt.ylabel('f(x)')plt.title('Graph of f(x) = x^2 - 3')plt.grid(True)plt.show()根据绘制的图像可以看出,函数的值域为负无穷到负3的闭区间和零到正无穷的闭区间,即函数值域是[-3, ∞)。

2. 解析法解析法是根据函数的表达式来求解函数的值域。

具体步骤如下:1.对函数进行分析和化简,找出函数值域的特点。

2.根据特点确定函数值域的区间。

3.引入极限的概念,求解函数的值域。

下面以函数g(x) = (x + 1)/(x - 2)为例进行说明:由于x - 2不能为零,所以x ≠ 2。

根据函数的表达式,当x趋向于正无穷时,(x + 1)/(x - 2)趋向于正无穷;当x趋向于负无穷时,(x + 1)/(x - 2)趋向于负无穷。

因此,在x ≠ 2的条件下,函数的值域为负无穷到正无穷的开区间,即(-∞, ∞)。

3. 导数法导数法是通过对函数求导来求解函数的值域。

函数值域求法十一种

函数值域求法十一种

函数值域求法十一种函数值域求法十一种1.直接观察法对于一些简单的函数,可以通过观察得到其值域。

例如,求函数 $y=\frac{1}{x}$ 的值域。

解:由于 $x\neq 0$,显然函数的值域是:$(-\infty,0)\cup(0,+\infty)$。

2.配方法配方法是求二次函数值域最基本的方法之一。

例如,求函数 $y=x^2+2x+3$ 在 $x\in[-1,2]$ 时的值域。

解:将函数配方得:$y=(x+1)^2+2$。

由二次函数的性质可知:当 $x=-1$ 时,$y_{\max}=2$,当 $x=1$ 时,$y_{\min}=4$。

故函数的值域是:$[2,4]$。

3.判别式法例如,求函数 $y=\frac{1+x+x^2}{1+x^2}$ 在 $x\in[-1,2]$ 时的值域。

解:将函数化为关于 $x$ 的一元二次方程 $(y-1)x^2+(y-1)x+(1-y)=0$。

1)当 $y\neq 1$ 时,$\Delta=(-1)^2-4(y-1)(1-y)\geq 0$,解得:$y\in[\frac{1}{2},2]$。

2)当 $y=1$ 时,$x=\pm 1$,故函数的值域是:$[\frac{1}{2},2]$。

4.反函数法例如,求函数 $y=3x+4$ 的值域。

解:由原函数式可得其反函数为:$x=\frac{y-4}{3}$,其定义域为 $\mathbb{R}$,故函数的值域也为 $\mathbb{R}$。

注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。

函数的值域为:XXX11(x1)2 2令x1t,(t0)则XXX11t2 2化简得XXX11t2函数的值域为(0,1]。

例13.求函数y sinx cosx的值域。

解:由三角函数的性质可知。

1sinx1,1cosx 1故2sinx cosx 2由于sinx cosx的周期为2,所以只需考虑[0,2)的值域即可。

求值域的10种方法

求值域的10种方法

求值域的10种方法值域是一个函数在定义域内所有可能的输出值的集合。

找到函数的值域通常是为了确定函数可能的取值范围,并且在数学和计算中都是非常重要的。

以下是求值域的10种方法:1.列举法列举法是最简单直接的方法。

通过观察函数的定义,给出一组有序的输出值,并将这些值组成一个集合。

这些值将构成函数的值域。

例如,对于函数f(x)=x^2,我们可以通过进行一系列的替换运算,然后给出输出值的集合{0,1,4,9,16,...}。

2.图像法在图像法中,我们首先绘制函数的图像,然后找到图像上所有纵坐标的值。

这些纵坐标的集合构成了函数的值域。

例如,对于函数f(x)=x^2,我们可以绘制一个抛物线形状的图像,然后观察所有纵坐标的值。

3.解析法解析法是通过使用代数表达式或方程来确定函数的值域。

例如,对于函数f(x)=x^2,我们可以使用代数方法将方程f(x)=y转化为x^2=y。

然后通过解这个方程,我们可以得到y可能的取值范围,即函数的值域。

4.图像逼近法在图像逼近法中,我们通过绘制函数的图像,并观察图像在最高和最低点之间所有可能的纵坐标值。

这些纵坐标的集合构成函数的值域。

5.猜测法猜测法是一种直觉方法,凭借对函数的直觉和理解猜测出其可能的取值范围。

这种方法通常需要一定的数学背景和经验,并且在实践中被广泛应用。

6.极值法在极值法中,我们通过找到函数的极大值和极小值来确定函数的值域。

极大值是函数图像的局部最高点,极小值是函数图像的局部最低点。

函数的值域就是极值点之间的所有可能的函数值。

7.夹逼法夹逼法是通过使用两个已知函数(夹逼函数)来夹住待求函数,然后确定待求函数的值域。

待求函数的值域将位于夹逼函数的值域之间。

8.对数法对数法是通过取函数的对数来确定函数的值域。

求函数的对数在一些问题中很有用,因为它可以将具有无穷大或无穷小解的问题转化为具有有限解的问题。

9.差集法差集法是通过找到函数定义域的补集,然后从全体实数集中去除差集的元素,得到函数的值域。

求函数值域的12种方法

求函数值域的12种方法

求函数值域的12种方法函数的值域即为函数的输出值的集合。

在数学中,可以用多种方法来确定函数的值域。

1.输入法:根据函数的解析式,将不同的输入带入函数中,找出函数的输出值。

例如,对于函数$f(x)=x^2$,将不同的$x$值带入函数中,得到$f(1)=1$,$f(2)=4$,$f(3)=9$,...,通过这种方法可以找出函数的值域为正整数集合。

2. 虚拟增量法:给定函数的定义域,通过逐渐增加函数的输入值,观察函数的输出值是否有变化。

例如,对于函数$g(x) = \sqrt{x}$,可以从定义域中的最小值开始逐渐增加$x$的值,观察$\sqrt{x}$的变化,直到无法再增加$x$的值为止。

通过这种方法可以找出函数值域为非负实数集合。

3. 图像法:画出函数的图像,通过观察图像的高度范围找出函数的值域。

例如,对于函数$h(x) = \sin x$,可以画出其图像,观察图像的高度范围为$[-1, 1]$,则函数的值域为闭区间$[-1, 1]$。

4. 函数属性法:通过函数的性质推断出函数的值域。

例如,对于函数$f(x) = \frac{1}{x}$,可以通过观察函数的分母$x$的取值范围,推断出函数的值域为除去零的实数集合。

5. 求导法:对于可导函数,可以通过求导数来确定函数的值域。

例如,对于函数$f(x) = x^3 + 1$,求导得到$f'(x) = 3x^2$,由于$f'(x)$是一个二次函数,且开口向上,因此可以推断出函数$f(x)$的值域为$(-\infty, +\infty)$。

6. 函数复合法:对于复合函数,可以通过将函数复合起来,找出函数的值域。

例如,对于函数$f(x) = \sqrt{\sin x}$,可以将其分解为$f(x) = \sqrt{g(x)}$,其中$g(x) = \sin x$,由于$\sin x$的值域为$[-1, 1]$,因此$\sqrt{\sin x}$的值域为闭区间$[0, 1]$。

求函数值域的方法大全

求函数值域的方法大全

求函数值域的方法大全函数的值域是指函数在定义域内所有可能的输出值的集合。

找到函数的值域可以帮助我们了解函数的整体走势和性质。

下面是一些常见的方法帮助我们求函数值域。

1.用图形法求值域:使用图形来观察函数的形状和趋势,根据图形的有界性和单调性来确定函数值域的范围。

例如,如果函数是上凸的,那么它的值域可能是从函数的最小值开始一直到正无穷大。

如果函数是下凸的,那么它的值域可能是从负无穷大到函数的最大值。

2.用定义法求值域:通过函数的定义式,将自变量的范围带入函数,计算函数的输出值,从而找到函数的可能取值。

例如,对于函数f(x)=x^2,我们可以把不同的x值代入函数中,并记录下函数的输出值,得到一个可能的值域的集合。

3.用反函数法求值域:如果函数具有反函数,可以通过求反函数的定义域来求原函数的值域。

例如,对于函数f(x)=x^2,它的反函数是f^(-1)(x)=√x,定义域为非负实数,因此原函数的值域也是非负实数。

4.用导数法求值域:对于给定范围内的函数,利用导数求得函数的驻点和拐点,结合函数的单调性和图像的形状来求值域。

例如,当函数的导数为零时,这些点可能是函数的最大值或最小值,通过比较这些点的对应函数值,可以确定函数的值域的上下界。

5.用极限法求值域:当函数的定义域是无界的时候,可以利用函数的极限来求值域。

通过求函数在正无穷大和负无穷大时的极限,可以确定函数的值域的上下界。

6.用解析法求值域:对于一些特定形式的函数,可以通过解析方法求值域。

例如,对于一次函数f(x)=ax+b,其中a和b为常数,如果a>0,则函数的值域是从负无穷大到正无穷大的实数集合。

7.用二次函数求值域:对于二次函数f(x)=ax^2+bx+c,其中a>0,可以通过将二次函数转化为顶点形式来求值域。

首先通过求导数找到二次函数的极值点(即顶点),然后结合函数的开口方向和顶点的y坐标,可以确定二次函数的值域。

8.用指数和对数函数求值域:对于指数函数f(x)=a^x和对数函数f(x)=log_a(x),其中a>0且a≠1,可以利用指数和对数函数的性质来求值域。

高中数学 函数值域求法十一种(详解)

高中数学  函数值域求法十一种(详解)

智愛高中數學 函数值域求法十一种在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。

研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。

确定函数的值域是研究函数不可缺少的重要一环。

对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。

本文就函数值域求法归纳如下,供参考。

1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。

1. 求函数x 1y =的值域。

解:∵0x ≠∴0x 1≠显然函数的值域是:),0()0,(+∞-∞2. 求函数x 3y -=的值域。

解:∵0x ≥3x 3,0x ≤-≤-∴ 故函数的值域是:]3,[-∞2. 配方法配方法是求二次函数值域最基本的方法之一。

3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。

解:将函数配方得:4)1x (y 2+-= ∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8]3. 判别式法4. 求函数22x 1x x 1y +++=的值域。

解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+- (1)当1y ≠时,Rx ∈0)1y )(1y (4)1(2≥----=∆ 解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211故函数的值域为⎥⎦⎤⎢⎣⎡23,215. 求函数)x 2(x x y -+=的值域。

解:两边平方整理得:0y x )1y (2x 222=++-(1)∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤- 但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。

高中数学--函数值域求法十一种(详解).docx

高中数学--函数值域求法十一种(详解).docx

函数值域求法十一种在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。

研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。

确定函数的值域是研究函数不可缺少的重要一环。

对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。

本文就函数值域求法归纳如下,供参考。

1.直接观察法对于一些比较简单的函数,其值域可通过观察得到。

1y1. 求函数x 的值域。

解:∵x01∴x显然函数的值域是:(,0)(0,)2. 求函数y3x的值域。

解:∵x 0x 0,3x 3故函数的值域是:[,3]2.配方法配方法是求二次函数值域最基本的方法之一。

3.求函数yx 22x5, x[ 1,2] 的值域。

解:将函数配方得:y(x1) 24∵ x [1,2]由二次函数的性质可知:当 x=1时,ymin4,当 x1时, y max 8故函数的值域是:[4,8]3.判别式法y1 x x 24.1x 2求函数的值域。

解:原函数化为关于 x 的一元二次方程( y 1)x2( y 1) x 0 (1)当 y 1时,x R( 1) 2 4( y 1)( y1)解得:1y3 22(2)当 y=1时, x 0 ,而11 , 3 故函数的值域为 1,3222 25. 求函数 y xx( 2 x )的值域。

解:两边平方整理得:2x22(y 1) x y2(1)∵ x R∴4(y 1) 28y解得:12 y 1 2但此时的函数的定义域由x( 2x)0 ,得0x 2由0 ,仅保证关于 x 的方程:2x22(y 1) x y 2在实数集 R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0求出的范围可能比 y 的实际范围大,故不能确定此函数的值域为 1 ,3。

高中数学函数值域的求法(9种)

高中数学函数值域的求法(9种)

函数值域的求法求函数的值域时,要明确两点:一是函数值域的概念,二是函数的定义域和对应关系。

常用的方法有:观察法、换元法、配方法、判别式法、数形结合法、分离常数法、反表示法、中间变量值域法等。

(1)观察法:有的函数结构并不复杂,可以通过对解析式的简单变形和观察,利用熟知的函数的值域求出函数的值域。

如函数211xy +=的值域{}10|≤<y y 。

(2)换元法:运用换元,将已知的函数转化为值域容易确定的另一函数,从而求得原函数的值域。

例如:形如d cx b ax y +±+=(d c b a ,,,均为常数,0≠ac )的函数常用此法。

(3)配方法:若函数是二次函数的形式,即可化为()02≠++=a c bx ax y 型的函数,则可通过配方后再结合二次函数的性质求值域,但要注意给定区间上二次函数最值得求法。

如求函数32+-=x x y 的值域,因为()2212≥+-=x y ,所以所求函数的值域为[)∞+,2。

(4)判别式法:求形如fex dx c bx ax y ++++=22(f e d c b a ,,,,,不同时为0)的值域,常利用去分母的形式,把函数转化为关于x 的一元二次方程,通过方程有实根,判别式0≥∆,求出y 的取值范围,即得到函数的值域。

(5)数形结合法:有些函数的图像比较容易画出,可以通过函数的图像得出函数的值域;或者分段函数也常用画出函数图像的方法判断出函数的值域。

例如:12--+=x x y 。

(6)分离常数法:形如()0≠++=a b ax d cx y 的函数,经常采用分离常数法,将bax d cx ++变形为()b ax a bc d a c b ax a bcd b ax ac +-+=+-++,再结合x 的取值范围确定b ax a bcd +-的取值范围,从而确定函数的值域。

如求函数112+-=x x y 的值域时,因为132+-=x y ,且013≠+x ,所以2≠y ,所以函数的值域为{}2,|≠∈y R y y 且。

高中数学函数值域的种求法总结

高中数学函数值域的种求法总结

高中数学函数值域的种求法总结高中数学中,函数值域是指函数在定义域内所有可能的取值的集合。

求函数值域是解决各类函数问题的重要方法之一、下面将总结高中数学中常用的求函数值域的11种方法。

1.利用定义法:根据函数的定义,直接求解函数的取值范围。

例如,对于函数f(x)=x^2,由于平方永远非负,所以其值域为[0,+∞)。

2. 利用图像法:通过绘制函数的图像,观察图像的上下界即可求得函数的值域。

例如,对于函数 f(x) = sin(x),由于正弦函数的取值范围在[-1, 1]之间,故其值域为[-1, 1]。

3.利用对称性:对于一些具有对称性的函数,可以利用函数的对称性来快速求解其值域。

例如,对于奇函数f(x)=x^3,由于x^3关于原点对称,故其值域为整个实数轴。

4.利用函数的性质:通过函数的特点和性质来求解其值域。

例如,对于指数函数f(x)=a^x,由于指数函数永远大于0,所以其值域为(0,+∞)。

5. 利用最值的求解方法:对于具有最值的函数,可以通过求解最值来确定函数的值域。

例如,对于二次函数 f(x) = ax^2 + bx + c,其中a > 0,由于 a > 0,故二次函数的开口向上,函数的最小值为顶点的 y坐标,可以通过求解顶点坐标来确定函数的值域。

6.利用函数的递增性或递减性:对于递增函数或递减函数,可以根据函数递增性或递减性来求解其值域。

例如,对于递增函数f(x)=2x+1,由于斜率大于零,函数单调递增,故值域为(-∞,+∞)。

7. 利用函数的周期性:对于具有周期性的函数,可以利用函数的周期性来求解其值域。

例如,对于正弦函数 f(x) = sin(x),由于正弦函数的值在一个周期内是重复的,故其值域为 [-1, 1]。

8. 利用函数的复合性:对于复合函数,可以将函数拆解成多个简单的函数,然后求解每个简单函数的值域,最后将值域组合起来得到复合函数的值域。

例如,对于函数 f(x) = sqrt(x^2 + 1),可以拆解成 f(x) = g(h(x)), 其中 g(x) = sqrt(x) 和 h(x) = x^2 + 1,然后求解 g(x) 和h(x) 的值域,最后得到 f(x) 的值域。

(完整word版)高中数学求函数值域解题方法大全,推荐文档

(完整word版)高中数学求函数值域解题方法大全,推荐文档

高中数学求函数值域解题方法大全一、观察法:从自变量x 的范围出发,推出()y f x =的取值范围。

【例1】求函数1y =的值域。

0≥11≥,∴函数1y =的值域为[1,)+∞。

【例2】求函数的值域。

【解析】∵ ∴ 显然函数的值域是:【例3】已知函数()112--=x y ,{}2,1,0,1-∈x ,求函数的值域。

【解析】因为{}2,1,0,1-∈x ,而()()331==-f f ,()()020==f f ,()11-=f 所以:{}3,0,1-∈y注意:求函数的值域时,不能忽视定义域,如果该题的定义域为R x ∈,则函数的值域为{}1|-≥y y 。

二. 配方法:配方法式求“二次函数类”值域的基本方法。

形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。

【例1】 求函数225,[1,2]y x x x =-+∈-的值域。

【解析】将函数配方得:∵由二次函数的性质可知:当x=1 ∈[-1,2]时,,当时, 故函数的值域是:[4,8]【变式】已知,求函数的最值。

【解析】由已知,可得,即函数是定义在区间上的二次函数。

将二次函数配方得,其对称轴方程,顶点坐标x 1y =0x ≠0x 1≠),0()0,(+∞-∞Y,且图象开口向上。

显然其顶点横坐标不在区间内,如图2所示。

函数的最小值为,最大值为。

图2【例2】 若函数2()22,[,1]f x x x x t t =-+∈+当时的最小值为()g t ,(1)求函数()g t (2)当∈t [-3,-2]时,求g(t)的最值。

(说明:二次函数在闭区间上的值域二点二分法,三点三分法) 【解析】(1)函数,其对称轴方程为,顶点坐标为(1,1),图象开口向上。

图1图2图3①如图1所示,若顶点横坐标在区间左侧时,有,此时,当时,函数取得最小值。

②如图2所示,若顶点横坐标在区间上时,有,即。

当时,函数取得最小值。

③如图3所示,若顶点横坐标在区间右侧时,有,即。

函数求值域15种方法

函数求值域15种方法

函数求值域15种方法方法一:对于已知函数,可以通过求函数的表达式来确定函数的值域。

例如对于f(x)=x^2+1需要求值域,可以将其表示为y=x^2+1,然后观察x和y的关系,可以得到y的值域为[1,+∞)。

方法二:对于一些简单的函数,可以使用数学知识来确定其值域。

例如对于 f(x) = sin(x),由于正弦函数的值域为[-1, 1],因此 f(x) 的值域也是[-1, 1]。

方法三:对于复合函数,可以通过将内部函数的值域代入外部函数中来确定整个函数的值域。

例如对于f(x)=√(x^2+1),内部函数g(x)=x^2+1的值域为[1,+∞),将值域代入外部函数,可以得到f(x)的值域也是[1,+∞)。

方法四:对于分段函数,可以分别求解不同区间上函数的值域,然后将这些值域合并得到整个函数的值域。

例如对于f(x)={x,x<0;x^2,x≥0},可以分别求解x<0和x≥0的情况,得到f(x)的值域为(-∞,0]∪[0,+∞)。

方法五:利用函数的奇偶性来确定函数的值域。

如果函数是奇函数,即f(-x)=-f(x),那么函数的值域关于原点对称;如果函数是偶函数,即f(-x)=f(x),那么函数的值域关于y轴对称。

根据函数的奇偶性可以推断出函数的值域。

方法六:利用函数的周期性来确定函数的值域。

如果函数有周期T,那么函数的值域在一个周期内是相同的。

可以通过观察函数的图像或者函数的性质来确定函数的周期,并进一步确定函数的值域。

方法七:利用函数的极限来确定函数的值域。

可以求函数在正无穷和负无穷的极限,根据极限的性质来确定函数的值域。

如果函数在正无穷的极限是一个确定的值,那么函数的值域是有界的;如果函数在正无穷的极限趋近于正无穷,那么函数的值域是无界的。

方法八:利用函数的导数来确定函数的值域。

可以求函数的导数,然后分析导函数的正负性和极值点,从而确定函数的值域。

如果导函数在一些区间内始终大于零,那么函数在该区间上是单调递增的,可以确定函数的值域;如果导函数在一些区间内始终小于零,那么函数在该区间上是单调递减的,可以确定函数的值域。

求值域的方法

求值域的方法

求值域的方法如何求函数的值域一、配方法将函数配方成顶点式的格式,再根据函数的定义域,求得函数的值域。

二、常数分离这一般是对于分数形式的函数来说的,将分子上的函数尽量配成与分母相同的形式,进行常数分离,求得值域。

三、逆求法对于y=某x的形式,可用逆求法,表示为x=某y,此时可看y的限制范围,就是原式的值域了。

四、换元法对于函数的某一部分,较复杂或生疏,可用换元法,将函数转变成我们熟悉的形式,从而求解。

五、单调性可先求出函数的单调性(注意先求定义域),根据单调性在定义域上求出函数的值域。

六、基本不等式根据我们学过的基本不等式,可将函数转换成可运用基本不等式的形式,以此来求值域。

七、数形结合可根据函数给出的式子,画出函数的图形,在图形上找出对应点求出值域。

八、求导法求出函数的导数,观察函数的定义域,将端点值与极值比较,求出最大值与最小值,就可得到值域了。

函数的值域是什么函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。

f:A→B中,值域是集合B的子集。

如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。

常见函数值域:y=kx+b (k≠0)的值域为Ry=k/x 的值域为(-∞,0)∪(0,+∞)y=√x的值域为x≥0y=ax^2+bx+c 当a>0时,值域为 [4ac-b^2/4a,+∞) ;当a<0时,值域为(-∞,4ac-b^2/4a]y=a^x 的值域为 (0,+∞)y=lgx的值域为R。

求函数值域十六法

求函数值域十六法

求函数值域方法(1)、直接法:从自变量x 的范围出发,推出()y f x =的取值范围。

或由函数的定义域结合图象,或直观观察,准确判断函数值域的方法。

例1:求函数()1y x =≥的值域。

)+∞例2:求函数y =[)1,+∞例3:求函数1y =的值域。

0≥11≥,∴函数1y 的值域为[1,)+∞。

(2)、配方法:配方法式求“二次函数类”值域的基本方法。

形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。

例1:求函数242y x x =-++([1,1]x ∈-)的值域。

解:2242(2)6y x x x =-++=--+, ∵[1,1]x ∈-,∴2[3,1]x -∈--,∴21(2)9x ≤-≤∴23(2)65x -≤--+≤,∴35y -≤≤∴函数242y x x =-++([1,1]x ∈-)的值域为[3,5]-。

(3).最值法:对于闭区间上的连续函数,利用函数的最大值、最小值求函数的值域的方法。

例1 求函数y=3-2x-x2 的值域。

解:由3-2x-x2≥0,解出定义域为[-3,1]。

函数y 在[-3,1]内是连续的,在定义域内由3-2x-x2 的最大值为4,最小值为0。

∴函数的值域是[0,2] 例2;求函数2x y =,[]2,2x ∈-的值域。

1,44⎡⎤⎢⎥⎣⎦例3;求函数2256y x x =-++的值域73,8⎛⎤-∞ ⎥⎝⎦(4)、反函数法:利用函数和它的反函数的定义域与值域的互逆关系,通过求反函数的定义域,得到原函数的值域。

例1:求函数1212x x y -=+的值域.解:由1212x xy -=+解得121x y y -=+,∵20x>,∴101y y ->+,∴11y -<<∴函数1212xxy -=+的值域为(1,1)y ∈-。

(5)、分离常数法:分子、分母是一次函数得有理函数,可用分离常数法,此类问题一般也可以利用反函数法。

求函数值域的十三种方法

求函数值域的十三种方法

求函数值域的十三种方法求函数值域是数学中常见的问题,通过求函数值域可以了解函数的取值范围,对于解决实际问题和理论分析都有重要意义。

下面将介绍求函数值域的十三种方法。

一、观察法观察法是最直观的方法,通过观察函数的定义域和性质,可以初步确定函数的值域。

例如,对于一个关于实数的二次函数,如果其开口向上,则可以判断其值域为大于等于最低点的y坐标的实数集合。

二、代数法代数法是通过运用代数运算的方法求函数值域。

例如,对于一个有理函数,可以通过求其对应的分式函数的极限来确定函数的值域。

三、图像法图像法是通过绘制函数的图像来求函数值域。

通过观察图像的变化趋势,可以确定函数的值域。

例如,对于一个周期函数,可以通过绘制其一个周期内的图像,然后根据图像的波动范围确定函数的值域。

四、导数法导数法是通过求函数的导数来求函数值域。

通过分析导数的增减性和极值点,可以确定函数的值域。

例如,对于一个单调递增函数,其值域为整个定义域;对于一个有界函数,其值域为一个闭区间。

五、反函数法反函数法是通过求函数的反函数来求函数值域。

通过求反函数的定义域,可以得到函数的值域。

例如,对于一个严格单调增函数,其反函数的定义域即为函数的值域。

六、极限法极限法是通过求函数的极限来求函数值域。

通过分析函数的极限可以确定函数的趋势和边界,从而确定函数的值域。

例如,对于一个无界函数,可以通过求其极限来确定函数的值域。

七、积分法积分法是通过求函数的积分来求函数值域。

通过分析函数的积分可以确定函数的曲线下面积,从而确定函数的值域。

例如,对于一个连续非负函数,可以通过求其积分来确定函数的值域。

八、级数法级数法是通过求函数级数的和来求函数值域。

通过分析级数的收敛性和和的性质,可以确定函数的值域。

例如,对于一个幂级数函数,可以通过求级数的收敛域来确定函数的值域。

九、微分方程法微分方程法是通过求函数满足的微分方程来求函数值域。

通过求微分方程的解析解或数值解,可以确定函数的值域。

高中数学求函数值域的10种常见方法

高中数学求函数值域的10种常见方法

高中数学求函数值域的10种常见方法
一、显函数法:
须先将函数写成显函数的形式,然后通过分析函数表达式的特征,确定其值域。

二、图像法:
一般通过函数的图像来确定其值域,可以在纸上绘制函数的图像,或者利用数学软件进行绘图分析。

三、函数增减性:
通过函数的增减性来确定其值域,即分析函数在定义域上的单调性。

四、函数的周期性:
若函数具有周期性,则值域受周期性的限制。

五、函数的有界性:
若函数在定义域上有上下界,则其值域也受到该有界性的限制。

六、反函数法:
通过求函数的反函数,获得原函数的值域。

七、导数法:
通过求函数的导数,分析其在定义域内的极值和拐点,得出值域的上下界。

八、极限法:
通过求函数在定义域两端的极限,确定函数值域的范围。

九、变量替换法:
可将复杂的函数转化为简单的函数,通过分析简单函数的值域,确定复杂函数的值域。

十、函数值的性质:
根据函数的性质和定义,通过推理和证明,确定函数值域。

以上是求函数值域的十种常见方法,根据不同的题目和函数形式,我们可以选择适用的方法来解决问题。

在实际应用中,经常需要综合运用多种方法来确定函数的值域。

高中数学求函数值域的解题方法总结(16种)

高中数学求函数值域的解题方法总结(16种)

求函数值域的解题方法总结(16种)在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。

一、观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。

例:求函数()x 323y -+=的值域。

点拨:根据算术平方根的性质,先求出()x 3-2的值域。

解:由算术平方根的性质知()0x 3-2≥,故()3x 3-23≥+。

点评:算术平方根具有双重非负性,即:(1)、被开方数的非负性,(2)、值的非负性。

本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧发。

练习:求函数()5x 0x y ≤≤=的值域。

(答案:{}5,4,3,2,1,0)二、反函数法:当函数的反函数存在时,则其反函数的定义域就是原函数的值域。

例:求函数2x 1x y ++=的值域。

点拨:先求出原函数的反函数,再求出其定义域。

解:显然函数2x 1x y ++=的反函数为:y y --=112x ,其定义域为1y ≠的实数,故函数y 的值域为{}R y 1,y |y ∈≠。

点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。

这种方法体现逆向思维的思想,是数学解题的重要方法之一。

练习:求函数x-x -xx 10101010y ++=的值域。

(答案:{}1y 1-y |y 或)。

三、配方法:当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求函数的值域。

例:求函数()2x x-y 2++=的值域。

点拨:将被开方数配方成平方数,利用二次函数的值求。

解:由02x x -2≥++可知函数的定义域为{}2x 1-|x ≤≤。

此时2x x -2++=4921-x -2+⎪⎭⎫ ⎝⎛ ()232x x-02≤++≤∴,即原函数的值域为⎭⎬⎫⎩⎨⎧≤23y 0|y点评:求函数的值域的不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。

高中数学函数值域的11种求法!连老师都建议收藏!

高中数学函数值域的11种求法!连老师都建议收藏!

高中数学函数值域的11种求法!连老师都建议收藏!
中国人常说:学好数理化,走遍天下都不怕。

可见理科学科在国人心目中占了多么重要的位置。

其中,数学作为理科的根本,毋庸置疑的更是重中之重。

函数,是高中数学中很重要的一部分内容,很多同学也为函数值域的求法感到头痛。

今天我就给大家分享一下,高中数学中函数值域的11种求法。

只要同学们熟练掌握了这些求法,便能轻轻松松地应对高中函数了。

我坚信,没有学不好的孩子,只有不会学的孩子。

很多孩子成绩不好都是学习方法、记忆方法不对造成的,我在网上举办《最强大脑》免费公益课,添加微信号:203013661报名即可免费听课。

求函数值域的方法

求函数值域的方法

求函数值域的方法函数值域是什么,怎么求?不清楚的小伙伴看过来,下面由小编为你精心准备了“求函数值域的方法”仅供参考,持续关注本站将可以持续获取更多的资讯!求函数值域的方法值域域为数学名词,函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。

函数值域的求法1、配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式;2、逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,型如: ;3、换元法:通过变量代换转化为能求值域的函数,化归思想;4、三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;5、基本不等式法:转化成型如:,利用平均值不等式公式来求值域;6、单调性法:函数为单调函数,可根据函数的单调性求值域。

7、数形结合:根据函数的几何图形,利用数型结合的方法来求值域。

8、定义法:已知某个三角函数的定义值域,通过转化成三角函数来求解该函数的值域9、画图法:这种方法简单快捷,只要将函数图形画出来,一眼就能看到函数的值域。

拓展阅读:函数最小正周期怎么求所谓的函数的最小正周期,一般在高中时期的话遇到的都是那种特殊形式的函数,比如;f(a-x)=f(x+a),这个函数的最小周期就是T=(a-x+x+a)/2=a。

还有是三角函数y=A sin(wx+b)+t,最小正周期就是T=2帕/w。

最小正周期求法1、公式法这类题目是通过三角函数的恒等变形,转化为一个角的一种函数的形式,用公式去求,其中正余弦函数求最小正周期的公式为T=2π/|ω| ,正余切函数T=π/|ω|。

函数f(x)=Asin(ωx+φ)和f(x)=Acos(ωx+φ)(A≠0,ω>0)的最小正周期都是;函数f(x)=Atan(ωx+φ)和f(x)=Acot(ωx+φ)(A≠0,ω>0)的最小正周期都是,运用这一结论,可以直接求得形如y=Af(ωx+φ)(A≠0,ω>0)一类三角函数的最小正周期(这里“f”表示正弦、余弦、正切或余切函数)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

智愛高中數學 求函数值域十六法求函数的值域或最值是高中数学基本问题之一,也是考试的热点和难点之一。

遗憾的是教材中仅有少量求定义域的例题、习题,而求值域或最值的例题、习题则是少得屈指可数。

原因可能是求函数的值域往往需要综合用到众多的知识内容,技巧性强,有很高的难度,因此求函数的值域或最值的方法需要我们在后续的学习中逐步强化。

本文谈一些求函数值域的方法,仅作抛砖引玉吧。

一、基本知识1. 定义:因变量y 的取值范围叫做函数的值域(或函数值的集合)。

2. 函数值域常见的求解思路:⑴.划归为几类常见函数,利用这些函数的图象和性质求解。

⑵.反解函数,将自变量x 用函数y 的代数式形式表示出来,利用定义域建立函数y 的不等式,解不等式即可获解。

⑶.可以从方程的角度理解函数的值域,如果我们将函数()y f x =看作是关于自变量x 的方程,在值域中任取一个值0y ,0y 对应的自变量0x 一定为方程()y f x =在定义域中的一个解,即方程()y f x =在定义域内有解;另一方面,若y 取某值0y ,方程()y f x =在定义域内有解0x ,则0y 一定为0x 对应的函数值。

从方程的角度讲,函数的值域即为使关于x 的方程()y f x =在定义域内有解的y得取值范围。

特别地,若函数可看成关于x 的一元二次方程,则可通过一元二次方程在函数定义域内有解的条件,利用判别式求出函数的值域。

⑷.可以用函数的单调性求值域。

⑸.其他。

3. 函数值域的求法 (1)、直接法:从自变量x 的范围出发,推出()y f x =的取值范围。

或由函数的定义域结合图象,或直观观察,准确判断函数值域的方法。

1:求函数()1y x =≥的值域。

)+∞2:求函数y = [)1,+∞3:求函数1y =的值域。

0≥11≥,∴函数1y =的值域为[1,)+∞。

(2)、配方法:配方法式求“二次函数类”值域的基本方法。

形如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法。

例1:求函数242y x x =-++([1,1]x ∈-)的值域。

解:2242(2)6y x x x =-++=--+,∵[1,1]x ∈-,∴2[3,1]x -∈--,∴21(2)9x ≤-≤ ∴23(2)65x -≤--+≤,∴35y -≤≤∴函数242y x x =-++([1,1]x ∈-)的值域为[3,5]-。

(3).最值法:对于闭区间上的连续函数,利用函数的最大值、最小值求函数的值域的方法。

例1 求函数y=3-2x-x2 的值域。

解:由3-2x-x2≥0,解出定义域为[-3,1]。

函数y 在[-3,1]内是连续的,在定义域内由3-2x-x2 的最大值为4,最小值为0。

∴函数的值域是[0,2]例2:求函数2xy =,[]2,2x ∈-的值域。

1,44⎡⎤⎢⎥⎣⎦ 例3:求函数2256y x x =-++的值域。

73,8⎛⎤-∞ ⎥⎝⎦(4)、反函数法:利用函数和它的反函数的定义域与值域的互逆关系,通过求反函数的定义域,得到原函数的值域。

例1:求函数1212xxy -=+的值域。

解:由1212x xy -=+解得121xy y -=+,∵20x>,∴101y y ->+,∴11y -<< ∴函数1212xxy -=+的值域为(1,1)y ∈-。

(5)、分离常数法:分子、分母是一次函数得有理函数,可用分离常数法,此类问题一般也可以利用反函数法。

小结:已知分式函数)0(≠++=c d cx bax y ,如果在其自然定义域(代数式自身对变量的要求)内,值域为⎭⎬⎫⎩⎨⎧≠c a y y ;如果是条件定义域(对自变量有附加条件),采用部分分式法将原函数化为)(bc ad dcx c adb c a y ≠+-+=,用复合函数法来求值域。

1:求函数125xy x -=+的值域。

解:∵177(25)112222525225x x y x x x -++-===-++++, ∵72025x ≠+,∴12y ≠-,∴函数125x y x -=+的值域为1{|}2y y ≠-。

(6)、换元法:运用代数代换,奖所给函数化成值域容易确定的另一函数,从而求得原函数的值域,形如y ax b =+±a 、b 、c 、d 均为常数,且0a ≠)的函数常用此法求解。

1:求函数2y x =解:令t =0t ≥),则212t x -=,∴22151()24y t t t =-++=--+∵当12t =,即38x =时,max 54y =,无最小值。

∴函数2y x =5(,]4-∞。

(7)、判别式法:把函数转化成关于x 的二次方程(,)0F x y =;通过方程有实数根,判别式0∆≥,从而求得原函数的值域,形如21112222a xb xc y a x b x c ++=++(1a 、2a 不同时为零)的函数的值域,常用此方法求解。

1:求函数2231x x y x x -+=-+的值域。

解:由2231x x y x x -+=-+变形得2(1)(1)30y x y x y ---+-=,当1y =时,此方程无解;当1y ≠时,∵x R ∈,∴2(1)4(1)(3)0y y y ∆=----≥,解得1113y ≤≤,又1y ≠,∴1113y <≤∴函数2231x x y x x -+=-+的值域为11{|1}3y y <≤(8)、函数的单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域。

1:求函数y x =解:∵当x 增大时,12x -随x 的增大而减少,x 的增大而增大,∴函数y x =1(,]2-∞上是增函数。

∴1122y ≤-=,∴函数y x =1(,]2-∞。

2.求函数xx y 1+=在区间()+∞∈,0x 上的值域。

分析与解答:任取()+∞∈,0,21x x ,且21x x <,则()()()()212121211x x x x x x x f x f --=-,因为210x x <<,所以:0,02121><-x x x x , 当211x x <≤时,0121>-x x ,则()()21x f x f >;当1021<<<x x 时,0121<-x x ,则()()21x f x f <;而当1=x 时,2m in =y于是:函数xx y 1+=在区间()+∞∈,0x 上的值域为),2[+∞。

构造相关函数,利用函数的单调性求值域。

例3:求函数()x x x f -++=11的值域。

分析与解答:因为110101≤≤-⇒⎩⎨⎧≥-≥+x x x ,而x +1与x -1在定义域内的单调性不一致。

现构造相关函数()x x x g --+=11,易知)(x g 在定义域内单调增。

()21ma x==g g ,()21m in -=-=g g ,()2≤⇒x g ,()202≤≤x g ,(9)、基本不等式法利用基本不等式ab b a 222≥+和)0,(2>≥+b a ab b a 是求函数值域的常用技巧之一, 利用此法求函数的值域, 要合理地添项和拆项, 添项和拆项的原则是要使最终的乘积结果中不含自变量, 同时, 利用此法时应注意取""=成立的条件. 1 求函数12++=x x y 的值域.解答:211112≥++==+++x x x x y , 当且仅当1=x 时""=成立. 故函数的值域为),2[+∞∈y .此法可以灵活运用, 对于分母为一次多项式的二次分式, 当然可以运用判别式法求得其值域, 但是若能变通地运用此法, 可以省去判别式法中介二次不等式的过程. 2 求函数1222+++=x x x y 的值域.解答: 此题可以利用判别式法求解, 这里考虑运用基本不等式法求解此题, 此时关键是在分子中分解出)"1("+x 项来, 可以一般的运用待定系数法完成这一工作, 办法是设:22))(1(2++=+++x x c b x x , (2)将上面等式的左边展开, 有:)()1(2c b x b x ++++,故而21=+b , 2=+c b . 解得1=b , 1=c .从而原函数1111)1)(1()1(+++++++==x x x x x y ;ⅰ)当1->x 时, 01>+x , 011>+x , 此时2≥y , 等号成立, 当且仅当0=x . ⅱ)当1-<x 时, 0)1(>+-x , 011>-+x , 此时有211)1(11)1(11)1)(1(-≤⎥⎦⎤⎢⎣⎡+-+--=+++=++++=x x x x x x x y , 等号成立, 当且仅当2-=x .综上, 原函数的值域为: ),2[]2,(+∞⋃--∞∈y .不等式法利用基本不等式,求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时需要用到拆项、添项和两边平方等技巧。

例3. 求函数的值域。

解:原函数变形为:当且仅当即当时,等号成立故原函数的值域为:例4. 求函数的值域。

解:当且仅当,即当时,等号成立。

由可得:故原函数的值域为:(10)、有界性法:利用某些函数有界性求得原函数的值域。

例1:求函数2211x y x -=+的值域。

解:由函数的解析式可以知道,函数的定义域为R ,对函数进行变形可得2(1)(1)y x y -=-+,∵1y ≠,∴211y x y +=--(x R ∈,1y ≠),∴101y y +-≥-,∴11y -≤<,∴函数2211x y x -=+的值域为{|11}y y -≤<形如2),(sin x y f =α0,1sin ),(2≥≤=x y g α因为可解出Yr 范围,从而求出其值域或最值。

例2.求函数1212--=x x y 的值域[解析]:函数的有界性由1212--=x x y 得112--=y y x11011,022-<>⇒>--∴>y y y y 或例3:求函数2cos 13cos 2x y x +=-的值域。

[)1,3,5⎛⎤-∞⋃+∞ ⎥⎝⎦例4:求函数2sin 2sin xy x-=+的值域。

1,33⎡⎤⎢⎥⎣⎦(11)、数型结合法:函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法。

当函数解析式具有某种明显的几何意义(如两点间距离,直线的斜率、截距等)或当一个函数的图象易于作出时,借助几何图形的直观性可求出其值域。

相关文档
最新文档