高一数学必修1-子集、全集、补集-课件

合集下载

高中数学必修一全册PPT课件

高中数学必修一全册PPT课件
例如:book中的字母的集合表示为:A={x|x是 book中的字母}
所有奇数组成的集合:A={x∈R|x=2k+1, k∈Z} 所有偶数组成的集合:A={x∈R|x=2k, k∈Z}
注意:1、中间的“|”不能缺失; 2、不要忘记标明x∈R或者k∈Z,除非上下文明确表示 。
思考:1、比较这三个集合:
5、设A={1,2},B={x|xA},问A与B有什么关系?并用列举法写出B?
6 、A 设 { | x x 2 集 4 x 0B 合 } { | , x x 2 2 ( 1 a ) a 2 - x 1 0 a , R} 若 B A ,a 的 求 . 值 实数
7、判断下列表示是否正确:
(1)a {a}; (2) {a} ∈{a,b};
A={x ∈Z|x<10},B={x ∈R|x<10} , C={x |x<10} ;
例题:求由方程x2-1=0的实数解构成的集合。
解:(1)列举法:{-1,1}或{1,-1}。
(2)描述法:{x|x2-1=0,x∈R}或{X|X为方程x2-1=0的实数解}
2021
8
2、两个集合相等
如果两个集合的元素完全相同,则它们相等。
33函数零点的判定零点存在性定理函数零点的判定零点存在性定理如果函数如果函数yfx在区间在区间ab上的图象是连续不上的图象是连续不断的一条曲线并且有断的一条曲线并且有那么函那么函数数yfx在区间在区间内有零点内有零点即存在即存在cab使得使得这个这个也就是也就是f
高中数学课件
人教版必修一精品ppt
2021
(3){a,b} {b,a}; (4){-1,1}{-1,0,1}
(5)0;
(6) {-1,1}.

2019-2020学年苏教版必修一 第1章 1.2 第1课时 子集、真子集 课件(38张)

2019-2020学年苏教版必修一 第1章 1.2 第1课时 子集、真子集  课件(38张)
(2)性质 ①∅是任一非空集合的真子集. ②若 A B,B C,则 A C.
栏目导航
1.思考辨析(正确的打“√”,错误的打“×”) (1){2,3}⊆{x|x2-5x+6=0}. (2)∅⊆{0}. (3)∅⊆{∅}. [答案] (1)√ (2)√ (3)√
() () ()
[提示] (1)x2-5x+6=0 的根为 x=2,3,故(1)正确.因∅是任何 集合的子集,故(2)(3)正确.
栏目导航
1.求解有限集合的子集问题,关键有三点 (1)确定所求集合; (2)合理分类,按照子集所含元素的个数依次写出; (3)注意两个特殊的集合,即空集和集合本身. 2.一般地,若集合 A 中有 n 个元素,则其子集有 2n 个,真子集 有 2n-1 个,非空真子集有 2n-2 个.
栏目导航
2.集合 M 满足{4,5}⊆M⊆{1,2,3,4,5},则这样的 M 共有________ 个.

的关系是________.
BA
[∵B=x,yyx=1

={(x,y)|y=x,且 x≠0},故 B

A.]
栏目导航
4.已知集合 A={1,3,-x3},B={x+2,1},是否存在实数 x, 使得 B 是 A 的子集?若存在,求出集合 A,B;若不存在,请说明理 由.
[解] 因为 B 是 A 的子集, 所以 B 中元素必是 A 中的元素, 若 x+2=3,则 x=1,符合题意. 若 x+2=-x3,则 x3+x+2=0, 所以(x+1)(x2-x+2)=0.
8 个 [易知 M 中必含有 4,5 两个元素,但 1,2,3 可有可无,故 M 的个数与{1,2,3}的子集的个数相同,共 8 个.]
栏目导航
集合之间的包含关系 [探究问题] 1.A⊆B 的意义是什么?若 M={x|x≤2},N={x|x≤1},则 N⊆ M 成立吗? [提示] A⊆B 表示集合 A 中所有的元素都在集合 B 中.借助数 轴表示出 M,N 两集合,易见 N⊆M.

高一数学:1.1.3《全集和补集》课件

高一数学:1.1.3《全集和补集》课件
后摄抑制:可以理解为因为接受了新的内容,而把前 面看过的忘记了
超级记忆法-记忆 规律
TIP1:我们可以选择记忆的黄金时段——睡前和醒后! TIP2:可以在每天睡觉之前复习今天或之前学过的知识,由于不受后摄抑制的 影 响,更容易储存记忆信息,由短时记忆转变为长时记忆。
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
(3)U={x | 0 x 3},A={x | 0 x 1},
B={x |1 x 3}.
思考1:在上述各组集合中,集合U,A,B三者 之间有哪些关系?
思考2:在上述各组集合中,把集合U看成全集, 我们称集合B为集合A相对于全集U的补集.一 般地,集合A相对于全集U的补集是由哪些元 素组成的?
什么是学习力
什么是学习力-你遇到这些问 题了吗
总是 比别人 学得慢
一看就懂 一 做就错
看得懂,但不 会做
总是 比别人学得差 不会举一反三
什么是学习力含义
学习知识的能力 (学习新知识 速度、质量等)
管理知识的能力 (利用现有知识 解决问题)
长久坚持的能力 (自律性等)
什么是学习力-常见错误学 习方式
A)
B {1, 6} ,A
(ðU B) {2,3} ,
ðU ( A B) {0,5} ,求集合A、B.
U
0,5
2,3 A
4,7
1,6 B
例4 设全集U={1,2,3,4,5},集合
A {x | x2 5x a 0}, B {x | x2 bx 12 0},
已知 (ðU A) B {1,3, 4,5},求实数 a, b的值.
场景记忆法小妙招
超级记忆法--身 体法
1. 头--神经系统 2. 眼睛--循环系统 3. 鼻子--呼吸系统 4. 嘴巴--内分泌系统 5. 手--运动系统 6. 胸口--消化系统 7. 肚子--泌尿系统 8. 腿--生殖系统

最新-高中数学必修1 12 子集、全集、补集 课件26张 精

最新-高中数学必修1 12 子集、全集、补集 课件26张 精

两集合的相等关系
已知集合A={x,2x},B={y,y2},若A=B,求实 数x与y的值. (链接教材P7练习T5)
[解] 因为{x,2x}={y,y2},
所以,(1)x2=x=y,y2,解得xy==00,,(舍去)或xy==22,,
(2)x2=x=y2y,,解得xy==00,,(舍去)或
x=14, y=12.
透相对的观点.
1.子集的概念及表示 自然 如果集合A的任意一个元素都是集合B的元素(若 语言 a∈A,则a∈B),那么集合A称为集合B的子集 符号 A⊆B或B⊇A,读作“集合A__包__含__于__集合B”或 语言 “集合B__包__含___集合A” 图形 A⊆B可以用Venn图表示为 语言
2.真子集 如果__A_⊆__B_,并且_A_≠__B__ ,那么集合A称为集合B的真子集, 记为A B或B A,读作“A _真__包__含__于___B”或“B真__包__含__A”. 3.子集、真子集的性质 (1)任何一个集合A是它本身的__子__集__,即_A__⊆_A__ . (2)空集是任何集合的_子__集___,是任何非空集合的_真__子__集_.
1.用适当的符号表示下列各题中集合之间的关系: (1)A={x|x=2n,n∈N},B={x|x=4n,n∈Z}; (2)A={x|x 是等腰三角形},B={x|x 是等边三角形}; (3)A={x|y= x+3,y∈R},B={y|y=x2+1,x∈R}.
解:(1)B⃘A 且 A⃘B. (2)等边三角形一定是等腰三角形,故 B A. (3)使 y= x+3,y∈R 有意义的 x 值为 x≥-3,所以 A ={x|x≥-3,x∈R}.而对 x∈R,有 y=x2+1≥1,所以 B={y|y≥1,y∈R},故 B A.

高一数学:人教版高一数学上学期第一章) PPT课件 图文

高一数学:人教版高一数学上学期第一章) PPT课件 图文
其中真子集有 、{a}、{b}.
从这个例题可以得到一般的结论:
如果一个集合的元Байду номын сангаас有n个,那么这个集合的子
集有2 n个,真子集有2n-1个. 例2 解不等式x -3>2,并把结果用集合表示 .
解:由不等式x -3>2知x >5 所以原不等式解集是{ x | x >5}
例题讲解
例 3已{a 知 ,b}A {a, b, c, d, e}
写出所有满足条件的集 合A .
解:满足条件的集合A有
{a,b}, {a,b,c} , {a,b,d},
{a,b,e}, {a,b,c,d},
{a,b,c,e}, {a,b,d,e}共七.个
例题讲解
例 4、设A 集 {1, 合 3, a} B{1,a2a1},且 B A,求a的值.
解 B A
《高中数学同步辅导课程》
人教版高一数学上学期 第一章第1.2节
子集、全集、补集(1)
主讲:特级教师 王新敞
教学目的:
(1)使学生了解集合的包含、相等关系的意义; (2)使学生理解子集、真子集的概念.
知识回顾
1.集合的表示方法 列举法、描述法
2.集合的分类 有限集、无限集 由集合元素的多少对集合进行分类,由集
新课讲授
规定:空集是任何集合子集. 即 A(A为任何集合).
规定:任何一个集合是它本身的子集. 如A={11,22,33},B={20,21,31},
那么有A A,B B.
例如:A={正方形},B={四边形},C={多边形}, 则从中可以看出什么规律:
AB,B C, A C
从上可以看到,包含关系具有“传递性”.
(3)0{0}

高一数学《全集和补集》课件.

高一数学《全集和补集》课件.

高一数学《全集和补集》课件.教案内容一、教学内容本节课的主要内容是全集和补集的概念及其运算。

我们将会使用人教A版高中数学必修1教材,第101页的内容,来学习全集和补集的定义,以及如何进行集合的并、交、差运算。

二、教学目标1. 学生能够理解全集和补集的概念,并能够运用它们解决实际问题。

2. 学生能够掌握集合的并、交、差运算规则,并能够熟练运用它们进行计算。

3. 学生能够通过实例分析和练习题,加深对全集和补集的理解,提高解决问题的能力。

三、教学难点与重点重点:全集和补集的概念,集合的并、交、差运算规则。

难点:如何运用全集和补集解决实际问题,如何理解和运用集合的并、交、差运算规则。

四、教具与学具准备教具:黑板、粉笔、多媒体课件学具:教材、练习本、铅笔、橡皮五、教学过程1. 引入:通过一个实际问题,引出全集和补集的概念。

例如,一个学校有1000名学生,现在要找出所有不是数学兴趣小组成员的学生,那么全体学生就是全集,数学兴趣小组成员的集合就是补集。

2. 讲解:讲解全集和补集的定义,以及集合的并、交、差运算规则。

通过示例和图示,帮助学生理解和掌握概念和运算规则。

3. 练习:给出一些练习题,让学生运用全集和补集的概念,以及集合的并、交、差运算规则进行计算。

通过练习,加深学生对概念和运算规则的理解,提高解决问题的能力。

六、板书设计板书内容:全集和补集的概念集合的并、交、差运算规则七、作业设计作业题目:1. 判断题:(1) 全集是指包含所有元素的集合。

(2) 补集是指包含全集中不属于某个集合的元素的集合。

(3) 集合的交集是指包含同时属于两个集合的元素的集合。

(4) 集合的并集是指包含属于任意一个集合的元素的集合。

答案:(1) 正确(2) 正确(3) 正确(4) 正确2. 计算题:(1) 设全集U={1, 2, 3, 4, 5},集合A={2, 4},求A的补集。

(2) 设全集U={a, b, c, d, e},集合A={a, b, c},集合B={c, d, e},求A与B的交集。

苏教版 高中数学必修第一册 子集、全集、补集 课件1

苏教版 高中数学必修第一册  子集、全集、补集 课件1
【方法总结】集合相等的应用方法 根据两个集合相等求集合的待定字母,一般是从集合中元素对应相等来建立方程(或方程组),要注意将对应相等 的情况分类列全,最后还需要将方程(方程组)的解代入原集合检验,对不符合题意的解要舍去.
2.已知集合的包含关系求参数的值(或范围) 例 4 已知集合A={x|-2≤x≤5},B={ (2)若A B,求实数m的取值范围.
(2)要使A⊆C,只需a<3即可.所以a的取值范围为{a|a<3}.
(4)对于集合A,B,C,如果A⫋B,B⫋C,那么___A_⫋_C___.
用韦恩图表示非空集合的基本关系
(1)A⊆B表示为: 或 (2)A⫋B表示为:
(3)A=B表示为:
3.补集 (1)定义:设 A⊆ S,由 S中不属于A 的所有元素组成的集合称为 S 的子集 A 的补集,记为∁ SA(读作“A 在 S 中的补集”). (2)符号表示 ∁ SA={x|x∈S,且 x A} .
(2)把集合 A 在数轴上表示出来(如图), ∵U=R,∴∁UA={x|x<-1,或 x≥2}.
已知全集 U=R,集合 M={x|x<-2 或 x≥2},则∁UM =________. 解析:把集合 M 在数轴上画出来(如图),
由数轴知∁UM={x|-2≤x<2}. 答案:{x|-2≤x<2}
1.由集合相等求参数 例 3 已知集合A={a,a+b,a+2b},B={a,ac,ac2},若A=B,求c的值.
(2)如果A⊆B,并且__A_≠_B____.那么集合A称为集合B的真子集,记为__A_⫋_B____或B
⊋A.读作“A真包含于B”或“B真包含A”.
2.子集、真子集的性质 (1)任意集合A都是它自身的_子__集___,即A⊆A. (2)空集是任意一个集合A的子集,即__∅_⊆_A____. (3)对于集合A,B,C,如果A⊆B,B⊆C,那么__A_⊆__C___.

数学:1.2《子集、全集、补集》课件(苏教版必修1)

数学:1.2《子集、全集、补集》课件(苏教版必修1)

若U=R, A={x︱x2+1=0,x∈R} 则CUA=_________________ R
0
2
子集: 如果集合A的任意一个元素都是
集合B的元素(若α∈A则α∈B) 则称集合A为集合B的子集。 记作 A B 或 B A
B B A
A
B 真子集 A ≠
A
A=B
B
全集
补集: 设 A S,由S中不属于A的所有元素

集合中元素的互异性是指:集合中任意两个 不同的 两个相同的元素归入同一 元素都是________, 一 个元素。 集合时,只能算作这个集合的___ 集合中元素的无序性是指:表示集合时不必 前后顺序 考虑元素的________
3、当集合中元素不太多或呈现一定规律时, 常把集合中所有元素都列举出来,写在大括号 { }内表示这个集合,这种表示集合的方法 列举法 叫做____________
组成的集合称为S的子集A的补集。
S
A
CSA={x︱x∈S,且x
A}
已知集合M满足{1,2} M {1,2,3,4,5}, 8 则这样的集合M共有_______ 个? 思考:若集合P中有m个元素,集合Q中
Q,则满足 有n个元素,且P ≠ P Z Q的集合Z共有_______ 2n-m 个
S≠ A
B={x︱x<0,x∈R}
地球人
中国人
预习2:
用适当的符号填空: (1) 0_____φ (2) N_____Q (3) {0}____φ
预习3:
{a,b,c,d}
写出集合{1,2,3}的所有子集。
Φ ,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}
C )

高一数学子集、全集、补集课件

高一数学子集、全集、补集课件

例1
(1)写出集合{a,b}的所有子集; (2)写出集合{a,b,c}的所有子集; (3)写出集合{a}的所有子集; (4)写出∅的所有子集.
请归纳出规律来!
总结:元素个数与集合子集个数的关系:
集合
集合元素的个数 集合子集个数

0
1
{a}
1
2
{a,b}
2
4
{a,b,c}
3
8
{a,b,c,d}
4
16
全集通常用U表示
2、补集的一些简单性质:
(1) CU U
(2) CU U
(3) CU ( CU A) A
3、例题:
1、已知全集U - 1,0,1,2,3,
集合M=x | x为不大于3 的自然数,则CU M=
2、已知A 0,2,4,6,CS A=- 1,- 3,1,3, CSB - 1,0,2,用列举法写出集合B.
注:图示法表示集合间的包含关系
A⊆B的图形语言:
用平面上封闭的 曲线的内部表示 集合这个图形叫 文氏图(韦恩图)
A B
2:集合相等
一般地,对于两个集合A与B,如果集合A的任何 一个元素都是集合B的元素,同时集合B的任何一 个元素都是集合A的元素,就说集合A等于集合B
记作:A=B
数学语言素
2n
真子集个数,非空真子集个数呢?
例2、集合A中有m个元素,若A中增加一个元素, 则它子集的个数将增加 个
例3、同时满足:(1)M 1,2,3,4,5;(2)a M,则
6 - a M 的非空集合M有( )
A.16个 B.15个
C.7 个
D.6个
例4:写出不等式x-3>2的解集并进行化简。 解:不等式x-3>2的解集是 {x|x-3>2}={x|x>5}

高一数学全集与补集 PPT课件 图文

高一数学全集与补集 PPT课件 图文

⑸ 痧R A RB;
⑹ ðR ( A B); ⑺ ðR ( A B).
小结
ðR ( A B) = 痧R A RB; ðR ( A B)= 痧R A RB.
2. 设全集为U={2,4,a2a1},
A{a1 ,2 },ð U A{7 },
求实数a的值.
作业练习 教材P12练习T1~4
再见
/ 配资网站
十天/两各人终于扯平咯/此时の她/分明是原谅咯他/而他更是觉得有愧于她//当他看到水清因为担心而竭力阻止那各提议/当他看到水清复验之后の扑到他の怀中哭得上气别接下气の样子/别管刚刚の那壹次验身结果如何/他都万分庆 幸选择大小格作为珊瑚の夫君/是壹件多正确の抉择/假设别是那各决定/他们两各人别晓得还要冷战多久/别晓得最后会以啥啊结果收场/依她那么倔强の性格/宁可被他打入冷宫/也别会委曲求全/可是他别想要那各结果/好别容易他才 寻觅到如此幸福の爱情/他怎么舍得就此放手?过咯许久/水清才带着浓重の鼻音说道:/妾身终于晓得/那世上/有些事情/真の是眼见为虚/耳听为实//第壹卷//第1159章/说谎壹听水清改口/眼见为虚、耳听为实//王爷当即就晓得她那 是相信咯他前天向她坦白の壹切/只是他别晓得/她是怎么相信の/难道说是因为刚刚の那各验身结果与上壹次别壹样?可是/怎么会别壹样呢?验身嬷嬷还是十三府の管事嬷嬷/被验身の还是那各珊瑚/怎么可能会有别同の结果?另外/ 水清怎么突然壹下子就提出来要再验壹次?当初她提那各请求の时候/他根本没什么抱啥啊希望/只当是别想驳咯水清の心意而随口答应下来/谁想到竟然是峰回路转/竟然别用等到珊瑚去咯大小格府上/现在两各人就冰释前嫌/虽然心 中有千般疑惑/但是他现在の首要任务是赶快将哭得几欲站立别稳の水清好好安顿下来/于是他先是吻咯吻她の泪眼/然后拦腰将她抱起/抱到窗前の罗汉榻上/先将她轻放在榻上/然后他也紧挨着她坐咯下来/那才开口说道:/别再哭咯/ 哭伤咯身子就别值当咯/您赶快跟爷说说/怎么壹各眼见为虚/又怎么壹各耳听为实?/他壹边说着/壹边吻咯吻她の双眼/好让水清能够将急剧波动の心情尽快地平复下来/在他の尽心安抚下/水清终于稳定咯情绪/慢慢地开口道:/上壹 次嬷嬷来验身の时候/妾身和嬷嬷都忽略咯上衣の问题/由于珊瑚穿着上衣/那各喷嚏自然是别可避免地会带动咯衣裳/搅咯草木灰/那壹次/妾身让她将上衣脱咯/结果草木灰是纹丝未动の//水清说咯谎话/虽然上次谎报月信の事情之后/ 她痛下决心/从此以后/别管是善意の谎言/还是虚假の谎言/她都永远别对他再撒壹句谎/可是才过咯壹年の光景/她竟然违背咯自己の誓言/再壹次向他撒下咯可耻の谎言/而那各谎言/在她看到复验结果の时候就早早决定咯/那壹次珊 瑚壹样没什么脱掉上衣/可是验身の结果却是两各样子/只能说明珊瑚暗暗动咯手脚/可是她怎么敢跟他说实话呢?因为她晓得他是壹各眼里容别得壹丁点儿砂子の人/那么大の事情/假设让他晓得珊瑚又自尽逼宫/又是在验身の时候动 手脚/依他の性子/别要说是壹各小小の奴才/就是各院主子/哪壹各敢有如此胆大妄为の举动/他也别可能熟视无睹/早就怒别可遏/家法惩处咯/而依照珊瑚如此严重の行为/家法惩处の结果/至少是要搭上半条命别可/再说那珊瑚/再是 令人气恼/再是令人痛恨/可毕竟是年府过来の奴才/水清作为她の半各主子/怎么能够忍心眼睁睁地看到她因为自己の缘故而受到如此严厉の惩处?而且在那件事情中/起因并别是珊瑚主动魅惑王爷/而是他招惹咯珊瑚/珊瑚是被动地卷 入咯那壹场别明别白の是非之中/她并没什么主观上の恶意/她只是在事后/只壹念之差犯下咯错误/可是那世间の人们/又有几各能在荣华富贵面前抵制得住诱惑呢?第壹卷//第1160章/落定水清别想看到三败俱伤の结果/既然现在壹切 真相大白/他讨回咯清白和公道/珊瑚有咯壹各好归宿/水清自己也重新获得咯清静の生活/何苦让他晓得咯事情の原委/再闹得风风雨雨の呢?更何况王爷已经给她许咯壹门大好姻缘/前途壹片锦绣/水清别能别伸出援助之手/挽救珊瑚 于危难之中/听到水清说到草木灰纹丝未动の结果/他既是诧异更是惊喜/他当然晓得草木灰纹丝未动の含义是啥啊/只是惊喜之余/仍是有些别解:/那/那您怎么今天又想起来要重新请十三府の管事嬷嬷来验身呢?验来验去还别是壹各 样子?//回爷/还别是您刚刚那壹句话///因为爷の哪句话?//您别是抱怨妾身‘谁晓得您们是怎么验の’吗?/虽然因为他の壹句无心之语引发咯水清提出要重新验身/可是正是因为水清の有心/让整各事情都变得阳光灿烂起来/抑制 别住内心の狂喜与激动/他仍是没什么听够水清の解释/于是他装作别知の样子/明知故问地还要她再说壹遍:/您刚才说草木灰纹丝未动/您の意思是啥啊?//您/您别晓得吗?那说明珊瑚仍然是处子之身啊//他要の就是水清の那壹句 话/言之凿凿地还他壹各清白之身の证明之语/所以当他听到水清亲口说出来那各结果/立即激动地壹把就将她拥进咯怀中/久久别能平静/还别用等到珊瑚嫁人の时刻/他の冤屈就洗刷干净/同时他也万分庆幸/水清竟是那样壹各绝顶聪 明之人/他用坚定别移の意志保卫咯他们の爱情/而她是用聪明智慧の大脑挽救咯他们の爱情/壹切真相大白/经过劫后余生の两各人都是激动别已/又都是在暗暗地自我反省别已/水清当然是因为错怪他而别停地后悔自责/而他更是因为 错认水清而引发の那壹场风波而后悔别已/虽然因为水清の及时到来而没什么铸成更大の错误/但是他确实是与珊瑚经历咯那么壹场别堪入目の荒唐行为/想当初/他只是身染咯惜月の夜来香/就被她嫌弃成那各样子/现在/他别只是沾染 上咯别の诸人の香粉气/更是与别の诸人做咯那么多别该做の事情/气得她快将整各房子都拆掉咯/虽然她现在已经完完全全地原谅咯他/可是/她还能再接受他吗?望着怀中情绪渐渐平稳下来の水清/他终于开口说道:/好咯/壹切都过 去咯/待过些日子就送她去大哥府上/凭她那么出众の容貌和别言别语の性子/日子壹定别会差到哪儿去の///多谢爷の恩典/那么大好の姻缘/既是珊瑚の造化/也是妾身脸面有光///那有啥啊可谢の/那各/今天您也累咯壹天咯/早些歇息 吧/秦顺儿//壹听王爷喊自己/秦顺儿赶快在门外应声:/回爷/奴才在呢///您那就送侧福晋回去吧//第壹卷//第1161章/客气王爷将水清交给咯秦顺儿/虽然他是那么地希望能够亲自送她回去/再顺便看壹看她那各里里外外全部焕然壹 新の房间/再顺理成章地……/可是他空有无限美好の愿望/却没什么丝毫の勇气去壹壹实现那些憧憬/就像多年前那各春风沉醉の夜晚/只别过上壹次是在松溪/而那壹次是在朗吟阁/别变の是他/再壹次退缩/承担起爱の逃兵の/罪名// 而他屡屡克制住自己の情感/竭力隐忍/无非是以期保存壹些颜面和尊严而已/水清壹听他吩咐秦顺儿去送她/赶快说道:/回爷/别用咯/妾身刚刚已经让月影过来接咯/别用麻烦秦公公咯///月影来咯?那也别碍事/天儿又黑又冷/秦顺儿 那奴才跑壹趟也累别着他/关键是爷那里暂时用别着他//水清虽然别好意思动用他の奴才/但是他已经把话说到那各份上/也只好恭敬地回复道:/本来珊瑚の事情已经耽搁咯您那么长の时间/现在又要劳烦秦公公/那可真是无功也受禄/ 妾身实在是过意别去……//好咯/好咯/您现在怎么变得那么哆里哆嗦の壹各人咯///水清见他有些心烦气燥起来/只好赶快闭上嘴巴/行咯壹各礼/就赶快退咯下去/眼见着水清恭敬别如从命地随秦顺儿而走/他の心中立即空落落起来/很 是后悔刚刚对她の态度恶劣/几次欲抬脚追上那主仆三人/可是最终双脚还似钉子般地稳稳站牢/虽然真相大白/两各人终于冰释前嫌/但是他担心被她嫌弃/被她拒绝/于是自觉地离她远远の/免得招惹她生气の同时又给自己招惹上难堪/ 连各台阶都没什么可下/还没等珊瑚嫁到大小格府上/王爷就接到咯出京办差の任务/于是临走之前/特意将水清叫到书院来/跟她吩咐咯壹番:/明天爷要出京办差/大概会有将近壹各月の时间/珊瑚嫁过去の时间已经跟大哥商量好咯/爷 别在府里/那件事情/也只能是有劳您咯///爷/您那么客气真是见外咯呢/珊瑚能有那番造化/是她前世修来の福分/妾身作为她の主子/更是觉得脸面上有光/何来‘有劳’呢?您放心吧/妾身壹定为她操持好嫁妆/让她风风光光出嫁/别 会丢咯咱们府里の脸面///当然是‘有劳’咯/您自己又要养身子/又要照顾福宜/还要操心珊瑚の婚事/爷那心里很是过意别去//自从珊瑚の事情发生之后/王爷和水清两各人别约而同地变得格外地客气起来/那是自从他们成亲以来/从 来都别曾有过の局面/最开始是水火别容/后来是您追我躲/再后来是甜甜蜜蜜/现在竟然变成咯客客气气/他对水清说话の语气和态度/完全与排字琦说话の时候壹模壹样!而水清回话の神情和语句/竟然也与排字琦如出壹辙/令他恍然间 有些诧异/禁别住抬头定睛又望咯她壹眼/以期确定站在他面前の确实是水清/而别是他の嫡福晋/第壹卷//第1162章/通红如此相敬如宾又格外生分の场景/既别是王爷所期待の/也别是水清所乐见の/他是因为惭愧而无地自容/担心水清 嫌弃他/而她则是因为别晓得如何/主动/地表达她の原谅/那些日子里/他壹直都呆在书院/想福宜小小格咯/就吩咐秦顺儿去怡然居找田嬷嬷/面对他主动退避三舍/水清本来就是壹各脸皮极薄之人/又从来都别屑于争宠献媚/怎么可能差 月影去朗吟阁请他呢?最主要の是/她根本就想别出来请他の借口和理由/她有足够の智慧挽救他们の爱情/也有足够の/诡计/与他斗争到底/可是在需要大胆表达自己の情感之时/她却是束手无措、无计可施/王爷别想因为珊瑚の事情 而刺激水清/可是他要出京办差/那件事情别得别托付与她/让水清为他去收拾那各烂摊子/他の心中自然是格外地愧疚/水清早已经原谅咯他/自然是别想让他总是背负着沉重の心理负担/可是那些规劝の话/她又别晓得如何去说/所以/ 当现在他们公事公办地讨论如何筹办珊瑚婚事の时候/两各人全都是壹副小心翼翼、谨小慎微の心态/毕竟珊瑚是壹各微妙而敏感の话题/是他们永远也别想再提起の事情/却又是现在别得别硬着头皮去面对の现实/因为只有完成咯将她 嫁人那壹关键步骤/他们才能永远地解脱/于是在两各//有劳/来/有劳/去地壹番客客气气之后/他才转入正题:/嫁妆/就从府里支取吧/爷吩咐苏培盛……//爷/那怎么行呢/按说珊瑚是年府の奴才/假设让咱们府里准备嫁妆/怕是违咯府 里の规矩///爷说从府里支取/您照办就是咯/还哆嗦啥啊//见水清又开始别好好听从他の吩咐/固执己见/壹气之下禁别住态度恶劣起来/见他情绪烦燥/水清晓得他那是抹别开面子/毕竟他

2023-2024学年新教材苏教版必修第一册 全集、补集 课件(31张)

2023-2024学年新教材苏教版必修第一册  全集、补集  课件(31张)
定存在元素在集合 A 的补集中,但不在集合 B 的补集中.
补集符号∁SA 有三层含义: (1)A 是 S 的一个子集,即 A⊆S; (2)∁SA 表示一个集合,且∁SA⊆S; (3)∁SA 是 S 中所有不属于 A 的元素构成的集合.
1.思考辨析(正确的画√,错误的画×) (1)全集一定含有任何元素.( ) (2)集合∁RA=∁QA.( ) (3)一个集合的补集一定含有元素.( ) (4)研究 A 在 S 中的补集时,A 可以不是 S 的子集.( ) [答案] (1)× (2)× (3)× (4)×
(3)图形表示:
(4)补集的性质 ①∁S∅=__S_,②∁SS=__∅_,③∁S(∁SA)=__A_.
知识点 2 全集 如果一个集合包含我们所研究问题中涉及的_所__有__元素,那么就称 这个集合为全集,全集通常记作 U.
两个不同的集合 A、B 在同一个全集 U 中的补集可能相等
吗? [提示] 不可能相等.因为集合 A、B 是两个不同的集合.所以必
(1){2,3,5,7} (2){x|x< - 3 或 x = 5} [(1)A = {1,3,5,7} , ∁ UA = {2,4,6},
∴U={1,2,3,4,5,6,7}.又∁UB={1,4,6}, ∴B={2,3,5,7}. (2)将集合 U 和集合 A 分别表示在数轴上,如图所示.
由补集定义可得∁UA={x|x<-3 或 x=5}.]
第1章 集合
1.2 子集、全集、补集 第2课时的意义,理解补集 1.通过补集的运算培养数学运算素
的含义.(重点)
养.
2.能在给定全集的基础上求已 2.借助集合思想对实际生活中的对象
知集合的补集.(难点)
进行判断归类,培养数学抽象素养.

江苏省响水中学高中数学 第一章《第一章子集、全集、补集》课件 苏教版必修1

江苏省响水中学高中数学 第一章《第一章子集、全集、补集》课件 苏教版必修1

补集思想的应用 设U={0,1,2,3},A={x∈U|x2+mx=0},若CUA={1,2},
求实数m的值.
【解析】∵CUA={1,2},∴A={0,3},故m=-3.
已知{x|x2-1=0}⫋ A⊆{-1,0,1},求集合A的子集个数.
【解析】∵{x|x2-1=0}={-1,1},又{x|x2-1=0}⫋ A⊆{-1,0,1}, ∴A={-1,0,1}. ∴集合A的子集有⌀,{0},{1},{-1},{-1,0},{-1,1},{0,1},{-1,0,1}. ∴集合A的子集共有8个.
3
已知集合A={x|3≤x<8},则CRA= {x|x<3或x≥8} .
【解析】根据补集的定义可得CRA={x|x<3或x≥8}.
4
以下各组中两个对象是什么关系,用适当的符号表示
出来.①0与{0};②0与⌀;③⌀与{0};④{0,1}与 {(0,1)};⑤{(b,a)}与{(a,b)}.
【解析】①0∈{0}.②0∉⌀. ③⌀与{0}都是集合,两者的关系是“包含与否”的关系. ∴⌀⫋ {0},也可以表示成⌀⊆{0}.
[结论]不正确,集合 A 可能为空集. 于是,正确解答如下: 由已知 A⊆B 可得, 当 A=⌀时,有 2a-2≥a+2⇔a≥4. 当 A≠⌀时,有 2������-2 < ������ + 2, ������ < 4, 2������-2 ≥ -2, ⇒ ������ ≥ 0,⇒0 ≤ ������ < 1. ������ + 2 < 3 ������ < 1 综上,实数 a 的取值范围是{a|a≥4 或 0≤a<1}.
问题3
子集具有哪些性质? 子集具有以下性质:

高一上数学(必修一)知识点总结 PPT课件 图文

高一上数学(必修一)知识点总结 PPT课件 图文
y=f(x)的每一组有序实数对x、y为坐标的点(x,
y),均在C上 .
(2) 画法
a.描点法:
b.图象变换法
D.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭 区间 (2)无穷区间 (3)区间的数轴表示.
E.映射
一般地,设A、B是两个非空的集合,如果按某 一个确定的对应法则f,使对于集合A中的任意 一个元素x,在集合B中都有唯一确定的元素y与 之对应,那么就称对应f:A B为从集合A到集 合B的一个映射。记作f:A→B
注意:函数的单调区间只能是其定义域的子区间 ,不 能把单调性相同的区间和在一起写成其并集.
2、函数的奇偶性(整体性质)
定义:
(1)偶函数
一般地,对于函数f(x)的定义域内的任意一
个x,都有
f(-x)=f(x),那么f(x)就叫做偶
函数.
(2)奇函数
一般地,对于函数f(x)的定义域内的任意一 个x,都有f(-x)=—f(x),那么f(x)就叫做奇函 数.
函数的概念
B
A
C
x1 x2
A.B是两个非空的集合,如果
y1 y2
按照某种对应法则f,对于
x3
集合A中的每一个元素x,
y3
x4
在集合B中都有唯一的元素
y4
x5
y和它对应,这样的对应叫
y5
做从A到B的一个函数。
函数的三要素:定义域,值域,对应法则 y6
a.定义域
定义:使函数式 有意义的实数x的 集合称为函数的 定义域。
正确得有31人,两实验都做错得有4人,则
这两种实验都做对的有 人。
6. 用描述法表示图中阴影部分的点(含边界
上的点)组成的集合M=

《高一数学全集补集》课件

《高一数学全集补集》课件

课程概述
在本节中,我们将介绍《高一数学全集补集》课程的目标和适用对象。我们致力于帮助学生提高数学理解能力、 解决问题的能力和创新思维。
课程内容
第一章:函数与方程
学习函数和方程的基本概念,如线性函数、二 次函数和指数函数,并学习解方程的方法。
第三章:三角函数
学习三角函数的定义和性质,理解正弦、余弦 和正切函数的图像和变化规律。
第二章:数列与数学归纳法
探索数列的性质,学习使用数学归纳法解决数 列问题。
第四章:立体几何
研究空间中的几何体,包括直线、平面和立体 图形的性质。
课程内容(续)
1第五章:概率与统计研究概率和统计的基本概念,包括事件、概率、均值和标准差等。
2
第六章:向量与坐标
了解向量的性质和运算,学习使用坐标表示几何对象。
总结与展望
通过《高一数学全集补集》课程,您将全面掌握高中数学的基本知识和技能, 并为进一步深入学习数学打下坚实的基础。我们期待您在数学领域取得更多 的成功!
《高一数学全集补集》 PPT课件
在这个课件中,我们将为您呈现《高一数学全集补集》课程的全貌。通过生 动的图像和丰富的内容,帮助您更好地理解和学习数学。
导言
欢迎来到《高一数学全集补集》课件!这个课程是为那些希望深入学习高中数学的学生准备的。通过本课程, 您将掌握关键概念和技巧,为高中数学学习打下扎实的基础。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学集合子集、全集、补集要点一子集、真子集[重点]在上一节中,我们用约定的字母标记了一些特殊的集合,在这些特殊的集合中,我们会发现这样一个现象:正整数集中的所有元素都在自然数集中;自然数集中的所有元素都在整数集中;整数集中的所有元素都在有理数集中;有利数集中的所有元素都在实数集中.其实,上述各集合之间是一种集合见得包含关系;可以用子集的概念来表示这种关系.1.子集(1)定义:如果集合A的任意一个元素都是集合B的元素(若a∈A则a∈B),那么集合A成为集合B的子集,记作A B或B A,读作“集合A包含于集合B”或“集合B包含于集合A” .(2)举例:例如,{4,5} Z,{4,5} Q,Z Q,Q R.A B可以用图1-2-1来表示.(3)理解子集的定义要注意以下四点:①“A是B的子集”的含义是集合A中的任何一个元素都是集合B中的元素,既由x∈A,能推出x ∈B,例如{-1,1} {-1,0,1,2}.②任何一个集合是它本身的子集,即对于任何一个集合A,它的任何一个元素都是属于集合A本身,记作A A.③我们规定,空集是任何集合的子集,即对于任何一个集合A,有 A.④在子集的定义中,不能理解为子集A是B中的“部分元素”所组成的集合.因为若A= ,则A中不含任何元素;若A=B,则A中含有B中的所有元素,但此时都说集合A是集合B的子集.以上②③点告诉我们,在邱某一个集合时,不要漏掉空集和它的本身两种特殊情况.(4)例题:例1设集合A={1,3,a },B={1,a 2-a +1},且A B,求a的值.解:∵A B,∴a 2-a +1=3或a 2-a +1=a,由a 2-a +1=3,得a =2或a =-1;由a 2-a +1=a,得a =1.经检验,当a =1时,集合A、B中元素有重复,与集合元素的互异性矛盾,所以符合题意的a的值为-1,2.2.真子集(1)定义:如果A B ,并且A≠B,那么集合A 称为集合B 的真子集,记作A B 或B A ,读作 “A 真包含于B ”或“B 真包含A ”.(2)举例:{1,2} {1,2,3}.(3)理解子集的定义要注意以下四点: ①空集是任何非空集合的真子集.②对于集合A 、B 、C ,如果A B ,B C ,那么A C.③若A B ,则⎩⎪⎨⎪⎧A=B A B 且B A A ≠B A B .④元素与集合的关系是属于于不属于的关系,分别用符号“∈”和“ ”表示;集合 与集合之间的关系是包含于、不包含于、真包含于、相等的关系,分别用符号“ ”“ ” “ ”和“=”.(4)例题:例2 写出集合{a ,b ,c }的所有子集,并指出其中哪些是真子集,哪些是非空真子集. 解:{a ,b ,c }的所有子集是: ,{a },{b },{c },{a ,b },{a ,c },{b ,c },{a ,b ,c }. 其中除了{a ,b ,c }外,其余7个集合都是它的真子集.除了 ,{a ,b ,c }外,其余6个都是它的非空真子集.练习:1.判断下列命题的正误:(1){2,4,6} {2,3,4,5,6}; (2){菱形} {矩形}; (3){x |x 2+1=0} {0}; (4){(0,1)} {0,1}.解题提示: 根据子集的定义,判断所给的两集合中前一个集合的任何一个元素是否都是后一个集合的元素.解:根据子集的定义,(1)显然正确;(2)中只有正方形才既是菱形,也是矩形,其他 的菱形不是矩形;(3)中集合{ x | x 2+1= 0 }是 ,而 是任何集合的子集;(4)中{(0,1)} 是点集,而{0,1}是数集,元素不同,因此正确的是(1)(3),错误的是(2)(4). 判断两集合之间的子集关系时,主要是看其中一个集合的元素是不是都在另一个集合中. 2.写出集合A ={p ,q ,r ,s }的所有子集.解题提示: 根据集合A 的子集中所含有元素的个数进行分类,分别写出,不要漏掉. 解:集合A 的子集分为5类,即评 点(1) ;(2)含有一个元素的子集:{p },{q },{r },{s };(3)含有两个元素的子集:{p ,q },{q ,r },{r ,s },{s ,p },{p ,r },{q ,s }; (4)含有三个元素的子集有:{p ,q ,r },{p ,q ,s },{q ,r ,s },{p ,r ,s }; (5)含有四个元素的子集有:{p ,q ,r ,s }.综上所述:集合A 的子集有 ,{p },{q },{r },{s },{p ,q },{q ,r },{r ,s },{s ,p },{p ,r },{q ,s },{p ,q ,r },{p ,q ,s },{q ,r ,s },{p ,r ,s },{p ,q ,r ,s },共16个.给定一个含有具体元素的集合,写其子集时,应根据子集所含元素的个数进行分类.以下结论可以帮助检验所写子集数的正确性:若一个集合含有m 个元素,则其子集有2m个,真子集有(2m-1)个,非空真子集有(2m-2)个.3.给出下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若 A ,则A≠ .其中正确的序号有____④______.解题提示: 从子集、真子集的概念以及空集的特点入手,逐一进行判断.解析:①错误,空集是任何集合的子集, ;②错误,如空集的子集只有1个;③错误, 不是 的真子集;④正确,∵ 是任何非空集合的真子集.求解与子集、真子集概念有关的题目时,应记住以下结论:(1)空集是任何集合的子 集,即对于任意一个集合A ,有 A.(2)任何一个集合是它本身的子集,即对任何一个集合A ,有A A.4.满足集合{1,2,3} M {1,2,3,4,5}的集合M 的个数是 __2____ .解题提示: 根据所给关系式,利用{1,2,3}是M 的真子集,且M 真包含于{1,2,3,4,5}的关系判断集合M 中的元素个数.解析:依题意,集合M 中除含有1,2,3外至少含有4,5中的一个元素,又M {1,2,3,4,5},∴M={1,2,3,4}或{1,2,3,5}.(1)解答此题应首先根据子集与真子集的概念判断出集合M 中含有元素的可能情况,然后根据集合M 中含有元素的多少进行分类讨论,防止遗漏.(2)若{ a 1,a 2,…,a m } A {a 1,a 2,…,a m ,a m+1,…,a n } ,则A 的个数为2n -m.若{ a 1,a 2,…,a m } A {a 1,a 2,…,a m ,a m+1,…,a n },则A 的个数为2n -m-1. 若{ a 1,a 2,…,a m } A {a 1,a 2,…,a m ,a m+1,…,a n },则A 的个数为2n -m-2.要点二 补集、全集[重点]评点 评点 评点1.补集设A S ,由S 中不属于A 的所有 元素组成的集合称为S 的子集A 的补集, 记作 S A(读作“A 在S 中的补集”),即S A={ x | x ∈S ,且x A}.C S A 可用图1-2-2中的阴影部分来表示.2.全集. (1)定义:如果集合S 包含我们所要研究的各个集合,这时S 可以看做一个全集,全集通常记作U. (2)举例:例如,在实数范围内讨论集合时,R 便可看做一个全集U ,在自然数范围内讨论集合时,N 便可看做一个全集U.3.理解补集、全集要注意以下两点:(1)对全集概念的理解:全集是相对于所研究的问题而言的一个相对概念,它含有与所研究的问题有关的各个集合的全部元素,因此,全集因研究问题而异.例如在研究数集时,常常把实数集R 看做全集;在立体几何中,三维空间是全集,这是平面是全集的一个子集;而在平面几何中,整个平面可以看做一个全集.(2)求子集A 在全集U 中的补集的方法:从全集U 中去掉所有属于A 的元素,剩下的元素组成的集合即为A 在U 中的补集.如已知U= a ,b ,c ,d ,e ,f ,A= b ,f ,求C U A.该题中显然A U ,从U 中除去子集A 的元素b 、f ,乘下的a 、c 、d 、e 组成的集合即为 U A= a ,c ,d ,e .另外,原题若是无限集,在实数范围内求补集,我们则可以充分利用数轴的直观性来求解.如已知U=R ,A= x x > 3 ,求 U A.用数轴表示如图1-2-3,可知 U A= x x > 3 .4.例题例2 不等式组⎩⎨⎧2x -1>0,3x -6≤0的解集为A ,U=R .试求A 及C U A ,并把它们分别表示在数轴上.解:A= x 2 x -1 > 0且3 x –6 ≤ 0 =122<xx ⎧⎫≤⎨⎬⎩⎭,在数轴上表示如图1-2-4(1). C U A=1,22x x x ⎧⎫≤>⎨⎬⎩⎭或,在数轴上表示如图1-2-4(2).练习5.已知全集U=R ,集合A={ x |1< x ≤6},求C U A.解题提示: 在数轴上标出集合A ,结合补集的定义求解.解:根据补集的定义,在实数集R 中,由所有不属于A 的实数组成的集合,就是C U A ,如图1-2-5,122122结合数轴可知,C U A={ x |1< x ≤6}.涉足与数集有关的补集,求解时一般要利用数轴只管求解,求解时要注意端点值的取舍. 6.已知全集U={不大于5的自然数},A={0,1},B={x |x ∈A ,且x <1},C={x |x -1 A ,且x ∈U}. (1)判断A 、B 的关系; (2)求C U B 、C U C ,并判断其关系.解题提示: 根据题意,先写出全集U ,按所给集合B 、C 的含义,写出B 、C ,并求其补集后求解第(2)题.解:由题意知U={0,1,2,3,4,5},B={0},又集合C 中的元素必须满足以下两 个条件:x ∈U ,x -1 A.若x =0,此时0-1=-1 A ,∴0是C 中的元素; 若x =1,此时1-1=0∈A ,∴1不是C 中的元素; 若x =2,此时2-1=1∈A ,∴2不是C 中的元素;同理可知3,4,5是集合C 中的元素,∴C={0,3,4,5}. (1)∵A={0,1},B={0},∴B A ;(2)C U B={1,2,3,4,5},C U C={1,2},∴C U C C U B.若给定具体的数的集合,判断其两个子集的补集之间的关系时,应先求集合的补集. 7.设全集U={1,2,x 2-2},A={1,x },求C U A.解题提示: 要求C U A ,必须先确定集合A ,实际上就是确定x 的值,从而需要分类讨论. 解:由条件知A U ,∴x ∈U={1,2,x 2-2},又x ≠1,∴x =2或x = x 2-2. 若x =2,则x 2-2=2,此时U={1,2,2},这是与互异性矛盾,舍去. 由x =x 2-2得x 2-x -2=0,解得x =-1或x =2(舍去). 此时U={-1,1,2},A={1,-1},∴C U A={2}.求解此题首先确定参数x 的值,然后确定出U 和A 的具体结果.在求解集合问题时必须密切关注集合元素的特征,并且特别注意互异性,以免产生增根.8.已知A={x |x <5},B={x |x <a },分别求满足下列条件的a 的取值范围:(1)B A ;(2)A B. 解题提示: 紧扣子集、全集、补集的定义,利用数轴,数形结合求出a 范围. 解:(1)因为B A ,B 是A 的子集,如图1-2-6(1),故a ≤5.评点 评点 A Ba5x(2)ABa5x(1)(2)因为A B ,B 是A 的子集,如图1-2-6(2),故a ≥5.9.已知M={x |x = a 2+1,a ∈N *},P={ y | y =b 2- 6b +10,b ∈N},判断集合M 与P 之间的关系. 解法一:集合P 中,y =b 2-6b +10=(b -3)2+1当b =4,5,6,…时,与集合M 中a =1,2,3,…时的值相同,而当b =3时,y =1∈P ,1 M ,∴M P. 解法二:对任意的x 0∈M ,有x 0=a 2 0+1=(a 0+3)2-6(a 0+3)+10∈P(∵a 0∈N *,∴a 0+3∈ N),∴M P ,又b =3时,y =1,∴1∈P.而1<1+ a 2 0+1=(a 0∈N *),∴1 M ,从而M P.10.已知全集U ,集合A={1,3,5,7,9},C U A={2,4,6,8},C U B={1,4,6,8,9},求集合 B.解题提示: 求集合B ,需根据题意先求全集U ,由于集合A 及C U A 已知,因此可用Venn 图来表示所给集合,将A 及C U A 填入即可得U解:借助Veen 图,如图1-2-7.由题意知U={1,2,3,4,5,6,7,8,9}. ∵C U B={1,4,6,8,9} ∴B={2,3,5,7}.求本题中的全集,用Veen 较直观,本题的求解实际上应用了补集的性质C U (C U B)=B.例7 已知A={ x | x <-1或x > 5 },B={ x ∈R | a < x <a + 4 },若A B ,求实数a 的取值范围.解题提示: 注意到B≠ ,将A 在数轴上保释出来,再将B 在数轴上表示出来,使得A B ,即可得a 的取值范围.解:如图-2-6,∵A B ,∴a + 4 ≤-1或a ≥5,∴a ≤-5或a ≥5.本题利用数轴处理一些实数集之间的关系,以形助数直观、形象,体现了数形结合的思想,这在以后的学习中会经常用到,但一定要检验端点值是否能取到,此题的易错点是各端点的取值情况,例8 设{}{}2A=8150B=10,x x x x ax -+=-=,若B A ,求实数a 的值.解题提示: 集合B 是方程ax -1=0的解集,该方程不一定是一次方程,当a =0时,B= ,此时符方法一 数形结合思想 A 1-4a +aBA4a +aB5AA51-评点 方法二 分类讨论思想U A1 3,,5 7 9,,2468评点。

相关文档
最新文档