第一章晶体结构(一结晶学基础知识) PPT

合集下载

《结晶学基础》

《结晶学基础》
在离子晶体结构中,每个正离子周围都形成 一个负离子配位多面体;正负离子间距离取决 于离子半径之和,正离子配位数取决于正负离 子半径之比,与离子电价无关。
.
2.鲍林第二规则---静电价规则
在一个稳定的晶体结构中,从所有相邻接的阳离 子到达一个阴离子的静电键的总强度,等于阴离子 的电荷数。
静电键强度
S= Z+ CN+
• 在离子晶体中,配位数指的是最紧邻的异号离子数,所以正、 负离子的配位数不一定是相等的。阳离子一般处于阴离子紧密堆 积阳的离空子隙还中可,能其出配现位其数 它一 的般 配为 位数4或。6. 。如果阴离子不作紧密堆积,
配位数
阴离子作正八 面体堆积,正、 负离子彼此都能 相互接触的必要
条件为r+/r=0.414。
凸几何多面体倾向。
❖ 4.对称性--晶体的物理化学性质能够在不同方
向或位置上有规律地出现,也称周期性 .
晶体的性质
❖ 5.均匀性(均一性)--一个晶体的各个部分性
质都是一样的。 这里注意:均匀性与各向异性不同,前者是指晶
体的位置,后者是指观察晶体的方向。
❖ 6. 固定熔点 ❖ 7.晶面角守恒定律--晶面(或晶棱)间的夹角
宏观晶体中对称性只有32种,根据对称型中是否存在 高次轴及数目对晶体分类
❖ 存在高次轴(n>2)且多于一个―――高级晶族 ――包括:等轴(立方)晶系
❖ 存在高次轴(n>2)且只有一个―――中级晶族 ――包括:三方、四方、六方晶系
❖ 不存在高次轴(n>2)―――低级晶族――包括: 三斜、单斜、正交晶系
第一章 结晶学基础
.
1-1 晶体的基本概念与性质
一、晶体的基本概念
➢ 人们对晶体的认识,是从石英开始的。 ➢ 人们把外形上具有规则的几何多面体形态的

第一章 晶体结构-1

第一章 晶体结构-1
向族,用〈uvw〉表示。
[001]
c

同一晶向族中不同晶向的指
数,数字组成相同。

已知一个晶向指数后,对 u、 v、w进行排列组合,就可 得出此晶向族所有晶向的指 数。
[010] [100]
b
a

如〈111〉晶向族的8个晶向指数代表8个不同的晶向; 〈110〉晶向族的12个晶向指数代表12个不同的晶向。
晶体中取出一个单元,表示晶体结构的特征。取出的最 小晶格单元称为晶胞。晶胞是从晶体结构中取出来的反 映晶体周期性和对称性的重复单元。
晶胞—晶胞是从晶体结构中取出来的反映晶 体周期性和对称性的最小重复单元。
(3)晶胞与晶胞参数
图1-1
空间点阵及晶胞的不同取法
晶胞的选取规则:
1)充分表示晶体对称性;
例题:晶面指数的标注
C G E D
H
O B
A
F
• 面间距 • 晶面指数代表一组平行晶面 • 两相邻晶面间距d(hkl)或d • 直角坐标系下:
d( hkl ) 1 h2 k 2 l 2 2 2 2 a b c
c
C1
(100)
o
A
C B
B1
b
立方、四方、正交
A1
4. 晶面间距与晶面指数的关系
平行六面体选取原则
三斜
单斜
单斜底心
斜方 斜方底心 斜方体心 斜方面心
三方
六方
四方
四方体心
立方
立方体心
立方面心
各晶系晶胞参数
a、立方晶系: a=b=c, α=β=γ=90o
(简单立方、面心立方、体心立方)
b、四方晶系:a=bc,===90o (简单四方、体心四方)

第一章 晶体结构(Crystal Structure)

第一章 晶体结构(Crystal Structure)

§1.3 晶格的周期性
一、布拉菲(Bravais)格子
布喇菲(A. Bravais),法国学者,1850年提出。 定义: 各晶体是由一些基元(或格点)按一定规则, 周期重 复排列而成。任一格点的位矢均可以写成形式 R n a n a n a n 1 n 2 n 3 、 、 a1 a2 。其中, 、 、 取整数, n 1 1 2 2 3 3 a Rn 为基矢, 为布拉菲格子的格矢,或称 正格矢。 3 能用上式表示的空间点阵称为布拉菲点阵,相应的 空间格子称为布拉菲格子.
§1.2 空间点阵
空间点阵定义: 晶体的内部结构可以概括为是由一些相同的 点子在空间有规则地作周期性的无限分布,这 些点子的总体称为点阵。 X射线衍射技术从实验上证明。
1、格点与基元 如果晶体是由完全相同的一种原子所组成 的,则格点代表原子或原子周围相应点的位置, 如铜的晶体结构。 点阵(lattice) 在空间任何方向 上均为周期排列的无 限个全同点的集合。
基元( basis)
构成晶体的基本结构单元。 基元是化学组成、空间结构、排列取向、周 围环境相同的原子、分子、离子或离子团的集 合。 可以是一个原子(如铜、金、银等),可以是 两个或两个以上原子(如金刚石、氯化钠、磷化 镓等),有些无机物晶体的一个基元可有多达 100个以上的原子,如金属间化合物NaCd2的基 元包含1000 多个原子,而蛋白质晶体的一个基 元包含多达10000 个以上的原子。
复式晶格:
如果晶体的基元中包含两种或两种以上的原 子。显然,每一种等价原子各构成与晶体基元代表 点的空间格子相同的网格 , 称为晶体的 子晶格 . 每 一种等价原子的子晶格具有相同的几何结构,整 个晶格可视为,子晶格相互位移套构而成。该晶 体晶格称为复式晶格. 例如:氯化钠晶体

固体物理课件 第一章 晶体结构

固体物理课件 第一章 晶体结构

晶面指数(122)
a
c b
(100)
(110)
(111)

在固体物理学中,为了从本质上分析固体的性质,经常要研究晶体中的 波。根据德布罗意在1924年提出的物质波的概念,任何基本粒子都可以 看成波,也就是具备波粒二象性。这是物理学中的基本概念,在固体物 理学中也是一个贯穿始终的概念。

在研究晶体结构时,必须分析x射线(电磁波)在晶体中的传播和衍射 在解释固体热性质的晶格振动理论中,原子的振动以机械波的形式在晶 体中传播;
1 3 Ω = a1 ⋅ a 2 × a 3 = a 2
(
)

金刚石
c
c
面心立方

钙钛矿 CaTiO3 (ABO3)
Ca
O
Ti
简单立方
所有的格点都分布在相互平行的一族平面 上,且每个平面上都有格点分布,这样的 平面称为晶面,该平面组称为晶面族。
特征: (1)同一晶面族中的晶面相互平行; (2)相邻晶面之间的间距相等;(面间距是
至今为止,晶体内部结构的观测还需要依靠衍射现象来进行。
(1)X射线 -由高速电子撞击物质的原子所产生的电磁波。 早在1895年伦琴发现x射线之后不久,劳厄等在1912年就意识到X射线的 波长在0.1nm量级,与晶体中的原子间距相同,晶体中的原子如果按点阵排 列,晶体必可成为X射线的天然三维衍射光栅,会发生衍射现象。在 Friedrich和Knipping的协助下,照出了硫酸铜晶体的衍射斑,并作出了正确 的理论解释。随后,1913年布拉格父子建立了X射线衍射理论,并制造了第 一台X射线摄谱仪,建立了晶体结构研究的第一个实验分析方法,先后测定 了氯化钠、氯化钾、金刚石、石英等晶体的结构。从而历史性地一举奠定 了用X射线衍射测定晶体的原子周期性长程序结构的地位。 时至今日,X射线衍射(XRD)仍为确定晶体结构,包括只具有短程序的无 定型材料结构的重要工具。

第一章晶体结构

第一章晶体结构

➢ 点阵:由等同点系所抽象出来的一系列在空间 中周期排列的几何点的集合体
➢格 ➢基
点:空间点阵中周期排列的几何点 元:一个格点所代表的物理实体
晶体是由结构基元(可以是原子、分子或 离子)在空间呈不随时间变化的规则的三 维周期排列而成,这是晶体的本质特征。 为了研究结构基元排列的规律,先撇开结 构基元,从每个结构基元的等同点抽象出 空间点阵,研究空间点阵的阵点排列规律 性。不同种类的结构基元有可能具有相同 的排列方式。因此晶体结构可视为
比较
固体物理学原胞往往不能直观的反映点 阵的宏观对称性,但能完全反映点阵的平 移对称性;
WS原胞既能完全反映点阵的平移对称 性,又能充分反映点阵的宏观对称性,但 是其图形复杂,不好直观想象;
晶胞能直观的反映点阵的宏观对称性, 但有时不能完全反映点阵的平移对称性。
常用的几种晶胞简介
➢简单立方(sc)
晶胞:
av
r ai
v v
基矢
b cv
aj v
ak
体积 V a3
原子个数 2
BCC Lattice
原胞:
av 1
基矢
av
2
a 2 a 2
r (i
r ( i
v j
v j
v k)
v k)
av
3
a 2
r (i
v j
v k)
体积
V
av1
av2
av3
a3 2
原子个 1 数
由一个顶点向三个体心引 基矢。
原胞是体积单元。
一个原胞只有一个基元
➢ Wigner-Seitz原胞(WS原胞)(对称原胞):与基矢的选 择没有关系,且能反应晶体的宏观对称性。

第一章晶体结构

第一章晶体结构

NaCl结构
每个原胞中含两个或多 个原子,且原子不等价
复式晶格
简单晶格
举例 简立方晶格, 体心立方晶格, 面心立方晶格等
特征:每个原胞中只含一 个原子,且所有原子等价
复式晶格
举例 金刚石, 六方密排, 闪锌矿结构等 特征:每个原胞中含两个 或多个原子,且原子不等 价
复式晶格与简单晶格结构有何联系?
• 1.4金刚石结构(Diamond) • 1.5化合物的晶格结构(NaCl,CsCl,C……)
基本概念
晶格(lattice)是指晶体中原子排列的具体形式。
具有不同晶格是指原子规则排列的形式不同;
具有相同晶格是指原子排列形式相同而原子 间距不同。
1.1 简立方晶格
结构特征
原子球占据立方 体的8个顶点; 配位数为6; 立方体边长a定 义为晶格常数。
3、 六角密排与立方密排密堆结构图示
• 第一步:将全同小球 平铺成密排面(A 层); 第二步:第二层密排 面的球心对准A层的 球隙,即B层; A 第三步:第三层密排 B 面放在B层的球隙上, 可形成两种不同的晶 格,即六角密排和立 方密排结构。 六角密排


立方密排(面心 立方)(A-B-C)
(-A-B-)

S原子 Zn原子
§1-2晶格的周期性(periodicity)
主要内容
• (一)原胞与基矢(primitive cell and unit vitor) • (二)晶胞(crystal unit cell) • (三)简单晶格与复杂晶格(crystal lattice) • (四)布拉伐格子(Bravais lattice)
的对称性高于平行六面体原胞。
(二)晶胞(晶格学单胞 crystal unit cell) 1、定义:晶体学通常选取较大的周期单元来研

晶体结构 (讲义)

晶体结构 (讲义)

第一章晶体结构§1.1 引言§1.2 晶体的特征●长程有序/外形规则/各向异性§1.3 空间点阵学说●基元/结点/格点/重复单元/子晶格§1.4 晶体结构的数学描述及晶系举例●三矢/晶系举例/晶列、晶面指数§1.5 半导体的晶体结构●金刚石/闪锌矿/岩盐/纤锌矿§1.6 倒格子与布里渊区●周期函数的级数展开/状态空间的几何表示/倒格子的概念/举例/波矢空间与布里渊区§1.2 晶体的特征(附件0)┌单晶体┌晶体┤固体(半导体)┤└多晶体│└非晶体(非晶态固体)●晶体:具有规则结构的固体长程有序──晶体中的原子(分子)至少在远大于其分子线度的范围内是按照一定的规律周期性排列的。

晶体举例:金属、岩盐、水晶、金刚石、白宝石、陶瓷材料●非晶体:不具有规则结构的固体短程有序──非晶态固体中原子(分子)的排列没有明确的周期性,其内部结构的有序性仅仅表现在分子线度内。

非晶体举例:玻璃、橡胶、塑料、白蜡“过冷液体”──无确定熔点●单晶体?多晶体?●单晶体:所有原子(分子)都按照统一的规则排列的晶体特征:有一定外形,且其外形呈现出高度的对称性,物理性质各向异性凸多面体,晶面解理,解理面,解理性晶带(a-1-c-2),晶棱(晶面交线),带轴,晶轴单晶体举例:水晶、岩盐、金刚石●多晶体:由许多微细单晶体组成的晶体其原子(分子)在整个晶体中不按统一的规则排列特征:无一定外形,物理性质各向同性多晶体举例:各种金属、各种陶瓷材料→组成金属的小晶粒的线度为μm量级故金属至少在μm量级的范围内有序●理想晶体(完整晶体):结构完全规则的晶体●近乎完整的晶体:在规则(排列)的背景中尚存在微量不规则性的晶体晶体中的微量不规则性──缺陷天然杂质或人为掺杂缺陷的两重性:纯 Fe +微量 C →钢白宝石+微量铬离子→红宝石(Al2O3)(Cr+3)p-n结注:铬(gè)§1.3 空间点阵学说──主要概念与基本内容(附件1)●正确反映了晶体内在结构“长程有序”的特征⑴基元,晶体的周期性结构,周期●基元:组成晶体的最小基本单元┌─可以由一个或多个原子组成│├─可以由同种或异种原子组成│└─基元的等同性●晶体结构:由特定的基元沿空间三个不同的方向各按一定的距离周期性地平移而构成每一平移距离=周期⑵结点,点阵,布喇菲点阵●结点:基元的抽象仅限于考察晶体结构的周期性特征可不涉及基元内部组成的具体情况可把基元抽象为一点可选取基元中任何一点代表基元──抽象表示基元的点子=结点基元中结点的任意性基元间结点的一致性●结点的总体─→点阵/布喇菲点阵●空间点阵:晶体结构的一种抽象模型─┬──└→由一些相同的点子在空间有规则地作周期性排列的无限分布点子的总体=点阵●点阵是晶体周期性结构的抽象:结点在点阵中周期性排列的情况≡基元在晶体中周期性排列的情况≡基元中任一原子(离子)在晶体中周期性排列的情况⑶格点,晶格,布喇菲格子●通过点阵中的结点,可以作:许多平行的直线族和平行的晶面族┌─点阵成为网格│└─网格化的点阵=晶格●在晶格中,“结点”改称“格点”●格点的总体─→布喇菲格子──┬──└→布喇菲点阵的同义语●网格化描述:更形象地了反映晶体结构的周期性⑷重复单元,最小重复单元,原胞,晶胞(附件1)●晶格:许许多多、完全相同的、以格点为顶点的平行六面体的堆砌●平行六面体与格点的关系:顶点都在格点上内部表面→可有格点,也可无格点棱上●重复单元:任一符合上述定义的平行六面体●最小重复单元:内部、表面、棱上均无格点●原胞(布喇菲原胞):棱上无格点内部、表面可有可无○由任一格点向与之相邻的三个格点分别引出三条线段,以此三条线段为边所确定的平行六面体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单四方 体心四方 简单立方 体心立方 面心立方
a=b=c ==90o
a=b=dc
(a=bc) ==90o =120o
简单三方 简单六方
阵点坐标
[0,0,0]
[0,0,0] [0,0,0] [1/2,1/2 ,0]
[0,0,0] [0,0,0] [1/2,1/2 ,1/2] [0,0,0] [1/2,1/2 ,0] [0,0,0] [1/2,1/2,0] [0,1/2 ,1/2] [0,0,0] [0,0,0] [1/2,1/2,1/2]
第一章晶体结构
1.1 结晶学基础知识 1.2 决定离子晶体结构的基本因素 1.3 单质晶体结构 1.4 晶体的结构与性质—无机化合物结构 1.5 硅酸盐晶体结构
1.1 结晶学基础知识
晶体结构的定性描述 晶体结构的定量描述—晶面指数、晶向指数
一、晶体结构的定性描述
1. 晶体及其特征 2. 晶体结构与空间点阵 3. 晶胞与晶胞参数 4. 晶系与点阵类型
特征:a 可能存在局部缺陷; b 可有无限多种。
理想晶体结构=基元+空间点阵
晶体中质点排列具有周期性和对称性 晶体的周期性:整个晶体可看作由结点沿三个不同
的方向按一定间距重复出现形成的,结点间的距离称为 该方向上晶体的周期。同一晶体不同方向的周期不一定 相同。可以从晶体中取出一个单元,表示晶体结构的特 征。取出的最小晶格单元称为晶胞。晶胞是从晶体结构 中取出来的反映晶体周期性和对称性的重复单元。
3.晶胞与晶胞参数
晶胞—晶体中的重复单元,平行堆积可充满三维空间, 形成空间点阵
晶胞类型 : 固体物理学原胞:仅反映周期性最小的 结晶学原胞:反映周期性和对称性, 不一定是最小的。
不同晶体的差别:不同晶体的晶胞,其形状、大小 可能不同;围绕每个结点的原子种类、数量、分布 可能不同。
表1-1 布拉菲点阵的结构特征 (table1-1 the structural feature of Bravais lattice )
晶系
三斜 (triclinic) 单斜 (monoclinic) 斜方(正交) (orthorhombic)
四方(正方) (tetragonal) 立方 (cubic)
三方(菱方) (rhombohedral) 六方 (hexagonal)
晶胞参数关 系
abc 90o
abc ==90o
abc ===90o
点阵名称
简单三斜
简单单斜 底心单斜 简单斜方 体心斜方 底心斜方 面心斜方
a=bc ===90o
a=b=c ===90o
Primitive cell Only includes one
lattice point
EXM. Complex Lattice
The example of complex lattice
120o
120o 120o
c
a ba
晶胞参数:晶胞的形状和大小可以用6个参数来表示,此 即晶格特征参数,简称晶胞参数。它们是3条棱边的长度a、 b、c和3条棱边的夹角、、,如图1-2所示。
1.晶体及其特征
晶体:构成物质的质点(分子、原子或 离子)在三维空间作有规律的周期性重复 排列所形成的固体。
胰岛素晶体
石英晶体
金属镓晶体
特征:
1)自范性:晶体具有自发地形成封闭的凸几何多面体外形 能力的性质,又称为自限性.具有规则外形。
2)均一性:指晶体在任一部位上都具有相同性质的特征. 3)各向异性:在晶体的不同方向上具有不同的性质. 4)对称性:指晶体的物理化学性质能够在不同方向或位置
图1-2 晶胞坐标及晶胞参数
4.晶系与点阵类型
晶格特征参数确定之后,晶胞和由它表示的晶格也随之确定, 方法是将该晶胞沿三维方向平行堆积即构成晶格。
空间点阵中所有阵点的周围环境都是相同的,或者说,所有阵 点都具有等同的晶体学位置。布拉菲(Bravais)依据晶格特征参数 之间关系的不同,把所有晶体的空间点阵划归为7类,即7个晶系, 见表1-1。按照阵点(结点)在空间排列方式不同,有的只在晶胞的 顶点,有的还占据上下底面的面心,各面的面心或晶胞的体心等位 置,7个晶系共包括14种点阵,称为布拉菲点阵(Bravais lattice )。
[0,0,0] [0,0,0] [1/2,1/2 ,1/2] [0,0,0] [1/2,1/2 ,0] [0,1/2 ,1/2] [0,0,0]
[1/2,0,1/2] [1/2,0,1/2]
[0,0,0]
二、晶体结构的定量描述 —晶面指数、晶向指数
1.晶面、晶向及其表征
2.六方晶系的晶面指数和晶向指数
图1-1 晶体点阵及晶胞的不同取法
选取结晶学晶胞的原则:
1. 单元应能充分表示出晶体的对称性; 2. 单元的三条相交棱边应尽量相等,或相等的数目
尽可能地多; 3. 单元的三棱边的夹角要尽可能地构成直角; 4. 单元的体积应尽可能地小。
EXM. Primitive Cell
For primitive cell, the volume is minimum
3.晶带和晶面间距
1.晶面、晶向及其表征
晶面:晶体点阵在任何方向上可分解为相互平行的结点平面,这样 的结点平面称为晶面。 晶面上的结点,在空间构成一个二维点阵。 同一取向上的晶面,不仅相互பைடு நூலகம்行、间距相等,而且结点的分 布也相同。不同取向的结点平面其特征各异。 任何一个取向的一系列平行晶面,都可以包含晶体中所有的质 点。
晶面指数:结晶学中经常用(hkl)来表示一组平行晶面,称为晶 面指数。数字hkl是晶面在三个坐标轴(晶轴)上截距的倒数的互 质整数比。
上有规律地出现,也称周期性. 5)最小内能和最大稳定性
2. 晶体结构与空间点阵
(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵 列。 特征:a 原子的理想排列;b 有14种。其中:
基元-晶体结构的最小单位,离子、原子或分子。在空间点阵 中抽象为质点。
阵点-空间点阵中的点。它是纯粹的几何点,各点周围环境同。 晶格-描述晶体中原子排列规律的空间格架。 (2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。
相关文档
最新文档