实验一-基本共射放大电路-实验报告
共射放大电路实验报告
实验报告课程名称:电子电路设计实验 指导老师:李锡华,叶险峰,施红军 成绩:________ 实验名称:晶体管共射放大电路分析 实验类型:设计实验 同组学生姓名:一、实验目的1、学习晶体管放大电路的设计方法,2、掌握放大电路静态工作点的调整和测量方法,了解放大器的非线性失真。
3、掌握放大电路电压增益、输入电阻、输出电阻、通频带等主要性能指标的测量方法。
4、理解射极电阻和旁路电容在负反馈中所起的作用及对放大电路性能的影响。
5、学习晶体管放大电路元件参数选取方法,掌握单级放大器设计的一般原则。
二、实验任务与要求1.设计一个阻容耦合单级放大电路已知条件:=+10V cc V , 5.1L R k =Ω,10,600i SV mV R ==Ω性能指标要求:30L f Hz <,对频率为1kHz 的正弦信号15/,7.5v iA V V R k >>Ω2.设计要求(1)写出详细设计过程并进行验算 (2)用软件进行仿真 3.电路安装、调整与测量自己编写调试步骤,自己设计数据记录表格4.写出设计性实验报告三、实验方案设计与实验参数计算共射放大电路(一).电路电阻求解过程(β=100)(没有设置上课要求的160的原因是因为电路其他参数要求和讲义作业要求基本一样,为了显示区别,将β改为100进行设计):(1)考虑噪声系数,高频小型号晶体管工作电流一般设定在1mA 以下,取I c =1mA (2)为使Q 点稳定,取25BBCC VV =,即4V, (3)0.7 3.3BB EEV R k I -≈=Ω,恰为电阻标称值(4)212124:3:2CCBB R V V VR R R R ==+∴=取R 2为R i 下限值的3倍可满足输入电阻的要求,即R 2=22.5k ,R 1=33.75k;112110=0.1,60,40cc BB V V IR I mA R K R K IR -===Ω=Ω由综上:取标称值R1=51k ,R2=33k(5) 25T T eE CV V r I I =≈=Ω(6)从输入电阻角度考虑:,取(获得4V 足够大的正负信号摆幅)得:从电压增益的角度考虑:>15V/V,取得:;为(二).电路频率特性(1) 电容与低频截止频率取;(三).参数指标验算过程由已确定的参数:=+10V cc V , 5.1L R k =Ω,10,600i S V mV R ==Ω,计算得:,所有参数符合指标.四、实验步骤与过程(一).实验电路仿真:1. 代入参数的实验电路2.直流工作点Q:2.1仿真类型与参数设置:选择时域瞬态分析(Time domain),由于交流小信号的频率为1kHZ,设置仿真时间为2个周期,0-2ms,扫描步长为0.02ms,精度足够2.2图像处理:将交流小信号源断开,分别观察IC,VCE,VBE,VC,的波形,利用标尺(toggle cursor)得到仿真值为:IC=0.892V,VCE=2.38V,VBE=0.622V,VC=5.45V3.交流参数分析:3.1仿真类型与参数设置:选择频域分析(AC SWEEP),要将电压源由给定频率的VSIN源换成可供频率扫描的V AC,幅值设定为10mV;为得到完整频域特性,扫描频率选择对数扫描,从1HZ到100MHZ,采样点设置为10, 3.2图像处理(其他图像略去,只摘取需要用到标尺工具的复杂图像)(1).电压增益:观察V2(RL)/V1(RS)的频域波形,用标尺得出1Khz时的电压增益为17.607;在直流分析中,设置y轴变量为max(V2(RL))/max(V1(RS),利用标尺得到电压增益为178.55mv/9.993mv=17.87;(2).上下限截止频率与通频带:同样是上面的频域增益波形,利用orcad自带的信号处理函数可以得到:Fl=26.24877HZ,FH=1.99MHZ,由于FL相对较小,通频带近似为FH(3).输入电阻:观察V(VS+)/I(C1)的频域波形,利用标尺可得,当信号源的频率为1Khz时,输入电阻Ri=7.6816kΩ4.数据处理与误差分析ICVCEVBEVCAVFLRI理论计算值0.917 2.210.7 5.32320.24268.305电子仿真结果0.892 2.380.6225.4517.8926.257.6816相对误差0.0272630.0769230.0238590.1161070.0096150.075063计算可得除VCE 外直流工作点的相对误差约为2.5%,而频幅特性相对误差约为10%,较大;直流工作状态的误差主要是由于将VCE 直接认定为0.7V 导致的,而交流特性是由三极管直流工作点决定的,且计算时忽略了电容对电路产生的影响,且忽略厄利效应,所以会有至少3类误差的叠加,导致误差较大.(二).实际电路测试:1.测试原理:(注释:由于事先不知道实际测试电路所用三极管放大倍数只有160的,而我设计是用100的,所以在测试时无法利用我的设计方案,采用了另一个设计方案,附在报告最后.)1.静态工作点:(1)按元件参数安装、连接电路(2)不加输入信号,调节R C 两端的电压使IC 符合设计值 (3)测量放大电路的静态工作点,并和理论值相比较2.电压增益:(1)保持静态工作点不变,利用示波器观察输入信号波形,调节信号源,使输出信号为频率1kHz,幅值30MV 的正弦波.(2)输入、输出波形用双踪显示观察,指出它们的相位关系。
共射极单管放大电路实验报告
共射极单管放大电路实验报告
共射极单管放大电路是一种常见的放大电路,由一个NPN型晶体管组成。
本实验的目的是通过实验验证共射极单管放大电路的放大特性。
一、实验原理:
共射极单管放大电路是一种常用的放大电路,使用一个NPN型晶体管来放大输入信号。
晶体管的三个引脚分别为发射极(E)、基极(B)、集电极(C)。
在共射极单管放大电路中,输入信号通过耦合电容C1输入到基极,集电极通过负载电阻RC与正电源相连。
输出信号由电容C2耦合到负载电阻RL上。
二、实验仪器:
1. 功率放大器实验箱
2. 万用表
3. 音频信号发生器
三、实验步骤:
1. 连接电路:根据实验箱上的电路图,将电路连接好。
2. 调整电源:根据实验箱上的电源电压要求,调整电源电压。
3. 调节发生器:将发生器的频率调节到所需的数值,信号幅度调节适宜值。
4. 测量电压:用万用表分别测量发射极电压、集电极电压和基极电压。
5. 测量电流:用万用表测量发射极电流、集电极电流和基极电流。
6. 测量电容:用万用表测量输入输出电容。
四、实验结果:
将实验测得的数据填入实验报告中,并绘制相应的图表。
五、实验分析:
根据实验结果分析共射极单管放大电路的放大特性、输入输出电容等参数。
六、实验总结:
总结本实验的目的、步骤、结果以及实验中遇到的问题等。
七、思考题:
进一步思考实验中遇到的问题,并提出解决方案。
共射放大电路实验报告
共射放大电路实验报告共射放大电路实验报告引言:共射放大电路是电子学中常见的一种放大电路,它具有放大电压和功率的能力。
本实验旨在通过搭建共射放大电路并进行实验验证,深入理解其工作原理和特性。
一、实验目的本实验的主要目的有以下几点:1. 理解共射放大电路的基本原理和结构;2. 学习如何搭建和调试共射放大电路;3. 通过实验验证共射放大电路的放大倍数和频率响应特性;4. 掌握使用示波器和万用表等实验仪器进行电路测试和测量的方法。
二、实验原理共射放大电路由三个主要元件组成:NPN型晶体管、输入电容和输出电容。
晶体管的基极通过输入电容与输入信号相连,发射极与输出电容相连,集电极则与负载电阻相连。
当输入信号施加在基极上时,晶体管的发射极电流会随之变化,从而引起集电极电流的变化,实现信号的放大。
三、实验步骤1. 按照电路图搭建共射放大电路,注意连接的正确性;2. 使用示波器观察输入和输出信号波形,调节电源电压和负载电阻,使得输出信号幅度适中;3. 使用万用表测量电路中各个元件的电压和电流数值;4. 调节输入信号的频率,观察输出信号的变化,记录并分析实验数据。
四、实验结果与分析在实验中,我们搭建了共射放大电路,并进行了一系列的测试和测量。
通过示波器观察到的输入和输出信号波形,我们可以清晰地看到输入信号在放大电路中被放大了。
通过测量电压和电流数值,我们可以进一步计算出放大倍数和功率增益等参数。
五、实验讨论在实验过程中,我们发现共射放大电路的放大倍数与输入信号频率有关。
当频率较低时,放大倍数较高;而当频率较高时,放大倍数会逐渐下降。
这是由于晶体管的频率响应特性所决定的。
此外,我们还发现负载电阻的大小对放大倍数和输出功率也有一定的影响。
六、实验总结通过本次实验,我们深入学习和理解了共射放大电路的工作原理和特性。
通过搭建和调试电路,我们掌握了使用示波器和万用表等实验仪器进行电路测试和测量的方法。
通过实验结果和数据分析,我们进一步加深了对共射放大电路的认识。
共射极放大电路实验报告
共射极放大电路实验报告共射极放大电路实验报告引言:共射极放大电路是一种常见的电子电路,广泛应用于放大信号的场合。
本实验旨在通过搭建共射极放大电路并对其进行实验验证,深入理解其原理与特性。
一、实验目的本次实验的主要目的是:1. 理解共射极放大电路的基本原理;2. 学会搭建并调试共射极放大电路;3. 测量并分析共射极放大电路的放大倍数、输入阻抗和输出阻抗等特性。
二、实验器材与原理1. 实验器材:(1)信号发生器(2)二极管(3)电阻、电容等元件(4)示波器(5)万用表2. 原理:共射极放大电路是一种三极管放大电路,其基本原理是利用三极管的放大作用,将输入信号放大后输出。
在共射极放大电路中,输入信号通过电容耦合方式进入基极,通过电阻与发射极相连,并通过电阻与负载电阻相连,输出信号从负载电阻中取出。
1. 搭建电路:按照实验原理,按照电路图搭建共射极放大电路。
注意连接正确,避免短路和接反等问题。
2. 调试电路:将信号发生器的输出端与输入端相连,设置合适的频率和幅度。
通过示波器观察输出信号的波形,并调整电路参数,使得输出波形达到最佳状态。
3. 测量电路特性:使用万用表测量电路中各个元件的电压和电流值,记录并计算输入阻抗、输出阻抗和放大倍数等特性参数。
四、实验结果与分析在实验中,我们搭建了共射极放大电路,并成功调试出了较好的输出波形。
通过测量和计算,得到了以下结果:1. 输入阻抗:根据测量数据,我们计算得到共射极放大电路的输入阻抗为XXX。
2. 输出阻抗:根据测量数据,我们计算得到共射极放大电路的输出阻抗为XXX。
3. 放大倍数:通过测量输入信号和输出信号的幅度,我们计算得到共射极放大电路的放大倍数为XXX。
通过对实验结果的分析,我们可以看出共射极放大电路具有较高的放大倍数和较低的输出阻抗,适用于需要放大信号的应用场合。
通过本次实验,我们深入了解了共射极放大电路的原理与特性,并成功搭建了该电路并进行了调试。
实验结果表明,共射极放大电路具有较高的放大倍数和较低的输出阻抗,具有重要的应用价值。
共射极单管放大电路实验报告
共射极单管放大电路实验报告一、实验目的。
本实验旨在通过搭建共射极单管放大电路,了解其基本工作原理,掌握其特性参数的测试方法,并通过实验验证理论知识。
二、实验原理。
共射极单管放大电路是一种常见的电子放大电路,由一个晶体管和几个无源元件组成。
在该电路中,晶体管的发射极接地,基极通过输入电容与输入信号相连,集电极与负载电阻相连,输出信号由负载电阻取出。
当输入信号加到基极时,晶体管的输出信号将由集电极取出,实现信号的放大。
三、实验器材。
1. 电源。
2. 信号发生器。
3. 示波器。
4. 电阻、电容等无源元件。
5. 直流电压表。
6. 直流电流表。
四、实验步骤。
1. 按照电路图连接好电路,并接通电源。
2. 调节电源电压,使得晶体管工作在正常工作区域。
3. 使用信号发生器输入不同频率的正弦信号,观察输出信号的波形变化。
4. 测量输入输出信号的幅度,并计算电压增益。
5. 测量输入输出信号的相位差。
6. 测量电路的输入、输出阻抗。
五、实验结果与分析。
通过实验,我们得到了不同频率下的输入输出信号波形,并测量了其幅度和相位差。
根据测量数据,我们计算得到了电压增益和输入输出阻抗。
通过对比实验数据和理论值,我们发现实验结果与理论值基本吻合,验证了共射极单管放大电路的基本工作原理。
六、实验总结。
通过本次实验,我们深入了解了共射极单管放大电路的工作原理和特性参数的测试方法,掌握了实际搭建和测试的技能。
通过实验验证了理论知识,加深了对电子放大电路的理解,为今后的学习和研究打下了基础。
七、实验注意事项。
1. 在搭建电路时,注意连接的准确性,避免短路或接反。
2. 调节电源电压时,小心操作,避免电压过高损坏元件。
3. 在测量输入输出信号时,注意示波器的设置和测量方法,确保测量准确。
八、参考文献。
1. 《电子技术基础》。
2. 《电子电路》。
3. 《电子电路设计手册》。
以上就是本次共射极单管放大电路实验的报告内容,希望能对大家的学习和实践有所帮助。
实验一基本共射放大电路实验报告
实验一基本共射放大电路实验报告一、实验目的:1.掌握基本共射放大电路的组成和工作原理;2.学会在实验条件下测量并计算电路的增益。
二、实验仪器:1.示波器;2.多用电表;3.功放电路板。
三、实验原理:基本共射放大电路由NPN晶体管、输入电阻、输出电阻和负载电阻组成。
工作原理如下:当输入信号向基极施加交流信号时,晶体管工作于放大状态。
由于输入电阻的存在,输入信号会将电流注入基极,导致基极电流增大。
而这个增大的电流会引发晶体管的放大作用。
输出电阻起到了与负载电阻相匹配的作用,使原信号可以通过负载电阻得到放大。
四、实验步骤:1.按照电路图搭建基本共射放大电路;2.将输入信号接入示波器的输入端,并调节示波器参数使波形清晰可见;3.测量输出信号的幅值,并用多用电表测量电路各个元件的电压和电流。
五、实验结果与分析:根据示波器上显示的波形,我们可以得到输入信号和输出信号的波形图,并通过测量得到其幅值。
根据实验数据,可以计算电路的输入电阻和输出电阻,以及电路的增益。
具体计算步骤如下:1.计算输入电阻:输入电阻可以通过测量输入电流和输入电压得到,用输入电压除以输入电流即可。
2.计算输出电阻:输出电阻可以通过测量输出电压和输出电流得到,用输出电压除以输出电流即可。
3.计算增益:增益是指输出信号幅值与输入信号幅值之间的比值,通过测量输出信号和输入信号的幅值即可计算。
根据实验数据和上述计算步骤,我们可以得到电路的输入电阻、输出电阻以及增益的数值。
六、实验分析与结论:通过实验,我们成功搭建了基本共射放大电路,并且根据测量数据计算了电路的输入电阻、输出电阻以及增益。
这些数据可以帮助我们评估电路的性能和效果。
实验结果分析:1.输入电阻越大,表示电路对输入信号的损耗越小,但也较容易受到外界干扰。
2.输出电阻越小,表示电路可以驱动更大的负载电阻,但也对负载电阻变化较敏感。
3.增益越大,表示电路对输入信号的放大效果越好,但也容易引起失真。
晶体管共射极放大电路实验报告
晶体管共射极放大电路实验报告一、实验目的1.掌握共射极放大电路的基本原理和组成。
2.学习如何调试和优化放大电路的性能。
3.通过实验数据分析,加深对晶体管放大原理的理解。
二、实验原理共射极放大电路是一种常见的模拟放大电路,它利用晶体管的放大效应将输入信号放大,并通过电阻、电容等元件进行信号处理和反馈控制。
该电路具有较高的电压放大倍数和良好的频率特性,被广泛应用于各种电子系统中。
三、实验步骤1.搭建共射极放大电路:连接电源、输入信号源、晶体管、电阻、电容等元件,组成共射极放大电路。
2.调试放大电路:通过调节电源电压、输入信号源幅度、晶体管偏置等参数,使放大电路达到最佳的工作状态。
3.测量电压放大倍数:通过测量输入和输出信号的电压值,计算放大倍数。
4.分析实验数据:记录不同参数下的放大倍数、输入电阻、输出电阻等数据,分析其对放大电路性能的影响。
5.优化电路性能:根据实验数据分析结果,调整元件参数或采用不同的元件,优化放大电路的性能。
四、实验数据分析1.电压放大倍数:通过测量输入和输出信号的电压值,计算放大倍数。
实验数据显示,随着输入信号幅度的增加,放大倍数逐渐增大;但当输入信号幅度达到一定值时,放大倍数趋于稳定。
这是因为晶体管已经处于饱和状态,无法再通过增加输入信号幅度来提高放大倍数。
2.输入电阻和输出电阻:输入电阻和输出电阻的大小直接影响放大电路的性能。
输入电阻越大,输入信号源的负载越小,对信号源的影响越小;输出电阻越小,输出电压的负载越大,对负载的影响越小。
实验数据显示,随着反馈系数的增加,输入电阻和输出电阻都呈下降趋势。
这是因为反馈系数越大,对输入和输出信号的衰减越大,导致输入和输出电阻减小。
3.通频带:通频带是衡量放大电路频率响应的重要指标。
实验数据显示,随着反馈系数的增加,通频带逐渐变宽。
这是因为反馈系数的增加导致电路的稳定性提高,能够更好地处理高频信号。
五、实验结论与优化建议通过本次实验,我们验证了共射极放大电路的工作原理和性能特点。
单管共射放大电路实验报告
一、实验目的1. 掌握单管共射放大电路的基本原理和组成;2. 学习如何调试和测试单管共射放大电路的静态工作点;3. 熟悉单管共射放大电路的电压放大倍数、输入电阻和输出电阻的测量方法;4. 分析静态工作点对放大电路性能的影响。
二、实验原理单管共射放大电路是一种基本的放大电路,由晶体管、电阻和电容等元件组成。
其工作原理是:输入信号通过晶体管的基极和发射极之间的电流放大作用,使输出信号的幅值得到放大。
单管共射放大电路的静态工作点是指晶体管在无输入信号时的工作状态。
静态工作点的设置对放大电路的性能有重要影响,如静态工作点过高或过低,都可能导致放大电路的失真。
电压放大倍数、输入电阻和输出电阻是衡量放大电路性能的重要参数。
电压放大倍数表示输入信号经过放大后的输出信号幅值与输入信号幅值之比;输入电阻表示放大电路对输入信号的阻抗;输出电阻表示放大电路对负载的阻抗。
三、实验仪器与设备1. 晶体管共射放大电路实验板;2. 函数信号发生器;3. 双踪示波器;4. 交流毫伏表;5. 万用电表;6. 连接线若干。
四、实验内容与步骤1. 调试和测试静态工作点(1)将实验板上的晶体管插入电路,连接好电路图中的电阻和电容元件。
(2)使用万用电表测量晶体管的基极和发射极之间的电压,确定静态工作点。
(3)调整偏置电阻,使静态工作点符合设计要求。
(4)测量静态工作点下的晶体管电流和电压,记录数据。
2. 测量电压放大倍数(1)使用函数信号发生器产生一定频率和幅值的输入信号。
(2)将输入信号接入放大电路的输入端。
(3)使用交流毫伏表测量输入信号和输出信号的幅值。
(4)计算电压放大倍数。
3. 测量输入电阻和输出电阻(1)使用交流毫伏表测量放大电路的输入端和输出端的电压。
(2)计算输入电阻和输出电阻。
五、实验结果与分析1. 静态工作点根据实验数据,晶体管的静态工作点为:Vbe = 0.7V,Ic = 10mA。
2. 电压放大倍数根据实验数据,电压放大倍数为:A = 100。
单管共射极放大电路实验报告
单管共射极放大电路实验报告Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT实验一、单管共射极放大电路实验1. 实验目的(1) 掌握单管放大电路的静态工作点和电压放大倍数的测量方法。
(2) 了解电路中元件的参数改变对静态工作点及电压放大倍数的影响。
(3) 掌握放大电路的输入和输出电阻的测量方法。
2. 实验仪器① 示波器② 低频模拟电路实验箱 ③ 低频信号发生器 ④ 数字式万用表 3. 实验原理(图)实验原理图如图1所示——共射极放大电路。
4. 实验步骤 (1) 按图1连接共射极放大电路。
(2)测量静态工作点。
② 仔细检查已连接好的电路,确认无误后接通直流电源。
③ 调节RP1使RP1+RB11=30k④ 按表1测量各静态电压值,并将结果记入表1中。
表1 静态工作点实验数据Rs 4.7K(1)测量电压放大倍数①将低频信号发生器和万用表接入放大器的输入端Ui,放大电路输出端接入示波器,如图2所示,信号发生器和示波器接入直流电源,调整信号发生器的频率为1KHZ,输入信号幅度为20mv左右的正弦波,从示波器上观察放大电路的输出电压UO的波形,分别测Ui和UO的值,求出放大电路电压放大倍数AU。
图2 实验电路与所用仪器连接图②保持输入信号大小不变,改变RL,观察负载电阻的改变对电压放大倍数的影响,并将测量结果记入表2中。
表2 电压放大倍数实测数据(保持U I不变)(4)观察工作点变化对输出波形的影响①实验电路为共射极放大电路②调整信号发生器的输出电压幅值(增大放大器的输入电压U i),观察放大电路的输出电压的波形,使放大电路处于最大不失真状态时(同时调节RP1与输入电压使输出电压达到最大又不失真),记录此时的RP1+RB11值,测量此时的静态工作点,保持输入信号不变。
改变RP1使RP1+RB11分别为25KΩ和100K Ω,将所测量的结果记入表3中。
中大模电实验一 BJT单管共射放大电路 实验报告
实验一BJT单管共射放大电路一、实验目的1、掌握放大电路静态工作点的测试方法,分析静态工作点对放大器性能的影响。
2、掌握放大电路动态性能(电压增益、输入电阻、输出电阻、最大不失真输出电压及幅频特性等)的测试方法。
3、进一步熟练常用电子仪器的使用。
二、实验原理1、电路图图一2、通电观察:接好电路之后,在确认安装正确无误后,才可以把经过准确测量的电源电压接入电路。
电源接入电路之后,也不应急于观察数据,而应先观察有无异常现象。
3、静态测试:(1)测量放大电路的静态工作点,应在输入信号Vi=0的情况下进行。
分别测量VB、VC、VE,然后通过Ic≈IE=VE/RE可算出Ic,同时可算出VBE=VB-VE,VCE=Vc-VE。
(2)静态工作点的调试:指对管子集电极电流Ic或VCE的调整与测试。
静态工作点是否合适,对放大电路的性能及输出波形都有很大的影响,偏高或偏低的静态工作点都会使输出波形出现失真。
而静态工作点本身也会影响管子的性能。
改变电路的Vcc、Rc、RB都会引起静态工作点的变化,但通常采用调节偏置电阻Rb1来改变静态工作点。
4、动态指标测试(1)电压增益Av的测量:测出vi和vo的有效值,则Av=Vo/Vi .图二(2)输入电阻Ri : 如图2在被测放大电路的输入端与信号源之间串入一测量辅助电阻R,在放大电路正常工作的情况下,用交流毫伏表测出Vs和Vi,则输入电阻可由Ri=ViR/(Vs-Vi)算出。
(3)输出电阻Ro:在放大电路正常工作的条件下,测出输出端不接负载RL输出电压Vo和接入负载后的输出电压VL,根据Ro= [(Vo/VL)-1]RL求出输出电阻。
(4)最大不失真输出电压Vo(p-p)的测量(最大动态范围):在放大电路正常工作的情况下,逐步增大输入信号的幅度,并同时调节Rw(改变静态工作点),用示波器观察Vo, 当输出波形同时出现削底和缩顶现象时,说明静态工作点已调在交流负载线的中点,然后反复调整输入信号,使波形输出幅度最大,且无明显失真时,用交流毫伏表测出Vo有效值,则动态范围等于22Vo,或用示波器直接读出Vo(p-p)。
模拟电子技术实验报告
模拟电子技术基础实验实验报告目录一、共射放大电路二、集成运算放大器三、RC正弦波振荡器四、方波发生器五、多级负反馈放大电路六、有源滤波器七、复合信号发生器一、共射放大电路1.实验目的(1)掌握用Multisim 13仿真软件分析单极放大电路主要性能指标的方法。
(2)熟悉常用电子仪器的使用方法,熟悉基本电子元器件的作用。
(3)学会并熟悉“先静态后动态”的电子线路的基本调试方法。
(4)分析静态工作点对放大器性能的影响,学会调试放大器的静态工作点。
(5)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。
(6)测量放大电路的频率特性。
2.实验器材(1)双路直流稳压电源一台;(2)函数信号发生器一台;(3)示波器一台;(4)毫伏表一台;(5)万用表一台;(6)三极管一个;(7)电阻电位器;(8)模拟电路实验箱;3.实验原理及电路实验电路如下图所示,采用基极固定分压式偏置电路。
电路在接通直流电源Vcc而未加入输入信号(Vi=0)时,三极管三个极电压和电流称为静态工作点。
根据XSC1的显示,按如下方法进行操作:现象出现截止失真出现饱和失真操作减小R7 增大R7当滑动变阻器R7设置为11%时,有最大不失真电压。
静态工作点测量将交流电源置零,用万用表测量静态工作点。
理论估算值实际测量值BQ U CQ U EQ U CEQ UCQ I BQ U CQ U EQ U CEQUCQ I3.98V 6.03V 3.28V 2.75V 2.98m A 3.904V6.253V3.186V3.067V2.873m A1. Q 点过低——信号进入截止区2. Q 点过高——信号进入饱和区二、集成运算放大器1.实验目的(1)加深对集成运算放大器的基本应用电路和性能参数的理解。
(2)了解集成运算放大器的特点,掌握集成运算放大器的正确使用方法和基本应用电路。
(3) 掌握由运算放大器组成的比例、加法、减法、积分和微分等基本运算电路的功能。
共发射极放大电路实验报告
共发射极放大电路实验报告共发射极放大电路实验报告引言:共发射极放大电路是一种常见的放大电路,具有较高的放大倍数和较低的失真。
本实验旨在通过搭建共发射极放大电路并进行实验验证,探究其特性和性能。
一、实验目的本实验的主要目的有以下几点:1. 了解共发射极放大电路的基本原理;2. 学习搭建共发射极放大电路的方法;3. 分析共发射极放大电路的特性和性能。
二、实验器材和元件1. 变压器2. 电容3. 电阻4. 二极管5. NPN型晶体管6. 示波器7. 功率放大器8. 信号发生器9. 直流电源10. 万用表三、实验步骤1. 按照电路图搭建共发射极放大电路,确保连接正确无误。
2. 将信号发生器接入电路的输入端,设置合适的频率和幅度。
3. 将示波器接入电路的输出端,调节示波器的垂直和水平扫描,观察输出波形。
4. 通过调节电源电压和电阻的值,改变电路的工作状态,观察输出波形的变化。
5. 测量并记录电路的输入电压、输出电压、电流等数据。
6. 分析实验数据,计算电路的放大倍数、输入阻抗和输出阻抗等指标。
四、实验结果与分析通过实验观察和数据记录,我们得到了以下结果:1. 随着输入信号幅度的增加,输出信号也相应增大,表现出较好的放大效果。
2. 调节电源电压和电阻的值可以改变电路的工作状态,进而影响输出波形的形状和幅度。
3. 在一定范围内,输入电压与输出电压呈线性关系,说明电路具有较好的线性放大特性。
4. 根据实验数据计算得到的放大倍数较高,达到了预期的效果。
根据以上结果,我们可以得出以下结论:共发射极放大电路具有较高的放大倍数和较低的失真,适用于信号放大和处理等应用场景。
通过调节电源电压和电阻的值,可以改变电路的工作状态,进一步优化电路性能。
然而,在实际应用中,还需要考虑电路的稳定性、温度特性等因素,以确保电路的可靠性和稳定性。
五、实验总结通过本次实验,我们深入了解了共发射极放大电路的原理和特性。
通过搭建电路、观察波形和计算指标,我们验证了共发射极放大电路的放大效果和线性特性。
单级共射放大电路
实验一 单级共射放大电路一、实验目的1.熟悉电子元器件和模拟电子实验箱。
2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影响。
3.学习测量放大电路Q 点,A v ,r i ,r o 的方法,了解共射电路的特性。
4.理解放大电路的动态性能。
二、实验仪器1.模拟电子实验箱 2.低频信号发生器 3.交流毫伏表 4.示波器 5.万用表三、预习要求1.复习三极管及单管放大电路的工作原理。
2.了解放大电路静态和动态测量方法。
四、实验概述图1.1为电阻分压式工作点稳定单管共射放大电路。
它的偏置电路采用R b 和R b2组成的分压电路,并在发射极中接有电阻R e ,以稳定放大器的静态工作点。
当在放大器的输入端加入输入信号U i 后,在放大器的输出端便可得到一个与U i 相位相反,幅值被放大了的输出信号U o ,从而实现了电压放大。
注意:图1.1所示电路中,R 1、R 2为分压衰减电路,除R 1、R 2以外的电路为放大电路。
U o A U s图1.1 工作点稳定的放大电路之所以采取这种结构,是由于一般信号源在输出信号小到几毫伏时,会不可避免的受到电源纹波影响出现失真,而大信号时电源纹波几乎无影响,所以采取大信号加R 1、R 2衰减形式。
1.输入电阻的定义为电路的输入电压U i 与输入电流I i 之比,即r i =iiI U r i 为从电路输入端看进去的交流等效电阻,r i 愈大,则电路从信号源取用电流I i 愈小,电路获得的U i 愈大。
2.输出电阻的定义为负载R L 开路,且信号源电压U s =0(但保留其内阻R s ),从输出端看进去的等效电阻。
即输出端开路时,采用戴维南定理求得等效电源内阻。
即r o =ooI U (U s =0,R L = ) r o 为从电路输出端看进去的交流等效电阻,r o 愈小,则电路接上负载后,输出电压下降愈少,即带负载能力愈强。
五、实验内容1.静态测量与调整按图1.1接线(不用接入由R 1、R 2组成的分压衰减电路),确认无误后接通电源,调整R p 使U e =2.2V ,测量电路的静态工作点的相关值(I b 、I c 、U ce ),在这里,为了测量的方便,我们只需测出三极管的三个脚对地的电压,也就是U e 、U b 、U c ,就可以相应推导出Q 点值。
共射共集放大电路实验报告(共5篇)
共射共集放大电路实验报告(共5篇)一、实验目的学习共射共集放大电路的基本原理,掌握共射、共集级的放大作用和特点,熟悉放大电路的设计和调节方法。
二、实验原理共射放大器是以晶体三极管为放大元件,以共射的方式运行的放大电路。
它的信号输入在集-发极之间,输出在集-基极之间。
共射电路的输入电阻较低,输出电阻较高,放大系数较大。
但它的频率特性差,相位反向和输出幅度变化比较大。
共射、共集级的组合可以形成共射共集放大电路,由于两级的互补性,可以克服它们各自的缺点,达到比较理想的放大效果。
在实际应用中,经常用共射共集级组成放大电路,用于通过各种接口将信号处理后送到外围设备,并隔离载波。
共射共集放大电路的放大系数较大,输入输出阻抗均低,相位差小,具有广泛的应用。
三、实验步骤1.检查实验装置,准备好实验用品,并按照电路图连接电路。
2.接通电源,调节稳压电源直至设定值。
3.打开测量仪器,调整电位器,使输入端电压到达工作点。
4.调整电位器,使输出端交流信号最大。
5.更改输入信号,测量输出信号幅度的变化,记录测量结果。
6.重复操作5,并更改电源电压和电阻值,记录实验结果。
7.实验结束后,关闭电源,拆除实验装置,清理现场。
四、实验结果与分析1.实验中电路连接正确,电源电压、电阻值选择合适,实验过程稳定。
2.实验结果表明,当输入信号发生变化时,输出信号幅度随之变化。
同时,当电源电压或电阻值发生变化时,放大电路的增益也会发生变化。
3.对于共射放大器,输入阻抗低,输出阻抗高,放大系数大,但是频率特性差相位反向。
对于共集放大器,输入输出阻抗均低,放大系数小,但具有良好的频率特性和相位不反向等特点。
4.当通电电压较是3V时,测量到的输入电压为2.1V,输出电压为6V,增益约2.9倍。
输出波形为正弦波。
5.整个实验过程中,注意电源电压不要过高或过低,否则会影响实验结果。
同时,要注意接线正确,切勿操作不当以免损坏实验装置。
五、实验总结通过本次实验,掌握了共射共集放大电路的基本原理和调节方法。
基本放大电路研究实验报告
基本放大电路研究实验报告引言基本放大电路是电子工程领域中的一个重要概念,它在信号处理和放大方面扮演着关键角色。
通过对基本放大电路的研究实验,我们可以更好地理解电路原理和信号放大的过程。
本实验报告将详细介绍基本放大电路研究实验的步骤和结果。
实验目的本实验的主要目的是通过搭建基本放大电路,研究电路中的电压放大效应,并探索不同的电路参数对放大效果的影响。
实验器材本实验所使用的器材包括: - 1个函数发生器 - 1个示波器 - 1个电阻箱 - 1个电压表 - 1个直流电源 - 1个集成运算放大器(Op-Amp) - 各种电阻、电容等元件实验步骤1. 搭建基本放大电路首先,我们需要根据实验要求搭建基本放大电路。
基本放大电路通常由一个输入端口、一个输出端口和一个反馈回路组成。
根据实验需要,我们可以选择不同的电路结构和元件参数进行搭建。
2. 连接实验器材将函数发生器的输出端连接到放大电路的输入端口,将示波器的探头连接到放大电路的输出端口。
此外,还需要将电压表连接到电路中以测量电路中的电压变化。
3. 设置函数发生器根据实验要求,设置函数发生器的输出信号频率和幅度。
可以逐步调整频率和幅度,观察电路的响应情况。
4. 测量电路参数使用电压表测量电路中的电压变化,并记录下来。
通过测量不同位置的电压值,我们可以分析电路中的电压放大效应。
5. 更改电路参数通过更改电路中的元件参数,如电阻、电容等,我们可以观察到电路响应的变化。
可以尝试不同的参数组合,以获得最佳的放大效果。
6. 分析实验结果根据实验测量数据,分析电路中的电压放大效果。
可以绘制出电压-频率曲线图和电压-幅度曲线图,以更好地理解电路的特性。
实验结果根据实验步骤的执行和数据的测量,我们得到了如下实验结果: 1. 在一定频率范围内,电路的电压放大效果良好,可以达到设定的放大倍数。
2. 通过更改电路中的元件参数,我们可以调整电压放大的范围和响应特性。
结论基本放大电路是一种常见的电子电路结构,它可以在信号处理和放大方面发挥重要作用。
实验一-基本共射放大电路-实验报告
学生实验报告一、实验目的和任务1.加深对基本共射放大电路放大特性的理解;2.学习放大电路的静态工作点参数的测量方法;3.了解电路参数对静态工作点的影响和静态调试方法;4.学习放大电路交流参数的测量方法;5.学习常用电子仪器的使用。
二、实验原理介绍图1-1为基本共射放大电路原理图,图1-2是其直流通路。
+12v^l2V!U!Rc!RbWjk33k2k2 3 3即哄:U0&06SC4±OilClUSOul图1-1基本共射放大电路图1 -2直流通路首先,对该电路作直流分析。
分析图1-2的直流通路,可得到如下直流工作参数的关系表达式:V-U BECC(1-1) °I B R O(1-2) M BC(1-3) IVoRUgxcEcUr(RAR)LcoA?(1-4) uUiz式中,r是三极管的交流输入电阻。
它可用下式近似估算:”26(,))(1加300・(1-5) bJE其中,I是三极管的射极静态电流,单位是毫安(mA)。
z三、实验内容和数据记录1.静态工作点参数测试在静态测量时,暂时不要将交流信号接入电路。
(1)观察R对静态工作点参数的影响。
W二12V, R二2 kQ, R分别取33k Q、100k Q、200kQ、300kQ. 600kQ o用万能表亦分别测量各个R阻值下的静态工作点参数,将测量结果填入表1-1,并据U的大小来判断“°三极管的工作状态。
表1-1R(Q) 33k 100k 200k 300k 600k、(V) "放大工作状态饱和饱和饱和饱和R增大时,U如何变化静态工作点向哪个区域移动a (2)观察RC对静态工作点参数的影响V =12V, R二600kQ, R分别取2kQ、Q,用万能表分别测量每一个R阻值下的静以“态工作点参数,将测量结果填入表1-2中,确定三极管的工作状态。
1-2表RC增大时,UCE有何变化E对U的影响。
ocV分别取3V、6V、12V,分别测量出在E<“ 3 6 12 R使V为6V。
基本共射极放大电路实验报告
基本共射极放大电路实验报告实验一基本共射放大电路实验报告学生实验报告篇二:电子技术实验报告_基本共射放大电路学生实验报告篇三:三极管共射极放大电路实验报告实验报告课程名称:电路与模拟电子技术实验指导老师:张冶沁成绩:__________________ 实验名称:三极管共射极放大电路实验类型:电路实验同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1.学习共射放大电路的设计方法与调试技术;2.掌握放大器静态工作点的测量与调整方法,了解在不同偏置条件下静态工作点对放大器性能的影响;3.学习放大电路的电压放大倍数、输入电阻、输出电阻及频率特性等性能指标的测试方法;4.了解静态工作点与输出波形失真的关系,掌握最大不失真输出电压的测量方法;5.进一步熟悉示波器、函数信号发生器的使用。
二、实验内容和原理1.静态工作点的调整与测量2.测量电压放大倍数3.测量最大不失真输出电压4.测量输入电阻5.测量输出电阻6.测量上限频率和下限频率7.研究静态工作点对输出波形的影响三、主要仪器设备示波器、信号发生器、万用表共射电路实验板四、操作方法和实验步骤1.静态工作点的测量和调试实验步骤:(1)按所设计的放大器的元件连接电路,根据电路原理图仔细检查电路的完整性。
(2)开启直流稳压电源,用万用表检测15V 工作电压,确认后,关闭电源。
(3)将放大器电路板的工作电源端与15V直流稳压电源接通。
然后,开启电源。
此时,放大器处于工作状态。
(4)调节偏置电位器,使放大电路的静态工作点满足设计要求ICQ=6mA。
为方便起见,测量ICQ时,一般采用测量电阻RC两端的压降VRc,然后根据ICQ=VRc/Rc计算出ICQ。
(5)测量晶体管共射极放大电路的静态工作点,并将测量值、仿真值、理论估算值记录在下表中进行比较。
基本放大电路的实验报告
基本放大电路的实验报告篇一:电子技术实验报告_基本共射放大电路学生实验报告篇二:实验一基本共射放大电路实验报告学生实验报告篇三:三极管放大电路实验报告三极管放大电路1、问题简述:要求设计一放大电路,电路部分参数及要求如下:(1)信号源电压幅值:0.5V;(2)信号源内阻:50kohm;(3)电路总增益:2倍;(4)总功耗:小于30mW;(5)增益不平坦度:20 ~ 200kHz范围内小于0.1dB。
2、问题分析:通过分析得出放大电路可以采用三极管放大电路。
2.1 对三种放大电路的分析(1)共射级电路要求高负载,同时具有大增益特性;(2)共集电极电路具有负载能力较强的特性,但增益特性不好,小于1;(3)共基极电路增益特性比较好,但与共射级电路一样带负载能力不强。
综上所述,对于次放大电路来说单采用一个三极管是行不通的,因为它要求此放大电路具有比较好的增益特性以及有较强的带负载能力。
2.2 放大电路的设计思路在此放大电路中采用两级放大的思路。
先采用共射级电路对信号进行放大,使之达到放大两倍的要求;再采用共集电极电路提高电路的负载能力。
3、实验目的(1)进一步理解三极管的放大特性;(2)掌握三极管放大电路的设计;(3)掌握三种三极管放大电路的特性;(4)掌握三极管放大电路波形的调试;(5)提高遇到问题时解决问题的能力。
4、问题解决测量调试过程中的电路:增益调试:首先测量各点(电源、基极、输出端)的波形:结果如下:绿色的线代表电压变化,红色代表电源。
调节电阻R2、R3、R5使得电压的最大值大于电源电压的2/3。
VA=R2//R3//(1+β)R5 / [R2//R3//(1+β)R5+R1],其中由于R1较大因此R2、R3也相对较大。
第一级放大输出处的波形调试(采用共射级放大电路):结果为:红色的电压最大值与绿色电压最大值之比即为放大倍数。
则需要适当增大R2,减小R3的阻值。
总输出的调(转自:小草范文网:基本放大电路的实验报告)试:如果放大倍数不合适,则调节R4与R5的阻值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)将信号发生器的输出信号调到f=1KHz,VP-P为500mV,接至放大电路的Us点,经过R1、R2衰减(100倍),Ui点得到5mV的小信号,观察Ui和UO端波形,并比较相位。
(3)信号源频率不变,逐渐加大信号源幅度,观察UO不失真时的最大值并填表1-4。 Nhomakorabea表1-5
RP
Vb
Vc
Ve
输出波形情况
小
如下图1
合适
如下图2
大
如下图3
图1图2
图3
四、实验结论与心得
1.静态分析时, 增大时, 也增大,静态工作点从饱和区向放大区移动 ; 随 的增大而减小。
2.在动态分析时, 端波形的相位和 端波形的相位相反;存在 时的 比不存在 时的小。
成绩
教师签名
批改时间
年月日
学生实验报告
院别
课程名称
电子技术实验
班级
实验名称
基本共射放大电路
姓名
实验时间
学号
指导教师
林梅
报 告 内 容
一、实验目的和任务
1.加深对基本共射放大电路放大特性的理解;
2.学习放大电路的静态工作点参数的测量方法;
3.了解电路参数对静态工作点的影响和静态调试方法;
4.学习放大电路交流参数的测量方法;
5.学习常用电子仪器的使用。
表1-4
实测
实测计算
估算
Ui(mV)
UO(V)
AV
AV
100
110
108
106
95
101
(4) Ui=5mV(RC= 断开负载RL),减小RP,使Vc<4V,可观察到(UO波形)饱和失真;增大RP,使Vc>9V,将R1由改为510Ω(即:使Ui=50mV),可观察到(UO波形)截止失真,将测量结果填入表1-5。
表1-2
RC(kΩ)
2
UCE(V)
工作状态
放大
饱和
据以上表格的结果, RC增大时,UCE有何变化?
(3)观察电源电压EC对UCE的影响。
Rb=600kΩ,RC=2kΩ,VCC分别取3V、6V、12V,分别测量出在EC取不同值时的UCE值,将结果填入表1-3。
表1-3
VCC(V)
3
6
12
UCE(V)
2.动态研究
表1-1
Rb(Ω)
33k
100k
200k
300k
600k
UCE(V)
工作状态
饱和
饱和
饱和
饱和
放大
Rb增大时, UCE如何变化?静态工作点向哪个区域移动?
(2)观察RC对静态工作点参数的影响
VCC=12V,Rb=600kΩ,RC分别取2 kΩ、Ω ,用万能表分别测量每一个RC阻值下的静态工作点参数,将测量结果填入表1-2中,确定三极管的工作状态。
二、实验原理介绍
图1-1为基本共射放大电路原理图 ,图1-2是其直流通路。
图1-1 基本共射放大电路 图1-2 直流通路
首先,对该电路作直流分析。分析图1-2的直流通路,可得到如下直流工作参数的关系表达式:
(1-1)
(1-2)
(1-3)
(1-4)
式中,rbe是三极管的交流输入电阻。它可用下式近似估算:
(1-5)
其中,IE是三极管的射极静态电流,单位是毫安(mA)。
三、实验内容和数据记录
1.静态工作点参数测试
在静态测量时,暂时不要将交流信号接入电路。
(1)观察Rb对静态工作点参数的影响。
VCC=12V,RC=2 kΩ,Rb分别取33kΩ、100kΩ、200kΩ、300kΩ、600kΩ。用万能表分别测量各个Rb阻值下的静态工作点参数,将测量结果填入表1-1,并据UCE的大小来判断三极管的工作状态。