(初三2)完全平方数和完全平方式

合集下载

初中数学竞赛重要定理公式(代数篇)

初中数学竞赛重要定理公式(代数篇)

初中数学竞赛重要定理、公式及结论代数篇【乘法公式】完全平方公式:(a±b)2=a2±2ab+b2,平方差公式:(a+b)(a-b)=a2-b2,立方和(差)公式:(a±b)(a2 ∓ab+b2)=a3±b3多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd二项式定理:(a±b)3=a3±3a2b+3ab2±b3(a±b)4=a4±4a3b+6a2b2±4ab3+b4)(a±b)5=a5±5a4b+10a3b2±10a2b3+5ab4±b5)…………在正整数指数的条件下,可归纳如下:设n为正整数(a+b)(a2n-1- a2n-2b+a2n-3b2- …+ab2n-2- b2n-1)=a2n-b2n(a+b)(a2n-a2n-1b+a2n-2b2n-…-ab2n-1+b2n)=a2n+1+b2n+1类似地:(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)=a n-b n公式的变形及其逆运算由(a+b)2=a2+2ab+b2得a2+b2=(a+b)2-2ab由(a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b)得a3+b3=(a+b)3-3ab(a+b)由公式的推广③可知:当n为正整数时a n-b n能被a-b 整除,a2n+1+b2n+1能被a+b整除,a2n-b2n能被a+b 及a-b整除。

重要公式(欧拉公式)(a+b+c)(a2+b2+c2+ab+ac+bc)=a3+b3+c3-3abc【综合除法】一个一元多项式除以另一个一元多项式,并不是总能整除。

当被除式f(x)除以除式g(x),(g(x)≠0) 得商式q(x)及余式r(x)时,就有下列等式:f(x)=g(x)q(x)-r(x)其中r(x)的次数小于g(x)的次数,或者r(x)=0。

怎样理解完全平方式

怎样理解完全平方式
1 0 2 2 = ( 1 0 0 + 2 ) = 1 0 0 2 + 2 X 1 0 0 X 2 + 2 2 = 1 0 0 0 0 + 4 0 0 + 4 = 1 0 4 0 4; 1 9 7 2 = ( 2 0 0 — 3 1 = 2 0 0 2—2 X 2 0 0×3 + 3 2 = 4 0 0 0 0 - 1 2 0 0 + 9 = 3 8 8 0 9 。 而在 运用 完 全平 方 公式 把 一个 多项 式 分解 因式 时 ,首 先要 观 察 、分析 和判断所 给出 的多项 式是否 为一个 完全平 方式 ,如果 这个多项 式是一个 完全平方 式 ,再运 用完全 平方公 式把 它进行 因式分解 。有 时需 要先把 多项式经 过适 当变形 ,如用加 法结 合
以及 它们 之 间的 密切 联 系。
关 键 词 :理 解
完全 平 方式
灵活运用 完全 平 方公 式
中图 分 类 号 :G6 3 2
文献 标 识 码 :A 文章编号:1 0 0 3 — 9 0 8 2( 2 0 1 3 )0 6 — 0 0 5 8 — 0 1
完全平方 式是初 中数学 中的一个 十分重要 的概 念 ,充 分理

相关 问题 。这就要 求我们 必须弄清 完全平方 式 和完全平 方公 式 的结 构特征 以及 它们之 间的密切联 系 。这里所指 的完全 平方 公
式 也 包 括 两 种 不 同 的 形 式 。 一 种 形 式 是 “a±b ) =a ± 2 a b + b 2 ” ,另一 种形 式是 “ a 2 ±2 a b + b = ( a±b ) ” 利用 这 两个 公
( 2 ) 当k =一{时 ( x ≠0 ) ,
( 3 ) 当k = x , X 2 + k x + 1 =X 2 + 1 x + 1= ( X 2 + 1 ) ( 4 ) 当k =时 , ( x ≠0 ) 时 ,.

八年级数学培优:完全平方数和完全平方式知识点及竞赛训练(含答案)

八年级数学培优:完全平方数和完全平方式知识点及竞赛训练(含答案)

完全平方数和完全平方式一、内容提要(一)、定义1. 如果一个数恰好是某个有理数的平方,那么这个数叫做完全平方数.例如0,1,0.36,254,121都是完全平方数. 在整数集合里,完全平方数,都是整数的平方.2. 如果一个整式是另一个整式的平方,那么这个整式叫做完全平方式.如果没有特别说明,完全平方式是在实数范围内研究的.例如:在有理数范围 m 2, (a+b -2)2, 4x 2-12x+9, 144都是完全平方式.在实数范围 (a+3)2, x 2+22x+2, 3也都是完全平方式.(二)、整数集合里,完全平方数的性质和判定1. 整数的平方的末位数字只能是0,1,4,5,6,9.所以凡是末位数字为2,3,7,8的整数必不是平方数.2. 若n 是完全平方数,且能被质数p 整除, 则它也能被p 2整除..若整数m 能被q 整除,但不能被q 2整除, 则m 不是完全平方数.例如:3402能被2整除,但不能被4整除,所以3402不是完全平方数.又如:444能被3整除,但不能被9整除,所以444不是完全平方数.(三)、完全平方式的性质和判定在实数范围内如果 ax 2+bx+c (a ≠0)是完全平方式,则b 2-4ac=0且a>0;如果 b 2-4ac=0且a>0;则ax 2+bx+c (a ≠0)是完全平方式.在有理数范围内当b 2-4ac=0且a 是有理数的平方时,ax 2+bx+c 是完全平方式.(四)、完全平方式和完全平方数的关系1. 完全平方式(ax+b )2 中当a, b 都是有理数时, x 取任何有理数,其值都是完全平方数;当a, b 中有一个无理数时,则x 只有一些特殊值能使其值为完全平方数.2. 某些代数式虽不是完全平方式,但当字母取特殊值时,其值可能是完全平方数.例如: n 2+9, 当n=4时,其值是完全平方数.所以,完全平方式和完全平方数,既有联系又有区别.(五)、完全平方数与一元二次方程的有理数根的关系1. 在整系数方程ax 2+bx+c=0(a ≠0)中① 若b 2-4ac 是完全平方数,则方程有有理数根;② 若方程有有理数根,则b 2-4ac 是完全平方数.2. 在整系数方程x 2+px+q=0中① 若p 2-4q 是整数的平方,则方程有两个整数根;② 若方程有两个整数根,则p 2-4q 是整数的平方.二、例题例1. 求证:五个连续整数的平方和不是完全平方数.证明:设五个连续整数为m -2, m -1, m, m+1, m+2. 其平方和为S.那么S =(m -2)2+(m -1)2+m 2+(m+1)2+(m+2)2=5(m 2+2).∵m 2的个位数只能是0,1,4,5,6,9∴m 2+2的个位数只能是2,3,6,7,8,1∴m 2+2不能被5整除.而5(m 2+2)能被5整除,即S 能被5整除,但不能被25整除.∴五个连续整数的平方和不是完全平方数.例2 m 取什么实数时,(m -1)x 2+2mx+3m -2 是完全平方式?解:根据在实数范围内完全平方式的判定,得当且仅当⎩⎨⎧>-010m △=时,(m -1)x 2+2mx+3m -2 是完全平方式 △=0,即(2m )2-4(m -1)(3m -2)=0.解这个方程, 得 m 1=0.5, m 2=2.解不等式 m -1>0 , 得m>1.即⎩⎨⎧>==125.0m m m 或 它们的公共解是 m=2.答:当m=2时,(m -1)x 2+2mx+3m -2 是完全平方式.例3. 已知: (x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式.求证: a=b=c.证明:把已知代数式整理成关于x 的二次三项式,得原式=3x 2+2(a+b+c)x+ab+ac+bc∵它是完全平方式,∴△=0.即 4(a+b+c)2-12(ab+ac+bc)=0.∴ 2a 2+2b 2+2c 2-2ab -2bc -2ca=0,(a -b)2+(b -c)2+(c -a)2=0.要使等式成立,必须且只需:⎪⎩⎪⎨⎧=-=-=-000a c c b b a解这个方程组,得a=b=c.例4. 已知方程x 2-5x+k=0有两个整数解,求k 的非负整数解.解:根据整系数简化的一元二次方程有两个整数根时,△是完全平方数.可设△= m 2 (m 为整数),即(-5)2-4k=m 2 (m 为整数),解得,k=4252m -. ∵ k 是非负整数,∴ ⎪⎩⎪⎨⎧-≥-的倍数是42502522m m 由25-m 2≥0, 得 5≤m , 即-5≤m ≤5;由25-m 2是4的倍数,得 m=±1, ±3, ±5.以 m 的公共解±1, ±3, ±5,分别代入k=4252m -. 求得k= 6, 4, 0.答:当k=6, 4, 0时,方程x 2-5x+k=0有两个整数解例5.求证:当k为整数时,方程4x2+8kx+(k2+1)=0没有有理数根.证明:(用反证法)设方程有有理数根,那么△是整数的平方.∵△=(8k)2-16(k2+1)=16(3k2-1).设3k2-1=m2(m是整数).由3k2-m2=1,可知k和m是一奇一偶,下面按奇偶性讨论3k2=m2+1能否成立.当k为偶数,m为奇数时,左边k2是4的倍数,3k2也是4的倍数;右边m2除以4余1,m2+1除以4余2.∴等式不能成立.;当k为奇数,m为偶数时,左边k2除以4余1,3k2除以4余3右边m2是4的倍数,m2+1除以4余1∴等式也不能成立.综上所述,不论k, m取何整数,3k2=m2+1都不能成立.∴3k2-1不是整数的平方,16(3k2-1)也不是整数的平方.∴当k为整数时,方程4x2+8kx+(k2+1)=0没有有理数根三、练习1.如果m是整数,那么m2+1的个位数只能是____.2.如果n是奇数,那么n2-1除以4余数是__,n2+2除以8余数是___,3n2除以4的余数是__.3.如果k不是3的倍数,那么k2-1 除以3余数是_____.4.一个整数其中三个数字是1,其余的都是0,问这个数是平方数吗?为什么?5.一串连续正整数的平方12,22,32,………,1234567892的和的个位数是__.6.m取什么值时,代数式x2-2m(x-4)-15是完全平方式?7.m取什么正整数时,方程x2-7x+m=0的两个根都是整数?8.a, b, c满足什么条件时,代数式(c-b)x2+2(b-a)x+a-b是一个完全平方式?9.判断下列计算的结果,是不是一个完全平方数:①四个连续整数的积;②两个奇数的平方和.10.一个四位数加上38或减去138都是平方数,试求这个四位数.11. 已知四位数aabb 是平方数,试求a, b.12. 已知:n 是自然数且n>1. 求证:2n -1不是完全平方数.13. 已知:整系数的多项式4x 4+ax 3+13x 2+bx+1 是完全平方数,求整数a 和b 的值.14. 已知:a, b 是自然数且互质,试求方程x 2-abx+21(a+b)=0的自然数解.参考答案1. 1,2,5,6,7,02. 0,3,33. 04. 不是平方数,因为能被3整除而不能被9整除5. 5。

因式分解的十二种方法(已整理)

因式分解的十二种方法(已整理)

因式分解的十二种方法(已整理)1. 提取公因式:将多项式中的公因子提取出来。

例如:4x^2 + 8x = 4x(x + 2)2. 平方差公式:将两个平方数的差表示为乘积形式。

例如:x^2 - 4 = (x + 2)(x - 2)3. 完全平方公式:通过平方根将平方项表示为乘积形式。

例如:x^2 + 6x + 9 = (x + 3)^24. 平方三项式:将三项式表示为两个平方的和或差。

例如:x^2 + 4x + 4 = (x + 2)^25. 相异平方差公式:将两个相异的平方根相乘,并加上或减去乘积的两倍。

例如:4x^2 - 25 = (2x + 5)(2x - 5)6. 完全立方公式:通过立方根将立方项表示为乘积形式。

例如:x^3 + 8 = (x + 2)(x^2 - 2x + 4)7. 立方和:将两个立方数的和表示为乘积形式。

例如:x^3 + 8 = (x + 2)(x^2 - 2x + 4)8. 左移、右移公式:通过改变变量的指数来分解多项式。

例如:x^3 - 8 = (x - 2)(x^2 + 2x + 4)9. 分组法:通过将多项式中的项分成组,然后分别进行分解。

例如:2x^3 + 3x^2 + 6x + 9 = x^2(2x + 3) + 3(2x + 3) = (x^2 + 3)(2x + 3)10. 精简法:通过合并多项式中的相似项来分解多项式。

例如:3x^2 + 2x + 5x + 1 = x(3x + 2) + 1(5x + 1) = (x + 1)(3x + 2)11. 求和公式:将多个项相加,并使用求和公式进行分解。

例如:2x + 3y + 4x + 6y = (2x + 4x) + (3y + 6y) = 6x + 9y12. 配方法:对于二次多项式,使用配方法将其分解为两个一次多项式的乘积。

例如:2x^2 + 5x + 3 = (2x + 3)(x + 1)。

完全平方公式复习ppt

完全平方公式复习ppt

完全平方公式在几何图形面积和周长计算中的应用
总结词
完全平方公式在计算几何图形的面积和周长中具有广泛应用,能够提供简便的计 算方法。
详细描述
在计算几何图形的面积和周长时,完全平方公式可以用于将复杂的几何图形转化 为简单的正方形或矩形,从而简化计算过程。例如,在计算圆内接正方形或矩形 的面积和周长时,可以利用完全平方公式进行简便计算。
举例一
证明$(a+b)^2=a^2+2ab+b^2$。通过展开$(a+b)^2$,得到$a^2+2ab+b^2$, 与左侧相等,证明完毕。
举例二
证明$(a-b)^2=a^2-2ab+b^2$。通过展开$(a-b)^2$,得到$a^2-2ab+b^2$,与左 侧相等,证明完毕。
04
CHAPTER
完全平方公式的变种和拓展
பைடு நூலகம்01
利用完全平方公式计算面积和周长
在几何学中,可以利用完全平方公式计算各种形状的面积和周长。
02
利用完全平方公式解决实际问题
在物理学、工程学、统计学等领域中,可以利用完全平方公式解决各种
实际问题。
03
利用完全平方公式进行金融计算
在金融学中,可以利用完全平方公式进行各种金融计算,如计算投资组
合的风险和回报等。
完全平方公式体现了数学中的转化和 化归思想,通过复习可以培养数学思 维能力,增强分析和解决问题的能力。
提高解题能力
掌握完全平方公式对于解决数学问题 至关重要,通过复习可以熟悉公式的 应用场景和方法,提高解题的效率和 准确性。
完全平方公式的定义和形式
定义
完全平方公式是指一个二次多项 式可以表示为$(a+b)^2$或$(ab)^2$的形式。

初中奥数讲义_完全平方数和完全平方式附答案

初中奥数讲义_完全平方数和完全平方式附答案

完全平方数和完全平方式设n 是自然数,若存在自然数m ,使得n=m 2,则称n 是一个完全平方数(或平方数).常见的题型有:判断一个数是否是完全平方数;证明一个数不是完全平方数;关于存在性问题和其他有关问题等.最常用的性质有:(1)任何一个完全平方数的个位数字只能是0,1,4,5,6,9,个位数字是2,3,7,8的数一定不是平方数;(2)个位数字和十位数字都是奇数的两位以上的数一定不是完全平方数,个位数字为6,而十位数字为偶数的数,也一定不是完全平方数;(3)在相邻两个平方数之间的数一定不是平方数; (4)任何一个平方数必可表示成两个数之差的形式;(5)任何整数平方之后,只能是3n 或3n+1的形式,从而知,形如3n+2的数绝不是平方数;任何整数平方之后只能是5n ,5n+1,5n+4的形式,从而知5n+2或5n+3的数绝不是平方数; (6)相邻两个整数之积不是完全平方数;(7)如果自然数n 不是完全平方数,那么它的所有正因数的个数是偶数;如果自然数n 是完全平方数,那么它的所有正因数的个数是奇数;(8)偶数的平方一定能被4整除;奇数的平方被8除余1,且十位数字必是偶数. 例题求解【例1】 n 是正整数,3n+1是完全平方数,证明:n+l 是3个完全平方数之和. 思路点拨 设3n+1=m 2,显然3卜m ,因此,m=3k+1或m=3k+2(k 是正整数). 若rn=3k+1,则k k m n 233122+=-=.∴ n+1=3k 2+2k+1= k 2+ k 2+( k+1)2.若m=3k+2,则1433122++=-=k k m n∴ n+1=3k 2+4k+2= k 2+(k+1)2+( k+1)2. 故n+1是3个完全平方数之和.【例2】一个正整数,如果加上100是一个平方数,如果加上168,则是另一个平方数,求这个正整数. 思路点拨 引入参数,利用奇偶分析求解.设所求正整数为x ,则 x+100=m 2----① x+168==n 2 -----②其中m ,n 都是正整数, ②—①得n 2—m 2=68,即 (n —m )(n+m)=22×17.---- ③因n —m ,n+m 具有相同的奇偶性,由③知n —m ,n+m 都是偶数.注意到0<n —m<n+m ,由③可得⎩⎨⎧⨯=+=-1722m n m n . 解得n=18.代人②得x=156,即为所求.【例3】 一个正整数若能表示为两个正整数的平方差,则称这个正整数为“智慧数”,比如16=52—32,16就是一个“智慧数”.在正整数中从1开始数起,试问第1998个“智慧数”是哪个数?并请你说明理由. 思路点拨 1不能表为两个正整数的平方差,所以1不是“智慧数”.对于大于1的奇正整数2k+1,有2k+1=(k+1)2-k 2(k=1,2,…).所以大于1的奇正整数都是“智慧数”.对于被4整除的偶数4k ,有4k=(k+1)2—(k —1)2(k=2,3,…).即大于4的被4整除的数都是“智慧数”,而4不能表示为两个正整数平方差,所以4不是“智慧数”.对于被4除余2的数4k+2 (k=0,1,2,3,…),设4k+2=x 2—y 2=(x+y)(x -y),其中x ,y 为正整数,当x ,y 奇偶性相同时,(x+y)(x -y)被4整除,而4k+2不被4整除;当x ,y 奇偶性相异时,(x+y)(x -y)为奇数,而4k+2为偶数,总得矛盾.所以不存在自然数x ,y 使得x 2—y 2=4k+2.即形如4k+2的数均不为“智慧数”.因此,在正整数列中前四个正整数只有3为“智慧数”,此后,每连续四个数中有三个“智慧数”. 因为1998=(1+3×665)+2,4×(665+1)=2664,所以2664是第1996个“智慧数”,2665是第1997个“智慧数”,注意到2666不是“智慧数”,因此2667是第1998个“智慧数”,即第1998个“智慧数”是2667.【例4】(太原市竞赛题)已知:五位数abcde 满足下列条件: (1)它的各位数字均不为零; (2)它是一个完全平方数;(3)它的万位上的数字a 是一个完全平方数,干位和百位上的数字顺次构成的两位数bc 以及十位和个位上的数字顺次构成的两位数de 也都是完全平方数. 试求出满足上述条件的所有五位数.思路点拨 设abcde M =2,且2m a =(一位数),2n bc = (两位数),2t de = (两位数),则2224221010t n m M +⨯+⨯= ①由式①知 224222210210)10(t mt m t m M +⨯+⨯=+⨯= ② 比较式①、式②得n 2=2mt .因为n 2是2的倍数,故n 也是2的倍数,所以,n 2是4的倍数,且是完全平方数. 故n 2=16或36或64.当n 2=16时,得8=mt ,则m=l ,2,4,8,t=8,4,2,1,后二解不合条件,舍去;故116642=M 或41616.当n 2=36时,得18=mt .则m=2,3,1,t=9,6,18.最后一解不合条件,舍去. 故436812=M 或93636.当n 2= 64时,得32=mt .则m=1,2,4,8,t=32,16,8,4都不合条件,舍去. 因此,满足条件的五位数只有4个:11 664,41 616,43 681,93 636.【例5】 (2002年北京)能够找到这样的四个正整数,使得它们中任两个数的积与2002的和都是完全平方数吗?若能够,请举出一例;若不能够;请说明理由.思路点拨 不能找到这样的四个正整数,使得它们中任两个数的积与2002的和都是完全平方数. 理由如下:偶数的平方能被4整除,奇数的平方被4除余1,也就是正整数的平方被4除余0或1.若存在正整数满足22002m n n j i =+;j i ,=1,2,3,4,rn 是正整数;因为2002被4除余2,所以j i n n 被4除应余2或3.(1)若正整数n 1,n 2,n 3,n 4中有两个是偶数,不妨设n 1,n 2是偶数,则200221+n n 被4除余2,与正整数的平方被4除余0或1不符,所以正整数n 1,n 2,n 3,n 4中至多有—个是偶数,至少有三个是奇数. (2)在这三个奇数中,被4除的余数可分为余1或3两类,根据抽屉原则,必有两个奇数属于同一类,则它们的乘积被4除余1,与j i n n 被4除余2或3的结论矛盾.综上所述,不能找到这样的四个正整数,使得褥它们中任两个数的积与2002的和都是完全平方数. 【例6】 使得(n 2—19n+91)为完全平方数的自然数n 的个数是多少?思路点拨 若(n 2—19n+91)处在两个相邻整数的完全平方数之间,则它的取值便固定了. ∵ n 2一19n+91=(n-9)2+(10一n) 当n>10时,(n -10)2<n 2-19n+19<(n-9)2 ∴ 当n>10时(n 2—19n+19)不会成为完全平方数 ∴ 当n ≤10时,(n 2—19n+91)才是完全平方数 经试算,n=9和n=10时,n 2—19n+91是完全平方数. 所以满足题意的值有2个.【例7】 (“我爱数学”夏令营)已知200221a a a ,,, 的值都是1或—1,设m 是这2002个数的两两乘积之和.(1)求m 的最大值和最小值,并指出能达到最大值、最小值的条件; (2)求m 的最小正值,并指出能达到最小正值的条件.思路点拨 (1)m m a a a a a a 220022)(2200222212200221+=++++=+++ ,22002)(2200221-+++=a a a m . 当1200221====a a a 或1-时,m 取最大值2003001.当200221a a a ,,, 中恰有1001个1,1001个1-时,m 取最小值—1001.(2)因为大于2002的最小完全平方数为452=2025,且200221a a a +++ 必为偶数,所以,当46200221=+++a a a 或46-;即200221a a a ,,, 中恰有1024个1,978个1-或恰有1024个1-,978个1时,m 取最小值57)200246(212=-. 【例8】 (全国竞赛题)如果对一切x 的整数值,x 的二次三项式c bx ax ++2都是平方数(即整数的平方),证明:(1) 2a 、2b 都是整数;(2)a 、b 、c 都是整数,并且c 是平方数.反过来,如果(2)成立,是否对一切x 的整数值,c bx ax ++2的值都是平方数? 思路点拨 (1) 令x=0,得c=平方数=2l ;令x=±1,得2m c b a =++,2n c b a =+-,其中m 、n 都是整数.所以,c n m a 2222-+=, 222n m b -=都是整数.(2) 如果2b 是奇数2k+l(k 是整数),令x=4得22416h l b a =++,其中h 是整数. 由于2a 是整数,所以16a 被4整除,有2416416++=+k a b a 除以4余2.而))((22l h l h l h -+=-,在h 、l 的奇偶性不同时,))((l h l h -+是奇数;在h 、l 的奇偶性相同时,))((l h l h -+能被4整除.因此,22416l h b a -≠+,从而2b 是偶数,b 是整数,b c m a --=2 ^也是整数.在(2)成立时,c bx ax ++2不一定对x 的整数值都是平方数.例如,a=2,b=2,c=4,x=1时,c bx ax ++2=8不是平方数. 另解(2):令x=±2,得4a+2b+c=h 2,4a —2b+c=k 2,其中h 、k 为整数.两式相减得 4b=h 2—k 2=(h+k)(h —k).由于4b=2(2b)是偶数,所以h 、k 的奇偶性相同,(h+k)(h —k)能被4整除. 因此,b 是整数,b c m a --=2也是整数.学力训练(A 级)1.(山东省竞赛题)如果a -是整数,那么a 满足( )A .a>0,且a 是完全平方数B .a<0,且-a 是完全平方数C .a ≥0,且a 是完全平方数D .a ≤0,且—a 是完全平方数 2.设n 是自然数,如果n 2的十位数字是7,那么n 2的末位数字是( )A .1B .4C .5D .63.(五羊杯,初二)设自然数N 是完全平方数,N 至少是3位数,它的末2位数字不是00,且去掉此2位数字后,剩下的数还是完全平方数,则N 的最大值是 . 4.使得n 2—19n+95为完全平方数的自然数n 的值是 .5.自然数n 减去52的差以及n 加上37的和都是整数的平方,则n= . 6.两个两位数,它们的差是56,它们的平方数的末两位数字相同,则这两个数分别是.7.是否存在一个三位数abc (a ,b ,c 取从1到9的自然数),使得cab bca abc ++为完全平方数? 8.求证:四个连续自然数的积加l ,其和必为完全平方数. (B 级)1.若x 是自然数,设1222234++++=x x x x y ,则 ( ) A .y 一定是完全平方数 B .存在有限个,使y 是完全平方数 C .y 一定不是完全平方数 D .存在无限多个,使y 是完全平方数2.已知a 和b 是两个完全平方数,b 的个位数字为l ,十位数字为x ;b 的个位数为6,十位数字为y ,则( )A .x ,y 都是奇数B .x ,y 都是偶数C .x 是奇数,y 是偶数D .x 为偶数,y 为奇数 3.若四位数xxyy 是一个完全平方数,则这个四位数是 . 4.设m 是一个完全平方数,则比m 大的最小完全平方数是 .5.(全国联赛题)设平方数y 2是11个连续整数的平方和,则y 的最小值是 .6.(北京市竞赛,初二)p 是负整数,且2001+p 是—个完全平方数,则p 的最大值为 . 7.有若干名战士,恰好组成一个八列长方形队列.若在队列中再增加120人或从队列中减去120人后,都能组成一个正方形队列.问原长方形队列共有多少名战士? 8.证明:10006999309个各n n 是一个完全平方数.。

数学知识点:完全平方数和完全平方式

数学知识点:完全平方数和完全平方式

数学知识点:完全平方数和完全平方式填空题1.已知a+b=6,ab=3,则a2+b2=_________.2.若=5,则=_________.3.x2﹣3x+_________=(x﹣_________)2.4.已知a2+b2=13,ab=6,则a+b的值是_________.5.已知x2+y2+4x﹣6y+13=0,那么x y=_________6.已知=6,则=_________.7.若(x﹣m)2=x2+x+a,则m=_________,a=_________.8.x2+kx+9是完全平方式,则k=_________.9.若4x2﹣kxy+y2是一个完全平方式,则k=_________.10.若9x2﹣kxy+4y2是一个完全平方式,则k的值是_________.11.若x2+3x+m是一个完全平方式,则m=_________.12.若9x2+mxy+16y2是一个完全平方式,则m=_________.13.多项式4y2+my+9是完全平方式,则m=_________.14.若4x2+mx+25是一个完全平方式,则m的值是_________.15.已知x2﹣mxy+y2是完全平方式,则m=_________.16.如果x2+mx+16是一个完全平方式,那么m=_________.17.若x2﹣ax+16是一个完全平方式,则a=_________.18.若x2﹣2ax+16是完全平方式,则a=_________.19.若a2+2ka+9是一个完全平方式,则k等于_________.20.若x2+mx+1是完全平方式,则m=_________.21.若x2+mx+4是完全平方式,则m=_________.22.代数式4x2+3mx+9是完全平方式,则m=_________.23.若二次三项式4x2+ax+9是一个完全平方式,则a=_________.24.多项式x2+2mx+64是完全平方式,则m=_________.解答题25.(2009•佛山)阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.例如:(x﹣1)2+3、(x﹣2)2+2x、(x﹣2)2+x2是x2﹣2x+4的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项﹣﹣见横线上的部分).请根据阅读材料解决下列问题:(1)比照上面的例子,写出x2﹣4x+2三种不同形式的配方;(2)将a2+ab+b2配方(至少两种形式);(3)已知a2+b2+c2﹣ab﹣3b﹣2c+4=0,求a+b+c的值.26.已知(x+y)2=49,(x﹣y)2=1,求下列各式的值:(1)x2+y2;(2)xy.28.已知(x+y)2=18,(x﹣y)2=6,求x2+y2及xy的值.29.图①是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为_________;(2)观察图②,三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系是_________;(3)若x+y=﹣6,xy=2.75,则x﹣y=_________;_________(4)观察图③,你能得到怎样的代数恒等式呢?(5)试画出一个几何图形,使它的面积能表示(m+n)(m+3n)=m2+4mn+3n2.30.阅读材料并回答问题:我们知道,完全平方式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,如:(2a+b)(a+b)=2a2+3ab+b2,就可以用图(1)或图(2)等图形的面积表示.(1)请写出图(3)所表示的代数恒等式:_________;(2)试画一个几何图形,使它的面积表示:(a+b)(a+3b)=a2+4ab+3b2;(3)请仿照上述方法另写一个含有a,b的代数恒等式,并画出与它对应的几何图形.数学知识点:完全平方数和完全平方式参考答案与试题解析填空题1.已知a+b=6,ab=3,则a2+b2=30.2.若=5,则=23.a+=253.x2﹣3x+=(x﹣)2.×(3x+4.已知a2+b2=13,ab=6,则a+b的值是±5.5.已知x2+y2+4x﹣6y+13=0,那么x y=﹣86.已知=6,则=32.+a+=36)2+7.若(x﹣m)2=x2+x+a,则m=﹣,a=.,.8.x2+kx+9是完全平方式,则k=±6.9.若4x2﹣kxy+y2是一个完全平方式,则k=±4.10.若9x2﹣kxy+4y2是一个完全平方式,则k的值是±12.11.若x2+3x+m是一个完全平方式,则m=.,)..12.若9x2+mxy+16y2是一个完全平方式,则m=±24.13.多项式4y2+my+9是完全平方式,则m=±12.14.若4x2+mx+25是一个完全平方式,则m的值是±20.15.已知x2﹣mxy+y2是完全平方式,则m=±2.16.如果x2+mx+16是一个完全平方式,那么m=±8.17.若x2﹣ax+16是一个完全平方式,则a=±8.18.若x2﹣2ax+16是完全平方式,则a=±4.19.若a2+2ka+9是一个完全平方式,则k等于±3.20.若x2+mx+1是完全平方式,则m=±2.21.若x2+mx+4是完全平方式,则m=±4.22.代数式4x2+3mx+9是完全平方式,则m=±4.23.若二次三项式4x2+ax+9是一个完全平方式,则a=±12.24.多项式x2+2mx+64是完全平方式,则m=±8.解答题25.(2009•佛山)阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.例如:(x﹣1)2+3、(x﹣2)2+2x、(x﹣2)2+x2是x2﹣2x+4的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项﹣﹣见横线上的部分).请根据阅读材料解决下列问题:(1)比照上面的例子,写出x2﹣4x+2三种不同形式的配方;(2)将a2+ab+b2配方(至少两种形式);(3)已知a2+b2+c2﹣ab﹣3b﹣2c+4=0,求a+b+c的值.)2a+ab+bab+b+﹣26.已知(x+y)2=49,(x﹣y)2=1,求下列各式的值:(1)x2+y2;(2)xy.28.已知(x+y)2=18,(x﹣y)2=6,求x2+y2及xy的值.29.图①是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为(m﹣n)2;(2)观察图②,三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系是(m﹣n)2+4mn=(m+n)2;(3)若x+y=﹣6,xy=2.75,则x﹣y=5;﹣5(4)观察图③,你能得到怎样的代数恒等式呢?(5)试画出一个几何图形,使它的面积能表示(m+n)(m+3n)=m2+4mn+3n2.30.阅读材料并回答问题:我们知道,完全平方式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,如:(2a+b)(a+b)=2a2+3ab+b2,就可以用图(1)或图(2)等图形的面积表示.(1)请写出图(3)所表示的代数恒等式:(2a+b)(a+2b)=2a2+5ab+2b2;(2)试画一个几何图形,使它的面积表示:(a+b)(a+3b)=a2+4ab+3b2;(3)请仿照上述方法另写一个含有a,b的代数恒等式,并画出与它对应的几何图形.(答案不唯一)。

完全平方和平方差公式

完全平方和平方差公式

平方差公式和完全平方公式(一)平方差公式是先平方再减a²-b²= (a+b)(a-b)。

(二)完全平方公式是先加减最后是平方(a±b)²=a²±2ab+b²。

(三)平方差公式是指两个数的和与这两个数差的积,等于这两个数的平方差,这一公式的结构特征:(四)左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数;右边是乘式中两项的平方差,即相同项的平方与相反项的平方差。

公式中的字母可以表示具体的数(正数和负数),也可以表示单项式或多项式等代数式。

(五)该公式需要注意:1.公式的左边是个两项式的积,有一项是完全相同的。

2.右边的结果是乘式中两项的平方差,相同项的平方减去相反项的平方。

3.公式中的a,b 可以是具体的数,也可以是单项式或多项式。

完全平方公式指两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

为了区别,会叫做两数和的完全平方公式,或叫做两数差的完全平方公式。

这个公式的结构特征:1.左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;2.左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内)。

公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式。

(六)该公式需要注意:1.左边是一个二项式的完全平方。

2.右边是二项平方的和,加上(或减去)这两项乘积的二倍,a和b 可是数,单项式,多项式。

3.不论是(a+b)2还是(a-b)2,最后一项都是加号,不要因为前面的符号而理所当然的以为下一个符号。

4.不要漏下一次项。

5.切勿混淆公式。

6.运算结果中符号不要错误。

7.变式应用难,不易于掌握。

完全平方(微课件)

完全平方(微课件)
感谢观看
03
完全平方的应用
在代数式简化中的应用
总结词
完全平方在代数式简化中起到关键作用,通过完全平方公式,可以将复杂的代数式转化为易于处理的形式。
详细描述
完全平方公式是数学中的重要工具,它可以用来简化复杂的代数式。例如,对于形如 (a^2+2ab+b^2) 的式子, 我们可以将其转化为 ((a+b)^2) 的形式,从而更方便地进行计算或化简。
和求解。
解决几何问题
在几何问题中,常常需要利用完 全平方公式计算面积和周长。解 题思路是先将几何图形表示为完 全平方形式,再利用公式进行计
算。
解决物理问题
在物理问题中,常常需要利用完 全平方公式计算位移、速度和加 速度等物理量。解题思路是先将 物理量表示为完全平方形式,证明中的应用
总结词
完全平方在不等式证明中起到重要的桥梁作用,通过完全平方,可以将不等式转化为易于证明的形式 。
详细描述
在证明不等式时,我们经常使用完全平方来转化不等式。例如,对于不等式 (a+b geq 2sqrt{ab}),我们 可以利用完全平方将其转化为 ((sqrt{a}-sqrt{b})^2 geq 0),从而更容易证明其正确性。
例如
$(a+b)^2 = a^2 + 2ab + b^2$,各项系数之和为1+1+1=3,等于首末两项 平方和$a^2+b^2$,中间项系数2是首末两项系数之和1+1的两倍。
02
完全平方的证明
证明方法一:数学归纳法
总结词
数学归纳法是一种证明完全平方的有效方法,通过归纳步骤和基础步骤,逐步推 导证明结论。
在几何图形中的应用

完全平方数的性质

完全平方数的性质

完全平方数及其性质能表示为某个整数的平方的数称为完全平方数,简称平方数。

例如:0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400,441,484,…观察这些完全平方数,可以获得对它们的个位数、十位数、数字和等的规律性的认识。

一、平方数有以下性质:【性质1】完全平方数的末位数只能是0,1,4,5,6,9。

【性质2】奇数的平方的个位数字为奇数,十位数字为偶数。

【性质3】如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数。

推论1:如果一个数的十位数字是奇数,而个位数字不是6,那么这个数一定不是完全平方数。

推论2:如果一个完全平方数的个位数字不是6,则它的十位数字是偶数。

【性质4】(1)凡个位数字是5,但末两位数字不是25的自然数不是完全平方数;(2)末尾只有奇数个“0”的自然数(不包括0本身)不是完全平方数;100,10000,1000000是完全平方数,10,1000,100000等则不是完全平方数。

(3)个位数字为1,4,9而十位数字为奇数的自然数不是完全平方数。

需要说明的是:个位数字为1,4,9而十位数字为奇数的自然数一定不是完全平方数,如:11,31,51,74,99,211,454,879等一定不是完全平方数一定不是完全平方数。

但个位数字为1,4,9而十位数字为偶数的自然数不都是完全平方数。

如:21,44,89不是完全平方数,但49,64,81是完全平方数。

【性质5】偶数的平方是4的倍数;奇数的平方是4的倍数加1。

这是因为 (2k+1)^2=4k(k+1)+1 (2k)^2=4k^2【性质6】奇数的平方是8n+1型;偶数的平方为8n或8n+4型。

【性质7】平方数的形式一定是下列两种之一:3k,3k+1。

【注意:具备以上条件的不一定是完全平方数(如13,21,24,28等)】【性质8】不能被5整除的数的平方为5k±1型,能被5整除的数的平方为5k型。

完全平方公式的起源

完全平方公式的起源

完全平方公式的起源完全平方公式的起源一、简介完全平方公式又称“完全平方定理”,是一种非常实用的数学工具。

其核心思想是将一定的表达式拆分开来可以得到一个平方数,就是所谓的“完全平方公式”。

这项数学工具在有关微积分、线性代数、计算机程序等方面有着重要的应用价值。

二、历史渊源完全平方公式的起源可以追溯到古希腊的哲学家亚里士多德(Aristotle),他在《考虑》一书中首次提到这一概念,但他没能将它表述为公式,也没有给出有效的解决方案。

后来,著名科学家兼数学家莱布尼茨(Leibniz)在17世纪提出“完全平方公式”,归纳出了上式中的加法求解法则,他认为数列中所有的自然数都能够被分解成一系列的完全平方数。

此后,法国数学家伽罗(Galois)又做了进一步的推广,通过改进和整理论证的方式,使完全平方公式实现了进一步的进化。

三、具体概念完全平方公式的定义是,如果(a+b)2=c2,那么就可以说a2+2ab+b2=c2。

也就是求解方程a2+2ab+b2=c2,首先可以用完全平方公式将方程两边拆分成两项组成,一项可以表示成(a+b)2,一项可以表示成c2,解得a=(-b±√b2-4ac)/2a。

四、应用完全平方公式在数学和科技领域有广泛的应用,尤其是在微积分方面更是影响深远。

在微积分的实际应用中,完全平方公式可以帮助解决复杂的数学问题,如求解椭圆曲线、复变函数等。

在线性代数中,它也有着重要的应用,可以帮助解答有关二次函数、矩阵运算等问题。

在计算机程序方面,也可以用它来求解各种数学问题。

此外,完全平方公式还可以解答二次方程的极值问题以及一些复杂的数据拟合等问题。

五、总结完全平方公式是一种重要的数学工具,它的起源可以追溯到古希腊时期,发展至今十分深远。

完全平方公式在数学及科技领域有着重要的应用价值,可以帮助人们解决一系列复杂的数学问题,未来也将继续改善并发挥用处。

初中数学重点梳理:完全平方数

初中数学重点梳理:完全平方数

完全平方数知识定位完全平方数是初等数论中的一个重要内容,由于数论内涵丰富,因此数论问题灵活而富于变化,解答完全平方数问题往往需要较强的分析能力与具备一定的数学素养。

正因为如此,完全平方数的有关问题常常是各层次数学竞赛的主要题源之一。

在处理有关完全平方数问题时,除了要求会熟练地运用某些常用的方法外,更重要的是要善于分析,要学会抓问题的本质特征。

本节介绍一些常见题型和基本解题思想和技巧的方法来提高学生的解题能力,是完全必要的,也是比较符合中学生的认知规律的,本文主要介绍一些适合初中学生解答的完全平方数问题。

知识梳理1、完全平方数的定义一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数,也叫做平方数。

2、完全平方数特征(1)末位数字只能是:0、1、4、5、6、9;反之不成立。

(2)除以3余0或余1;反之不成立。

(3)除以4余0或余1;反之不成立。

(4)约数个数为奇数;反之成立。

(5)奇数的平方的十位数字为偶数;反之不成立。

(6)奇数平方个位数字是奇数;偶数平方个位数字是偶数。

(7)两个相临整数的平方之间不可能再有平方数。

平方差公式:X2-Y2=(X-Y)(X+Y)完全平方和公式:(X+Y)2=X2+2XY+Y2完全平方差公式:(X-Y)2=X2-2XY+Y23、完全平方数的性质性质1:完全平方数的末位数只能是0,1,4,5,6,9。

性质2:奇数的平方的个位数字为奇数,十位数字为偶数。

性质3:如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数性质4:偶数的平方是4的倍数;奇数的平方是4的倍数加1。

性质5:奇数的平方是8n+1型;偶数的平方为8n或8n+4型。

性质6:平方数的形式必为下列两种之一:3k,3k+1。

性质7:不能被5整除的数的平方为5k±1型,能被5整除的数的平方为5k型。

性质8:平方数的形式具有下列形式之一:16m,16m+1,16m+4,16m+9。

第3讲(学生)完全平方公式----讲义

第3讲(学生)完全平方公式----讲义

第3讲 完全平方公式【知识及方法】(一)整式的除法1.单项式除以单项式的法则:单项式相除,把系数、同底数的幂分别相除后,作为商的因式,对于只在被除式里含有的字母,则连同它的_________一起作为商的一个.2.多项式除以单项式的法则:多项式除以单项式,先把这多项式的每一项___________这个单项式,再把所得的商__________.(二)完全平方公式:(a+b )2=a 2+2ab +b 2 (a -b )2=a 2-2ab +b 2其中a 、b 可以是一个数,也可以是一个代数式。

注意公式的逆用【范例及拓展】1.单项式除以单项式【例1】计算:(1)-a 7x 4y 4÷(-43ax 4y 2); (2)2a 2b·(-3b 2)÷(4a b 3).2.多项式除以单项式【例2】计算:(1)(14a 3-7a 2)÷(7a ); (2)(15x 3y 5-10x 4y 4-20x 3y 2)÷(-5x 3y 2).3.完全平方公式例3、⑴、(2a -b )2⑵19982 (3)2012(4).(31x +y )(31x -y )(91x 2-y 2) (5)已知x + y = 5, ,求x -y 之值拓展(1)已知4,1222=+=+y x y x 求xy 的值(2)已知,1)(,3)(22=-=+y x y x 求22y x +的值(3)已知,求的值(4)已知x 2+x-8=0,求代数式x 5+2x 4+4x 3+4x 2-87x+1的值(6)若(x+a)(x+b)=x 2+mx+n,则m=______,n=______,(x÷a+2)(x÷b+2)=_____.平方差公式及完全平分公式一.平方差公式 (a+b)(a –b )=a 2–b 2例题1 20052÷(2006×2004+1) 例题2 已知m=3,n=2.求代数式(m+n)2-(m-n)2的值二.完全平方公式 (a +b )2=a 2+2ab +b 2 (a -b )2=a 2-2ab +b 2例题3 若4x 2+mx+196是一个完全平方式,则m 的值是多少?例题4 的最小值是多少?2011692+--x x 的最大值是多少?训练题一.计算题1.20032–2004×2. (x-y+3)(x-y-3) 3.(3a-2b)(-2b-3a)4. (x2y+4)(x2y-4)-(x2y+2)(x2y-3)5. (2x+3y)(4x+5y)(2x-3y)(-4x+5y)6. 2(3a+1)(1-3a)+(a-2)(2+a)7.97×99×101×103 8. 10.2×9.8 9.(x-3y) 2-(x+3y) 2 10. (2x-3y)(2x+3y)(4x2-9y2)11.(x-1)(x+1)(x2+1)(x4+1) 12. (4x+5y) 2 (4x-5y) 2二.解答题1 . 化简(a-b) 2+b(a-b) 2.已知a2-b2=4,a-b=2, 求(a+b) 2的值3.计算199319922÷(199319912+199319932-2)4.计算:199319922199319912+199319932-2= ?练习计算2119992+200120012-2的结果为.2、平方差公式的逆向应用例1计算:199****1192+9311999932129932-2.逆用多个公式例2、 若 a=19952+19952·19962+19962 求证:a 是一个完全平方数.平方差公式和完全平方公式巩固及拓展练习一.选择题1、若x 2-k xy +16y 2是一个完全平方式,则k 的值是()A.8B.16C.±8D.±162、(x +y )2-M =(x -y )2,则M 为()A.2xyB.±2xyC.4xyD.±4xy3、已知a +a 1=3,则a 2+21a的值是() A.9B.7 C.11D.54.在多项式x 2+xy +y 2,x 2-4x +2,x 2-2x +1,4x 2+1,a 2-b 2,a 2+a +41中是完全平方式的有( ) A.1个 B.2个 C.3个 D.4个5、如果x 2+mx +4是一个完全平方式,那么m 的值是( )A.4B.-4C.±4D.±86、整式(-x -y )( )=x 2-y 2中括号内应填入下式中的()A.-x -yB.-x +yC.x -yD.-x +y7、在下列各多项式乘法中不能用平方差公式的是() A.(m +n )(-m +n ) B.(x 3-y 3)(x 3+y 3) C.(-a -b )(a +b ) D.(31a -b )( 31a +b ) 二.填空题8、用完全平方公式计算:(1)992=___________=_____________=_____________. (2)9x 2+(_________)+y 2=(3x -y )2(3).m 2-4mn +_________=(m -_________)29、(2x -3y )2=_____,(41a +52b )2=_____. 10、9x 2+_____+25y 2=(_____)2;_____+10xy +1=(_____+1)2. 11、用完全平方公式计算1972=( )2=________________=_______.12、x 2-2x +_____=(_____)2;m 2+4mn +_____=( )2.13、(a +b )2=(a -b )2+_____,(x +21)2=x 2+_____. 14、若4x 2+mx +49是一个完全平方式,则m =_____.15、若(x -m )2=x 2+x +a ,则m =_____,a =_____.16、(x +x 1)2=x 2+21x +_____. 17、若(3x +4)2=9x 2-kx +16,则k =_____. 18、41a 2++9b 2=(21a +3b )2. 19、(a -2b )2+(a +2b )2=.20、(5x +3y )·( )=25x 2-9y 220、 (-0.2x -0.4y )( )=0.16y 2-0.04x 221、 (-23x -11y )( )=-49x 2+121y 222、若(-7m +A )(4n +B )=16n 2-49m 2,则A =,B =.23、(1-5n )(1+5n )=_______________ 24、1002-972=(_____+_____)(_____-_____)=_____25、(x -1)(x +1)=_____,(2a +b )(2a -b )=_____,(31x -y )(31x +y )=_____. 26、(x +4)(-x +4)=_________,(x +3y )(_________)=9y 2-x 2,(-m -n )(_________)=m 2-n 227、98×102=(_________)(__________)=( )2-( )2=_________.28、-(2x 2+3y )(3y -2x 2)=__________, (a -b )(a +b )(a 2+b 2)=___________.29、(_____-4b )(_____+4b )=9a 2-16b 2,(_____-2x )(_____-2x )=4x 2-25y 230、(xy -z )(z +xy )=___________,(65x -0.7y )(65x +0.7y )=_____. 31、(41x +y 2)(____________)=y 4-161x 2 三.计算题 32、498233、(a m +1-b n +1)234、 (a +21b )2-(a -21b )235、(x +y )2-2(x +y )(x -y )+(x -y )236、(m +3)2(m -3)237、(x -y )(x +y )-(x +y )2+2y (y -x ),其中x =1,y =3.38、已知(x +y )2=8,(x -y )2=4,求x 2+y 2及xy 的值.39、(2x 2+3y )(3y -2x 2). 40、(p -5)(p -2)(p +2)(p +5).41、(x 2y +4)(x 2y -4)-(x 2y +2)·(x 2y -3).42、设x+y=6,x-y=5,求x2-y243、计算(x+y-1)(x+y+1)44、若m、n为有理数,式子(8m3+2n)(8m3-2n)+(2n-3)(3+2n)的值及n有没有关系?为什么?45、计算a4+(1-a)(1+a)(1+a2)的计算结果46、已知a+b=7,ab=12,求(a-b)2的值.47、如图,是一个机器零件,大圆的半径为r+2,小圆的半径为r-2,求阴影部分的面积.整式的运算A 卷(100分)一.选择题.(每小题3分,共30分)1.代数式:πab x x x abc ,213,0,52,17,52--+-中,单项式共有( )个. A.1个 B.2个 C.3个 D.4个2.下列各式正确的是( )A.2224)2(b a b a +=+ B.C.32622x x x -=÷-D.523)()()(y x x y y x -=-- 3.计算结果为( ) A.591a B.691a C.69a - D. 4.的运算结果是( )A. B. C. D.5.若))((b x a x +-的乘积中不含x 的一次项,则b a ,的关系是( )A.互为倒数B.相等C.互为相反数D.b a ,都为06.下列各式中,不能用平方差公式计算的是( )A.)43)(34(x y y x ---B.)2)(2(2222y x y x +-C.))((a b c c b a +---+D.))((y x y x -+-7.若y b a 25.0及的和仍是单项式,则正确的是( )A.x=2,y=0B.x=-2,y=0C.x=-2,y=1D.x=2,y=18.观察下列算式:12=2,22=4,32=8,42=16,52=32,62=64,72=128,82=256,…… 根据其规律可知108的末位数是 ……………………………………………( )A 、2B 、4C 、6D 、89.如果(3x 2y -2xy 2)÷M =-3x +2y ,则单项式M 等于( )A 、xyB 、-xyC 、xD 、-y10.若A =5a 2-4a +3及B =3a 2-4a +2,则A 及B( )A 、A =B B 、A >BC 、A <BD 、以上都可能成立二.填空题.(每小题4分,共24分) 11.多项式13254242+---x y x y x π是一个 __ 次 __ 项式,其中最高次项的系数为. 12.当k =时,多项式8313322+---xy y kxy x 中不含xy 项. 13.)()()(12y x y x x y n n --⋅--=.14.(1)29___))(________3(x x -=--;(2)-+2)23(y x =2)23(y x -. 15.计算:02397)21(6425.0⨯-⨯⨯-=. 16.若、a b 互为倒数,则20122011b a ⨯=.三.计算题.(每小题5分,共10分)17、25223223)21(})2()]()2{[(a a a a a -÷⋅+-⋅-18、)2(3)121()614121(22332mn n m mn mn n m n m +--÷+--四.用简便方法计算(每小题6分,共18分)22、)21)(12(y x y x --++23、22)2()2)(2(2)2(-+-+-+x x x x2424422222)2()2()4()2(y x y x y x y x ---++五.解答题26.解方程:0)1)(1(3)12)(23()3(2=-++-+--x x x x x (8分)27.已知将32()(34)x mx n x x ++-+乘开的结果不含3x 和2x 项.(10分) (1)求m 、n 的值;(2)求22()()m n m mn n +-+的值。

完全平方数和完全平方式(初三)

完全平方数和完全平方式(初三)

初中数学辅导资料完全平方数和完全平方式内容提要一. 定义1. 如果一个数恰好是某个有理数的平方,那么这个数叫做完全平方数. 例如0,1,0.36,254,121都是完全平方数. 在整数集合里,完全平方数,都是整数的平方.2. 如果一个整式是另一个整式的平方,那么这个整式叫做完全平方式. 如果没有特别说明,完全平方式是在实数范围内研究的.例如:在有理数范围 m 2, (a+b -2)2, 4x 2-12x+9, 144都是完全平方式. 在实数范围 (a+3)2, x 2+22x+2, 3也都是完全平方式.二. 整数集合里,完全平方数的性质和判定1. 整数的平方的末位数字只能是0,1,4,5,6,9.所以凡是末位数字为2,3,7,8的整数必不是平方数.2. 若n 是完全平方数,且能被质数p 整除, 则它也能被p 2整除..若整数m 能被q 整除,但不能被q 2整除, 则m 不是完全平方数.例如:3402能被2整除,但不能被4整除,所以3402不是完全平方数. 又如:444能被3整除,但不能被9整除,所以444不是完全平方数.三. 完全平方式的性质和判定在实数范围内如果 ax 2+bx+c (a ≠0)是完全平方式,则b 2-4ac=0且a>0;如果 b 2-4ac=0且a>0;则ax 2+bx+c (a ≠0)是完全平方式.在有理数范围内当b 2-4ac=0且a 是有理数的平方时,ax 2+bx+c 是完全平方式.四. 完全平方式和完全平方数的关系1. 完全平方式(ax+b )2 中当a, b 都是有理数时, x 取任何有理数,其值都是完全平方数;当a, b 中有一个无理数时,则x 只有一些特殊值能使其值为完全平方数.2. 某些代数式虽不是完全平方式,但当字母取特殊值时,其值可能是完全平方数. 例如: n 2+9, 当n=4时,其值是完全平方数.所以,完全平方式和完全平方数,既有联系又有区别.五. 完全平方数与一元二次方程的有理数根的关系1. 在整系数方程ax 2+bx+c=0(a ≠0)中① 若b 2-4ac 是完全平方数,则方程有有理数根;② 若方程有有理数根,则b 2-4ac 是完全平方数.2. 在整系数方程x 2+px+q=0中① 若p 2-4q 是整数的平方,则方程有两个整数根;② 若方程有两个整数根,则p 2-4q 是整数的平方.例题例1. 求证:五个连续整数的平方和不是完全平方数.证明:设五个连续整数为m -2, m -1, m, m+1, m+2. 其平方和为S.那么S =(m -2)2+(m -1)2+m 2+(m+1)2+(m+2)2=5(m 2+2).∵m 2的个位数只能是0,1,4,5,6,9∴m 2+2的个位数只能是2,3,6,7,8,1∴m 2+2不能被5整除.而5(m 2+2)能被5整除,即S 能被5整除,但不能被25整除.∴五个连续整数的平方和不是完全平方数.例2 m 取什么实数时,(m -1)x 2+2mx+3m -2 是完全平方式?解:根据在实数范围内完全平方式的判定,得当且仅当⎩⎨⎧>-010m △=时,(m -1)x 2+2mx+3m -2 是完全平方式 △=0,即(2m )2-4(m -1)(3m -2)=0.解这个方程, 得 m 1=0.5, m 2=2.解不等式 m -1>0 , 得m>1.即⎩⎨⎧>==125.0m m m 或 它们的公共解是 m=2.答:当m=2时,(m -1)x 2+2mx+3m -2 是完全平方式.例3. 已知: (x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式.求证: a=b=c.证明:把已知代数式整理成关于x 的二次三项式,得原式=3x 2+2(a+b+c)x+ab+ac+bc∵它是完全平方式,∴△=0.即 4(a+b+c)2-12(ab+ac+bc)=0.∴ 2a 2+2b 2+2c 2-2ab -2bc -2ca=0,(a -b)2+(b -c)2+(c -a)2=0.要使等式成立,必须且只需:⎪⎩⎪⎨⎧=-=-=-000a c c b b a解这个方程组,得a=b=c.例4. 已知方程x 2-5x+k=0有两个整数解,求k 的非负整数解.解:根据整系数简化的一元二次方程有两个整数根时,△是完全平方数.可设△= m 2 (m 为整数),即(-5)2-4k=m 2 (m 为整数),解得,k=4252m -. ∵ k 是非负整数,∴ ⎪⎩⎪⎨⎧-≥-的倍数是42502522m m 由25-m 2≥0, 得 5≤m , 即-5≤m ≤5;由25-m 2是4的倍数,得 m=±1, ±3, ±5.以 m 的公共解±1, ±3, ±5,分别代入k=4252m -. 求得k= 6, 4, 0.答:当k=6, 4, 0时,方程x 2-5x+k=0有两个整数解例5. 求证:当k 为整数时,方程4x 2+8kx+(k 2+1)=0没有有理数根.证明: (用反证法)设方程有有理数根,那么△是整数的平方.∵△=(8k )2-16(k 2+1)=16(3k 2-1).设3k 2-1=m 2 (m 是整数).由3k 2-m 2=1,可知k 和m 是一奇一偶,下面按奇偶性讨论3k 2=m 2+1能否成立.当k 为偶数,m 为奇数时,左边k 2是4的倍数,3k 2也是4的倍数;右边m 2除以4余1,m 2+1除以4余2.∴等式不能成立.; 当k 为奇数,m 为偶数时,左边k 2除以4余1,3k 2除以4余3右边m 2是4的倍数,m 2+1除以4余1∴等式也不能成立.综上所述,不论k, m 取何整数,3k 2=m 2+1都不能成立.∴3k 2-1不是整数的平方, 16(3k 2-1)也不是整数的平方.∴当k 为整数时,方程4x 2+8kx+(k 2+1)=0没有有理数根练习题1. 如果m 是整数,那么m 2+1的个位数只能是____.2. 如果n 是奇数,那么n 2-1除以4余数是__,n 2+2除以8余数是___,3n 2除以4的余数是__.3. 如果k 不是3的倍数,那么k 2-1 除以3余数是_____.4. 一个整数其中三个数字是1,其余的都是0,问这个数是平方数吗?为什么?5. 一串连续正整数的平方12,22,32,………,1234567892的和的个位数是__.(1990年全国初中数学联赛题)6. m 取什么值时,代数式x 2-2m(x -4)-15是完全平方式?7. m 取什么正整数时,方程x 2-7x+m=0的两个根都是整数?8. a, b, c 满足什么条件时,代数式(c -b)x 2+2(b -a)x+a -b 是一个完全平方式?9. 判断下列计算的结果,是不是一个完全平方数:① 四个连续整数的积; ②两个奇数的平方和.10. 一个四位数加上38或减去138都是平方数,试求这个四位数.11. 已知四位数aabb 是平方数,试求a, b.12. 已知:n 是自然数且n>1. 求证:2n -1不是完全平方数.13. 已知:整系数的多项式4x 4+ax 3+13x 2+bx+1 是完全平方数,求整数a 和b 的值.14. 已知:a, b 是自然数且互质,试求方程x 2-abx+21(a+b)=0的自然数解. (1990年泉州市初二数学双基赛题)15.恰有35个连续自然数的算术平方根的整数部分相同,那么这个整数是( )(A) 17 (B) 18 (C) 35 (D) 36(1990年全国初中数学联赛题)练习题答案1. 1,2,5,6,7,02. 0,3,33. 04. 不是平方数,因为能被3整除而不能被9整除5. 5。

完全平方式的定义

完全平方式的定义

完全平方式的定义完全平方式是一个数学概念,它指的是一个数可以被平方数整除。

换句话说,如果一个数n能够表示成m的形式,那么n就是一个完全平数。

例如,4、9、16、25等都是完全平数。

在数学中,完全平数是一个重要的概念,它与平方数、因数、素数等数学知识密切相关。

因此,我们有必要深入了解完全平方式的定义及其相关内容。

一、完全平方式的定义完全平方式的定义非常简单,它是指一个数n可以表示成m的形式,其中m为整数。

例如,16=4,25=5,36=6等都是完全平数。

完全平数也可以用另一种方式来表示,即n可以表示成p1^a1 * p2^a2 * … * pn^an的形式,其中p为素数,a为正整数,并且每个a都是偶数。

例如,36=2 * 3,100=2 * 5等都是完全平数。

二、完全平数的性质完全平数有许多有趣的性质,下面列举一些常见的性质。

1. 完全平数的个数是无限的。

证明:假设完全平数的个数有限,那么我们可以将它们按照大小排序,设最大的完全平数为N。

由于完全平数是无限的,所以一定存在一个更大的完全平数M>M,且M<N,这与N是最大的完全平数矛盾,因此假设不成立,完全平数的个数是无限的。

2. 完全平数的奇数次方根是无理数。

证明:假设√n是一个有理数,即√n=p/q,其中p和q互质。

那么n=p/q,即nq=p。

由于p是完全平数,所以p也是完全平数。

设p=m,那么nq=m,即n可以表示成m/q的形式,而这与n是完全平数矛盾,因此假设不成立,完全平数的奇数次方根是无理数。

3. 完全平数的因数个数是奇数。

证明:假设n是一个完全平数,即n=m。

那么n的因数可以表示成m的因数的平方。

设m的因数个数为k,那么n的因数个数为k。

由于k是奇数,所以k也是奇数,因此完全平数的因数个数是奇数。

4. 完全平数的因数和是完全平数。

证明:假设n是一个完全平数,即n=m。

那么n的因数可以表示成m的因数的平方。

设m的因数为p1、p2、…、pk,那么n的因数可以表示成p1、p2、…、pk的形式。

学好完全平方公式的三点提示

学好完全平方公式的三点提示

学好完全平方公式的三点提示完全平方公式是两个形式相同的多项式相乘得到的公式,它的应用十分广泛,是教材中的重点和难点.那么如何掌握完全平方公式呢?下面给予三点提示,供参考.一、意义特征要牢记 1、完全平方公式:(1)(a+b)2=a 2+2ab+b 2 ;(2)(a -b)2=a 2-2ab+b 22、文字描述:这两个公式的左边是一个二项式的完全平方,右边是三项式,而且每一项都是二次式,其中有两项是公式左边二项式中每一项的平方,而第三项是左边二项式中两项乘积的2倍(或-2倍).可用以下口诀来记忆:“头平方和尾平方,头(乘)尾两倍在中央,中间符号是一样”.这里的“头”指的是a ,“尾”指的是b .这两个公式实质上是统一的,即都是二项式的平方展开式.其中第一个公式是基本的,第二个公式可由第一个公式导出.如:(a-b )2=[a+(-b )]2=a 2+2a (-b )+(-b )2= a 2-2ab+b 2.3、完全平方公式的几何意义图1ababb 2a 2b aba 图2(a -b )b (a -b )b(a -b)2b 2ba ba在图1中,大正方形的面积是(a+b)2,它等于两个小正方形的面积a 2、b 2及两个等积的长方形面积ab 的和,因此有(a+b)2=a 2+2ab+b 2.在图2中,大正方形的面积是a 2,它等于两个小正方形的面积b 2、(a -b)2及两个等积的长方形面积(a-b)b 的和,因此有(a -b)2=a 2-2(a-b)b-b 2= a 2-2ab+b 2.二、两个公式的区别要清楚在运用完全平方公式时,经常会出现类似于(a+b)2=a 2+b 2、(a -b)2=a 2 -b 2的错误.要注意从以下几个方面进行区别:(1)意义不同:(a+b)2表示数a 与数b 和的平方,(a -b)2表示数a 与数b 差的平方;而a 2+b 2表示数a 的平方与数b 的平方和,a 2-b 2表示数a 的平方与数b 的平方差.(2)读法不同:(a+b)2读作两数a 、b 和的平方,(a -b)2读作两数a 、b 差的平方;而a 2+b 2读作两数a 、b 平方的和,a 2-b 2读作两数a 、b 平方的差.(3)运算顺序不同:(a+b)2的运算顺序是先算a+b ,然后再算和的平方,(a -b)2的运算顺序是先算a -b ,然后再算差的平方;而a 2+b 2是先算a 2与b 2,再求和a 2+b 2,a 2-b 2是先算a 2与b 2,再求差a 2-b 2.(4)一般情况下它们的值不相等:如当a=2,b=1时,(a+b)2=(2+1)2= 32=9,(a -b)2=(2-1)2=12=1;而a 2+b 2= 22+12=5,a 2-b 2= 22-12=3.三、应用方法要掌握完全平方公式中的字母可以表示具体的数,也可以表示单项式,还可以表示多项式及各种代数式.应用时要认真观察题目是否符合公式的特征和条件,变形后是否符合公式的特征和条件,若符合,再把公式中的字母同具体题目中的数或式对照,再逐项对照着计算;若不符合就不能应用公式.要搞清楚公式中各项的符号,灵活地进行公式的各种变形应用.例1、计算222213⎪⎭⎫⎝⎛--y x xy分析:把23xy -看成a ,y x 221看成b ,原式即为两项差的平方,然后套用完全平方差公式.解:222213⎪⎭⎫⎝⎛--y x xy=()()⎪⎭⎫⎝⎛---y x xy xy222221323+(y x 221)2=2433424139y x y x y x ++例2、计算:(a-2b-c )2分析:可以把(a-2b )看作公式中a ,把c 看作公式中的b ,然后套用完全平方差公式. 解:2222)2(2)2(])2[()2(c c b a b a c b a c b a +---=--=-- =2a bc ac abc b a c bc ac b ab 4244424422222+--++=++-+-. 说明:本题还可以进行如下变形:222]2)[()2(b c a c b a --=--或22)]2([)2(c b a c b a +-=--完全平方公式应用错例分析完全平方公式是乘法公式中的重要组成部分,它能帮助同学们简捷、灵活的完成整式的乘法运算,但在运用公式解题的过程中,却经常出现这样或那样的错误,现将典型错例进行评析.一、漏掉“中间项” 例1 计算:(a+3)2 错解:(a+3)2=a 2+9分析:完全平方公式的结果有三项:首平方,末平方,乘积的2倍写中央.因此,运用公式时不要漏掉乘积项.不能将完全平方公式与平方差公式混淆.正解:(a+3)2=a 2+6a+9 二、“中间项”漏乘2例2 计算(2y+21)2错解:(2y+21)2 = 4y 2+2y ×21+41 分析:没有理解完全平方公式的中间项“2ab ”中2的意义,2y 中的2表示首项的一部分,不是乘积的2倍.防止发生这样错误的关键是要将题目中项与公式中的项进行对应,一定要找准哪个代表字母a ,哪个代表字母b .正解:(2y+21)2 = 4y 2+2⨯2y ⨯21+41=4y 2+2y+41三、“-”处理错误例3 计算(-t-1) 2错解:(-t-1) 2=t 2 -2t+1 或 (-t-1) 2= -t 2 +2t+1分析:本题可以看成首项-t 与末项1的差的平方,应把-t 看做一个整体. 正解:(-t-1) 2=(-t) 2-2 (-t) ×1 +12=t 2+2t+1. 四、系数未平方 例4 计算(3x-2y) 2错解:(3x-2y) 2=3x 2-12xy+2y 2分析:首项3x 与末项2y 都应看成一个整体进行平方. 正解:(3x-2y) 2 = (3x)2-12xy+(2y)2 = 9x 2-12xy+4y 2 五、问题考虑不全面例5 已知x 2-2mx+1是一个完全平方式,则m= 错解:因为12=1由乘积项-2mx=2x ×1得m=-1.分析:错解忽略了另一种情况:因为(-1) 2=1,由-2mx=2x ×(-1)得m=1,所以m=±1. 正解:m=±1. 六、运算顺序错误 例6 计算2(a-) 2 错解:2(a-2b ) 2=(2a-b) 2 分析:由乘方的定义知:2(a-2b ) 2=2(a-2b )(a-2b )=(2a-b) (a-2b),这与(2a-b) 2的结果是不相等的.因此,应按照运算顺序先算乘方,再算乘除进行化简.正解:2(a-2b ) 2=2(a 2-ab+41b 2)=2a 2-2ab+21b 2. 总之,运用完全平方公式进行整式的运算时,应牢固掌握公式的实质,并与其它相关法则、运算顺序有机的结合,才能简便、准确地进行整式的运算.完全平方公式学习导航1.完全平方公式有两个:2222)(b ab a b a ++=+,2222)(b ab a b a +-=-.即,两数和(或差)的平方,等于这两个数的平方和,加上(或者减去)这两个数的积的2倍.这两个公式叫做完全平方公式.它们可以合写在一起,为2222)(b ab a b a ++=±.记忆口诀:“首平方、尾平方,2倍乘积在中央”.2.公式的条件是:两数和的平方或两数差的平方.3.公式的结果是:这两数的平方和,加上(或减去)这两数积的2倍.4.公式的特征是:左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上(这两项相加时)或减去(这两项相减时)这两项乘积的2倍.公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等代数式.只要符合这一公式的结构特征,就可以运用这一公式.5. 完全平方公式的几何意义如图1,大正方形的面积可以表示为2)(b a +,也可以表示为IV III II I S S S S S ++=,同时22222b ab a b ab ab a S ++=+++=.从而验证了完全平方公式2222)(b ab a b a ++=+.6.完全平方公式重难点重点1 (1)公式右边是这两个数的平方和与这两个数乘积的2倍的和(差)。

初二所有数学公式归纳总结

初二所有数学公式归纳总结

初二所有数学公式归纳总结大家都知道,学习数学,什么都不多,公式最多。

一起来看看初二的公式都有哪些吧。

下面是店铺分享给大家的初二所有数学公式归纳,希望大家喜欢!初二所有数学公式归纳(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。

如果把乘法公式反过来就是把多项式分解因式。

于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。

这种分解因式的方法叫做运用公式法。

(二)平方差公式1.平方差公式(1)式子: a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。

这个公式就是平方差公式。

(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。

这里只要将多项式看成一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

(五)分组分解法我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am +an)+(bm+ bn)=a(m+ n)+b(m +n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am +an)+(bm+ bn)=a(m+ n)+b(m+ n)=(m +n)•(a +b).这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:① 列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

完全平方数和完全平方式

完全平方数和完全平方式
第三十一讲 完全平方数和完全平方式 设n是自然数,若存在自然数m,使得n=m2,则称n是一个完全平方数(或平方数).常见的题型有:判断一个数是否是完全平方数;证明一个数不是完全平方数;关于存在性问题和其他有关问题等.最常用的性质有: (1)任何一个完全平方数的个位数字只能是0,1,4,5,6,9,个位数字是2,3,7,8的数一定不是平方数; (2)个位数字和十位数字都是奇数的两位以上的数一定不是完全平方数,个位数字为6,而十位数字为偶数的数,也一定不是完全平方数; (3)在相邻两个平方数之间的数一定不是平方数;(4)任何一个平方数必可表示成两个数之差的形式; (5)任何整数平方之后,只能是3n或3n+1的形式,从而知,形如3n+2的数绝不是平方数;任何整数平方之后只能是5n,5n+1,5n+4的形式,从而知5n+2或5n+3的数绝不是平方数; (6)相邻两个整数之积不是完全平方数; (7)如果自然数n不是完全平方数,那么它的所有正 因数的个数是偶数;如果自然数n是完全平方数,那么它的所有正因数的个数是奇数; (8)偶数的平方一定能被4整除;奇数的平方被8除余1,且十位数字必是偶数. 例题求解 【例1】 n是正整数,3n+1是完全平方数,证明:n+l是3个完全 平方数之和. 思路点拨 设3n+1=m2,显然3卜m,因此,m=3k+1或m=3k+2(k是正整数). 若rn=3k+1,则 . ∴ n+1=3k2+2k+1= k2+ k2+( k+1)2. 若m=3k+2,则 ∴ n+1=3k2+4k+2= k2+(k+1)2+( k+1)2. 故n+1是3个完全平方数之和. 【例2】一个正整数,如果加上100是一个平方数,如果加上168,则是另一个平方数,求这个正整数. 思路点拨 引入参数,利用奇偶分析求解.设所求正整数为x,则 x+ 100=m2 ----① x+168==n2 -----② 其中m,n 都是正整数, ②―①得n2―m2 =68,即 (n―m)(n+m)=22×17.---- ③ 因n―m,n+m具有相同的奇偶性,由③知n―m,n+m都是偶数.注意到0<n―m<n+m,由③可得 . 解得n=18.代人②得x=156,即为所求. 【例3】 一个正整数若能表示为两个正整数的平方差,则称这个正整数为“智慧数”,比如16=52―32,16就是一个“智慧数”.在正整数中从1开始数起,试问第1998个“智慧数”是哪个数?并请你说明理由. 思路点拨 1不能表为两个正整数的平方差,所以1不是“智慧数”.对于大于1的奇正整数2k+1,有2k+1=(k+1)2-k2(k=1,2,…).所以大于1的奇正整数都是“智慧数”. 对于被4整除的偶数4k,有4k=(k+1)2―(k―1)2 (k=2,3,…).即大于4的被4整除的数都是“智慧数”,而4不能表示为两个正整数平方差,所以4不是“智慧数”. 对于被4除余2的数4k+2 (k=0,1,2,3,…),设4k+2=x2―y2=(x+y)(x-y),其中x,y为正整数,当x,y奇偶性相同时,(x+y)(x-y)被4整除,而4k+2不被4整除;当x,y奇偶性相异时,(x+y)(x-y)为奇数,而4k+2为偶数,总得矛盾.所以不存在自然数x,y使得x2―y2=4k+2.即形如4k+2的数均不为“智慧数”. 因此,在正整数列中前四个正整数只有3为“智慧数”,此后,每连续四个数中有三个“智慧数”. 因为1998=(1+3×665)+2,4×(665+1)=2664,所以2664是第1996个“智慧数”,2665是第1997个“智慧数”,注意到2666不是“智慧数”,因此2667是第1998个“智慧数”,即第1998个“智慧数”是2667. 【例4】(太原市竞赛题)已知:五位数 满足下列条件: (1)它的各位数字均不为零; (2)它是一个完全平方数; (3)它的万位上的数字a是一个完全平方数,干位和百位上的数字顺次构成的两位数 以及十位和个位上的数字顺次构成的两位数 也都是完全平方数. 试求出满足上述条件的所有五位数. 思路点拨 设 ,且 (一位数), (两位数), (两位数),则 ① 由式①知 ② 比较式①、式②得n2=2mt. 因为n2是2的倍数,故n也是2的倍数,所以,n2是4的倍数,且是完全平方数. 故n2=16或36或64. 当n2=16时,得 ,则m=l,2,4,8,t=8,4,2,1,二解不合条件,舍去; 故 或41616. 当n2=36时,得 .则m=2,3,1,t=9,6,18.最后一解不合条件,舍去. 故 或93636. 当n2= 64时,得 .则m=1,2,4,8,t=32,16,8,4都不合条件,舍去. 因此,满足条件的五位数只有4个:11 664,41 616,43 681,93 636. 【例5】 (2002年北京)能 够找到这样的四个正整数,使得它们中任两个数的积与2002的和都是完全平方数吗?若能够,请举出一例;若不能够;请说明理由. 思路点拨 不能找到这样的四个正整数,使得它们中任两个数的积与2002的和都是完全平方数. 理由如下: 偶数的平方能被4整除,奇数的平方被4除余1,也就是正 整数的平方被4除余0或1.若存在正整数满足 ; =1,2,3,4,rn是正整数;因为2002被4除余2,所以 被4除应余2或3. (1)若正整数n1,n2,n3,n4中有两个是偶数,不妨设n1,n2是偶数,则 被4除余2,与正整数的平方被4除余0或1不符,所以正整数n1,n2,n3,n4中至多有―个是偶数,至少有三个是奇数. (2)在这三个奇数中,被4除的余数可分为余1或3两类,根据抽屉原则,必有两个奇数属于同一类,则它们的乘积被4除余1,与 被4除余2或3的结论矛盾. 综上所述,不能找到这样的四个正整数,使得褥它们中任两个数的积与2002的和都是完全平方数. 【例6】 使得(n2―19n+91)为完全平方数的自然数n的个数是多少? 思路点拨 若(n2―19n+91)处在两个相邻整数的完全平方数之间,则它的取值便固定了. ∵ n2一19n+91=(n-9)2 +(10一n) 当n>10时,(n-10)2<n2-19n+19<(n-9)2 ∴ 当n>10时(n2―19n+19)不会成为完全平方数 ∴ 当n≤10时,(n2―19n+91)才是完全平方数 经试算,n=9和n=10时,n2―19n+91是完全平方数. 所以满足题意的值有2个. 【例7】 (“我爱数学”夏令营)已知 的值都是1或―1,设m是这2002个数的两两乘积之和. (1)求m的最大值和最小值,并指出能达到最大值、最小值的条件; (2 )求m的最小正值,并指出能达到最小正值的条件. 思路点拨(1) , . 当 或 时,m取最大值2003001. 当 中恰有1001个1,1001个 时,m取最小值―1001. (2)因为大于2002的最小完全平方数为452=2025,且 必为偶数,所以,当 或 ; 即 中恰有1024个1,978个 或恰有1024个 ,978个1时,m取最小值 . 【例8】 (全国竞赛题)如果对一切x的整数值,x的二次三项式 都是平方数(即整数的平方),证明: (1) 2a、2b都是整数; ( 2)a、b、c都是整数,并且c是平方数. 反过来,如果(2) 成立,是否对一切x的整数值, 的值都是平方数? 思路点拨 (1) 令x=0,得c=平方数= ; 令x=±1,得 , ,其中m、n都是整数.所以, , 都是整数. (2) 如果2b是奇数2k+l(k是整数),令x=4得 ,其中h是整数. 由于2a是整数,所以16a被4整除,有 除以4余2. 而 ,在h 、l的奇偶性不同时, 是奇数;在h、l的奇偶性相同时, 能被4整除. 因此, ,从而2b是偶数,b是整数, ^也是整数. 在(2)成立时, 不一定对x的整数值都是平方数.例如,a=2,b=2,c=4,x=1时, =8不是平方数.另解(2): 令x=±2,得4a+2b+c=h2,4a―2b+c=k2,其中h、k为整数.两式相减得 4b=h2―k2=(h+k)(h―k). 由于4b=2(2b)是偶数,所以h、k的奇偶性相同,(h+k)(h―k)能被4整除. 因此,b是整数, 也是整数.

完全平方数

完全平方数

完全平方数数学上,平方数,或称完全平方数,是指可以写成某个整数的平方的数,即其平方根为整数的数。

例如,9 = 3 × 3,它是一个平方数。

平方数也称正方形数,若n 为平方数,将n 个点排成矩形,可以排成一个正方形。

若将平方数概念扩展到有理数,则两个平方数的比仍然是平方数,例如,(2 × 2) / (3 × 3) = 4/9 = 2/3 × 2/3。

若一个整数没有除了 1 之外的平方数为其因子,则称其为无平方数因数的数。

一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数,也叫做平方数。

例如:1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400,4 41,484,529…观察这些完全平方数,可以获得对它们的个位数、十位数、数字和等的规律性的认识。

下面我们来研究完全平方数的一些常用性质:性质1:完全平方数的末位数只能是0,1,4,5,6,9。

性质2:奇数的平方的个位数字为奇数,偶数的平方的个位数一定是偶数。

证明奇数必为下列五种形式之一:10a+1,10a+3,10a+5,10a+7,10a+9分别平方后,得(10a+1)^2=100a^2+20a+1=20a(5a+1)+1(10a+3)^2=100a^2+60a+9=20a(5a+3)+9(10a+5)^2=100a^2+100a+25=20 (5a^2+5+1)+5(10a+7)^2=100a^2+140a+49=20 (5a^2+7+2)+9(10a+9)^2=100a^2+180a+81=20 (5a^2+9+4)+1综上各种情形可知:奇数的平方,个位数字为奇数1,5,9;十位数字为偶数。

性质3:如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学竞赛辅导资料(初三2)
完全平方数和完全平方式
甲内容提要
一定义
1. 如果一个数恰好是某个有理数的平方,那么这个数叫做完全平方数. 例如0,1,0.36,25
4,121都是完全平方数. 在整数集合里,完全平方数,都是整数的平方.
2. 如果一个整式是另一个整式的平方,那么这个整式叫做完全平方式. 如果没有特别说明,完全平方式是在实数范围内研究的.
例如:
在有理数范围 m 2, (a+b -2)2, 4x 2-12x+9, 144都是完全平方式. 在实数范围 (a+3)2, x 2+22x+2, 3也都是完全平方式.
二. 整数集合里,完全平方数的性质和判定
1. 整数的平方的末位数字只能是0,1,4,5,6,9.所以凡是末位数字为2,3,7,8的整数必不是平方数.
2. 若n 是完全平方数,且能被质数p 整除, 则它也能被p 2整除..
若整数m 能被q 整除,但不能被q 2整除, 则m 不是完全平方数.
例如:3402能被2整除,但不能被4整除,所以3402不是完全平方数. 又如:444能被3整除,但不能被9整除,所以444不是完全平方数.
三. 完全平方式的性质和判定
在实数范围内
如果 ax 2+bx+c (a ≠0)是完全平方式,则b 2-4ac=0且a>0;
如果 b 2-4ac=0且a>0;则ax 2+bx+c (a ≠0)是完全平方式.
在有理数范围内
当b 2-4ac=0且a 是有理数的平方时,ax 2+bx+c 是完全平方式.
四. 完全平方式和完全平方数的关系
1. 完全平方式(ax+b )2 中
当a, b 都是有理数时, x 取任何有理数,其值都是完全平方数;
当a, b 中有一个无理数时,则x 只有一些特殊值能使其值为完全平方数.
2. 某些代数式虽不是完全平方式,但当字母取特殊值时,其值可能是完全平方数. 例如: n 2+9, 当n=4时,其值是完全平方数.
所以,完全平方式和完全平方数,既有联系又有区别.
五. 完全平方数与一元二次方程的有理数根的关系
1. 在整系数方程ax 2+bx+c=0(a ≠0)中
① 若b 2-4ac 是完全平方数,则方程有有理数根;
② 若方程有有理数根,则b 2-4ac 是完全平方数.
2. 在整系数方程x 2+px+q=0中
① 若p 2-4q 是整数的平方,则方程有两个整数根;
② 若方程有两个整数根,则p 2-4q 是整数的平方.
乙例题
例1. 求证:五个连续整数的平方和不是完全平方数.
证明:设五个连续整数为m -2, m -1, m, m+1, m+2. 其平方和为S.
那么S =(m -2)2+(m -1)2+m 2+(m+1)2+(m+2)2
=5(m 2+2).
∵m 2的个位数只能是0,1,4,5,6,9
∴m 2+2的个位数只能是2,3,6,7,8,1
∴m 2+2不能被5整除.
而5(m 2+2)能被5整除,
即S 能被5整除,但不能被25整除.
∴五个连续整数的平方和不是完全平方数.
例2 m 取什么实数时,(m -1)x 2+2mx+3m -2 是完全平方式?
解:根据在实数范围内完全平方式的判定,得
当且仅当⎩⎨⎧>-0
10m △=时,(m -1)x 2+2mx+3m -2 是完全平方式 △=0,即(2m )2-4(m -1)(3m -2)=0.
解这个方程, 得 m 1=0.5, m 2=2.
解不等式 m -1>0 , 得m>1.
即⎩
⎨⎧>==125.0m m m 或 它们的公共解是 m=2.
答:当m=2时,(m -1)x 2+2mx+3m -2 是完全平方式.
例3. 已知: (x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式.
求证: a=b=c.
证明:把已知代数式整理成关于x 的二次三项式,得
原式=3x 2+2(a+b+c)x+ab+ac+bc
∵它是完全平方式,
∴△=0.
即 4(a+b+c)2-12(ab+ac+bc)=0.
∴ 2a 2+2b 2+2c 2-2ab -2bc -2ca=0,
(a -b)2+(b -c)2+(c -a)2=0.
要使等式成立,必须且只需:
⎪⎩
⎪⎨⎧=-=-=-000a c c b b a
解这个方程组,得a=b=c.
例4. 已知方程x 2-5x+k=0有两个整数解,求k 的非负整数解.
解:根据整系数简化的一元二次方程有两个整数根时,△是完全平方数.
可设△= m 2 (m 为整数),
即(-5)2-4k=m 2 (m 为整数),
解得,k=4
252
m -. ∵ k 是非负整数,
∴ ⎪⎩⎪⎨⎧-≥-的倍数
是42502522m m 由25-m 2≥0, 得 5≤m , 即-5≤m ≤5;
由25-m 2是4的倍数,得 m=±1, ±3, ±5.
以 m 的公共解±1, ±3, ±5,分别代入k=4
252
m -. 求得k= 6, 4, 0.
答:当k=6, 4, 0时,方程x 2-5x+k=0有两个整数解
例5. 求证:当k 为整数时,方程4x 2+8kx+(k 2+1)=0没有有理数根.
证明: (用反证法)设方程有有理数根,那么△是整数的平方.
∵△=(8k )2-16(k 2+1)=16(3k 2-1).
设3k 2-1=m 2 (m 是整数).
由3k 2-m 2=1,可知k 和m 是一奇一偶,
下面按奇偶性讨论3k 2=m 2+1能否成立.
当k 为偶数,m 为奇数时,
左边k 2是4的倍数,3k 2也是4的倍数;
右边m 2除以4余1,m 2+1除以4余2.
∴等式不能成立.; 当k 为奇数,m 为偶数时,
左边k 2除以4余1,3k 2除以4余3
右边m 2是4的倍数,m 2+1除以4余1
∴等式也不能成立.
综上所述,不论k, m 取何整数,3k 2=m 2+1都不能成立.
∴3k 2-1不是整数的平方, 16(3k 2-1)也不是整数的平方.
∴当k 为整数时,方程4x 2+8kx+(k 2+1)=0没有有理数根
丙练习46
1. 如果m 是整数,那么m 2+1的个位数只能是____.
2. 如果n 是奇数,那么n 2-1除以4余数是__,n 2+2除以8余数是___,3n 2除以4
的余数是__.
3. 如果k 不是3的倍数,那么k 2-1 除以3余数是_____.
4. 一个整数其中三个数字是1,其余的都是0,问这个数是平方数吗?为什么?
5. 一串连续正整数的平方12,22,32,………,1234567892的和的个位数是__.
(1990年全国初中数学联赛题)
6. m 取什么值时,代数式x 2-2m(x -4)-15是完全平方式?
7. m 取什么正整数时,方程x 2-7x+m=0的两个根都是整数?
8. a, b, c 满足什么条件时,代数式(c -b)x 2+2(b -a)x+a -b 是一个完全平方式?
9. 判断下列计算的结果,是不是一个完全平方数:
① 四个连续整数的积; ②两个奇数的平方和.
10. 一个四位数加上38或减去138都是平方数,试求这个四位数.
11. 已知四位数aabb 是平方数,试求a, b.
12. 已知:n 是自然数且n>1. 求证:2n -1不是完全平方数.
13. 已知:整系数的多项式4x 4+ax 3+13x 2+bx+1 是完全平方数,求整数a 和b 的值.
14. 已知:a, b 是自然数且互质,试求方程x 2-abx+2
1(a+b)=0的自然数解. (1990年泉州市初二数学双基赛题)
15.恰有35个连续自然数的算术平方根的整数部分相同,那么这个整数是( )
(A) 17 (B) 18 (C) 35 (D) 36
(1990年全国初中数学联赛题)
答案:
1. 1,2,5,6,7,0
2. 0,3,3
3. 0
4. 不是平方数,因为能被3整除而不能被9整除
5. 5。

因为平方数的个位数是
(1+4+9+6+5+6+9+4+1+0)×12345678+(1+4+9+6+5+6+9+4+1) 即个位数为5×8+5
6. 3,5
7. 12,10,6
8. a=b,a=c 且c>b
9. 都不是
10. 1987. ∵⎪⎩⎪⎨⎧=-=+2213838B
x A x A 2-B 2=176=2×2×2×2×11 ⎩⎨⎧=-=+B A B A …… 11. 7744(882). ∵b a aabb 011⨯=是平方数, a+b 是11的倍数
∴可从⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==9
256473829b a b a b a b a b a 中检验,得出答案. 12 用反证法,设2n -1=A 2,A 必是奇数, 设A =2k+1……
13 ⎩⎨⎧==612b a ⎩
⎨⎧-=-=612b a 14 ⎩⎨
⎧==3
1b a x 1=1, x 2=2。

相关文档
最新文档