2020-2021学年九年级数学上册 第二十五章 概率初步 25.3 用频率估计概率教案2 (全国通
人教版九年级数学上册新第25章 25.3用频率估计概率
初中数学试卷新人教版数学九年级上册第25章25.3用频率估计概率课时作业一、选择题1、绿豆在相同条件下的发芽试验,结果如下表所示:每批粒数n100 300 400 600 1000 2000 3000 发芽的粒数m96 282 382 570 948 1912 2850 发芽的频数nm0.960 0.940 0.955 0.950 0.948 0.956 0.950则绿豆发芽的概率估计值是()A.0.96 B.0.95 C.0.94 D.0.90答案:B知识点:利用频率估计概率解析:解答:x=(0.960+0.940+0.955+0.950+0.948+0.956+0.950)÷7≈0.95,当n足够大时,发芽的频率逐渐稳定于0.95,故用频率估计概率,绿豆发芽的概率估计值是0.95.故选B.分析:考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.本题考查了绿豆种子发芽的概率的求法.对于不同批次的绿豆种子的发芽率往往误差会比较大,为了减少误差,我们经常采用多批次计算求平均数的方法.2、某人在做掷硬币实验时,投掷m次,正面朝上有n次(即正面朝上的频率是p= nm).则下列说法中正确的是()A.P一定等于12, B.P一定不等于12, C.多投一次,P更接近12, D.投掷次数逐渐增加,P稳定在12附近答案:B知识点:利用频率估计概率解析:解答:∵硬币只有正反两面,∴投掷时正面朝上的概率为12,根据频率的概念可知投掷次数逐渐增加,P稳定在12附近.故选D.分析:考查利用频率估计概率.大量反复试验下频率稳定值即概率.利用频率估计概率时,只有做大量试验,才能用频率会计概率.3、小明在一只装有红色和白色球各一只的口袋中摸出一只球,然后放回搅匀再摸出一只球,反复多次实验后,发现某种“状况”出现的机会约为50%,则这种状况可能是()A.两次摸到红色球B.两次摸到白色球C.两次摸到不同颜色的球D.先摸到红色球,后摸到白色球答案:C知识点:利用频率估计概率解析:解答:∵摸到红色和白色球的概率均为12,∴反复多次实验后,发现某种“状况”出现的机会约为50%,这种状况可能是两次摸到不同颜色的球.故选C.分析:考查利用频率估计概率.大量反复试验下频率稳定值即概率.根据用频率估计概率的意义,从四个选项中选出出现的机会约为50%的情况.4、一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球()A.28个B.30个C.36个D.42个答案:A知识点:利用频率估计概率解析:解答:由题意得:白球有×8≈28个.故选A.分析:本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.关键是根据白球和黑球的比得到相应的关系式.共摸球400次,其中88次摸到黑球,那么有312次摸到白球;由此可知:摸到黑球与摸到白球的次数之比为88:312;已知有8个黑球,那么按照比例,白球数量即可求出.5、为验证“掷一个质地均匀的骰子,向上的点数为偶数的概率是0.5”,下列模拟实验中,不科学的是( )A .袋中装有1个红球一个绿球,它们除颜色外都相同,计算随机摸出红球的概率B .用计算器随机地取不大于10的正整数,计算取得奇数的概率C .随机掷一枚质地均匀的硬币,计算正面朝上的概率D .如图,将一个可以自由旋转的转盘分成甲、乙、丙3个相同的扇形,转动转盘任其自由停止,计算指针指向甲的概率答案:D知识点:利用频率估计概率解析:解答: A 、袋中装有1个红球一个绿球,它们出颜色外都相同,随机摸出红球的概率是,故本选项正确;B 、用计算器随机地取不大于10的正整数,取得奇数的概率是12,故本选项正确; C 、随机掷一枚质地均匀的硬币,正面朝上的概率是12,故本选项正确; D 、将一个可以自由旋转的转盘分成甲、乙、丙3个相同的扇形,转动转盘任其自由停止,指针指向甲的概率是13,故本选项错误; 故选D .分析:此题考查了模拟实验,选择和掷一个质地均匀的骰子类似的条件的试验验证掷一个质地均匀的骰子的概率,是一种常用的模拟试验的方法.分析每个试验的概率后,与原来掷一个质地均匀的骰子的概率比较即可.6、从口袋中随机摸出一球,再放回口袋中,不断重复上述过程,共摸了150次,其中有50次摸到黑球,已知口袋中有黑球10个和若干个白球,由此估计口袋中大约有多少个白球( )A .10个B .20个C .30个D .无法确定 答案:B知识点:利用频率估计概率解析:解答:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是5011503,设口袋中大约有x 个白球,则101103x =+ 解得x=20.故选B .分析:考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.先由频率=频数÷数据总数计算出频率,再由题意列出方程求解即可.7、小鸡孵化场孵化出1000只小鸡,在60只上做记号,再放入鸡群中让其充分跑散,再任意抓出50只,其中做有记号的大约是( ) A .40只 B .25只 C .15只 D .3只 答案:D知识点:利用频率估计概率解析:解答:小鸡孵化场孵化出1000只小鸡,在60只上做记号,则做记号的小鸡概率为603100050=,再任意抓出50只,其中做有记号的大约是350350⨯=只.故选D . 分析:此题考查概率的应用.任意抓出50只中有记号的只数=50×做记号的小鸡概率. 先计算出做记号的小鸡概率为603100050=,再任意抓出50只,则其中做有记号的大约是350350⨯=只. 8、一个不透明的盒子里有n 个除颜色外其它完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后在放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n 大约是( ) A .6 B .10 C .18 D .20 答案:D知识点:利用频率估计概率解析:解答:由题意可得,60n×100%=30%, 解得,n=20(个). 故估计n 大约有20个. 故选:D .分析:此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黄球的频率得到相应的等量关系.在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.9、一个盒子里装有若干个红球和白球,每个球除颜色以外都相同.5位同学进行摸球游戏,每位同学摸10次(摸出1球后放回,摇匀后再继续摸),其中摸到红球数依次为8,5,9,7,6,则估计盒中红球和白球的个数是( )A .红球比白球多B .白球比红球多C .红球,白球一样多D .无法估计 答案:A .知识点:利用频率估计概率解析:解答: ∵5位同学摸到红球的频率的平均数为8597675++++=,∴红球比白球多. 故选A .分析:考查利用频率估计概率.大量反复试验下频率稳定值即概率.易错点是得到红球可能的情况数.计算出摸出红球的平均数后分析,若得到的平均数大于5,则说明红球比白球多,反之则不是.10、关于频率和概率的关系,下列说法正确的是( ) A .频率等于概率;B .当实验次数很大时,频率稳定在概率附近;C .当实验次数很大时,概率稳定在频率附近;D .实验得到的频率与概率不可能相等 答案:B知识点:利用频率估计概率解析:解答: A 、频率只能估计概率; B 、正确; C 、概率是定值;D 、可以相同,如“抛硬币实验”,可得到正面向上的频率为0.5,与概率相同. 故选B .分析:考查利用频率估计概率,大量反复试验下频率稳定值即概率.大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果.11、在学习掷硬币的概率时,老师说:“掷一枚质地均匀的硬币,正面朝上的概率是12”,小明做了下列三个模拟实验来验证.①取一枚新硬币,在桌面上进行抛掷,计算正面朝上的次数与总次数的比值;②把一个质地均匀的圆形转盘平均分成偶数份,并依次标上奇数和偶数,转动转盘,计算指针落在奇数区域的次数与总次数的比值;③将一个圆形纸板放在水平的桌面上,纸板正中间放一个圆锥(如图),从圆锥的正上方往下撒米粒,计算其中一半纸板上的米粒数与纸板上总米粒数的比值.上面的实验中,不科学的有()A.0个B.1个C.2个D.3个答案:A知识点:利用频率估计概率解析:解答:①由于一枚质地均匀的硬币,只有正反两面,故正面朝上的概率是12;②由于把一个质地均匀的圆形转盘平均分成偶数份,并依次标上奇数和偶数,标奇数和偶数的转盘各占一半.指针落在奇数区域的次数与总次数的比值为12.③由于圆锥是均匀的,所以落在圆形纸板上的米粒的个数也是均匀的分布的,与纸板面积成正比,可验证其中一半纸板上的米粒数与纸板上总米粒数的比值为12.三个试验均科学,故选A.分析:选择和抛硬币类似的条件的试验验证抛硬币实验的概率,是一种常用的模拟试验的方法.分析每个试验的概率后,与原来的掷硬币的概率比较即可.12、抛掷两枚均匀的硬币,当抛掷多次以后,出现两个反面的成功率大约稳定在()A.25% B.50% C.75% D.100%答案:A知识点:利用频率估计概率解析:解答:抛掷两枚均匀的硬币,可能出现的情况为:正正,反反,正反,反正,∴出现两个反面的概率为14,∴抛掷多次以后,出现两个反面的成功率大约稳定在25%.故选A.分析:考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.抛掷两枚均匀的硬币,可能会出现四种情况,而出现两个反面的机会为四分之一.13、下列说法正确的是()①试验条件不会影响某事件出现的频率;②在相同的条件下试验次数越多,就越有可能得到较精确的估计值,但各人所得的值不一定相同;③如果一枚骰子的质量分布均匀,那么抛掷后每个点数出现的机会均等;④抛掷两枚质量分布均匀的相同的硬币,出现“两个正面”、“两个反面”、“一正一反”的机会相同.A.①②B.②③C.③④D.①③答案:B知识点:利用频率估计概率解析:解答:①错误,实验条件会极大影响某事件出现的频率;②正确;③正确;④错误,“两个正面”、“两个反面”的概率为,“一正一反”的机会较大,为12.故选B.分析:大量反复试验下频率稳定值即概率.易错点是得到抛掷两枚硬币得到所有的情况数.根据频率与概率的关系分析各个选项即可.14、小明练习射击,共射击60次,其中有38次击中靶子,由此可估计,小明射击一次击中靶子的概率是()A.38% B.60% C.约63% D.无法确定答案:C知识点:利用频率估计概率解析:解答:∵小明练习射击,共射击60次,其中有38次击中靶子,∴射中靶子的频率38196030=≈0.63,故小明射击一次击中靶子的概率是约63%.故选C.分析:本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.根据频率=频数÷数据总数计算.15、在一个不透明的盒子中,红色、白色、黑色的球共有40个,除颜色外其他完全相同,老师在课堂上组织同学通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,则盒子中黑色球的个数可能是()A.16 B.18 C.20 D.22答案:A知识点:利用频率估计概率解析:解答:∵通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,∴摸到盒子中黑色球的概率为1-45%-15%=40%,∴盒子中黑色球的个数为40×40%=16.故选A.分析:此题主要考查了利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.由于通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,由此可以确定摸到盒子中黑色球的概率,然后就可以求出盒子中黑色球的个数.二、填空题1、有一箱规格相同的红、黄两种颜色的小塑料球共1000个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后.发现摸到红球的频率约为0.6,据此可以估计红球的个数约为____.答案:600个知识点:利用频率估计概率解析:解答:∵摸到红球的频率约为0.6,∴红球所占的百分比是60%.∴1000×60%=600(个).故答案为:600个.分析:本题考查用频率估计概率,因为摸到红球的频率约为0.6,红球所占的百分比是60%,从而可求出解.因为多次重复上述过程后,发现摸到红球的频率约为0.6,所以红球所占的百分比也就是60%,根据总数可求出红球个数.2、在“抛掷正六面体”的试验中,如果正六面体的六个面分别标有数字“1”、“2”、“3”、“4”、“5”和“6”,如果试验的次数增多,出现数字“1”的频率的变化趋势是____答案:接近1 6知识点:利用频率估计概率解析:解答:如果试验的次数增多,出现数字“1”的频率的变化趋势是接近1 6分析:实验次数越多,出现某个数的变化趋势越接近于它所占总数的概率.随着试验次数的增多,变化趋势接近与理论上的概率.3、从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下: 种子粒数 100 400 800 1000 2000 5000 发芽种子粒数 85 298 652 793 1604 4005 发芽频率0.8500.7450.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率约为____(精确到0.1). 答案:0.8知识点:利用频率估计概率解析:解答:∵种子粒数5000粒时,种子发芽的频率趋近于0.801, ∴估计种子发芽的概率为0.801,精确到0.1,即为0.8. 故本题答案为:0.8.分析:本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.本题考查的是用频率估计概率,6批次种子粒数从100粒大量的增加到5000粒时,种子发芽的频率趋近于0.801,所以估计种子发芽的概率为0.801,精确到0.1,即为0.8. 4、晓刚用瓶盖设计了一个游戏:任意掷出一个瓶盖,如果盖面朝上则甲胜,如果盖面朝下则乙胜,你认为这个游戏____(是否公平);如果以硬币代替瓶盖,同样做上述游戏,你认为这个游戏____(是否公平). 答案:不公平,公平 知识点:利用频率估计概率解析:解答:因为瓶盖不是均匀的,故盖面朝上和盖面朝下的机会不是均等的;故这个游戏不公平.如果以硬币代替瓶盖,因为硬币是均匀的,故正面与反面向上机会相等;故这个游戏公平.分析:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.根据实际情况即可解答.瓶盖不是均匀的,而硬币均匀,所以两种情况不一样. 5、一个不透明的袋中装有2枚白色棋子和n 枚黑色棋子,它们除颜色不同外,其余均相同.若小明从中随机摸出一枚棋子,多次实验后发现摸到黑色棋子的频率稳定在80%.则n 很可能是___枚.答案:8知识点:利用频率估计概率解析:解答:不透明的布袋中的棋子除颜色不同外,其余均相同,共有n+2个棋子,其中黑色棋子n 个,根据古典型概率公式知:P (黑色棋子)=2n n =80%,解得n=8.故答案为:8.分析:此题主要考查了概率公式的应用,一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 根据黑色棋子的概率公式2nn +=80%,列出方程求解即可. 三、解答题1、某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可随机抽取一张奖券,抽得奖券“紫气东来”、“花开富贵”、“吉星高照”,就可以分别获得100元、50元、20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元.小明购买了100元的商品,他看到商场公布的前10000张奖券的抽奖结果如下: 奖券种类 紫气东来 花开富贵 吉星高照 谢谢惠顾 出现张数(张)500100020006500(1)求“紫气东来”奖券出现的频率;(2)请你帮助小明判断,抽奖和直接获得购物卷,哪种方式更合算?并说明理由. 知识点:利用频率估计概率 解析:解答:(1)50011000020=或5%;(2)平均每张奖券获得的购物券金额为100×50010000+50×100010000+20×200010000+0×650010000=14(元), ∵14>10,∴选择抽奖更合算.分析:此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=mn,易错点是获得购物券得到金额的平均数.(1)根据概率的求法,找准两点: ①、符合条件的情况数目; ②、全部情况的总数. 二者的比值就是其发生的概率.(2)算出每张奖券获得的购物券金额的平均数,与10比较即可.2、研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球实验,摸球实验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.活动结果:摸球实验活动一共做了50次,统计结果如下表:球的颜色无记号有记号红色黄色红色黄色摸到的次数18 28 2 2推测计算:由上述的摸球实验可推算:(1)盒中红球、黄球各占总球数的百分比分别是多少?(2)盒中有红球多少个?知识点:利用频率估计概率解析:解答:(1)由题意可知,50次摸球实验活动中,出现红球20次,黄球30次,∴红球所占百分比为20÷50=40%,黄球所占百分比为30÷50=60%,答:红球占40%,黄球占60%;(2)由题意可知,50次摸球实验活动中,出现有记号的球4次,∴总球数为504×8=100,∴红球数为100×40%=40,答:盒中红球有40个.分析:此题主要考查了利用频率估计概率的问题,首先利用模拟实验得到盒中红球、黄球各占总球数的百分比,然后利用百分比即可求出盒中红球个数.(1)根据表格数据可以得到50次摸球实验活动中,出现红球20次,黄球30次,由此即可求出盒中红球、黄球各占总球数的百分比;(2)由题意可知50次摸球实验活动中,出现有记号的球4次,由此可以求出总球数,然后利用(1)的结论即可求出盒中红球.3、端午节吃粽子是中华民族的传统习俗,五月初五早上,奶奶为小明准备了四只粽子:一只肉馅,一只香肠馅,两只红枣馅,四只粽子除内部馅料不同外其他均一切相同.小明喜欢吃红枣馅的粽子.(1)请你用树状图为小明预测一下吃两只粽子刚好都是红枣馅的概率;(2)在吃粽子之前,小明准备用一个均匀的正四面体骰子(如图所示)进行吃粽子的模拟试验,规定:掷得点数1向上代表肉馅,点数2向上代表香肠馅,点数3,4向上代表红枣馅,连续抛掷这个骰子两次表示随机吃两只粽子,从而估计吃两只粽子刚好都是红枣馅的概率.你认为这样模拟正确吗?试说明理由.知识点:利用频率估计概率解析:解答:(1)∴P(两只都为红枣馅)==;(3分)(2)这样模拟不正确(4分)理由如下:连续两次掷骰子点数朝上的情况有(1,1)(1,2)(1,3)(1,4)(2,1)(2,2)(2,3)(2,4)(3,1)(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)(4,4)共16种,而满足条件的情况有4种(5分)∴P(点数3,4向上)=416=14≠p(两只均为红枣馅)(6分)∴这样模拟不正确.(7分)分析:树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;解题时要注意是放回实验还是不放回实验,(1)此题属于不放回实验;(2)此题模拟的为放回实验;所以模拟的不正确.4、如图,均匀的正四面体的各面依次标有1,2,3,4四个数字.小明做了60次投掷试验,结果统计如下:朝下数字 1 2 3 4出现的次数16 20 14 10(1)计算上述试验中“4朝下”的频率是____;(2)“根据试验结果,投掷一次正四面体,出现2朝下的概率是13.”的说法正确吗?为什么?(3)随机投掷正四面体两次,请用列表或画树状图法,求两次朝下的数字之和大于4的概率.答案:(1)16知识点:利用频率估计概率解析:解答:(1)“4朝下”的频率:101606=;… 故答案为:16. (2)这种说法是错误的.在60次试验中,“2朝下”的频率为13并不能说明“2朝下”这一事件发生的概率为13.只有当试验的总次数很大时,事件发生的频率才会稳定在相应的事件发生的概率附近.(3)随机投掷正四面体两次,所有可能出现的结果如下: 1 2 3 4 1 (1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4 (1,4)(2,4)(3,4)(4,4)总共有16种结果,每种结果出现的可能性相同,而两次朝下数字之和大于4的结果有10种.∴P (朝下数字之和大于4)=105168=.… 分析:本题主要考查列表法与树状图法求概率,以及频率的意义,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比. (1)先由频率=频数÷试验次数算出频率;(2)根据表格观察抛掷的次数增多时,频率稳定到哪个数值,这就是概率. (3)列表列举出所有的可能的结果,然后利用概率公式解答即可.5、一粒木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是年平的.将它从一定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下.由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如下表: 实验次数 20 40 60 80 100 120 140 160 “兵”字面朝上频数14384752667888相应频率0.7 0.45 0.63 0.59 0.52 0.56 0.55(1)请将数据补充完整;(2)画出“兵”字面朝上的频率分布折线图;(3)如果实验继续进行下去,根据上表的数据,这个实验的频率将稳定在它的概率附近,请你估计这个概率是多少?知识点:利用频率估计概率解析:解答:(1)所填数字为:40×0.45=18,66÷120=0.55;(2)折线图:(3)根据表中数据,试验频率为0.7,0.45,0.63,0.59,0.52,0.55,0.56,0.55稳定在0.55左右,故估计概率的大小为0.55.分析:考查利用频率估计概率,大量反复试验下频率稳定值即概率.作图时应先描点,再连线.用到的知识点为:部分的具体数目=总体数目×相应频率.频率=所求情况数与总情况数之比.(1)(3)根据图中信息,用频数除以实验次数,得到频率,由于试验次数较多,可以用频率估计概率;(2)将频率作为纵坐标,试验次数作为横坐标,描点连线,可得折线图.。
部编版2020九年级数学上册 第二十五章 概率初步 25.3 用频率估计概率学案
25.3用频率估计概率
学习目标:
1. 当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率。
2. 通过试验,理解当试验次数较大时试验频率稳定于理论概率,进一步发展概率观念。
学习过程
预习
1:每人向上抛掷一枚质地均匀的硬币一次,统计全班结果,落地时正面向上的有()人,反面向上的有()人,则正面向上的频率是()。
2:分组试验
00
正面向上的频率
根据上表中的数据,以累计实验总次数为横坐标,以“正面向上”的频率为纵坐标,在平面直角坐标系中标出相应的点,绘制折线统计图。
问题:观察统计表和统计图,你发现“正面向上”的频率有什么变化趋势?
总结概括得出概念
(1)概率的统计定义:
(2)概念的理解:判断正误
(1)连续掷一枚质地均匀硬币10次,结果10次全部是正面,则正面向上的概率是1。
(2)小明掷硬币1000次,则正面向上的频率一定在0.5附近。
归纳:从统计的角度得出的概率要注意:
(3)如果抛一枚六个面都是六点的骰子,“六点朝上”的概率是多少?有抛出七点朝上的可能吗?
展示
1.
则估计油菜籽发芽的概率为___。
2.观察在各次试验中得到的幼树成活的频率,谈谈你的看法。
幼树移植成活的频率在____左右摆动,并且随着移植棵数越来越大,这种规律愈加明显。
所以估计幼树移植成活的概率为_____。
拓展
**.一水塘里有鲤鱼、鲫鱼、鲢鱼共1 000尾,一渔民通过多次捕获实验后发现:鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里有鲤鱼_______尾,鲢鱼_______尾。
课堂小结
这节课我的收获是。
人教版九年级数学上册 第二十五章概率初步25.3 用频率估计概率 课后练习
人教版九年级数学上册第二十五章概率初步25.3 用频率估计概率课后练习一、选择题1.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色,下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.游戏者配成紫色的概率为1 6D.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同2.甲、乙两位同学在一次用频率估计概率的实验中统计了某一结果出现的频率,并绘出了如下统计图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现5点的概率B.掷一枚硬币,出现正面朝上的概事C.一个不透明的袋子中装着除颜色外都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率D.任意写出一个两位数,能被2整除的概率3.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.809,所以“罚球命中”的概率是0.809.其中合理的是()A.①B.②C.①③D.②③4.如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A.26m B.27m C.28m D.29m5.在一个不透明的盒子中,红色、白色、黑色的球共有40个,除颜色外其他完全相同,老师在课堂上组织同学通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,则盒子中黑色球的个数可能是()A.16B.18C.20D.226.设a,b是两个任意独立的一位正整数, 则点(a,b)在抛物线y=ax2-bx上方的概率是( )A.1181B.1381C.1781D.19817.某中学初三年级四个班,四个数学老师分别任教不同的班.期末考试时,学校安排统一监考,要求同年级数学老师交换监考,那么安排初三年级数学考试时可选择的监考方案有()种.A.8 B.9 C.10 D.128.现有6张正面分别标有数字﹣1,0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使得关于x的二次函数y=x2﹣2x+a﹣2与x轴有交点,且关于x的分式方程11222axx x-+=--有解的概率为()A.12B.13C.56D.169.从﹣3,﹣2,﹣1,0,1这五个数中,随机取出一个数,记为a,若a使得关于x的不等式组53(2)x ax x-≤⎧⎨--⎩<无解,且关于x的分式方程1322x ax x--=--有整数解的概率为()A.15B.25C.35D.4510.从-3,1,-2这三个数中,任选两个数的积作为k的值,则使正比例函数y=kx的图象经过第二、四象限的概率是( )A.13B.12C.16D.23二、填空题11.去游泳馆游泳,要换拖鞋,如果鞋柜里只剩下尺码相同的4双红色的鞋和3双蓝色的鞋混合放在一起,闭上眼睛随意拿出2只,它们正好是一双的概率为_________.12.有5张正面分别标有数字-2,0,2,4,6的不透明卡片,它们除数字不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为m,则使关于x的分式方程2322x m mx x++=--有正实数解的概率为________.13.动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.6,则现年20岁的这种动物活到25岁的概率是_____.14.一种游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,无奖金,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是____.15.由于各人的习惯不同,双手交叉时左手大拇指在上或右手大拇指在上是一个随机事件(分别记为A,B),曾老师对他任教的学生做了一个调查,统计结果如下表所示:若曾老师所在学校有2 000名学生,根据表格中的数据,在这个随机事件中,右手大拇指在上的学生人数可以估计为________名.三、解答题16.某医院医生为了研究该院某种疾病的诊断情况,需要调查来院就诊的病人的两个生理指标x ,y ,于是他分别在这种疾病的患者和非患者中,各随机选取20人作为调查对象,将收集到的数据整理后,绘制统计图如下:注“●”表示患者,“▲”表示非患者.根据以上信息,回答下列问题:(1)在这40名被调查者中,①指标y 低于0.4的有 人;②将20名患者的指标x 的平均数记作1x ,方差记作21s ,20名非患者的指标x 的平均数记作2x ,方差记作22s ,则1x 2x ,21s 22s (填“>”,“=”或“<”);(2)来该院就诊的500名未患这种疾病的人中,估计指标x 低于0.3的大约有 人;(3)若将“指标x低于0.3,且指标y低于0.8”作为判断是否患有这种疾病的依据,则发生漏判的概率多少.17.小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC.为了知道它的面积,他在封闭图形内划出了一个半径为1米的圆,在不远处向图形内掷石子,且记录如下:(1)随着次数的增多,小明发现m与n的比值在一个常数k附近波动,请你写出k的值.(2)请利用学过的知识求出封闭图形ABC的大致面积.18.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶以每瓶2元的价格当天全部降价处理完.根据往年销售经验,每天需求量与当天本地最高气温有关.为了制定今年六月份的订购计划,计划部对去年六月份每天的最高气温x(℃)及当天售出(不含降价处理)的酸奶瓶数),等数据统计如下:以最高气温位于各范围的频率代替最高气温位于该范围的概率.(1)试估计今年六月份每天售出(不含降价处理)的酸奶瓶数不高于360瓶的概率;(2)根据供货方的要求,今年这种酸奶每天的进货量必须力100的整数倍.问今年六月份这种酸奶一天的进货量为多少时,平均每天销售这种酸奶的利润最大?19.在不透明的袋子中有黑棋子10枚和白棋子若干枚(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:根据以上数据,估算袋中白棋子的数量.20.[概率中的方案设计]小红和小明在操场上做游戏,他们先在地上画了半径分别为2m和3m的同心圆(如图),然后蒙上眼睛,并在一定距离外向圈内掷小石子,掷中阴影部分时小红胜,否则小明胜,未掷入圈内(半径为3m的圆内)或掷在边界上重掷.(1)你认为游戏公平吗?为什么?(2)游戏结束,小明边走边想:能否用频率估计概率的方法,来估算不规则图形的面积呢?请你设计一个方案,解决这一问题(要求画出图形,说明设计步骤、原理,并给出计算公式)21.小晶和小红玩掷骰子游戏,每人将一个各面分别标有1、2、3、4、5、6的正方体骰子掷一次,把两个人掷得的点数相加,并约定‘点数之和等于6,小晶赢,点数之和等于7,小红赢,点数之和是其他数,两人不分胜负’,问,他们两人谁获胜的概率大,请你用“画树形图”的方法加以说明。
人教版初中数学九年级上册第二十五章 25.3用频率估计概率
间,即0<P(不确定事件)<1. 如果A为随机事件(不确定事件),
那么0<P(A)<1.
用列举法求概率的条件是什么? (1)试验的所有结果是有限个(n) (2)各种结果的可能性相等.
用频率估计概率
用列举法可以求一些事件的概 率,我们还可以利用多次重复 试验,通过统计实验结果去估 计概率。
3.动物学家通过大量的调查估计出,某种动物活到20 岁的概率为0.8,活到25岁的概率是0.5,活到30岁的概率
是0.3.现年20岁的这种动物活到25岁的概率为多少?现
年25岁的这种动物活到30岁的概率为多少?
试一试
4.某厂打算生产一种中学生使用的笔袋,但无法确定各种颜色的 产量,于是该文具厂就笔袋的颜色随机调查了5 000名中学生, 并在调查到1 000名、2 000名、3 000名、4 000名、5 000名 时分别计算了各种颜色的频率,绘制折线图如下:
了解了一种方法-------用多次试验频率去估计概率
体会了一种思想: 用样本去估计总体 用频率去估计概率
大家都来做一做
从一定的高度落下的图钉,落地后 可能图钉尖着地,也可能图钉尖不找地, 估计一下哪种事件的概率更大,与同学
合作,通过做实验来验证 一下你事先估计是否正确?
你能估计图钉尖朝
上的概率吗?
归纳:
一般地,在大量重复试验中, 如在果某事个件常数A发p附生近的,频那率mn 么事会件稳A定 发生的概率P(A)=p。
用频率估计的概率 可能小于0吗?可 能大于1吗?
练习: 下表记录了一名球员在罚球线上的投篮结果。
投篮次数(n) 50 100 150 200 250 300 500
九年级数学上册 第二十五章 概率初步 25.3 用频率估计概率_1
随机事件 及其概 (shìjiàn) 率
1、某批乒乓球产品质量(chǎn pǐn zhì liànɡ)检查结果表:
优等品数 m
抽取球数 n
45 92 50 100
194 470 954 200 500 1000
优等品频率 m 0.9 0.92 0.97 0.94 0.954 n
当抽查的乒乓球数很多时,抽到优等品的频率 (jiējìn)于常数 0.95,在它附近摆动。
成活数(m) 8 47
235 369 662 1335 3203 6335 8073 12628
第八页,共十八页。
成活(chénghu(ó)m )
的频率0.8
n
0.94
0.870
0.923 0.883
0.890 0.915
0.905 0.897
0.902
估计移植成活率
由下表可以发现,幼树移植成活的频率在____左0右.9 摆动,
某射手(shèshǒu)进行射击,结果如下表所示:
射击次数n 20
100 200 500 800
击中靶心
次数m
11
48
104
245
404
击中靶心
频率m/n
0.55
0.48 0.52
0.49
0.505
(1)这个射手(shèshǒu)射击一次,击中靶心的概率是 多少?0.5 (2)这射手射击1600次,击中靶心(bǎ xīn)的次数是 80。0
350
35.32
0.101
400
39.24
0.098
450
44.57
0.099
500
51.54
0.103
根据频率稳定性定理,在要求精确度不是很高的情况下,不妨用表中 试验次数最多一次的频率近似(jìn sì)地作为事件发生概率的估计值.
人教版初中数学课标版九年级上册第二十五章25.3用频率估计概率教案-学习文档
《25.3 用频率估计概率》教学设计一、内容和内容解析:1、内容用频率估计概率2、内容解析“用频率估计概率”是“概率初步”这一章的第三节,是在学生初步了解概率的意义及会用概率的古典定义求一些简单等可能事件的概率之后对概率的进一步研究.教材这样编排其主要意图有三:1、遵从概率的产生及发展规律,历史上概率(指客观概率)的定义经历了三个阶段:①概率的古典定义;②概率的统计定义;③概率的公理化定义. 2、符合学生的认知规律概率的古典定义相对简单,所涉事件的概率有确定的结果,学生易于接受,而概率的统计定义其内涵更为深刻. 3、相对于概率的古典定义,用频率估计概率的方法更具一般性与普遍性,它不受列举法求概率两个条件的限制,适用范围更广.它突破了对随机事件发生结果的等可能性与有限性的限制,揭示了偶然性中蕴含的必然规律. “频率稳定性”是概率统计定义的核心,相比古典定义“用频率估计概率”更具普遍性,它是求概率最基本的方法.二、目标和目标解析1. 目标(1)通过试验等活动,让学生理解当试验的次数较大时,试验的频率稳定于理论概率. 并可据此估计某一事件发生的概率.(2)经历试验、统计等活动过程,积累学生参与数学活动的经验,加强学生动手、动脑的意识. 在收集、整理、分析数据中培养学生探究数学规律的兴趣,使学生乐于学习,主动学习,同时培养学生的合作意识和积极思考的习惯,体验数学的应用价值.(3)了解科学家们的试验数据,以及所付出的艰苦劳动,培养学生科学严谨的学习态度.2. 目标解析达成目标(1)的标志是:学生能够从频率表中,估计某一事件的概率,知道估计概率时选择次数较多的频率来估计,会辨别频率与概率的区别与联系,会解决课上练习题。
达成目标(2)的标志是:学生积极认真地投入到抛硬币试验和抛图钉试验中,能够分析整理所得数据,并根据数据得出结论。
达成目标(3)的标志是:了解数学知识的发展史,对试验中的每一个数据的收集能注意要求,严谨认真。
《25.3 用频率估计概率》(第1课时)教学设计【初中数学人教版九年级上册】
第二十五章概率初步25.3 用频率估计概率教学设计第1课时一、教学目标1.知道通过大量重复试验,可以用频率来估计概率.2.经历抛掷硬币试验,对数据进行收集、整理、描述与分析,体验频率的随机性与规律性。
了解用频率估计概率的合理性和必要性,培养随机观念.二、教学重点及难点重点:用频率估计概率.难点:用频率估计概率方法的合理性.三、教学用具多媒体课件.四、相关资源无.五、教学过程【合作探究】1.实验操作把全班同学分成10组,每组同学抛掷一枚硬币50次,整理同学们获得的试验数据,并记录在下表中.根据上表中的数据,在下图中标注出对应的点.师生活动:学生实验操作,教师要求全体学生参与试验,每名同学都要亲自感受规律的发现过程;必须强调学生态度端正,认真记录实验数据,以培养学生一丝不苟,严谨求实的科学精神.活动中教师要注意培养学生相互合作、沟通的能力.第一组的数据和填在第一列,第二组的数据和填在第二列,第三组的数据和填在第三列,…,第10组的数据和填在第10列.设计意图:让学生亲身经历抛掷硬币的随机试验,收集和描述数据,培养随机观念,为揭示频率的随机性和稳定性作准备.【知识点解析】用频率估计概率,微课全面的介绍用频率估计概率,使学生能够理解频率和概率.2.回望历史历史上,有些人曾做过成千上万次抛掷硬币的试验,其中一些试验结果见下表:试验者抛掷次数(n )“正面向上”的次数 (m )“正面向上”的频率(nm )师生活动:教师课件展示历史人物的数据,学生观察.3.整理数据(1)随着抛掷次数的增加,“正面向上”的频率的变化趋势是什么?师生活动:教师利用课件出示问题,学生独立观察,思考,回答问题.归纳总结:随着抛掷次数的增加,“正面向上”的频率的变化在0.5这个数字左右摆动.一般地,随着抛掷次数的增加,频率呈现出一定的稳定性:在0.5附近摆动的幅度会越来越小.这时,我们称“正面向上”的频率稳定于0.5.它与用列举法得到的“正面向上”的概率是同一个数值.(2)随着抛掷次数的增加,“正面向上”的频率的变化在0.5的左右摆动幅度有何规律?师生活动:教师提出问题,学生进一步仔细观察,思考,分组交流,讨论.归纳总结:如果随着抛掷次数的增加,“正面向上”的频率的变化在0.5的左右摆动幅度不完全是越来越小,本次实验依然不能称为严格意义上的大量重复实验.设计意图:通过逐步深入的一系列问题的提出,使学生加深对随机事件的统计规律性的认识,即随机现象虽然对于个别试验来说无法预知其结果,但在相同条件下,进行大量重复试验时,却又呈现出一种规律性.(3)从以上试验你能得到怎样的结论?师生活动:学生相互讨论、交流,总结规律.教师巡查,指导学困生.归纳总结:一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的稳定性.因此,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.(4)频率与概率有什么区别与联系?师生活动:教师提出问题,学生思考,讨论,相互交流.归纳总结:频率是随着试验次数的改变而变化的.而概率是一个常数,它是频率的科学抽象.当试验次数越来越多时,频率围绕概率摆动的平均幅度越来越小,即频率靠近概率.设计意图:全体学生通过亲身参与大量重复试验,统计数据,分析,总结试验结果,又经过充分讨论,探究,最终得出规律.这种处理方式,深化了学生对数学方法(特别是概率论的方法)的理解,发展了学生的数学能力,培养了学生对于学习数学的积极性.【例题分析】例某篮球运动员在最近的几场大赛中罚球投篮的结果如下:(1)计算表中各次比赛进球的频率;(2)这位运动员投篮一次,进球的概率约为多少?师生活动:学生先独立计算填表,完成解答,教师适时点拨,归纳解题方法,规范解题步骤.解:(1)填表如下:(2)这位运动员投篮一次,进球的概率约为0.75.设计意图:通过该问题,进一步培养学生解决实际问题的能力,让学生感受到概率在问题决策中的重要作用,培养学生学数学用数学的精神和合作意识.【练习巩固】1.下列说法正确的是( ).A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为12”表示每抛两次就有一次正面朝上C.“彩票中奖的概率是1%”表示买100张彩票肯定会中奖D.“抛一枚质地均匀的正方体骰子,朝上的点数是2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数是2”这一事件发生的频率稳定在16附近2.某校男生中,若随机抽取若干名同学做“是否喜欢足球”的问卷调查,抽到喜欢足球的同学的频率是35,这个35的含义是( ).A.只发出5份调查卷,其中三份是喜欢足球的答卷B.在答卷中,喜欢足球的答卷与总问卷的比为3︰8C.在答卷中,喜欢足球的答卷占总答卷的3 5D.在答卷中,每抽出100份问卷,恰有60份答卷是喜欢足球3.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他相同.通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( ).A.16个B.15个C.13个D.12个4.在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒子中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.2,那么可以推算出n大约是.5.某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物100元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:(1)计算并完成表格:转动转盘的次数n100150200500800 1 000落在“铅笔”的次数m68111136345546701落在“铅笔”的频率m n(2)请估计,当n很大时,频率将会接近多少?(3)转动该转盘一次,获得铅笔的概率约是多少?(4)在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少(精确到1°)?参考答案1.D2.C3.D4.105.解:(1)填表如下:(2)当n很大时,频率将会接近0.7.(3)转动该转盘一次,获得铅笔的概率约是0.7.(4)在该转盘中,标有“铅笔”区域的扇形的圆心角大约是:0.7×360°=252°.设计意图:用频率估计概率,在实际问题中应用广泛,通过自主练习,激发学生的学习热情,调动学生的积极性,培养学生独立解答问题的能力,进一步深化学生用频率估计概率解决实际问题的能力.六、课堂小结1.一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的稳定性.因此,我们可以通过大量重复试验,用一个随机事件发生的频率去估计它的概率.2.频率与概率有什么区别与联系?频率是随着试验次数的改变而变化的.而概率是一个常数,它是频率的科学抽象.当试验次数越来越多时,频率围绕概率摆动的平均幅度越来越小,即频率靠近概率.设计意图:小结和反思,不同的学生会有不同的体会,要尊重学生的个体差异,激发学生主动参与的意识,为每个学生创造在数学活动中获得活动经验的机会.七、板书设计25.3 用用频率估计概率(1)1.用频率估计概率2.频率与概率区别与联系。
九年级数学上册第二十五章概率初步25.3用频率估计概率导学案新版新人教版
25.3用频率估计概率一、新课导入1.导入课题:在学完用列举法求随机事件发生的概率这节内容后,小明同学提出一个问题.他抛掷一枚硬币10次,其正面朝上的次数为5次,是否可以说明“正面向上”这一事件发生的概率为0. 5?下面我们带着小明提出的问题进入本节课的学习一一用频率估计概率.2.学习目标:(1)知道大量重复试验时,频率趋于一个稳定值,知道这个稳定值与概率的关系.(2)会用频率估计概率.3.学习重、难点:重点:理解当试验次数较大时,试验频率趋于理论概率.难点:用频率估计概率的思想方法解决相关实际问题.二、分层学习第一层次学习4.自学指导:(1)自学内容:教材第142页到第143页“思考”之前的内容.(2)自学时间:5分钟.(3)自学方法:认真阅读课文,按课本要求,同学之间加强合作,进行试验,并做好数据的统计,再对数据进行分析,观察频率的变化趋势,从中摸索有何规律.(4)自学参考提纲:①通过试验,完成教材第142页的表25-3以及图25. 3-1.②通过分析试验所得数据,你发现出现“正而向上”的频率有什么变化规律?“正而向上”的频率在0. 5附近摆动.③阅读并分析表25-4中抛掷硬币实验的数据,你有什么发现?随着试验次数的增加,“正而向上”的频率稳定于0.5.5.自学:学生可参考自学指导进行自学,小组交流,合作学习.6.助学:(1)师助生:①明了学情:深入课堂了解学生的试验情况,并对存在的问题进行收集.②差异指导:对在学习中存在的突出问题进行点拨引导.(2)生助生:小组间相互协作交流,解决学习中的问题.7.强化:随着抛掷硬币次数的增加,硬币“正面朝上”的频率会在0. 5左右摆动,并且摆动幅度越来越小.第二层次学习8.自学指导:(1)自学内容:教材第143页“思考”到第144页“练习”之前的内容.(2)自学时间:4分钟.(3)自学方法:阅读、思考,并相互交流探讨各自的结论.(4)自学参考提纲:①当实验次数足够大时,一个随机事件出现的频率与它的概率有什么关系?频率非常接近于概率.②举例说明你对“概率是针对大量重复试验而言的,大量试验反映的规律并非在每一次试验中都发生.”这句话的理解.③练习:a.下表记录了一名球员在罚球线上投篮的结果.i.计算投中频率(结果保留小数点后两位).ii.这名球员投篮1次,投中的概率约是多少(结果保留小数点后一位)?解:投中的概率约是0.5.b.用前面抛掷硬币的试验方法,全班同学分组做掷骰子的试验,估计掷一次骰子时“点数是1”的概率.解:估计P (点数是1)二1.62.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:深入了解学生参与活动、完成任务的情况.②差异指导:引导学生合作试验.(2)生助生:分组合作完成试验.4.强化:(1)在大量重复试验中,事件A发生的频率会稳定在某个常数附近.只要试验的次数足够大,我们就可以用事件A发生的频率去估计概率.(2)概率是针对大量试验而言的,大量试验反映的规律并非在每一次试验中都发生.第三层次学习1.自学指导:(1)自学内容:教材第144页到第145页的问题1.(2)自学时间:4分钟.(3)自学要求:总结用频率估计概率的思想来解决实际问题的一般思路和频率的确定方法.(4)自学参考提纲:①幼树的移植成活率采用频率去估计.②完成表25-5及表后的填空.③怎样估计幼树移植的成活率?随着移植数的增加,幼树移植成活的频率越来越稳定,用移植总数最多时成活的频率估计幼树移植的成活率.④练习:某农科所在相同条件下做某种作物种子发芽率的试验,结果如下表所示:一般地,1000千克种子中大约有多少是不能发芽的?将表中数据补全,可以看出发芽种子的频率在0. 9左右摆动,所以估计种子发芽的概率为 0. 9.1000-1000X0. 9=100 (千克).,.1000千克种子中大约有100千克是不能发芽的.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:关注学困生的学习过程.②差异指导:对完成提纲中的问题有困难的学生适时指导.(2)生助生:交流讨论、改正错误.4.强化:解决此类问题的基本步骤:计算频率:估计概率;作出结论.第四层次学习1.自学指导:(1)自学内容:教材第145页到第146页的问题2.(2)自学时间:5分钟.(3)自学方法:先弄清损坏率的算法,再填表.(4)自学参考提纲:①完成教材第146页表25-6.②可得柑橘损坏的概率为0. 1 ,所以柑橘完好的概率为取.③怎样计算柑橘的实际成本?用以2元/千克的价格购进10000千克的成本除以10000千克中完好柑橘的质量9000 千克,即为实际成本.④整个问题的问答过程与问题1的解答过程有何异同?相同点:都是用频率估计概率.不同点:问题2是通过损坏率求完好率,而问题1是直接求发芽率.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:关注学困生的学习过程.②差异指导:教师对重、难点之处适时点拨引导.(2)生助生:小组间交流互助.(1)解题思路:①求频率:②估计概率;③求出问题结果:④作出结论.(2)练习:为了估计鱼塘中的鱼数,养鱼者首先从鱼塘中捕获n条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中捞a条鱼,如果在这a条鱼中有b条鱼是有记号的,那么鱼塘中鱼的条数可估计为—.你认为这种估计方法有道理吗?为什么?b解:有道理.不妨设鱼塘中鱼的总条数为禺则,所以* =竺.x a b三、评价1.学生的自我评价(围绕三维目标):相互交流各自的学习态度、学习方法和收获,反省学习中的不足.2.教师对学生的评价:(1)表现性评价:教师对学生在课堂学习中的态度和行为上的表现进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.当然,学生随机观念的养成是循序渐进的.这节课教师应把握教学难度,注意关注学生的接受情况.<----------- 湃价作业------------- >(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是(D)A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率2.(10分)下列说法正确的是(D)A.连续抛掷骰子20次,掷出5点的次数是0,则第21次一定抛出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说明天下雨的概率是50治所以明天将有一半时间在下雨D,抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等3.(10分)某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是(D)A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B. 一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C.暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.掷一枚质地均匀的正六面体骰子,向上的而点数是44.(10分)在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干只,某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放入袋中,不断重复,下表是活动中的一组数据,则摸到白球的概率约是(C)摸球的次数〃10() 150 20() 50() 80() 100() 摸到白球的次数也58 96 116 295 484 601摸到白球的概率0.58 0.64 ().58 0. 59 0. 605 0. 601A. 0. 4B. 0. 5C. 0. 6D. 0. 75.(10分)盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数, 某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为(B)A. 90 个B. 24 个C. 70 个D. 32 个6.(10分)一个口袋中放有20个球,其中红球6个,白球和黑球若干个,每个球除了颜色外没有任何区别,小王通过大量重复试验(每次取一个球,放回搅匀后再取)发现,取出黑球的概率稳定在0. 25左右,请你估计袋中黑球的个数为1.移植总数n 400 750 1500 350() 700() 90()0 14000成活数加369 662 1335 3203 6335 8073 12628 成活的频率生0. 923 0. 883 0. 890 0.915 0.905 0. 897 0.902二、综合应用(20分)8.(10分)某射击运动员在同一条件下的射击成绩记录如下:(1)计算表中相应的“射中9环以上”的频率(精确到0.01):(2)这些频率具有什么样的稳定性?解:这些频率稳定在0. 8附近.(3)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0. 1).这名运动员射击一次时“射中9环以上”的概率约为0.8.9.(10分)动物学家通过大量的调查估计,某种动物活到20岁的概率为0. 8,活到25岁的概率为0. 5,活到30岁的概率为0. 3.(1)现年20岁的这种动物活到25岁的概率为多少?(2)现年25岁的这种动物活到30岁的概率是多少?解:(1)设这种动物共有10n只,则根据题意可知能活到20岁的有8n只,能活到25岁的有5n只,能活到30岁的有3n只,所以现年20岁的这种动物活到25岁的概率为5« 5耳=——=一;18〃 8(2)由(1)知,现年25岁的这种动物能活到30岁的概率是巴=三=—.5« 5三、拓展延伸(10分)10.(10分)鸟类学家要估计某森林公园内鸟的数量,你能用学过的知识,为鸟类学家提出一种估计鸟的数量的方法吗?(在一定的时期内,森林公园可以近似地看做与外部环境是相对封闭的)解:在一年中该森林公园内的鸟相对较多的时期,选择一天(晴天)捕捉1000只鸟,并在这些鸟的身体上做上记号,然后全部放飞,两三天后的一天(晴天)再捕捉1000只鸟,检查其中带有记号的鸟的数量,记为a,则这段时期该森林公园内的数量是此只.a。
人教版九年级数学上册第25章第3节《用频率估计概率》优质课件
练习罚篮次数 30
60 90 150 200 300 400 500
罚中次数
27
45 78 118 161 239 322 401
罚中频率
0.900 0.750 0.867 0.787 0.805 0.797 0.805 0.802
(1)填表(精确到0.001);
(2)比赛中该前锋队员上篮得分并造成对手犯规,罚篮一次,你
摸到白球次数m 65 124 178 302 481 599 1803 摸到白球概率 m 0.65 0.62 0.593 0.604 0.601 0.599 0.601
n
(1)请估计:当n很大时,摸到白球的频率将会接近 0.6 (精确到0.1); (2)假如你摸一次,估计你摸到白球的概率 P(白球)= 0.6 .
0.097
0.097
0.103 0.101 0.098
0.099
0.103
由上表可知:柑橘损坏率是 0.10 ,完好率是 0.90 .
某水果公司以2元/千克的成本新进了10000千克柑橘, 如果公司希望这些柑橘能够获得利润5000元,那么在 出售柑橘(已去掉损坏的柑橘)时,每千克大约定价 为多少元比较合适?
事件发生的 可能性大小
在实际问题中,若事件的概率未知,常用频率作 为它的估计值.
区别:频率本身是随机的,在试验前不能确定,做同
样次数或不同次数的重复试验得到的事件的频率都可能 不同,而概率是一个确定数,是客观 存在的,与每次试 验无关.
当堂练习
1.一水塘里有鲤鱼、鲫鱼、鲢鱼共1 000尾,一渔民通过 多次捕获实验后发现:鲤鱼、鲫鱼出现的频率是31%和 42%,则这个水塘里有鲤鱼 310 尾,鲢鱼 270 尾.
分析 根据上表估计柑橘损坏的概率为0.1,则柑橘 完好的概率为0.9.
2020九年级数学上册 第二十五章 概率初步 25.3 用频率估计概率(1)教案 (新版)新人教版
质疑,引起学生的学习兴趣
教
学
过
程
2、用频率估计概率
1、分组试验
2、收集数据
3、分析数据
n
m
m/n
N:抛掷次数; m:正面向上的次数;
M/n:正面向上的次数与抛掷次数的比。
全班学生3人一组,进行实验.第1组的数据填在第1列,第1,2组的数据之和填在第2列……10个组的数据之和填在第10列.
用频率估计概率
课题:25.3用频率估计概率(1)
课时
1课时
教学设计
课标
要求
1、能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果,了解事件的概率。
2、知道通过大量重复的试验,可以用频率估计概率。
教
材
及
学
情
分
析
1、教材分析:
作为教学体系的一个重要分支,概率的内容虽然相对比较抽象,但其 中包含丰富的辩证思想,而且在现实生活中也有着广泛的应用。概率的求法主要涉及三个方面,即古典概率、几何概率、和统计概率。本节课是求概率方法的第一节课,针对古典概型的问题,通过列举所有等可能结果来计算随机事件发生的概率。其中,对于有序地、不重不漏地列举所有可能出现的结果,分类的意识至关重要,这种意识也为继续研究古典概率包括高中的排列组合提供了一种思维方法。
理解用频率估算概率的合理性和必要性,鼓励学生探索数据中隐藏的规律,提高学生的统计意识.
教
学
过
程
4、结论:频率稳定于概率
三、巩固练习
思考:随着抛掷次数的增加,“正面向上”的频率的变化趋势是什么?
2020九年级数学上册 第二十五章 概率初步 25.3 用频率估计概率(2)教案 (新版)新人教版
根据估计的概率可以知道,在10 000 kg柑橘中完好柑橘的质量为
10 000×0.9=9 000(kg).
完好柑橘的实际成本为
≈2.22(元/kg).
教师引导学生补全教材第146页统计表中的空缺,然后完成表下的填空.
学生计算、填写,然后分析,发现:随着移植数的增 加,幼树移植成活的频率越来越稳定.当移植总数为14 000时,成活的频率为0.902,于是可以估计幼树移植成活的概率为0.9.
问题2某水果公司以2元/kg的成本价新进10 000 kg柑橘.如果公司希望这些柑橘能够获得利润5 000元,那么在出售柑橘(去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?
指导
合作探究法引导启发法练习法
教具
准备
课件
教学过程提要
环节
学生要解决的问
题或完成的任务
师生活动
设计意图
引
入
新
课
1、新课导入
1、概念复习
2、练习
一、复习导入:(一)什么是频率?怎样用频率估计概率?
(二)练习:
复习上节课所学,为本节课的学习做铺垫
教
学
过
程
二、用频率估计概率在生产、生活中的应用
1、幼树的成活率
用频率估计概率
课题:25.3用频率估计概率(2)源自课时1课时教学设计
课标
要求
1、能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果,了解事件的概率。
2、知道通过大量重复的试验,可以用频率估计概率。
2020秋九年级数学上册 第二十五章 概率初步 25.3 用频率估计概率教案 (新版)
25.3 用频率估计概率【教材分析】《利用频率估计概率》是人教版九年级上册第二十五章《概率初步》的第三节。
它是学习了前两节概率和用列举法求概率的基础上,即学习了理论概率后,进一步从试验的角度来估计概率,让学生再次体会频率与概率间的关系,通过这部分内容的学习可以帮助学生进一步理解试验频率和理论概率的关系。
概率与人们的日常生活密切相关,应用十分广泛。
纵观近几年的中考题,概率已是考查的热点,同时,对此内容的学习,也是为高中深入研究概率的相关知识打下坚实基础。
【教学目标】根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。
因此,我把本节课的教学目标确定为以下三个方面:知识目标:1.理解当事件的试验结果不是有限个,或各种可能结果发生的可能性不相等时,要用频率来估计概率,进一步发展概率观念。
2。
进一步理解概率与频率之间的联系与区别,培养学生根据频率集中趋势估计概率的能力.方法与过程目标:1。
选择生活中的实例进行教学,使学生在解决实际问题过程中加强对概率的认识,突出用频率的集中趋势估计概率的思想,体现数学与生活的紧密联系。
2.通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法。
情感态度与价值观目标:1.利用生活实例,介绍数学史,激发学生学习数学的热情和兴趣。
2.结合试验的随机性和规律性,让学生理解试验频率和理论概率的关系。
【重点与难点】重点:1。
体会用频率估计概率的必要性和合理性.2.学会依据问题特点,用频率来估计事件发生的概率.难点:1.理解频率与概率的关系,2。
用频率估计概率解决实际问题。
【学生分析】学习统计概率的学生并不是难在用频率估计概率,而是难在多大程度上感受用频率估计概率的必要性以及体会用频率估计概率所蕴含的基本思想,然后自觉地运用到实际生活中。
所以,要发动学生积极参与,动手实验,在实践中感悟。
【教学方法】树立以学生为本的思想,通过创设问题情境,利用《问题生成评价单》,以多媒体为教学平台,通过精心设计的问题串和活动系列,采取精讲多练、讲练结合的方法来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动了学生的学习积极性,达到事半功倍的教学效果。
人教版2020九年级数学上册 第二十五章 概率初步 25.3 用频率估计概率教案2
25.3 用频率估计概率01 教学目标1.理解用频率估计概率的条件及方法. 2.应用频率估计概率的方法解决问题.02 预习反馈1.对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的稳定性.2.一般地,在大量重复试验中,如果事件A 发生的频率mn (n 是试验的次数,m 是事件发生的频数)会稳定在某个常数p 附近,那么事件A 发生的概率P(A)=p .3.在抛掷一枚硬币,考察出现正反的试验中,随着试验次数的增加,“出现正面”的频率将趋于稳定在0.5左右.4.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:根据以上数据可以估计,该玉米种子发芽的概率约为0.8.(结果用小数表示,精确到0.1)03 新课讲授 类型1 用频率估计概率例1 (教材P144练习1变式)某射手在相同条件下进行射击训练,结果如下表所示:(1)计算并填写表中击中靶心的频率(结果保留小数点后两位);(2)试根据该表,估计这名射手射击一次,击中靶心的概率约为多少(结果保留小数点后一位)?并说明理由.【解答】由于击中靶心的频率都在0.90左右摆动,故这个射手射击一次,击中靶心的概率约是0.9.【跟踪训练1】做大量重复试验,抛掷同一枚啤酒瓶盖,经过统计得“凸面朝上”的频率约为0.44,则可以估计抛掷这枚啤酒瓶盖出现“凸面朝上”的概率约为(B)A.0.22 B.0.44 C.0.5 D.0.56【跟踪训练2】某学习小组的同学做摸球试验时,在一个暗箱里放了多个只有颜色不同的小球,将小球搅匀后任意摸出一个,记下颜色并放回暗箱,再次将球搅匀后任意摸出一个,不断重复.下表是实验过程中记录的数据:请估计从暗箱中任意摸出一个球是白球的概率是0.6(结果保留小数点后一位).类型2 用频率估计概率的应用例2(教材P145问题2变式)某水果公司以1.5元/千克的成本新进了20 000千克柑橘,销售人员首先从所有的柑橘中随机地抽取若干柑橘,进行了“柑橘损坏率”统计,并把获得的数据记录在下表中:(1)请你完成表格;(2)如果公司希望这些柑橘能够获得利润10 000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元?柑橘损坏的频率m n0.110 0.105 0.101 0.097 0.097 0.103 0.101 0.098 0.099 0.103【解答】 由表可以看出,柑橘损坏的频率稳定在0.1附近, 即可知柑橘的损坏率为0.1,则完好率为0.9,则可知20 000千克柑橘中完好的质量为20 000×0.9=18 000(千克). 完好的柑橘实际成本为1.5×20 00018 000=1.50.9=53(元/千克).设每千克柑橘定价为x 元,则有(x -53)×18 000=10 000,解得x ≈2.2.因此,出售柑橘时,每千克定价大约为2.2元可获利润10 000元.【跟踪训练3】 某林业部门统计某种树苗在本地区一定条件下的移植成活率,结果如表:移植的棵数n 300 700 10 00 5 000 15 000 成活的棵数m 280 622 912 4 475 13 545 成活的频率mn0.9330.8890.9120.8950.903(1)根据表中的数据,估计这种树苗移植成活的概率为0.9(精确到0.1);(2)如果该地区计划成活4.5万棵幼树,那么需要移植这种幼树大约5万棵.04 巩固训练1.小明做“用频率估计概率”的试验时,根据统计结果,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能是(C )A .同时抛掷两枚硬币,落地后两枚硬币正面都朝上B .一副去掉大小王的扑克牌,洗匀后,从中任抽一张牌的花色是红桃C .抛一个质地均匀的正方体骰子,朝上的面点数是3D .一个不透明的袋子中有4个白球、1个黑球,它们除了颜色外都相同,从中抽到黑球2.某校篮球队进行篮球投篮训练,下表是某队员投篮的统计结果:根据上表,你估计该队员一次投篮命中的概率大约是0.6.3.在一个不透明的布袋中,红色、黑色、白色的球共有20个,除颜色外,形状、大小、质地等完全相同,小明通过大量摸球试验后发现摸到红色、黑色球的频率分别稳定在10%和30%,则口袋中白色球的个数很可能是12.4.生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们做上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的雀鸟有10只.请你帮助工作人员估计这片山林中雀鸟的数量约为5__000只.05 课堂小结1.频率与概率的关系:区别:①频率反映事件发生的频繁程度;概率反映事件发生的可能性大小.②频率是不能脱离具体的n次试验的结果,具有随机性;概率是具有确定性的不依赖于试验次数的理论值.联系:频率是概率的近似值,概率是频率的稳定值.2.用频率估计概率的基本步骤:①大量重复试验;②检验频率是否已表现出稳定性;③频率的稳定值即为概率.。
九年级数学上册第二十五章25.3用频率估计概率备课资料教案(新版)新人教版
第二十五章 25.3用频率估计概率知识点1:利用频率估计概率一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A发生的概率,记作P(A)=p.频率估计概率的适用对象:当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,可通过统计频率来估计概率.根据大量重复试验,某一事件发生的频率越来越稳定于某个常数,可将这个常数看作该事件发生的概率.关键提醒:概率是事件在大量重复试验中频率逐渐稳定的值,即用大量重复试验中事件发生的频率去估计得到事件发生的概率,但大量试验反映的规律并非在每一次试验中一定存在,如抛硬币10次,并不一定是正面、反面各5次.知识点2:设计模拟试验通过试验预测某事件的概率时,当试验的所有可能不是有限个,或各种可能结果发生的可能性不相等时,要通过频率来估计概率,也就是说,要借助试验法得到相应的概率,如试验遇到找不到相应的实物或用实物进行试验困难较大的情况下,其有效方法是:(1)寻找满足条件的替代物做模拟试验;(2)用计算器产生随机整数的方法进行模拟试验.知识点3:用统计频(概)率解决实际问题实际问题中的试验一般不属于各种结果发生的可能性相等的类型,所以先用频率去估计概率,然后根据估计的概率解决相关问题.归纳整理:(1)在随机试验中,由于众多微小的偶然因素的影响,每次测得的结果不尽相同(具有偶然性),但大量重复试验所得结果却能反映规律.(2)在做大量重复试验时,可以根据概率要达到的精度来确定数据表中频率保留的数位.一般用频率估计出来的概率要比数据表中的频率保留的数位要少.芽种子粒数05苗苗记录了她做这个游戏的情况,并绘制了如下的表格:你能设计一个模拟试验吗?从而估计出任意抽取这些球除颜色外没有其他区点拨:本题涉及用频率估计概率及模拟试验的设计.(1)解答时表格中的频率可以直接求得,估计概率要注意随着试验次数的增多,频率稳定在哪个常数附近;(2)模拟试验的方法很多,关键是注意试验的条件要相同.考点3:利用频率求概率解决实际问题【例2】某工厂封装圆珠笔的箱子,每箱只装2000枝,在一次封装时,误把一些已作标记的不合格的圆珠笔也装入箱里,若随机拿出100枝圆珠笔,共做10次试验,100枝中不合格的圆珠笔的平均数是5,你能估计箱子里混入多少不合格的圆珠笔吗?若每枝合格圆珠笔的利润为0.05元,而发现不合格品要退货并每枝赔偿商店1.00元,你能根据你的估计推算出这箱圆珠笔是亏损还是盈利?亏损,损失多少元?盈利,利润是多少?解:因为每100枝平均有5枝不合格,所以有2000÷100×5=100,故可估计整箱平均有100枝不合格,1900枝合格.赔偿100×1=100(元),利润1900×0.5=950(元),总的盈利950-100=850(元),所以这箱圆珠笔盈利,共盈利850元.点拨:利用平均概率可估计出共有多少枝不合格的商品,即可推算出亏损还是盈利.。
2020-2021年 人教版 九年级 上册 数学25.3用频率估计概率
2020-2021年人教版九年级上册数学25.3用频率估计概率基础闯关全练1.(2018吉林长春期末)在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干个,某小组做摸球试验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复该试验,下表是试验中的数据,通过数据估计摸到白球的概率是( )A.0.4B.0.5C.0.6D.0.72.(2018广东深圳宝安期末)在一个不透明的盒子里装有红、黑两种颜色的球共60只,这些球除颜色外其余完全相同.为了估计红球和黑球的个数,七(4)班的数学学习小组做了摸球试验.他们将球搅匀后,从盒子里随机摸出一个球记下颜色,再把球放回盒子中,多次重复上述过程,得到下表巾的统计数据:(1)请估计:当摸球的次数凡足够大时,摸到红球的频率将会接近_________;(精确到0.1)(2)假如你去摸一次,则摸到红球的概率的估计值为_________;(3)试估算盒子里红球的个数为_______,黑球的个数为____.3.(2018河南新乡长垣期末)用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9.下列说法正确的是( ) A.种植10棵幼树,结果一定是“有9棵幼树成活”B.种植100棵幼树,结果一定是“90棵幼树成活,10棵幼树不成活”C.种植10n棵幼树,恰好有“n棵幼树不成活”D.种植n棵幼树,当n越来越大时,种植成活幼树的频率会越来越稳定于0.9能力提升全练如图25 -3-1,正方形ABCD内,有一个内切圆.电脑可设计程序:在正方形内可随机产生一系列点,当点数很多时,电脑自动统计正方形内的点数a,内的点数b(在正方形边上和圆上的点不在统计中),根据用频率估计概率的原理,可推得π的大小是( )图25-3-1A. B. C. D.三年模拟全练 一、选择题1.(2018河北承德兴隆期末.4,★☆☆)为了估计图钉落地后钉尖着地的概率有多大,小明做了大量重复试验,发现钉尖着地的次数是试验总次数的40%,下列说法错误的是( ) A .钉尖着地的频率是0.4B .随着试验次数的增加,钉尖着地的频率稳定在0.4附近C .钉尖着地的概率约为0.4D .前20次试验结束后,钉尖着地的次数一定是8 二、填空题2.(2018北京延庆一模改编,16,★☆☆)某农科所在相同条件下做玉米种子发芽试验,结果如图25-3-2:图25-3-2b a a b4a b b a4某位顾客购进这种玉米种子10千克,那么大约有__________千克种子能发芽.3.(2018江苏盐城神州路中学期末,11,★☆☆)在一个口袋中,装有白色、黑色、红色球共36个,小红通过多次摸球试验后,发现摸到白色、黑色、红色球的频率依次为,则口袋中三种球的数目依次大约是_____________. 五年中考全练 一、选择题1.(2017甘肃兰州中考,7,★☆☆)一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n 为( ) A .20B .24C .28D .302.(2018内蒙古呼和浩特中考,5.★★☆)某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了折线统计图如图25-3-3,则符合这一结果的试验最有可能的是( )1276141、、图25-3-3A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都反面朝上D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9二、填空题3.(2018湖南郴州中考,14,★☆☆)某瓷砖厂在相同条件下抽取部分瓷砖做耐磨试验,结果如下表所示:则这个厂生产的瓷砖是合格品的概率估计值是___________.(精确到0.01)三、解答题4.(2015广东广州中考,22,★★☆)4件同型号的产品中,有1件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率:(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率:(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95.可以推算出x的值大约是多少?核心素养全练1.(2019广东深圳罗湖月考)某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的试验最有可能的是( )A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率C.抛一枚硬币,正面朝上的概率D.抛一个质地均匀的正六面体骰子(六个面上分别刻有1到6的点数),向上的面的点数是52.“中秋节”前夕,某商店推出“迎中秋,赠月饼”活动,活动规则:在一个装有6个红球和若干白球(每个球除颜色外,其他都相同)的袋中,随机摸出一个球,摸到一个红球就获得精美月饼一盒.已知当天参加活动的有1000人,该商店共发放了200盒精美的月饼,清你估计袋中白球的数量是_______个.25.3用频率估计概率 基础闯关全练1.C 由题中表格可知,摸到白球的频率稳定在0.6附近,则估计摸到白球的概率是0.6.故选C . 2.答案(1)0.3(2)0.3 (3)18;42解析估算盒子里红球的个数为60x0.3= 18,黑球的个数为60-18= 42.2.D 某种幼树在一定条件下移植成活的概率为0.9,是在大量重复试验中得到的频率的稳定值,故选D . 能力提升全练B 设圆的半径为r ,则正方形的边长为2r ,根据题意得≈,故,故选B .三年模拟全练 一、选择题1.D 钉尖着地的频率是40%= 0.4,故选项A 中说法正确,不符合224r rπa ba b4π题意;随着试验次数的增加,钉尖着地的频率稳定在0.4附近,故选项B 中说法正确,不符合题意;∵钉尖着地的频率是0.4,.∴钉尖着地的概率大约是0.4,故选项C 中说法正确,不符合题意:随着试验次数的增加,钉尖着地的频率稳定在0.4附近,但前20次试验结束后,钉尖着地的次数并不一定是8.故选项D 中说法错误,符合题意.故选D . 二、填空题 2.答案8.8解析 ∵大量重复试验后,种子发芽率逐渐稳定在0.88左右.∴估计这批玉米种子发芽的概率为0. 88,∴10千克种子中能发芽的种子的质量是10x0.88= 8.8(千克). 3.答案9个、6个、21个解析 ∵白色、黑色、红色球共36个,摸到白色、黑色、红色球的频率依次为,∴估计白色球有36×=9个,黑色球有36×=6个,红色球有36×=21个.五年中考全练 一、选择题1.D 根据题意得=30%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选D .2.D 由题中的折线统计图可知,该试验发生的频率稳定在0.33附近,1276141、、4161127n 9可估计事件发生的概率为0.33.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为,故A 不符合题意;掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为,故B 不符合题意;先后两次掷一枚质地均匀的硬币,两次都反面朝上的概率为,故C 不符合题意;先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为,故D 符合题意.故选D . 二、填空题 3.答案0.95解析因为合格品的频率都在0.95上下波动,所以这个厂生产的瓷砖是合格品的概率估计值是0. 95. 三、解答题4.解析(1)P (抽到不合格品)=.(2)设1件不合格品为A ,3件合格品分别为Bl ,B2,B3.根据题意,画出数状图如下,由树状图可知,共有12种等可能的结果,其中抽到的都是合格品的结果有6种,5321413141∴P (抽到的都是合格品).(3) ∵抽到合格品的频率稳定在0.95. ∴估计抽到合格品的概率为0.95.根据题意,得,解得x=16.经检验,x= 16是原方程的解且符合题意,答:可以推算出石的值大约是16.1.B 由题中表格看出,试验发生的频率随着试验次数的增加.逐渐稳定在0.333附近,故估计该事件发生的概率为0.333.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为,故A 不符合题意;从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率是,故B 符合题意;抛一枚硬币,正面朝上的概率为,故C 不符合题意;抛一个质地均匀的正六面体骰子(六个面上分别刻有1到6的点数),向上的面的点数是5的概率是,故D 不符合题意,故选B . 2.答案24解析设白球有z 个,由题意知参加活动获得月饼的频率是,因为参加的人数众多,频率接近概率,故可得,解得x=24.21126==95.031x3=+++x 41312161511000200=51x 66=+经检验x=24是原方程的解且符合题意.。
九年级.数学上册 第二十五章 概率初步 25.3 用频率估计概率课件上册数学课件
A
A.12 B.9 C.4
D.3
4.从口袋(kǒu dɑi)中随机摸出一个球,再放回袋中,不断重复上述过程,共摸150次,其中有50次摸 到黑球,已知口袋(kǒu dɑi)中有10个黑球和若干个白球,则估计口袋(kǒu dɑi)中白球有__________ 个.
5.一水塘里有鲤鱼、鲫鱼、鲢鱼共20 000尾,一渔民通过多次捕获试验后发现:鲤鱼、鲫鱼出现的频率
(2)小颖说:“根据上述试验,一次试验中出现5点朝上的概率最大.”小红说:“如果投掷600次, 那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?
12/7/2021
第十一页,共十四页。
8.小红和小明在操场做游戏,他们(tā men)先在地上画了半径分别为2 m和3 m的同心圆(如图), 蒙上眼在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内不算,你来当 裁判. (1)你认为游戏公平吗?为什么?
的概率
12/7/2021
第四页,共十四页。
知识点二:用频率估计(gūjì)概率在实际中的应用
例2 箱子里有黄色乒乓球和白色乒乓球各1个,它们除颜色不同外其他都完全相同,全班同学分10组 作摸球试验(shìyàn),每组摸20次,规则为:任意摸出一球,如果是黄色,记为数字1;如果是白色, 记为数字2.然后把球放回箱子里搅匀后,再重复摸一次,并记录两次摸球的数字之和.下表是摸球结 果的记录: (1)计算表中“和为2”的频率并填表;
是31%和42%,则估计这个水塘里有鲤鱼__________尾,鲢鱼__________ 尾.
12/7/2021
第九页,共十四页。
6.甲、乙两名同学在一次用频率估计概率的实验中,统计了某一结果出现的频 率绘出的统计图如图所示,则下列事件中:①抛一枚硬币,出现正面的概率;② 任意写一个整数,它能被2整除(zhěngchú)的概率;③掷一枚正六面体的骰子,出 现点数能被3整除(zhěngchú)的概率;④从一个装有2个白球和1个红球的袋子中任
人教版九年级数学上册第25章 概率初步3 用频率估计概率
并绘制了如图所示的统计图,则符合这一结果的试验可能是( C )
A.掷一枚质地均匀的硬币,正面朝上的概率
B.从一副去掉大小王的扑克牌中任意抽取一张,
抽到黑桃的概率
C.从一个装有2个白球和1个红球的不透明袋子中任意摸出一球(小球除
颜色外,其余完全相同),摸到红球的概率
D.任意买一张电影票,座位号是2的倍数的概率
(随着抛掷次数的增加,“正面向上”的频率越来越接近概率)
4.请同学们阅读课本143-145页.
5.请同学们尝试总结一下频率与概率的关系.
概率是一种现象的固有属性,比如一枚均匀的硬币,随意抛掷的话正面出
现的概率就是 .这跟试验次数是没有关系的.而频率,就是一组试验中某个
结果出现的次数与所有试验次数的比值,它和试验次数密切相关.一般来说,
并记录小球落在不规则图案上的次数(球扔在界限上或矩形区域外不计试
验结果),他将若干次有效试验的结果回执成了如图②所示的折线统计图,
由此他估计不规则图案的面积大约为( B )
A.6 ㎡
B.7 ㎡
C.8 ㎡
D.9 ㎡
例3 某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中
的一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中
(1)一个不透明的瓶子里装有黑色棋子和白色棋子,除颜色外无
其他差别,随机从中摸出一颗,刚好摸到黑色棋子的概率是多少?
(2)一个不透明的瓶子里装有7颗黑色棋子和3颗白色棋子,除颜
色外无其他差别,随机从中摸出一颗,刚好摸到黑色棋子的概率是
多少?
思考:这两个问题有什么不同?
同学们,老师这里有一枚硬币,我们来做一个“投币试验”,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教案2 (全国通用版)(全国通用版)
01 教学目标
1.理解用频率估计概率的条件及方法. 2.应用频率估计概率的方法解决问题.
02 预习反馈
1.对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的稳定性.
2.一般地,在大量重复试验中,如果事件A 发生的频率m
n (n 是试验的次数,m 是事件发
生的频数)会稳定在某个常数p 附近,那么事件A 发生的概率P(A)=p .
3.在抛掷一枚硬币,考察出现正反的试验中,随着试验次数的增加,“出现正面”的频率将趋于稳定在0.5左右.
4.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:
根据以上数据可以估计,该玉米种子发芽的概率约为0.8.(结果用小数表示,精确到0.1)
03 新课讲授 类型1 用频率估计概率
例1 (教材P144练习1变式)某射手在相同条件下进行射击训练,结果如下表所示:
教案2 (全国通用版)(全国通用版)
(1)计算并填写表中击中靶心的频率(结果保留小数点后两位);
(2)试根据该表,估计这名射手射击一次,击中靶心的概率约为多少(结果保留小数点后一位)?并说明理由.
【解答】由于击中靶心的频率都在0.90左右摆动,
故这个射手射击一次,击中靶心的概率约是0.9.
【跟踪训练1】做大量重复试验,抛掷同一枚啤酒瓶盖,经过统计得“凸面朝上”的频率约为0.44,则可以估计抛掷这枚啤酒瓶盖出现“凸面朝上”的概率约为(B)
A.0.22 B.0.44 C.0.5 D.0.56
【跟踪训练2】某学习小组的同学做摸球试验时,在一个暗箱里放了多个只有颜色不同的小球,将小球搅匀后任意摸出一个,记下颜色并放回暗箱,再次将球搅匀后任意摸出一个,不断重复.下表是实验过程中记录的数据:
请估计从暗箱中任意摸出一个球是白球的概率是0.6(结果保留小数点后一位).
类型2 用频率估计概率的应用
例2(教材P145问题2变式)某水果公司以1.5元/千克的成本新进了20 000千克柑橘,销售人员首先从所有的柑橘中随机地抽取若干柑橘,进行了“柑橘损坏率”统计,并把获得的数据记录在下表中:
(1)请你完成表格;
教案2 (全国通用版)(全国通用版)
(2)如果公司希望这些柑橘能够获得利润10 000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元?
【解答】 由表可以看出,柑橘损坏的频率稳定在0.1附近, 即可知柑橘的损坏率为0.1,则完好率为0.9,
则可知20 000千克柑橘中完好的质量为20 000×0.9=18 000(千克). 完好的柑橘实际成本为1.5×20 00018 000=1.50.9=5
3(元/千克).
设每千克柑橘定价为x 元,则有(x -5
3)×18 000=10 000,
解得x ≈2.2.
因此,出售柑橘时,每千克定价大约为2.2元可获利润10 000元.
【跟踪训练3】 某林业部门统计某种树苗在本地区一定条件下的移植成活率,结果如表:
(1)根据表中的数据,估计这种树苗移植成活的概率为0.9(精确到0.1);
(2)如果该地区计划成活4.5万棵幼树,那么需要移植这种幼树大约5万棵.
04 巩固训练
教案2 (全国通用版)(全国通用版)
1.小明做“用频率估计概率”的试验时,根据统计结果,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能是(C )
A .同时抛掷两枚硬币,落地后两枚硬币正面都朝上
B .一副去掉大小王的扑克牌,洗匀后,从中任抽一张牌的花色是红桃
C .抛一个质地均匀的正方体骰子,朝上的面点数是3
D .一个不透明的袋子中有4个白球、1个黑球,它们除了颜色外都相同,从中抽到
黑球
2.某校篮球队进行篮球投篮训练,下表是某队员投篮的统计结果:
投篮的次数n 100 200 500 800 1 000 投中的次数m 58 116 295 484 601 投中的频率m
n
0.580
0.580
0.590
0.605
0.601
根据上表,你估计该队员一次投篮命中的概率大约是0.6.
3.在一个不透明的布袋中,红色、黑色、白色的球共有20个,除颜色外,形状、大小、质地等完全相同,小明通过大量摸球试验后发现摸到红色、黑色球的频率分别稳定在10%和30%,则口袋中白色球的个数很可能是12.
4.生物工作者为了估计一片山林中雀鸟的数量,设计了如下方案:先捕捉100只雀鸟,给它们做上标记后放回山林;一段时间后,再从中随机捕捉500只,其中有标记的雀鸟有10只.请你帮助工作人员估计这片山林中雀鸟的数量约为5__000只.
05 课堂小结
1.频率与概率的关系:
教案2 (全国通用版)(全国通用版)区别:①频率反映事件发生的频繁程度;概率反映事件发生的可能性大小.
②频率是不能脱离具体的n次试验的结果,具有随机性;概率是具有确定性的不依赖于试验次数的理论值.
联系:频率是概率的近似值,概率是频率的稳定值.
2.用频率估计概率的基本步骤:
①大量重复试验;
②检验频率是否已表现出稳定性;
③频率的稳定值即为概率.
【感谢您的阅览,下载后可自由复制或修改编辑,敬请您的关注】。