2019-2020年高一下学期期末考试数学试题含答案

合集下载

临沂市罗庄区高一数学下学期期末考试试题含解析

临沂市罗庄区高一数学下学期期末考试试题含解析
A. B. C。 D。
【答案】D
【解析】
【分析】
先求出基本事件总数 ,再用列举法求出抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件个数,由此能求出抽得的第一张卡片上的数大于第二张卡片上的数的概率.
【详解】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,
基本事件总数 ,
A. “甲站排头”与“乙站排头”B. “甲站排头"与“乙不站排尾”
C. “甲站排头”与“乙站排尾”D. “甲不站排头”与“乙不站排尾”
【答案】BCD
【解析】
【分析】
互斥事件是不能同时发生的事件,因此从这方面来判断即可.
【详解】排头只能有一人,因此“甲站排头”与“乙站排头”互斥,而B、C、D中,甲、乙站位不一定在同一位置,可以同时发生,因此它们都不互斥.
【答案】
【解析】
【分析】
利用 、 表示向量 ,再由 可求得实数 的值.
【详解】 ,所以, ,
则 ,
为线段 的中点,则 ,因此, .
故答案为: .
【点睛】本题考查利用平面向量的基底表示求参数,考查计算能力,属于中等题。
15. 某次知识竞赛规则如下:在主办方预设的 个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是 ,且每个问题的回答结果相互独立,则该选手恰好回答了 个问题就晋级下一轮的概率等于 ________.
故答案为: .
【点睛】本题考查利用独立事件的概率乘法公式计算事件的概率,考查计算能力,属于基础题.
16. 如图,在正方体 中,点 为线段 的中点,设点 在线段 上,直线 与平面 所成的角为 ,则 的最小值_________,最大值_______________.

2019-2020学年河南省南阳市邓州第六高级中学高一数学理下学期期末试题含解析

2019-2020学年河南省南阳市邓州第六高级中学高一数学理下学期期末试题含解析

2019-2020学年河南省南阳市邓州第六高级中学高一数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 在等差数列{a n}中,a5=1,a8+a10=16,则a13的值为(A)27 (B)31 (C)30 (D)15参考答案:D2. 已知锐角三角形的边长分别为1,3,a,则a的取值范围是()A.(8,10)B.C.D.参考答案:B【分析】根据大边对大角定理知边长为所对的角不是最大角,只需对其他两条边所对的利用余弦定理,即这两角的余弦值为正,可求出的取值范围。

【详解】由题意知,边长为1所对的角不是最大角,则边长为或所对的角为最大角,只需这两个角为锐角即可,则这两个角的余弦值为正数,于此得到,由于,解得,故选:C。

【点睛】本题考查余弦定理的应用,在考查三角形是锐角三角形、直角三角形还是钝角三角形,一般由最大角来决定,并利用余弦定理结合余弦值的符号来进行转化,其关系如下:为锐角;为直角;为钝角.3. 函数的零点所在的一个区间是()A.(-2, -1)B.(-1,0)C.(0,1)D.(1,2)参考答案:B函数f(x)=2x+3x是连续增函数,∵f(-1)= ,f(0)=1+0>0∴函数的零点在(-1,0)上,故选:B4. 若是常数,函数对于任何的非零实数都有,且,则不等式的解集为( )A. B. C.D.参考答案:A略5. 已知数列{a n}的前n项和为S n,若S n=n2+n(n≥1),则数列{}的前n项和等于()A.B.C.D.参考答案:A6. 设是上的奇函数,,当时,,则等于( )A、0.5B、C、1.5D、参考答案:B略7. 设不等式组,表示平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是()A. B. C. D.参考答案:D8. 从装有2个红球和2个黒球的口袋内任取2个球,那么互斥而不对立的两个事件是( ).A.至少有一个黒球与都是黒球B.至少有一个黒球与恰有1个黒球C.至少有一个黒球与至少有1个红球D.恰有个黒球与恰有2个黒球参考答案:D略9. 已知均为锐角,且满足,则与的关系()参考答案:解析:.由题设:.∴ .∴ .10. 已知定义在R上的函数f(x)满足f(﹣1+x)=f(3﹣x),当x≥1时,f(x)单调递增,则关于θ不等式的解范围()A.B.C.D.参考答案:A【考点】正弦函数的单调性;奇偶性与单调性的综合.【专题】计算题;转化思想;转化法;函数的性质及应用;三角函数的图像与性质.【分析】根据条件判断函数的对称性,结合三角函数的性质将不等式进行转化求解即可.【解答】解:∵f(﹣1+x)=f(3﹣x),∴函数关于=1对称性,∵log82=log82===,∴不等式等价为f(sin2θ)<f(),∵当x≥1时,f(x)单调递增,∴当x<1时,f(x)单调递减,则不等式等价为sin2θ>,即2kπ+<2θ<2kπ+,k∈Z.则kπ+<θ<kπ+,k∈Z.故不等式的解集为(kπ+,kπ+),k∈Z.故选:A【点评】本题主要考查不等式的求解,根据函数对称性和单调性之间的关系将不等式进行转化是解决本题的关键.二、填空题:本大题共7小题,每小题4分,共28分11. 函数且的图象恒过定点P,P在幂函数f(x)的图象上,则___________.参考答案:2712. 一个圆柱和一个圆锥的底面直径和他们的高都与某一个球的直径相等,这时圆柱、圆锥、球的体积之比为.参考答案:3:1:213. 已知实数满足,则的最大值为.参考答案:414. , 设△ABC 的内角A满足,且,则BC边上的高AD 长的最大值是________.参考答案:【分析】通过已知条件可求出A角,bc乘积,于是可求得面积,利用余弦定理与基本不等式可得到a的最小值,于是再利用面积公式可求得答案.【详解】根据题意,,故,求得,,故,根据余弦定理得,即,即而三角形面积为,所以边上的高长的最大值是,故答案为.【点睛】本题主要考查解三角形,基本不等式的实际应用,意在考查学生的分析能力,逻辑推理能力,计算能力,难度较大.15. 函数的定义域为______________.参考答案:略16. 已知直线l过点,,则直线l的倾斜角为______.参考答案:【分析】根据两点求斜率的公式求得直线的斜率,然后求得直线的倾斜角.【详解】依题意,故直线的倾斜角为.【点睛】本小题主要考查两点求直线斜率的公式,考查直线斜率和倾斜角的对应关系,属于基础题.17. 已知函数f(x)=,则f(f(﹣2))= .参考答案:3【考点】函数的值.【分析】由分段函数先求出f(﹣2)=,由此能求出f(f(﹣2))的值.【解答】解:∵函数f(x)=,∴f(﹣2)=,f(f(﹣2))=f()=1﹣=1﹣(﹣2)=3.故答案为:3.三、解答题:本大题共5小题,共72分。

2019-2020学年内蒙古包头市高一下学期期末数学试卷 (解析版)

2019-2020学年内蒙古包头市高一下学期期末数学试卷 (解析版)

2019-2020学年内蒙古包头市高一第二学期期末数学试卷一、选择题(共12小题).1.与直线3x﹣4y+5=0关于坐标原点对称的直线方程为()A.3x+4y﹣5=0B.3x+4y+5=0C.3x﹣4y+5=0D.3x﹣4y﹣5=0 2.下列不等式中成立的是()A.若a>b>0,则ac2>bc2B.若a>b>0,则a2>b2C.若a<b<0,则a2<ab<b2D.若a<b<0,则<3.用斜二测画法画水平放置的平面图形直观图时,下列结论中正确的个数是()①平行的线段在直观图中仍然平行;②相等的线段在直观图中仍然相等;③相等的角在直观图中仍然相等;④正方形在直观图中仍然是正方形.A.1B.2C.3D.44.点P(x,y)在直线x+y﹣2=0上,O是坐标原点,则|OP|的最小值是()A.1B.C.2D.25.已知{a n}为等比数列,下面结论中正确的是()A.若a1=a3,则a1=a2B.若a2>a1,则a3>a2C.a1+a3≥2a2D.a12+a32≥2a226.在△ABC中,sin A:sin B:sin C=7:3:5,那么这个三角形的最大角是()A.B.C.D.7.某几何体的三视图如图所示,该几何体由平面将正方体截去一部分后所得,则截去几何体的体积与剩余几何体的体积比值为()A.B.C.D.8.在正方体ABCD﹣A1B1C1D1中,点P,Q分别为线段AB,DD1的中点,则异面直线B1P与CQ所成角的大小为()A.B.C.D.9.已知点A(﹣4,0),B(3,﹣1),若直线y=kx+2与线段AB恒有公共点,则k的取值范围是()A.[﹣1,]B.[﹣,1]C.(﹣∞,﹣]∪[1,+∞)D.(﹣∞,﹣1]∪[,+∞)10.已知0<a<1,0<b<1,则+++的最小值为()A.2B.2C.2D.411.《九章算术》中,将四个面都为直角三角形的三棱锥称为鳖臑.若三棱锥A﹣BCD为鳖臑,AB⊥平面BCD,AB=BC=2,BD=2,且三棱锥A﹣BCD的四个顶点都在一个正方体的顶点上,则该正方体的表面积为()A.12B.18C.24D.3612.已知函数y=f(x)满足f(x)+f(1﹣x)=1,若数列{a n}满足a n=f(0)+f()+f ()+…+f()+f(1),则数列{a n}的前10项和为()A.B.33C.D.34二、填空题:共4小题,每小题5分,共20分.把答案填在答题卡上对应题的横线上.13.已知实数x,y满足,则z=x+2y的最小值为.14.关于x的一元二次方程mx2﹣(1﹣m)x+m=0没有实数根,则实数m的取值范围是.15.《莱因德纸草书》(RhindPapyus)是世界上最古老的数学著作之一.书中有这样一道题目:把100个面包分给5个人,使得每个人所得成等差数列,且较大的三份之和的是较小的两份之和,则最大的1份为.16.设三棱锥S﹣ABC的底面和侧面都是全等的正三角形,P是棱SA的中点.记直线PB 与直线AC所成角为α,直线PB与平面ABC所成角为β,二面角P﹣AC﹣B的平面角为γ,则a,β,γ中最大的是,最小的是.三、解答题:共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤17.已知x>y>0,z>0,求证:(1)<;(2)(x+y)(x+z)(y+z)>8xyz.18.已知sinα=,α∈(,π),cosβ=﹣,β是第三象限角.(1)求cos(α+β)的值;(2)求tan(α﹣β)的值.19.△ABC的内角A,B,C的对边分别为a,b,c.已知a=2,b=,B=2A.(1)求sin A;(2)求△ABC的面积.20.已知A(﹣3,0),B(1,0),C(0,3),试求点D的坐标,使四边形ABCD为等腰梯形.21.设等差数列{a n}的前n项和为S n,且S4=4S2,a2n═2a n+1.(1)求数列{a n}的通项公式;(2)求数列{}的前n项和T n.22.如图,长方体ABCD﹣A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,B1E⊥EC.(1)证明:B1E⊥平面EBC;(2)若点E为棱AA1的中点,AB=2;(i)求四棱锥E﹣BB1C1C的体积;(ii)求直线EC1与平面BB1C1C所成角的正弦值.参考答案一、选择题(共12小题).1.与直线3x﹣4y+5=0关于坐标原点对称的直线方程为()A.3x+4y﹣5=0B.3x+4y+5=0C.3x﹣4y+5=0D.3x﹣4y﹣5=0解:设直线3x﹣4y+5=0点Q(x1,y1)关于点M(0,0)对称的直线上的点P(x,y),∵所求直线关于点M(0,0)的对称直线为3x﹣4y+5=0,∴由中点坐标公式得=0,=0;解得x1=﹣x,y1=﹣y代入直线3x﹣4y+5=0,得3(﹣x)﹣4(﹣y)+5=0,整理得:3x﹣4y﹣5=0,即所求直线方程为:3x﹣4y﹣5=0.故选:D.2.下列不等式中成立的是()A.若a>b>0,则ac2>bc2B.若a>b>0,则a2>b2C.若a<b<0,则a2<ab<b2D.若a<b<0,则<解:A.c=0时不成立;B.成立.C.a<b<0,则a2>ab>b2.因此不成立.D.a<b<0,则>.因此不成立.故选:B.3.用斜二测画法画水平放置的平面图形直观图时,下列结论中正确的个数是()①平行的线段在直观图中仍然平行;②相等的线段在直观图中仍然相等;③相等的角在直观图中仍然相等;④正方形在直观图中仍然是正方形.A.1B.2C.3D.4解:用斜二测画法画水平放置的平面图形直观图时,对于①,平行的线段在直观图中仍然是平行线段,所以①正确;对于②,相等的线段在直观图中不一定相等,如平行于x轴的线段,长度不变,平行于y轴的线段,变为原来的,所以②错误;对于③,相等的角在直观图中不一定相等,如直角坐标系内两个相邻的直角,在斜二测画法内是45°和135°,所以③错误;对于④,正方形在直观图中不是正方形,是平行四边形,所以④错误;综上知,正确的命题序号是①,共1个.故选:A.4.点P(x,y)在直线x+y﹣2=0上,O是坐标原点,则|OP|的最小值是()A.1B.C.2D.2解:∵点P(x,y)在直线x+y﹣2=0上,O是坐标原点,∴|OP|的最小值是点O到直线x+y﹣2=0的距离,∴则|OP|的最小值是d==.故选:B.5.已知{a n}为等比数列,下面结论中正确的是()A.若a1=a3,则a1=a2B.若a2>a1,则a3>a2C.a1+a3≥2a2D.a12+a32≥2a22解:根据题意,依次分析选项:对于A,若q=﹣1,则有a1=a3,但a1=﹣a2,A错误;对于B,若a1<0,且q=﹣1,则有a2>0>a1,但a3<0<a2,B错误;对于C,若a1<0,且q<0时,a1+a3<0,a2>0,则有a1+a3<2a2,C错误;对于D,由基本不等式的性质可得:a12+a32≥2a1a3=2a22,D正确;故选:D.6.在△ABC中,sin A:sin B:sin C=7:3:5,那么这个三角形的最大角是()A.B.C.D.解:设三角形的三边长分别为a,b,c,根据正弦定理化简已知的等式得:a:b:c=7:3:5,设a=7k,b =3k,c=5k,可得a为最大边,A为三角形最大角,根据余弦定理得cos A===﹣,∵A∈(0,π),∴A=.则这个三角形的最大角为.故选:B.7.某几何体的三视图如图所示,该几何体由平面将正方体截去一部分后所得,则截去几何体的体积与剩余几何体的体积比值为()A.B.C.D.解:设正方体的棱长为a,由几何体的三视图得到截去的部分为三棱锥,作出几何体的直观图如图所示,∴截去几何体的体积V1=,剩余几何体的体积为V2=a3﹣V1==,∴截去几何体的体积与剩余几何体的体积比值为:==.故选:C.8.在正方体ABCD﹣A1B1C1D1中,点P,Q分别为线段AB,DD1的中点,则异面直线B1P 与CQ所成角的大小为()A.B.C.D.解:取AA1中点E,AE中点F,连结BE,PF,FC1,设正方体ABCD﹣A1B1C1D1中棱长为4,∵点P,Q分别为线段AB,DD1的中点,∴PF∥BF∥CQ,∴∠FPB1是异面直线B1P与CQ所成角(或所成角的补角),PF==,PB1==2,FC1==5,∴PF2+B1P2=FB12,∴异面直线B1P与CQ所成角为.故选:A.9.已知点A(﹣4,0),B(3,﹣1),若直线y=kx+2与线段AB恒有公共点,则k的取值范围是()A.[﹣1,]B.[﹣,1]C.(﹣∞,﹣]∪[1,+∞)D.(﹣∞,﹣1]∪[,+∞)解:直线y=kx+2经过定点M(0,2),点A(﹣4,0),B(3,﹣1),直线MA的斜率为=,直线MB的斜率为=﹣1,∵直线y=kx+2与线段AB恒有公共点,故k≥,或k≤﹣1,故选:D.10.已知0<a<1,0<b<1,则+++的最小值为()A.2B.2C.2D.4解:如图,令O(0,0),C(0,1),A(1,0),B(1,1),可得+++=|PO|+|PC|+|PA|+|PB|,又|PO|+|PC|+|PA|+|PB|≥|AC|+|OB|=2.则+++的最小值为2.故选:B.11.《九章算术》中,将四个面都为直角三角形的三棱锥称为鳖臑.若三棱锥A﹣BCD为鳖臑,AB⊥平面BCD,AB=BC=2,BD=2,且三棱锥A﹣BCD的四个顶点都在一个正方体的顶点上,则该正方体的表面积为()A.12B.18C.24D.36解:若三棱锥A﹣BCD为鳖臑,AB⊥平面BCD,AB=BC=2,BD=2,如图所示:所以CD=,所以S表面积=6×2×2=24.故选:C.12.已知函数y=f(x)满足f(x)+f(1﹣x)=1,若数列{a n}满足a n=f(0)+f()+f ()+…+f()+f(1),则数列{a n}的前10项和为()A.B.33C.D.34解:∵a n=f(0)+f()+f()+…+f()+f(1),∴a n=f(1)+f()+f()+…+f()+f(0),又f(x)+f(1﹣x)=1,∴+…+=n+1,∴.∴数列{a n}的首项a1=1,公差为d=.则数列{a n}的前10项和为.故选:A.二、填空题:共4小题,每小题5分,共20分.把答案填在答题卡上对应题的横线上.13.已知实数x,y满足,则z=x+2y的最小值为﹣3.解:由约束条件作出可行域如图,联立,解得A(﹣1,﹣1).化z=x+2y为y=,由图可知,当直线y=过A时,直线在y轴上的截距最小,z有最小值为﹣1+2×(﹣1)=﹣3.故答案为:﹣3.14.关于x的一元二次方程mx2﹣(1﹣m)x+m=0没有实数根,则实数m的取值范围是(﹣∞,﹣1)∪().解:由于关于x的一元二次方程mx2﹣(1﹣m)x+m=0没有实数根,故它的判别式△=(1﹣m)2﹣4m•m<0,且m≠0,求得m>或m<﹣1,故m的范围为(﹣∞,﹣1)∪().故答案为:(﹣∞,﹣1)∪().15.《莱因德纸草书》(RhindPapyus)是世界上最古老的数学著作之一.书中有这样一道题目:把100个面包分给5个人,使得每个人所得成等差数列,且较大的三份之和的是较小的两份之和,则最大的1份为.解:设每人分得的数量构成等差数列{a n},d>0,则a5+a4+a3=7(a1+a2),S5=100,所以,解可得,a1=,d=,∴a5==.故答案为:16.设三棱锥S﹣ABC的底面和侧面都是全等的正三角形,P是棱SA的中点.记直线PB 与直线AC所成角为α,直线PB与平面ABC所成角为β,二面角P﹣AC﹣B的平面角为γ,则a,β,γ中最大的是α,最小的是β.解:如图,取BC中点D,作SO⊥平面ABC于点O,由题意知O在AD上,且AO=2OD,作PE∥AC,PE∩SC=E,作PF⊥AD于F,则PF⊥平面ABC,取AC中点M,连结BM,SM,设SM交PE于点H,连结BH,由题意知BH⊥PE,作PG⊥AC于点G,连结FG,由面面垂直的性质定理可得FG⊥AC,作FN⊥BM于点N,由作图知平面PGF∥平面SMB,PH∥FN,∴PH=FN,∴直线PB与直线AC所成角α=∠BPE,直线PB与平面ABC所成角β=∠PBF,二面角P﹣AC﹣B的平面角γ=∠PGF,cosα==cosβ,∵α,β∈[0,],∴α>β,∵tanγ=>=tanβ,且γ∈[0,],∴γ>β,设AB=2,则PH=,PB=BH=SN=BM==,PG==,GF===,BH==,cosα==<cosγ===,∴α>γ.∴a,β,γ中最大的是α,最小的是β.故答案为:α;β.三、解答题:共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤17.已知x>y>0,z>0,求证:(1)<;(2)(x+y)(x+z)(y+z)>8xyz.【解答】证明:(1)因为x>y>0,∴,∴,∴,又z>0,∴<.(2)∵x>y>0,z>0,∴,∴,当且仅当x=y=z时,等号成立,∵x>y,∴上式中等号不能同时取得,∴(x+y)(x+z)(y+z)>8xyz.18.已知sinα=,α∈(,π),cosβ=﹣,β是第三象限角.(1)求cos(α+β)的值;(2)求tan(α﹣β)的值.解:(1)已知sinα=,α∈(,π),所以,由于cosβ=﹣,β是第三象限角.所以.故:cos(α+β)=.(2)由于,,故=19.△ABC的内角A,B,C的对边分别为a,b,c.已知a=2,b=,B=2A.(1)求sin A;(2)求△ABC的面积.解:(1)由正弦定理知,=,因为B=2A,所以=,所以cos A=,因为A∈(0,π),所以sin A==.(2)由余弦定理知,a2=b2+c2﹣2bc cos A,所以,整理得,2c2﹣5c+2=0,解得c=2或.当c=2=a时,有A=C,因为B=2A,所以A=C=,所以sin A=,与(1)中结论相矛盾,不符合题意,故c=.所以△ABC的面积==.20.已知A(﹣3,0),B(1,0),C(0,3),试求点D的坐标,使四边形ABCD为等腰梯形.解:∵A(﹣3,0),B(1,0),C(0,3),设D(x,y),若AB∥DC,则,解得,或(此时,ABCD为平行四边形,故舍去).若AD∥BC,则,求得,或(此时,ABCD为平行四边形,故舍去).当AC∥BD时,根据四边形ABCD字母顺序可得,它根本不会是梯形,不满足条件.综上,点D的坐标为(﹣2,3)、(﹣,).21.设等差数列{a n}的前n项和为S n,且S4=4S2,a2n═2a n+1.(1)求数列{a n}的通项公式;(2)求数列{}的前n项和T n.解:(1)由题意,设等差数列{a n}的公差为d,则,整理,得,解得,∴a n=1+2(n﹣1)=2n﹣1,n∈N*.(2)由题意,令b n=,则b n==,则T n=b1+b2+b3+…+b n=1+++…+,T n=++…++,两式相减,可得T n=1+++…+﹣=1+(1++…+)﹣=1+﹣=3﹣,∴T n=6﹣.22.如图,长方体ABCD﹣A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,B1E⊥EC.(1)证明:B1E⊥平面EBC;(2)若点E为棱AA1的中点,AB=2;(i)求四棱锥E﹣BB1C1C的体积;(ii)求直线EC1与平面BB1C1C所成角的正弦值.解:(1)证明:由长方体的性质可知,BC⊥平面ABB1A1,∵B1E⊂平面ABB1A1,∴BC⊥B1E,∵B1E⊥EC,BC∩EC=C,BC、EC⊂平面EBC,∴B1E⊥平面EBC.(2)(i)由(1)知,∠BEB1=90°,由题设可知,Rt△ABE≌Rt△A1B1E,∴∠AEB=∠A1EB1=45°,∴AE=AB=2,AA1=2AE=4,∵在长方体ABCD﹣A1B1C1D1中,AA1∥平面BB1C1C,E∈AA1,AB⊥平面BB1C1C,∴点E到平面BB1C1C的距离d=AB=2,∴四棱锥E﹣BB1C1C的体积V=•d•==.(ii)取棱BB1的中点F,连接EF、C1F,则EF∥AB,EF=AB=2,∵AB⊥平面BB1C1C,∴EF⊥平面BB1C1C,则∠EC1F为直线EC1与平面BB1C1C所成的角.在Rt△FB1C1中,FC1===,∴tan∠EC1F===,∴sin∠EC1F=.故直线EC1与平面BB1C1C所成角的正弦值为.。

2019-2020学年江苏省南通市通州区高一下学期期末数学试卷 (解析版)

2019-2020学年江苏省南通市通州区高一下学期期末数学试卷 (解析版)

2019-2020学年江苏省南通市通州区高一第二学期期末数学试卷一、选择题(共8小题).1.已知,是单位向量,且⊥,则•(﹣)=()A.﹣1B.0C.1D.2.在△ABC中,若sin A:sin B:sin C=3:5:7,则C=()A.30°B.60°C.120°D.150°3.使式子有意义的x的取值范围是()A.(﹣2,3)B.(2,3)C.[﹣2,3]D.(2,3]4.已知角α的终边为,则=()A.B.C.﹣D.﹣5.设集合,则A∩B中的元素个数为()A.0B.1C.2D.36.我国古代典籍《周易》中用“卦”描述万物的变化,每一“重卦”由从上到下排列的6个爻组成,爻分为阳爻“─”和阴爻“﹣﹣”,如图就是一个重卦,已知某重卦从上到下排列的前3个爻均为阴爻,若后3个爻随机产生,则该重卦恰含2个阳爻的概率为()A.B.C.D.7.已知球O的表面积为16π,球心O到球内一点P的距离为1,则过点P的截面的面积的最小值为()A.3πB.4πC.6πD.8π8.设直线l过点P(1,2),在两坐标轴上的截距的绝对值相等,则满足题设的直线l的条数为()A.1B.2C.3D.4二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.某篮球运动员8场比赛中罚球次数的统计数据分别为:2,6,8,3,3,4,6,8,关于该组数据,下列说法正确的是()A.中位数为3B.众数为3,6,8C.平均数为5D.方差为4.810.设a,b均为正数,且a+2b=1,则下列结论正确的是()A.ab有最大值B.有最大值C.a2+b2有最小值D.a2﹣b2有最小值11.在棱长为1的正方体ABCD﹣A1B1C1D1中,下列结论正确的是()A.异面直线BD1与B1C所成的角大小为90°B.四面体D1DBC的每个面都是直角三角形C.二面角D1﹣BC﹣B1的大小为30°D.正方体ABCD﹣A1B1C1D1的内切球上一点与外接球上一点的距离的最小值为12.某同学在研究函数f(x)=+|x﹣1|的性质时,联想到两点间的距离公式,从而将函数变形为f(x)=,则下列结论正确的是()A.函数f(x)在区间(﹣∞,0)上单调递减,(1,+∞)上单调递增B.函数f(x)的最小值为,没有最大值C.存在实数t,使得函数f(x)的图象关于直线x=t对称D.方程f(x)=2的实根个数为2三、填空题:本大题共4小题,每小题5分,共20分.13.在空间中,已知直线l,两个不同的平面α,β,下列三个条件中,一定能推出“α∥β”的条件序号是.①l∥α,l∥β;②l⊥α,l⊥β;③l⊥α,l∥β14.圆C1:x2+(y﹣1)2=4与圆C2:(x﹣3)2+y2=1的公切线共有条.15.函数的图象上一点到坐标原点的距离的平方的最小值为.16.某地积极创建全国文明城市,考虑环保和美观,为城区街道统一换置了新型垃圾桶(如图),已知该垃圾桶由上、下两部分组成(上部为多面体,下部为长方体,高度比为1:2),垃圾桶最上面是正方形,与之相邻的四个面都是全等三角形,垃圾投入口是边长为a的正六边形,该垃圾桶下部长方体的容积为,该垃圾桶的顶部面积(最上面正方形及与之相邻的四个三角形的面积之和)为.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在①sin A=ab这三个条件中选择两个,补充在下面问题中,使得△ABC存在且唯一,并解答补充完整后的问题.问题:在△ABC中,已知内角A,B,C的对边分别为a,b,c,且cos B=,____,____,求△ABC的面积.18.为了解学生“课外阅读日”的活动情况,某校以10%的比例对高二年级500名学生按选修物理和选修历史进行分层抽样调查,测得阅读时间(单位:分钟)的频数统计图如图:(1)分别估计该校高二年级选修物理和选修历史的人数;(2)估计该校高二年级学生阅读时间在60分钟以上的概率;(3)从样本中阅读时间在60~90分钟的选修物理的学生中任选2人,求至少有1人阅读时间在75~90之间的概率.19.为了解某小卖部冷饮销量与气温之间的关系,随机统计并制作了6天卖出的冷饮的数量与当天最高气温的对照表:气温x(℃)272930323335数量y121520272836(1)画出散点图,并求出y关于x的线性回归方程;(2)根据天气预报,某天最高气温为36.6℃,请你根据这些数据预测这天小卖部卖出的冷饮数量.附:一组数据(x1,y1),(x2,y2),…,(x n,y n)的回归直线y=a+bx的斜率和截距的最小二乘估计为=,a=﹣.20.如图,已知四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠BAD=90°,且AB=BC=1,AD=2,PA=PD,点M为AD中点,平面PAD⊥平面ABCD,直线PB与平面ABCD所成角的正切值为.(1)求证:BM∥平面PCD;(2)求四棱锥P﹣ABCD的体积;(3)用一个平面去截四棱锥P﹣ABCD,请作出一个平行四边形截面(无须证明),并写出你能作出的平行四边形截面的个数.21.在平面直角坐标系xOy中,已知圆C的圆心在直线上,且圆心的横坐标为整数,圆C被x轴截得的弦长为8,点M(7,7)在圆C上.(1)求圆C的方程;(2)已知直线l的斜率为,在y轴上的截距t(t为常数),与圆C相交于点A,B.问:直线OA,OB是否关于x轴对称?若对称,请证明;若不对称,请说明理由.22.已知函数f(x)=,其中a>0.(1)若f(f(0))=1,求a的值;(2)若函数f(x)的图象在x轴的上方,求a的取值范围.参考答案一、选择题(共8小题).1.已知,是单位向量,且⊥,则•(﹣)=()A.﹣1B.0C.1D.【分析】由已知结合向量的数量积的性质即可求解.解:∵,是单位向量,且⊥,∴=0,•(﹣)==﹣1.故选:A.2.在△ABC中,若sin A:sin B:sin C=3:5:7,则C=()A.30°B.60°C.120°D.150°【分析】利用正弦定理把已知比例中的角的正弦化成边,分别设出三边的长,利用余弦定理求得答案.解:由正弦定理知=2R,∴sin A=,sin B=,sin C=,∵sin A:sin B:sin C=3:5:7,∴a:b:c=3:5:7,设a=3t,b=5t,c=7t,∴cos C===﹣,∵0°<C<180°,∴C=120°.故选:C.3.使式子有意义的x的取值范围是()A.(﹣2,3)B.(2,3)C.[﹣2,3]D.(2,3]【分析】由题意可得,,解不等式即可求解.解:由题意可得,,解可得2<x<3.故选:B.4.已知角α的终边为,则=()A.B.C.﹣D.﹣【分析】由题意利用任意角的三角函数的定义,同角三角函数的基本关系,二倍角的正弦公式,求得sin2α的值.解:∵角α的终边落在射线y=x(x≥0)上,∴tanα=,可得cosα=,又∵sin2α+cos2α=sin2α+()2=1,解得sinα=,则=﹣sinα=﹣.故选:D.5.设集合,则A∩B中的元素个数为()A.0B.1C.2D.3【分析】列方程组,求出A∩B,由此能求出A∩B中的元素的个数.解:∵集合,∴A∩B={(x,y)|}={(﹣1,0),(0,1),(1,0)}.∴A∩B中的元素个数为3.故选:D.6.我国古代典籍《周易》中用“卦”描述万物的变化,每一“重卦”由从上到下排列的6个爻组成,爻分为阳爻“─”和阴爻“﹣﹣”,如图就是一个重卦,已知某重卦从上到下排列的前3个爻均为阴爻,若后3个爻随机产生,则该重卦恰含2个阳爻的概率为()A.B.C.D.【分析】基本事件总数n=23=8,该重卦恰含2个阳爻包含的基本事件个数m=,由此能求出该重卦恰含2个阳爻的概率.解:每一“重卦”由从上到下排列的6个爻组成,爻分为阳爻“─”和阴爻“﹣﹣”,某重卦从上到下排列的前3个爻均为阴爻,后3个爻随机产生,基本事件总数n=23=8,该重卦恰含2个阳爻包含的基本事件个数m=,则该重卦恰含2个阳爻的概率为P=.故选:B.7.已知球O的表面积为16π,球心O到球内一点P的距离为1,则过点P的截面的面积的最小值为()A.3πB.4πC.6πD.8π【分析】由题意可得当OP垂直于截面时,截面的半径最小,即截面的面积最小,先球的表面积求出球的帮忙,再由r2=R2﹣OP2求出截面的半径r2,进而求出截面的最小面积.解:设球的半径为R,截面面积最小的半径为r,由题意可得r2≥R2﹣OP2所以当OP垂直于截面时,截面的半径最小,即截面的面积最小,由题意可得4πR2=16,所以R2=4,由r2=R2﹣OP2=4﹣1=3,所以截面的面积的最小值为S=πr2=3π,故选:A.8.设直线l过点P(1,2),在两坐标轴上的截距的绝对值相等,则满足题设的直线l的条数为()A.1B.2C.3D.4【分析】分两种情况考虑:当直线在坐标轴上的截距为0,则可设y=kx,当直线在坐标轴上的截距不为0,则可设,由题意可得|a|=|b|且,可求.解:当直线在坐标轴上的截距为0,则可设y=kx,因为直线过P(2,1),则1=2k即k=,此时直线方程为y=,当直线在坐标轴上的截距不为0,则可设,由题意可得|a|=|b|且,解可得,a=b=3或b=1,a=﹣1,综上可得,满足条件的直线有3条.故选:C.二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.某篮球运动员8场比赛中罚球次数的统计数据分别为:2,6,8,3,3,4,6,8,关于该组数据,下列说法正确的是()A.中位数为3B.众数为3,6,8C.平均数为5D.方差为4.8【分析】先将原数据按照从小到大的顺序进行排列,再根据中位数、众数、平均数和方差的计算方法逐一求解即可.解:将原数据按从小到大的顺序进行排列:2,3,3,4,6,6,8,8,所以中位数为,众数为3,6,8,平均数为=5,方差为×[(2﹣5)2+(3﹣5)2×2+(4﹣5)2+(6﹣5)2×2+(8﹣5)2×2]=4.75.故选:BC.10.设a,b均为正数,且a+2b=1,则下列结论正确的是()A.ab有最大值B.有最大值C.a2+b2有最小值D.a2﹣b2有最小值【分析】由已知结合基本不等式及二次函数的性质分别检验各选项即可判断.解:因为a>0,b>0,a+2b=1,由基本不等式可得1=a+2b,解可得,ab,当且仅当a=2b=即a=,b=时取等号,故A正确;∵()2=×2=1+2≤2,∴,即最大值,故B正确;∵,∴,结合二次函数的性质可知,a2+b2=(1﹣2b)2+b2=5b2﹣4b+1,故C正确;因为,结合二次函数的性质可得,a2﹣b2=(1﹣2b)2﹣b2=3b2﹣4b+1>,故D错误.故选:ABC.11.在棱长为1的正方体ABCD﹣A1B1C1D1中,下列结论正确的是()A.异面直线BD1与B1C所成的角大小为90°B.四面体D1DBC的每个面都是直角三角形C.二面角D1﹣BC﹣B1的大小为30°D.正方体ABCD﹣A1B1C1D1的内切球上一点与外接球上一点的距离的最小值为【分析】证明线面垂直,得到线线垂直判定A;由正方体的结构特征及直线与平面垂直的性质判断B;求出二面角D1﹣BC﹣B1的大小判断C;分别求出正方体ABCD﹣A1B1C1D1的内切球与外接球的半径,作差判断D.解:如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,D1C1⊥平面BB1C1C,则D1C1⊥B1C,又B1C⊥BC1,D1C1∩BC1=C1,∴B1C⊥平面BC1D1,则B1C⊥BD1,即异面直线BD1与B1C所成的角大小为90°,故A正确;∵DD1⊥底面ABCD,∴DD1⊥DB,DD1⊥DC,再由BC⊥平面DD1C1C,可得BC⊥DC,BC⊥D1C,得四面体D1DBC的每个面都是直角三角形,故B正确;由BC⊥平面DD1C1C,可得BC⊥D1C,BC⊥CC1,即∠D1CC1为二面角D1﹣BC﹣B1的平面角,大小为45°,故C错误;正方体ABCD﹣A1B1C1D1的内切球的半径为,外接球的半径为,则正方体ABCD﹣A1B1C1D1的内切球上一点与外接球上一点的距离的最小值为,故D正确.故选:ABD.12.某同学在研究函数f(x)=+|x﹣1|的性质时,联想到两点间的距离公式,从而将函数变形为f(x)=,则下列结论正确的是()A.函数f(x)在区间(﹣∞,0)上单调递减,(1,+∞)上单调递增B.函数f(x)的最小值为,没有最大值C.存在实数t,使得函数f(x)的图象关于直线x=t对称D.方程f(x)=2的实根个数为2【分析】由题意画出图形,利用动点到两定点距离和的变化判断A;求出最小值,分析无最大值判断B;由对称性的定义判断C;由单调性与函数值的关系判断D.解:f(x))=可理解为动点P(x,0)到两个定定点A(0,1),B(1,0)的距离和.如图:当x<0时,随着x的增大,P越靠近原点O,PA越小,PB越小,则PA+PB越小,即f(x)越小,函数f(x)在区间(﹣∞,0)上单调递减,当x>1时,随着x的增大,P越远离点B,PA越大,PB越大,则PA+PB越大,即f (x)越大,函数f(x)在区间(1,+∞)上单调递增,故A正确;当P与B重合时,PA+PB最小为,P越向左远离O或向右远离B,PA+PB越大,无最大值,即函数f(x)的最小值为,没有最大值,故B正确;当P与B重合时,PA+PB最小为,若函数f(x)有对称轴,则对称轴方程为x=1,而f(0)=2,f(2)=,f(0)≠f(2),则x=1不是对称轴,∴存在实数t,使得函数f(x)的图象关于直线x =t对称错误,故C错误;∵当P与O重合时,f(x)=2,当x<0时,f(x)>2,当0<x<1时,f(x)∈(,2),当x>1时,f(x)>.由f(x)在(1,+∞)上单调递增,∴有一个x0>,使得f(x)=2,则方程f(x)=2的实根个数为2,故D正确.故选:ABD.三、填空题:本大题共4小题,每小题5分,共20分.13.在空间中,已知直线l,两个不同的平面α,β,下列三个条件中,一定能推出“α∥β”的条件序号是②.①l∥α,l∥β;②l⊥α,l⊥β;③l⊥α,l∥β【分析】对于①,α与β相交或平行;对于②,由面面平行的判定定理得α∥β;对于③,α与β相交或平行.解:由直线l,两个不同的平面α,β,知:对于①,l∥α,l∥β,则α与β相交或平行,故①错误;对于②,l⊥α,l⊥β,由面面平行的判定定理得α∥β,故②正确;对于③,l⊥α,l∥β,则α与β相交或平行,故③错误.故答案为:②.14.圆C1:x2+(y﹣1)2=4与圆C2:(x﹣3)2+y2=1的公切线共有4条.【分析】根据题意,分析两个圆的圆心以及半径,由圆与圆的位置关系分析可得两圆相离,据此分析可得答案.解:圆C1:x2+(y﹣1)2=4,圆心C1(0,1),半径为2,圆C2:(x﹣3)2+y2=4,圆心C2(3,0),半径为1,两圆的圆心距为>2+1=3,正好大于两圆的半径之和,故两圆相离,故两圆的公切线有4条,故答案为:4.15.函数的图象上一点到坐标原点的距离的平方的最小值为2.【分析】由题意利用点到直线的距离公式、基本不等式,求得结果.解:设函数的图象上一点A(a,a﹣),则A到坐标原点的距离的平方的为a2+=2a2+﹣2≥2﹣2=2﹣2,当且仅当a2=时,取等号,故答案为:2﹣2.16.某地积极创建全国文明城市,考虑环保和美观,为城区街道统一换置了新型垃圾桶(如图),已知该垃圾桶由上、下两部分组成(上部为多面体,下部为长方体,高度比为1:2),垃圾桶最上面是正方形,与之相邻的四个面都是全等三角形,垃圾投入口是边长为a的正六边形,该垃圾桶下部长方体的容积为12a3,该垃圾桶的顶部面积(最上面正方形及与之相邻的四个三角形的面积之和)为a2.【分析】由正六边形的边长求出下部长方体的底面边长及高,再求出上面正方形的对角线长,得到正方形的边长,然后利用长方体体积公式及正方形与三角形的面积公式求解.解:如图,由正六边形边长为a,可得AD=,则AC=,OB=a.由题意,下部长方体的底面为边长是a的正方形,高为4a,∴下部长方体的体积为;最上面正方形的对角线长为,则正方形边长为.∴每一个小三角形是等腰三角形,底边长为,腰长为a,则一个小三角形的面积为=.∴垃圾桶的顶部面积为=.故答案为:12a3;.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在①sin A=ab这三个条件中选择两个,补充在下面问题中,使得△ABC存在且唯一,并解答补充完整后的问题.问题:在△ABC中,已知内角A,B,C的对边分别为a,b,c,且cos B=,____,____,求△ABC的面积.【分析】选①②,由已知结合正弦定理可得a,b关系,然后结合余弦定理即可求解;选①③结合已知及正弦定理进行化简即可判断;选②③,由余弦定理可得cos C=﹣,结合范围0<C<π,可求C的值,利用同角三角函数基本关系式可求sin B的值,在△ABC中,由正弦定理可得b的值,可得a2+a ﹣4=0,解方程可求a的值,进而根据三角形的面积公式即可求解.解:选①②由sin A=sin B,结合正弦定理可得a=,因为c=,cos B===,解可得,b=1或b=5,此时三角形的解不唯一,选①③由sin A=sin B,结合正弦定理可得a=,因为a2+b2+c2=﹣ab,联立此时a,b不存在,选②③,在△ABC中,由余弦定理可得cos C=,因为a2+b2+c2=﹣ab,①所以cos C=﹣,又0<C<π,可得C=,因为sin2B+cos2B=1,cos B=,由于0<B<π,所以sin B=,在△ABC中,由正弦定理,可得b===1,又c=,代入①中,可得a2+a﹣4=0,解得a=(负值舍去),于是△ABC存在且唯一,所以S△ABC=ab sin C==.18.为了解学生“课外阅读日”的活动情况,某校以10%的比例对高二年级500名学生按选修物理和选修历史进行分层抽样调查,测得阅读时间(单位:分钟)的频数统计图如图:(1)分别估计该校高二年级选修物理和选修历史的人数;(2)估计该校高二年级学生阅读时间在60分钟以上的概率;(3)从样本中阅读时间在60~90分钟的选修物理的学生中任选2人,求至少有1人阅读时间在75~90之间的概率.【分析】(1)利用分层抽样能估计该校高二年级选修物理和选修历史的人数.(2)样本中,阅读时间在60分钟以上的人数为22人,样本总数为50,由此能求出样本中阅读时间在60分钟以上的频率.(3)样本中阅读时间在60~90分钟的选修物理的学生分两类:一类是阅读时间在60~75分钟的共有3人,记为a1,a2,a3,另一类是阅读时间在75~90分钟的共有2人,记为b1,b2,从这5人中任选2人,利用列举法能求出至少有1人阅读时间在75~90之间的概率.解:(1)∵以10%的比例对高二年级500名学生按选修物理和选修历史进行分层抽样,∴该校高二年级选修物理的人数约为:(6+9+9+3+2+1)×10=300(人),∴该校高二年级选修历史的人数约为:500﹣300=200(人).(2)样本中,阅读时间在60分钟以上的人数为:(3+2+1)+(9+6+1)=22(人),∵样本总数为:10%×500=50,∴样本中阅读时间在60分钟以上的频率为:.(3)样本中阅读时间在60~90分钟的选修物理的学生分两类:一类是阅读时间在60~75分钟的共有3人,记为a1,a2,a3,另一类是阅读时间在75~90分钟的共有2人,记为b1,b2,从这5人中任选2人,共有10种等可能基本事件,分别为:(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2),记事件A为:“至少有1人阅读时间在75~90之间”,则事件为:“2人阅读都在60~75之间”,且包含3个基本事件:(a1,a2),(a1,a3),(a2,a3),∴至少有1人阅读时间在75~90之间的概率为:P=1﹣P()=1﹣.19.为了解某小卖部冷饮销量与气温之间的关系,随机统计并制作了6天卖出的冷饮的数量与当天最高气温的对照表:气温x(℃)272930323335数量y121520272836(1)画出散点图,并求出y关于x的线性回归方程;(2)根据天气预报,某天最高气温为36.6℃,请你根据这些数据预测这天小卖部卖出的冷饮数量.附:一组数据(x1,y1),(x2,y2),…,(x n,y n)的回归直线y=a+bx的斜率和截距的最小二乘估计为=,a=﹣.【分析】(1)根据题意画出散点图,计算、,求出回归系数、,写出回归方程;(2)计算x=36.6时的值,即可预测这天小卖部卖出的冷饮数量.解:(1)根据题意画出散点图,如图所示;根据销量与气温对照表知,=×(27+29+30+32+33+35)=31,=×(12+15+20+27+28+36)=23;所以====,=﹣=23﹣×31=﹣;所以y关于x的线性回归方程是=x﹣,(2)计算x=36.6时,=×36.6﹣=40.2≈40,所以当气温为36.6℃时,可预测这天小卖部卖出的冷饮数量为40.20.如图,已知四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠BAD=90°,且AB=BC=1,AD=2,PA=PD,点M为AD中点,平面PAD⊥平面ABCD,直线PB与平面ABCD所成角的正切值为.(1)求证:BM∥平面PCD;(2)求四棱锥P﹣ABCD的体积;(3)用一个平面去截四棱锥P﹣ABCD,请作出一个平行四边形截面(无须证明),并写出你能作出的平行四边形截面的个数.【分析】(1)推导出BC∥MD,BC=MD,四边形BCDM是平行四边形,从而BM∥CD,由此能证明BM∥平面PCD.(2)连结PM,推导出PM⊥AD,PM⊥平面ABCD,四棱锥P﹣ABCD的体积为V P﹣ABCD =.(3)取PD、PA的中点E,F,连结CE,EF,FB,则截面BCEF是平行四边形截面,作出的平行四边形截面的个数是无数个.解:(1)证明:∵AD∥BC,BC=1,AD=2,点M为AD的中点,∴BC∥MD,BC=MD,∴四边形BCDM是平行四边形,∴BM∥CD,∵BM⊄平面PCD,CD⊂平面PCD,∴BM∥平面PCD.(2)解:连结PM,∵PA=PD,M为AD的中点,∴PM⊥AD,又平面PAD⊥平面ABC,平面PAD∩平面ABCD=AD,PM⊂平面PAD,∴PM⊥平面ABCD,∴直线PB与平面ABCD所成角为∠PBM,且tan∠PBM==,∵∠BAD=90°,AB=AM=1,∴BM=,PM=1,∴四棱锥P﹣ABCD的体积为:V P﹣ABCD==.(3)解:取PD、PA的中点E,F,连结CE,EF,FB,则截面BCEF是平行四边形截面,作出的平行四边形截面的个数是无数个.21.在平面直角坐标系xOy中,已知圆C的圆心在直线上,且圆心的横坐标为整数,圆C被x轴截得的弦长为8,点M(7,7)在圆C上.(1)求圆C的方程;(2)已知直线l的斜率为,在y轴上的截距t(t为常数),与圆C相交于点A,B.问:直线OA,OB是否关于x轴对称?若对称,请证明;若不对称,请说明理由.【分析】(1)设圆C的标准方程,可得圆心坐标,由题意可得a,b的关系,再求出在x轴的弦长,由题意可得a,b,r的关系,再由点M在圆上,可得a,b,r的关系,由a为整数可得a,b,r的值,进而求出圆C的方程;(2)由题意可得直线l的方程,将直线l与圆联立求出两根之和及两根之积,进而求出直线OA,OB的斜率之和,代入整理可得斜率之和为0,可得直线OA,OB关于x轴对称.解:(1)设圆C的的方程为:(x﹣a)2+(y﹣b)2=r2(r>0),则圆心(a,b)在直线y=x,且圆心的横坐标为整数,所以b=a,①在方程(x﹣a)2+(y﹣b)2=r2中,令y=0,则x=a±,则圆C被x轴截得的弦长为2=4,即r2﹣b2=16 ②又M在圆C上,所以(7﹣a)2+(7﹣b)2=r2,③由①②③可得2a2﹣49a+164=0,所以a=4或a=(舍),所以b=3,r2=25,所以圆C的方程为(x﹣4)2+(y﹣3)2=25;(2)因为直线l的斜率为,在y轴上的截距t(t为常数),所以直线l的方程为:y=x+t,设A,B的坐标分别为(x1,y1),(x2,y2),联立直线l与圆的方程,整理可得:x2+(﹣16)x+t2﹣6t=0,则x1+x2=﹣,x1x2=,从而k OA+k OB=+====+=+t•=0,所以∠AOx=∠BOx,即直线OA,OB关于x轴对称.22.已知函数f(x)=,其中a>0.(1)若f(f(0))=1,求a的值;(2)若函数f(x)的图象在x轴的上方,求a的取值范围.【分析】(1)由已知分段函数求得f(0)=1,再对a分类利用f(f(0))=1求a的值;(2)函数f(x)的图象在x轴的上方,即对任意x∈R,f(x)>0成立,分x<与x≥求解函数的最小值,由最小值大于0求解a的范围.解:(1)∵a>0,∴>0,从而f(0)=1.当>1,即0<a<2时,f(f(0))=f(1)=1﹣a+1=1,解得a=1符合;当≤1,即a≥2时,f(f(0))=f(1)=1+a﹣3=1,解得a=3符合.∴a的值为1或3;(2)∵函数f(x)的图象在x轴的上方,∴对任意x∈R,f(x)>0成立.①当x<时,x2﹣ax+1>0恒成立,其中a>0.若<,即0<a<2,则>0,解得0<a<2;若≥,即a≥2,则,解得0<a≤2,∴a=2.∴0<a≤2;②当x≥时,x2+ax﹣3>0恒成立,其中a>0.则>0,解得0<a<2.综上,0<a<2,∴a的取值范围为(0,2).。

2019-2020学年新疆喀什巴楚县第一中学高一下学期期末考试数学试题(解析版)

2019-2020学年新疆喀什巴楚县第一中学高一下学期期末考试数学试题(解析版)

2019-2020学年新疆喀什巴楚县第一中学高一下学期期末考试数学试题一、单选题1.已知直线斜率的绝对值等于1,则此直线的倾斜角()A.30B.45C.60D.45或135°【答案】D【解析】根据直线斜率求出对应的倾斜角.【详解】=⇒=±,k k11∴当斜率为1时,直线的倾斜角为45;当斜率为1-时,直线的倾斜角为135°.故选:D【点睛】本题考查直线的斜率与倾斜角,属于基础题.2.下列命题正确的是()A.经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.两两相交且不共点的三条直线确定一个平面D.四边形确定一个平面【答案】C【解析】根据确定一个平面的公理及推论即可选出.【详解】A选项,根据平面基本性质知,不共线的三点确定一个平面,故错误;B选项,根据平面基本性质公理一的推论,直线和直线外一点确定一个平面,故错误;C选项,根据公理一可知,不共线的三点确定一个平面,而两两相交且不共点的三条直线,在三个不共线的交点确定的唯一平面内,所以两两相交且不共点的三条直线确定一个平面,正确;选项D,空间四边形不能确定一个平面,故错误;综上知选C.【点睛】本题主要考查了平面的基本性质公理一及其推论,属于中档题.3.下列几何体中,不是..旋转体的是()A .B .C .D .【答案】A【解析】根据旋转体的特征直接判定即可.【详解】由题,B 圆柱,C 圆锥,D 球均为旋转体.故选:A【点睛】本题主要考查了旋转体的辨析,属于基础题.4.已知直线a b ,,平面α,且a α⊥,下列条件中能推出a b ∥的是( ) A .b αB .b α⊂C .b α⊥D .b 与α相交【答案】C【解析】根据线面垂直的性质,逐项判断即可得出结果.【详解】A 中,若b α,由a α⊥,可得a b ⊥;故A 不满足题意;B 中,若b α⊂,由a α⊥,可得a b ⊥;故B 不满足题意;C 中,若b α⊥,由a α⊥,可得a b ∥;故C 正确;D 中,若b 与α相交,由a α⊥,可得a b ,异面或平,故D 不满足题意.故选C【点睛】本题主要考查线面垂直的性质,熟记线面垂直的性质定理即可,属于常考题型. 5.下图中的直线1l 、2l 、3l 的斜率分别为1k 、2k 、3k ,则( )A .123k k k <<B .312k k k <<C .321k k k <<D .132k k k <<【答案】D 【解析】根据斜率与直线倾斜角的关系判断即可.【详解】由图可知:10k <,20k >,30k >,且直线3l 的倾斜角小于直线2l 的倾斜角,所以32k k <,综上可知:132k k k <<.故选:D .【点睛】本题主要考查了直线斜率与倾斜角的关系,属于基础题.6.两条直线1l :x =2和2l :32120x y +-=的交点坐标是( )A .(2,3)B .(2,3)-C .(3,2)-D .(3,2)-【答案】A【解析】联立两条直线方程,方程组的解所对应的点即为交点坐标.【详解】 20231322x y x x y ==⎧⎧⇒⎨⎨=+-=⎩⎩, 所以两条直线的交点坐标为(2,3).故选:A【点睛】本题考查直线的交点坐标,属于基础题.7.如图是一个正四棱锥,它的俯视图是( )A .B .C.D.【答案】D【解析】根据正四棱锥的特征直接判定即可.【详解】正四棱锥俯视图可以看到四条侧棱与顶点,且整体呈正方形.故选:D【点睛】本题主要考查了正四棱锥的俯视图,属于基础题.8.若线段AB的长等于它在平面α内的射影长的2倍,则AB所在直线与平面α所成的角为()A.30B.45C.60D.120【答案】C【解析】根据图形找到线面角,进而在直角三角形中求解即可.【详解】如图,AC⊥α,AB∩α=B,则BC是AB在平面α内的射影,则BC=12AB,所以∠ABC=60°,它是AB与平面α所成的角.故选C.【点睛】本题主要考查了线面角的求解,属于基础题.9.一个几何体的三视图如图所示,则该几何体的体积为()A.12B.9C.6D.36【答案】C【解析】由三视图可知,此几何体为四棱锥A-BCFE , 111V 3323326232A BCFE ABC DEF A DEF V V ---=-=⨯⨯⨯-⨯⨯⨯⨯=. 故选C.10.经过点(8,2)-,斜率是-2的直线方程( )A .x -2y +10=0B .2x +y -14=0C .x +y -14=0D .2x +2y -10=0 【答案】B【解析】根据已知写出直线的点斜式方程整理可得直线标准方程.【详解】经过点(8,2)-,斜率是-2的直线方程为()228y x +=--即2140x y +-=. 故选:B【点睛】本题考查直线的点斜式方程,属于基础题.11.若直线a 不平行于平面,则下列结论成立的是( ) A .内的所有直线都与直线a 异面 B .内不存在与a 平行的直线 C .内的直线都与a 相交D .直线a 与平面有公共点 【答案】D【解析】试题分析:直线不平行于,包括两种情况:或,当时,内的所有直线都与直线共面,A 错;当时,内必然有直线与直线平行, B 错;从而C 也错;当,直线和平面有无数个公共点,当,直线与平面有唯一公共点,D 正确.【考点】直线和平面的位置关系.12.已知点(),5A a -,(0,10)B 的距离是17 ,则a 的值是( )A .8B .6C .±8D .±6【答案】C【解析】由两点间的距离公式列出方程求解a .【详解】 2[1017a +=,即264a =,8a ∴=±.故选:C【点睛】本题考查两点间的距离公式,属于基础题.二、填空题13.已知点()1,2A ,()1,2B --,则直线AB 的方程是________.【答案】20x y -=【解析】根据两点式直线方程,即可求解.【详解】直线的两点式方程为112121x x y y x x y y --=--, 代入()1,2A ,()1,2B --,得121212x y --=----,整理得直线AB 的方程是20x y -=. 故答案为: 20x y -=.【点睛】本题考查直线方程的求法,属于基础题.14.一个球的表面积是16π,那么这个球的体积等于_______【答案】323π 【解析】根据球的表面积求出球的半径,再求出球的体积.【详解】设球的半径为R ,则2416S R ππ==,得2R =,球的体积343233V R ππ==.故答案为:323π. 【点睛】 本题考查了球的表面积公式和球的体积公式,属于容易题.15.点P (-1,2)到直线l :3x =2的距离是________. 【答案】53【解析】利用点到直线的距离公式求解即可.【详解】直线l :32x =即320x -=,点P (-1,2)到直线l53=. 故答案为:53【点睛】 本题考查点到直线的距离,属于基础题.16.已知两个平面垂直,下列命题中正确的命题是______.①一个平面内已知直线必垂直于另一个平面内的任意一条直线②一个平面内的已知直线必垂直于另一个平面的无数条直线③一个平面内的任一条直线必垂直于另一个平面④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面【答案】②【解析】利用面面垂直的性质及空间中直线与直线、直线与平面的位置关系逐项判断.【详解】①错误,当一个平面内的一条直线平行于两个平面的交线时不满足条件;②正确,两个平面垂直则一个平面内的一条直线必垂直于另外一个平面内的无数条直线;③错误,在其中一个平面内可以找到一条直线平行于另一个平面,如与交线平行的直线即可;④错误,如果该点在交线上,过交点上一点作垂线不一定垂直另一个平面.故答案为:②【点睛】本题考查命题的真假判断、空间中直线与平面之间的位置关系,属于中档题.三、解答题17.已知正四棱台1111ABCD A B C D -上、下底面的边长分别为4、10,侧棱长为6.求正四棱台的表面积.【答案】116843+ 【解析】先求出四棱台的高与斜高,由上下底面积加侧面积可得正四棱台的表面积. 【详解】解:如图,正四棱台1111ABCD A B C D -中,1114,10,6AB A B AA ===,在等腰梯形11ABB A 中,过A 作11AE B A ⊥于E ,则110432A E -==, 所以2222116333AE AA A E =-=-=,所以正四棱台的表面积为2214104(410)331168432++⨯⨯+⨯=+【点睛】此题考查棱台的表面积的求法,考查数形结合的解题思想,属于基础题.18.直线1l 经过点A (3,2),且与直线2l :4x +y -2=0 平行(1)求直线1l 的方程;(2)求此两条直线间的距离;【答案】(1)4140x y +-=;(21217. 【解析】(1)根据题意设直线1l 的方程为40x y m ++=,代入点()3,2A 求出m 即可求得直线1l 的方程;(2)直接利用两平行直线间的距离公式求解即可.【详解】(1)根据题意设直线1l 的方程为:40x y m ++=,因为直线1l 过点()3,2A ,所以122014m m ++=⇒=-,所以直线1l 的方程为:4140x y +-=;(2)两直线间的距离为()22141217=41---+. 【点睛】本题考查直线间的位置关系、两平行直线间的距离,属于基础题.19.如图所示,空间四边形ABCD 中,E ,F ,G 分别是AB ,BC ,CD 的中点,(1)证明:直线BD 平行于平面EFG ; (2)证明:直线AC 平行于平面EFG .【答案】(1)证明见解析;(2)证明见解析.【解析】(1)由中位线的性质可得//FG BD ,即可推出线面平行;(2)由中位线的性质可得//EF AC ,即可推出线面平行.【详解】(1)F ,G 分别是BC ,CD 的中点,∴FG 为CBD 的中位线,则//FG BD ,又FG ⊂平面EFG ,BD ⊄平面EFG ,∴//BD 平面EFG .(2)E ,F 分别是AB ,BC 的中点,∴EF 为BAC 的中位线,则//EF AC ,又EF ⊂平面EFG ,AC ⊄平面EFG ,//EF ∴平面EFG .【点睛】本题考查线面平行的证明,属于基础题.20.(1)求在x 轴上与点A (5,12)的距离为13的点的坐标.(2)已知点P 的横坐标是7,点P 与点N (-1,5)间的距离等于10,求点P 的纵坐标.【答案】(1)()0,0或()10,0;(2)1-或11.【解析】(1)设x 轴上点的坐标为(),0x ,由距离公式可得关于x 的方程,解方程可得;(2)设点P 的纵坐标为y ,由距离公式可得关于y 的方程,解方程即可.【详解】(1)设x 轴上点的坐标为(),0x , 由距离公式可得()()22501213x -+-=,解得0x =或10x =, 所以所求点的坐标为()0,0或()10,0;(2)设点P 的纵坐标为y ,由距离公式可得()()2271510y ++-=,解得1y =-或11y =, 所以点P 的纵坐标为1-或11.【点睛】本题考查两点间的距离公式,属于基础题.21.如图所示,在正方体ABCD ﹣A 1B 1C 1D 1中,棱长AB=1.(Ⅰ)求异面直线A 1B 与 B 1C 所成角的大小;(Ⅱ)求证:平面A 1BD ∥平面B 1CD 1.【答案】(Ⅰ)60(Ⅱ)见解析【解析】(Ⅰ)根据异面直线所成角的定义,易知图中1BA D ∠就为所求角,又三角形1BA D 为正三角形;(Ⅱ)根据面面平行的判定定理,要证平面A 1BD ∥平面B 1CD 1 可转化为两相交直线BD 和A 1B 平行于平面B 1CD 1即可【详解】(Ⅰ)因为B 1C//A 1D ,所以1BA D ∠为异面直线A 1B 与B 1C 所成角.第 11 页 共 11 页 在1BA D ∆中,易得13BA D π∠=(Ⅱ) 11111111//A BD //A BD A BD A D B C A D B C B C ⎫⎪⊆⇒⎬⎪⊄⎭面面面,11D //A BD B 1同理:面11D B CD B ⊆11面,11C B CD B ⊆1面,且111D C B B B ⋂=1 所以111//A BD B CD 平面平面【考点】1、异面直线的角;2、面面平行;4、线面平行和线线平行. 22.已知直线l 经过两条直线1l :40x y +-=和2l :20x y -+=的交点,直线3l :210x y --=;(1)若3l l ∥,求l 的直线方程;(2)若3l l ⊥,求l 的直线方程.【答案】(1) 210x y -+=; (2) 270x y +-=【解析】(1)先求出1l 与2l 的交点,再利用两直线平行斜率相等求直线l(2)利用两直线垂直斜率乘积等于-1求直线l【详解】(1)由4020x y x y +-=⎧⎨-+=⎩,得13x y =⎧⎨=⎩, ∴1l 与2l 的交点为()1,3.设与直线210x y --=平行的直线为20x y c -+=,则230c -+=,∴1c =.∴所求直线方程为210x y -+=.(2)设与直线210x y --=垂直的直线为20x y c ++=, 则1230c +⨯+=,解得7c =-.∴所求直线方程为270x y +-=.【点睛】两直线平行斜率相等,两直线垂直斜率乘积等于-1.。

2019-2020学年辽宁省辽阳市高一下学期期末数学试卷 (解析版)

2019-2020学年辽宁省辽阳市高一下学期期末数学试卷 (解析版)

2019-2020学年辽宁省辽阳市高一第二学期期末数学试卷一、选择题(共12小题).1.sin(﹣480°)等于()A.﹣B.C.﹣D.2.一个几何体有6个顶点,则这个几何体可能是()A.三棱柱B.四棱锥C.四棱柱D.五棱台3.已知复数z满足z(1+i)=2i8,则z的虚部为()A.1B.i C.﹣1D.﹣i4.在△ABC中,角A,B,C所对的边分别为a,b,c.已知b═3,c=2,A=,则a=()A.5B.C.29D.5.平面向量=(1,m),=(﹣1,),且|﹣|=||,则||=()A.B.C.D.6.在△ABC中,角A,B,C所对的边分别为a,b,c.已知A=,B=,a=2,则△ABC的面积为()A.B.9﹣3C.D.3+97.如图,在直三棱柱ABC﹣A1B1C1中,四边形BCC1B1为正方形,BC=2AB=4,AB⊥BC,则异面直线AC1与BC所成角的余弦值为()A.B.C.D.8.下列函数中,周期为π的奇函数是()A.y=cos B.y=sin(2x+3π)C.y=cos(π+2x)D.y=|cos(x﹣)|9.如图,在△ABC中,=3,=3,则=()A.+B.+C.+D.+10.已知直线x=是函数f(x)=sin2+sinωx﹣(0<ω≤8)图象的一条对称轴,则ω=()A.2B.4C.6D.811.已知正方形ABCD的边长是4,将△ABC沿对角线AC折到△AB'C的位置,连接B'D.在翻折过程中,给出以下结论:①AB'⊥平面B'CD恒成立;②三棱锥B'﹣ACD的外接球的表面积始终是32π;③当二面角B'﹣AC﹣D为时,B'D=4;④三棱锥B'﹣ACD体积的最大值是.其中结论正确的个数是()A.1B.2C.3D.412.将函数y=sin x的图象向右平移个单位长度,再将横坐标缩短为原来的(ω>0)得到函数y=f(x)的图象,若y=f(x)在[0,]上的最大值为,则ω的取值个数为()A.1B.2C.3D.4二、填空题:本大题共4小题,每小题5分,共20分把答案填在答题卡中的横线上. 13.已知扇形的半径与面积都为2,则这个扇形的圆心角的弧度数是.14.在复平面内,复数z=2i对应的点为Z,将向量绕原点O按逆时针方向旋转,所得向量对应的复数是.15.已知点P(1,3)是角α终边上的一点,则tan(α+)=.16.已知O为△ABC内一点,且满足+3+5=,延长AO交BC于点D.若=λ,则λ=.三、解答题:本题共6小题,共70分要求写出必要的文字说明和解题过程.17.在△ABC中,角A,B,C的对边分别为a,b,c,在①b cos A cos C=a sin B sin C﹣b;②b sin B cos C+c sin2B=a cos B;③+a=2c这三个条件中任选一个,补充在下面问题中,并作答.已知D是BC上的一点,BC=2BD>AB,AD=2,AB=6,若____,求△ACD的面积.注:如果选择多个条件分别解答,按第一个解答计分.18.如图,在长方体ABCD﹣A1B1C1D1中,BC=CC1,E,F,G,H分别是棱AB,AA1,CC1,C1D1的中点.(1)证明:C1E⊥B1C.(2)证明:平面DEF∥平面B1GH.19.已知单位向量,的夹角为,向量=λ﹣,向量=2+3.(1)若∥,求λ的值;(2)若⊥,求||.20.已知向量=(cos(x﹣),sin(x﹣)),向量=(,﹣1),函数f(x)=•.(1)求f(x)的最大值;(2)若f(﹣α),f(﹣α)是关于x的方程25x2﹣10x+t=0的两根,且α∈(0,π),求+及t的值.21.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是矩形,PA=AB=2,AD=4,E是PB的中点,AF⊥PC,垂足为F.(1)证明:PD∥平面ACE.(2)求三棱锥A﹣CEF的体积.22.已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示.(1)求A,ω和φ的值;(2)求函数y=f(x)在[1,2]上的单调递减区间;(3)若函数y=f(x)在区间[a,b]上恰有2020个零点,求b﹣a的取值范围.参考答案一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.sin(﹣480°)等于()A.﹣B.C.﹣D.【分析】所求式子中的角度变形后,利用诱导公式化简即可得到结果.解:sin(﹣480°)=﹣sin480°=﹣sin(360°+120°)=﹣sin120°=﹣.故选:C.2.一个几何体有6个顶点,则这个几何体可能是()A.三棱柱B.四棱锥C.四棱柱D.五棱台【分析】通过棱锥,棱柱,棱台的顶点个数,判断选项即可.解:三棱柱上下两个平面都是三角形,有6个顶点,满足题意,A正确;四棱锥5个顶点,B不正确;四棱柱,有8的顶点,C不正确;五棱台有10个顶点,D不正确;故选:A.3.已知复数z满足z(1+i)=2i8,则z的虚部为()A.1B.i C.﹣1D.﹣i【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.解:由z(1+i)=2i8=2,得z=,∴z的虚部为﹣1.故选:C.4.在△ABC中,角A,B,C所对的边分别为a,b,c.已知b═3,c=2,A=,则a=()A.5B.C.29D.【分析】直接利用余弦定理求出结果.解:已知b═3,c=2,A=,利用余弦定理:a2=b2+c2﹣2bc cos A=9+8﹣,解得a=.故选:B.5.平面向量=(1,m),=(﹣1,),且|﹣|=||,则||=()A.B.C.D.【分析】本题先对|﹣|=||两边进行平方,转化成向量进行计算,化简整理可得,然后根据向量内积的坐标运算可解出m的值,即可计算出||的值.解:依题意,由|﹣|=||,可得|﹣|2=||2,即(﹣)2=()2,化简整理,得,∴1×(﹣1)+m×=0,解得m=,∴=(1,),∴||==.故选:A.6.在△ABC中,角A,B,C所对的边分别为a,b,c.已知A=,B=,a=2,则△ABC的面积为()A.B.9﹣3C.D.3+9【分析】由已知利用正弦定理可得b的值,根据两角和的正弦函数公式,三角形的面积公式即可计算得解.解:∵A=,B=,a=2,∴由正弦定理,可得b===3,∴S△ABC=ab sin C=ab sin(A+B)=ab(sin cos+cos sin)=()=.故选:C.7.如图,在直三棱柱ABC﹣A1B1C1中,四边形BCC1B1为正方形,BC=2AB=4,AB⊥BC,则异面直线AC1与BC所成角的余弦值为()A.B.C.D.【分析】由BC∥B1C1,得∠AC1B1是异面直线AC1与BC所成角(或所成角的补角),连结AB1,推导出B1C1⊥A1B1,B1C1⊥BB1,从而得到B1C1⊥平面ABB1A1,B1C1⊥AB1,由此能求出异面直线AC1与BC所成角的余弦值.解:在直三棱柱ABC﹣A1B1C1中,∵BC∥B1C1,∴∠AC1B1是异面直线AC1与BC所成角(或所成角的补角),如图,连结AB1,∵四边形BCC1B1为正方形,BC=2AB=4,AB⊥BC,∴B1C1⊥A1B1,B1C1⊥BB1,∵A1B1∩BB1=B1,∴B1C1⊥平面ABB1A1,∴B1C1⊥AB1,AB1==2,AC1==6,∴cos∠AC1B1=,∴异面直线AC1与BC所成角的余弦值为.故选:C.8.下列函数中,周期为π的奇函数是()A.y=cos B.y=sin(2x+3π)C.y=cos(π+2x)D.y=|cos(x﹣)|【分析】根据题意,依次分析选项中函数的奇偶性与周期性,综合即可得答案.解:根据题意,依次分析选项:对于A,y=cos=﹣sin,是奇函数,周期T==4π,不符合题意;对于B,y=sin(2x+3π)=﹣sin2x,是奇函数,周期T==π,符合题意;对于C,y=cos(π+2x)=cos x,是偶函数,不符合题意;对于D,y=|cos(x﹣)|=|sin x|,是偶函数,不符合题意;故选:B.9.如图,在△ABC中,=3,=3,则=()A.+B.+C.+D.+【分析】根据条件=,结合=3,代入化简可得=,再由向量加法法则可得答案解:因为=3,即有=,因为=3,所以=,则==()=,所以==,故选:A.10.已知直线x=是函数f(x)=sin2+sinωx﹣(0<ω≤8)图象的一条对称轴,则ω=()A.2B.4C.6D.8【分析】首先通过三角函数关系式的变换,把函数的关系式变形成正弦型函数,进一步利用函数的性质的应用求出结果.解:函数f(x)=sin2+sinωx﹣=ωx)+ωx﹣=sin (ωx﹣),令:ω﹣=(k∈Z),解得ω=4+(k∈Z),由于0<ω≤8,所以ω=4.故选:B.11.已知正方形ABCD的边长是4,将△ABC沿对角线AC折到△AB'C的位置,连接B'D.在翻折过程中,给出以下结论:①AB'⊥平面B'CD恒成立;②三棱锥B'﹣ACD的外接球的表面积始终是32π;③当二面角B'﹣AC﹣D为时,B'D=4;④三棱锥B'﹣ACD体积的最大值是.其中结论正确的个数是()A.1B.2C.3D.4【分析】对于①,若AB′⊥平面B′CD,则AB′⊥CD,推导出平面AB′D⊥平面ACD,在翻折过程中,B′始终在BD正上方,平面AB′D⊥平面ACD不成立;对于②,取AC中点O,推导出三棱锥B′﹣ACD的外接球半径R=2,其表面积S =32π;对于③,当二面角B′﹣AC﹣D为时,OB′⊥OD,从而B′D=4;对于④,当平面B′AC⊥平面ACD时,三棱锥B′﹣ACD的体积取最大值.解:对于①若AB′⊥平面B′CD,则AB′⊥CD,∵CD⊥AD,∴CD⊥平面AB′D,∵CD⊂平面ACD,∴平面AB′D⊥平面ACD,∵在翻折过程中,B′始终在BD正上方,不可能在AD正上方,∴平面AB′D⊥平面ACD不成立,故①错误;对于②,取AC中点O,∵ABCD是正方形,∴OA=OB=OB′=OC=OD=2,则三棱锥B′﹣ACD的外接球半径R=2,其表面积S=4πR2=32π,故②正确;对于③,当二面角B′﹣AC﹣D为时,OB′⊥OD,∴B′D=,故③正确;对于④,当平面B′AC⊥平面ACD时,三棱锥B′﹣ACD的体积取最大值,最大值为×42×=,故④正确.故选:C.12.将函数y=sin x的图象向右平移个单位长度,再将横坐标缩短为原来的(ω>0)得到函数y=f(x)的图象,若y=f(x)在[0,]上的最大值为,则ω的取值个数为()A.1B.2C.3D.4【分析】利用函数图象的平移与伸缩变换求得f(x)的解析式,再由x的范围求得ωx ﹣的范围,结合y=f(x)在[0,]上的最大值为,分类求解得答案.解:将函数y=sin x的图象向右平移个单位长度,可得y=sin(x﹣)的图象.再将横坐标缩短为原来的(ω>0)得到函数y=f(x)=sin(ωx﹣)的图象,∵x∈[0,]上,∴ωx﹣∈[﹣,π],当π≥,即ω≥4时,则=1,求得ω=5.当π<,即0<ω<4时,由题意可得sinπ=,作出函数y=sin[(x﹣1)]与y=的图象如图:由图可知,此时函数y=sin[(x﹣1)]与y=的图象有唯一交点,则sinπ=有唯一解.综上,ω的取值个数为2.故选:B.二、填空题:本大题共4小题,每小题5分,共20分把答案填在答题卡中的横线上. 13.已知扇形的半径与面积都为2,则这个扇形的圆心角的弧度数是1.【分析】设扇形的圆心角为α,由此求出弧长和面积,列方程求得α的值.解:设扇形的圆心角为α,则弧长l=2α,所以扇形的面积为:S=rl=×2×2α=2,解得α=1.故答案为:1.14.在复平面内,复数z=2i对应的点为Z,将向量绕原点O按逆时针方向旋转,所得向量对应的复数是.【分析】把复数2i直接乘以旋转复数cos+i sin得答案.解:复数z=2i对应的点为Z,将向量绕原点O按逆时针方向旋转,所得复数为2i(cos+i sin)=2i()=﹣+i.故答案为:+i.15.已知点P(1,3)是角α终边上的一点,则tan(α+)=﹣2.【分析】直接利用三角函数的定义和和角公式的运用求出结果.解:点P(1,3)是角α终边上的一点,所以tanα=3,则:=﹣2.故答案为:﹣216.已知O为△ABC内一点,且满足+3+5=,延长AO交BC于点D.若=λ,则λ=.【分析】条件可整理为=+,结合=λ,得到=+,设=k,列出关于λ,k的方程组,解之即可.解:因为+3+5=,所以+5()=,所以9=3+5,则=+,因为=λ,即﹣=λ(),所以=+,设=k=+,则,解得,故答案为:.三、解答题:本题共6小题,共70分要求写出必要的文字说明和解题过程.17.在△ABC中,角A,B,C的对边分别为a,b,c,在①b cos A cos C=a sin B sin C﹣b;②b sin B cos C+c sin2B=a cos B;③+a=2c这三个条件中任选一个,补充在下面问题中,并作答.已知D是BC上的一点,BC=2BD>AB,AD=2,AB=6,若____,求△ACD的面积.注:如果选择多个条件分别解答,按第一个解答计分.【分析】若选择①,利用正弦定理,两角差的余弦函数公式化简已知等式,结合sin B≠0,可求cos B=,结合范围B∈(0,π),可求B=;若选择②,利用三角函数恒等变换的应用化简已知等式,结合sin A≠0,可求tan B=,结合范围B∈(0,π),可求B=;若选择③,利用两角和的正弦函数公式化简已知等式,结合sin C≠0,可得cos B=,结合范围B∈(0,π),可求B=,在△ABD中,由余弦定理可得BD的值,进而根据三角形的面积公式即可计算求解.解:若选择①,则sin B cos A cos C=sin A sin B sin C﹣sin B,因为sin B≠0,所以cos A cos C﹣sin A sin C=﹣,即cos(A+C)=﹣,因为B=π﹣(A+C),所以cos(A+C)=﹣cos B=﹣,即cos B=,因为B∈(0,π),所以B=.若选择②,则sin2B cos C+sin C sin2B=sin A cos B,即sin2B cos C+sin C sin B cos B=sin A cos B,可得sin B sin(B+C)=sin A cos B,可得sin B sin A=sin A cos B,因为sin A≠0,可得sin B=cos B,可得tan B=,因为B∈(0,π),所以B=.若选择③,则sin B cos A+sin A cos B=2sin C cos B,即sin(B+A)=2sin C cos B,可得sin C =2sin C cos B,因为sin C≠0,可得cos B=,因为B∈(0,π),所以B=,在△ABD中,由余弦定理可得AD2=AB2+BD2﹣2AB•BD•cos B,可得28=36+BD2﹣2×,解得BD=4,或2,因为BC=2BD>AB=6,所以BD=4,所以BC=2BD=8,所以S△ACD=S△ABD=AB•BD•sin B==6.18.如图,在长方体ABCD﹣A1B1C1D1中,BC=CC1,E,F,G,H分别是棱AB,AA1,CC1,C1D1的中点.(1)证明:C1E⊥B1C.(2)证明:平面DEF∥平面B1GH.【分析】(1)连接BC1,可证四边形BCC1B1为正方形,得B1C⊥BC1,再由AB⊥平面BCC1B1,得AB⊥B1C,利用直线与平面垂直的判定可得B1C⊥平面BEC1,从而得C1E ⊥B1C;(2)由E,F,G,H分别是AB,AA1,CC1,C1D1的中点,可得EF∥GH,ED∥B1H,由直线与平面平行的判定可得EF∥平面B1GH,同理可证ED∥平面B1GH,由平面与平面平行的判定可得平面DEF∥平面B1GH.【解答】证明:(1)连接BC1,EC1,在长方体ABCD﹣A1B1C1D1中,∵BC=CC1,∴四边形BCC1B1为正方形,则B1C⊥BC1,又AB⊥平面BCC1B1,∴AB⊥B1C,∵AB∩BC1=B,AB,BC1⊂平面BEC1,∴B1C⊥平面BEC1,而C1E⊂平面BEC1,∴C1E⊥B1C;(2)∵E,F,G,H分别是AB,AA1,CC1,C1D1的中点,∴可得EF∥GH,ED∥B1H,∵EF⊄平面B1GH,GH⊂平面B1GH,∴EF∥平面B1GH,同理可证ED∥平面B1GH,∵ED∩EF=E,ED,EF⊂平面DEF,∴平面DEF∥平面B1GH.19.已知单位向量,的夹角为,向量=λ﹣,向量=2+3.(1)若∥,求λ的值;(2)若⊥,求||.【分析】(1)由题意利用两个向量共线的性质,求出λ的值.(2)由题意利用两个向量垂直的性质,求出λ的值,可得,从而求出||.解:(1)∵单位向量,的夹角为,∴与不共线.∵向量=λ﹣,向量=2+3,若∥,则=,∴λ=﹣.(2)若⊥,∵•=1×1×cos=﹣.∴•=(λ﹣)•(2+3)=2λ+(3λ﹣2)•﹣3=2λ+(3λ﹣2)•(﹣)﹣3=0,求得λ=4,∴=4﹣,∴||====.20.已知向量=(cos(x﹣),sin(x﹣)),向量=(,﹣1),函数f(x)=•.(1)求f(x)的最大值;(2)若f(﹣α),f(﹣α)是关于x的方程25x2﹣10x+t=0的两根,且α∈(0,π),求+及t的值.【分析】(1)通过向量的数量积以及两角和与差的三角函数化简函数的解析式,结合三角函数的最值求解即可.(2)利用方程的根,推出三角函数关系式,然后转化求解表达式的值即可.解:(1)向量=(cos(x﹣),sin(x﹣)),向量=(,﹣1),函数f(x)=•=cos(x﹣)﹣sin(x﹣)=2cos(x﹣+)=2cos x,所以函数f(x)的最大值为2.(2)f(﹣α),f(﹣α)是关于x的方程25x2﹣10x+t=0的两根,即2cosα与2sinα,α∈(0,π),是关于x的方程25x2﹣10x+t=0的两根,所以2cosα+2sinα=,4cosαsinα=,因为(cosα+sinα)2=1+2cosαsinα,所以,解得t=﹣48.所以+==sinα+cosα=.21.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是矩形,PA=AB=2,AD=4,E是PB的中点,AF⊥PC,垂足为F.(1)证明:PD∥平面ACE.(2)求三棱锥A﹣CEF的体积.【分析】(1)连结BD,交AC于H,连结EH,推导出EH∥PD,由此能证明PD∥平面ACE.(2)推导出PA⊥BC,BC⊥AB,BC⊥平面PAB,BC⊥AE,AE⊥PB,PC⊥平面AEF,由此能求出三棱锥A﹣CEF的体积.解:(1)证明:连结BD,交AC于H,连结EH,∵四边形ABCD是矩形,∴H是BD的中点,∵E是PB的中点,∴EH∥PD,∵EH⊂平面ACE,PD⊄平面ACE,∴PD∥平面ACE.(2)∵在四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是矩形,∴PA⊥BC,BC⊥AB,又PA∩AB=A,∴BC⊥平面PAB,∵AE⊂平面PAB,∴BC⊥AE,∵PA=AB=2,且E是PB的中点,∴AE⊥PB,且AE=,∵AF⊥PC,且AE∩AF=A,∴PC⊥平面AEF,在Rt△PAC中,PA=2,AC==2,则PC==2,∵AF⊥PC,∴AF===,则EF==,CF==,∴三棱锥A﹣CEF的体积:V===.22.已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示.(1)求A,ω和φ的值;(2)求函数y=f(x)在[1,2]上的单调递减区间;(3)若函数y=f(x)在区间[a,b]上恰有2020个零点,求b﹣a的取值范围.【分析】(1)有图象可得A=1,T=2,进而求得ω=π,令x=,则π+φ=+2kπ(k∈Z),结合|φ|<,可求得φ;(2)由(1)求得f(x)解析式,令+2kπ≤πx﹣≤+2kπ,k∈Z,解之即可;(3)条件转化为f(x)在[)上有两个零点,即可得b﹣a取值范围.解:(1)由题可得A=1,T=2()=2,则=π,当x=时,f(x)取得最大值,则π+φ=+2kπ(k∈Z),所以φ=﹣+2kπ(k∈Z),又因为|φ|<,故φ=﹣;(2)由(1)可知f(x)=sin(πx﹣),令+2kπ≤πx﹣≤+2kπ,k∈Z,则≤x≤,k∈Z,故f(x)的单调递减区间为[,](k∈Z),则f(x)在[1,2]上的单调递减区间为[1,];(3)令f(x)=sin(πx﹣)=0,则πx﹣=kπ,解得x=k+,k∈Z,所以f(x)在[)上有两个零点,因为f(x)周期为2,若函数y=f(x)在区间[a,b]上恰有2020个零点,则1009×2+1≤b﹣a<1010×2,解得b﹣a的取值范围为[2019,2020).。

潍坊市高一数学下学期期末考试试题含解析

潍坊市高一数学下学期期末考试试题含解析
因为 , ,所以点P到x轴的距离的最大值为6,故C不正确;
当 时, ,此时 ,点 , ,故D正确,
故选:AD.
【点睛】本题考查的是有关函数的应用问题,涉及到的知识点有数学建模,将实际问题转化为函数问题来解决,结合三角函数的相应的性质求得结果,属于中档题。
三、填空题:本题共4小题,每小题5分,共20分。
【答案】(1) ;(2) 。
【解析】
【分析】
(1)用三角函数的定义;
(2)先求正切值,再把弦化切.
【详解】(1)由题意知, ,
因为 ,
所以 。
解得 ,
所以 .
(2)当 时, ,
所以 。
【点睛】本题为基础题,考查三角函数的定义及同角三角函数的关系。
18。 某广场设置了一些多面体形或球形的石凳供市民休息.如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是 .
【详解】由题意,某扇形的半径为 ,圆心角为 ,
根据扇形的面积公式,可得
所以此扇形的面积为 。
故选:B。
【点睛】本题主要考查了扇形的面积公式及其应用,其中解答中熟记扇形的面积公式是解答的关键,着重考查推理与运算能力。
4。 在 中,点 满足 ,则( )
A。 B.
C. D。
【答案】A
【解析】
【分析】
由已知条件可得 ,然后由向量的加减法法则进行运算可得答案.
对于C,因为平面与平面的位置关系有:相交或平面,因为 , 是空间两个不同的平面,而 ,所以平面 与 相交,即 , 必相交于一条直线,故C正确;
对于D,当直线 与平面 相交,且 垂直于平面 内的无数条直线,若这些直线中没有相交直线,则 不一定垂直平面 ,故D 不正确,

2019-2020学年辽宁省锦州市高一下学期期末数学试卷 (解析版)

2019-2020学年辽宁省锦州市高一下学期期末数学试卷 (解析版)

2019-2020学年辽宁省锦州市高一第二学期期末数学试卷一、选择题(共10小题).1.求值:sin150°=()A.B.C.﹣D.﹣2.已知复数z满足z(l+i)=2﹣i,则复数z在复平面内对应的点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限3.在△ABC中,角A,B,C的对边为a,b,c且有a cos A=b cos B,则此三角形是()A.等腰三角形B.直角三角形C.等边三角形D.等腰三角形或直角三角形4.已知=(﹣1,2),=(3,m),若,则m=()A.4B.3C.D.5.在△ABC中,内角A,B,C的对边分别为a,b,c,a=2,c=2,A=30°,则角C 为()A.60°B.60°或120°C.45°D.45°或135°6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛7.函数y=A sin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,则函数f(x)的解析式为()A.f(x)=2sin(2x﹣)B.f(x)=2sin(2x﹣)C.f(x)=2sin(2x+)D.f(x)=2sin(x+)8.定义运算:=ad﹣bc.已知α,β都是锐角,且cosα=,=﹣,则cosβ=()A.B.C.D.9.在正三棱柱ABC﹣A1B1C1中,若AB=,则AB1与C1B所成的角的大小为()A.60°B.90°C.75°D.105°10.已知函数f(x)满足f(x)=f(x+π),当0≤x≤时,f(x)=4sin2x;当≤x <π时,f(x)=x﹣4,若函数g(x)=f(x)﹣ax在[0,2π)上有五个零点,则a 的最小值为()A.B.C.D.二、多项选择题:本大题共2小题,每小题5分,共10分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分.11.将函数f(x)=cos(2x+)﹣1的图象向左平移个单位长度,再向上平移1个单位长度,得到函数g(x)的图象,则下列关于函数g(x)的说法正确的是()A.最小正周期为πB.图象关于点(,0)对称C.图象关于y轴对称D.在区间(,π)上单调递增12.已知m,n是两条不同直线,α,β是两个不同平面,则下列选项正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊥α,则m∥nC.若α⊥β,m⊥α,则m∥βD.若n∥α,n⊥β,则α⊥β三、填空题:本大题共4小题,每小题5分,共20分.13.已知角θ的终边经过点P(﹣1,3),则cosθ=,cos2θ=.14.复数范围内关于x的方程x2+x+1=0的解集为.15.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶D在西偏北75°的方向上,仰角为30°,则此山的高度CD=m.16.在三棱锥P﹣ABC中,AB=BC=5,AC=6,P在底面ABC内的射影D位于直线AC 上,且AD=2CD,PD=4,则三棱锥P﹣ABC的外接球的表面积为.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.已知||=4,||=3,(2)=61,求:(1)向量与的夹角θ;(2)||.18.如图,在直三棱柱ABC﹣A1B1C1中,AB=BC,E,F,G分别为BB1,AC,AA1的中点.(1)求证:平面BFG∥平面A1EC;(2)求证:BF⊥平面ACC1A1.19.在ABC中,内角A,B,C的对边分别为a,b,c,a2+c2=b2+ac.(1)求角B的大小:(2)求cos A+cos C的最大值.20.如图,摩天轮上一点P在t时刻距离地面高度满足y=A sin(ωt+φ)+b,φ∈[﹣π,π],已知某摩天轮的半径为50米,点O距地面的高度为60米,摩天轮做匀速转动,每3分钟转一圈,点P的起始位置在摩天轮的最低点处.(1)根据条件写出y(米)关于t(分钟)的解析式;(2)在摩天轮转动的一圈内,有多长时间点P距离地面超过85米?21.已知四棱锥P﹣ABCD,底面ABCD为正方形,且PA⊥底面ABCD,过AB的平面与侧面PCD的交线为EF,且满足S△PEF:S四边形CDEF=1:3(S△PEF表示△PEF的面积).(1)证明:PB∥平面ACE;(2)当PA=2AD=2时,求点F到平面ACE的距离.22.已知△ABC的三个内角分别为A,B,C,且sin C sin(B+)=sin A.(1)求的值;(2)已知函数f(B)=k(sin B+cos B)+sin B cos B(k∈R),若函数g(x)=log2(x2﹣4cos A•x+2cos A)的定义域为R,求函数f(B)的值域.参考答案一、单项选择题(共10小题).1.求值:sin150°=()A.B.C.﹣D.﹣解:sin150°=sin(180°﹣30°)=sin30°=.故选:A.2.已知复数z满足z(l+i)=2﹣i,则复数z在复平面内对应的点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限解:复数z满足(1+i)z=2﹣i,∴(1﹣i)(1+i)z=(1﹣i)(2﹣i),∴2z=1﹣3i,∴z=i.则复数z在复平面内对应的点在第四象限.故选:D.3.在△ABC中,角A,B,C的对边为a,b,c且有a cos A=b cos B,则此三角形是()A.等腰三角形B.直角三角形C.等边三角形D.等腰三角形或直角三角形解:在△ABC中,由a cos A=b cos B,利用正弦定理可得sin A cos A=cos B sin B,即sin2A=sin2B,∴2A=2B或2A+2B=π,即A=B或A+B=.若A=B,则△ABC为等腰三角形,若A+B=,则C=,△ABC为直角三角形,故选:D.4.已知=(﹣1,2),=(3,m),若,则m=()A.4B.3C.D.解:∵,又∵,∴=0即﹣1×3+2m=0即m=故选:D.5.在△ABC中,内角A,B,C的对边分别为a,b,c,a=2,c=2,A=30°,则角C 为()A.60°B.60°或120°C.45°D.45°或135°解:由正弦定理得得=得sin C=,∵c>a,∴C>A,得C=60°或120°,故选:B.6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛解:设圆锥的底面半径为r,则r=8,解得r=,故米堆的体积为××π×()2×5≈,∵1斛米的体积约为1.62立方,∴÷1.62≈22,故选:B.7.函数y=A sin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,则函数f(x)的解析式为()A.f(x)=2sin(2x﹣)B.f(x)=2sin(2x﹣)C.f(x)=2sin(2x+)D.f(x)=2sin(x+)解:根据函数y=A sin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象,可得A=2,•=+,∴ω=2.再根据五点法作图,可得2×+φ=,∴φ=﹣,故f(x)=2sin(2x﹣),故选:A.8.定义运算:=ad﹣bc.已知α,β都是锐角,且cosα=,=﹣,则cosβ=()A.B.C.D.解:∵α,β都是锐角,且cosα=,=﹣,∴sinα==,∴=sinαcosβ﹣cosαsinβ=cosβ﹣sinβ=﹣.∴cosβ﹣=﹣.整理得10cos2β+4cosβ﹣1=0,解得cosβ=或cosβ=﹣(舍),故选:B.9.在正三棱柱ABC﹣A1B1C1中,若AB=,则AB1与C1B所成的角的大小为()A.60°B.90°C.75°D.105°解:不妨设BB1=1,则AB=,•=()•()=+++=0+cos60°﹣12+0=0∴直线AB1与C1B所成角为90°故选:B.10.已知函数f(x)满足f(x)=f(x+π),当0≤x≤时,f(x)=4sin2x;当≤x <π时,f(x)=x﹣4,若函数g(x)=f(x)﹣ax在[0,2π)上有五个零点,则a 的最小值为()A.B.C.D.解:函数g(x)=f(x)﹣ax在[0,2π)上有五个零点等价于方程f(x)﹣ax=0在[0,2π)有五个不同的实数根,即函数y=f(x)与函数y=ax的图象在[0,2π)有五个交点,结合图象可得,当直线y=ax过点(2π,4)时,a取得最小值,此时,.故选:A.二、多项选择题:本大题共2小题,每小题5分,共10分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分.11.将函数f(x)=cos(2x+)﹣1的图象向左平移个单位长度,再向上平移1个单位长度,得到函数g(x)的图象,则下列关于函数g(x)的说法正确的是()A.最小正周期为πB.图象关于点(,0)对称C.图象关于y轴对称D.在区间(,π)上单调递增解:将函数f(x)=cos(2x+)﹣1 的图象向左平移个单位长度,可得y=cos(2x+π)﹣1=﹣cos2x﹣1 的图象,再向上平移1个单位长度,得到函数g(x)=﹣cos2x的图象.关于函数g(x),它的最小正周期为=π,故A正确;令x=,求得g(x)=0,可得它的图象关于点(,0)对称,故B正确;由于它是偶函数,故它的图象关于y轴对称,故C正确;在区间(,π)上,2x∈(π,2π),y=cos2x单调递增,故g(x)=﹣cos2x单调递减,故D错误,故选:ABC.12.已知m,n是两条不同直线,α,β是两个不同平面,则下列选项正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊥α,则m∥nC.若α⊥β,m⊥α,则m∥βD.若n∥α,n⊥β,则α⊥β解:由m,n是两条不同直线,α,β是两个不同平面,知:对于A,若m∥α,n∥α,则m与n相交、平行或异面,故A错误;对于B,若m⊥α,n⊥α,由线面垂直的性质定理得m∥n,故B正确;对于C,若α⊥β,m⊥α,则m∥β或m⊂β,故C错误;对于D,若n∥α,n⊥β,由线面平行的性质定理和面面垂直的判定定理得α⊥β,故D 正确.故选:BD.三、填空题:本大题共4小题,每小题5分,共20分.13.已知角θ的终边经过点P(﹣1,3),则cosθ=﹣,cos2θ=.解:角θ的终边上的点P(﹣1,3)到原点的距离为:r==,由任意角的三角函数的定义得cosθ==﹣.可得cos2θ=1﹣2sin2θ=1﹣2×(﹣)2=.故答案为:﹣,.14.复数范围内关于x的方程x2+x+1=0的解集为{﹣+i,﹣﹣i}.解:x2+x+1=0,即为x2+x+=﹣1+,可得(x+)2=﹣,即x+=±i,解得x=﹣+i或﹣﹣i,则解集为{﹣+i,﹣﹣i}.故答案为:{﹣+i,﹣﹣i}.15.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶D在西偏北75°的方向上,仰角为30°,则此山的高度CD=100m.解:由题意可得AB=600,∠BAC=30°,∠ABC=180°﹣75°=105°,∴∠ACB=45°,在△ABC中,由正弦定理可得:,即=,∴BC=300,在Rt△BCD中,∠CBD=30°,∴tan30°==,∴DC=100.故答案为:100.16.在三棱锥P﹣ABC中,AB=BC=5,AC=6,P在底面ABC内的射影D位于直线AC 上,且AD=2CD,PD=4,则三棱锥P﹣ABC的外接球的表面积为.解:因为AB=BC,所以△ABC外接圆的圆心M在BO上,设此圆的半径为r,因为BO=4,所以(4﹣r)2+32=r2,解得,因为OD=OC﹣CD=3﹣2=1,所以,设QM=a,易知QM⊥平面ABC,则QM∥PD,因为QP=QB,所以,即,解得a=1,所以球Q的半径,表面积.故答案为:.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.已知||=4,||=3,(2)=61,求:(1)向量与的夹角θ;(2)||.解:(1)∵||=4,||=3,∵(2)=4||2﹣3||2﹣4•=37﹣4•=61∴•=||•||•cos<,>=﹣6∴cos<,>=﹣∴<,>=120°∵向量与的夹角θ=120°…(2)∵||2=||2+||2﹣2•=16+9+12=37∴||=…18.如图,在直三棱柱ABC﹣A1B1C1中,AB=BC,E,F,G分别为BB1,AC,AA1的中点.(1)求证:平面BFG∥平面A1EC;(2)求证:BF⊥平面ACC1A1.【解答】证明:(1)在△AA1C中,点F为AC的中点,G为AA1的中点,∴GF∥A1C,在直三棱柱ABC﹣A1B1C1中,∵E是BB1的中点,G为AA1的中点,∴A1G∥BE,且A1E=BE,∴四边形A1GBE是平行四边形,∴A1E∥GB,∵GB∩GF=G,∴平面BFG∥平面A1EC.(2)在直三棱柱ABC﹣A1B1C1中,∵AB=BC,点F为AC的中点,∴BF⊥AC,又AA1⊥底面ABC,BF⊂底面ABC,∴AA1⊥BF,又AA1,AC⊂平面ACC1A1,AA1∩AC=A,∴BF⊥平面ACC1A1.19.在ABC中,内角A,B,C的对边分别为a,b,c,a2+c2=b2+ac.(1)求角B的大小:(2)求cos A+cos C的最大值.解:(1)在△ABC中,a2+c2=b2+ac.所以,由于0<B<π,所以B=.(2)由(1)得:A+C=,所以==.由于,所以当时,cos A+cos C的最大值为1.20.如图,摩天轮上一点P在t时刻距离地面高度满足y=A sin(ωt+φ)+b,φ∈[﹣π,π],已知某摩天轮的半径为50米,点O距地面的高度为60米,摩天轮做匀速转动,每3分钟转一圈,点P的起始位置在摩天轮的最低点处.(1)根据条件写出y(米)关于t(分钟)的解析式;(2)在摩天轮转动的一圈内,有多长时间点P距离地面超过85米?解:(1)由题意,A=50,b=60,T=3;故ω=,故y=50sin(t+φ)+60;则由50sinφ+60=10及φ∈[﹣π,π]得,φ=﹣;故y50sin(t﹣)+60;(2)在第一个3分钟内求即可,令50sin(t﹣)+60>85;则sin(t﹣)>;故<t﹣<,解得,1<t<2;故在摩天轮转动的一圈内,有1分钟时间点P距离地面超过85米.21.已知四棱锥P﹣ABCD,底面ABCD为正方形,且PA⊥底面ABCD,过AB的平面与侧面PCD的交线为EF,且满足S△PEF:S四边形CDEF=1:3(S△PEF表示△PEF的面积).(1)证明:PB∥平面ACE;(2)当PA=2AD=2时,求点F到平面ACE的距离.【解答】证明:(1)由题知四边形ABCD为正方形,∴AB∥CD,又CD⊂平面PCD,AB⊄平面PCD∴AB∥平面PCD又AB⊂平面ABFE,平面ABFE∩平面PCD=EF∴EF∥AB,又AB∥CD∴EF∥CD,由S△PEF:S四边形CDEF=1:3,知E、F分别为PC、PD的中点,连接BD交AC与G,则G为BD中点,在△PBD中FG为中位线,∴EG∥PB,∵EG∥PB,EG⊂平面ACE,PB⊄平面ACE,∴PB∥平面ACE.解:(2)∵PA=2,AD=AB=1,∴,,∵CD⊥AD,CD⊥PA,AD∩PA=A,∴CD⊥平面PAD,∴CD⊥PD在Rt△CDE中,,在△ACE中由余弦定理知,∴,∴S△ACE=,设点F到平面ACE的距离为h,则,由DG⊥AC,DG⊥PA,AC∩PA=A,得DG⊥平面PAC,且,∵E为PD中点,∴E到平面ACF的距离为,又F为PC中点,∴S△ACF=S△ACP=,∴由V F﹣ACE=V E﹣ACF,解得,∴点F到平面ACE的距离为.22.已知△ABC的三个内角分别为A,B,C,且sin C sin(B+)=sin A.(1)求的值;(2)已知函数f(B)=k(sin B+cos B)+sin B cos B(k∈R),若函数g(x)=log2(x2﹣4cos A•x+2cos A)的定义域为R,求函数f(B)的值域.解:(1)因为sin C sin(B+)=sin A,所以sin B•sin C+cos B•sin C=sin(B+C)=sin B•cos C+cos B•sin C,即sin B•sin C=sin B•cos C.又0<B<π,所以tan C=1,可得C=…2分可得==﹣2+,…4分(2)由题意函数g(x)=log2(x2﹣4cos A•x+2cos A)的定义域为R,得,2cos2A ﹣cos A<0,所以0<cos A<,所以角A的范围是,由(1)知C=,所以,…6分设t=sin B+cos B=sin(B+),因为,所以t∈(1,),…8分则sin B cos B=,令y=h(t)=t2+kt﹣,t∈(1,).(i)当k≥﹣1时,h(1)=k,h()=k+,此时f(B)的值域为(k,k+),…9分(ii)当﹣≤k<﹣1时,h(﹣k)=﹣k2﹣,h()=k+,此时f(B)的值域为[﹣k2﹣,k+),…10分(iii)当﹣<k<﹣时,h(﹣k)=﹣k2﹣,h(1)=k,此时f(B)的值域为[﹣k2﹣,k),…11分(iv)当k≤﹣时,h()=k+,h(1)=k,此时f(B)的值域为(k+,k).…12分。

2019-2020学年山西省太原市高一下学期期末数学试卷 (解析版)

2019-2020学年山西省太原市高一下学期期末数学试卷 (解析版)

2019-2020学年山西省太原市高一第二学期期末数学试卷一、选择题(共12小题).1.在等差数列{a n}中,a1=1,d=2,则a4=()A.5B.7C.8D.162.不等式x(x﹣1)>0的解集是()A.(﹣∞,0)B.(0,1)C.(1,+∞)D.(﹣∞,0)∪(1,+∞)3.已知向量=(2,1),=(﹣1,k),⊥,则实数k的值为()A.2B.﹣2C.1D.﹣14.在△ABC中,A=30°,b=,c=1,则a=()A.2B.C.D.15.已知a<b,则下列结论正确的是()A.a2<b2B.<1C.>D.2a<2b6.在等比数列{a n}中,若a1a3a5=8,则a2a4=()A.2B.4C.±2D.±47.cos45°cos15°+sin15°sin45°的值为()A.B.C.D.8.若||=1,||=2,且,的夹角为120°,则|+|的值()A.1B.C.D.29.在数列{a n}中,a1=0,a n+1=(n∈N*),则a2020=()A.0B.C.﹣D.10.已知x>0,y>0,且x+2y=1,则+的最小值是()A.+1B.3+2C.﹣1D.3﹣211.若不等式ax2+2ax﹣1<0对于一切实数x都恒成立,则实数a的取值范围是()A.(﹣∞,﹣1]B.(﹣1,0)C.(﹣1,0]D.[0,+∞)12.已知等差数列{a n}满足a1>0,a2019+a2020>0,a2019•a2020<0.其前n项和为S n,则使S n>0成立时n最大值为()A.2020B.2019C.4040D.4038二、填空题:本大题共4个小题,每个小题3分,共12分,把答案填在横线上.13.已知扇形的半径为1,圆心角为45°,则该扇形的弧长为.14.一船以每小时15km的速度向东航行,船在A处看到一个灯塔B在北偏东60°处;行驶4h后,船到达C处,看到这个灯塔在北偏东15°处.这时船与灯塔的距离为km.15.已知a,b,c成等比数列,a,x,b成等差数列,b,y,c也成等差数列,则+的值为.16.已知数列{a n}满足a n+1+(﹣1)n a n=2n﹣l(n∈N*),则该数列的前80项和为.三、解答题(共3小题,满分30分)17.已知等差数列{a n}中,a2=3,a4=7.等比数列{b n}满足b1=a1,b4=a14.(1)求数列{a n}通项公式a n;(2)求数列{b n}的前n项和S n.18.已知sinα=,α∈(,π).(1)求cosα,tanα;(2)求的值.19.已知△ABC中,A=60°,a=6,B=45°.(1)求b;(2)求△ABC的面积.(请同学们在甲,乙两题中任选一题作答)20.已知向量=(1,cos x),=(1+sin x,1),x∈R,函数f(x)=•﹣1,(1)求函数f(x)的最小正周期和对称中心;(2)若f(x)≥1,求x的取值范围.选做题21.已知向量=(1,cos2x),=(1+sin2x,1),x∈R,函数f(x)=•.(1)求函数f(x)的最小正周期和对称中心;(2)若f(x)≤2,求x的取值范围.(请同学们在甲、乙两题中任选一题作答)22.已知数列{a n}满足a1=3,(n+2)a n+1=(n+3)a n+n2+5n+6(n∈N*).(1)证明:{}为等差数列;(2)设b n=(n∈N*),求数列{b n}的前n项和S n.选做题23.已知数列{a n}满足a1=5,a n+1=2a n+2n+1﹣1(n∈N*),b n=(n∈N*).(1)是否存在实数λ,使得{b n}为等差数列?若存在,求出λ的值;若不存在,请说明理由.(2)利用(1)的结论,求数列{a n}的前n项和S n.参考答案一、选择题:本题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将其字母标号填入下表相应位置.1.在等差数列{a n}中,a1=1,d=2,则a4=()A.5B.7C.8D.16【分析】由已知直接利用等差数列的通项公式求解.解:在等差数列{a n}中,由a1=1,d=2,得a4=a1+3d=1+3×2=7.故选:B.2.不等式x(x﹣1)>0的解集是()A.(﹣∞,0)B.(0,1)C.(1,+∞)D.(﹣∞,0)∪(1,+∞)【分析】可以先求出方程x(x﹣1)=0的根,根据一元二次不等式的解法,进行求解;解:x(x﹣1)=0,可得x=1或0,不等式x(x﹣1)>0,解得{x|x>1或x<0},故选:D.3.已知向量=(2,1),=(﹣1,k),⊥,则实数k的值为()A.2B.﹣2C.1D.﹣1【分析】根据条件便有,进行向量数量积的坐标运算便可得出k的值.解:∵;∴;∴k=2.故选:A.4.在△ABC中,A=30°,b=,c=1,则a=()A.2B.C.D.1【分析】利用余弦定理即可求出a的值.解:因为A=30°,b=,c=1,∴a2=b2+c2﹣2bc cos A==1,故a=1.故选:D.5.已知a<b,则下列结论正确的是()A.a2<b2B.<1C.>D.2a<2b【分析】通过举例利用排除法可得ABC不正确,即可得出结论.解:由a<b,取a=﹣2,b=﹣1,可知A,B不正确;取a=﹣1,b=1,可得C不正确.故选:D.6.在等比数列{a n}中,若a1a3a5=8,则a2a4=()A.2B.4C.±2D.±4【分析】根据等比数列的性质知:a1a3a5=(a2q)3=8,a2q=a3=2,a2a4=a32=4.解:设等比数列{a n}的公比为q,则a1a3a5=•a2q•a2q3=(a2q)3=8,则a2q=a3=2.又a2a4=•a3q=a32=22=4.故选:B.7.cos45°cos15°+sin15°sin45°的值为()A.B.C.D.【分析】直接利用两角差的余弦公式,求得所给式子的值.解:cos45°cos15°+sin15°sin45°=(cos45°﹣15°)=cos30°=,故选:B.8.若||=1,||=2,且,的夹角为120°,则|+|的值()A.1B.C.D.2【分析】根据向量的平方等于模的平方,利用数量积定义和数量积的性质即可得出.解:∵||=1,||=2,且,的夹角为120°,∴=1,=4,•=﹣1,∴|+|2=(+)2=+﹣2•=1+4﹣2=3,故|+|=,故选:B.9.在数列{a n}中,a1=0,a n+1=(n∈N*),则a2020=()A.0B.C.﹣D.【分析】利用数列{a n}的通项公式求出数列{a n}的前4项,得到{a n}是周期为3的周期数列,从而a2020=a1,由此能求出结果.解:在数列{a n}中,a1=0,a n+1=(n∈N*),∴=,=﹣,=0,∴{a n}是周期为3的周期数列,∵2020=673×3+1,∴a2020=a1=0.故选:A.10.已知x>0,y>0,且x+2y=1,则+的最小值是()A.+1B.3+2C.﹣1D.3﹣2【分析】利用“乘1法”与基本不等式的性质即可得出.解:因为x>0,y>0,且x+2y=1,则+=(+)(x+2y)=3+,当且仅当且x+2y=1即y==,x=时取等号,故选:B.11.若不等式ax2+2ax﹣1<0对于一切实数x都恒成立,则实数a的取值范围是()A.(﹣∞,﹣1]B.(﹣1,0)C.(﹣1,0]D.[0,+∞)【分析】由已知对a进行分类讨论,然后结合二次不等式的性质可求.解:当a=0时,﹣1<0恒成立,当a≠0时,可得,解可得,﹣1<a<0,综上可得,﹣1<a≤0,故选:C.12.已知等差数列{a n}满足a1>0,a2019+a2020>0,a2019•a2020<0.其前n项和为S n,则使S n>0成立时n最大值为()A.2020B.2019C.4040D.4038【分析】差数列{a n}的首项a1>0,a2019+a2020>0,a2019•a2020<0,可得a2019>0,a2020<0.再利用求和公式及其性质即可得出..解:∵等差数列{a n}的首项a1>0,a2019+a2020>0,a2019•a2020<0,∴a2019>0,a2020<0.于是S4038==>0,S4039==4039•a2020<0.∴使S n>0成立的最大正整数n是4038.故选:D.二、填空题:本大题共4个小题,每个小题3分,共12分,把答案填在横线上.13.已知扇形的半径为1,圆心角为45°,则该扇形的弧长为.【分析】根据弧长公式进行计算即可.解:由题意得,扇形的半径为8cm,圆心角为45°,故此扇形的弧长为:=.故答案为:.14.一船以每小时15km的速度向东航行,船在A处看到一个灯塔B在北偏东60°处;行驶4h后,船到达C处,看到这个灯塔在北偏东15°处.这时船与灯塔的距离为30 km.【分析】根据题意画出相应的图形,求出∠B与∠BAC的度数,再由AC的长,利用正弦定理即可求出BC的长.解:根据题意画出图形,如图所示,可得出∠B=75°﹣30°=45°,在△ABC中,根据正弦定理得:=,即=,∴BC=30km,则这时船与灯塔的距离为30km.故答案为:3015.已知a,b,c成等比数列,a,x,b成等差数列,b,y,c也成等差数列,则+的值为2.【分析】由题意可得b2=ac,2x=a+b,2y=b+c,代入要求的式子+,化简求得结果.解:∵已知a,b,c成等比数列,a,x,b成等差数列,b,y,c也成等差数列,可得b2=ac,2x=a+b,2y=b+c,∴+=+===2,故答案为2.16.已知数列{a n}满足a n+1+(﹣1)n a n=2n﹣l(n∈N*),则该数列的前80项和为3240.【分析】由数列递推式判断数列的特征,4项一组,求和后得到一个等差数列,然后求和即可.解:设a1=a,由a n+1+(﹣1)n a n=2n﹣l,得a2=a+1,a3=2﹣a,a4=7﹣a,a5=a,a6=a+9,a7=2﹣a,a8=15﹣a,a9=a,a10=a+17,a11=2﹣a,a12=23﹣a.可知:a1+a2+a3+a4=10,a5+a6+a7+a8=26,a9+a10+a11+a12=42,…10,26,42,…是等差数列,公差为16,∴数列{a n}的前80项和为:20×10+×16=3240.故答案为:3240.三、解答题(共3小题,满分30分)17.已知等差数列{a n}中,a2=3,a4=7.等比数列{b n}满足b1=a1,b4=a14.(1)求数列{a n}通项公式a n;(2)求数列{b n}的前n项和S n.【分析】(1)设等差数列{a n}的公差为d,运用等差数列的通项公式,解方程可得首项和公差,进而得到所求通项公式;(2)设等比数列{b n}的公比为q,运用等比数列的通项公式,解方程可得公比,进而得到所求和.解:(1)设等差数列{a n}的公差为d,由a2=3,a4=7,可得a1+d=3,a1+3d=7,解得a1=1,d=2,则a n=1+2(n﹣1)=2n﹣1,n∈N*;(2)设等比数列{b n}的公比为q,由b1=a1=1,b4=a14=q3=27,解得q=3,数列{b n}的前n项和S n==(3n﹣1).18.已知sinα=,α∈(,π).(1)求cosα,tanα;(2)求的值.【分析】(1)由题意利用同角三角函数的基本关系,求得结果.(2)由题意利用诱导公式,求得结果.解:(1)∴已知sinα=,α∈(,π),∴cosα=﹣=﹣,∴tanα==﹣.(2)==﹣cos2α=﹣.19.已知△ABC中,A=60°,a=6,B=45°.(1)求b;(2)求△ABC的面积.【分析】(1)由已知利用正弦定理可得b的值.(2)由已知利用两角和的正弦函数公式可求sin C的值,进而根据三角形的面积公式即可求解.解:(1)∵△ABC中,A=60°,a=6,B=45°.∴由正弦定理,可得b===2.(2)∵A+B+C=180°,A=60°,B=45°.∴sin C=sin(A+B)=sin A cos B+cos A sin B=+=,∴S△ABC=ab sin C=×=9+3.(请同学们在甲,乙两题中任选一题作答)20.已知向量=(1,cos x),=(1+sin x,1),x∈R,函数f(x)=•﹣1,(1)求函数f(x)的最小正周期和对称中心;(2)若f(x)≥1,求x的取值范围.【分析】(1)写出f(x)解析式,根据正弦函数的周期及对称中心可得答案;(2)条件等价于sin(x+)≥,解之即可解:由题可得f(x)==1+sin x+cos x﹣1=sin(x+),(1)由f(x)解析式可得其最小正周期T=2π,令x+=kπ,则x=kπ﹣,k∈Z,即f(x)的对称中心为(kπ﹣,0),k∈Z;(2)由f(x)≥1得sin(x+)≥,解得2kπ+≤x+≤2kπ+π,k∈Z,则2kπ≤x≤2kπ+,k∈Z,所以x的取值范围为[2kπ,2kπ+](k∈Z).选做题21.已知向量=(1,cos2x),=(1+sin2x,1),x∈R,函数f(x)=•.(1)求函数f(x)的最小正周期和对称中心;(2)若f(x)≤2,求x的取值范围.【分析】(1)根据平面向量数量积的运算得到f(x)解析式,结合正弦函数性质即可得到答案;(2)由f(x)≤2得到sin(2x+)≤,解之即可解:由题得f(x)==1+sin2x+cos2x=1+sin(2x+)(1)则函数f(x)的最小正周期为T==π,令2x+=kπ,解得x=(k∈Z),即函数的对称中心为(,1)(k∈Z);(2)当f(x)≤2时,即1+sin(2x+)≤2,所以sin(2x+)≤,则﹣+2kπ≤2x+≤+2kπ,解得﹣+kπ≤x≤kπ(k∈Z),即x的取值范围是[﹣+kπ,kπ](k∈Z)(请同学们在甲、乙两题中任选一题作答)22.已知数列{a n}满足a1=3,(n+2)a n+1=(n+3)a n+n2+5n+6(n∈N*).(1)证明:{}为等差数列;(2)设b n=(n∈N*),求数列{b n}的前n项和S n.【分析】(1)直接利用定义的应用求出结果.(2)利用(1)的应用求出数列的通项公式,进一步利用裂项相消法在数列求和中的应用求出结果.【解答】证明:(1)数列{a n}满足a1=3,(n+2)a n+1=(n+3)a n+n2+5n+6(n∈N*).整理得:(常数),所以数列{}是以为首项,1为公差的等差数列.解:(2)由(1)得:,解得:a n=n(n+2).所以.所以:==选做题23.已知数列{a n}满足a1=5,a n+1=2a n+2n+1﹣1(n∈N*),b n=(n∈N*).(1)是否存在实数λ,使得{b n}为等差数列?若存在,求出λ的值;若不存在,请说明理由.(2)利用(1)的结论,求数列{a n}的前n项和S n.【分析】(1)由a n+1=2a n+2n+1﹣1,得,然后利用累加法求得数列{a n}的通项公式,再由等差数列的定义求使{b n}为等差数列的λ值;(2)由(1)知,,令{(n+1)•2n}的前n项和为T n,利用错位相减法求得T n,进一步求得数列{a n}的前n项和S n.解:由a n+1=2a n+2n+1﹣1,得,∴,得,,,…(n≥2).累加得:==.∴(n≥2).a1=5适合上式,∴.则b n==.=.若{b n}为等差数列,则λ﹣1=0,即λ=1.故存在实数λ=1,使得{b n}为等差数列;(2)由(1)知,.令{(n+1)•2n}的前n项和为T n,则,.∴=,得.∴数列{a n}的前n项和S n=n•2n+1+n.。

2019—2020 学年度第二学期期末练习高一数学学科-试卷

2019—2020 学年度第二学期期末练习高一数学学科-试卷
考生 须知
2019—2020 学年度第二学期期末练习
高一数学
出题人:侯华芬 朱筱琨 敬蕊萌 审核人:侯华芬 朱筱琨 敬蕊萌
1.本卷共 3 页,包括四个大题,20 小题,满分为 100 分。练习时间 90 分钟。 2.考生务必将答案答在答题纸上,在试卷上作答无效。 3.考试结束后,将答题纸拍照上传。
一、选择题:本大题共 10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只有一项是符合要求的.

AB
E
F
D A
C M B
E
F
G
【附加题】(本小题 5 分)
D A
C M B
对于函数 f (x) 和实数 M ,若存在 m, n N+ ,使 f (m) + f (m +1) + f (m + 2) + + f (m + n) = M 成立,则称
(m, n) 为函数 f (x) 关于 M 的一个“生长点”.若 (1, 2) 为函数 f (x) = cos( x + ) 关于 M 的一个“生长点”,则 26
5.已知 m 是函数 f (x) = cos x 图象一个对称中心的横坐标,则 f (m) = ( )
(A) −1
(B) 0
(C) 2
(D)1
6.已知 m, n 为两条不同的直线, , 为两个不同的平面,则下列命题中不正确的是( )
(A) m ⊥ , m ⊥ //
(B) // , m ⊥ , n ⊥ m // n
1.已知 sin 0 ,且 tan 0 ,则 的终边所在的象限是( )
(A)第一象限
(B)第二象限
(C)第三象限

湖南省怀化市2019-2020学年高一下学期期末考试数学试题含答案

湖南省怀化市2019-2020学年高一下学期期末考试数学试题含答案

湖南省怀化市2019-2020学年高一下学期期末考试数学试题含答案注意事项:1。

答题前,考生务必将自己的姓名、准考证号写在答题卡上。

2。

考生作答时,选择题和综合题均须做在答题卡上,在本试卷上答题无效。

考生在答题卡上按答题卡中注意事项的要求答题。

3。

考试结束后,将答题卡收回.4.本试题卷共4页,如有缺页,考生须声明,否则后果自负.怀化市中小学课程改革教育质量监测试卷2020年上期期末考试高一数学一、单项选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.为了了解某地参加计算机水平测试的5000名学生的成绩,从中抽取了200名学生的成绩进行统计分析.在这个问题中,5000 名学生成绩的全体是A.总体B。

个体 C.从总体中抽取的一个样本D.样本的容量2.设α是第三象限角,且tan1α=,则cosα=A。

-12B. 22C. 22- D. 12-3。

同时掷3枚硬币,那么互为对立事件的是A.至少有1枚正面和最多有1枚正面B.最多1枚正面和恰有2枚正面C 。

至多1枚正面和至少有2枚正面 D.至少有2枚正面和恰有1枚正面4。

某中学高三从甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩(满分100 分)的茎叶图如图,其中甲班学生成绩的众数是85,乙班学生成绩的中位数是83,则x+ y 的值为A.7 B 。

8 C.9 D 。

10 5.若4sin cos 3θθ-=则sin()cos()πθπθ--=A 。

16B 。

16- C 。

718-D. 7186.如图所示,用两种方案将块顶角为120°, 腰长为2的等腰三角形钢板OAB 裁剪成扇形,设方案一、二的扇形的面积分别为S 1,S 2,周长分别为l 1,l 2,则A.S 1=S 2,l 1>l 2B.S 1=S 2, l 1<l 2 C 。

S 1〉S 2,l 1=l 2 D.S 1〈S 2, l 1=l 2 7。

2019-2020学年山东省菏泽市高一下学期期末数学试卷(A卷) (解析版)

2019-2020学年山东省菏泽市高一下学期期末数学试卷(A卷) (解析版)

2019-2020学年山东省菏泽市高一第二学期期末数学试卷(A卷)一、选择题(共8小题).1.在一次抛硬币的试验中,同学甲用一枚质地均匀的硬币做了100次试验,发现正面朝上出现了45次,那么出现正面朝上的频率和概率分别为()A.0.45 0.45B.0.5 0.5C.0.5 0.45D.0.45 0.52.复数z=的虚部为()A.2B.﹣2C.﹣3D.﹣3i3.在某次测量中得到的A样本数据如下:42,43,46,52,42,50,若B样本数据恰好是A样本数据每个都减5后所得数据,则A、B两样本的下列数字特征对应相同的是()A.平均数B.标准差C.众数D.中位数4.如图是一个正方体的表面展开图,则图中“有”在正方体中所在的面的对面上的是()A.者B.事C.竟D.成5.加强体育锻炼是青少年生活学习中非常重要的组成部分.某学生做引体向上运动,处于如图所示的平衡状态时,若两只胳膊的夹角为60°,每只胳膊的拉力大小均为400N,则该学生的体重(单位:kg)约为()(参考数据:取重力加速度大小为g=10m/s2,≈1.732)A.63B.69C.75D.816.已知向量=(2,3),=(﹣1,2),若m+与﹣2共线,则m的值为()A.﹣2B.2C.D.7.如图所示是一样本的频率分布直方图,样本数据共分3组,分别为[5,10),[10,15),[15,20].估计样本数据的第60百分位数是()A.14B.15C.16D.178.已知正方体ABCD﹣A1B1C1D1棱长为4,P是AA1中点,过点D1作平面α,满足CP⊥平面α,则平面α与正方体ABCD﹣A1B1C1D1的截面周长为()A.4B.12C.8D.8二、多项选择题:本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求,全选对的得5分,选对但不全的得3分,有选错的得0分.9.给出如图所示的三幅统计图,则下列命题中正确的有()A.从折线图能看出世界人口的变化情况B.2050年非洲人口将达到大约15亿C.2050年亚洲人口比其他各洲人口的总和还要多D.从1957年到2050年各洲中北美洲人口增长速度最慢10.在△ABC中,角A、B、C所对的边分别为a、b、c,下列结论正确的是()A.若b2+c2﹣a2>0,则△ABC为锐角三角形B.若A>B,则sin A>sin BC.若b=3,A=60°,三角形面积S=3,则a=D.若a cos A=b cos B,则△ABC为等腰三角形11.在△ABC中,D,E,F分别是边BC,AC,AB中点,下列说法正确的是()A.B.C.若点P是线段AD上的动点,且满足=+,则λ+2μ=1D.若△ABC所在平面内一点P满足=λ()(λ≥0),则点P的轨迹一定通过△ABC的内心12.如图,正方体ABCD﹣A1B1C1D1的棱长为1,动点E在线段A1C1上,F、M分别是AD、CD的中点,则下列结论中正确的是()A.FM∥A1C1B.BM⊥平面CC1FC.存在点E,使得平面BEF∥平面CC1D1DD.三棱锥B﹣CEF的体积为定值三、填空题:本大题共4小题,每小题5分,共20分。

临沂市高一数学下学期期末考试试题含解析

临沂市高一数学下学期期末考试试题含解析
【详解】根据题意,作出如下的图形,
设圆锥的底面半径为 ,内接圆柱的底面半径为 ,
因为内接圆柱的体积为 ,所以 ,解得 ,
又由 ,所以 ,解得 ,
所以圆锥的母线长为 ,
所以该圆锥的表面积为 。
故答案为: 。
【点睛】本题主要考查了圆锥的表面积和圆柱的体积的计算,其中解答中熟记圆锥、圆柱的结构特征是解答的关键,着重考查数形结合法,以及推理与运算能力.
A. B. C。 D.
【答案】C
【解析】
【分析】
计算出基本事件的总数以及事件“抽到的两人中有一男一女”所包含的基本事件数,利用古典概型的概率公式可求得所求事件的概率.
【详解】从两名男生和两名女生中任意抽取两人,若采取有放回简单随机抽样,基本事件总数为 ,
若抽到的两人中有一男一女,可以先抽到男生后抽到女生,也可以先抽到女生后抽到男生,
所以 .
故答案为: .
【点睛】本题考查了正弦定理和余弦定理解三角形的应用,考查了三角恒等变换的应用及运算求解能力,属于中档题。
四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。
【答案】C
【解析】
【分析】
由题意 ,根据复数的除法运算可得 ,进而求得共轭复数 ,即可知对应点所在的象限
【详解】由 知:
∴ ,即 对应的点为
故选:C
【点睛】本题考查了复数的除法运算,以及共轭复数的概念,首先由复数四则运算的除法求得复数,进而依据共轭复数的概念得到对应的共轭复数,即可判断所在象限
2. 的值是( )
四边形 为平行四边形, ,
平面 , 平面 , 平面 ,即选项 正确;
选项 ,取 的中点 ,连接 、 ,
平面 , 即为二面角 的平面角.

2019-2020学年宁夏六盘山高级中学高一下学期期末数学试卷 (解析版)

2019-2020学年宁夏六盘山高级中学高一下学期期末数学试卷 (解析版)

2019-2020学年宁夏六盘山高级中学高一第二学期期末数学试卷一、选择题(共10小题).1.设向量=(1,2),=(x,1),若向量,则x的值为()A.B.2C.1D.2.若角α的终边经过点P(﹣3,4),则tanα=()A.B.C.D.3.已知M是△ABC的BC边上的中点,若向量,,则向量等于()A.B.C.D.4.已知扇形的周长为3cm,扇形的圆心角的弧度数是1rad,则半径是()A.4B.1C.1或4D.25.在下列函数中,同时满足:①在(0,)上递增;②以2π为周期;③是奇函数的是()A.y=tan x B.y=cos x C.y=tan D.y=﹣tan x6.下列各式中,值为的是()A.sin15°cos15°B.cos2﹣sin2C.D.7.函数y=A cos(ωx+φ)(A>0,ω>0,|φ|<)的图象的一部分如图所示,则它的解析式是()A.y=sin(x+)B.y=2cos(x+)C.y=2sin(x﹣)D.y=2cos(x﹣)8.下列说法正确的是()A.方向不同的向量不能比较大小,但同向的可以比较大小B.若•<0,则两个向量的夹角为钝角C.在△ABC中,若•>0,则△ABC为锐角三角形D.y=|sin2x|是周期为的偶函数9.已知曲线C1:y=cos x,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期为π,若其图象向左平移个单位后得到的函数为奇函数,则函数f(x)的图象()A.关于点(,0)对称B.关于点(﹣,0)对称C.关于直线x=﹣对称D.关于直线x=对称二、解答题(本大题共5小题,每题10分,共50分,解答应写出文字说明、证明过程或演算步骤)11.已知x>0,向量=(1,x),=(﹣3,1).(1)当实数x为何值时,2+与﹣2垂直.(2)若x=2,求在上的投影.12.(1)已知非零向量,不共线,欲使k+和+k共线,试确定实数k的值.(2)已知向量||=1,||=2,(+2)⊥(3﹣),求与夹角的大小.13.已知tanα=2,其中α∈(0,).(1)求的值;(2)求cos(α+)的值.14.已知函数f(x)=cos x﹣cos(x﹣),x∈R.(1)求f(x)的对称中心和最小正周期;(2)若f(α)=,求sin2α的值.15.如图,在正方形ABCD中,点E是BC边上中点,点F在边CD上.(1)若点F是CD上靠近C的三等分点,设=+,求λ+μ的值.(2)若AB=2,当=1时,求DF的长.三、填空题(共5小题).16.已知点A(1,2),点B(3,4),则与共线的单位向量为.17.两个大小相等的共点力1,2,当它们的夹角为90°时,合力大小为30N.当它们的夹角为120°时,合力大小为.18.已知tan(x+)=2,则tan2x=.19.若f(x)=sin x+cos x在[0,a]是增函数,则a的最大值是20.设函数f(x)=3sin(2x﹣)的图象为C,给出下列命题:①图象C关于直线x=对称;②函数f(x)在区间(,)内是减函数;③函数f(x)是奇函数;④图象C关于点(,0)对称.其中,错误命题的个数是.四、解答题(21题12分,22题13分,共25分)21.在平面直角坐标系xOy中,设向量=(sin x,sin x),=(cos x,sin x),x∈[0,π].(1)若||=||,求x的值;(2)求•的最大值及取得最大值时x的值.22.已知函数f(x)=sin2x+2cos2x﹣1.(1)求函数f(x)的单调减区间;(2)将函数f(x)的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将图象向右平移个单位得到g(x)的图象,若g(x)=m在[0,]有两个零点,求m的范围.参考答案一、选择题(共10小题).1.设向量=(1,2),=(x,1),若向量,则x的值为()A.B.2C.1D.【分析】利用向量平行的性质直接求解.解:∵向量=(1,2),=(x,1),向量,∴2x﹣1=0,解得x=.故选:A.2.若角α的终边经过点P(﹣3,4),则tanα=()A.B.C.D.【分析】由三角函数的定义,tanα=,求出值即可解:∵角α的终边经过点P(1,﹣2),∴tanα==.故选:C.3.已知M是△ABC的BC边上的中点,若向量,,则向量等于()A.B.C.D.【分析】根据向量加法的平行四边形法则,以及平行四边形的性质可得,+=2,解出向量.解:根据平行四边形法则以及平行四边形的性质,有.故选:C.4.已知扇形的周长为3cm,扇形的圆心角的弧度数是1rad,则半径是()A.4B.1C.1或4D.2【分析】设扇形的半径为r,弧长为l,列出方程组求出r的值.解:设扇形的半径为r,弧长为l,则周长为2r+l=3,又扇形的圆心角弧度数是=1,即r=l;由,解得r=1,l=1;所以半径是1.故选:B.5.在下列函数中,同时满足:①在(0,)上递增;②以2π为周期;③是奇函数的是()A.y=tan x B.y=cos x C.y=tan D.y=﹣tan x【分析】由三角函数的性质,逐个选项验证可得.解:选项A,y=tan x的周期为π,不满足②,故错误;选项B,y=cos x为偶函数,不满足③,故错误;选项D,y=﹣tan x的周期为π,不满足②,故错误;选项C,3个条件均符合,故选:C.6.下列各式中,值为的是()A.sin15°cos15°B.cos2﹣sin2C.D.【分析】直接利用三角函数关系式的变换和倍角公式的应用求出结果.解:由于选项A:sin15°cos15°=sin30°=,选项B:﹣==,选项C:===,选项D:==tan45°=.故选:B.7.函数y=A cos(ωx+φ)(A>0,ω>0,|φ|<)的图象的一部分如图所示,则它的解析式是()A.y=sin(x+)B.y=2cos(x+)C.y=2sin(x﹣)D.y=2cos(x﹣)【分析】根据函数y=A cos(ωx+φ)图象的最高点纵坐标求出A,根据周期求出ω,根据点的坐标求出φ的值.解:根据函数y=A cos(ωx+φ)图象的最高点的纵坐标为2,得A=2;又该图象的T=﹣(﹣)=2,所以周期T=4=,所以ω=;又x=时,2cos(×+φ)=2⇒+φ=2kπ,k∈Z且|φ|<,应取φ=﹣;所以函数的解析式为y=2cos(x﹣).故选:D.8.下列说法正确的是()A.方向不同的向量不能比较大小,但同向的可以比较大小B.若•<0,则两个向量的夹角为钝角C.在△ABC中,若•>0,则△ABC为锐角三角形D.y=|sin2x|是周期为的偶函数【分析】由平面向量的基本概念,可判断选项A;由向量的数量积及向量夹角的范围,可判断选项B;由向量的数量积运算,可判断选项C;由三角函数的图象与性质,可判断选项D.解:A.向量是矢量,不能比较大小,故A错误;B.若•<0,则两个向量的夹角为钝角或为180°,故B错误;C.在△ABC中,由•>0,可得A为锐角,但△ABC不一定为锐角三角形,故C 错误;D.y=|sin2x|的图象,如图所示:由图可得周期为,故D正确.故选:D.9.已知曲线C1:y=cos x,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【分析】利用诱导公式,函数y=A sin(ωx+φ)的图象变换规律,得出结论.解:曲线C2:y=sin(2x+)=cos(2x+),把C1:y=cos x上各点的横坐标缩短到原来的倍,纵坐标不变,可得y=cos2x的图象;再把得到的曲线向左平移个单位长度,可以得到曲线C2:y=cos(2x+)=sin (2x+)的图象,故选:D.10.函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期为π,若其图象向左平移个单位后得到的函数为奇函数,则函数f(x)的图象()A.关于点(,0)对称B.关于点(﹣,0)对称C.关于直线x=﹣对称D.关于直线x=对称【分析】利用函数y=A sin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,得出结论.解:∵函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期为=π,∴ω=2.若其图象向左平移个单位后得到的函数为y=sin[2(x+)+φ]=sin(2x++φ),再根据y=sin(2x++φ)为奇函数,∴+φ=kπ,k∈Z,即φ=kπ﹣,可取φ=﹣.故f(x)=sin(2x﹣).当x=时,f(x)=≠0,且f(x)=不是最值,故f(x)的图象不关于点(,0)对称,也不关于直线x=对称,故排除A、D;当x=﹣时,f(x)=sin(﹣)=﹣1,是函数的最小值,故f(x)的图象不关于点(﹣,0)对称,但关于直线x=﹣对称,故选:C.二、解答题(本大题共5小题,每题10分,共50分,解答应写出文字说明、证明过程或演算步骤)11.已知x>0,向量=(1,x),=(﹣3,1).(1)当实数x为何值时,2+与﹣2垂直.(2)若x=2,求在上的投影.【分析】(1)令(2+)•(﹣2)=0,列方程解出x.(2)运用向量的数量积的定义可得,再由在上的投影为,计算即可得到所求值.解:(1)∵x>0,向量=(1,x),=(﹣3,1).∵2+与﹣2垂直,∴(2+)•(﹣2)=22﹣3﹣2=2(1+x2)﹣3(x﹣3)﹣2×10=0,可得2x2﹣3x﹣9=0,∴解得x=3,或﹣(舍去).(2)若x=2,则=(1,2),=(﹣3,1),可得||=,可得在上的投影为==﹣.12.(1)已知非零向量,不共线,欲使k+和+k共线,试确定实数k的值.(2)已知向量||=1,||=2,(+2)⊥(3﹣),求与夹角的大小.【分析】(1)根据平面向量的共线定理列方程求出k的值;(2)利用两向量垂直时数量积为0,列方程求出cosθ与θ的值.解:(1)非零向量,不共线,由k+和+k共线,则k2﹣1=0,解得k=±1,所以k=±1时,k+和+k共线;(2)向量||=1,||=2,当(+2)⊥(3﹣)时,(+2)•(3﹣)=3+5•﹣2=0,即3×1+5×1×2×cosθ﹣2×4=0,解得cosθ=,又θ∈[0,π],所以与的夹角θ=.13.已知tanα=2,其中α∈(0,).(1)求的值;(2)求cos(α+)的值.【分析】(1)由已知利用同角三角函数基本关系式化简化简求解.(2)由已知利用同角三角函数基本关系式可求cosα,sinα的值,进而根据两角和的余弦函数公式即可求解cos(α+).解:(1)由于tanα=2,其中α∈(0,),所以:=====;(2)由于tanα=2,其中α∈(0,),可得:cosα===,sinα==,cos(α+)=cosα﹣sinα=×﹣×=﹣.14.已知函数f(x)=cos x﹣cos(x﹣),x∈R.(1)求f(x)的对称中心和最小正周期;(2)若f(α)=,求sin2α的值.【分析】(1)直接利用三角函数关系系的变换,把函数的关系式变形成余弦型函数,进一步求出函数的对称中心和最小正周期.(2)利用三角函数的关系式的平方求出结果.解:(1)f(x)=cos x﹣cos(x﹣)=cos x﹣sin x=,令x+,解得(k∈Z),所以函数的对称中心为()(k∈Z),函数的最小正周期为.(2)由于f(α)=cosα﹣sinα=,所以,故,解得.15.如图,在正方形ABCD中,点E是BC边上中点,点F在边CD上.(1)若点F是CD上靠近C的三等分点,设=+,求λ+μ的值.(2)若AB=2,当=1时,求DF的长.【分析】(1)用表示出,得出λ,μ的值即可得出λ+μ的值;(2)设=λ,用表示出,根据=1计算λ,从而可得DF 的长.解:(1)∵点E是BC边上中点,点F是CD上靠近C的三等分点,∴=﹣=﹣,==,∴==﹣+,∴λ=﹣,μ=,故λ+μ=﹣=.(2)设=λ,则==﹣λ,又==,=0,∴=()•(﹣λ)=﹣λ2+=﹣4λ+2=1,故λ=,∴DF=(1﹣λ)×2=.三、填空题(本大题共5小题,每小题5分,共25分,将答案填在题中的横线上)16.已知点A(1,2),点B(3,4),则与共线的单位向量为(,)或(﹣,﹣).【分析】求出和||,即可写出与共线的单位向量±.解:点A(1,2),点B(3,4),所以=(3﹣1,4﹣2)=(2,2),所以||==2,所以与共线的单位向量为±=±(,)=±(,),即(,)或(﹣,﹣).故答案为:(,)或(﹣,﹣).17.两个大小相等的共点力1,2,当它们的夹角为90°时,合力大小为30N.当它们的夹角为120°时,合力大小为15.【分析】根据向量的平行四边形法则,作出图形,利用三角形的边角关系,即可求出、与合力的大小.解:根据向量的平行四边形法则,作出下图如图所示;则+=;若、的夹角为90°,即∠BAD=90°,则||=||=30×sin45°=15;若夹角为120°,则∠BAC=∠BCA=60°,所以△ABC为等边三角形,所以||=||=15;即合力的大小为15.故答案为:15.18.已知tan(x+)=2,则tan2x=.【分析】利用两角和与差的正切函数公式及特殊角的三角函数值化简已知的等式,得到关于tan x的方程,求出方程的解得到tan x的值,然后把所求式子利用二倍角的正切函数公式化简后,将tan x的值代入即可求出值.解:由===2,解得:tan x=,则tan2x===.故答案为:19.若f(x)=sin x+cos x在[0,a]是增函数,则a的最大值是【分析】利用两角和的正弦公式化简函数的解析式,再利用正弦函数的单调性,求得a 的最大值.解:∵f(x)=sin x+cos x=sin(x+)在[0,a]是增函数,∴a+≤,∴a≤,则a的最大值是,故答案为:.20.设函数f(x)=3sin(2x﹣)的图象为C,给出下列命题:①图象C关于直线x=对称;②函数f(x)在区间(,)内是减函数;③函数f(x)是奇函数;④图象C关于点(,0)对称.其中,错误命题的个数是②③④.【分析】根据函数f(x)=3sin(2x﹣)的图象与性质,分析函数的对称性,奇偶性与单调性,即可得出结论.解:①由2x﹣=+kπ,k∈Z,得x=+kπ,k∈Z,令k=1,直线x=为函数图象的对称轴,故图象C关于直线x=对称,故①正确;由﹣+2kπ≤2x﹣≤+2kπ,k∈Z,得x∈[﹣+kπ,+kπ],k∈Z,令k=0,得函数f(x)在区间(,)内是增函数,故②错误;f(0)≠0,故函数f(x)不是奇函数,故③错误;由2x﹣=kπ,k∈Z,得x=+kπ,k∈Z,图象C不关于点(,0)对称,故④错误.故答案为:②③④.四、解答题(21题12分,22题13分,共25分)21.在平面直角坐标系xOy中,设向量=(sin x,sin x),=(cos x,sin x),x∈[0,π].(1)若||=||,求x的值;(2)求•的最大值及取得最大值时x的值.【分析】(1)直接利用模长相等得到关于x的三角函数,再借助于角的范围即可求解;(2)求出并整理其数量积,结合正弦函数的性质即可求解.解:(1)∵=(sin x,sin x),=(cos x,sin x),∴=3sin2x+sin2x=4sin2x,=cos2x+sin2x=1;∵||=||,∴|sin x|=;∵x∈[0,π].∴x=或.(2)•=sin x cos x+sin2x=sin2x﹣cos2x+=sin(2x﹣)+;∵x∈[0,π].∴2x﹣∈[﹣,],∴0≤sin(2x﹣)+≤;∴当2x﹣=,即x=时,•取最大值.22.已知函数f(x)=sin2x+2cos2x﹣1.(1)求函数f(x)的单调减区间;(2)将函数f(x)的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将图象向右平移个单位得到g(x)的图象,若g(x)=m在[0,]有两个零点,求m的范围.【分析】(1)先利用二倍角公式和两角和的正弦公式将函数f(x)化简为y=A sin(ωx+φ)型函数,利用正弦函数的单调性即可得解其单调递减区间;(2)由图象变换法则分两步得函数g(x)的解析式,由题意可得函数y=sin x与y=在[0,]有两个交点,可得≤<1,即可解得m的取值范围.解:(1)f(x)=sin2x+2cos2x﹣1=sin2x+cos2x=sin(2x+),令+2kπ<2x+<+2kπ,k∈Z,解得:+kπ<x<+kπ,k∈Z,可得函数f(x)的单调递减区间为:[+kπ,+kπ],k∈Z.(2)将f(x)的图象上各点的横坐标伸长为原来的2倍,纵坐标不变得函数y=sin (x+)的图象,再将所得图象向右平移个单位,得g(x)=sin x,sin x=m在[0,]有两个零点,即函数y=sin x与y=在[0,]有两个交点,可得≤<1,解得1≤m,即m的取值范围是[1,).。

北京市西城区2019-2020学年高一数学下学期期末考试数学试题含解析

北京市西城区2019-2020学年高一数学下学期期末考试数学试题含解析
A. B. C. D.
〖答 案〗C
〖解 析〗
分析〗
根据正弦函数以及余弦函数在 上的单调性求解即可.
〖详 解〗因为 , ,且 ,
而 在 上有增有减;故 与 大小关系不确定,
在 上单调递减;若 ,则 成立;
故选:C
〖点 睛〗本题主要考查了利用正余弦函数的单调性比较函数值的大小,属于基础题.
9.将函数 的图象向右平移 ( )个单位,得到函数 的图象.在同一坐标系中,这两个函数的部分图象如图所示,则 ()
〖详 解〗解:∵ ,∴ ,
即 ,解得 .
故答案为:1.
〖点 睛〗本题考查了向量垂直求参数,考查了向量数量积的定义,属于基础题.
14.已知正方体 的八个顶点在同一个球面上,若正方体的棱长是2,则球的直径是______;球的表面积是______.
〖答 案〗(1). (2).
〖解 析〗
〖分析〗
首先求出外接球的半径,进一步求出球的表面积.
北京市西城区2019-2020学年高一数学下学期期末考试试题(含解析)
一、选择题
1.下列各角中,与 角终边相同的是()
A. B. C. D.
〖答 案〗D
〖解 析〗
〖分析〗
写出与 终边相同角的集合,取k值得答案.
〖详 解〗与 角终边相同的角的集合为 ,
取 ,可得 .
∴与 角终边相同的是 .
故选:D
〖点 睛〗本小题主要考查终边相同的角,属于基础题.
③ 的值域是 .
其中,正确结论的序号是______.
〖答 案〗②③
〖解 析〗
〖分析〗
判断函数的奇偶性判断①;求出函数的零点判断②;函数的值域判断③.
〖详 解〗函数 ,
①由于 ,所以 是非奇非偶函数,所以①不正确;

2019-2020学年江苏省淮安市高一下学期期末数学试卷 (解析版)

2019-2020学年江苏省淮安市高一下学期期末数学试卷 (解析版)

2019-2020学年江苏省淮安市高一第二学期期末数学试卷一、选择题(共8小题).1.某校高一、高二、高三年级分别有学生1100名、1000名、900名,为了了解学生的视力情况,现用分层抽样的方法从中随机抽取容量为30的样本,则应从高二年级抽取的学生人数为()A.9B.10C.11D.122.直线x﹣y+1=0的倾斜角的大小为()A.B.C.D.3.已知直线2x+3y﹣2=0和直线mx+(2m﹣1)y=0平行,则实数m的值为()A.﹣1B.1C.2D.34.如图,在正方体ABCD﹣A1B1C1D1中,异面直线AC和A1B所成的角的大小为()A.30°B.45°C.60°D.120°5.△ABC的内角A,B,C所对的边分别为a,b,c,若a cos B=b cos A,则△ABC形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形6.已知棱长为的正方体的所有顶点在球O的球面上,则球O的体积为()A.B.C.D.4π7.我国南宋时期数学家秦九韶发现了求三角形面积的“三斜求积”公式:设△ABC内角A,B,C所对的边分别为a,b,c,面积S=.若c=2,b sin C =4sin A,则△ABC面积的最大值为()A.B.C.D.8.唐朝的狩猎景象浮雕银杯如图1所示,其浮雕临摹了国画、漆绘和墓室壁画,体现了古人的智慧与工艺.它的盛酒部分可以近似地看作是半球与圆柱的组合体(假设内壁表面光滑,忽略杯壁厚度),如图2所示.已知球的半径为R,圆柱的高为.设酒杯上部分(圆柱)的体积为V1,下部分(半球)的体积为V2,则的值是()A.1B.2C.3D.4二、多项选择题(本大题共4小题,每小题5分,共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)9.在△ABC中,若B=30°,AB=2,AC=2,则C的值可以是()A.30°B.60°C.120°D.150°10.设α,β是互不重合的平面,m,n是互不重合的直线,下列选项中正确的有()A.若m∥n,n⊂α,m⊄α,则m∥αB.若m⊂α,n⊂α,m∥β,n∥β,则α∥βC.若m⊥β,m⊂α,则α⊥βD.若α⊥β,α∩β=m,n⊂α,m⊥n,则n⊥β11.直线y=kx+3与圆(x﹣3)2+(y﹣2)2=4相交于M,N两点,若MN≥2,则k 的取值可以是()A.﹣1B.﹣C.0D.112.如图是某市6月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择6月1日至6月13日中的某一天到达该市,并停留2天.下列说法正确的有()A.该市14天空气质量指数的平均值大于100B.此人到达当日空气质量优良的概率为C.此人在该市停留期间只有1天空气重度污染的概率为D.每连续3天计算一次空气质量指数的方差,其中第5天到第7天的方差最大三、填空题(本大题共4小题,每小题5分,共计20分.其中第16题共有2空,第一个空2分,第二个空3分;其余题均为一空,每空5分.请把答案填写在答题卡相应位置上)13.用半径为2cm的半圆形纸片卷成一个圆锥筒,则这个圆锥筒的高为cm.14.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知身高在[120,130]内的学生人数为.15.在平面直角坐标系xOy中,已知点A(3,0),点P在圆x2+(y﹣a)2=4上,若满足PA=2PO的点P有且只有2个,则实数a的取值范围为.16.在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,若a=3,B=2A,则=,b的取值范围为.四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤)17.某机器人兴趣小组有男生3名,记为a1,a2,a3有女生2名,记为b1,b2,从中任意选取2名学生参加机器人大赛.(1)求参赛学生中恰好有1名女生的概率;(2)求参赛学生中至少有1名女生的概率.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a2+c2﹣b2=ac.(1)求B的值;(2)若cos A=,求sin C的值.19.已知圆C的圆心在x轴正半轴上,半径为3,且与直线4x+3y+7=0相切.(1)求圆C的方程;(2)若直线l:y=x+1与圆C相交于点A,B,求△ACB的面积.20.工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x(元)88.28.48.68.89销量y(万件)908483807568(1)根据上表数据计算得,,,,求回归直线方程;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,若该产品的单价被定为8.7元,且该产品的成本是4元/件,求该工厂获得的利润.(利润=销售收入﹣成本)附:回归方程中,系数a,b为:,.21.如图,三棱锥P﹣ABC中,棱PA垂直于平面ABC,∠ACB=90°.(1)求证:BC⊥PC;(2)若PA=AB=2,直线PC与平面ABC所成的角的正切值为,求直线AB与平面PBC所成的角的正弦值.22.平面直角坐标系xOy中,已知点P(2,4),圆O:x2+y2=4与x轴的正半轴的交于点Q.(1)若过点P的直线l1与圆O相切,求直线l1的方程;(2)若过点P的直线l2与圆O交于不同的两点A,B.①设线段AB的中点为M,求点M纵坐标的最小值;②设直线QA,QB的斜率分别是k1,k2,问:k1+k2是否为定值,若是,则求出定值,若不是,请说明理由.参考答案一、选择题(共8小题).1.某校高一、高二、高三年级分别有学生1100名、1000名、900名,为了了解学生的视力情况,现用分层抽样的方法从中随机抽取容量为30的样本,则应从高二年级抽取的学生人数为()A.9B.10C.11D.12【分析】由题意用样本容量乘以高二年级的学生人数占的比例,即为所求.解:由题意可得高二年级的学生人数占的比例为=,则应从高二年级抽取的学生人数为30×=10,故选:B.2.直线x﹣y+1=0的倾斜角的大小为()A.B.C.D.【分析】由直线方程求出直线的斜率,再由斜率等于倾斜角的正切值求解.解:直线x﹣y+1=0的斜率为1,设其倾斜角为θ(0≤θ<π),由tanθ=1,得.故选:B.3.已知直线2x+3y﹣2=0和直线mx+(2m﹣1)y=0平行,则实数m的值为()A.﹣1B.1C.2D.3【分析】根据两直线平行,它们的斜率相等,解方程求得m的值.解:∵直线l1:2x+3y﹣2=0和直线l2:mx+(2m﹣1)y+1=0平行,∴﹣=﹣,解得m=2,故选:C.4.如图,在正方体ABCD﹣A1B1C1D1中,异面直线AC和A1B所成的角的大小为()A.30°B.45°C.60°D.120°【分析】法一:(几何法)连结A1C1、BC1,由A1C1∥AC,得∠BA1C1是异面直线A1B 与AC所成角(或所成角的补角),由此能求出异面直线A1B与AC所成角.法二:(向量法)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线A1B与AC所成角.【解答】解法一:(几何法)连结A1C1、BC1,∵A1C1∥AC,∴∠BA1C1是异面直线A1B与AC所成角(或所成角的补角),∵A1C1=A1B=BC1,∴∠BA1C1=60°,∴异面直线A1B与AC所成角是60°.解法二:(向量法)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为1,则A1(1,0,1),B(1,1,0),A(1,0,0),C(0,1,0),=(0,1,﹣1),=(﹣1,1,0),设异面直线A1B与AC所成角为θ,则cosθ===,∴θ=60°,∴异面直线A1B与AC所成角是60°.故选:C.5.△ABC的内角A,B,C所对的边分别为a,b,c,若a cos B=b cos A,则△ABC形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形【分析】利用正弦定理化简已知的等式,移项后再利用两角和与差的正弦函数公式化简,得到sin(A﹣B)的值为0,由A和B都为三角形的内角,得出A﹣B的范围,进而利用特殊角的三角函数值得出A﹣B=0,即A=B,利用等角对等边可得a=b,即三角形为等腰三角形.解:∵a cos B=b cos A,由正弦定理可得:sin A cos B=sin B cos A,即sin A cos B﹣cos A sin B=sin(A﹣B)=0,又﹣π<A﹣B<π,∴A﹣B=0,即A=B,∴a=b,则△ABC的形状是等腰三角形,故选:A.6.已知棱长为的正方体的所有顶点在球O的球面上,则球O的体积为()A.B.C.D.4π【分析】易知,正方体的外接球的球心为正方体的体对角线的交点,体对角线长即为球的直径,由此可求出球的半径,则体积可求.解:设球的半径为R,则由已知得:,故R=1,所以球的体积为:.7.我国南宋时期数学家秦九韶发现了求三角形面积的“三斜求积”公式:设△ABC内角A,B,C所对的边分别为a,b,c,面积S=.若c=2,b sin C =4sin A,则△ABC面积的最大值为()A.B.C.D.【分析】首先利用正弦定理的应用求出b=2a,进一步利用二次函数的性质和不等式的应用求出最大值.解:b sin C=4sin A,利用正弦定理bc=4a,由于c=2,整理得b=2a,所以设y===,当时,,所以.故选:D.8.唐朝的狩猎景象浮雕银杯如图1所示,其浮雕临摹了国画、漆绘和墓室壁画,体现了古人的智慧与工艺.它的盛酒部分可以近似地看作是半球与圆柱的组合体(假设内壁表面光滑,忽略杯壁厚度),如图2所示.已知球的半径为R,圆柱的高为.设酒杯上部分(圆柱)的体积为V1,下部分(半球)的体积为V2,则的值是()A.1B.2C.3D.4【分析】由已知可得圆柱的底面半径,再由圆柱与球的体积公式分别表示出V1,V2,则解:由题意可知,上部分圆柱的底面半径为R,圆柱的高为,则酒杯上部分(圆柱)的体积为V1=;下部分(半球)的体积为V2=.则=.故选:B.二、多项选择题(本大题共4小题,每小题5分,共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上)9.在△ABC中,若B=30°,AB=2,AC=2,则C的值可以是()A.30°B.60°C.120°D.150°【分析】直接根据正弦定理即可求出.解:△ABC中,B=30°,AB=2>2=AC,由正弦定理可得=,∴sin C===,∵0<C<180°,∴C=60°或120°,故选:BC.10.设α,β是互不重合的平面,m,n是互不重合的直线,下列选项中正确的有()A.若m∥n,n⊂α,m⊄α,则m∥αB.若m⊂α,n⊂α,m∥β,n∥β,则α∥βC.若m⊥β,m⊂α,则α⊥βD.若α⊥β,α∩β=m,n⊂α,m⊥n,则n⊥β【分析】对于A,由线面平行的判定定理得m∥α;对于B,α与β相交或平行;对于C,由面面垂直的判定定理得α⊥β;对于D,若α⊥β,α∩β=m,n⊂α,m⊥n,则线面垂直的判定定理得n⊥β.解:由α,β是互不重合的平面,m,n是互不重合的直线,知:对于A,若m∥n,n⊂α,m⊄α,则由线面平行的判定定理得m∥α,故A正确;对于B,若m⊂α,n⊂α,m∥β,n∥β,则α与β相交或平行,故B错误;对于C,若m⊥β,m⊂α,则由面面垂直的判定定理得α⊥β,故C正确;对于D,若α⊥β,α∩β=m,n⊂α,m⊥n,则线面垂直的判定定理得n⊥β,故D正确.故选:ACD.11.直线y=kx+3与圆(x﹣3)2+(y﹣2)2=4相交于M,N两点,若MN≥2,则k 的取值可以是()A.﹣1B.﹣C.0D.1【分析】由圆的方程可得圆心坐标及半径,进而求出圆心到直线的距离,再由圆的半径,圆心到直线的距离和半个弦长构成直角三角形可得求出弦长的表达式,由题意可得k的取值范围,进而选出答案.解:由圆的方程(x﹣3)2+(y﹣2)2=4可得圆心C的坐标为(3,2),半径r为2,圆心C到直线y=kx+3即kx﹣y+3=0的距离d==,所以弦长MN=2=2≥2,即≤1,解得﹣≤k≤0,故选:BC.12.如图是某市6月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择6月1日至6月13日中的某一天到达该市,并停留2天.下列说法正确的有()A.该市14天空气质量指数的平均值大于100B.此人到达当日空气质量优良的概率为C.此人在该市停留期间只有1天空气重度污染的概率为D.每连续3天计算一次空气质量指数的方差,其中第5天到第7天的方差最大【分析】结合所给统计图,逐一分析即可解:该市14天空气质量指数的平均值==113.5>100,故A正确;6月1日至6月13日中空气质量优良的是1日、2日、3日、7日、12日、13日共6天.空气质量优良的天数为6,故其概率为,故B正确;此人在该市停留期间两天的空气质量指数(86,25)、(25,57)、(57,143)、(143,220)、(220,160)(160,40)、(40,217)、(217,160)、(160,121)、(121,158)、(158,86)、(86,79)、(79,37)共13种情况.其中只有1天空气重度污染的是(143,220)、(220,160)、(40,217)、(217,160)共4种情况,所以,此人在该市停留期间只有1天空气重度污染的概率P=,故C正确;方差越大,说明三天的空气质量指数越不稳定,由图看出从5日开始连续5、6、7三天的空气质量指数方差最大,故D正确.故选:ABCD.三、填空题(本大题共4小题,每小题5分,共计20分.其中第16题共有2空,第一个空2分,第二个空3分;其余题均为一空,每空5分.请把答案填写在答题卡相应位置上)13.用半径为2cm的半圆形纸片卷成一个圆锥筒,则这个圆锥筒的高为cm.【分析】先求半圆的弧长,就是圆锥的底面周长,求出底面圆的半径,然后利用勾股定理求出圆锥的高.解:半径为2的半圆弧长为2π,圆锥的底面圆的周长为2π,其轴截面为等腰三角形如图:圆锥的底面半径为:1∴圆锥的高h==.故答案是.14.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知身高在[120,130]内的学生人数为30.【分析】由题意,可由直方图中各个小矩形的面积和为1求出a值,再求出此小矩形的面积即此组人数在样本中的频率,再乘以样本容量即可得到此组的人数.解:由图知,(0.035+a+0.020+0.010+0.005)×10=1,解得a=0.03∴身高在[120,130]内的学生人数为100×0.03×10=30.故答案为:30.15.在平面直角坐标系xOy中,已知点A(3,0),点P在圆x2+(y﹣a)2=4上,若满足PA=2PO的点P有且只有2个,则实数a的取值范围为(﹣,).【分析】根据题意,设P(x,y),若PA=2PO,则有(x﹣3)2+y2=4(x2+y2),变形分析可得P的轨迹以及轨迹方程,又由满足PA=2PO的点P有且只有2个,则圆(x+1)2+y2=4与圆x2+(y﹣a)2=4相交,由圆与圆的位置关系分析可得答案.解:根据题意,设P(x,y),若PA=2PO,则有(x﹣3)2+y2=4(x2+y2),变形可得:x2+y2+2x﹣3=0,即(x+1)2+y2=4,则P的轨迹是以(﹣1,0)为圆心,半径r=2的圆,点P在圆x2+(y﹣a)2=4上,又由x2+(y﹣a)2=4,其圆心为(0,a),半径R=2,若满足PA=2PO的点P有且只有2个,则圆(x+1)2+y2=4与圆x2+(y﹣a)2=4相交,则有0<1+a2<16,解可得:﹣<a<,即a的取值范围为(﹣,);故答案为:(﹣,).16.在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,若a=3,B=2A,则=6,b的取值范围为(3,3).【分析】先根据正弦定理,结合二倍角公式即可求出,可得b=6cos A,再求出A的取值范围,即可求出b的范围.解:由正弦定理可得===,∴=6,∴b=6cos A,∵△ABC为锐角三角形,∴30°<B<90°,30°<A<90°,∴30°<2A<90°,∴30°<A<45°,∴<cos A<,∴3<6cos A<3,∴3<b<3,故答案为:6,(3,3).四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤)17.某机器人兴趣小组有男生3名,记为a1,a2,a3有女生2名,记为b1,b2,从中任意选取2名学生参加机器人大赛.(1)求参赛学生中恰好有1名女生的概率;(2)求参赛学生中至少有1名女生的概率.【分析】(1)从5名学生中任选取2名学生,利用列举法求出基本事件有10个,设事件A表示“参赛学生中恰好有1名女生”,利用列举求出事件A包含的基本事件有6个,由此能求出参赛学生中恰好有1名女生的概率.(2)设事件B表示“参赛学生中至少有1名女生”,利用列举法求出事件B包含的基本事件有7个,由此能求出参赛学生中至少有1名女生的概率.解:(1)从5名学生中任选取2名学生,基本事件有10个,分别为:(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2),设事件A表示“参赛学生中恰好有1名女生”,则事件A包含的基本事件有6个,分别为:(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),∴参赛学生中恰好有1名女生的概率P(A)==.(2)设事件B表示“参赛学生中至少有1名女生”,则事件包含的基本事件有7个,分别为:(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2),∴参赛学生中至少有1名女生的概率P(B)=.18.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a2+c2﹣b2=ac.(1)求B的值;(2)若cos A=,求sin C的值.【分析】(1)由已知利用余弦定理可得cos B=,结合范围B∈(0,π),可求B的值.(2)由已知利用同角三角函数基本关系式可求sin A的值,根据三角形内角和定理,两角和的正弦函数公式即可计算得解sin C的值.解:(1)∵a2+c2﹣b2=ac,∴由余弦定理可得cos B===,∵B∈(0,π),∴B=.(2)∵cos A=,A∈(0,π),∴sin A==,∴sin C=sin[π﹣(A+B)]=sin(A+B)=sin A cos+cos A sin==.19.已知圆C的圆心在x轴正半轴上,半径为3,且与直线4x+3y+7=0相切.(1)求圆C的方程;(2)若直线l:y=x+1与圆C相交于点A,B,求△ACB的面积.【分析】(1)设C(a,0),利用圆心到直线的距离为半径3得到=3,易得a的值;(2)利用点的直线的距离公式和两点间的距离公式求得相关线段的长度,然后结合三角形的面积公式解答.解:(1)设C(a,0),其中a>0,因为圆C的半径问3,且与直线4x+3y+7=0相切,所以=3.解得a=2(负值舍去).得到圆C的方程为(x﹣2)2+y2=9;(2)由直线l:y=x+1知圆心C到直线l的距离为d==.所以AB=2=2=3.所以△ACB的面积为AB•d==.20.工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x(元)88.28.48.68.89销量y(万件)908483807568(1)根据上表数据计算得,,,,求回归直线方程;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,若该产品的单价被定为8.7元,且该产品的成本是4元/件,求该工厂获得的利润.(利润=销售收入﹣成本)附:回归方程中,系数a,b为:,.【分析】(1)由已知求得与的值,则y关于x的线性回归方程可求;(2)由定价求出产量,进一步求得利润.解:(1),,=,=80+20×8.5=250.∴y关于x的线性回归方程为;(2)∵产品定价为8.7元,∴估计产量为﹣20×8.7+250.利润为(﹣20×8.7+250)(8.7﹣4)=357.2万元.故工厂获得的利润为357.2万元.21.如图,三棱锥P﹣ABC中,棱PA垂直于平面ABC,∠ACB=90°.(1)求证:BC⊥PC;(2)若PA=AB=2,直线PC与平面ABC所成的角的正切值为,求直线AB与平面PBC所成的角的正弦值.【分析】(1)推导出BC⊥AC,BC⊥PA,从而得到BC⊥平面PAC,由此能证明BC⊥PC.(2)过A作AH⊥PC于H,推导出BC⊥PH,AH⊥平面PBC,从而∠ABH是直线AB 与平面PBC所成角,由此能求出直线AB与平面PBC所成角的正弦值.解:(1)证明:∵∠ACB=90°,∴BC⊥AC,∵PA⊥平面ABC,BC⊂平面ABC,∴BC⊥PA,∵PA∩AC=A,PA、AC⊂平面PAC,∴BC⊥平面PAC,∵PC⊂面PAC,∴BC⊥PC.(2)如图,过A作AH⊥PC于H,∵BC⊥平面PAC,AH⊂平面PAC,∴BC⊥PH,∵PC∩BC=C,PC,BC⊂平面PBC,∴AH⊥平面PBC,∴∠ABH是直线AB与平面PBC所成角,∵PA⊥平面ABC,∴∠PCA是PC与平面ABC所成角,∵tan∠PCA==,PA=2,∴AC=.∴Rt△PAC中,AH==,∵AB=2,∴Rt△ABH中,sin∠ABH===,∴直线AB与平面PBC所成角的正弦值为.22.平面直角坐标系xOy中,已知点P(2,4),圆O:x2+y2=4与x轴的正半轴的交于点Q.(1)若过点P的直线l1与圆O相切,求直线l1的方程;(2)若过点P的直线l2与圆O交于不同的两点A,B.①设线段AB的中点为M,求点M纵坐标的最小值;②设直线QA,QB的斜率分别是k1,k2,问:k1+k2是否为定值,若是,则求出定值,若不是,请说明理由.【分析】(1)当过P的直线l1的斜率不存在时可得与圆O相切,当直线l1的斜率存在时,设直线的方程,求出圆心O到直线的距离等于半径可得斜率的值,进而求出过P的切线的方程;(2)①设弦AB的中点为M可得OM⊥MP,所以可得数量积•=0,可得M的轨迹方程,与圆O联立求出交点坐标,可得M的纵坐标的最小值;②设A,B的坐标,直线l1与圆O联立求出两根之和及两根之积,进而求出k1+k2的代数式,将两根之和及两根之积代入可得为定值.解:(1)当直线l1的斜率不存在时,则直线l1的方程为:x=2,圆心O到直线l1的距离d=2=r,显然x=2符合条件,当直线l1的斜率存在时,由题意设直线l1的方程为y﹣4=k(x﹣2)即kx﹣y﹣2k+4=0,圆心O到直线l1的距离为d==2,解得k=,所以切线方程为x﹣y﹣2+4=0,即3x﹣4y+10=0,综上所述:过P点的切线方程为x=2或3x﹣4y+10=0;(2)①设点M(x,y),因为M是弦AB的中点,所以MO⊥MP,又因为=(x,y),=(x﹣2,y﹣4),所以x(x﹣2)+y(y﹣4)=0,即x2+y2﹣2x﹣4y=0,联立解得或,又因为M在圆O的内部,所以点M的轨迹是一段圆x2+y2﹣2x﹣4y=0以(﹣,)和(2,0)为端点的一段劣弧(不包括端点),在圆x2+y2﹣2x﹣4y=0方程中,令x=1,得y=2,根据点(1,2﹣)在圆O内部,所以点M的纵坐标的最小值为2﹣;②联立,整理可得(1+k2)x2﹣4k(k﹣2)x+(2k﹣4)2﹣4=0,设A(x1,y1),B(x2,y2)则,所以k1+k2=+=+=2k++=2k+=2k+=2k﹣=﹣1,所以k1+k2为定值﹣1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高一下学期期末考试数学试题含答案
一、选择题(每小题5分,共60分,本题需要在答题卡上进行涂卡)
1.已知数列}{n a 的通项公式为n n a n 62
,则()
A .}{n a 为递增数列
B .}{n a 为递减数列
C .}{n a 为先增后减数列
D .}{n a 为先减后增数列
2.已知角的终边在直线x y 2上,则
)902sin(()A .31B .31
C .32
D .3
2
3.如图,某港口一天6时到18时的水深变化曲线近似满足函数
2sin()6y x k ,据此函数可知,这段时间水深(单位:m )的最大值为()A .5 B .6
C .8
D .10 4.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区的5户家庭,得到如下统计数据表:
收入x (万元)8.2 8.6 10.0 11.3 11.9
支出y (万元)6.2 7.5 8.0 8.5 9.8
根据上表可得回归直线方程???y bx a ,其中?0.76b ,据此估计,该社区一户收入为15万元家庭年支出为()
A .11.4万元
B .11.8万元
C .12.0万元
D .12.2万元
5.ABC 是边长为2的等边三角形,已知向量a ,b 满足2AB a ,2AC a b ,则下列结论正确的是()
A .||1b
B .a b
C .1a b
D .40
a b BC 6.执行如图所示的程序框图,输出的结果为()x
y 水深/m
时间/h
62O 18开始
x=1,y=1,k=0
s=x -y ,t=x+y
x=s ,y=t k=k+1
k ≥3
输出(x ,y)
结束

否。

相关文档
最新文档