陕西省八年级下学期期中数学试卷C卷

合集下载

陕西省西安高新第一中学2023-2024学年八年级下学期期中数学试题

陕西省西安高新第一中学2023-2024学年八年级下学期期中数学试题

陕西省西安高新第一中学2023-2024学年八年级下学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各式中,是分式的是( ) A .132x +B .3m n+−C .14D .33x + 2.下列等式中,从左到右的变形是因式分解的是( ) A .3233abc c abc =⋅B .()22121x x x +=++C .()()2492323t t t −=+−D .()()2166446x x x x x −+=+−+3.在以下“绿色食品、响应环保、可回收物、节水”四个标志图案中,是中心对称图形的是( )A .B .C .D .4.不等式组24020x x −⎧⎨+>⎩…的解集在数轴上表示正确的是( )A .B .C .D .5.如果把分式23x yx y+−中的x 和y 都扩大为原来的3倍,那么分式的值( )A .不变B .缩小为原来的3倍C .扩大为原来的3倍D .扩大为原来的9倍6.如图,将直角ABC 沿边AC 的方向平移到DEF 的位置,连接BE ,若6CD =,14AF =,则BE 的长为( )A .4B .6C .8D .127.将一箱书分给学生,若每位学生分6本书,则还剩10本书;若每位学生分8本书,则有一个学生分到书但不到4本.求这一箱书的本数与学生的人数.若设有x 人,则可列不等式组为( )A .()816104x x −<+<B .06108x x <+<C .()0610814x x <+−−<D .86104x x <+<8.如图,一次函数()30y kx k =+≠的图象与正比例函数()0y mx m =≠的图象相交于点P ,已知点P 的横坐标为1,则关于x 的不等式3kx mx −>−的解集为( )A .1x <B .12x <<C .23x <<D .3x >9.关于x 的不等式组:132x a x −≤⎧⎨−<⎩有5个整数解,则a 的取值范围是( )A .12a <≤B .12a <<C .12α≤<D .10a −≤<10.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( )A .3x ≥B .1123x ≤<C .37x <≤D .7x ≤二、填空题 11.当分式13x +有意义时,x 应满足的条件是 . 12.因式分解:34a a −= .13.如图,点A 、B 分别在x 轴和y 轴上,1OA =,2OB =,若将线段AB 平移至A B '',则a b +的值为 .14.当112b a−=时,3225a ab ba b ab −−−+的值是 .15.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A ′B ′C ,连接BB ',若∠A ′B ′B =20°,则∠A 的度数是 .16.若a ,b ,c 是ABC 的三边,且满足222a ab c ac bc −+=−,则ABC 是 三角形. 17.如图所示,边长为6的等边三角形ABC 中,E 是对称轴AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针旋转60°得到FC ,连接DF .则在点E 运动过程中,DF 的最小值是 .三、解答题 18.计算:(1)解不等式:()()312724x x −<−−,并将解集表示在数轴上.(2)解不等式组:1311123x x x −≤⎧⎪+−⎨+<⎪⎩.19.计算: (1)12112a aa a−−−−; (2)()2221211x x x x x x x −+−⋅÷−−.20.先化简,再求值∶2344111a a a a a −+⎛⎫−+÷ ⎪++⎝⎭,请从1−,1,2中选择一个合适的数作为a 的值代入求值.21.如图,在平面直角坐标系中,ABC 的三个顶点都在格点上,点()2,2A ,点()4,2B ,点()3,4C ,请解答下列问题:(1)画出ABC 绕点O 逆时针旋转90︒后得到的111A B C △,并写出1B 的坐标:1B ______ (2)画出ABC 关于原点O 成中心对称的222A B C △,并写出2B 的坐标:2B ______ 22.线段AB 与CD 的位置关系如图1所示,AB CD m ==,AB 与CD 的交点为O ,且60AOC ∠=︒,分别将AB 和AC 平移到,CE BE 的位置(如图2).(1)求CE 的长和DCE ∠的度数; (2)在图2中求证:AC BD m +>.23.我校运动会需购买A ,B 两种奖品,其中A 奖品的单价是10元;B 奖品的单价是25元.计划购买A B 、两种奖品共100件,购买费用不超过1375元,且A 种奖品的数量不大于B 种奖品数量的4倍.(1)求出A 种奖品的数量范围;(2)设购买费用为W 元,写出W (元)与A 种奖品的数量x (件)之间的函数关系,并确定最少费用W 的值.24.数形结合思想是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想.我们可用此思想,来探索因式分解的一些方法.(1)探究一:将图1的阴影部分沿虚线剪开后,拼成图2的形状,拼图前后图形的面积不变,因此可得一个多项式的因式分解______.(2)探究二:类似地,我们借助一个棱长为a 的大正方体进行以下探索:在大正方体一角截去一个棱长为()b b a <的小正方体,如图3所示,则得到的几何体的体积为______.再将图3中的几何体分割成三个长方体①、②、③,如图4所示,则根据图中的数据,长方体①的体积为()ab a b −.类似地,表示出长方体②的体积为______,长方体③的体积为______.当用两种不同的方法表示图3中几何体的体积时,就可以得到的恒等式(将一个多项式因式分...解.)为______. (3)问题应用:利用上面的结论,解决问题:已知6a b −=,2ab =,求33a b −的值. 25.我们定义:有一组邻边相等且有一组对角互补的凸四边形叫做等补四边形.(1)如图1,ABC 是等边三角形,在BC 上任取一点D (BC 除外),连接AD ,我们把ABD △绕点A 逆时针旋转60︒,则AB 与AC 重合,点D 的对应点E .请根据给出的定义判断,四边形ADCE ______(选择是或不是)等补四边形.(2)如图2,等补四边形ABCD 中,AB BC =,90ABC ADC ∠=∠=︒,若32ABCD S =四边形,求BD 的长.(3)如图3,在某运动公园的同一水平面上,四条通道围成四边形ABCD .已知100AB AD ==米,=60B ∠︒,120ADC ∠=︒,150=︒∠BAD ,道路,BC CD 上分别有景点E 、F ,且AE AD ⊥,15DAF ∠=︒,现要在E 、F 之间修一条笔直的道路,求出这条道路EF 的长.。

2021年新人教版八年级下册数学期中测试题(含答案)

2021年新人教版八年级下册数学期中测试题(含答案)

2020-2021学年八年级(下)期中数学试卷一、选择题(本大题共10个小题,满分30分)1.(3分)若x=﹣3可以使一个二次根式有意义,这个二次根式可以是()A.B.C.D.2.(3分)下列二次根式中,与是同类二次根式的是()A.B.C.D.3.(3分)以下列长度的线段为边,不能构成直角三角形的是()A.2,3,4B.1,1,C.D.5,12,13 4.(3分)如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.∠BAD=∠BCD,AB∥CDC.AD∥BC,AD=BC D.AB=CD,AO=CO5.(3分)下列命题中正确的是()A.对角线互相平分的四边形是矩形B.对角线互相平分且相等的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线互相垂直平分的四边形是菱形6.(3分)如图,是一张平行四边形纸片ABCD,要求利用所学知识将它变成一个菱形,甲、乙两位同学的作法分别如下:对于甲、乙两人的作法,可判断()A.甲正确,乙错误B.甲错误,乙正确C.甲、乙均正确D.甲、乙均错误7.(3分)下列计算正确的是()A.﹣=B.3×2=6C.(2)2=16D.=18.(3分)如图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?()A.2B.3C.12﹣4D.6﹣69.(3分)若=a,=b,则=()A.B.C.D.10.(3分)在△ABC中,AB=15,AC=13,高AD=12,则△ABC中BC边的长为()A.9B.5C.14D.4或14二、填空题(每小题3分,共15分)11.(3分)式子有意义,则x的取值范围是.12.(3分)命题“全等三角形对应角相等”的逆命题是,它是一个(填“真”或“假”)命题.13.(3分)已知,则x+y=.14.(3分)如图,在△ABC中,∠ACB=58°,D,E分别是AB,AC中点.点F在线段DE上,且AF⊥CF,则∠F AE=°.15.(3分)如图,长方形纸片ABCD中,AB=6cm,BC=8cm.点E是BC边上一点,连接AE并将△AEB沿AE折叠,得到△AEB′,以C,E,B′为顶点的三角形是直角三角形时,BE的长为cm.三、解答题(本大题共8个小题,满分75分)16.(8分)计算:(1)2+3﹣﹣;(2)(7+4)(7﹣4)﹣(﹣1)2.17.(9分)先化简,再求值:已知a=8,b=2,试求a+﹣+的值.18.(9分)已知:如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,求∠BAE的度数.19.(9分)如图,已知平行四边形ABCD中,E、F是对角线BD上的两个点,且BE=DF.求证:四边形AECF为平行四边形.20.(9分)如图:正方形网格中每个小方格的边长为1,且点A、B、C均为格点.(1)求△ABC的面积;(2)通过计算判断△ABC的形状;.(3)求AB边上的高.21.(10分)【阅读材料】嘉嘉在学习二次根式时,发现一些含根号的式子可以化成另一个式子的平方,如:5+2=(2+3)+2=()2+()2+2×=(+)2;8+2=(1+7)+2=12+()2+2×1×=(1+)2.【类比归纳】(1)请你仿照嘉嘉的方法将20+10化成另一个式子的平方;(2)请运用嘉嘉的方法化简:.【变式探究】若a±2=(±)2,且a,m,n均为正整数,则a=.22.(10分)如图,在矩形ABCD中,AB=16cm,AD=6cm,动点P、Q分别从A、C同时出发点P以每秒3cm的速度向B移动,一直达到B止,点Q以每秒2cm的速度向D移动.(1)P、Q两点出发后多少秒时,四边形PBCQ的面积为36cm2;(2)P、Q两点出发后多少秒时,四边形PBCQ是矩形;(3)是否存在某一时刻,使四边形PBCQ为正方形?23.(11分)如图,四边形ABCD是边长为1的正方形,分别延长BD,DB至点E,F,且BF=DE=.连接AE,AF,CE,CF.(1)求证:四边形AECF是菱形;(2)求四边形AECF的面积;(3)如果M为AF的中点,P为线段EF上的一动点,求P A+PM的最小值.参考答案与试题解析一、选择题(本大题共10个小题,满分30分)1.(3分)若x=﹣3可以使一个二次根式有意义,这个二次根式可以是()A.B.C.D.【分析】根据二次根式有意义的条件即可判断.【解答】解:(A)1+x≥0,x≥﹣1,故x=﹣3不能使该二次根式有意义;(B)2x+5≥0,x≥﹣,故x=﹣3不能使该二次根式有意义;(C)3x﹣4≥0,x≥,故x=﹣3不能使该二次根式有意义;(D)4﹣x≥0,x≤4,故x=﹣3能使该二次根式有意义;故选:D.2.(3分)下列二次根式中,与是同类二次根式的是()A.B.C.D.【分析】根据同类二次根式的意义,将选项中的根式化简,找到被开方数为6者即可.【解答】解:A.,与的被开方数不同,故不是同类二次根式;B.,与的被开方数不同,故不是同类二次根式;C.,与的被开方数相同,是同类二次根式;D.与的被开方数不同,故不是同类二次根式.故选:C.3.(3分)以下列长度的线段为边,不能构成直角三角形的是()A.2,3,4B.1,1,C.D.5,12,13【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可.【解答】解:A、∵22+32=13≠42,∴不能构成直角三角形,故本选项符合要求;B、∵12+12=()2,∴能构成直角三角形,故本选项不符合要求;C、∵()2+()2=()2,∴能构成直角三角形,故本选项不符合要求;D、∵52+122=132,∴能构成直角三角形,故本选项不符合要求.故选:A.4.(3分)如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.∠BAD=∠BCD,AB∥CDC.AD∥BC,AD=BC D.AB=CD,AO=CO【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,对每个选项进行筛选可得答案.【解答】解:A、根据对角线互相平分,可得四边形是平行四边形,故此选项可以证明四边形ABCD是平行四边形;B、根据AB∥CD可得:∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又由∠BAD=∠BCD可得:∠ABC=∠ADC,根据两组对角对应相等的四边形是平行四边形可以判定;C、根据一组对边平行且相等的四边形是平行四边形可以证明四边形ABCD是平行四边形;D、AB=CD,AO=CO不能证明四边形ABCD是平行四边形.故选:D.5.(3分)下列命题中正确的是()A.对角线互相平分的四边形是矩形B.对角线互相平分且相等的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线互相垂直平分的四边形是菱形【分析】根据矩形、正方形、平行四边形、菱形的判定定理判断即可.【解答】解:A、对角线互相平分且相等的四边形是矩形,本选项错误;B、对角线互相垂直平分且相等的四边形是正方形,本选项错误;C、对角线互相平分的四边形是平行四边形,本选项错误;D、对角线互相垂直平分的四边形是菱形,本选项正确;故选:D.6.(3分)如图,是一张平行四边形纸片ABCD,要求利用所学知识将它变成一个菱形,甲、乙两位同学的作法分别如下:对于甲、乙两人的作法,可判断()A.甲正确,乙错误B.甲错误,乙正确C.甲、乙均正确D.甲、乙均错误【分析】首先证明△AOE≌△COF(ASA),可得AE=CF,再根据一组对边平行且相等的四边形是平行四边形可判定判定四边形AECF是平行四边形,再由AC⊥EF,可根据对角线互相垂直的四边形是菱形判定出AECF是菱形;四边形ABCD是平行四边形,可根据角平分线的定义和平行线的定义,求得AB=AF,所以四边形ABEF是菱形.【解答】解:甲的作法正确;∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠ACB,∵EF是AC的垂直平分线,∴AO=CO,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF,又∵AE∥CF,∴四边形AECF是平行四边形,∵EF⊥AC,∴四边形AECF是菱形;乙的作法正确;∵AD∥BC,∴∠1=∠2,∠6=∠7,∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∴AB=AF,AB=BE,∴AF=BE∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴平行四边形ABEF是菱形;故选:C.7.(3分)下列计算正确的是()A.﹣=B.3×2=6C.(2)2=16D.=1【分析】根据二次根式的混合运算法则计算,判断即可.【解答】解:与不是同类二次根式,不能合并,A错误;3×2=6,B正确;(2)2=8,C错误;=,D错误;故选:B.8.(3分)如图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?()A.2B.3C.12﹣4D.6﹣6【分析】过点B作BH⊥AC于H,交GF于K,根据等边三角形的性质求出∠A=∠ABC =60°,然后判定△BDE是等边三角形,再根据等边三角形的性质求出∠BDE=60°,然后根据同位角相等,两直线平行求出AC∥DE,再根据正方形的对边平行得到DE∥GF,从而求出AC∥DE∥GF,再根据等边三角形的边的与高的关系表示出KH,然后根据平行线间的距离相等即可得解.【解答】解:如图,过点B作BH⊥AC于H,交GF于K,∵△ABC是等边三角形,∴∠A=∠ABC=60°,∵BD=BE,∴△BDE是等边三角形,∴∠BDE=60°,∴∠A=∠BDE,∴AC∥DE,∵四边形DEFG是正方形,GF=6,∴DE∥GF,∴AC∥DE∥GF,∴KH=18×﹣6×﹣6=9﹣3﹣6=6﹣6,∴F点到AC的距离为6﹣6.故选:D.9.(3分)若=a,=b,则=()A.B.C.D.【分析】先将被开方数0.9化成分数,观察四个选项,再化简为,开方,注意要把化为,代入即可.【解答】解:=====;故选:C.10.(3分)在△ABC中,AB=15,AC=13,高AD=12,则△ABC中BC边的长为()A.9B.5C.14D.4或14【分析】分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=BD﹣CD.【解答】解:(1)如图,锐角△ABC中,AC=13,AB=15,BC边上高AD=12,∵在Rt△ACD中AC=13,AD=12,∴CD2=AC2﹣AD2=132﹣122=25,∴CD=5,在Rt△ABD中AB=15,AD=12,由勾股定理得BD2=AB2﹣AD2=152﹣122=81,∴BD=9,∴BC的长为BD+DC=9+5=14;(2)钝角△ABC中,AC=13,AB=15,BC边上高AD=12,在Rt△ACD中AC=13,AD=12,由勾股定理得CD2=AC2﹣AD2=132﹣122=25,∴CD=5,在Rt△ABD中AB=15,AD=12,由勾股定理得BD2=AB2﹣AD2=152﹣122=81,∴BD=9,∴BC的长为DB﹣CD=9﹣5=4.故选:D.二、填空题(每小题3分,共15分)11.(3分)式子有意义,则x的取值范围是x≤1且x≠0.【分析】根据分式、二次根式有意义的条件解答:分式的分母不为0、二次根式的被开方数是非负数.【解答】解:根据题意,得1﹣x≥0且x≠0,解得,x≤1且x≠0,故答案是:x≤1且x≠0.12.(3分)命题“全等三角形对应角相等”的逆命题是对应角相等的三角形是全等三角形,它是一个假(填“真”或“假”)命题.【分析】根据逆命题的概念,交换原命题的题设与结论即可的出原命题的逆命题,进而判断它的真假.【解答】解:命题“全等三角形对应角相等”的题设是“全等三角形”,结论是“对应角相等”,故其逆命题是对应角相等的三角形是全等三角形,它是一个假命题.13.(3分)已知,则x+y=1.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:∵,∴,解得,则x+y=﹣1+2=1,故答案为1.14.(3分)如图,在△ABC中,∠ACB=58°,D,E分别是AB,AC中点.点F在线段DE上,且AF⊥CF,则∠F AE=61°.【分析】由点D,E分别是AB,AC的中点可EF是三角形ABC的中位线,所以EF∥BC,再有平行线的性质和在直角三角形中,斜边上的中线等于斜边的一半的性质可证明三角形EFC是等腰三角形,利用等腰三角形的性质可求出∠ECF的度数,进而求出∠F AE的度数.【解答】解:∵D,E分别是AB,AC的中点,∴EF是三角形ABC的中位线,∴EF∥BC,∴∠EFC=∠ECF,∵AF⊥CF,∴∠AFC=90°,∵E为AC的中点,∴EF=AC,AE=CE,∴EF=CE,∴∠EFC=∠ECF,∴∠ECF=∠EFC=∠ACB=29°,∴∠F AE的度数为90°﹣29°=61°,故答案为:61.15.(3分)如图,长方形纸片ABCD中,AB=6cm,BC=8cm.点E是BC边上一点,连接AE并将△AEB沿AE折叠,得到△AEB′,以C,E,B′为顶点的三角形是直角三角形时,BE的长为3或6cm.【分析】分①∠B′EC=90°时,根据翻折变换的性质求出∠AEB=45°,然后判断出△ABE是等腰直角三角形,从而求出BE=AB;②∠EB′C=90°时,∠AB′E=90°,判断出A、B′、C在同一直线上,利用勾股定理列式求出AC,再根据翻折变换的性质可得AB′=AB,BE=B′E,然后求出B′C,设BE=B′E=x,表示出EC,然后利用勾股定理列出方程求解即可.【解答】解:①∠B′EC=90°时,如图1,∠BEB′=90°,由翻折的性质得∠AEB=∠AEB′=×90°=45°,∴△ABE是等腰直角三角形,∴BE=AB=6cm;②∠EB′C=90°时,如图2,由翻折的性质∠AB′E=∠B=90°,∴A、B′、C在同一直线上,AB′=AB,BE=B′E,由勾股定理得,AC===10cm,∴B′C=10﹣6=4cm,设BE=B′E=x,则EC=8﹣x,在Rt△B′EC中,B′E2+B′C2=EC2,即x2+42=(8﹣x)2,解得x=3,即BE=3cm,综上所述,BE的长为3或6cm.故答案为:3或6.三、解答题(本大题共8个小题,满分75分)16.(8分)计算:(1)2+3﹣﹣;(2)(7+4)(7﹣4)﹣(﹣1)2.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式和完全平方公式计算.【解答】解:(1)原式=4+2﹣﹣=2;(2)原式=49﹣48﹣(3﹣2+1)=1﹣4+2=2﹣3.17.(9分)先化简,再求值:已知a=8,b=2,试求a+﹣+的值.【分析】先把二次根式化成最简二次根式,然后合并同类二次根式,再代入求值.【解答】解:a+﹣+=+2﹣+=+3当a=8,b=2时,原式=+3=+3=418.(9分)已知:如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,求∠BAE的度数.【分析】首先证明△AEO是等腰直角三角形,求出∠OAB,∠OAE即可.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB═OC,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠AOE=∠OAD+∠ODA=2∠OAD,∵∠EAC=2∠CAD,∴∠EAO=∠AOE,∵AE⊥BD,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA=(180°﹣45°)=67.5°,∴∠BAE=∠OAB﹣∠OAE=22.5°.19.(9分)如图,已知平行四边形ABCD中,E、F是对角线BD上的两个点,且BE=DF.求证:四边形AECF为平行四边形.【分析】连接对角线AC交对角线BD于点O,运用OA=OC,OE=OF,即可判定四边形AECF是平行四边形;【解答】证明:连接对角线AC交对角线BD于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵点E,F是对角线BD上的两点,且BE=DF,∴OB﹣BE=OD﹣DF,即OE=OF,∴四边形AECF是平行四边形.20.(9分)如图:正方形网格中每个小方格的边长为1,且点A、B、C均为格点.(1)求△ABC的面积;(2)通过计算判断△ABC的形状;.(3)求AB边上的高.【分析】(1)由矩形的面积减去三个直角三角形的面积即可;(2)由勾股定理和勾股定理的逆定理即可得出结论;(3)由三角形的面积即可得出结果.【解答】解:(1)△ABC的面积=4×4﹣×4×2﹣×2×1﹣×3×4=5;(2)由勾股定理得:AC2=42+22=20,BC2=22+12=5,AB2=32+42=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;(3)∵AC==2,BC=,△ABC是直角三角形,∴AB边上的高===2.21.(10分)【阅读材料】嘉嘉在学习二次根式时,发现一些含根号的式子可以化成另一个式子的平方,如:5+2=(2+3)+2=()2+()2+2×=(+)2;8+2=(1+7)+2=12+()2+2×1×=(1+)2.【类比归纳】(1)请你仿照嘉嘉的方法将20+10化成另一个式子的平方;(2)请运用嘉嘉的方法化简:.【变式探究】若a±2=(±)2,且a,m,n均为正整数,则a=22或10.【分析】【类比归纳】(1)结合题目给的例子,利用完全平方公式易得;(2)利用完全平方公式求解;【类比归纳】把右边等式展开可得到m+n=a,mn=21,利用整式的特征得到mn,于是得到m+n的值.【解答】解:【类比归纳】(1);(2);【类比归纳】∵,∴m+n=a,mn=21,∵a,m,n均为正整数,∴mn=1×21=3×7,∴a=22或10.故答案为:22或10.22.(10分)如图,在矩形ABCD中,AB=16cm,AD=6cm,动点P、Q分别从A、C同时出发点P以每秒3cm的速度向B移动,一直达到B止,点Q以每秒2cm的速度向D移动.(1)P、Q两点出发后多少秒时,四边形PBCQ的面积为36cm2;(2)P、Q两点出发后多少秒时,四边形PBCQ是矩形;(3)是否存在某一时刻,使四边形PBCQ为正方形?【分析】(1)先求出CD=16,BC=6,再由运动得出CQ=2t,BP=16﹣3t,根据梯形PBCQ的面积为36,建立方程求解即可得出结论;(2)由四边形PBCQ是矩形,得出BP=CQ,进而建立方程求解即可得出结论;(3)由(2)求出CQ=,进而判断出CQ≠BC,即可得出结论.【解答】解:(1)在矩形ABCD中,CD=AB=16,BC=AD=6,由运动知,AP=3t,CQ=2t,∴BP=AB﹣AP=16﹣3t,∵四边形PBCQ的面积为36cm2,∴(16﹣3t+2t)×6=36,∴t=4,∴P、Q两点出发后4秒时,四边形PBCQ的面积为36cm2;(2)∵四边形PBCQ是矩形,∴BP=CQ,∴16﹣3t=2t,∴t=,∴P、Q两点出发后秒时,四边形PBCQ是矩形;(3)由(2)知,t=秒时,四边形PBCQ是矩形,∴CQ=2t=,∵BC=6,∴CQ≠BC,∴不存在某一时刻,使四边形PBCQ为正方形.23.(11分)如图,四边形ABCD是边长为1的正方形,分别延长BD,DB至点E,F,且BF=DE=.连接AE,AF,CE,CF.(1)求证:四边形AECF是菱形;(2)求四边形AECF的面积;(3)如果M为AF的中点,P为线段EF上的一动点,求P A+PM的最小值.【分析】(1)连接AC交BD于O,根据正方形的性质得到BD⊥AC,BO=DO,AO=CO,根据菱形的判定定理即可得到结论;(2)根据勾股定理得到BD=AC=,根据菱形的面积公式即可得到结论;(3)根据菱形的性质得到点A与点C关于直线EF对称,连接CM交EF于P,则此时,P A+PM=CM最小,过C作CN⊥AF于N,根据勾股定理列方程即可得到结论.【解答】(1)证明:连接AC交BD于O,∵四边形ABCD是正方形,∴BD⊥AC,BO=DO,AO=CO,∵BF=DE=,∴OE=OF,∴四边形AECF是菱形;(2)解:∵四边形ABCD是边长为1的正方形,∴AB=AD=1,∴BD=AC=,∴EF=3,∴四边形AECF的面积=AC•EF=×3=3;(3)解:∵四边形AFCE是菱形,∴点A与点C关于直线EF对称,连接CM交EF于P,则此时,P A+PM=CM最小,过C作CN⊥AF于N,则AC2﹣AN2=CN2=CF2﹣NF2,设AN=x,∴()2﹣x2=()2﹣(﹣x)2,解得:x=,∴MN=,∵CM2﹣MN2=AC2﹣AN2,∴CM2﹣()2=12﹣()2,解得:CM=,故P A+PM的最小值=.1、三人行,必有我师。

八年级下册期中数学试卷附答案 (6)

八年级下册期中数学试卷附答案 (6)

八年级(下)期中数学试卷(解析版)一、选择题1.下列式子中,属于最简二次根式的是()A.B.C.D.2.若代数式有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x>0 D.x≥0且x≠13.下列命题中的假命题是()A.一组邻边相等的平行四边形是菱形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等且有一个角是直角的四边形是矩形4.在下列的线段a、b、c的长为三边的三角形中,不能构成直角三角形的是()A.a=9,b=41,c=40 B.a=b=5,c=5C.a:b:c=3:4:5 D.a=11,b=12,c=155.在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4 B.1:2:2:1 C.1:2:1:2 D.1:1:2:26.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米7.如图,在矩形纸片ABCD中,已知AD=8,折叠纸片,使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3 B.4 C.5 D.68.如图四边形ABCD是菱形,对角线AC=8,BD=6,DH⊥AB于点H,则DH的长度是()A.B.C.D.9.如图,过平行四边形ABCD对角线交点O的直线交AD于E,交BC于F,若AB=5,BC=6,OE=2,那么四边形EFCD周长是()A.16 B.15 C.14 D.1310.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1,A2,…,An分别是正方形对角线的交点,则n个正方形重叠形成的重叠部分的面积和为()A. cm2B. cm2C. cm2D.()n cm2二、填空题:11.计算:(﹣2)3+(﹣1)0= .12.若实数a、b满足,则= .13.如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件,使ABCD成为菱形(只需添加一个即可)14.如图,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0)、(5,0)、(2,3),则顶点C的坐标是.15.如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF= cm.16.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为.三、解答题(一)17.(5分)计算:(﹣)2+2×3.18.(5分)当x=时,求代数式x2+5x﹣6的值.19.(5分)已知,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,求AB与CD 的长.四、解答题(二)(本大题三小题,每小题8分,共24分)20.(8分)如图,平行四边形ABCD中,AD>AB(1)分别作∠ABC和∠BCD的平分线,交AD于E、F.(2)线段AF与DE相等吗?请证明.21.(8分)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.22.(8分)阅读下面材料,回答问题:(1)在化简的过程中,小张和小李的化简结果不同;小张的化简如下: ===﹣小李的化简如下: ===﹣请判断谁的化简结果是正确的,谁的化简结果是错误的,并说明理由.(2)请你利用上面所学的方法化简.五、解答题(三)(本题三小题,每小题9分,共27分)23.(9分)如图,E是正方形ABCD对角线BD上一点,EM⊥BC,EN⊥CD垂足分别是求M、N (1)求证:AE=MN;(2)若AE=2,∠DAE=30°,求正方形的边长.24.(9分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.25.(9分)如图,在Rt△ABC中,∠B=90°,BC=,∠C=30°.点D从点C出发沿CA 方向以每秒2个单位长的速度向A点匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)AC的长是,AB的长是.(2)在D、E的运动过程中,线段EF与AD的关系是否发生变化?若不变化,那么线段EF 与AD是何关系,并给予证明;若变化,请说明理由.(3)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(4)当t为何值,△BEF的面积是?八年级(下)期中数学试卷参考答案与试题解析一、选择题1.下列式子中,属于最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、=3,故A错误;B、是最简二次根式,故B正确;C、=2,不是最简二次根式,故C错误;D、=,不是最简二次根式,故D错误;故选:B.【点评】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.若代数式有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x>0 D.x≥0且x≠1【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:,解得:x≥0且x≠1.故选D.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.下列命题中的假命题是()A.一组邻边相等的平行四边形是菱形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等且有一个角是直角的四边形是矩形【考点】命题与定理.【分析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.【解答】解:A、根据菱形的判定定理,正确;B、根据正方形和矩形的定义,正确;C、符合平行四边形的定义,正确;D、错误,可为不规则四边形.故选:D.【点评】本题考查菱形、矩形和平行四边形的判定与命题的真假区别.4.在下列的线段a、b、c的长为三边的三角形中,不能构成直角三角形的是()A.a=9,b=41,c=40 B.a=b=5,c=5C.a:b:c=3:4:5 D.a=11,b=12,c=15【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理得出A、B、C能成直角三角形,DD不能够构成直角三角形;即可得出结论.【解答】解:∵92+402=412,∴a2+c2=b2,∴A能成直角三角形;∵52+52=(5)2,∴a2+b2=c2,∴B能构成直角三角形;∵32+42=52,∴C能构成直角三角形;∵112+122≠152,∴D不能够构成直角三角形;故选:D.【点评】本题考查了勾股定理的逆定理;熟练掌握勾股定理的逆定理,并能进行推理计算是解决问题的关键.5.在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4 B.1:2:2:1 C.1:2:1:2 D.1:1:2:2【考点】平行四边形的性质.【分析】根据平行四边形的性质得到∠A=∠C,∠B=∠D,∠B+∠C=180°,∠A+∠D=180°,根据以上结论即可选出答案.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,AB∥CD,∴∠B+∠C=180°,∠A+∠D=180°,即∠A和∠C的数相等,∠B和∠D的数相等,且∠B+∠C=∠A+∠D,故选C.【点评】本题主要考查对平行四边形的性质,平行线的性质等知识点的理解和掌握,能根据平行四边形的性质进行判断是解此题的关键,题目比较典型,难度适中.6.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米【考点】勾股定理的应用.【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC==10m,故选B.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.7.如图,在矩形纸片ABCD中,已知AD=8,折叠纸片,使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3 B.4 C.5 D.6【考点】翻折变换(折叠问题);矩形的性质.【分析】先根据矩形的性质求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.【解答】解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF===4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选:D.【点评】本题考查的是翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.8.如图四边形ABCD是菱形,对角线AC=8,BD=6,DH⊥AB于点H,则DH的长度是()A.B.C.D.【考点】菱形的性质.【分析】根据菱形的面积等于对角线积的一半,可求得菱形的面积,又由菱形的对角线互相平分且垂直,可根据勾股定理得AB的长,根据菱形的面积的求解方法:底乘以高或对角线积的一半,即可得菱形的高.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4,OB=OD=3,∴AB=5cm,∴S菱形ABCD=AC•BD=AB•DH,∴DH==4.8.故选C.【点评】此题考查了菱形的性质:菱形的对角线互相平分且垂直;菱形的面积的求解方法:底乘以高或对角线积的一半.9.如图,过平行四边形ABCD对角线交点O的直线交AD于E,交BC于F,若AB=5,BC=6,OE=2,那么四边形EFCD周长是()A.16 B.15 C.14 D.13【考点】平行四边形的性质.【分析】根据平行四边形性质得出AD=BC=6,AB=CD=5,OA=OC,AD∥BC,推出∠EAO=∠FCO,证△AEO≌△CFO,推出AE=CF,OE=OF=2,求出DE+CF=DE+AE=AD=6,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC=6,AB=CD=5,OA=OC,AD∥BC,∴∠EAO=∠FCO,在△AEO和△CFO中,,∴△AEO≌△CFO(ASA),∴AE=CF,OE=OF=2,∴DE+CF=DE+AE=AD=6,∴四边形EFCD的周长是EF+FC+CD+DE=2+2+6+5=15,故选B.【点评】本题考查了平行四边形性质,全等三角形的性质和判定的应用,关键是求出DE+CF 的长和求出OF长.10.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1,A2,…,An分别是正方形对角线的交点,则n个正方形重叠形成的重叠部分的面积和为()A. cm2B. cm2C. cm2D.()n cm2【考点】正方形的性质.【分析】根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为n﹣1阴影部分的和.【解答】解:由题意可得阴影部分面积等于正方形面积的,即是,5个这样的正方形重叠部分(阴影部分)的面积和为×4,n个这样的正方形重叠部分(阴影部分)的面积和为×(n﹣1)=.故选:B.【点评】考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.二、填空题:11.计算:(﹣2)3+(﹣1)0= ﹣7 .【考点】实数的运算;零指数幂.【分析】先分别根据有理数乘方的法则及0指数幂的计算法则计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=﹣8+1=﹣7.故答案为:﹣7.【点评】本题考查的是实数的运算,熟知有理数乘方的法则及0指数幂的计算法则是解答此题的关键.12.若实数a、b满足,则= .【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则原式=﹣.故答案是:﹣.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为013.如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件OA=OC ,使ABCD成为菱形(只需添加一个即可)【考点】菱形的判定.【分析】可以添加条件OA=OC,根据对角线互相垂直平分的四边形是菱形可判定出结论.【解答】解:OA=OC,∵OB=OD,OA=OC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,故答案为:OA=OC.【点评】此题主要考查了菱形的判定,关键是掌握菱形的判定定理.14.如图,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0)、(5,0)、(2,3),则顶点C的坐标是(7,3).【考点】平行四边形的性质;坐标与图形性质.【分析】首先过点D作DE⊥OB于点E,过点C作CF⊥OB于点F,易证得△ODE≌△CBF,则可得CF=DE=3,BF=OE=2,继而求得OF的长,则可求得顶点C的坐标.【解答】解:过点D作DE⊥OB于点E,过点C作CF⊥OB于点F,∴∠OED=∠BF C=90°,∵平行四边形ABCD的顶点A,B,D的坐标分别是(0,0)、(5,0)、(2,3),∴OB∥CD,OD∥BC,∴DE=CF=3,∠DOE=∠CBF,在△ODE和△CBF中,,∴△ODE≌△CBF(AAS),∴BF=OE=2,∴OF=OB+BF=7,∴点C的坐标为:(7,3).故答案为:(7,3).【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.注意证得△ODE≌△CBF是关键.15.如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF= cm.【考点】菱形的性质;翻折变换(折叠问题).【分析】根据菱形性质得出AC⊥BD,AC平分∠BAD,求出∠ABO=30°,求出AO,BO、DO,根据折叠得出EF⊥AC,EF平分AO,推出EF∥BD,推出,EF为△ABD的中位线,根据三角形中位线定理求出即可.【解答】解:连接BD、AC,∵四边形ABCD是菱形,∴AC⊥BD,AC平分∠BAD,∵∠BAD=120°,∴∠BAC=60°,∴∠ABO=90°﹣60°=30°,∵∠AOB=90°,∴AO=AB=×2=1,由勾股定理得:BO=DO=,∵A沿EF折叠与O重合,∴EF⊥AC,EF平分AO,∵AC⊥BD,∴EF∥BD,∴EF为△ABD的中位线,∴EF=BD=(+)=,故答案为:.【点评】本题考查了折叠性质,菱形性质,含30度角的直角三角形性质,勾股定理,平行线分线段成比例定理等知识点的应用,主要考查学生综合运用定理进行推理和计算的能力.16.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为或3 .【考点】翻折变换(折叠问题).【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4﹣x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,A B=AB′=3,∴CB′=5﹣3=2,设BE=x,则EB′=x,CE=4﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4﹣x)2,解得x=,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.【点评】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.三、解答题(一)17.计算:(﹣)2+2×3.【考点】二次根式的加减法.【分析】先进行完全平方公式、二次根式的乘法运算,然后合并.【解答】解:原式=2+3﹣2+2=5.【点评】本题考查了二次根式的加减法,掌握运算法则是解答本题的关键.18.当x=时,求代数式x2+5x﹣6的值.【考点】二次根式的化简求值;代数式求值.【分析】可直接代入求值.【解答】解:当x=时,x2+5x﹣6=()2+5()﹣6=6﹣2+5﹣5﹣6=.【点评】主要考查二次根式的混合运算,要掌握好运算顺序及各运算律.19.已知,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,求AB与CD的长.【考点】勾股定理.【分析】在直角三角形ABC中,利用勾股定理求出AB的长,再利用面积法求出CD的长即可.【解答】解:在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,由勾股定理得:AB==10,=AB•CD=AC•BC,∵S△ABC∴CD===4.8.【点评】此题考查了勾股定理,以及三角形面积求法,熟练掌握勾股定理是解本题的关键.四、解答题(二)(本大题三小题,每小题8分,共24分)20.如图,平行四边形ABCD中,AD>AB(1)分别作∠ABC和∠BCD的平分线,交AD于E、F.(2)线段AF与DE相等吗?请证明.【考点】平行四边形的性质.【分析】由平行四边形ABCD的对边平行且相等、平行线的性质、角平分线的定义推知∠ABE=∠AEB,则AE=AB,∠DCF=∠DFC,则DF=DC,故AF=DE.【解答】解:AF与DE相等.理由如下:∵四边形ABCD是平行四边形,∴AB=DC,AD=BC.∵AD∥BC,BE平分∠ABC,∴∠ABE=∠AEB,∴AE=AB.∵CF平分∠BCD,∴∠DCF=∠FCB,∴∠DCF=∠DFC,∴DF=DC,∴AF=DE.【点评】本题考查了平行四边形的性质.解题时,将所求的线段间的数量关系,转化为推知角、角关系,充分利用了等腰三角形的判定与性质.21.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM ⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【考点】正方形的判定;全等三角形的判定与性质.【分析】(1)根据角平分线的性质和全等三角形的判定方法证明△ABD≌△CBD,由全等三角形的性质即可得到:∠ADB=∠CDB;(2)若∠ADC=90°,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形.【解答】证明:(1)∵对角线BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,∵∠ADC=90°,∴四边形MPND是矩形,∵∠ADB=∠CDB,∴∠ADB=45°∴PM=MD,∴四边形MPND是正方形.【点评】本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.22.阅读下面材料,回答问题:(1)在化简的过程中,小张和小李的化简结果不同;小张的化简如下: ===﹣小李的化简如下: ===﹣请判断谁的化简结果是正确的,谁的化简结果是错误的,并说明理由.(2)请你利用上面所学的方法化简.【考点】二次根式的混合运算.【分析】(1)利用二次根式的性质对他们的化简结果进行判断;(2)利用完全平方公式把原式变形为,然后根据二次根式的性质化简即可.【解答】解:(1)小李化简正确,小张的化简结果错误.因为=|﹣|=﹣;(2)原式===﹣1.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.五、解答题(三)(本题三小题,每小题9分,共27分)23.如图,E是正方形ABCD对角线BD上一点,EM⊥BC,EN⊥CD垂足分别是求M、N(1)求证:AE=MN;(2)若AE=2,∠DAE=30°,求正方形的边长.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)连接EC,根据题意可得出四边形EMCN为矩形,故MN=CE,再由SAS定理得出△ABE≌△CBE,进而可得出结论;(2)过点E作EF⊥AD,由直角三角形的性质可得出EF及AF的长,再由等腰直角三角形的性质得出DF的长,进而可得出结论.【解答】(1)证明:连接EC.∵四边形ABCD是正方形,EM⊥BC,EN⊥CD,∴∠NCM=∠CME=∠CNE=90°,∴四边形EMCN为矩形.∴MN=CE.又∵BD为正方形ABCD的对角线,∴∠ABE=∠CBE.在△ABE和△CBE中∵,∴△ABE≌△CBE(SAS).∴AE=EC.∴AE=MN.(2)解:过点E作EF⊥AD于点F,∵AE=2,∠DAE=30°,∴EF=AE=1,AF=AE•cos30°=2×=.∵BD是正方形ABCD的对角线,∴∠EDF=45°,∴DF=EF=1,∴AD=AF+DF=+1,即正方形的边长为+1.【点评】本题考查的是正方形的性质,熟知正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角是解答此题的关键.24.如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.【考点】矩形的性质;全等三角形的判定与性质;等腰三角形的性质;含30度角的直角三角形.【分析】(1)根据矩形的对边平行可得AB∥CD,再根据两直线平行,内错角相等求出∠BAC=∠FCO,然后利用“角角边”证明△AOE和△COF全等,再根据全等三角形的即可得证;(2)连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.【解答】(1)证明:在矩形ABCD中,AB∥CD,∴∠BAC=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF;(2)解:如图,连接OB,∵BE=BF,OE=OF,∴BO⊥EF,∴在Rt△BEO中,∠BEF+∠ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,∴∠BAC=∠ABO,又∵∠BEF=2∠BAC,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∵BC=2,∴AC=2BC=4,∴AB===6.【点评】本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.25.如图,在Rt△ABC中,∠B=90°,BC=,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向A点匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)AC的长是10 ,AB的长是 5 .(2)在D、E的运动过程中,线段EF与AD的关系是否发生变化?若不变化,那么线段EF 与AD是何关系,并给予证明;若变化,请说明理由.(3)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(4)当t为何值,△BEF的面积是?【考点】平行四边形的判定与性质;含30度角的直角三角形;勾股定理;菱形的判定.【分析】(1)在Rt△ABC中,∠C=30°,则AC=2AB,根据勾股定理得到AC和AB的值.(2)先证四边形AEFD是平行四边形,从而证得AD∥EF,并且AD=EF,在运动过程中关系不变.(3)求得四边形AEFD为平行四边形,若使▱AEFD为菱形则需要满足的条件及求得.(4)BE=AB﹣AE=5﹣t,BF=BC﹣CF=5﹣t,从而得到,然后求得t的值.【解答】(1)解:∵在Rt△ABC中,∠C=30°,∴AC=2AB,根据勾股定理得:AC2﹣AB2=BC2,∴3AB2=75,∴AB=5,AC=10;(2)EF与AD平行且相等.证明:在△DFC中,∠DF C=90°,∠C=30°,DC=2t,∴DF=t.又∵AE=t,∴AE=DF,∵AB⊥BC,DF⊥BC,∴AE∥DF.∴四边形AEFD为平行四边形.∴EF与AD平行且相等.(3)解:能;理由如下:∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.∵AB=BC•tan30°=5×=5,∴AC=2AB=10.∴AD=AC﹣DC=10﹣2t.若使▱AEFD为菱形,则需AE=AD,即t=10﹣2t,t=.即当t=时,四边形AEFD为菱形.(4)解:∵在Rt△CDF中,∠A=30°,∴DF=CD,∴CF=t,又∵BE=AB﹣AE=5﹣t,BF=BC﹣CF=5﹣t,∴,即:,解得:t=3,t=7(不合题意舍去),∴t=3.故当t=3时,△BEF的面积为2.故答案为:5,10;平行且相等;;3.【点评】此题考查了平行四边形的判定与性质,以及全等三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.。

初二年级数学下期中考试试卷

初二年级数学下期中考试试卷

初⼆年级数学下期中考试试卷 数学被应⽤在很多不同的领域上,包括科学、⼯程、医学和经济学等,今天⼩编就给⼤家分享⼀下⼋年级数学,喜欢的来参考吧 ⼋年级数学下期中联考试卷 ⼀、选择题(本⼤题共10⼩题,每⼩题4分,共40分。

每⼩题都有四个选项,其中有且只有⼀个选项正确) 1.若⼆次根式a―2有意义,则a的取值范围是A.a≥0B.a≥2C.a>2D.a≠2 2.下列⼆次根式中,属于最简⼆次根式的是 A. B. C. D. 3.下列计算正确的是 A. B. C. D. 4. 正⽅形具有⽽菱形不⼀定具有的性质是A.四个⾓为直⾓B.对⾓线互相垂直C.对⾓线互相平分D.对边平⾏且相等 5.如图所⽰,在数轴上点A所表⽰的数为a,则a的值为A.﹣B.1﹣C.﹣1﹣D.﹣1+ 6. 以下各组数据为三⾓形的三边长,能构成直⾓三⾓形的是A.2,2,4B.2,3,4C.2,2,1D.4,5,6 7.化简(3―2)2002•(3+2)2003的结果为A.―1B.3+2C.3―2D.―3―2 8. 如图1,在△ABC中,∠C=90°,AC=2,点D在BC边上, ∠ADC=2∠B,AD= ,则BC的长为A. ﹣1B. +1C. ﹣1D. +1 9.如图2,在正⽅形ABCD的外侧作等边三⾓形DCE,若∠AED=15°, 则∠EAC=( )A.15°B.28°C.30°D.45° 10.若a=2016×2018-2016×2017, b=2015×2016-2013×2017,, 则a,b,c的⼤⼩关系是 A.a ⼆、填空题(本⼤题共6⼩题,每⼩题4分,共24分) 11.计算: = ; = . 12.在△ABC中,D,E分别是边AB,AC的中点,若BC=4,则DE=_______. 13.如图3,在□ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC,交BC边于点E,则BE= cm. 14.在中,,分别以AB、AC为边向外作正⽅形,⾯积分别记为 . 若,则BC=______. 15.如图4,已知正⽅形ABCD的边长为4,对⾓线AC与BD相交于点O,点E在DC 边的延长线上.若∠CAE=15°,则CE= . 16.公元3世纪,我国古代数学家刘徽就能利⽤近似公式a 2+r≈a+r2a得到2的近似值.他 的算法是:先将2看成12+1,由近似公式得2≈1+12×1=32;再将2看成 (32)2+(-14),由近似公式得2≈32+-142×32=1712;......依此算法,所得2的近似 值会越来越精确.当2取得近似值577408时,近似公式中的a是__________,r是__________. 三、解答题(本⼤题共9⼩题,共86分) 17.(本题满分12分,每⼩题6分)计算: (1)4 + ﹣ ; (2) (2 )(2 ) 18.(本题满分6分)计算: 19.(本题满分8分) 如图,在 ABCD中,E,F分别在边AD,BC上,且AE=CF,连接EF. 请你只⽤⽆刻度的直尺画出线段EF的中点O,并说明这样画的理由. 20.(本题满分8分) ,,求代数式的值 21. (本题满分8分) 古希腊的⼏何学家海伦(约公元50年)在研究中发现:如果⼀个三⾓形的三边长分别为,,,那么三⾓形的⾯积S与,,之间的关系式是 ① 请你举出⼀个例⼦,说明关系式①是正确的. 22.(本题满分8分)如图,在□ABCD中,点E,F分别是边AB,CD的中点, (1)求证:△CFB≌△AED; (2)若∠ADB=90°,判断四边形BFDE的形状,并说明理由; 23.(本题满分10分) 如图5,E,F分别是矩形ABCD的边AB,AD上的点, . (1)求证: AF=CD. (2)若AD=2,△EFC的⾯积为,求线段BE的长. 24.(本题满分12分) 如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上⼀点,过点D作DE⊥BC,交直线MN于点E,垂⾜为F,连接CD,BE (1)求证:CE=AD (2)若D为AB的中点,则∠A的度数满⾜什么条件时,四边形BECD是正⽅形?请说明理由. 25.(本题满分14分)如图6,我们把对⾓线互相垂直的四边形叫做垂美四边形 (1)概念理解:如图7,在四边形ABCD中,AB=AD,CB=CD,四边形ABCD是垂美四边形吗?请说明理由. (2)性质探究:试探索垂美四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系. 猜想结论: (要求⽤⽂字语⾔叙述).写出证明过程(先画出图形, 写出已知、求证,再证明) (3)问题解决:如图8,分别以Rt△ACB的直⾓边AC和斜边AB为边向外作正⽅形ACFG和正⽅形形ABDE,连接CE,BG,GE,若AC=4,AB=5,求GE的长. 2017-2018学年(下)六校期中联考⼋年级 数学科评分标准 ⼀、选择题(本⼤题有10⼩题,每⼩题4分,共40分.) 题号 1 2 3 4 5 6 7 8 9 10 选项 B D C A C A B D C B ⼆、填空题(本⼤题共6⼩题,每题4分,共24分) 11. ; . 12. . 13. . 14. . 15. . 16. , . 三、解答题(本⼤题共11⼩题,共86分) 17.(本题满分12分,每⼩题6分) (1)解:原式= …………… 3分 = …………… 4分 = …………… 6分 (2)解:原式= …………… 3分 = …………… 5分 = …………… 6分 注: 1.写出正确答案,⾄少有⼀步过程,不扣分. 2.只有正确答案,没有过程,只扣1分. 3.没有写出正确答案的,若过程不完整,按步给分. (以下题⽬类似) 18.(本题满分6分) 解:原式= …………… 3分 = …………… 5分 = …………… 6分 19. 20.(本题满分8分) 解:连接与相交于点,点为的中点。

人教版八年级数学下册期中考试卷

人教版八年级数学下册期中考试卷

初中数学试卷2015-2016年下学期八年级数学期中考试卷班级__________姓名____________座号________成绩______一、选择题(每小题4分,共32分) 1、下列运算正确的是( )A 、9=±3B 、2)5(-=-5C 、2)7(-=7D 、2)3(-=-3 2、在实数范围内,若x+11有意义,则x 的取值范围是( ) A 、x ≤-1 B 、x <-1 C 、x >-1 D 、x ≥-1 3、下列条件中,能判定四边形是平行四边形的是( ) A 、一组对角相等 B 、对角线互相平分 C 、一组对边相等 D 、对角线互相垂直 4、若02)1(2=-++y x 则(x+y)2012的值为( ) A 、1 B 、-1 C 、2012 D 、-20125、在平行四边形ABCD 中,∠A :∠B:∠C:∠D=2:3:2:3, 则∠D=( ) A 、360 B 、1080 C 、720 D 、6006、设2=a ,3=b ,用含a,b 的式子表示6,则下列表示正确的是( ) A 、ab 2 B 、2ab C 、ab D 、a 2b7、如图所示,在菱形ABCD 中,∠B=600,AB=4,则以AC 为边长的正方形ACEF 的周长为( )A 、14B 、15C 、16D 、17第7题8、直角三角形两直角边长的和为7,面积为6,则斜边长为( ) A 、5 B 、37 C 、7 D 、38 二、填空题(每小题4分,共计32分) 9、化简24=______________10、当x=2时,112+-x x =______________11、如图,D 、E 、F 分别为△ABC 三边的中点,则图中平行四边形的个数为______________12、如图,在平行四边形ABCD 中,AC 平分∠DAB ,AB=4,则平行四边形ABCD 的周长为______________。

13、如果最简二次根式a 3与15是同类二次根式,则a=_______14、连结矩形四边中点所得四边形是______________。

2022-2023学年度第一学期期中考试八年级数学试卷

2022-2023学年度第一学期期中考试八年级数学试卷

2022/2023学年度第一学期期中考试八年级数学试题时间:100分钟分值:120分考试形式:闭卷命题人:审核人:一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题卡相应位置上)1.下列四个图形中,是轴对称图形的为【▲ 】A .B .C .D .2.下列等式正确的是【▲ 】A .±=2B .=﹣2C .=﹣2D .=0.13.下列各组数中,能作为直角三角形三边长的是【▲ 】A.1,2,3 B.4,5,6 C.6,8,10 D.7,8,94.在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩“抢手绢”游戏,要求在他们中间放一个手绢,谁先抢到手绢谁获胜,为使游戏公平,则手绢应放的最适当的位置是在△ABC的【▲ 】A.三边垂直平分线的交点B.三边中线的交点C.三条角平分线的交点D.三边上高的交点5.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=10,则点P到AB的距离是【▲ 】A.15 B.12 C.5 D.10(第5题)(第6题)(第8题)(第11题)6.如图,DE是△ABC中边AC的垂直平分线,若BC=18cm,AB=10cm,则△ABD的周长为【▲ 】A.16cm B.28cm C.26cm D.18cm7.若等腰三角形一个外角等于100°,则它的顶角度数为【▲ 】A.20°B.80°C.20°或80°D.无法确定8.如图,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9.则AB为【▲ 】A.19 B.12 C.21 D.26二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡相应位置上).9.16的算术平方根是▲ .10.已知+(n ﹣1)2=0,则mn=▲ .11.如图所示,是一块由花园小道围成的边长为12米的正方形绿地,在离C处5米的绿地旁边B 处有健身器材,为提醒居住在A处的居民爱护绿地,不直接穿过绿地从A到B,而是沿小道从A→C→B,请问你多走了▲ 米.12.如图,点D是BC上的一点,若△ABC≌△ADE,且∠B=65°,则∠EAC=▲ °.(第12题)(第14题)(第15题)(第16题)13.直角三角形的两边长为5、12,则斜边上的中线长为▲ .14.如图,折叠长方形纸片ABCD,使点D落在边BC上的点F处,折痕为AE.已知AB=6cm,BC=10cm.则EC的长为▲ cm.15.如图,A、B两点在正方形网格的格点上,每个方格都是边长为1的正方形、点C也在格点上,且△ABC为等腰三角形,则符合条件的点C共有▲个.16.如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,延长BP至点D,使得AD=AP =5,当AD⊥AB时,过D作DE⊥AC于E,若DE=4,则△BCP面积为▲ .三、解答题(本大题共有10小题,共72分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.(本题满分6分)求下列各式中x的值:(1)x2﹣25=0;(2)(x﹣2)3﹣8=0.18.(本题满分6分)已知2a﹣1的平方根为±3,3a+b﹣1的算术平方根为4.(1)求a、b的值;(2)求a+2b的算术平方根.19.(本题满分5分)如图,校园有两条路OA、OB,在交叉口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你用尺规作出灯柱的位置点P.(请保留作图痕迹)20.(本题满分5分)如图,B、C、D、E在同一条直线上,AB∥EF,BC=DE,AB=EF,求证:△ACB≌△FDE.(第19题)(第20题)21.(本题满分6分)如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.22.(本题满分6分)如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)三角形ABC 的面积为▲;(3)在直线l上找一点P,使PB+PC的长最短.23.(本题满分8分)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD,∠BAC=∠D,BC=CE.(1)求证:AC=CD.(2)若AC=AE,∠ACD=80°,求∠DEC的度数.24.(本题满分8分)如图,在△ABC中,AB、AC边的垂直平分线相交于点O,分别交BC边于点M、N,连接AM,AN.(1)若△AMN的周长为6,求BC的长;(2)若∠MON =30°,求∠MAN的度数;(3)若∠MON=45°,BM=3,BC=12,求MN的长度.25.(本题满分10分)阅读理解:亲爱的同学们,在以后的学习中我们会学习一个定理:直角三角形斜边上的中线等于斜边的一半.即:如图1:在Rt△ABC中,∠ACB=90°,若点D是斜边AB的中点,则CD=AB.牛刀小试:(1)在图1中,若AC=6,BC=8,其他条件不变,则CD=▲;活学活用:(2)如图2,已知∠ABC=∠ADC=90°,点E、F分别为AC、BD的中点,AC=26,BD=24.求EF的长;问题解决:(3)如图3,在Rt△ABC中,∠ACB=90°,AB=10,以AB为边在AB上方作等边三角形ABD,连接CD,求CD的最大值.26.(本题满分12分)阅读以下材料,完成以下两个问题.[阅读材料]已知:如图,△ABC(AB≠AC)中,D、E在BC上,且DE=EC,过D作DF∥BA 交AE于点F,DF=AC.求证:AE平分∠BAC.结合此题,DE=EC,点E是DC的中点,考虑倍长,并且要考虑连接哪两点,目的是为了证明全等,从而转移边和角.有两种考虑方法:①考虑倍长FE,如图(1)所示;②考虑倍长AE,如图(2)所示以图(1)为例,证明过程如下:证明:延长FE至G,使EG=EF,连接CG.在△DEP和△CEG中,,∴△DEF≌△CEG(SAS).∴DF=CG,∠DFE=∠G.∵DF=AC,∴CG=AC.∴∠G=∠CAE.∴∠DFE=∠CAE.∵DF∥AB,∴∠DFE=∠BAE.∴∠BAE=∠CAE.∴AE平分∠BAC.问题1:参考上述方法,请完成图(2)的证明.问题2:根据上述材料,完成下列问题:已知,如图3,在△ABC中,AD是BC边上的中线,分别以AB,AC为直角边向外作等腰直角三角形,∠BAE=∠CAF=90°,AE=AB,AC=AF,AD=3,求EF的长.。

陕西省渭南市临渭区2024-2025学年八年级上学期数学期中试卷

陕西省渭南市临渭区2024-2025学年八年级上学期数学期中试卷

陕西省渭南市临渭区2024-2025学年八年级上学期数学期中试卷和答案一、单选题1.1的立方根是()A .1B .1-C .0D .1±2.下列各组数中,是勾股数的是()A .1,2,3B .4,6,8C .0.3,0.4,0.5D .5,12,133.已知()35y a x a =++-是正比例函数,则该函数的表达式是()A .3y x=B .5y x=C .8y x =D .2y x =-4.计算2的结果为()A .43B .163C .49D .1695.在平面直角坐标系xOy 中,点()24A m +,与点B (),m n 关于y 轴对称,则m n +的值为()A .0B .1C .2D .1-6.直线1y ax =-向右平移3个单位后过点(2,3)P -,则a 的值应该是()A .1B .3C .2D .47.如图所示,在44⨯的正方形网格中,ABC V 的顶点都在格点上,则下列结论错误的是()A .25BC =B .5AB =C .90ACB ∠=︒D .4AC =8.在物理实验课上,小明在进行温度与金属导体电阻之间的关系实验中发现,某种金属导体的电阻R (单位:Ω)与温度t (单位:℃)之间存在一次函数关系,于是对不同温度下该导体的电阻进行了记录,如下表:t (℃)010203040R (Ω)5 5.08 5.16 5.24 5.32根据上述关系,当温度t 为55℃时,该金属导体的电阻R 的值为()A .5.36ΩB .5.40ΩC .5.44ΩD .5.48Ω二、填空题93.1415,67中,是无理数的是.10.比较大小:8(填“>”或“<”或“=”)11.已知点()11,A x y ,()22,B x y 是一次函数21y x =+图像上的两点,如果12x x <,那么1y ,2y 的大小关系是1y 2y (填“>”或“<”或“=”).12.把两个半径分别为1cm的铅球熔化后做成一个更大的铅球,则这个大铅球的半径是cm (球的体积公式34π3V r =,其中r 是球的半径).13.如图,在一张长方形纸板ABCD 上放着一根长方体木块.已知12m AD =,8m AB =,该木块的长与AD 平行,横截面是边长为1m 的正方形,一只蚂蚁从点A 爬过木块到达点C 需要走的最短路程是m .三、解答题14-.15.已知:27x +的立方根是3,25的算术平方根是5x y -,求:(1)x ,y 的值;(2)x y -的平方根.16.在ABC V 中,90C ∠=︒,AC ,AB =.求ABC V 的面积.17.如图,在平面直角坐标系中,网格上的每个小正方形的边长均为1,ABC V 的顶点坐标分别为()1,1A -,()4,4B -,()3,4C .在图中画出ABC V 关于x 轴对称的DEF (点A 、B 、C 的对应点分别为点D 、E 、F ),并写出点F 的坐标.18.已知刹车距离的计算公式=v v 表示车速(单位:km /h ),d 表示刹车距离(单位:m ),f 表示摩擦系数,在一次交通事故中.测得16m d =, 2.25f =,而发生交通事故的路段限速为100km /h ,通过计算说明肇事汽车是否违规行驶.19.已知平面内有一点()5,26G m m --,分别根据下列条件求点G 的坐标.(1)点G 在第三象限,且点G 到x 轴的距离为4;(2)点N 的坐标为(5,5)-,且直线GN 与y 轴平行.20.如图所示,有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出2尺,斜放就恰好等于门的对角线(BD ),已知门宽6尺,求竹竿长.21.如图是气象台某天用仪器记录的空中气温℃与距地面高度()km h 之间的函数图象.(1)根据图象,求出图中的t 关于h 的函数表达式;(2)当空中气温为12℃时,求此时距离地面的高度.22.小霞和爸爸妈妈到公园游玩,回到家后,她利用平面直角坐标系知识,画出了如图所示的公园景区地图.可是她忘记了在图中标出坐标系的x 轴y 轴和原点O ,只知道木栈道景点D 的坐标为(1,2)-,月亮桥景点B 的坐标为()4,2-.(1)请在图中画出x 轴、y 轴,并标出坐标原点O ;(2)请写出其它三个景点A 、C 、E 的坐标.23.某农场有一块长50米,宽30米的长方形场地,现要用场地面积的23建一个观鱼池.(1)若要修建一个上述面积的长方形鱼池,且长方形的长和宽之比为5:4,则鱼池的长和宽各为多少?(2)保持已知面积不变,能否将鱼池修建成一个正方形,若能建成,鱼池的边长为多少?不能,请说明理由?24.某工程的测量人员在规划一块如图所示的三角形地时,由于在BC 上有一处古建筑,使得BC 的长不能直接测出,于是工作人员在BC 上取一点D ,测得120AD =米,50BD =米后,又测得130AB =米,150AC =米,请你根据测量数据,求出BC 的长度.25.某移动公司设了两类通讯业务,A 类收费标准为不管通话时间多长使用者都应缴50元月租费,然后每通话1分钟,付0.1元;B 类收费标准为用户不缴月租费,每通话1分钟,付话费0.2元.若一个月通讯x 分钟,两种方式费用分别是A y ,B y 元.(1)分别求出A y ,B y 与x 之间的函数关系式.(2)某人估计一个月通话时间为300分钟,选哪种通讯方式更合算,请书写计算过程.(3)小明选的A 方式,他计算了一下,若是B 方式,他本月话费将会比现在多50元,请你算一下小明在A 方式下的实际话费是多少元?26.如图,正比例函数2y x =的图象与一次函数y kx b =+的图象交于点(),4A m ,一次函数图象与y 轴的交点为()0,2C ,与x 轴的交点为D .(1)求一次函数y kx b =+的表达式;(2)一次函数y kx b =+的图象上是否存在点P ,使得3ODP S =△,若存在,求出点P 的坐标;若不存在,说明理由;(3)如果在一次函数y kx b =+的图象存在点Q ,使OCQ △是以CQ 为腰的等腰三角形,请求出点Q 的坐标.。

2022-2023学年八年级下期中考试数学试卷及答案

2022-2023学年八年级下期中考试数学试卷及答案

=6,则 BE 的长为

16.点 P,Q,R 在反比例函数 y (常数 k>0,x>0)图象上的位置如图所示,分别过这
三个点作 x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为 S1,S2,S3.若
OE=ED=DC,S1+S3=27,则 S2 的值为

17.如图,反比例函数 y 位于第二象限的图象上有 A,B 两点,过 A 作 AD⊥x 轴于点 D,
22.【阅读】如图 1,四边形 OABC 中,OA=a,OC=8,BC=6,∠AOC=∠BCO=90°, 经过点 O 的直线 l 将四边形分成两部分,直线 l 与 OC 所成的角设为θ,将四边形 OABC 的直角∠OCB 沿直线 l 折叠,点 C 落在点 D 处,我们把这个操作过程记为 FZ[θ,a].
1~1.5 小时;C、0.5~1 小时;D、0.5 小时以下.图 1、2 是根据调查结果绘制的两幅不
完整的统计图,请你根据统计图提供的信息,解答以下问题:
(1)本次一共调查了多少名学生?
(2)在图 1 中将选项 B 的部分补充完整;
(3)若该校有 3000 名学生,你估计全校可能有多少名学生平均每天参加体育活动的时
间在 1 小时以下.
20.(12 分)如图,已知△ABC 的三个顶点的坐标分别为 A(﹣2,3)、B(﹣6,0)、C(﹣ 1,0). (1)将△ABC 绕坐标原点 O 逆时针旋转 90°.画出图形,直接写出点 B 的对应点的坐 标; (2)请直接写出:以 A、B、C 为顶点的平行四边形的第四个顶点 D 的坐标.
(1)若平均每人每小时植树 4 棵,则这次共计要植树
棵;
(2)当 x=80 时,求 y 的值;
(3)为了能在 1.5h 内完成任务,至少需要多少人参加植树?

人教版2020年八年级下期中数学试卷(含答案)

人教版2020年八年级下期中数学试卷(含答案)

八年级(下)期中数学试卷一、选择题(10小题,每小题3分,共30分)1.下列各式是最简二次根式的是()A. B. C.D.2.式子有意义,则x的取值范围是()A.x≥2 B.x≤2 C.x≥﹣2 D.x≤﹣23.下列二次根式中与是同类二次根式是()A. B. C. D.4.用配方法解方程x2+4x﹣5=0,下列配方正确的是()A.(x+2)2=1 B.(x+2)2=5 C.(x+2)2=9 D.(x+4)2=95.今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3500 B.2500(1+x)2=3500C.2500(1+x%)2=3500 D.2500(1+x)+2500(1+x)2=35006.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,47.一个多边形的内角和是外角和的2倍,这个多边形的边数为()A.5 B.6 C.7 D.88.下列条件中,不能判定四边形ABCD为平行四边形的条件是()A.AB=AD,BC=CD B.∠A=∠C,∠B=∠D C.AB∥CD,AB=CD D.AB=CD,AD=BC9.已知关于x的方程kx2+(2k+1)x+(k﹣1)=0有实数根,则k的取值范围为()A.k≥﹣B.k>﹣C.k≥﹣且k≠0 D.k<﹣10.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x米.则可列方程为()A.32×20﹣32x﹣20x=540 B.(32﹣x)(20﹣x)=540C.32x+20x=540 D.(32﹣x)(20﹣x)+x2=540二、填空题(8小题,每题3分,共24分)11.计算﹣×的值是.12.当1<a<2时,代数式+|1﹣a|=.13.若方程x2﹣4x﹣5=0的两根为x1,x2,则x12+x22的值为.14.三角形两边长分别为3和6,第三边是方程x2﹣6x+8=0的解,则此三角形周长是.15.若一直角三角形两直角边长分别为6和8,则斜边长为.16.平行四边形ABCD中,AB=3cm,∠ABC的平分线BE交AD于E,DE=1cm,则BC=.17.如图,AD=13,BD=12,∠C=90°,AC=3,BC=4.则阴影部分的面积=.18.如图,在△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为.三、解答题(共6小题,19题,20题每题12分,21题,22题,23题每题10分,24题12分,共66分)19.计算:(1)(2).20.解方程(1)x2+2x﹣3=0(2)3x(x﹣2)=2(2﹣x)21.已知关于x的方程x2+(2m﹣1)x+m2=0有实数根,(1)求m的取值范围;(2)若方程的一个根为1,求m的值;(3)设α、β是方程的两个实数根,是否存在实数m使得α2+β2﹣αβ=6成立?如果存在,请求出来,若不存在,请说明理由.22.如图,在一棵树CD的10m高处的B点有两只猴子,它们都要到A处池塘边喝水,其中一只猴子沿树爬下走到离树20m处的池塘A处,另一只猴子爬到树顶D后直线跃入池塘的A处.如果两只猴子所经过的路程相等,试问这棵树多高?23.国贸大厦销售一批名牌衬衫,现在平均每天可售出20件,每件盈利40元.为了扩大销售量,增加盈利,尽快减少库存,国贸决定采取适当的降价措施.经调查发现,如果这种衬衫的售价每降低1元,那么国贸平均每天可多售出2件.国贸若要平均每天盈利1200元,每件衬衫应降价多少元?24.如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.市八年级(下)期中数学试卷参考答案与试题解析一、选择题(10小题,每小题3分,共30分)1.下列各式是最简二次根式的是()A. B. C.D.【考点】最简二次根式.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:=2,被开方数含能开得尽方的因数,不是最简二次根式,A不正确;是最简二次根式,B正确;=x,被开方数含能开得尽方的因数,不是最简二次根式,C不正确;被开方数含分母,不是最简二次根式,D不正确.故选:B.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.式子有意义,则x的取值范围是()A.x≥2 B.x≤2 C.x≥﹣2 D.x≤﹣2【考点】二次根式有意义的条件.【分析】因为是二次根式,所以被开方数大于或等于0,列不等式求解.【解答】解:根据二次根式的性质,被开方数大于或等于0,可知:x﹣2≥0,解得:x≥2.故选A.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3.下列二次根式中与是同类二次根式是()A. B. C. D.【考点】同类二次根式.【分析】化简各选项后根据同类二次根式的定义判断.【解答】解:A、与被开方数不同,故不是同类二次根式;B、与被开方数不同,故不是同类二次根式;C、与被开方数相同,故是同类二次根式;D、与被开方数不同,故不是同类二次根式.故选C【点评】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.4.用配方法解方程x2+4x﹣5=0,下列配方正确的是()A.(x+2)2=1 B.(x+2)2=5 C.(x+2)2=9 D.(x+4)2=9【考点】解一元二次方程-配方法.【专题】探究型.【分析】先将原方程进行配方,然后选项进行对照,即可得到正确选项.【解答】解:x2+4x﹣5=0,配方,得(x+2)2=9.故选C.【点评】本题考查解一元二次方程﹣﹣﹣配方法,解题的关键是学生明确什么是配方法、如何运用配方法对一元二次方程配方.5.今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3500 B.2500(1+x)2=3500C.2500(1+x%)2=3500 D.2500(1+x)+2500(1+x)2=3500【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】根据2013年教育经费额×(1+平均年增长率)2=2015年教育经费支出额,列出方程即可.【解答】解:设增长率为x,根据题意得2500×(1+x)2=3500,故选B.【点评】本题考查一元二次方程的应用﹣﹣求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“﹣”).6.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,4【考点】勾股定理的逆定理.【分析】知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【解答】解:A、()2+()2≠()2,不能构成直角三角形,故错误;B、12+()2=()2,能构成直角三角形,故正确;C、62+72≠82,不能构成直角三角形,故错误;D、22+32≠42,不能构成直角三角形,故错误.故选:B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.7.一个多边形的内角和是外角和的2倍,这个多边形的边数为()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【分析】多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,根据题意,得(n﹣2)×180°=2×360,解得:n=6.即这个多边形为六边形.故选:B.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.8.下列条件中,不能判定四边形ABCD为平行四边形的条件是()A.AB=AD,BC=CD B.∠A=∠C,∠B=∠D C.AB∥CD,AB=CD D.AB=CD,AD=BC【考点】平行四边形的判定.【分析】根据平行四边形的判断定理分别作出判断得出即可.【解答】解:A、根据平行四边形的判定定理:两组对边分别平行的四边形是平行四边形;故选项A不能判断这个四边形是平行四边形;B、根据平行四边形的判定定理:两组对角分别相等的四边形是平行四边形,故选项B能判断这个四边形是平行四边形;C、根据一组对边平行且相等的四边形是平行四边形,故选项C能判断这个四边形是平行四边形;D、根据平行四边形的判定定理:两组对边相等的四边形是平行四边形,故能判断这个四边形是平行四边形;故选:A.【点评】此题主要考查了平行四边形的判定定理,准确无误的掌握定理是解题关键.9.已知关于x的方程kx2+(2k+1)x+(k﹣1)=0有实数根,则k的取值范围为()A.k≥﹣B.k>﹣C.k≥﹣且k≠0 D.k<﹣【考点】根的判别式;一元一次方程的解.【专题】计算题;判别式法.【分析】由于k的取值不确定,故应分k=0(此时方程化简为一元一次方程)和k≠0(此时方程为二元一次方程)两种情况进行解答.【解答】解:(1)当k=0时,x﹣1=0,解得:x=1;(2)当k≠0时,此方程是一元二次方程,∵关于x的方程kx2+(2k+1)x+(k﹣1)=0有实根,∴△=(2k+1)2﹣4k×(k﹣1)≥0,解得k≥﹣,由(1)和(2)得,k的取值范围是k≥﹣.故选A.【点评】本题考查的是根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.同时解答此题时要注意分k=0和k≠0两种情况进行讨论.10.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x米.则可列方程为()A.32×20﹣32x﹣20x=540 B.(32﹣x)(20﹣x)=540C.32x+20x=540 D.(32﹣x)(20﹣x)+x2=540【考点】由实际问题抽象出一元二次方程.【专题】几何图形问题.【分析】设道路的宽为x,利用“道路的面积”作为相等关系可列方程(32﹣x)(20﹣x)=540.【解答】解:设道路的宽为x,根据题意得(32﹣x)(20﹣x)=540.故选B.【点评】本题考查的是根据实际问题列一元二次方程.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.二、填空题(8小题,每题3分,共24分)11.计算﹣×的值是.【考点】二次根式的混合运算.【分析】根据二次根式的混合运算顺序,首先计算乘法,然后计算减法,求出算式﹣×的值是多少即可.【解答】解:﹣×=2==即﹣×的值是.故答案为:.【点评】(1)此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式“,多个不同类的二次根式的和可以看作“多项式”.(2)此题还考查了平方根的性质和计算,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.12.当1<a<2时,代数式+|1﹣a|=1.【考点】二次根式的性质与化简.【分析】根据二次根式的性质=|a|进行化简即可.【解答】解:∵1<a<2,∴+|1﹣a|=2﹣a+a﹣1=1.故答案为:1.【点评】本题考查的是二次根式的化简,掌握二次根式的性质=|a|是解题的关键.13.若方程x2﹣4x﹣5=0的两根为x1,x2,则x12+x22的值为26.【考点】解一元二次方程-因式分解法;代数式求值.【专题】计算题.【分析】先利用因式分解法解方程得到x1,x2,然后利用代入法计算x12+x22的值.【解答】解:x2﹣4x﹣5=0,(x﹣5)(x+1)=0,x﹣5=0或x+1=0,所以x1=5,x2=﹣1,所以x12+x22=52+(﹣1)2=26.故答案为26.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).14.三角形两边长分别为3和6,第三边是方程x2﹣6x+8=0的解,则此三角形周长是13.【考点】解一元二次方程-因式分解法;三角形三边关系.【专题】计算题;分类讨论.【分析】求出方程的解,有两种情况:x=2时,看看是否符合三角形三边关系定理;x=4时,看看是否符合三角形三边关系定理;求出即可.【解答】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0,x1=2,x2=4,当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,当x=4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为:13.【点评】本题考查了三角形的三边关系定理和解一元二次方程等知识点,关键是确定第三边的大小,三角形的两边之和大于第三边,分类讨论思想的运用,题型较好,难度适中.15.若一直角三角形两直角边长分别为6和8,则斜边长为10.【考点】勾股定理.【专题】计算题.【分析】已知两直角边求斜边可以根据勾股定理求解.【解答】解:在直角三角形中,斜边的平方等于两条直角边平方和,故斜边长==10,故答案为10.【点评】本题考查了根据勾股定理计算直角三角形的斜边,正确的运用勾股定理是解题的关键.16.平行四边形ABCD中,AB=3cm,∠ABC的平分线BE交AD于E,DE=1cm,则BC=4cm.【考点】平行四边形的性质.【分析】由平行四边形的性质和角平分线得出∠AEB=∠ABE,由等角对等边得出AE=AB=3cm,即可得出BC的长.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE=AB=3cm,∴BC=AD=AE+DE=4cm;故答案为:4cm.【点评】本题考查了平行四边形的性质、角平分线、等腰三角形的判定;熟练掌握平行四边形的性质,并能进行推理论证与计算是解决问题的关键.17.如图,AD=13,BD=12,∠C=90°,AC=3,BC=4.则阴影部分的面积=24.【考点】勾股定理的逆定理;勾股定理.【分析】先利用勾股定理求出AB,然后利用勾股定理的逆定理判断出△ABD是直角三角形,然后分别求出两个三角形的面积,相减即可求出阴影部分的面积.【解答】解:在RT△ABC中,AB==5,∵AD=13,BD=12,∴AB2+BD2=AD2,即可判断△ABD为直角三角形,阴影部分的面积=AB×BD﹣BC×AC=30﹣6=24.答:阴影部分的面积=24.故答案为:24.【点评】此题考查了勾股定理、勾股定理的逆定理,属于基础题,解答本题的关键是判断出三角形ABD 为直角三角形.18.如图,在△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为.【考点】三角形中位线定理;等腰三角形的判定与性质.【分析】首先根据全等三角形判定的方法,判断出△AFG≌△AFC,即可判断出FG=FC,AG=AC,所以点F是CG的中点;然后根据点E是BC的中点,可得EF是△CBG的中位线,再根据三角形中位线定理,求出线段EF的长为多少即可.【解答】解:∵AD是∠BAC的平分线,∴∠FAG=∠FAC,∵CG⊥AD,∴∠AFG=∠AFC=90°,在△AFG和△AFC中,,∴△AFG≌△AFC,∴FG=FC,AG=AC=3,∴F是CG的中点,又∵点E是BC的中点,∴EF是△CBG的中位线,∴EF==.故答案为:.【点评】(1)此题主要考查了三角形中位线定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.(2)此题还考查了等腰三角形的性质和应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.三、解答题(共6小题,19题,20题每题12分,21题,22题,23题每题10分,24题12分,共66分)19.计算:(1)(2).【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先对式子进行化简,再合并同类项即可解答本题;(2)根据平方差公式对式子进行化简,然后再合并同类项即可解答本题.【解答】解:(1)==5;(2)==5﹣4﹣3+2=0.【点评】本题考查二次根式的混合运算,解题的关键是明确二次根式混合运算的计算方法.20.解方程(1)x2+2x﹣3=0(2)3x(x﹣2)=2(2﹣x)【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】(1)方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解;(2)方程变形后,利用因式分解法求出解即可.【解答】解:(1)分解因式得:(x﹣1)(x+3)=0,可得x﹣1=0或x+3=0,解得:x1=1,x2=﹣3;(2)方程变形得:3x(x﹣2)+2(x﹣2)=0,分解因式得:(3x+2)(x﹣2)=0,可得3x+2=0或x﹣2=0,解得:x1=﹣,x2=2.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解法是解本题的关键.21.已知关于x的方程x2+(2m﹣1)x+m2=0有实数根,(1)求m的取值范围;(2)若方程的一个根为1,求m的值;(3)设α、β是方程的两个实数根,是否存在实数m使得α2+β2﹣αβ=6成立?如果存在,请求出来,若不存在,请说明理由.【考点】根与系数的关系;根的判别式.【专题】计算题.【分析】(1)根据判别式的意义得到△=(2m﹣1)2﹣4m2≥0,然后解不等式即可;(2)把x=1代入原方程可得到关于m的一元二次方程,然后解此一元二次方程即可;(3)根据根与系数的关系得到α+β=﹣(2m﹣1),αβ=m2,利用α2+β2﹣αβ=6得到(α+β)2﹣3αβ=6,则(2m﹣1)2﹣3m2=6,然后解方程后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m﹣1)2﹣4m2≥0,解得m≤;(2)把x=1代入方程得1+2m﹣1+m2=0,解得m1=0,m2=﹣2,即m的值为0或﹣2;(3)存在.根据题意得α+β=﹣(2m﹣1),αβ=m2,∵α2+β2﹣αβ=6,∴(α+β)2﹣3αβ=6,即(2m﹣1)2﹣3m2=6,整理得m2﹣4m﹣5=0,解得m1=5,m2=﹣1,∵m≤;∴m的值为﹣1.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=,反过来也成立.也考查了根的判别式.22.如图,在一棵树CD的10m高处的B点有两只猴子,它们都要到A处池塘边喝水,其中一只猴子沿树爬下走到离树20m处的池塘A处,另一只猴子爬到树顶D后直线跃入池塘的A处.如果两只猴子所经过的路程相等,试问这棵树多高?【考点】勾股定理的应用.【专题】应用题.【分析】要求树的高度,就要求BD的高度,在直角三角形ACD中运用勾股定理可以列出方程式,CD2+AC2=AD2,其中CD=CB+BD.【解答】解:设BD高为x,则从B点爬到D点再直线沿DA到A点,走的总路程为x+AD,其中AD=而从B点到A点经过路程(20+10)m=30m,根据路程相同列出方程x+=30,可得=30﹣x,两边平方得:(10+x)2+400=(30﹣x)2,整理得:80x=400,解得:x=5,所以这棵树的高度为10+5=15m.故答案为:15m.【点评】本题考查的是勾股定理的灵活运用,要求在变通中熟练掌握勾股定理.23.国贸大厦销售一批名牌衬衫,现在平均每天可售出20件,每件盈利40元.为了扩大销售量,增加盈利,尽快减少库存,国贸决定采取适当的降价措施.经调查发现,如果这种衬衫的售价每降低1元,那么国贸平均每天可多售出2件.国贸若要平均每天盈利1200元,每件衬衫应降价多少元?【考点】一元二次方程的应用.【专题】销售问题.【分析】商场降价后每天盈利=每件的利润×卖出的件数=(40﹣降低的价格)×(20+增加的件数),把相关数值代入即可求解.【解答】解:∵每件衬衫降价1元,商场平均每天可多售出2件,∴每件衬衫降价x元,商场平均每天可多售出2x件,∵原来每件的利润为40元,现在降价x元,∴现在每件的利润为(40﹣x)元,∴y=(40﹣x)(20+2x)=﹣2x2+60x+800=1200.整理得:x2﹣30x+200=0.解得:x=10或x=20,∵为了减少库存,∴x=20答:每件衬衫应降价20元.【点评】本题考查一元二次方程的应用,重点考查理解题意的能力,关键是看到降价和销售量的关系,以利润做为不等量关系列方程求解.24.如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线相交于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.【考点】平行四边形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】(1)根据同旁内角互补两直线平行求出BC∥AD,再根据两直线平行,内错角相等可得∠CBE=∠DFE,然后利用“角角边”证明△BEC和△FCD全等,根据全等三角形对应边相等可得BE=EF,然后利用对角线互相平分的四边形是平行四边形证明即可;(2)分①BC=BD时,利用勾股定理列式求出AB,然后利用平行四边形的面积公式列式计算即可得解;②BC=CD时,过点C作CG⊥AF于G,判断出四边形AGCB是矩形,再根据矩形的对边相等可得AG=BC=3,然后求出DG=2,利用勾股定理列式求出CG,然后利用平行四边形的面积列式计算即可得解;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾.【解答】(1)证明:∵∠A=∠ABC=90°,∴BC∥AD,∴∠CBE=∠DFE,在△BEC与△FED中,,∴△BEC≌△FED,∴BE=FE,又∵E是边CD的中点,∴CE=DE,∴四边形BDFC是平行四边形;(2)①BC=BD=3时,由勾股定理得,AB===2,所以,四边形BDFC的面积=3×2=6;②BC=CD=3时,过点C作CG⊥AF于G,则四边形AGCB是矩形,所以,AG=BC=3,所以,DG=AG﹣AD=3﹣1=2,由勾股定理得,CG===,所以,四边形BDFC的面积=3×=3;③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾,此时不成立;综上所述,四边形BDFC的面积是6或3.【点评】本题考查了平行四边形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,(1)确定出全等三角形是解题的关键,(2)难点在于分情况讨论.。

陕西省咸阳市秦都中学2024—2025学年八年级上学期11月期中数学试题(含答案)

陕西省咸阳市秦都中学2024—2025学年八年级上学期11月期中数学试题(含答案)

2024~2025学年度第一学期期中调研试题(卷)八年级数学注意事项:1.本试卷共6页,满分120分,时间120分钟,学生直接在试题上答卷;2.答卷前将装订线内的项目填写清楚.一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.下列四个实数中,是无理数的为()A.0B.C.D.2.下列各组数据,是勾股数的是()A.B.C.D.3.化简正确的是()A.5B.C.D.4.将直线向上平移2个单位长度,则平移后的直线为()A.B.C.D.5.下列说法正确的是()A.-27的立方根是3B.C.4的算术平方根是2D.1的平方根是16.已知,则直线的图象是下列选项中的()A.B.C.D.7.如图,分别以的三边为斜边向外作,,,且,这三个直角三角形的面积分别为,且,则()A.25B.C.30D.358.在物理实验探究课上,小明利用滑轮组及相关器材进行实验,不计绳重和摩擦,他把得到的拉力和所悬挂重物的重力的几组数据用电脑绘制成如图所示的图象,请你根据图象判断以下结论错误的是()A.当拉力时,物体的重力B.拉力随着重物重力的增加而增大C.拉力与重力成正比例函数关系D.当滑轮组不挂重物时,所用拉力为0.5N二、填空题(共5小题,每小题3分,计15分)9.若,写出一个满足条件的的值为_________.(写出一个即可)10.在中,,若,则的长为_________.11.若一次函数的图象经过点和点,则的大小关系为(填“”“”或“”).12.在平面直角坐标系中,已知点和点关于轴对称,则的值是_________.13.如图,圆柱形杯子(无盖)的高为18cm,底面周长为24cm,已知蚂蚁在外壁处(距杯子上沿2cm )发现一滴蜂蜜在杯子内壁处(距杯子下沿4cm),则蚂蚁从处爬到处的最短距离(杯子厚度忽略不计)为_________cm.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)计算:.15.(5分)在平面直角坐标系中,已知点的坐标为,则点到坐标原点的距离是多少? 16.(5分)已知与成正比例,当时,.(1)求与之间的函数表达式;(2)请判断点是否在这个函数的图象上,并说明理由.17.(5分)在平面直角坐标系中,已知点,根据条件解决下列问题:(1)若点在轴上,求点的坐标;(2)若点在过点且与轴平行的直线上,求点的坐标.18.(5分)已知实数的平方根为,求实数的算术平方根和立方根.19.(5分)如图,在平面直角坐标系中,的三个顶点的坐标分别为,.(1)作出关于轴对称的,点的对应点分别为点;(2)在(1)的条件下,写出点的坐标。

(试卷)2023-2024学年度八年级第二学期期中试试卷

(试卷)2023-2024学年度八年级第二学期期中试试卷

2023—2024学年度第一学期期中教学质量评估八年级数学(试卷)一、选择题(本大题10小题,每小题3分,共30分)1.下列数字中,属于最简二次根式的是(▲)A .23aB .10C .12D .312.以下列四组数为一个三角形的边长,其中能构成直角三角形的是(▲)A .2,2,3B .6,8,10C .6,7,9D .4,4,53.一场暴雨过后,垂直于地面的一棵树在距地面2m 处折断,树尖恰好碰到地面,经测量树根与倒后的树尖的距离是4m ,则树高为(▲)A .m B .m C .(23+2)m D .+2)m4.下列条件中能判定四边形ABCD 是平行四边形的是(▲)A .∠A =∠B ,∠C =∠DB .AB =AD ,CB =CDC .AB =CD ,AD =BC D .AB ∥CD ,AD =BC5.已知直角三角形两边的长为3和4,则此三角形的周长为(▲).A.12B .7+C .12或7+D .以上都不对6.如图,正方形ABCD 中,AE 垂直于BE ,且AE =3,BE =4,则阴影部分的面积是(▲)A .16B .18C .19D .21第6题图第7题图第8题图第9题图7.如图,在平行四边形ABCD 中,AD =2AB ,CE 平分∠BCD 交AD 边于点E ,且AE =3,则AB 的长为(▲)A .4B .3C .D .28.如图,在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,若AE =4,AF =6,平行四边形ABCD 的周长为40.则平行四边形ABCD 的面积为(▲)A .24B .36C .40D .489.如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点D 落在点D ′处,则重叠部分△AFC 的面积为(▲)A .6B .8C .10D .1210.如图,在四边形ABCD 中,∠ABC =90°,AD ∥BC ,AE ∥CD 交BC 于E ,AE 平分∠BAC ,AO =CO ,AD =DC =2,下面结论:①AC =2AB ;②AB =3;③S △ADC =2S △ABE ;④BO ⊥AE .其中正确的有(▲)A .1个B .2个C .3个D .4个二、填空题(本大题5小题,每小题3分,共15分)11x 的取值范围为▲;12.在湖的两侧有A ,B 两个消防栓,为测定它们之间的距离,小明在岸上任选一点C ,并量取了AC 中点D 和BC 中点E 之间的距离为16米,则A ,B 之间的距离应为▲米.第10题图第12题图第13题图第15题图13.如图,以Rt △ABC 的三边向外作正方形,若最大正方形的边长为6cm ,以AC 为边的正方形的面积为25,则AB 长为▲.14.已知菱形的两条对角线长分别为4和9,则菱形的面积为▲.15.如图,在正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =2,CE =6.H 是AF 的中点.那么CH 的长▲.三、解答题(一)(本大题3小题,每小题8分,共24分)16.计算:()1011 3.142π-⎛⎫----- ⎪⎝⎭17.如图,在平行四边形ABCD 中,E ,F 分别是AD,BC的中点,求证:四边形AFCE 是平A B C DEF G H K行四边形.18.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m ,当他把绳子的下端拉开5m 后,发现下端刚好接触地面,求旗杆的高。

陕西省西安市铁一中学2023-2024学年八年级上学期期中数学试题

陕西省西安市铁一中学2023-2024学年八年级上学期期中数学试题

陕西省西安市铁一中学2023-2024学年八年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各数中、是无理数的是()A .面积为16的正方形的边长B .体积为27的正方体的棱长C .两直角边分别为2和3的直角三角形斜边长D .长为4宽为3的长方形的对角线长2.在ABC 中,AB c =,AC b =,BC a =,下列不能判定ABC 为直角三角形的是()A .ABC ∠∠=∠+B .()()2c b c b a+-=C .23a =,24b =,25c =D .::5:12:13a b c =3.已知图形A 在y 轴的右侧,如果将图形A 上的所有点的横坐标都乘﹣1,纵坐标不变得到图形B ,则()A .两个图形关于x 轴对称B .两个图形关于y 轴对称C .两个图形重合D .两个图形不关于任何一条直线对称4.已知点()43A -,和点B 是坐标平面内的两个点,且它们关于直线2x =对称,则平面内点B 的坐标为()A .()0,3-B .()49-,C .()4,0D .()103-,5.已知正比例函数()22y k x =+的图象如图所示,则k 的值可能是()A .2-B .1-C .0D .16.若一次函数()()213y k x k =++-的图象不经过第二象限,则k 的值可以是()A .4B .0C .2-D .4-A .50,4⎛⎫ ⎪⎝⎭9.一次函数y kx b =+A .0x =10.如图,在平面直角坐标系中,直线点()2,0C 发出,射向标是()A .27,33⎛⎫ ⎪⎝⎭二、填空题(4)解方程:24(1)49x +=四、解答题五、作图题19.已知:()()()0,1,2,0,4,3A B C(1)在坐标系中描出各点,画出ABC .(2)作出ABC 关于y 轴对称的图形A B C ''' (3)求ABC 的面积:六、解答题20.如图,在四边形ABCD 中,90231B AB BC CD DA ∠=︒====,,,.(1)求DAB ∠的度数;(2)求四边形ABCD 的面积.七、应用题21.联通公司手机话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为1y (元),B 套餐每月话费为2y (元),月通话时间为x 分钟.(1)分别表示出1y 与x ,2y 与x 的函数关系式.(2)A 套餐的用户这个月的通话时间为160分钟,他应缴费多少元?如果该手机用户本月缴费50元,求他本月的通话时间?(3)月通话时间为多长时,A 、B 两种套餐收费一样?22.A ,B 两地相距300km ,甲、乙两人分别开车从A 地出发前往B 地,其中甲先出发1h ,如图是甲,乙行驶路程()()km ,km y y 乙甲随行驶时间()h x 变化的图象,请结合图象信息.解答下列问题:(1)分别求出,y y 甲乙与x 之间的函数解析式;(2)求出点C 的坐标;(3)在乙的行驶过程中,当x 为何值时,甲乙相距20千米.八、解答题(1)求A点坐标;(2)如果在y轴上存在一点P,使 OAP是以OA为底边的等腰三角形,求P点坐标;(3)在直线y=﹣2x+7上是否存在点Q,使 OAQ的面积等于6?若存在,请求出Q点的坐标,若不存在,请说明理由.。

2023-2024学年度上学期八年级期中测试题数学附详细答案

2023-2024学年度上学期八年级期中测试题数学附详细答案

2023-2024学年度上学期八年级期中测试题数学本试卷包括三道大题,共24小题,共4页.全卷满分120分.考试时间为90分钟. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题(每小题3分,共24分)1.在实数√3,0,−0.33,10中,其中无理数是A.√3B.0C.−0.33D.10 2.64的算术平方根是A.√8B.8C.±8D.16 3.下列计算正确的是A.a+a=a 2B.a 2·a 2=2a 2C.(−ab) 2=ab 2D.(2a) 2÷4a=a 4.下列计算正确的是A.√9=±3B.√9=−3C.√273=3 D.−√273=3 5.若等腰三角形的两边长分别为2、4,则它周长为A.8B.10C.8或10D.10或12 6.下列分解因式正确的是A.a 2+a+1=a(a+1)+1B.a 2−ab=a(a −1)C.a 2−4b 2=(a+2b)(a −2b)D.a 2+2ab+b 2=(a −b)27.如图,A 、B 两点分别位于一个池塘的两端,小明想用绳子测量A 、B 之间的距离,但绳子不够长.他通过思考又想到了这样一个方法:先在地上取一个可以直接到达A 、B 的点C ,连接AC 并延长到点D ,使CD=CA ;连接BC 并延长到点E ,使CE=CB ,连接DE 并且测出DE 的长即为A 、B 之间的距离.图中△ABC ≌△DEC 的数学理由是 A.SSS B.SAS C.ASA D.AAS8.如图,在△ABA 1中,AB=A 1B ,∠B=20°.在A 1B 上取一点C ,延长AA 1到点A 2,使A 1A 2=A 1C ,连结A 2C ;在A 2C 上取一点D ,延长A 1A 2到点A 3,使A 2A 3=A 2D ,连结A 3D ;……,按此操作进行下去,在以点A 5为顶角顶点的等腰三角形的底角的度数为 A.20° B.10° C.5° D.2.5° 二、填空题(每小题3分,共18分) 9.16的平方根为_______.10.命题“内错角相等”是______命题(填“真”或“假”). 11.若a+b=3,则a 2−b 2+6b 的值为_______.12.如图,△ABC ≌△DBE ,点B 在线段AE 上,若∠C=25°,则∠BDE 的度数是_____.13.如图,在△ABC 中,AB=AC ,点D 为BC 的是中点,连结AD ,在边AC 上截取AD=AE.若∠BAD=20°,则∠EDC 的大小为____度.14.如图,四边形ABCD 中,AB=BC ,∠ABC=90°,对角线BD ⊥CD.若BD=6,CD=1,则四(第12题)AB ED C(第13题)ABCEDA(第14题)BDC(第7题)(第8题)B C DE A 12 A3 A4 A n边形ABCD 的面积为_____.三、解答题(本大题10小题,共78分)15.(6分)计算:(1)(6ab)2÷4a 2. (2)(a+b)(a −3b). 16.(6分)因式分解下列各题:(1)a 2−9. (2)a 2+12a+36. 17.(6分)如图,AB=AE ,AC=AD ,∠BAD=∠EAC ,∠D=43°,求∠C 的大小.18.(7分)先化简,再求值:(2x +1)(2x −1)− x (4x −3),其中x =120.19.(7分)图①、图②、图③均是4×4的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,△ABC 的顶点均在格点上.只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法,并保留作图痕迹.(1)在图①中画△BCD ,使△BCD 与△ABC 全等.(2)在图②中画△BCE ,使△BCE 与△ABC 的面积相等,但不全等.(3)在图③中画△FGH ,使△FGH 与△ABC 全等,且所作的三角形有一条边经过AC 的中点.(第19题)图③AC B图② AC B图①AC BA(第17题)ECDB20.(7分)先化简,再求值:(2a −b)2−(a −2b)(a+2b)−2a(a-2b),其中a=√5,b=1. 21.(8分)如图①,在△ABC 中,AB=5,AC=4,∠ABC 和∠ACB 的平分线交于点D ,过点D 作EF ∥BC ,分别交边AB 、AC 于E 、F 两点. (1)求△AEF 的周长.(2)如图②,在△ABC 中,AB=5,AC=4,∠ABC 和∠ACG 的平分线交于点D ,过点D 作EF ∥BC ,分别交边AB 、AC 于E 、F 两点.若AC=4AF ,则△AEF 的周长为________.22.(9分)【探究】在△ABC 中,AB=AC ,D 是边BC 上一点,以AD 为一边在AD 的右侧作△ADE 使AE=AD ,∠DAE=∠BAC ,连结CE. (1)求证:△BAD ≌△CAE.(2)若∠BAC=α,求∠DCE 的大小(用含α的代数式表示).【应用】若∠BAC=50°,且△DCE 的两个锐角的度数之比为1︰4,则∠DAC 的大小为_____度.23.(10分)【教材原题】观察图①,用等式表示下图中图形的面积的运算为_________.ABEC(第22题)D(第21题)图②A BC GDEFA图①CEF DB【类比探究】观察图②,用等式表示图中阴影部分图形的面积和为___________. 【应用】(1)根据图②所得的公式,若a+b=10,ab=5,则a 2+b 2=___________. (2)若x 满足(11−x )(x −8)=2,求(11−x )2+(x −8)2的值.【拓展】如图③,某学校有一块梯形空地ABCD ,AC ⊥BD 于点E ,AE=DE ,BE=CE.该校计划在△AED 和△BEC 区域内种花,在△CDE 和△ABE 的区域内种草.经测量种花区域的面积和为252,AC=7,直接写出种草区域的面积和.24.(12分)如图,在△ABC 中,∠ABC=90°,AB=4,BC=6,点B 在直线m 上,点M 是直线m 上点B 左边的一点,且BM=2,∠ABM=60°.动点P 从点A 出发,以每秒1个单位长度的速度沿折线AB-BC 向终点C 匀速运动;同时动点Q 从C 点出发,以每秒3个单位长度的速度沿折线沿CB-BA 向终点A 匀速运动.分别过点P 、点Q 作PD ⊥m 于D ,QE ⊥m 于E.设点P 的运动时间为t(s). (1)用含t 的代数式表示BQ 的长.(2)当点Q 在边BC 上时,求证:∠PBD=∠BQE.(3)连结PM 、QM ,在不添加辅助下和连结其它线段的条件下,当图中存在等边三角形时,求t 的值.(4)当△PBD 与△BQE 全等时,直接写出t 的值.A(第23题)图①图②图③D CBabab a 2b 2花 草草=++ 花E2023-2024学年度上学期八年级期中测试题参考答案数学本试卷包括三道大题,共24小题,共4页.全卷满分120分.考试时间为90分钟. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题(每小题3分,共24分)1.在实数√3,0,−0.33,10中,其中无理数是A.√3B.0C.−0.33D.10 1.解:√3是无限不循环小数,是无理数,故选A 。

陕西省西安市经开第二中学2024-2025学年八年级上学期期中考试数学试题(含答案)

陕西省西安市经开第二中学2024-2025学年八年级上学期期中考试数学试题(含答案)

2024~2025学年度第一学期期中检测八年级数学(北师大版)考生注意:本试卷共8页,满分120分,时间120分钟。

一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题目要求的)1.下列各数中,是无理数的是( )A.BC .-2D .1.52.已知一直角三角形两直角边的长分别为9,12,则它的斜边长为()A .15B .16C .17D.253.下列二次根式中,是最简二次根式的是( )A B CD 4.下列表示与之间关系的图象中,不是的函数的是()A .B .C .D .5.中国象棋具有悠久的历史,战国时期,就有了关于象棋的正式记载.如图是中国象棋棋局的一部分,以“士”所在位置为原点,以图中小正方形的边长为单位长度,建立平面直角坐系标系,则“炮”的位置应表示为()(第5题图)A .(4,-1)B .(-1,4)C .(3,-2)D .(-2,-3)6,则的取值范围是( )A .B .C .D .7.在平面直角坐标系中,将一次函数的图象向下平移3个单位长度后得到一个正比例函数的图象,若点在一次函数的图象上,则的值为( )A .2B .-2C .D .13y x y x 5b =-b 5b <5b ≤5b ≥5b >2y x b =-+(),2a 2y x b =-+a 1212-8.如图,在中,的垂直平分线交于点的垂直平分线交于点,点为垂足,连接,若,则的长为( )(第8题图)ABCD二、填空题(共5小题,每小题3分,计15分)9______9.(填“>”“<”或“=”)10.已知一次函数中,随增大而增大,则的取值范围是______.11.长方形在平面直角坐标系中的位置如图所示,若,点的坐标为(-6,6),则点的坐标为______.(第11题图)12.现有一个容器,在注水之前容器内有少量水,现向容器内注水,并同时开始计时,在注水过程中,水面高度匀速增加,在容器注满水之前,发现容器内的水面高度是时间的一次函数,将容器内的水面高度与时间记录如下表:x /s 051025…y /cm10111215…则容器内的水面高度关于时间的函数关系式为______.13.如图,在中,是边上的高,若分别是和上的动点,则的最小值为______.ABC △AB BC ,D AC BC E ,M N ,AD AE 35,2,22BD DE EC ===AC ()211y m x =-+y x m ABCD 10AD =B C ()cm y ()s x ()cm y ()s x ()cm y ()s x ABC △10,12,AB AC BC AD ===BC ,P Q AD AC PC PQ +(第13题图)三、解答题(共13小题,计81分.解答应写出过程)14.(5分)计算:.15.(5分)计算:16.(5分)已知正数的两个平方根分别是和,求的算术平方根.17.(5分)已知平面直角坐标系如图所示:(第17题图)(1)画出一次函数的图象;(2)当时,的取值范围是______.18.(5分)如图,在等腰中,,若的度数.(第18题图)19.(5分)小明有一根铁丝,他用这根铁丝围成了一个长方形,其中长方形的宽为,长是宽的4倍.若小明用这根铁丝首尾相接围成正方形,则围成的正方形与原长方形相比,谁的面积大?20.(5分)如图,在平面直角坐标系中,的顶点坐标分别为A (4,1),B (3,4),C (1,2).114-(77-+a 23x -1x -3=2a b +21y x =+0y >x ABC △30BCD ∠=︒3,AB BC BD CD ====ACD∠dm ABC △(第20题图)(1)请画出关于x 轴对称的图形,点A ,B ,C 的对应点分别为;(2)若点P 在在内部,则点P 在中对应点的坐标为_______.21.(6分)“儿童散学归来早,忙趁东风放纸莺”.又到了放风筝的最佳时节.如图,小亮的风筝在点C 处,点A 表示线轴所在的位置,已知引线的长度为10米,两处的水平距离为8米(风筝本身的长、宽忽略不计).现要使风筝沿竖直方向上升9米至处,若位置不变,引线的长度应加长多少米?(第21题图)22.(7分)在平面直角坐标系中,点.(1)若点M 在y 轴上,求m 的值;(2)若点M 到x 轴的距离为8,求点M 的坐标.23.(7分)我们知道气球放在空气中会往上飘,小颖利用一只气球研究其上升的速度,发现该气球所在位置距离地面的高度与气球上升的时间之间的函数关系如图所示.请根据图象回答下列问题:(第23题图)(1)气球的起始高度为______;(2)若气球所在位置距离地面的高度与气球上升的时间之间的函数关系式为,则的值为______;(3)若小颖测得气球此时的高度为,则气球在空气中上升了多长时间?ABC △111A B C △111,A B C ,(),m n ABC △111A B C △1P AC ,A B M ,A B AC ()1,24M m m -+()m y ()min x m ()m y ()min x y kx b =+k 30m24.(8分)如图,在中,点在边上,已知,点在上,且.(第24题图)(1)试说明:;(2)若,求的长.25.(8分)随着电动车的普及,电动车的安全充电问题越来越受重视,各个小区内的充电棚随处可见.小明调查了自己小区内的充电APP 的收费方案,方案如下:方式一:不办充电APP 会员,每充电1小时需按原价支付0.5元;方式二:办理充电APP 会员,需要首先支付办理会员的费用10元,每充电1小时在原价的基础上打五折.(1)设充电时间为小时,选择不办会员充电所需费用为元,办理会员后充电所需费用为元,请分别写出与之间的关系式;(2)一个电动车每年充电时长为1200小时,请问选哪种充电方式更划算?(3)当充电时长为多少时,两种充电模式的费用相差5元.26.(10分)如图①,直线分别与轴交于两点,过点的直线交轴负半轴于点.(1)请直接写出直线的表达式:______.(2)已知在直线上存在一点,使得,请求出所有满足条件的点的坐标;(3)如图②,点的坐标为(11,0),点为轴正半轴上一动点,以点为直角顶点,为腰在第一象限内作等腰直角三角形,连接.求的最大值.(第26题图)ABC △D BC 13,5,12AC CD AD ===E AD EBD CAD ∠=∠AD BC ⊥BE AC =AB x 1y 2y 12,y y x :6AB y x =-+,x y ,A B B x ()3,0C -BC BC D ABD AOD S S = D D P x P BP BPQ ,QA QD QB QD -2024~2025学年度第一学期期中检测八年级数学参考答案及评分标准(北师大版)一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题目要求的)题号12345678选项BABDACCD二、填空题(共5小题,每小题3分,计15分)9.< 10. 11.(4,6) 12. 13.9.6三、解答题(共13小题,计81分.解答应写出过程)14.解:.(3分).(5分)15.解:(3分).(5分)16.解:因为正数的两个平方根分别是和,所以.(1分)所以,所以.,所以,解得,(3分)所以.所以.(5分)17.解:(1)列表:x …-202…y…-315…如图为一次函数的图象.12m >1105y x =+114-1=--+1=-(77-+49203=--26=a 23x -1x -()2310x x -+-=2x =()()221121a x =-=-=3==3427b +=6b =212613a b +=+⨯=2a b +21y x =+(2).(5分)18.解:因为所以.所以.即是直角三角形,.(3分)因为,所以.所以.(5分)19.解:由题意可知,长方形的长为所以长方形的周长为.所以围成的正方形边长为..围成的正方形面积为因为,所以围成的正方形面积大.(5分)20.解:(1)如图,即为所求.(3分)(2).(5分)12x >-3,BC BD CD ===22212,12BC BD CD +==222BC BD CD +=BCD △90B ∠=︒AB BC =45BCA ∠=︒15ACD BCA BCD ∠=∠-∠=︒)22dm ⨯+=⨯=)4dm ÷=()232dm =()250dm =5032>111A B C △(),m n -21.解:在中,米,米,则(米).(2分)在中,米,米.则(米).(4分)则引线的长度应加长米(6分)22.解:(1)因为在轴上,所以,解得.(3分)(2)因为点到轴的距离为8,所以或.所以或-6.当时,,当时,.所以点的标为(1,8)或(-7,-8).(7分)23.解:(1)15.(2分)(2)0.5.(4分)(3)由(1)、(2)可知气球所在位置距离地面的高度与气球上升的时间之间的函数关系式为.当时,即,解得.答:若小颖测得气球此时的高度为,则气球在空气中上升了.(7分)24.解:(1)因为,所以,所以.(2分)所以是直角三角形.所以.所以.(4分)(2)因为,所以.因为,所以.所以.(6分)所以.(8分)25.解:(1)根据题意可得,(1分)(3分)(2)把代入可得,把代入可得.因为,所以办理该APP 会员更划算.(5分)(3)当时,即,解得.当时,即,解得.答:充电时长为60或20小时时,两种充电模式的费用相差5元.(8分)Rt ABC △8AB =10AC=6BC ==Rt ABM △8AB =6915BM BC CM =+=+=17AM ==AC 7AM AC -=()1,24M m m -+y 10m -=1m =M y 248m +=248m +=-2m =2m =11m -=6m =-17m -=-M ()m y ()min x 0.515y x =+30y =300.515x =+30x =30m 30min 12,13,5AD AC CD ===222222125169,13169AD CD AC +=+===222AD CD AC +=ACD △90ADC ∠=︒AD BC ⊥AD BC ⊥90BDE ADC ∠=∠=︒,EBD CAD BE AC ∠=∠=()AAS BDE ADC ≌△△12BD AD ==AB ==10.5y x =20.50.5100.2510.y x x =⨯+=+1200x =10.5y x =1600y =1200x =20.2510y x =+2310y =310600<125y y -=()0.50.25105x x -+=160x =215y y -=0.25100.55x x +-=20x =26.解:(1).(2分)(2)由(1)可知直线的表达式为,直线的表达式为,所以.所以.如图①,点在直线上,过点作轴于点,所以设.所以,,.①当,即时,,即,若,则,解得.则.(4分)②当,即时,,即,若,则,解得(舍去);③当,即时,,即,若,则,解得.则.综上所述,当或时,.(6分)图①(3)已知,设,在中,,因为是等腰直角三角形,,所以.如图②,过点作轴于点,26y x=+BC26y x=+AB6y x=-+()()()6,0,0,6,3,0A B C-6,6,3OA BO OC===D BC D DE x⊥E()(),26,,0D a aE a+()116362722ABCS AC OB=⋅=⨯+⨯=△()119632626222ADCS AC DE a a=⋅=⨯+⨯+=+△1162632622AODS OA DE a a=⋅=⨯⨯+=+△0266a<+<30a-<<ABD ABC ADCS S S=-△△△()9927262726922a a a-+=-+=-ABD AODS S=△△()9326a a-=+65a=-618,55D⎛⎫- ⎪⎝⎭260a+<3a<-ABD ABC ADCS S S=+△△△()9927262726922a a a++=-+=-ABD AODS S=△△()9326a a-=-+6a=266a+>0a>ABD ADC ABCS S S=-△△△()9926272627922a a a+-=+-= ABD AODS S=△△()9326a a=+6a=()6,18D618,55D⎛⎫- ⎪⎝⎭()6,18DABD AODS S=△△()()()6,0,0,6,11,0A B D()(),00P m m>Rt BOP△6,OB OP m==BPQ△90BPQ∠=︒BP QP=Q QT x⊥T因为,所以.在和中,所以.所以.(7分)所以.所以.所以是等腰直角三角形,.(8分)作点关于直线的对称点,连接.所以.所以.所以轴,且.所以,则(9分)当点在一条直线上时,的值最大,最大值为的值.所以由勾股定理得.(10分)图②90BPO QPT QPT PQT ∠+∠=∠+∠=︒BPO PQT ∠=∠BOP △PTQ △,,,BOP PTQ BPO PQT BP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS BOP PTQ ≌△△,6OP TQ m OB PT ====66AT OP PT OA m m =+-=+-=AT QT =ATQ △45QAT ∠=︒D AQ R ,,QR BR AR 45QAR ∠=︒90RAT ∠=︒RA x ⊥DQA RQA ≌△△1165AR AD ==-=()6,5R ,,B R Q QB QD -BRBR ==。

陕西省西安市第三中学2024-2025学年八年级上学期期中数学试卷

陕西省西安市第三中学2024-2025学年八年级上学期期中数学试卷

陕西省西安市第三中学2024-2025学年八年级上学期期中数学试卷一、单选题1.下列是无理数的是()A .4B .0.02020002CD .272.在平面直角坐标系中,点(1,5)-所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限3.已知点()1,3A a +,点()3,3B a +,且直线AB y ∥轴,则a 的值为()A .2B .1C .2-D .4-4.点(﹣2,6)在正比例函数y =kx 图象上,下列各点在此函数图象上的是()A .(3,1)B .(﹣3,1)C .(1,3)D .(﹣1,3)5.下列条件中,不能判断△ABC 为直角三角形的是()A .a =1.5b =2c =2.5B .a :b :c =5:12:13C .∠A +∠B =∠CD .∠A :∠B :∠C =3:4:56.一次函数23y x =-+的图象向下平移2个单位长度后,与y 轴的交点坐标为()A .()0,5B .()0,1C .()5,0D .()1,07.已知实数3a =,则以下对a 的估算正确的是()A .34a <<B .45a <<C .56a <<D .67a <<8.在同一平面直角坐标系中,函数y kx =与y kx k =--的图象大致是()A .B .C .D .9.如图,在长方形ABCD 中,4,9AB AD ==,E 为边AD 上一点,5AE =,P 为边BC 上一动点,连接AP EP 、,将APE V 沿EP 折叠,点A 的对应点为点A ',当A '落在边CD 上时,BP 的长为()A .3B .103C .113D .8310.如图.A ,B 两地之间的路程为4500米,甲乙两人骑车都从A 地出发,已知甲先出发6分钟后,乙才出发,乙在A ,B 之间的C 地追赶上甲,当乙追赶上甲后,乙立即返回A 地,甲继续往B 地前行.甲到达B 地后停止骑行,乙骑行到达A 地时也停止(乙在C 地掉头时间忽略不计),在整个骑行过程中,甲和乙都保持各自速度匀速骑行,甲乙两人相距的路程y (米)与甲出发的时间x (分钟)之间的关系如图所示,下列说法正确的是()①甲的速度为150米/分②乙的速度为240米/分③图中M 点的坐标为()24,3600④乙到达A 地时,甲与B 地相距900米A .①③B .①③④C .①④D .①②④二、填空题11.若()2,1P m m +-在x 轴上,则m =.12.“凌波仙子生尘袜,水上轻盈步微月.”宋朝诗人黄庭坚以水中仙女借喻水仙花.如图,将水仙花图置于正方形网格图中,点A ,B ,C 均在格点上.若点(2,3)A -,(0,1)B ,则点C 的坐标为.13.已知点()12,A y -、()21,B y 都在直线3y x a =-+上,那么1y 2y (填“>”“<”或“=”).14.如图,已知圆柱底面的周长为12cm ,圆柱高为8cm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为.15.有理数,,a b c 在数轴上对应点的位置如图所示,化简:2c a +=.16.如图,ABC V 是等腰直角三角形,90ACB ∠=︒,4AC BC ==,分别以AB ,BC 为边作正方形ABDE 和正方形BCFH ,点P 是线段DE 上的动点,点Q 是线段BC 上的动点,则APQ △的周长最小值为.三、解答题17.计算:;-(4)())2122-.18.请在数轴上用尺规作出19.如图,有一四边形纸片ABCD ,AB BC ⊥,测得9cm AB =,12cm BC =,8cm CD =,17cm AD =,求这张纸片的面积.20.已知21a -的算术平方根是1,31a b +-的平方根是2±,c 是8-的立方根,求a b c --的平方根.21.如图所示,一架云梯长25m ,斜靠在一面墙上,梯子底端C 离墙7m .如果梯子的顶端下滑了9m ,那么梯子的底部在水平方向滑动了多少?22.如图,在平面直角坐标系中,ABC 的三个顶点的坐标分别为()()()244112A B C ---,,,,,.(1)作出ABC 关于y 轴对称的111A B C ,并写出点1A 的坐标;(2)求ABC 的面积.23.我校将举办一年一度的秋季运动会,需要采购一批某品牌的乒乓球拍和配套的乒乓球,一副球拍标价80元,一盒球标价25元.体育商店提供了两种优惠方案,具体如下:方案甲:买一副乒乓球拍送一盒乒乓球,其余乒乓球按原价出售;方案乙:按购买金额打9折付款.学校欲购买这种乒乓球拍10副,乒乓球()10x x ≥盒.(1)请直接写出两种优惠办法实际付款金额y 甲(元),y 乙(元)与x (盒)之间的函数关系式.(2)如果学校需要购买15盒乒乓球,哪种优惠方案更省钱?24.如图,在平面直角坐标系xOy 中,直线y=-43x +8与x 轴,y 轴分别交于点A ,点B ,点D 在y 轴的负半轴上,若将△DAB 沿直线AD 折叠,点B 恰好落在x 轴正半轴上的点C 处.(1)求AB 的长和点C 的坐标;(2)求直线CD 的表达式.25.如图,在平面直角坐标系中,O 是坐标原点,长方形OACB 的顶点A B ,分别在x 轴与y 轴上,已知610OA OB ==,.点D 为y 轴上一点,其坐标为()0,2,点P 从点A 出发以每秒2个单位的速度沿线段AC CB -的方向运动,当点P 与点B 重合时停止运动,运动时间为t 秒.(1)当点P 经过点C 时,求直线DP 的函数解析式;(2)求OPD △的面积S 关于t 的函数解析式;(3)点P 在运动过程中是否存在使BDP △为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.。

北师大版八年级第二学期期中数学试卷及答案

北师大版八年级第二学期期中数学试卷及答案

北师大版八年级第二学期期中数学试卷及答案一、选择题1.(3分)下列各式中是二次根式的是()A.B.C.D.(x<0)2.(3分)已知一个平行四边形两邻边的长分别为4和7,那么它的周长为()A.11B.18C.22D.283.(3分)下列各组数中,不能构成直角三角形的是()A.3,4,5B.6,8,10C.5,12,13D.7,5,104.(3分)若二次根式在实数范围内有意义,则a的取值范围是()A.a>1B.a≥1C.a=1D.a≤15.(3分)下列计算中正确的是()A.+=B.﹣=C.2+=2D.+=46.(3分)如图,在△ABC中,AB=8,BC=10,AC=6,则BC边上的高AD为()A.8B.9C.D.107.(3分)如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm8.(3分)如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG 是正方形.若DE=2cm,则AC的长为()A.cm B.4cm C.cm D.cm9.(3分)如图所示,▱OMNP的顶点P坐标是(2,3),顶点M坐标的是(4,0),则顶点N坐标是()A.(7,4)B.(6,4)C.(7,3)D.(6,3)10.(3分)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm二、填空题(本大题共7小题,每小题4分,共28分)11.(4分)化简:=.12.(4分)命题“两直线平行,同位角相等.”的逆命题是.13.(4分)已知菱形ABCD的两条对角线AC=6cm,BD=8cm,则菱形的面积为cm2.14.(4分)若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为.(结果保留根号)15.(4分)计算(2﹣2)2的结果是.16.(4分)如图所示,直线a经过正方形ABCD的顶点A,分别过顶点B、D作DE⊥a于点E、BF⊥a于点F,若DE=4,BF=3,则EF的长为.17.(4分)如图,正方形ABCD的边长为5,E是AB上一点,且BE:AE=1:4,若P是对角线AC上一动点,则PB+PE的最小值是.(结果保留根号)三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)计算:﹣+﹣.19.(6分)如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.20.(6分)如图所示,△ABC中,∠B=45°,∠C=30°,AB=求:AC的长.四、解答题(二)(本大题3小题,每小题8分,共24分).21.(8分)化简求值:÷•,其中a=﹣2.22.(8分)如图所示,O是矩形ABCD的对角线的交点,作DE∥AC,CE∥BD,DE、CE相交于点E.求证:(1)四边形OCED是菱形.(2)连接OE,若AD=4,CD=3,求菱形OCED的周长和面积.23.(8分)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了500m到达B点,然后再沿北偏西30°方向走了500m到达目的地C点.(1)求A、C两点之间的距离;(2)确定目的地C在营地A的什么方向?25.(10分)如图,Rt△ABC中,∠B=90°,AC=30cm,∠C=30°,点D从点C出发沿CA方向以2cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以1cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.参考答案一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个是正确的,把正确答案填写在下列表格内.1.(3分)下列各式中是二次根式的是()A.B.C.D.(x<0)解:A、的根指数为3,不是二次根式;B、的被开方数﹣1<0,无意义;C、的根指数为2,且被开方数2>0,是二次根式;D、的被开方数x<0,无意义;故选:C.2.(3分)已知一个平行四边形两邻边的长分别为4和7,那么它的周长为()A.11B.18C.22D.28解:∵平行四边形的对边相等,∴平行四边形的周长=2(4+7)=22.故选:C.3.(3分)下列各组数中,不能构成直角三角形的是()A.3,4,5B.6,8,10C.5,12,13D.7,5,10解:A、32+42=52,故是直角三角形,故此选项不符合题意;B、62+82=102,故是直角三角形,故此选项不符合题意;C、52+122=132,故是直角三角形,故此选项不符合题意;D、72+52≠102,故不是直角三角形,故此选项符合题意;故选:D.4.(3分)若二次根式在实数范围内有意义,则a的取值范围是()A.a>1B.a≥1C.a=1D.a≤1解:由题意得:a﹣1≥0,解得:a≥1,故选:B.5.(3分)下列计算中正确的是()A.+=B.﹣=C.2+=2D.+=4解:A、和不是同类二次根式,不能合并,故本选项错误;B、和不是同类二次根式,不能合并,故本选项错误;C、2和不是同类二次根式,不能合并,故本选项错误;D、+=2+2=4,计算正确,故本选项正确.故选:D.6.(3分)如图,在△ABC中,AB=8,BC=10,AC=6,则BC边上的高AD为()A.8B.9C.D.10解:∵AB=8,BC=10,AC=6,∴62+82=102,∴△ABC是直角三角形,∠BAC=90°,则由面积公式知,S△ABC=AB•AC=BC•AD,∴AD=.故选:C.7.(3分)如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm解:∵AD∥BC,∴∠DAE=∠BEA∵AE平分∠BAD∴∠BAE=∠DAE∴∠BAE=∠BEA∴BE=AB=3∵BC=AD=5∴EC=BC﹣BE=5﹣3=2故选:B.8.(3分)如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为()A.cm B.4cm C.cm D.cm解:∵点D、E分别是边AB、AC的中点,∴DE=BC,∵DE=2cm,∴BC=4cm,∵AB=AC,四边形DEFG是正方形.∴△BDG≌△CEF,∴BG=CF=1,∴EC=,∴AC=2cm.故选:D.9.(3分)如图所示,▱OMNP的顶点P坐标是(2,3),顶点M坐标的是(4,0),则顶点N坐标是()A.(7,4)B.(6,4)C.(7,3)D.(6,3)解:过P作PE⊥OM,过点N作NF⊥OM,∵顶点P的坐标是(2,3),∴OE=2,PE=3,∵四边形ABCD是平行四边形,∴OE=MF=2,∵4+2=6,∴点N的坐标为(6,3).故选:D.10.(3分)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.故选:B.二、填空题(本大题共7小题,每小题4分,共28分)11.(4分)化简:=.解:==,故填.12.(4分)命题“两直线平行,同位角相等.”的逆命题是同位角相等,两直线平行.解:∵原命题的条件为:两直线平行,结论为:同位角相等.∴其逆命题为:同位角相等,两直线平行.故答案为:同位角相等,两直线平行.13.(4分)已知菱形ABCD的两条对角线AC=6cm,BD=8cm,则菱形的面积为24cm2.解:∵菱形ABCD的两条对角线AC=6cm,BD=8cm,∴菱形的面积为:AC•BD=6×8=24(cm2).故答案为:24.14.(4分)若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为.(结果保留根号)解:∵+|b﹣6|=0,∴a﹣7=0,b﹣6=0,解得a=7,b=6,∴该直角三角形的斜边长为=.故答案为:.15.(4分)计算(2﹣2)2的结果是24﹣8.解:(2﹣2)2=20﹣8+4=24﹣8,故答案为:24﹣8.16.(4分)如图所示,直线a经过正方形ABCD的顶点A,分别过顶点B、D作DE⊥a于点E、BF⊥a于点F,若DE=4,BF=3,则EF的长为7.解:∵ABCD是正方形∴AB=AD,∠ABC=∠BAD=90°∵∠ABC+∠ABF=∠BAD+∠DAE∴∠ABF=∠DAE在△AFB和△AED中∠ABF=∠DAE,∠AFB=∠AED,AB=AD∴△AFB≌△AED∴AF=DE=4,BF=AE=3∴EF=AF+AE=4+3=7.故答案为:7.17.(4分)如图,正方形ABCD的边长为5,E是AB上一点,且BE:AE=1:4,若P是对角线AC上一动点,则PB+PE的最小值是.(结果保留根号)解:连接BD,则点D即为点B关于AC的对称点,连接DE交AC于点P,由对称的性质可得,PB=PD,故PE+PB=DE,由两点之间线段最短可知,DE即为PE+PB的最小值,∵AB=AD=5,BE:AE=1:4∴BE=1,AE=4,在Rt△ADE中,DE===.故答案为:.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)计算:﹣+﹣.解:原式===.19.(6分)如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.【解答】证明:连接BD,交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形DEBF是平行四边形.20.(6分)如图所示,△ABC中,∠B=45°,∠C=30°,AB=求:AC的长.解:过A点作AD⊥BC于D点;在直角三角形ABD中,∠B=45°,AB=,∴AD=AB•sin∠B=1,在直角三角形ADC中,∠C=30°,∴AC=2AD=2.四、解答题(二)(本大题3小题,每小题8分,共24分).21.(8分)化简求值:÷•,其中a=﹣2.解:原式=••=,当a=﹣2时,原式==.22.(8分)如图所示,O是矩形ABCD的对角线的交点,作DE∥AC,CE∥BD,DE、CE相交于点E.求证:(1)四边形OCED是菱形.(2)连接OE,若AD=4,CD=3,求菱形OCED的周长和面积.解:(1)证明:∵DE∥OC,CE∥OD,∵四边形OCED是平行四边形.∴OC=DE,OD=CE∵四边形ABCD是矩形,∴AO=OC=BO=OD.∴CE=OC=BO=DE.∴四边形OCED是菱形;(2)如图,连接OE.在Rt△ADC中,AD=4,CD=3由勾股定理得,AC=5∴OC=2.5∴C菱形OCED=4OC=4×2.5=10,在菱形OCED中,OE⊥CD,又∵OE⊥CD,∴OE∥AD.∵DE∥AC,OE∥AD,∴四边形AOED是平行四边形,∴OE=AD=4.∴S菱形OCED=.23.(8分)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.解:连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC==,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD,=×1×2+××2,=1+.故四边形ABCD的面积为1+.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了500m到达B点,然后再沿北偏西30°方向走了500m到达目的地C点.(1)求A、C两点之间的距离;(2)确定目的地C在营地A的什么方向?解:(1)过B点作BE∥AD,如图,∴∠DAB=∠ABE=60°.∵30°+∠CBA+∠ABE=180°,∴∠CBA=90°.即△ABC为直角三角形.由已知可得:BC=500 m,AB=500m,由勾股定理可得:AC2=BC2+AB2,所以AC==1 000(m);(2)在Rt△ABC中,∵BC=500 m,AC=1 000 m,∴∠CAB=30°,∵∠DAB=60°,∴∠DAC=30°.即点C在点A的北偏东30°的方向.25.(10分)如图,Rt△ABC中,∠B=90°,AC=30cm,∠C=30°,点D从点C出发沿CA方向以2cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以1cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.【解答】(1)证明:∵Rt△ABC中,∠C=30°.∵CD=2t,AE=t,又∵在Rt△CDF中,∠C=30°,∴DF=CD=t,∴DF=AE;解:(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即30﹣2t=t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)当t=时,△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE∵CD=2t,∴DF=t=AE,∴AD=2t,∴2t+2t=30,∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=90°﹣30°=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=30﹣2t,AE=DF=CD=t,∴30﹣2t=t,解得t=12.当∠DFE=90°时,点E和点F都和点B重合,不能构成三角形,所以,此种情况不存在;综上所述,当t=时,△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF =90°).。

人教版2019年八年级下学期期末数学试卷C卷

人教版2019年八年级下学期期末数学试卷C卷

人教版2019年八年级下学期期末数学试卷C卷姓名:________ 班级:________ 成绩:________一、单选题1 . 下列各式中属于最简二次根式的是()D.A.B.C.2 . 今年3月,某校举行“好声音”校园歌曲大赛,有9名同学参加选拔赛,所得分数互不相同,按成绩取前4名进入决赛,若已知某同学分数,要判断他能否进入决赛,只需知道9名同学分数的()A.中位数B.众数C.平均数D.方差3 . 如图,将放置于直角坐标系中的三角板AOB绕O点顺时针旋转90°得△A1OB1.已知∠AOB=30°,∠B=90°,AB=1,则B1点的坐标为()A.(,)B.(,)C.(,) D (,)4 . 下列点在直线y=-x+1上的是()A.(2,-1)B.(3,2)C.(4,1)D.(1,2)5 . 若关于x的一元二次方程x2-2x-k=0没有实数根,则k的取值范围是()A.k>-1B.k≥-1C.k<-1D.k≤-16 . 点A(-3,-4)到原点的距离为()A.3B.4C.5D.77 . 菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()A.2B.C.6D.88 . 如图,在Rt△ABC中,∠C=90°(AC>BC),用尺规作图的方法作线段AD,保留作图痕迹如图所示,认真观察作图痕迹,若CD=4,BD=5,则AC的长为()A.6B.9C.12D.159 . 正比例函数y=x的大致图像是()A.A B.B C.C D.D10 . 下列图形中,是中心对称但不是轴对称图形的是()A.B.C.D.二、填空题11 . 二次函数,当时,在顶点处取得最小值为. (______)12 . 将一元二次方程x(x﹣2)=5化为二次项系数为“1”的一般形式是_____.13 . 如图,直线y=x﹣4与x轴交于点A,以OA为斜边在x轴上方作等腰Rt△OAB,并将Rt△AOB沿x轴向右平移,当点B落在直线y=x﹣4上时,Rt△OAB扫过的面积是__.14 . 计算﹣的结果等于.15 . 数据10、8、6、4、2的平均数是________.16 . 图1是小明家围墙的一部分,上部分是由不锈钢管焊成的等腰三角形栅栏,底边上等距焊上一些立柱,请你根据图2所标注的尺寸,求焊成一个等腰三角形栅栏(图2中的实线部分)至少需要不锈钢管______米(焊接部分忽略不计).三、解答题17 . 如图,在中,,为上一点,,于点,于点,相交于点.(1)求证:;(2)若,求的长.18 . 解方程(1)x2+x﹣1=0(2)(x﹣2)(x﹣3)=1219 . 2016年3月1日,某园林公司派出一批工人去完成种植2200棵景观树木的任务,这批工人3月1日到5日种植的数量(单位:棵)如图所示.(1)这批工人前两天平均每天种植多少棵景观树木?(2)因业务需要,到3月10日必须完成种植任务,你认为该园林公司是否需要增派工人?请运用统计知识说明理由.20 . 某淘宝网店销售台灯,成本为每个元.销售大数据分析表明:当每个台灯售价为元时,平均每月售出个;若售价每上涨元,其月销售量就减少个,若售价每下降元,其月销售量就增加个.(1)若售价上涨元,每月能售出________个台灯.(2)为迎接“双十一”,该网店决定降价促销,在库存为个台灯的情况下,若预计月获利恰好为元,求每个台灯的售价.(3)在库存为个台灯的情况下,若预计月获利恰好为元,直接写出每个台灯的售价.21 . 如图,在△ABC中,AB=AC,AD⊥BC点D,BC=10cm,AD=8cm,点P从点B出发,在线段BC上以每秒3cm 的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值,若不存在,请说明理由.22 . 已知:点C在∠AOB的一边OA上,过点C的直线DE∥OA.做∠ACD的平分线CF,过点C画CF的垂线CG,如图所示.(Ⅰ)若∠AOB=40°,求∠ACD及∠ECF的度数;(Ⅱ)求证:CG平分∠OCD;(Ⅲ)延长FC交OB于点H,用直尺和三角板过点O作OR⊥FH,垂足为R,过点O作FH的平行线交ED于点Q.先补全图形,再证明∠COR=∠GCO,∠CQO=∠CHO.23 . 计算:(1)(2)24 . 在平面直角坐标系中,如图所示,点.(1)求直线的解析式;(2)求的面积;(3)一次函数(为常数).①求证:一次函数的图象一定经过点;②若一次函数的图象与线段有交点,直接写出的取值范围.25 . 已知:等边△ABC中,点E为△ABC内一点.(1)如图1,联结AE、BE并延长分别与BC、CA边交于点D、F。

陕西省渭南市临渭区2023-2024学年八年级上学期期中数学试题

陕西省渭南市临渭区2023-2024学年八年级上学期期中数学试题

陕西省渭南市临渭区2023-2024学年八年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A.2cm B.3cm C.....二、填空题x+6向下平移12.将直线y=﹣12点,点O为坐标原点,则S△ABO 13.如图,在圆柱的截面ABCD中,24,10AB BC==,动点P从A点出发,π为.三、解答题关于y轴对称的△(1)画出ABC(2)在(1)的条件下,写出1A,20.已知2a+1的平方根是±3,22.如图是某学校的平面示意图,图中每个小方格都是边长为的坐标为()2,1,国维楼的坐标为()2,1-,请解答以下问题:(1)根据上述信息建立平面直角坐标系,并写出德斋、马约翰体育馆的坐标;(2)若南门的坐标为()0,4-,请在平面直角坐标系中标出南门的位置.23.某公司计划从厂家采购一批“秦岭四宝国潮档案袋”(以下简称:档案袋)和“秦岭四宝国潮手账本”(以下简称:手账本),已知档案袋10元/个,手账本15元/本,经了解,厂家有两种优惠方案:方案一:购买手账本没有优惠,购买档案袋不超过20个时,每个都按九折优惠,超过20个时,超过部分每个按七折优惠;方案二:档案袋和手账本都按原价的八折优惠.若该公司购买()20x x >个档案袋,10本手账本.(1)请分别求两种方案下该公司购买档案袋和手账本所需的总费用y (元)与x (个)之间的函数关系式;(2)当该公司购买多少个档案袋时,选择方案一和方案二所需的总费用相同.24.如图,一架梯子AB 斜靠在某个过道竖直的左墙上,顶端在点A 处,底端在水平地面的点B 处.保持梯子底端B 的位置不变,将梯子斜靠在竖直的右墙上,此时梯子的顶端在点C 处,AO OD ⊥,CD OD ⊥.测得顶端A 距离地面的高度AO 为2米,OB 为1.5米.(1)求梯子AB 的长;(2)若顶端C 距离地面的高度CD 比AO 多0.4米,求OD 的长.25.公交是一种绿色的出行方式,今年某县全面开通环保电动公交车.公交车在每天发车前需先将蓄电池充满,然后立即开始不间断运行.为保障行车安全,当蓄电池剩余电量低于20kw h ⋅时,需停止运行.在充电和运行过程中,蓄电池的电量y (单位:kw h ⋅)与时间(单位:h )之间的关系如图所示.已知当该电动公交车运行时,y 与x 的函数表达式为15y x b =+.(1)该电动公交车每小时充电量为________kw h ⋅;(2)当该电动公交车运行时,求y 关于x 的函数表达式;(3)当蓄电池的电量为65kw h ⋅时,求该电动公交车运行了多长时间?26.如图,直线24y x =+与x 轴交于点A ,与y 轴交于点B ,点C 是OB 的中点.(1)求点C 的坐标:(2)在x 轴上找一点D ,使得ACD ABC S S = ,求点D 的坐标;(3)在x 轴上是否存在一点P ,使得ABP 是直角三角形?若存在,请写出点P 的坐标;若不存在,请说明理由.。

陕西省西安市长安区2022-2023学年八年级上学期期中数学试题(含答案)

陕西省西安市长安区2022-2023学年八年级上学期期中数学试题(含答案)

2022~2023学年度第一学期期中学习评价八年级数学纸笔测试注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题)。

全卷共4页,总分100分。

考试时间100分钟。

2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号。

3.请在答题卡上各题的指定区域内作答,否则作答无效。

4.作图时,先用铅笔作图,再用规定签字笔描黑。

5.考试结束,本试卷和答题卡一并交回。

第一部分(选择题 共30分)一、单选题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.下列各数中不是无理数的是( )ABCD2.点(1,3)关于y 轴对称的点的坐标是( )A .(-1,3)B .(-3,-1)C .(1,-3)D .(-1,-3)3.下列各式表示正确的是( )A B .C .D .4.下列各组数据中不是勾股数的是()A .3,4,5B .5,7,9C .5,12,13D .7,24,255.点B 的坐标为(-4,-5),直线AB 平行于y 轴,那么A 点的坐标可能为()A .(5,-4)B .(4,-5)C .(4,5)D .(-4,5)6.下列计算正确的是( )A.B .C .D 7.已知,点(-2,y 1),(-1,y 2),(1,y 3)都在直线y =-5x +b 上,则y 1,y 2,y 3的大小关系是( )A .y 3<y 2<y 1B .y 1<y 2<y 3C .y 2<y 1<y 3D .y 3<y 1<y 28.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1,l 2的距离分别为p ,q ,则称有序非负实数对(p ,q )是点M 的距离坐标,根据上述定义,“距离坐标”是(1,2)的点的个数是( )A .1B .2C .3D .49.如图,在4×4的网格中,每个小正方形的边长均为1,点A ,B ,C 都在格点上,BD ⊥AC 于点D ,则BD的长为()3=±3=3=±3=-==-=÷=+ABC .D .10.小明用洗衣机在洗涤衣服时经历了三个连续过程:注水、清洗、排水,若洗衣服前洗衣机内无水,清洗时停止注水,则在这三个过程中洗衣机内水量y(升)与时间x (分)之间的函数关系对应的图象大致为()A.B .C .D .第二部分(非选择题 共70分)二、填空题(共8小题,每小题3分,计24分)11.-π,-3的大小顺序是_________(用“>”号连接).12________.13.在直角坐标系中,点P 在x 轴的下方,到x 轴的距离为2,到y 轴的距离为3,则点P 的坐标是_________.14.在平面直角坐标系中,点P (-1,2)到原点的距离为_________.15.如图,是象棋棋盘的一部分,已知棋子“車”的位置表示为(-1,2),则棋子“炮”的位置可表示为_________.18595=16.如图,在△ABC 中,AB =6,BC =8,∠B =90°,若P 是AC 上的一个动点,则PA +PB +PC 的最小值是_________.17.我国古代数学家赵爽在注解《周髀算经》时给出了“赵爽弦图”,如图所示,它是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,若直角三角形较短直角边长为8,大正方形的边长为17,则小正方形的边长为_________.18.已知,一次函数y =(m -1)x +3-2m (m 为常数,且m ≠1).当m 变化时,下列结论正确的有_________(把正确的序号填上).①当m =2时,图象经过一、三、四象限;②当m >0时,y 随x 的增大而减小;③点(2,1)肯定在函数图象上;④当时,一次函数变为正比例函数.三、解答题(共6小题,计46分.解答应写出过程)19.(6分)计算:(1(2).20.(6分)如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,BC =3cm ,AC=4cm ,AB =5cm .请求出△ABC 的面积和CD 的长.21.(6分)如图,已知A (1,2),B (4,1),C (3,-2).23m =)22+-+(1)画出△ABC 关于y 轴对称的图形△A 1B 1C 1,并写出A 1,B 1的坐标;(2)P 为x 轴上一点,请在图中画出使PA +PB 最小时的点P ,并写出点P 的坐标(画图要准确).22.(6分)求代数式的值,其中a =-2022.如图,小芳和小亮的解题过程,都是把含有字母式子先开方再进行运算的方法,请认真思考、理解解答过程,回答下列问题.解:原式解:原式(1)_________的解法是错误的;(2)求代数式的值,其中23.(10分)已知,直线l 1:y =-3x +12与x 轴和y 轴分别相交于A 、B 两点,直线的图象向下平移2个单位长度得到直线l 2:y =kx +b (k≠0)且与y 轴交于C 点.(1)求直线l 2的解析式;(2)证明:直线l 1和直线l 2相交于一点A ;(3)求△ABC 的面积.24.(12分)(1)问题背景:在△ABC 中,AB 、BC 、AC 三边的长分别为、面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC 的高而借用网格就能计算出它的面积.请你将△ABC 的面积直接填写在横线上_________;(2)思维拓展:我们把上述求△ABC 面积的方法叫做方格构图法.如果△ABC 、,请利用图②的正方形网格(每个小正方形的边长为a )画出相应的△ABC ,并求出它的面积;(3)探索创新:若△ABC ,(,,且a +11a a a =+=+-=14045a a a =+=+-=-a +4a =12y x =(0)a >0m >0n >),试运用构图法在图③网格中画出相应的△ABC 示意图,并求出这个三角形的面积.图①图②图③2022~2023学年度第一学期期中学习评价八年级数学纸笔测试参考答案一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.C 2.A 3.C 4.B 5.D 6.B 7.A 8.D 9.D 10.C二、填空题(共8小题,每小题3分,计24分)1112. 13.(3,-2)或(-3,-2) 1415.(4,1) 16. 17.718.①③三、解答题(共6小题,计46分.解答应写出过程)19.解:(1.(2).20.解:∵∠ACB =90°,.m n ≠3π>->-7456=+=-=)22+-+2221=-+-341=-+-2=()211346cm 22ABC S BC AC ∴=⋅=⨯⨯=△,,即,,所以△ABC 的面积为6cm 2,CD 的长为.21.解:(1)△A 1B 1C 1如图所示,A 1(-1,2),B 1(-4,1).(2)如图,点P 即是所求作的点.P (3,0).22.解:(1)小亮.(2).为负,∴开根号后是3-a ,∴原式=a +2(3-a )=a +6-2a =6-a ,当时,原式.23.(1)解:函数的图象向下平移2个单位长度得到,∴直线l 2的表达式为.(2)证明:把x =0,代入y =-3x +12,得:y =12,即点B (0,12),12ABC S AB CD =⋅ △162AB CD ∴⋅=1562CD ⨯⋅=()12cm 5CD ∴=12cm 5a +a =+43a a =- 4a =642=-+=+12y x =122y x =-122y x =-把y =0代入y =-3x +12.得:x =4,即点A (4,0),将点A (4,0)代入方程成立,说明点A 也在直线l 2上,所以直线l 1和直线l 2相交于一点A .(3)解:,所以△ABC 的面积是28.24.解:(1)或3.5.(2)如图②中,△ABC 即为所求..(3)构造m ×n 的网格图,△ABC 如图③所示:.图②图③122y x =-()()11412422822ABC AOB AOC S S S =+=⨯⨯+⨯⨯=△△△7221112422243222ABC S a a a a a a a a a =⨯-⨯⨯-⨯⨯-⨯⨯=△11134432225222ABC S m n m n m n m n mn =⨯-⨯⨯-⨯⨯-⨯⨯=△。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

陕西省八年级下学期期中数学试卷C卷
一、细心选一选 (共10题;共20分)
1. (2分) (2019八下·东莞月考) 要使式子有意义,则x的值可以是()
A . 2
B . 0
C . 1
D . 9
2. (2分) (2017八下·黄冈期中) 下列计算正确的是()
A . ﹣ =
B . 3 ×2 =6
C . (2 )2=16
D . =1
3. (2分) (2016八上·江阴期中) 学校组织才艺表演比赛,前6名获奖.有13位同学参加比赛且他们所得的分数互不相同.某同学知道自己的比赛分数后,要判断自己能否获奖,在这13名同学成绩的统计量中只需知道一个量,它是()
A . 众数
B . 方差
C . 中位数
D . 平均数
4. (2分)解下面方程:(1)(x-2)2=5,(2)x2-3x-2=0,(3)x2+x-6=0,较适当的
方法分别为()
A . (1)直接开平法方(2)因式分解法(3)配方法
B . (1)因式分解法(2)公式法(3)直接开平方法
C . (1)公式法(2)直接开平方法(3)因式分解法
D . (1)直接开平方法(2)公式法(3)因式分解法
5. (2分)下列方程中两根之和为﹣1的是()
A . x2﹣x+5=0
B . x2﹣x﹣5=0
C . x2+x+5=0
D . x2+x﹣5=0
6. (2分)下列一组数据:﹣2、﹣1、0、1、2的平均数和方差分别是()
A . 0和2
B . 0和
C . 0和1
D . 0和0
7. (2分)已知a是方程x2﹣5x﹣1=0的一个实数根,则代数式a2+ =()
A . 27
B . 23
C . 25
D . 28
8. (2分)把﹣3 根号外的因式移到根号内,所得的结果正确的是()
A . ﹣
B . ﹣
C . ﹣
D .
9. (2分)(2011·玉林) 如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD于点F,则∠1=()
A . 40°
B . 50°
C . 60°
D . 80°
10. (2分)如图,在x轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作轴的垂线与三条直线,,相交,其中.则图中阴影部分的面积是()
A . 12.5
B . 25
C . 12.5
D . 25
二、填空题 (共10题;共11分)
11. (1分) (2017八下·富顺期中) 当1<x<4时,|x-4|+=________.
12. (1分)如图是一把折扇,其平面图是一个扇形,扇面ABDC的宽度AC是骨柄长OA的一半.已知OA=30 cm,∠AOB=120°,则扇面ABDC的周长为________cm.
13. (1分)在大课间活动中,体育老师对甲、乙两名同学每人进行10次立定跳远测试,他们的平均成绩相同,方差分别是S甲2=0.20,S乙2=0.16,则甲、乙两名同学成绩更稳定的是________
14. (1分)(2018·吉林) 若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为________.
15. (1分) (2017八下·桐乡期中) 四边形ABCD中,∠A与∠C互补,∠B=80O,则∠D=________度.
16. (2分)(2017·苍溪模拟) 已知x1和x2分别为方程x2+x﹣2=0的两个实数根,那么x1+x2=________;x1•x2=________.
17. (1分)(2017·盐都模拟) 某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,所列方程是________.
18. (1分) (2018九上·宁江期末) 当________时,二次根式在实数范围内有意义.
19. (1分)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为________
20. (1分) (2017八下·徐汇期末) 在▱ABCD中,如果∠A+∠C=140°,那么∠B=________度.
三、简答题 (共5题;共55分)
21. (10分) (2015八下·福清期中) 计算题:
(1)﹣ + ;
(2)(﹣)÷ .
22. (10分)选用适当的方法,解下列方程:
(1) x2﹣2x﹣8=0;
(2) 2x(x﹣2)=x﹣3.
23. (5分) (2017八下·石景山期末) 如图,矩形,为射线上一点,连接,为上一点,交于点,.求证:.
24. (15分)(2018·江苏模拟) 重庆市的重大惠民工程--公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积单位:百万平方米,与时间x的关系是单位:年,且x为整数;后4年,每年竣工投入使用的公租房面积单位:百万平方米,与时间x的关系是单位:年,且x为整数假设每年的公租房全部出租完另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金单位:元与时间单位:年,且x为整数满足一次函数关系如下表:
元5052545658
年12345
参考数据:
(1)求出z与x的函数关系式;
(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;
(3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高,这样可解决住房的人数将比第6年减少,求a的值.
25. (15分)(2018·深圳模拟) 已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.
(1)如图1,求证:KE=GE;
(2)如图2,连接CA ,BG,若∠FGB= ∠ACH,求证:CA∥FE;
(3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE= ,AK= ,求CN的长.
参考答案
一、细心选一选 (共10题;共20分)
1、答案:略
2、答案:略
3、答案:略
4、答案:略
5、答案:略
6、答案:略
7、答案:略
8、答案:略
9、答案:略
10、答案:略
二、填空题 (共10题;共11分)
11、答案:略
12、答案:略
13、答案:略
14、答案:略
15、答案:略
16、答案:略
17、答案:略
18、答案:略
19、答案:略
20、答案:略
三、简答题 (共5题;共55分)
21、答案:略
22、答案:略
23、答案:略
24、答案:略
25、答案:略。

相关文档
最新文档