圆锥教学课件
合集下载
人教版中职数学9.4.4圆柱圆锥一ppt课件
什么样的几何体叫做圆柱,圆锥? 这些几何体分别是由什么平面图形旋转而成的?
以矩形的一边所在直 线为旋转轴,其余边旋转 形成的曲面所围成的几何 体叫做圆柱.
以直角三角形的一条直 角边所在直线为旋转轴,其 余两边旋转形成的曲面所围 成的几何体叫做圆锥.
旋转轴叫做它们的轴, 在轴上的这条边(或它的长度)分别 叫做它们的高, 垂直于轴的边旋转而成的圆面分 别叫做它们的底面, 不垂直于轴的边旋转而成的曲面 分别叫做它们的侧面, 无论旋转到什么位置,这条边都 叫做侧面的母线.
S
设圆锥的母线长为y,小圆锥底 面与圆锥底面半径分别是x,4x, 根据相似三角形的性质得
x y
3 x y 4x
所以y=12. 即圆锥母线长为12cm.
A 4x OO
B
证明:平行于圆锥底面的截面与底面的面积的比,等 于顶点到截面的距离与圆锥的高的平方比 .
r O
l
2r
O
c
圆柱的侧面展开图是矩形
S圆柱侧面积 cl =2rl
圆锥的侧面展开图是扇形
S圆锥侧面积
1 半径为3,母线长为6, 求该圆柱的全面积. 54
2 .已知圆锥的底面半径为2,母线长为4, 求该圆锥的全面积以及侧面展开图的圆心角. 12
圆柱
圆锥
以矩形的一边所在直线为 以直角三角形的一条直角
旋转轴,其余边旋转形成 边所在直线为旋转轴,其
轴 高 底面
母线 侧面
问题一 用一个平行于底面的 平面去截圆柱和圆锥,它们的截 面是什么形状? 问题二 过它们的轴的平面去 截圆柱和圆锥,所得截面分别是 什么形状?
圆柱、圆锥有下面的性质:
(1) 平行于底面的截面是圆;
(2)过轴的截面(轴截面)分别是矩形、等腰三角形.
以矩形的一边所在直 线为旋转轴,其余边旋转 形成的曲面所围成的几何 体叫做圆柱.
以直角三角形的一条直 角边所在直线为旋转轴,其 余两边旋转形成的曲面所围 成的几何体叫做圆锥.
旋转轴叫做它们的轴, 在轴上的这条边(或它的长度)分别 叫做它们的高, 垂直于轴的边旋转而成的圆面分 别叫做它们的底面, 不垂直于轴的边旋转而成的曲面 分别叫做它们的侧面, 无论旋转到什么位置,这条边都 叫做侧面的母线.
S
设圆锥的母线长为y,小圆锥底 面与圆锥底面半径分别是x,4x, 根据相似三角形的性质得
x y
3 x y 4x
所以y=12. 即圆锥母线长为12cm.
A 4x OO
B
证明:平行于圆锥底面的截面与底面的面积的比,等 于顶点到截面的距离与圆锥的高的平方比 .
r O
l
2r
O
c
圆柱的侧面展开图是矩形
S圆柱侧面积 cl =2rl
圆锥的侧面展开图是扇形
S圆锥侧面积
1 半径为3,母线长为6, 求该圆柱的全面积. 54
2 .已知圆锥的底面半径为2,母线长为4, 求该圆锥的全面积以及侧面展开图的圆心角. 12
圆柱
圆锥
以矩形的一边所在直线为 以直角三角形的一条直角
旋转轴,其余边旋转形成 边所在直线为旋转轴,其
轴 高 底面
母线 侧面
问题一 用一个平行于底面的 平面去截圆柱和圆锥,它们的截 面是什么形状? 问题二 过它们的轴的平面去 截圆柱和圆锥,所得截面分别是 什么形状?
圆柱、圆锥有下面的性质:
(1) 平行于底面的截面是圆;
(2)过轴的截面(轴截面)分别是矩形、等腰三角形.
九年级数学上册教学课件-圆锥的侧面积和全面积
l
)n
l
h
n r 360 l
O
r
当圆锥的轴截面是等边三角形时,圆锥的侧面展开图是一个半圆
探究新知
根据下列条件求圆锥侧面积展开图的圆心角(r、h、 分别是圆锥的底面 半径、高线、母线长) (1 h= 2,r = 1 则 =___1_8_0_°__
(2) h=3, r=4 则 =___2_8_8_°____
1 (3)
3.圆锥的侧面积为 8cm2 ,其轴截面是一个等边三角形,则该轴
截面的面积( A )
A. 4 3cm2
B 8. 3cm2
C. 4 3cm2
D.8 3cm2
勇攀高峰
(09年湖北)如图,已知RtΔABC中,∠ACB=90°,AC= 4,BC=3,以AB边所在的 直线为轴,将ΔABC旋转一周,则所得几何体的表面积是( ).
_3_8_4___c_m__2 ,全面积为_2_4_0___c_m_2__
2.一个圆锥形的冰淇淋纸筒,其底面直径为6cm, 高为4cm,围成这样的冰淇淋
纸筒所需纸片的面积为( )
A.
B.
C.
D.
D
66cm2
30cm2
28cm2
15cm2
随堂练习
例3.蒙古包可以近似地看成由圆锥和圆柱组成的.如果想用毛毡搭建20个底面积为35 m2,
′D爬圆=D23.=rl行锥×36的沿03°6A.最在0B°短展R=t1Δ路开2A0线成B∴∴°∠答垂解C是扇∠BB::足B中A3D形B它将为B,=AA′D爬3圆=D∠23B..=Brl行锥B×′36,AA的沿03D°6则A.最在0=B°点短展6R=0Ct1Δ路开°∴ ∴∠C答 垂2解是,A0A线成∠BB°B::足BBCA是DB扇B=它将中为B′的=A23形3′,D爬圆=D.23中A.3∠=rBl行锥.点B×36B的沿′0,,3A°垂答 解6∴ ∴A∠D.∴ ∴最答 垂解∠∴ ∴答 垂解 则∠过在将答 垂0解BBB::=足°∠∠BBB∠::::短足足A圆点B展BD点R:=:足B6AA它 将 BD为 DABDBtA01它将锥BC为它将BΔ路为B它开B将为B°=A2=DAD=爬 圆 A′是,作A′沿D′爬圆=230DD爬圆AD线=爬圆D成23=.DB23°23.Br行 锥 lB=AB.r.l行锥==Crrl行B锥 l行6B锥是扇3×D=36展的 沿中0××′的沿36363的03⊥23的3沿的沿形00°3636开A.最 A.,在.最°°6中在060AA.B最A.最BA在成°0在03短∠R展 B展BR=°B点C°.短展扇短R=t展BtR=1,Δ路1B开 开,垂 答 解 t21′t形AΔ路21,开Δ路A开02线线 B成0过成 2BBA::°足AAD0线0则成AD线CBBB成°是扇是 点B扇 °=它 将 BB为中CA是扇点’C23是扇形B23中6形D,爬 圆 中,23作230D形CA23A形,°3r∠l3行 锥 ,.是B,BA.B6.3AAB3∠BDBB30.的 沿 ∠B′3BB,B.A⊥BB6,B.A=′D在 B最,0则A′′的B,则AA=3DR短则展点.CD6中则点 =t6,10C路 点开 =0°26A点C点是,006,C线 AB成是°A,0BC是B,C°B是 BA扇 B是中 ,=过B′BBA的233形BB,B=点.的3中′B的A.=33B′中B的点..中3B作B.,点A中点,B
)n
l
h
n r 360 l
O
r
当圆锥的轴截面是等边三角形时,圆锥的侧面展开图是一个半圆
探究新知
根据下列条件求圆锥侧面积展开图的圆心角(r、h、 分别是圆锥的底面 半径、高线、母线长) (1 h= 2,r = 1 则 =___1_8_0_°__
(2) h=3, r=4 则 =___2_8_8_°____
1 (3)
3.圆锥的侧面积为 8cm2 ,其轴截面是一个等边三角形,则该轴
截面的面积( A )
A. 4 3cm2
B 8. 3cm2
C. 4 3cm2
D.8 3cm2
勇攀高峰
(09年湖北)如图,已知RtΔABC中,∠ACB=90°,AC= 4,BC=3,以AB边所在的 直线为轴,将ΔABC旋转一周,则所得几何体的表面积是( ).
_3_8_4___c_m__2 ,全面积为_2_4_0___c_m_2__
2.一个圆锥形的冰淇淋纸筒,其底面直径为6cm, 高为4cm,围成这样的冰淇淋
纸筒所需纸片的面积为( )
A.
B.
C.
D.
D
66cm2
30cm2
28cm2
15cm2
随堂练习
例3.蒙古包可以近似地看成由圆锥和圆柱组成的.如果想用毛毡搭建20个底面积为35 m2,
′D爬圆=D23.=rl行锥×36的沿03°6A.最在0B°短展R=t1Δ路开2A0线成B∴∴°∠答垂解C是扇∠BB::足B中A3D形B它将为B,=AA′D爬3圆=D∠23B..=Brl行锥B×′36,AA的沿03D°6则A.最在0=B°点短展6R=0Ct1Δ路开°∴ ∴∠C答 垂2解是,A0A线成∠BB°B::足BBCA是DB扇B=它将中为B′的=A23形3′,D爬圆=D.23中A.3∠=rBl行锥.点B×36B的沿′0,,3A°垂答 解6∴ ∴A∠D.∴ ∴最答 垂解∠∴ ∴答 垂解 则∠过在将答 垂0解BBB::=足°∠∠BBB∠::::短足足A圆点B展BD点R:=:足B6AA它 将 BD为 DABDBtA01它将锥BC为它将BΔ路为B它开B将为B°=A2=DAD=爬 圆 A′是,作A′沿D′爬圆=230DD爬圆AD线=爬圆D成23=.DB23°23.Br行 锥 lB=AB.r.l行锥==Crrl行B锥 l行6B锥是扇3×D=36展的 沿中0××′的沿36363的03⊥23的3沿的沿形00°3636开A.最 A.,在.最°°6中在060AA.B最A.最BA在成°0在03短∠R展 B展BR=°B点C°.短展扇短R=t展BtR=1,Δ路1B开 开,垂 答 解 t21′t形AΔ路21,开Δ路A开02线线 B成0过成 2BBA::°足AAD0线0则成AD线CBBB成°是扇是 点B扇 °=它 将 BB为中CA是扇点’C23是扇形B23中6形D,爬 圆 中,23作230D形CA23A形,°3r∠l3行 锥 ,.是B,BA.B6.3AAB3∠BDBB30.的 沿 ∠B′3BB,B.A⊥BB6,B.A=′D在 B最,0则A′′的B,则AA=3DR短则展点.CD6中则点 =t6,10C路 点开 =0°26A点C点是,006,C线 AB成是°A,0BC是B,C°B是 BA扇 B是中 ,=过B′BBA的233形BB,B=点.的3中′B的A.=33B′中B的点..中3B作B.,点A中点,B
圆锥课件.ppt
800 800
300 800
300 800
你会计算圆锥展开图中的圆心角的度数吗?
l na
180 n 180l
a
l ha
r
圆锥的侧面积恰好等于其底面积的2倍, 则该圆锥侧面展开图所对应扇形圆心角 的度数是多少度?
总结:圆锥的侧面积和全面积
圆锥的底面周长就是其侧面展开图扇形的弧长, 圆锥的母线就是其侧面展开图扇形的半径。
hl
r
圆心角 θ=144°用这个扇形围 成一个圆锥的侧面.
(1)求这个圆锥的底面半径r; r=4
(2)求这个圆锥的高(精确到0.1) 2 21
1.将一个圆锥的侧面沿它的一条母线及底面圆周剪开铺平,会 得到什么图形? 圆 锥的侧面展开图是什么图形? 圆锥中的各元素与它的侧面展开图中的各元素之间的关系?
r=10;h=20 2
请你欣赏
请根 据你以前的 所学,说说 你对圆锥的 一些认识。
底面
圆锥是由一个底面和一个侧面围成的.
义务教育课程标准实验教科书 新人教版《数学》九年级上册
圆锥的高 S
母线
A
Or
C
我们把连接圆锥的顶点S和底 面圆上任一点的连线SA,SB 等叫做圆锥的母线
B 连接顶点S与底面圆的圆心O 的线段叫做圆锥的高
去偷袭老鼠,求小猫所经过的最短路程。(结果不取 近似数)
A P
A B
P
B
C
C
小结
本节课我们有什么收获?
本节课我们认识了圆锥的侧面展开图, 学会计算圆锥的侧面积和全面积,在认识 圆锥的侧面积展开图时,应知道圆锥的底 面周长就是其侧面展开图扇形的弧长。圆 锥的母线就是其侧面展开图扇形的半径, 这样在计算侧面积和全面积时才能做到熟 练、准确。
圆锥曲线PPT课件
4
双曲线的定义
平面内到两定点 F1 F2的距离之差的 绝对值为常数(小 于F1 F2的距离)
2020年10月2日
Y
F1
0
p F2 X
5
对于第三种情形平面与圆锥的截线由两支曲线 构成,交线上任意一点到平面内两个定点F1, F2的距离的差的绝对值等于常数.
一般的:
平面内两个定点F1,F2的距离的差的绝对值
等于常数(小于F1F2)的点的轨迹叫做双曲线
两个定点F1,F2叫做双曲线的叫焦点,两焦点 间的距离叫做双曲线的焦距
2020年10月2日
6
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
汇报人:XXX 汇报日期:20XX年10月10日
7
2020年10月2日
1
椭圆图图象 双曲线的图象 抛物线的图象
和定义
和定义
和定义
课堂练习
2020年10月2日
2
2020年10月2日
3
椭圆的定义
平(大于F1 F2距离)的点的轨 迹叫椭圆,两个定
点叫椭圆的焦点,
两焦点的距离叫做
椭圆的焦距 2020年10月2日
圆锥的表面积和体积ppt课件
A.底面积 B.侧面积 C.表面积 D.体积
2.一个圆锥的体积是a立 方米,和它等底等高的圆 柱体的体积是(C)立方米.
A. a÷3 C. 3a
B. 2a D. a3
二、填空:
用字1、母圆表锥示的是体(V积==13(s13
×底面积×高 h )。
),
2、圆柱体积的13 与和它(等底等高 )的
圆锥的体积相等。
圆锥的侧面积
圆锥 想一想:圆锥有什么特征
圆锥的特征:
h
侧面展开
扇形
底面
圆形
点击概念
圆锥是由一个底面和一个侧面围成的,它的底 面是一个圆,侧面是一个曲面.
1.圆锥的高 连结顶点与底面圆心的线段.
2.底面半径
l 3.圆锥的母线
h
把连结圆锥顶点和底面圆周上的任
意一点的线段叫做圆锥的母线。
Or
解:S 圆锥侧 = πrl
=10×15π=150π (cm2)
S 圆锥全 = πrl +πr2 =150π+102π=250π (cm2)
探究新知
l 思考:
你能探究展开图中的圆心角n 与 r 、 之间的关系吗?
)n
l
h Or
1、如图,圆锥的底面半径OB=10cm,它的
侧面展开图的扇形的半径AB=30cm,则这
B’
A
6
B
C
1
如图,圆锥的底面半径为1,母线长为3,一 只蚂蚁要从底面圆周上一点B出发,沿圆锥 侧面爬到过母线AB的轴截面上另一母线AC上, 问它爬行的最短路线是多少?
A
B
C
小结: 1.圆锥的侧面积和全面积
S侧 S扇 形 rl
S全S侧S底 rlr2
2.一个圆锥的体积是a立 方米,和它等底等高的圆 柱体的体积是(C)立方米.
A. a÷3 C. 3a
B. 2a D. a3
二、填空:
用字1、母圆表锥示的是体(V积==13(s13
×底面积×高 h )。
),
2、圆柱体积的13 与和它(等底等高 )的
圆锥的体积相等。
圆锥的侧面积
圆锥 想一想:圆锥有什么特征
圆锥的特征:
h
侧面展开
扇形
底面
圆形
点击概念
圆锥是由一个底面和一个侧面围成的,它的底 面是一个圆,侧面是一个曲面.
1.圆锥的高 连结顶点与底面圆心的线段.
2.底面半径
l 3.圆锥的母线
h
把连结圆锥顶点和底面圆周上的任
意一点的线段叫做圆锥的母线。
Or
解:S 圆锥侧 = πrl
=10×15π=150π (cm2)
S 圆锥全 = πrl +πr2 =150π+102π=250π (cm2)
探究新知
l 思考:
你能探究展开图中的圆心角n 与 r 、 之间的关系吗?
)n
l
h Or
1、如图,圆锥的底面半径OB=10cm,它的
侧面展开图的扇形的半径AB=30cm,则这
B’
A
6
B
C
1
如图,圆锥的底面半径为1,母线长为3,一 只蚂蚁要从底面圆周上一点B出发,沿圆锥 侧面爬到过母线AB的轴截面上另一母线AC上, 问它爬行的最短路线是多少?
A
B
C
小结: 1.圆锥的侧面积和全面积
S侧 S扇 形 rl
S全S侧S底 rlr2
圆锥三视图画法ppt课件
P
c
ka b
ห้องสมุดไป่ตู้
;. (4)根据投影规律求第三投影; (5) 用素线法求 A 点的三投影; (6)根据B点的特殊位置求其三投影;
1
4
(7) 用辅助平面法求C点的三投影。
请点击鼠标左键显示后面内容
小结:
(1)圆锥的投影特点: 一圆两等腰三角形。
(2)表面取点方法: 辅助线法、辅助面法
;.
5
课堂检测:补全圆锥及其表面上各点 的H.W面投影。
c’
b’ a’
c’’
b’’ (a’)
1、注意三视图画法。 2、注意表面求点的方法。
bc a
;.
6
谢谢!
;. 7
k (n) b′ d′
★辅助线法 ★辅助面法
n s● b
;.d k
SO
N●
A
O1 s
●
●(n) k b″
如过何锥在顶圆作锥一面条上作 素圆线的。直半线径??
3
活动:画圆锥体及其表面上各点的三视图。
k
AS
B
k’
a’
b’ (c ’)
k ’’
(a”)
c”
b”
(C)
1’
作图步骤:
(1)画各视图的轴线; (2)画俯视图的底圆轮廓; (3)画主视图的轮廓素线;
1了解圆锥的形体结构2理解圆锥的视图特征3掌握圆锥的三视图及表面点投影的画法圆锥的视图特征及三视图画法圆锥表面上点的投影在图示位置俯视图为一圆
学习目标:
学习重点: 学习难点:
圆锥
1、了解圆锥的形体结构 2、理解圆锥的视图特征
3、掌握圆锥的三视图及表面点投影的画法
圆锥的视图特征及三视图画法
《圆锥认识》PPTPPT课件
解释
这个公式是通过将圆锥侧面展开成一 个扇形来推导的,扇形的弧长等于圆 的周长,扇形的半径等于圆锥的斜边 长。
圆锥的底面积
公式
圆锥的底面积 = π × r^2
解释
这个公式是通过圆的面积公式推导出来的,其中r 是圆的半径。
应用
在计算圆锥的表面积时,需要加上圆锥的底面积 和侧面积。
圆锥的体积
公式
圆锥的体积 = (1/3) × π × r^2 ×h
《圆锥认识》PPT课 件
目录
CONTENTS
• 圆锥的初步认识 • 圆锥的面积和体积 • 圆锥的表面积计算 • 圆锥的展开图 • 圆锥的旋转体
01 圆锥的初步认识
圆锥的定义
圆锥定义
圆锥是由一个圆形底面和一个点 (称为顶点)通过圆心与底面圆 周上的任意一点相连所形成的立 体图形。
圆锥的表示方法
圆锥可以用顶点和底面圆心所确 定的直线(称为圆锥的轴线)以 及底面圆来表示。
解释
这个公式是通过将圆锥的体积看 作是一个圆柱的体积的三分之一 来推导的,其中r是圆柱的半径,
h是圆柱的高。
应用
在计算圆锥的体积时,需要知道 圆锥的底面半径和高。
03 圆锥的表面积计算
圆锥表面积的计算公式
圆锥表面积计算公式
圆锥的表面积 = π × r × (l + l'),其 中 r 是底面半径,l 是圆锥的斜高,l' 是圆锥的母线。
圆锥旋转体的分类
根据圆锥旋转体的形状,可以分为正圆锥旋转体和斜交圆锥旋转体。
圆锥旋转体的几何特性
圆锥旋转体的表面积
01
圆锥旋转体的表面积等于其底面圆盘的面积加上侧面圆锥的侧
面积。
圆锥旋转体的体积
24.4 第2课时 圆锥的侧面积和全面积 初中数学人教版九年级上册教学课件
请说明理由.
A
①
②
B
O
C
③
A
解:(1)连接BC,由已知得AB=AC.
①
②
∵∠BAC=90°,
∴BC=20,AB=AC= 10 2.
B
O
C
2
90π 10 2
③E
∴S扇形=
50π; 360
F
(2)圆锥侧面展开图的弧长为 90 10 2 π =5 2π=2πr,
r5 2;
180
2
(3)连接AO并延长交⊙O于点F,交扇形于点E,EF 20 10 2.
圆锥的侧面展开图是扇形
扇形
l
o
r
问题: 1.沿着圆锥的母线,把一个圆锥的侧面展开,得到一 个扇形,这个扇形的弧长与底面的周长有什么关系? 2.圆锥侧面展开图是扇形,这个扇形的半径与圆锥中 的哪一条线段相等?
要点归纳
概念对比
r
扇 形 l nπr 180 l
l
侧面 展开图
C 2πr
r
o
✓其侧面展开图扇形的半径=母线的长l
圆柱的侧面积为2π×1.954×1.8≈22.10 (m2),
圆锥的母线长为l 1.9542 1.42 2.404 m.
侧面展开扇形的弧长为21.954 12.28m,
圆锥的侧面积为 1 2.40412.28 14.76 m2 , 2 搭建20个需要毛毡20×(22.10+14.76)≈738 (m2).
填一填:
根据下列条件求值(其中r、h、l 分别是圆锥的底面 半径、高线、母线长):
(1)l = 2,r=1,则 h=___3____;
(2) h =3,r=4,则 l =___5____; (3) l = 10,h = 8,则r=___6____.
圆锥ppt课件
在工程设计中的应用
圆锥在工程设计中也有着广泛的 应用,例如桥梁的设计、隧道的
设计等。
圆锥的形状和性质在工程设计中 有着重要的意义,例如圆锥的稳
定性、抗压性等。
圆锥在水利工程、土木工程等领 域也有着实际的应用,例如在设 计水坝、大坝等工程时,需要考
虑圆锥形的结构稳定性。
05
圆锥的相关公式与定理
圆锥的母线
利用手工绘制圆锥的草图
绘制底面
使用圆规和直尺,绘制出一个 圆形作为圆锥的底面。
连接底面和侧面
使用直尺或曲线板,将侧面与 底面平滑连接起来,得到圆锥 的草图。
准备工具
准备好纸、笔、圆规、直尺等 手工绘图工具。
绘制侧面
以底面圆心为顶点,用直尺绘 制出一个等腰三角形,作为圆 锥的侧面。
调整草图
可以使用橡皮等工具对草图进 行修改和调整,使其更加符合 要求。
圆锥的侧面积可以通过公式 S = πrl 来计算,其 中 r 是底面半径,l 是母线长度。
侧面积公式的推导
侧面积公式是由圆的周长公式和圆锥的侧面展开 图推导而来的。
3
侧面积的应用
圆锥的侧面积在几何学、工程、艺术等领域都有 广泛的应用。
圆锥的全面积
全面积公式
圆锥的全面积可以通过公式 S_total = πrl + πr² 来计算,其中 r 是底面半径,l 是母线长度。
06
圆锥的绘制方法
利用几何软件绘制圆锥
确定底面半径
首先需要确定圆锥的底面半径,可以使用几何软件中的测 量工具进行测量。
绘制圆
在几何软件中,选择画圆工具,并确定圆心和半径,绘制 出一个圆形。
绘制圆锥
选择画三角形工具,以圆心为顶点,绘制出一个等腰三角 形,然后选择“合并形状”工具,将三角形与圆形进行合 并,得到圆锥的侧面。
圆锥的ppt课件
圆锥的特性
01
02
03
圆锥的底面
圆锥的底面是一个圆,其 半径为r,圆心角为θ。
圆锥的高
圆锥的高是从顶点到圆心 的距离,记作h。
圆锥的母线
圆锥的母线是与底面圆的 边缘相切的线段,其长度 为l。
圆锥的应用
圆锥在几何学中的应用
圆锥是几何学中一个重要的基本图形,常用于研究几何性质和定理,如勾股定 理、射影定理等。
圆锥的底面展开图
圆锥的底面展开图是一个圆 这个圆的半径等于圆锥的底面半径
这个圆的周长等于圆锥底面的周长
圆锥展开图的应用
圆锥展开图在制作工艺品中应用广泛
圆锥展开图可以帮助我们理解圆锥的 几何性质和特点
通过圆锥展开图可以计算圆锥的母线 长和底面周长
05
圆锥的绘制方法
利用几何画板绘制圆锥
打开几何画板软件,选择“绘 图”菜单中的“圆锥”命令。
圆锥的母线
母线定义
圆锥的母线是从顶点到底面边缘的连线段。
母线长度
母线的长度等于从顶点到底面的垂直距离,即 l = h + r。
母线与底面半径关系
母线长度 l 与底面半径 r 的关系可以用公式 l = r + h 来表示。
03
圆锥的体积和表面积
圆锥的体积
圆锥体积的定义
圆锥体积是指圆锥所占空间的 大小。
展开后是一个扇形,扇形的半径等于 圆锥的母线长度。
侧面积
圆锥的侧面积等于展开后的扇形面积,即 S = (1/2) × l × r,其中 l 是母线长度,r 是底面半径 。
侧面积与底面周长关系
侧面积 S 与底面周长 C 的关系可以用公式 S = C × h / (2π) 来表示。
《圆锥的侧面积和全面积》PPT课件 人教版九年级数学
A.6cm B.8cm C.10cm D.12cm
2.一个圆锥的侧面积是底面积的2倍,这个圆锥
的侧面展开图扇形的圆心角是( D )
A.60°
B.90° C.120° D.180°
3.已知圆锥的母线长为5,底面半径为3,则圆
锥的表面积为( B )
A.15π
B.24π
C.30π
D.39π
4.如图,粮仓的顶部是圆锥形,这个圆锥的底面圆 的周长为32 m,母线长7 m,为了防雨,需要在它 的顶部铺上油毡,所需油毡的面积至少是多少?
S底=πr2=π×4×4=16π(cm2),
B
O
C
∴S全=S侧+S底=48π(cm2).
答:圆锥的面积是48πcm2.
综合应用
6.Rt△ABC中,∠C=90°,AC=3,BC=4,把它分别沿三边 所在直线旋转一周,求所得的三个几何体的全面积.
解:AB= AC2 BC2 =5,
绕AC旋转:S全1=S侧1+S底1=πr1l1+πr12=π×4×5+π×42=36π.
形,求被剪掉的部分的面积;如果
BO
C
将剪下来的扇形围成一个圆锥,圆
锥的底面圆的半径是多少?
解:连接BC,AO,则AO⊥BC.
∵OA=
1 2
m,∠BAO=45°,
AB
OA2 OB2
2 2
m.
S扇形BAC
90 AB2 360
90
360
2 2
2
8
(m2 ).
被剪掉部分的面积为
l BC
90 180
顶点
连接圆锥顶点与底面圆心的线 段叫做圆锥的高.
连接圆锥顶点和底面圆周上任
三种圆锥曲线统一定义及动画演示ppt课件
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
北京摩天大楼
巴西利亚大教堂
抛物线的定义:
▪ 平面内与一个定点F的距离和一条定直线l (F不在l上)的距离相等的点的轨迹叫做抛物 线,定点F叫做抛物线的焦点,定直线l叫 做抛物线的准线
说明:(1)点F不能在直线l上, 否则其轨迹是过点F且与l垂直的直线
(2)与椭圆、双曲线不同, 抛物线只有一个焦点和一条准线
的点的轨迹叫做双曲线,
两个定点F1,F2叫做双
曲线的叫焦点,两焦点 F1 0
间的距离叫做双曲线的
焦距
p F2 X
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
请同学们观察这样一个小实验?
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
抛物线的定义 :
平面内到一个定点F和一条定直线L(F不在L 上)的距离相等的点轨迹叫做抛物线,定点F叫做 抛物线的焦点,定直线L叫做抛物线的准线.
可以用数学表达式来体现: 设平面内的动点为M ,有 MF=d(d为动点M到
直线L的距离)
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
人教版九年级上册第24章:圆锥的侧面积和全面积课件(共37张PPT)
180 l
l
侧面 展开图
C 2 r
r
o
其侧面展开图扇形的半径=母线的长l
侧面展开图扇形的弧长=底面周长 2 r
圆锥的侧面积计算公式
S侧
1 lR 2
S侧
1 2
2r
l.
l
侧面 展开图
l
r
o
(r表示圆锥底面的半径, l 表示圆锥的母线长 )
圆锥的全面积计算公式
练一练: 已知一个圆锥的底面半径为12cm,母线长为 20cm,则这个圆锥的侧面积为 240πcm2 ,全 面积为 384πcm2 .
课堂小结
重要图形
圆锥的高 S
l
母线
h
r
AO
B
侧面 展开图
l
or
底面
重要结论
r2+h2=l2
S圆锥侧=πrl. S 圆锥全= S圆锥侧+ S圆锥底 = πrl+πr2
①其侧面展开图扇形的半径=母线的长l ②侧面展开图扇形的弧长=底面周长
当堂检测
1 填空、根据下列条件求值(其中r、h、 a分别是圆锥的底面半径、高线、母线长) (1) a = 2, r=1 则 h=_______
4.(1)在半径为10的圆的铁片中,要裁剪出一个直角扇
形,求能裁剪出的最大的直角扇形的面积?
(2)若用这个最大的直角扇形恰好围成一个圆锥,求这
个圆锥的底面圆的半径?
(3)能否从最大的余料③中剪出一个圆做该圆锥的底面?
请说明理由.
A
①
②
B
O
C
③
A
解:(1)连接BC,则BC=20,
①
②
l
侧面 展开图
C 2 r
r
o
其侧面展开图扇形的半径=母线的长l
侧面展开图扇形的弧长=底面周长 2 r
圆锥的侧面积计算公式
S侧
1 lR 2
S侧
1 2
2r
l.
l
侧面 展开图
l
r
o
(r表示圆锥底面的半径, l 表示圆锥的母线长 )
圆锥的全面积计算公式
练一练: 已知一个圆锥的底面半径为12cm,母线长为 20cm,则这个圆锥的侧面积为 240πcm2 ,全 面积为 384πcm2 .
课堂小结
重要图形
圆锥的高 S
l
母线
h
r
AO
B
侧面 展开图
l
or
底面
重要结论
r2+h2=l2
S圆锥侧=πrl. S 圆锥全= S圆锥侧+ S圆锥底 = πrl+πr2
①其侧面展开图扇形的半径=母线的长l ②侧面展开图扇形的弧长=底面周长
当堂检测
1 填空、根据下列条件求值(其中r、h、 a分别是圆锥的底面半径、高线、母线长) (1) a = 2, r=1 则 h=_______
4.(1)在半径为10的圆的铁片中,要裁剪出一个直角扇
形,求能裁剪出的最大的直角扇形的面积?
(2)若用这个最大的直角扇形恰好围成一个圆锥,求这
个圆锥的底面圆的半径?
(3)能否从最大的余料③中剪出一个圆做该圆锥的底面?
请说明理由.
A
①
②
B
O
C
③
A
解:(1)连接BC,则BC=20,
①
②
九年级数学上册教学课件《圆锥的侧面积和全面积》
D
D
3.已知圆锥的母线长为5,底面半径为3,则圆锥的表面积为( )A.15π B.24π C.30π D.39π
B
4.如图,粮仓的顶部是圆锥形,这个圆锥的底面周长为32 m,母线长为7 m,为了防雨,需要在它的顶部铺上油毡,则所需油毡的面积至少为多少平方米?
24.4 弧长和扇形面积
第2课时 圆锥的侧面积和全面积
九年级上册
元旦将近,某家商店正在制作元旦的圆锥形纸帽.如图,已知纸帽的底面周长为58cm,高为20cm,要制作20顶这样的纸帽至少要用多少平方厘米的纸?(结果精确到0.1cm2)
(1)知道(2)知道圆锥的侧面积和全面积的计算方法,会求圆锥的侧面积与全面积.
蒙古包可以近似地看作由圆锥和圆柱组成的.如果想用毛毡搭建20个底面积为12 m2,高为3.2 m,外围高1.8 m的蒙古包,至少需要多少平方米的毛毡 (π取3.142,结果取整数)?
r
r
h1
h2
例3
r
r
h1
h2
解:如图是一个蒙古包的示意图,依题意,下部圆柱的底面积12m2,高h2=1.8m;上部圆锥的高为3.2-1.8=1.4 m;
思考
圆锥与侧面展开图之间的主要关系
沿着圆锥的母线,把一个圆锥的侧面展开,得到一个扇形.1.这个扇形的半径与圆锥中的哪一条线段相等?2.这个扇形的弧长与底面圆的周长有什么关系?3.圆锥的侧面积和这个扇形的面积有什么关系?
圆锥侧面展开图的扇形的半径=母线的长l
l
1.圆锥的母线长=扇形的半径
1.弧长计算公式
2.扇形面积计算公式
回顾
R
生活中的圆锥
圆锥的相关概念
连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.
D
3.已知圆锥的母线长为5,底面半径为3,则圆锥的表面积为( )A.15π B.24π C.30π D.39π
B
4.如图,粮仓的顶部是圆锥形,这个圆锥的底面周长为32 m,母线长为7 m,为了防雨,需要在它的顶部铺上油毡,则所需油毡的面积至少为多少平方米?
24.4 弧长和扇形面积
第2课时 圆锥的侧面积和全面积
九年级上册
元旦将近,某家商店正在制作元旦的圆锥形纸帽.如图,已知纸帽的底面周长为58cm,高为20cm,要制作20顶这样的纸帽至少要用多少平方厘米的纸?(结果精确到0.1cm2)
(1)知道(2)知道圆锥的侧面积和全面积的计算方法,会求圆锥的侧面积与全面积.
蒙古包可以近似地看作由圆锥和圆柱组成的.如果想用毛毡搭建20个底面积为12 m2,高为3.2 m,外围高1.8 m的蒙古包,至少需要多少平方米的毛毡 (π取3.142,结果取整数)?
r
r
h1
h2
例3
r
r
h1
h2
解:如图是一个蒙古包的示意图,依题意,下部圆柱的底面积12m2,高h2=1.8m;上部圆锥的高为3.2-1.8=1.4 m;
思考
圆锥与侧面展开图之间的主要关系
沿着圆锥的母线,把一个圆锥的侧面展开,得到一个扇形.1.这个扇形的半径与圆锥中的哪一条线段相等?2.这个扇形的弧长与底面圆的周长有什么关系?3.圆锥的侧面积和这个扇形的面积有什么关系?
圆锥侧面展开图的扇形的半径=母线的长l
l
1.圆锥的母线长=扇形的半径
1.弧长计算公式
2.扇形面积计算公式
回顾
R
生活中的圆锥
圆锥的相关概念
连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发芽数 0 1 2 3 4 5 6 7 8 9 10 人数 0 5 0 0 0 18 12 0 0 4 1 这组数据的众数,平均数分别是多少? 在这组数据中,出现次数最多的是5,共出 现了18次,所以这组数据的众数是5。
平均数:(1×5+5×18+6×12+9×4+10×1) ÷40=5.325(粒)
10:15
小明进行10粒种子的发芽试验,共进行了5次, 结果如下:
序号 发芽数 1 1 2 6 3 6 4 6 5 9
这组数据的众数,平均数分别是多少? 在这组数据中,出现次数最多的是6,共出 现了3次,所以这组数据的众数是6。 平均数:(1+6+6+6+9)÷5=5.6(粒)
10:15
六(1)班40名同学进行10粒种子的发芽试验, 结果如下:
10:15
10:15
马小虎:我发现本店销售的皮鞋的平均尺码是42 码。老板,我建议本店多进42码的皮鞋!
平均数用在这里好不好?
10:15
平均数有什么用?
平均数一般表示一组数据的平均水平。
10:15
你觉得应该多进哪种尺码的鞋子? 金鞋子品牌店一天售出男皮鞋尺码情况。 41 40 42 41 45 45 41 45 41 41 41 41
尺码是41的鞋子卖得最多,共卖了6双。
在这组数据中,出现次数最多的是41,共 出现了6次,所以这组数据的众数是41。
10:15
10:15
在这组数据中,出现次数最多的是13,共 出现了4次,所以这组数据的众数是13。
这组数据的平均数是多少?
10:15
在这组数据中,出现次数最多的是25.5码, 共出现了48次,所以这组数据的众数是25.5。
10:15
测量校服时,众数的作用就显示出来了。
10:15
判断: 1、12、8、8、6、8、4这组数据中8出现了3次, 所以这组数据的众数是3。 ( × ) 2、平均数代表平均水平,众数是一组数据中出现 次数最多的数,代表这组数据一般水平。( √ ) 3、皮鞋店进货要依据平均数来进货。 ( × ) 4、下表中这组数据的众数是25。 尺码 35 36 37 38 39 双数 5 12 25 6 1 ( × )
10:15
表1
表2
10:15
金鞋子品牌店一周售出女皮鞋情况。 尺码 35 双数 5 36 12 37 25 38 6 39 1
这组数据的众数பைடு நூலகம்平均数分别是多少?
平均数:(1×5+5×18+6×12+9×4+10×1) ÷40=5.325(粒)
10:15
小明进行10粒种子的发芽试验,共进行了5次, 结果如下:
序号 发芽数 1 1 2 6 3 6 4 6 5 9
这组数据的众数,平均数分别是多少? 在这组数据中,出现次数最多的是6,共出 现了3次,所以这组数据的众数是6。 平均数:(1+6+6+6+9)÷5=5.6(粒)
10:15
六(1)班40名同学进行10粒种子的发芽试验, 结果如下:
10:15
10:15
马小虎:我发现本店销售的皮鞋的平均尺码是42 码。老板,我建议本店多进42码的皮鞋!
平均数用在这里好不好?
10:15
平均数有什么用?
平均数一般表示一组数据的平均水平。
10:15
你觉得应该多进哪种尺码的鞋子? 金鞋子品牌店一天售出男皮鞋尺码情况。 41 40 42 41 45 45 41 45 41 41 41 41
尺码是41的鞋子卖得最多,共卖了6双。
在这组数据中,出现次数最多的是41,共 出现了6次,所以这组数据的众数是41。
10:15
10:15
在这组数据中,出现次数最多的是13,共 出现了4次,所以这组数据的众数是13。
这组数据的平均数是多少?
10:15
在这组数据中,出现次数最多的是25.5码, 共出现了48次,所以这组数据的众数是25.5。
10:15
测量校服时,众数的作用就显示出来了。
10:15
判断: 1、12、8、8、6、8、4这组数据中8出现了3次, 所以这组数据的众数是3。 ( × ) 2、平均数代表平均水平,众数是一组数据中出现 次数最多的数,代表这组数据一般水平。( √ ) 3、皮鞋店进货要依据平均数来进货。 ( × ) 4、下表中这组数据的众数是25。 尺码 35 36 37 38 39 双数 5 12 25 6 1 ( × )
10:15
表1
表2
10:15
金鞋子品牌店一周售出女皮鞋情况。 尺码 35 双数 5 36 12 37 25 38 6 39 1
这组数据的众数பைடு நூலகம்平均数分别是多少?