高一数学必修4向量的数量积(一)_2

合集下载

必修4平面向量数量积考点归纳

必修4平面向量数量积考点归纳

“平面向量”误区警示“平而向呈:”概念繁多容易混淆,对于初学者更是一头雾水.现将与平而向量基本概念相关的误区整理如下.①向量此是育向线段解析:向量常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.有向线段是向量的一种表示方法,不能说向疑就是有向线段.⑵若向童砸与CD相普,则有向找段AB与CD *含解析:长度相等且方向相同的向疑叫做相等向量.因此,若A B = CD,则有向线段AB与CD 长度相等且方向相同,但它们可以不重合.⑶若AB II CD ,则筑段AB//CD解析:方向相同或相反的非零向量叫做平行向量.故由忑与Cb平行,只能得到线段AB与CD方向相同或相反,它们可能平行也可能共线.购若向爻血与CD共线,则线段AB与CD共线解析:」行向量也叫做共线向量,共线向量就是方向相同或相反的非零向量.故由应与C&共线,只能得到线段AB与CD方向相同或相反,它们可能平行也可能共线.(5)若 a // b, b II 6, flja II c解析:由尹零色量与任一向量平行,故当b = 0时,向量d、2不一定平行.当且仅当亍、6、5都为非零向量时,才有丘II c.⑹若|a| = |6|,则a=6无a=-b解析:也131=1 bl,只能㊇定向的长度相等,不能确定其方向有何关系.当孑与B不共线时,a = b或d=—6都不能成立.⑺草住向董都相等解析:长度等于一个长度单位的向量叫做单位向量,由于单位向量的方向不一左相同,故单位向量也不一定相等.⑻若I 3 | =0,则3 =0解析:向量和实数是两个截然不同的概念,向量组成的集合与实数集合的交集是空集.故若la 1=0,则a = 0 ,不能够说a =0.平面向量数量积四大考点解析考点一.考査概念型问题例1.已知7、I、7是三个非零向量,则下列命题中真命题的个数( )(1)a ・ b = a - b o a lib ; (2)a,b反向o "・b = — a - bf —> f —> f —> f f f⑶么丄b o a + b = u — b ;(4) a = b <=>"・/? = b-cA. 1B.2C. 3D. 4评注:两向量同向时,夹角为0(或(T ):而反向时,夹角为n (或180°):两向量垂直时,夹角为90° ,因此当两向量共线时,夹角为0或几,反过来若两向量的夹角为0或兀,则两向量共线.考点二、考査求模问题例2•已知向虽:方=(一2,2加=(5,小,若a + b不超过5,则k的取值范用是_____________评注:本题是已知模的逆向题,运用左义即可求参数的取值范1刊。

北师大版高中数学必修4第二章《平面向量》平面向量的数量积

北师大版高中数学必修4第二章《平面向量》平面向量的数量积

r r o 1.已知a, b均为单位向量,它们的夹角为60 , r r 求|a + 3b |= r r r r r r 2.已知a, b满足:a |= 1,b |= 2,| a − b |= 2, | | r r 求|a + b |= uuu r 3.已知平面上三点A, B, C满足:AB |= 2, | uuu r uuu r | BC |= 1,| CA |= 3, uuu uuu uuu uuu uuu uuu r r r r r r 求 AB ⋅ BC + BC ⋅ CA + CA ⋅ AB = r r r r r 4.已知非零向量a, b满足 : (a − 2b) ⊥ a, r r r r r (b − 2a ) ⊥ b, 求a, b的夹角 =
重要性质: 重要性质
设a,b都是非零向量,e是与b方向相同的单 , 位向量,θ是a与e的夹角,则 (1)e·a=a·e = |a| cosθ (2)a⊥b a·b=0 (3)当a与b同向时,a·b=|a||b| 当a与b反向时,a·b=-|a| |b| 特别地,a·a =|a|2或|a|=√a·a 。 (4)cosθ= a·b |a||b|
a·b=|a| |b| cosθ
规定:零向量与任一向量的数量积为0。
r r 即: 0 = 0 a⋅
复 习 引 入 新课讲解 例题讲解 性质讲解 课堂练习 小结回顾
例1.已知|a|=5,|b|=4,a与b的夹角 θ=120°,求a·b.
解:a·b=|a||b|cosθ
=5×4×cos120° =5×4×(-1/2)= -10.
数量积a·b等于a的长度|a|与b在a 的方向上的投影|b|cosθ的乘积.
复 习 引 入 新课讲解 例题讲解 性质讲解 课堂练习 小结回顾 例1.已知|a|=5,|b|=4,a与b的夹角 θ=120°, r r 则, b上的投影为 a在 r r b在a上的投影为

高中数学第二章平面向量2.4平面向量的数量积(1)课件新人教A版必修4

高中数学第二章平面向量2.4平面向量的数量积(1)课件新人教A版必修4
解析(jiě xī): A中若a⊥b,则有a·b=0,不一定有a=0或b=0. C中当|a|=|b|时,a2=b2,此时不一定有a=b或a=-b. D中当a=0时,a·b=a·c,不一定有b=c. 答案: B
第十页,共35页。
3.已知向量a,b满足(mǎnzú)|a|=1,|b|=4,且a·b=2,则a与b的夹角为 ________.
第十六页,共35页。
解析: (1)a·b=|a||b|cos 120°=3×4×-12=-6. (2)a2-b2=|a|2-|b|2=32-42=-7.
(3)(2a-b)·(a+3b)=2a2+5a·b-3b2=2|a|2+5|a||b|·cos 120°-3|b|2=2×32+
5×3×4×-12-3×42=-60.
第三十一页,共35页。
[拓展练]☆ 3.(1)已知向量 a,b 满足(a+2b)·(a-b)=-6,且|a|=1,|b|=2,则 a 与 b 的夹角为________; (2)已知非零向量 a,b 满足 a+3b 与 7a-5b 互相垂直,a-4b 与 7a-2b 互 相垂直,求 a 与 b 的夹角.
第六页,共35页。
2.数量积的几何意义及数量积的符号
(1)按照投影的定义,非零向量 b 在 a 方向上的投影为|b|cos θ,其具体情况,
我们也可以借助下面图形分析:
θ 的范围
θ=0° 0°<θ<90° θ=90° 90°<θ<180° θ=180°
图形
b 在 a 上的 投影的正负
正数
正数
0
第七页,共35页。
|2a+b|2=(2a+b)(2a+b)=4|a|2+|b|2+4a·b=4|a|2+|b|2+4|a||b|cos 60°=175. ∴|2a+b|=5 7.

高中数学必修4平面向量复习4平面向量的数量积

高中数学必修4平面向量复习4平面向量的数量积

5.4 平面向量的数量积要点透视: 1.两个向量的夹角:两个非零向量a 和b ,作 OA =a ,OB =b ,则∠AOB =θ (0°≤θ≤180°),叫做两向量a 与b 的夹角。

如果a 与b 的夹角是90°,则说a 与b 垂直,记作a ⊥b 2.两向量的数量积:已知两个非零向量a 和b ,它们的夹角为θ,则把数量|a |·|b |·cos θ叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a |·|b |·cos θ,规定:零向量与任一向量的数量积为0.向量的数量积满足下列运算律: (1)a ·b =b ·a ; (2)(λa )·b =λ(a ·b )=a ·(λb ); (3)(a +b )·c =a ·c +b ·c . 3.向量数量积的坐标运算:记a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2. 4定理:两个向量a ,b 垂直的充要条件是a ·b =0.活题精析: 例1.(2001年上海卷)若非零向量以α ,β 满足|α +β |=|α -β |,则α 与β 所成角的大小是 . 要点精析:由作向量和与差的平行四边形法则可知:|α +β |,|α -β |正好是以α ,β 为邻边的平行四边形的两对角线的长度,∵ |α +β |=|α -β |.∴ 平行四边形是矩形,∴ α 与β 所成角是90°.思维延伸:作平面向量的某些题目时,应注意与平面几何知识相结合.本例还可采用两边平方,得α ·β =0. 例2.( 2003年天津卷)设a ,b ,c 是任意的非零向量,且相互不共线. (1)(a ·b )c -(c ·a )b =0 ;(2)|a |-|b |<|a -b |;(3)(b ·c )a -(c ·a )b 不与c 垂直;(4)(3a +2b )· (3a -2b )=9|a |2-4|b }2.其中是真命题的有( )A .(1)(2)B .(2)(3)C .(3)(4)D .(2)(4) 要点解析:(a ·b )c 是与向量c 平行的向量(c ·a )b 是与向量b 平行的向量,因此(a ·b )c 与(c ·a )b 不一定相等,因此(1)不正确. 因为a ,b ,c 是任意的非零向量,是相互不共线,则根据三角形两边之差小于第三边可知(2)正确. [(b ·c )a -(c ·a )b ]·c =(b ·c )(a ·c )-(c ·a )(b ·c )=0,因此(b ·c )a -(c ·a )b 与c 垂直,答案(3)不正确. (3a +2b )·(3a -2b )=9a 2-4b 2=9|a |2-4|b |2,答案(4)正确,应选D 。

最新-2021版高中数学人教B版必修四课件:第二单元 233 向量数量积的坐标运算与度量公式 精品

最新-2021版高中数学人教B版必修四课件:第二单元 233 向量数量积的坐标运算与度量公式 精品

π A.6
√B.π4
π
π
C.3
D.2
解析 ∵|a|= 10,|b|= 5,a·b=5,
∴cos〈a,b〉=|aa|·|bb|=
5 10×
5= 22.
又∵a,b的夹角范围为[0,π],∴a 与 b 的夹角为π4.
12345
解析 答案
2.已知向量B→A=12, 23,B→C= 23,12,则∠ABC 等于
12345
解答
规律与方法
1.平面向量数量积的定义及其坐标表示,提供了数量积运算的两种不同 的途径.准确地把握这两种途径,根据不同的条件选择不同的途径,可以 优化解题过程.同时,平面向量数量积的两种形式沟通了“数”与“形” 转化的桥梁,成为解决距离、角度、垂直等有关问题的有力工具. 2.应用数量积运算可以解决两向量的垂直、平行、夹角以及长度等几何 问题,在学习中要不断地提高利用向量工具解决数学问题的能力.
3.注意区分两向量平行与垂直的坐标形式,二者不能混淆,可以对比学习、 记忆.若a=(x1,y1),b=(x2,y2),则a∥b⇔x1y2-x2y1=0,a⊥b⇔x1x2+ y1y2=0. 4.事实上应用平面向量的数量积公式解答某些平面向量问题时,向量夹 角问题却隐藏了许多陷阱与误区,常常会出现因模糊“两向量的夹角的 概念”和忽视“两向量夹角的范围”,稍不注意就会带来失误与错误.
答案
梳理
设a=(a1,a2),b=(b1,b2),则a·b= a1b1+a2b2 .即两个向量的数量 积等于相应坐标乘积的和.
知识点二 向量模的坐标表示及两点间距离公式
思考
若a=(a1,a2),试将向量的模|a|用坐标表示. 答案 ∵a=(a1,a2), ∴|a|2=a·a=(a1,a2)·(a1,a2) =a21+a22, ∴|a|= a21+a22.

2019版数学人教B版必修4课件:2.3.2 向量数量积的运算律

2019版数学人教B版必修4课件:2.3.2 向量数量积的运算律

-9-
M Z Z 2.3.2 向量数量积的运算律
目标导航
UBIAODAOHANG
知识梳理
HISHI SHULI
重难聚焦
HONGNAN JVJIAO
D S 典例透析 IANLI TOUXI
随堂演练
UITANGYANLIAN
题型一 题型二
【变式训练1】 已知e1,e2是两个单位向量,它们的夹角为60°,则
2.3.2 向量数量积的运算律
-1-
M Z Z 2.3.2 向量数量积的运算律
目标导航
UBIAODAOHANG
知识梳理
HISHI SHULI
重难聚焦
HONGNAN JVJIAO
D S 典例透析 IANLI TOUXI
随堂演练
UITANGYANLIAN
1.掌握平面向量数量积的运算律,并要注意运算律的适用范围以 及与实数乘法运算律的区别.
(1)a2=a·a=|a|2 或|a|= ������·������;
(2)|a±b|= (������ ± ������)2 = ������2 + ������2 ± 2������·������.
-12-
M Z Z 2.3.2 向量数量积的运算律
目标导航
UBIAODAOHANG
知识梳理
HISHI SHULI
答案:A
-10-
M Z Z 2.3.2 向量数量积的运算律
目标导航
UBIAODAOHANG
知识梳理
HISHI SHULI
重难聚焦
HONGNAN JVJIAO
D S 典例透析 IANLI TOUXI
随堂演练
UITANGYANLIAN
题型一 题型二

高一数学必修四课件时向量的数量积

高一数学必修四课件时向量的数量积

计算两向量的夹角
01
与平面几何类似,可以通过向量数量积计算两个空间向量的夹
积为零,则两向量垂直。
计算向量的投影
03
向量在另一个向量上的投影长度同样可以通过向量数量积求得

典型例题解析
01
02
03
04
例题1
已知向量a和b的坐标,求a和 b的夹角。
例题2
判断向量a和b是否垂直。
动量定理
动量定理描述了物体所受合外力的冲量等于物体动量的变化,即$vec{I}=Delta vec{p}$ 。其中,冲量是力对时间的积累,可以表示为力向量与时间向量的数量积。
向量数量积在电磁学中应用
01 02 03
电场强度与电势差的关系
电场强度$vec{E}$与电势差$V$之间的关系可以通过向量 数量积表示为$V=-int_{a}^{b} vec{E} cdot d vec{l}$,其 中$d vec{l}$是位移向量。该公式描述了电场中两点间电 势差与电场强度的关系。
洛伦兹力与安培力的计算
洛伦兹力$vec{F}=qvec{v} times vec{B}$和安培力 $vec{F}=Ivec{l} times vec{B}$的计算中涉及到向量外积 ,但外积的结果仍然是一个向量,其大小可以通过向量数 量积来计算。
电磁感应中的感应电动势
感应电动势的大小与磁通量的变化率成正比,即$e=frac{d Phi}{dt}$。其中,磁通量是磁感应强度$vec{B}$与 面积向量$vec{S}$的数量积,即$Phi=vec{B} cdot vec{S}$。
示。
向量的共线定理
向量$vec{a}$与向量$vec{b}$共 线的充要条件是存在唯一实数 $lambda$,使得$vec{a} = lambdavec{b}$。

高一数学必修4向量的数量积(一)

高一数学必修4向量的数量积(一)

高一数学必修4 向量的数量积(一)分析如果力F与物体位移s方向的夹角为θ(如图),那么
的功W应为
cos Wθ=F s
注意:若把功W看成是两个向量F与s的某种运算结果,那么这个
思考:向量的数量积满足结合律吗?
板书设计 一、情景创设
二、数学建构
定义:已知两个非零向量a 和b ,他们的夹角是θ,我们把数量
cos a b θ
叫做向量a 和b 的数量积(或内积),记作a b
,即
cos a b a b θ
=
我们规定:零向量与任一向量的数量积为0。

归纳:由向量的数量积的定义可知
当a 与b 同向时,a b a b = ;
当a 与b 反向时,a b a b =-

特别地,
2a a a = 或a = 三、应用举例 四、小结 五、作业。

人教版高中数学高一A版必修4 第二章第四节平面向量的数量积(第三课时)

人教版高中数学高一A版必修4 第二章第四节平面向量的数量积(第三课时)

第二章第四节平面向量的数量积第三课时整体设计教学分析平面向量的数量积,教材将其分为两部分.在第一部分向量的数量积中,首先研究平面向量所成的角,其次,介绍了向量数量积的定义,最后研究了向量数量积的基本运算法则和基本结论;在第二部分平面向量数量积的坐标表示中,在平面向量数量积的坐标表示的基础上,利用数量积的坐标表示研讨了平面向量所成角的计算方式,得到了两向量垂直的判定方法,本节是平面向量数量积的第二部分.前面我们学习了平面向量的数量积,以及平面向量的坐标表示.那么在有了平面向量的坐标表示以及坐标运算的经验和引进平面向量的数量积后,就顺其自然地要考虑到平面向量的数量积是否也能用坐标表示的问题.另一方面,由于平面向量数量积涉及了向量的模、夹角,因此在实现向量数量积的坐标表示后,向量的模、夹角也都可以与向量的坐标联系起来.利用平面向量的坐标表示和坐标运算,结合平面向量与平面向量数量积的关系来推导出平面向量数量积以及向量的模、夹角的坐标表示.教师应在坐标基底向量的数量积的基础上,推导向量数量积的坐标表示.通过例题分析、课堂训练,让学生总结归纳出对于向量的坐标、数量积、向量所成角及模等几个因素,知道其中一些因素,求出其他因素基本题型的求解方法.平面向量数量积的坐标表示是在学生学习了平面向量的坐标表示和平面向量数量积的基础上进一步学习的,这都为数量积的坐标表示奠定了知识和方法基础.三维目标1.通过探究平面向量的数量积的坐标运算,掌握两个向量数量积的坐标表示方法.2.掌握两个向量垂直的坐标条件以及能运用两个向量的数量积的坐标表示解决有关长度、角度、垂直等几何问题.3.通过平面向量数量积的坐标表示,进一步加深学生对平面向量数量积的认识,提高学生的运算速度,培养学生的运算能力和创新能力,提高学生的数学素质.重点难点教学重点:平面向量数量积的坐标表示.教学难点:向量数量积的坐标表示的应用.课时安排1课时教学过程导入新课思路1.平面向量的表示方法有几何法和坐标法,向量的表示形式不同,对其运算的表示方式也会改变.向量的坐标表示为我们解决有关向量的加、减、数乘运算带来了极大的方便.上一节,我们学习了平面向量的数量积,那么向量的坐标表示,对平面向量的数量积的表示方式又会带来哪些变化呢?由此直接进入主题.思路2.在平面直角坐标系中,平面向量可以用有序实数对来表示,两个平面向量共线的条件也可以用坐标运算的形式刻画出来,那么学习了平面向量的数量积之后,它能否用坐标来表示?若能,如何通过坐标来实现呢?平面向量的数量积还会是一个有序实数对吗?同时,平面向量的模、夹角又该如何用坐标来表示呢?通过回顾两个向量的数量积的定义和向量的坐标表示,在此基础上引导学生推导、探索平面向量数量积的坐标表示.推进新课新知探究提出问题①平面向量的数量积能否用坐标表示?②已知两个非零向量a =(x 1,y 1),b =(x 2,y 2),怎样用a 与b 的坐标表示a·b 呢?③怎样用向量的坐标表示两个平面向量垂直的条件?④你能否根据所学知识推导出向量的长度、距离和夹角公式?活动:教师引导学生利用前面所学知识对问题进行推导和探究.前面学习了向量的坐标可以用平面直角坐标系中的有序实数对来表示,而且我们也知道了向量的加、减以及实数与向量积的线性运算都可以用坐标来表示.两个向量共线时它们对应的坐标也具备某种关系,那么我们就自然而然地想到既然向量具有数量积的运算关系,这种运算关系能否用向量的坐标来表示呢?教师提示学生在向量坐标表示的基础上结合向量的坐标运算进行推导数量积的坐标表示.教师可以组织学生到黑板上板书推导过程,教师给予必要的提示和补充.推导过程如下:∵a =x 1i +y 1j ,b =x 2i +y 2j ,∴a·b =(x 1i +y 1j )·(x 2i +y 2j )=x 1x 2i 2+x 1y 2i·j +x 2y 1i·j +y 1y 2j 2.又∵i·i =1,j·j =1,i·j =j·i =0,∴a·b =x 1x 2+y 1y 2.教师给出结论性的总结,由此可归纳如下:1°平面向量数量积的坐标表示两个向量的数量积等于它们对应坐标的乘积的和,即a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2.2°向量模的坐标表示若a =(x ,y ),则|a |2=x 2+y 2,或|a |=x 2+y 2. 如果表示向量a 的有向线段的起点和终点的坐标分别为(x 1,y 1)、(x 2,y 2),那么 a =(x 2-x 1,y 2-y 1),|a |=(x 2-x 1)2+(y 2-y 1)2. 3°两向量垂直的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.4°两向量夹角的坐标表示设a 、b 都是非零向量,a =(x 1,y 1),b =(x 2,y 2),θ是a 与b 的夹角,根据向量数量积的定义及坐标表示,可得cos θ=a·b |a||b|=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.讨论结果:略.应用示例例1已知A (1,2),B (2,3),C (-2,5),试判断△ABC 的形状,并给出证明.活动:教师引导学生利用向量数量积的坐标运算来解决平面图形的形状问题.判断平面图形的形状,特别是三角形的形状时主要看边长是否相等,角是否为直角.可先作出草图,进行直观判定,再去证明.在证明中若平面图形中有两个边所在的向量共线或者模相等,则此平面图形与平行四边形有关;若三角形的两条边所在的向量模相等或者由两边所在向量的数量积为零,则此三角形为等腰三角形或者为直角三角形.教师可以让学生多总结几种判断平面图形形状的方法.解:在平面直角坐标系中标出A (1,2),B (2,3),C (-2,5)三点,我们发现△ABC 是直角三角形.下面给出证明.∵AB →=(2-1,3-2)=(1,1),AC →=(-2-1,5-2)=(-3,3),∴AB →·AC →=1×(-3)+1×3=0.∴AB →⊥AC →.∴△ABC 是直角三角形.点评:本题考查的是向量数量积的应用,利用向量垂直的条件和模长公式来判断三角形的形状.当给出要判定的三角形的顶点坐标时,首先要作出草图,得到直观判定,然后对你例2(1)已知三点A (2,-2),B (5,1),C (1,4),求∠BAC 的余弦值;(2)a =(3,0),b =(-5,5),求a 与b 的夹角.活动:教师让学生利用向量的坐标运算求出两向量a =(x 1,y 1)与b =(x 2,y 2)的数量积a·b =x 1x 2+y 1y 2和模|a |=x 21+y 21,|b |=x 22+y 22的积,其比值就是这两个向量夹角的余弦值,即cos θ=a·b |a||b|=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.当求出两向量夹角的余弦值后再求两向量的夹角大小时,需注意两向量夹角的范围是0≤θ≤π.学生在解这方面的题目时需要把向量的坐标表示清楚,以免出现不必要的错误.解:(1)AB →=(5,1)-(2,-2)=(3,3),AC →=(1,4)-(2,-2)=(-1,6),∴AB →·AC →=3×(-1)+3×6=15.又∵|AB →|=32+32=32,|AC →|=(-1)2+62=37,∴cos ∠BAC =AB →·AC →|AB →||AC →|=1532·37=57474. (2)a·b =3×(-5)+0×5=-15,|a|=3,|b |=5 2.设a 与b 的夹角为θ,则cos θ=a·b |a||b |=-153×52=-22. 又∵0≤θ≤π,∴θ=3π4. 点评:本题考查的是利用向量的坐标表示来求两向量的夹角.利用基本公式进行运算与例3已知|a |=3,b =(2,3),试分别解答下面两个问题:(1)若a ⊥b ,求a ;(2)若a ∥b ,求a .活动:对平面中的两向量a =(x 1,y 1)与b =(x 2,y 2),要让学生在应用中深刻领悟其本质属性,向量垂直的坐标表示x 1x 2+y 1y 2=0与向量共线的坐标表示x 1y 2-x 2y 1=0很容易混淆,应仔细比较并熟记,当难以区分时,要从意义上鉴别,两向量垂直是a·b =0,而共线是方向相同或相反.教师可多加强反例练习,多给出这两种类型的变形训练.解:(1)设a =(x ,y ),由|a |=3且a ⊥b ,得⎩⎪⎨⎪⎧x 2+y 2=|a |2=9,2x +3y =0, 解得⎩⎨⎧ x =-91313,y =61313或⎩⎨⎧ x =91313,y =-61313. ∴a =(-91313,61313)或a =(91313,-61313). (2)设a =(x ,y ),由|a |=3且a ∥b ,得⎩⎪⎨⎪⎧x 2+y 2=|a |2=9,3x -2y =0, 解得⎩⎨⎧ x =61313,y =91313或⎩⎨⎧ x =-61313,y =-91313.∴a =(61313,91313)或a =(-61313,-91313). 点评:本题主要考查学生对公式的掌握情况,学生能熟练运用两向量的坐标运算来判断知能训练课本本节练习.解答:1.|a|=5,|b|=29,a·b =-7.2.a·b =8,(a +b )·(a -b )=-7,a·(a +b )=0,(a +b )2=49.3.a·b =1,|a|=13,|b|=74,θ≈88°.课堂小结1.在知识层面上,先引导学生归纳平面向量数量积的坐标表示,向量的模,两向量的夹角,向量垂直的条件.其次引导学生总结数量积的坐标运算规律,夹角和距离公式、两向量垂直的坐标表示.2.在思想方法上,教师与学生一起回顾探索过程中用到的思维方法和数学思想方法,定义法,待定系数法等.作业课本习题2.4 A组8、9、10.设计感想由于本节课是对平面向量的进一步探究与应用,是对平面向量几何意义的综合研究提高,因此教案设计流程是探究、发现、应用、提高,这符合新课程理念,符合新课标要求.我们知道平面向量的数量积是本章最重要的内容,也是高考中的重点,既有选择题、填空题,也有解答题(大多同立体几何、解析几何综合考查),故学习时要熟练掌握基本概念和性质及其综合运用.而且数量积的坐标表示又是向量运算的一个重要内容,用坐标表示直角坐标平面内点的位置,是解析几何的一个基本特征,从而以坐标为桥梁可以建立向量与解析几何的内在联系.以三角函数表示点的坐标,又可以沟通向量与三角函数的相互关系,由此就产生出一类向量与解析几何及三角函数交汇的综合性问题.平面向量数量积的坐标表示使得向量数量积的应用更为方便,也拓宽了向量应用的途径.通过学习本节的内容,要更加加深对向量数量积概念的理解,同时善于运用坐标形式运算解决数量问题,尤其是有关向量的夹角、长度、垂直等,往往可以使问题简单化.灵活使用坐标形式,综合处理向量的线性运算、数量积、平行等,综合地解决向量综合题,体现数形结合的思想.在本节的学习中可以通过对实际问题的抽象来培养学生分析问题、解决问题和应用知识解决问题的意识与能力.备课资料一、|a·b|≤|a||b|的应用若a=(x1,y1),b=(x2,y2),则平面向量的数量积的性质|a·b|≤|a||b|的坐标表示为x1x2+y1y2≤x21+y21x22+y22⇔(x1x2+y1y2)2≤(x21+y21)(x22+y22).不等式(x1x2+y1y2)2≤(x21+y21)(x22+y22)有着非常广泛的应用,由此还可以推广到一般(柯西不等式):(a1b1+a2b2+…+a n b n)2≤(a21+a22+…+a2n)(b21+b22+…+b2n).例1(1)已知实数x,y满足x+y-4=0,则x2+y2的最小值是________;(2)已知实数x,y满足(x+2)2+y2=1,则2x-y的最大值是________.解析:(1)令m=(x,y),n=(1,1).∵|m·n|≤|m||n|,∴|x+y|≤x2+y2·2,即2(x2+y2)≥(x+y)2=16.∴x2+y2≥8,故x2+y2的最小值是8.(2)令m=(x+2,y),n=(2,-1),2x-y=t.由|m·n|≤|m||n|,得|2(x+2)-y|≤(x+2)2+y2·5=5,即|t+4|≤ 5.解得-4-5≤t≤5-4.故所求的最大值是5-4.答案:(1)8 (2)5-4例2已知a,b∈R,θ∈(0,π2),试比较a2cos2θ+b2sin2θ与(a+b)2的大小.解:构造向量m=(acosθ,bsinθ),n=(cosθ,sinθ),由|m·n|≤|m||n|得(a cos θcos θ+b sin θsin θ)2≤(a 2cos 2θ+b 2sin 2θ)(cos 2θ+sin 2θ), ∴(a +b )2≤a 2cos 2θ+b 2sin 2θ. 同类变式:已知a ,b ∈R ,m ,n ∈R ,且mn ≠0,m 2n 2>a 2m 2+b 2n 2,令M =m 2+n 2,N =a +b ,比较M 、N 的大小.解:构造向量p =(a n ,b m),q =(n ,m ),由|p ·q |≤|p ||q |得 (a n ×n +b m ×m )2≤(a 2n 2+b 2m 2)(m 2+n 2)=a 2m 2+b 2n 2n 2m 2(m 2+n 2)<m 2+n 2, ∴M >N .例3设a ,b ∈R ,A ={(x ,y )|x =n ,y =na +b ,n ∈Z },B ={(x ,y )|x =m ,y =3m 2+15,m ∈Z },C ={(x ,y )|x 2+y 2≤144}是直角坐标平面xOy 内的点集,讨论是否存在a 和b ,使得A ∩B ≠∅与(a ,b )∈C 能同时成立.解:此问题等价于探求a 、b 是否存在的问题,它满足⎩⎪⎨⎪⎧na +b =3n 2+15,①a 2+b 2≤144. ② 设存在a 和b 满足①②两式,构造向量m =(a ,b ),n =(n,1).由|m ·n |2≤|m |2|n |2得(na +b )2≤(n 2+1)(a 2+b 2),∴(3n 2+15)2≤144(n 2+1)⇒n 4-6n 2+9≤0.解得n =±3,这与n ∈Z 矛盾,故不存在a 和b 满足条件.二、备用习题1.若a =(2,-3),b =(x,2x ),且a ·b =43,则x 等于( ) A .3 B.13C .-13D .-3 答案:C2.设a =(1,2),b =(1,m ),若a 与b 的夹角为钝角,则m 的取值范围是( )A .m >12B .m <12C .m >-12D .m <-12答案:D3.若a =(cos α,sin α),b =(cos β,sin β),则( )A .a ⊥bB .a ∥bC .(a +b )⊥(a -b )D .(a +b )∥(a -b )答案:C4.与a =(u ,v )垂直的单位向量是( )A .(-v u 2+v 2,u u 2+v2) B .(v u 2+v 2,-u u 2+v2) C .(v u 2+v 2,u u 2+v 2) D .(-v u 2+v 2,u u 2+v 2)或(v u 2+v 2,-u u 2+v2) 答案:D5.已知向量a =(cos23°,cos67°),b =(cos68°,cos22°),u =a +t b (t ∈R ),求u 的模的最小值.答案:解:|a |=cos 223°+cos 267°=cos 223°+sin 223°=1,同理有|b |=1.又a ·b =cos23°cos68°+cos67°cos22°=cos23°cos68°+sin23°sin68°=cos45°=22, ∴|u |2=(a +t b )2=a 2+2t a·b +t 2b 2=t 2+2t +1=(t +22)2+12≥12. 当t =-22时,|u |min =22. 6.已知△ABC 的三个顶点为A (1,1),B (3,1),C (4,5),求△ABC 的面积.答案:分析:S △ABC =12|AB →||AC →|sin ∠BAC ,而|AB →|,|AC →|易求,要求sin ∠BAC 可先求出cos ∠BAC .解:∵AB →=(2,0),AC →=(3,4),|AB →|=2,|AC →|=5,∴cos ∠BAC =AB →·AC →|AB →||AC →|=2×3+0×42×5=35. ∴sin ∠BAC =45. ∴S △ABC =12|AB →||AC →|sin ∠BAC =12×2×5×45=4. 三、新教材新教法的二十四个“化”字诀新课导入新颖化,揭示概念美丽化;纵横相联过程化,探索讨论热烈化;探究例题多变化,引导思路发散化;学生活动主体化,一石激浪点拨化;大胆猜想多样化,论证应用规律化;变式训练探究化,课堂教学艺术化;学法指导个性化,对待学生情感化;作业抛砖引玉化,选题质量层次化;学生学习研究化,知识方法思想化;抓住闪光激励化,教学相长平等化;教学意识超前化,与时俱进媒体化;灵活创新智慧化,学生素质国际化.。

高一数学人教B版必修4课件:2-3-3 向量数量积的坐标运算与度量公式

高一数学人教B版必修4课件:2-3-3 向量数量积的坐标运算与度量公式
向量是否垂直,又可以由垂直关系去求参 数. 注意平行与垂直关系的联系与区别.对于 两个非零向量 a = (x1 , y1) , b = (x2 , y2) , 有 (1)a⊥b⇔a·b=0⇔x1x2+y1y2=0; (2)a∥b⇔a·b=±|a||b|⇔x1y2-x2y1=0. 2.对一些几何问题(如垂直关系)可考虑建
9 ∴2x -9x=0,∴x=0 或 x= . 2
2
→ =(-1,2),OB → =(3,m),若OA → ⊥AB → ,则 6.已知向量OA m=________.
[解析]
→ =OB → -OA → =(4,m-2), AB
→ ⊥AB → ,∴OA →· → =0, ∵OA AB 即(-1,2)· (4,m-2)=0, • [答案 ] 4 ∴-1×4+2×(m-2)=0,解得 m=4.
∴λa+b=(-3λ-1,2λ) a-2b=(-3,2)-2(-1,0)=(-1,2) 由(λa+b)⊥(a-2b), 1 得 4λ+3λ+1=0,∴λ=-7.
• 二、填空题 9 [答案] 0 • 5.已知 a或 = 2(x-2,x+3),b=(2x-3,-2),
若 a⊥ ________. [解析 ] b,则 ∵a⊥x b= ,∴ a· b=(x-2)(2x-3)-2(x+3)=0
2
22 11 → → ∴OM=(2,1)或OM= 5 , 5 .
故存在点 M(2,1)或点
22 11 M 5 , 5 满足题意.
[例 4]
若 a=(λ,2),范围是
10 A.-∞, 3 6 6 10 B.-∞,-5∪-5, 3 10 C. 3 ,+∞ 10 D.-∞, 3
∴b⊥c,∴b 与 c 的夹角为 90° .

数学:2.3.3《向量数量积的坐标运算与度量公式》课件(1)(新人教B版必修4)

数学:2.3.3《向量数量积的坐标运算与度量公式》课件(1)(新人教B版必修4)
AC = (−2 − 1,5 − 2) = ( −3,3)
∴ AB ⋅ AC = 1× (−3) + 1× 3 = 0
△ABC是直角三角形 是直角三角形
变形:在∆ABC中,设 AB = (2,3), AC = (1, k ), 且 ∆ABC是直角三角形,求k的值。
解 : BC = AC − AB = ( − 1, k − 3) ∵ 又 ∆ ABC 是直角三角形 即( − 2, − 3) i ( − 1, k − 3) = 0 ∴ 2 − 3( k − 3) = 0 11 k = 3
1 ∴n = 2
变形: .已知 a = 4, b = 3, a与b的夹角为90 , 且 c = a + 2b, d = 2 a + k b,问 k 为何值时 (1) c ⊥ d (2) c∥d (3) c与 d的 夹角为锐角 ? 的夹角为锐角
°
a b . 注: a ⋅ b > 0不能保证向量与 的夹角为锐角
解: ∵ c ⊥d ,∴ c⋅ d =0, ∴ 即 a+(sinα−3)b⋅−ka+(sinα)b =0 也即 −ka +a⋅b⋅sinα
2
−k(sinα−3)a⋅b+ sinα(sinα−3b =0, )
2
2 2 1 3 又∵ a = ( 3, −1) , b =( , ),∴ a⋅ b =0,且 a = a = 4, 2 2
∴ a ⋅ b = x 1 i + y1 j ( x 2 i + y 2 j ( ) ⋅ )
= x1 x 2 i + x1 y2 i ⋅ j + x 2 y1 j ⋅ i + y1 y2 j
∵ i = 1, j = 1, i ⋅ j = j ⋅ i = 0

向量数量积的物理意义以及背景

向量数量积的物理意义以及背景

2.3.1向量数量积的物理背景与定义【学习目标】1.通过问题探究1,能说出向量夹角的定义并准确求出两个向量的夹角; 2.通过问题探究2,能说出轴上正射影的定义,并能准确解答问题;3.通过问题探究3,能说出向量内积的定义,并能准确、灵活解答向量内积的题目。

【学习重难点】重点:向量数量积的定义以及性质难点:对向量数量积定义及性质的理解和应用 【导学纲要】 (一)创设情境如图,一个力F 作用用于一个物体,使该物体位移s ,求这个力所做的功。

根据上面的解答,______________为F 在物体位移方向上的分量数量,也就是力F 在物体位移方向上正射影的数量.以计算力做功为背景,我们引入向量的数量积的运算. (二)探究新知【学习目标1】通过问题探究1,能说出向量夹角的定义并准确求出两个向量的夹角;【,,= 则AOB ∠称作向量,a b →→的夹角,记作<,a b →→>,规定:0,a b π→→≤<>≤ 特殊情况:由图知:若向量,a b →→同向,<,a b →→>=______向量,ab →→相互垂直,,a b →→<>=注:1.零向量与任何向量垂直2. ,,a b b a →→→→<>=<>如图,在等边三角形ABC (1)AC AB ,的夹角;(2)AB BC ,的夹角【学习目标2】能说出轴上正射影的定义,并能准确解答问题; 【问题探究2】阅读课本108页,看图回答问题 1. a →在轴l 上的正射影是什么?2.a →在轴l 上的正射影的数量是什么?坐标呢?怎样表示?【学习目标3】能说出向量内积的定义,并能准确、灵活解答向量内积的题目。

【问题探究3】定义:||||cos ,a b a b →→→→<> 称为向量a →和b →的数量积(或内积),记作:a b →→即问题1.两个向量的内积是一个向量还是数量?什么时候为正,什么时候为负,什么时候为0?问题2.你能根据正投影的定义解释向量内积的几何意义吗?问题3.由内积的定义,完成下面试题 (1)=⋅⇔⊥(2)若_____a b a b →→→→= 与同向,_____a b a b →→→→= 与反向,_____,||______aa a →→→==(3)||_____||||a b a b →→→→(4)cos _____a b →→<>= (5)______a e e a →→→→== 归纳:向量内积重要性质: (1)0a b a b →→→→⊥⇔= (2)2||,|a a a a →→→→= 即(3)||||||a b a b →→→→≤(4)cos ||||a ba b a b →→→→→→<>=(5)||cos ,a e e a a a e →→→→→→→==<> (三)能力提升例1.已知轴l(1) 向量||5,,,60OA OA l =<>=,求OA在l 上的正射影的数量1OA(2)向量||5,,,120OB OB l =<>=, 求OB在l 上的正射影的数量1OB反馈练习:(P109)B.2B 1A 1l例2.已知||5,||4,,120,a b a b a b →→→→→→==<>=求反馈练习:1. (3,0),(0,4),a b a b →→→→== 求,3.||5,||2,(1),,(2)6a b a b a b a ba bπ→→→→→→→→→→==<>=⊥ (3)分别求【当堂检测】1. 若向量,a b →→满足||2,,3b a b π→→→=<>=,则在方向上的正射影的数量是________2、已知:2,1,()0,a b a b b ==-=则a 与b 的夹角是( ) ()30()45()60()90A B C D ︒︒︒︒3、已知3,5a b == 且12,a b =则向量a 在向量b 上的射影数量为( )12()()3()4()55A B C D4、已知向量a ,b 满足1,4a b == ,且2,a b =则a 与b 的夹角为( )()()()()6432A B C D ππππ5、在ABC 中,若()()0,BA BC CA CB ABC --=为( )(A )直角三角形 (B )正三角形 (C )等腰三角形 (D )等腰直角三角形6、对于向量a ,b ,c和实数λ,下列说法中正确的是( )A 、若0,a b =则0a = 或0b = B 、若0a λ= ,则λ=0或0a = C 、若22a b = ,则a b = 或a b =- D 、若a b a c = ,则b c =7、若a b == ()a b a +⊥,则则a 与b 的夹角为( )2()()()()6433A B C D ππππ(四)总结 今天的收获是_____________________________________________________________________ (五)课后作业 课时配套练习。

高中数学 人教A版必修4 第2章 2.4.1平面向量数量积的物理背景及含义(一)

高中数学 人教A版必修4    第2章 2.4.1平面向量数量积的物理背景及含义(一)

其中 θ 是 a 与 b 的夹角. (2)规定:零向量与任一向量的数量积为 0 . (3)投影:设两个非零向量 a、b 的夹角为 θ,则向量 a 在 b
|a|cos θ , |b|cos θ 方向的投影是_______ 向量 b 在 a 方向上的投影是_______.
3.数量积的几何意义 a· b 的几何意义是数量积 a· b 等于 a 的长度|a|与 b 在 a 的方
|b|cos θ 的乘积. 向上的投影_______
研一研·问题探究、课堂更高效
2.4.1(一)
探究点一
本 课 时 栏 目 开 关
平面向量数量积的含义
已知两个非零向量 a 与 b,我们把数量|a||b|cos θ 叫做 a 与 b 的 数量积(或内积),记作 a· b,即 a· b=|a||b|cos θ,其中 θ 是 a 与 b 的夹角,θ∈[0,π].规定:零向量与任一向量的数量积为 0. 问题 1 如果一个物体在力 F 的作用下产生位移 s,那么力 F 所
∴a· b=|a|· |b|cos 180° =4×5×(-1)=-20. (2)当 a⊥b 时,θ=90° ,∴a· b=|a|· |b|cos 90° =0. (3)当 a 与 b 的夹角为 30° 时,a· b=|a|· |b|cos 30°
2.4.1(一)
【学法指导】 1.向量的数量积是一种新的乘法,和向量的线性运算有着显著的 区别,两个向量的数量积,其结果是数量,而不是向量.学习 本 课 时必须透彻理解数量积概念的内涵. 时 栏 目 2.向量的数量积与实数的乘积既有区别又有联系,概念内涵更丰 开 关 富,计算更复杂,实数乘法中的一些运算律在向量的数量积中 已经不再成立,不宜作简单类比,照搬照抄.书写格式也要严 格区分,a· b 中的“· ”不能省略.

【教案】向量的数量积教学设计-2022-2023学年高一下学期数学人教A版(2019)必修第二册

【教案】向量的数量积教学设计-2022-2023学年高一下学期数学人教A版(2019)必修第二册

§6.2.4向量的数量积一、内容和内容解析内容:向量的数量积.内容解析:本节是高中数学人教A版必修2第六章第2节的第四课时内容.教材以物理中力作功为背景引入向量的数量积,与向量的加法、减法、数乘运算一样有明显的几何意义,用途广泛,但与向量的线性运算不同的是,数量积的运算结果是数量而不是向量.会计算两个向量的数量积,提升数学抽象的核心素养.通过探究投影向量的表达式,进而得到数量积的几何意义,提升直观想象,逻辑推理的核心素养.二、目标和目标解析目标:(1)通过物理中“功”等实例,理解平面向量数量积的概念及其物理意义,会计算平面向量的数量积.(2)通过几何直观,了解平面向量投影的概念以及投影向量的意义.(3)会用数量积判断两个平面向量的垂直关系.目标解析:(1)能从物理中“功”的具体实例中,引出向量的数量积的概念,能依据数量积的概念计算平面向量的数量积,并能像了解实数的运算律一样,通过具体实例了解向量数量积的性质.(2)能从图形中判断向量投影与投影向量,知道向量投影是一种正交变换,并能表示投影向量与原向量之间的关系,能借助向量投影与投影向量体会向量数量积的几何意义.(3)知道两个平面向量的垂直等价于其数量积为零,并能用这一结论进行向量运算.三、教学问题诊断分析1.教学问题一:两个向量夹角的定义是指同一点出发的两个向量所构成的较小的非负角,因此向量夹角定义理解不清而造成解题错误是一些常见的误区.同时利用向量的数量积,可以解决两向量垂直问题,要深刻理解两向量垂直的充要条件,应用的时候才能得心应手.解决方案:数形结合让学生体验夹角的概念,强调夹角一定是共起点的最小角.2.教学问题二:向量的数量积是一种新的向量运算,与向量的加法、减法、数乘运算一样,它也有明显的物理意义、几何意义,用途广泛.但与向量的线性运算不同的是,它的运算结果不是向量而是数量,正是这个不同点沟通了向量运算与数量之间的关系.解决方案:强调两个非零向量的数量积是数量,而不是向量,它的值是两个向量的长度与两个向量夹角的余弦的乘积.3.教学问题三:对于向量的数量积运算,学生容易受实数乘法运算性质的负迁移的影响,可能出现一些错误,教师要尽可能地引导学生举一些反例,纠正错误.解决方案:引导学生借助画图、举反例来澄清认识,体会向量运算与实数运算的差异.基于上述情况,本节课的教学难点定为:数量积的性质及其应用.四、教学策略分析本节课的教学目标与教学问题为我们选择教学策略提供了启示.数量积的概念既是本节课的重点,也是难点.为了突破这一难点,首先无论是在概念的引入还是应用过程中,物理中“功”的实例都发挥了重要作用.其次,作为数量积概念延伸的性质和运算律,不仅能够使学生更加全面深刻地理解概念,同时也是进行相关计算和判断的理论依据.最后,无论是数量积的性质还是运算律,都希望学生在类比的基础上,通过主动探究来发现,因而对培养学生的抽象概括能力、推理论证能力和类比思想都无疑是很好的载体.在教学设计中,采取问题引导方式来组织课堂教学.问题的设置给学生留有充分的思考空间,让学生围绕问题主线,通过自主探究达到突出教学重点,突破教学难点.在教学过程中,重视数量积的概念和运算律,让学生在类比的基础上体会到从特殊到一般是数学抽象的基本过程.因此,本节课的教学是实施数学具体内容的教学与核心素养教学有机结合的尝试.五、教学过程与设计教学环节问题或任务师生活动设计意图创设情境引入新知[问题1]我们已经研究了向量的哪些运算?这些运算的结果是什么?[问题2]我们是怎么引入向量的加法运算的?我们又是按照怎样的顺序研究了这种运算的?[问题3]当力F与运动方向成某一角度时,力F对物体所做的功等于多少呢?教师1:提出问题1.学生1:学生思考.教师2:提出问题2.学生2:学生思考.物理模型→概念→性质→运算律→应用.教师3:提出问题3.学生3:cosW FSθ=使学生在与向量加法类比的基础上明了本节课的研究方法和顺序,为教学活动指明方向.探寻规律,明[问题4]向量的夹角该如何定义?它的范围是什么?教师4:提出问题4.学生4:已知两个非零向量a,b,O是平面上的任意一点,作OA=a,OB=b,则∠AOB=θ叫做向量a与b的夹角.范围是:[0,]π教师5:我们可以用图来表示:通过此环节不仅使学生认识到数量积的结果与线性运算的结果有着本确概念[问题5]你能用文字语言来表述功的计算公式吗?如果我们将公式中的力与位移推广到一般向量,其结果又该如何表述?[问题6]向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?例1.已知|a|=5,|b|=4,a与b的夹角θ=23π,求a⋅b.例2.设|a|=12,|b|=9,a⋅b=542-,求a与b的夹角θ.当=0,a与b同向;当=,a与b反向;当=2,a与b垂直教师6:提出问题5.学生5:功是力与位移的大小及其夹角余弦的乘积;两个向量的大小及其夹角余弦的乘积.教师7:明确概念:已知两个非零向量a与b,它们的夹角为α,我们把数量︱a︱︱b︱cosα叫做a与b的数量积(或内积),记作:a b⋅,即:a b⋅ =︱a︱︱b︱cosα.规定:零向量与任一向量的数量积均为0.教师8:提出问题6.学生6:数量积的结果是数,线性运算的结果是向量.学生7:影响因素有:模长和夹角.教师9:完成表格:角α的范围00090α≤<090α=0090180α<≤a b⋅的符号学生8:学生思考,完成表格.教师10:追问:你能用数量积的概念解决以下问题吗?学生9:学生思考,完成例题.教师11:引入投影向量:如图,设a,b是两个非零向量,AB=a,CD=b,作如下变换:过AB的起点A和终点B,分别作CD所在直线的垂线,垂足分别为A1,B1,得到11AB,质的不同,而且认识到向量的夹角是决定数量积结果的重要因素,为下面更好地理解数量积的性质和运算律做好铺垫.通过例题巩固数量积的概念.这样做不仅让学生从“形”的角度重新认识数量积的概念,从中体[问题7]如图,在平面内任取一点O,作OM=a,ON=b,设与b方向相同的单位向量为e,a与b的夹角为,过点M作直线ON的垂线,垂足为M1,则1OM等于什么?[问题8]数量积的几何意义是什么?【练习】已知非零向量a与b 的夹角为45°,|a|=2,与b方向相同的单位向量为e,向量a在向量b上的投影向量为c,则c= .[问题9]根据数量积的概念,数量积有哪些性质?[问题10]类比数的乘法运算律,结合向量的线性运算的运算律,你能得到数量积运算的哪我们称上述变换为向量a向向量b投影,11AB叫做向量a在向量b上的投影向量.教师12:提出问题7.学生10:1OM=|a|cos e.教师13:提出问题8.学生11:a b⋅=b⋅a在b上的投影向量.教师14:完成练习学生12:c=|a|cos45°e=222e=2e.教师15:提出问题9:师生共同总结数量积的性质:(1) a⋅e=e⋅a=| a|cos.(2)a⊥b⇔a⋅b=0.(3)当a与b同向时,a⋅b=|a||b|;当a与b反向时,a⋅b=-|a|b|.(4) a·a=a2=|a|2或|a|=a·a=a2.(5)| a⋅b|≤|a||b|.(6)cosθ=a·b|a||b|.学生结合数量积的定义自己尝试推证上述性质,教师会数量积与向量投影的关系,同时也更符合知识的连贯性.结合数量积、投影的概念和几何意义,让学生自己尝试得到数量积些运算律?能否证明一下?给予必要的补充和提示,学生在推导过程中理解并记忆这些性质.教师16:提出问题10:学生13:教师17:表格中的结论有没有问题?学生14:数量积的结合律一般不成立,因为(a·b)·c是一个与c共线的向量,而(a·c)·b是一个与b共线的向量,两者一般不同.教师18:向量数量积的运算律交换律a·b=b·a对数乘的结合律(λa)·b=λ(a·b)=a·(λb)分配律(a+b)·c=a·c+b·c 的性质,培养学生独立思考的能力.有了运算方法就有运算律,通过问题让学生理解平面向量数量积运算律,并运用投影向量的性质证明数量积的分配律.典例探究落实巩固1.求投影向量例3.已知|a|=4,e为单位向量,它们的夹角为2π3,则向量a在向量e上的投影向量是______;向量e在向量a上的投影向量是________.2.利用数量积解决向量的夹角和垂直问题例4.已知非零向量a,b满足|b|=4|a|,且a⊥(2a+b),则a与b的夹角为()教师19:完成例3学生15:向量a在向量e上的投影向量是|a|cosθe=4cos2π3e=-2e.因为与向量a方向相同的单位向量为aa=14a,所以向量e在向量a上的投影向量是|e|cosθaa=cos2π314a=-18a.教师20:完成例4学生16:由题意,得a·(2a+b)=2a2+a·b=0,即a·b通过例题,让学生熟悉向量数量积的运算.A .π3B .π2C .2π3D .5π63利用数量积求向量的模例5.已知|a |=|b |=5,向量a 与b 的夹角为π3,求|a +b |,|a -b |的值.[课堂练习1] 设向量a ,b 满足|a +b|=10|a -b|=6,则 a·b =( ).A .1B .2C .3D .5 [课堂练习2]设向量a ,b 满足|a |=|b |=1,a·b =14-,则|a +2b|=_____.=-2a 2,设a 与b 的夹角为θ,则cos θ=a ·b |a |·|b |=-2a 24a 2=-12,所以θ=2π3,故选C .教师21:完成例5学生17:因为a 2=|a |2=25,b 2=|b |2=25,a·b =|a||b |cos θ=5×5×cos π3=252,所以|a +b |=(a +b )2=a 2+b 2+2a·b =25+25+25=53,|a -b |=(a -b )2=a 2+b 2-2a·b =25+25-25=5.教师18:布置课堂练习1、2. 学生16:完成课堂练习,并订正答案.课堂练习1:考查学生对平面向量数量积运算的掌握情况课堂练习2: 考查学生通过平面向量数量积运算求向量的模的能力. 课堂小结[问题11]通过这节课,你学到了什么知识?在解决问题时,用到了哪些数学思想?[课后练习]1.若|m |=4,|n |=6,m 与n 的夹角为135°,则m ·n =( ) A .12 B .12 2教师19:提出问题11. 学生17:思考.教师20:布置课后练习师生共同回顾总结:引领学生感悟数学认知的过程,体会数学核心素养.升华认知 C.-12 2 D.-122.若向量a与b的夹角为60°,|b|=4,且(a+2b)·(a-3b)=-72,则a的模为()A.2B.4C.6 D.123.已知|a|=|b|=1,a与b的夹角是90°,c=2a+3b,d=k a-4b,c与d垂直,则k的值为()A.-6 B.6C.3 D.-34.已知|b|=5,a·b=12,则向量a在向量b上的投影向量为________.学生18:学生课后进行思考,并完成课后练习.答案:C,C,B,1225b课后练习:巩固定理,是对本节知识的一个深化认识,同时也为下节内容做好铺垫.。

向 量 数 量 积

向 量 数 量 积

向量数量积
向量的数量积,也称为内积或点积,是两个向量的一种特殊乘法运算。

向量数量积的数学表达式为:如果有两个非零向量a和b,那么它们的数量积定义为|a||b|cosθ,其中θ是向量a与向量b之间的夹角。

在笛卡尔坐标系中,如果向量a=(x₁,y₁)和向量b=(x₁,y₁),那么它们的数量积可以通过它们的坐标进行计算,即a·b=x₁·x₁+y₁·y₁。

向量数量积的几何意义可以理解为一个向量在另一个向量方向上的投影的长度与第二个向量长度的乘积。

这个运算在物理中有着广泛的应用,例如在分析力的作用时,力和位移的点积可以用来计算做功的多少。

向量的数量积是一个非常重要的概念,它在数学、物理以及工程学等领域都有着广泛的应用。

了解其定义和性质对于解决相关问题是非常有帮助的。

《向量数量积的概念》 说课稿

《向量数量积的概念》 说课稿

《向量数量积的概念》说课稿尊敬的各位评委老师:大家好!今天我说课的课题是《向量数量积的概念》。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。

一、教材分析本节课选自人教版高中数学必修 4 第二章第四节。

向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景。

向量数量积是向量运算的重要内容,它不仅在解决几何问题中有着广泛的应用,而且为后续学习向量的坐标运算、向量的模以及夹角等知识奠定了基础。

二、学情分析学生在之前已经学习了向量的线性运算,对向量的概念和运算有了一定的了解,但对于向量数量积这一新概念的理解和应用可能会存在一定的困难。

此外,学生的抽象思维能力和逻辑推理能力还有待进一步提高。

三、教学目标1、知识与技能目标(1)理解向量数量积的概念,掌握向量数量积的运算律。

(2)能够运用向量数量积的定义和运算律进行计算和证明。

2、过程与方法目标(1)通过物理实例引入向量数量积的概念,培养学生的数学建模能力和从实际问题中抽象出数学问题的能力。

(2)通过对向量数量积性质的探究,培养学生的逻辑推理能力和运算能力。

3、情感态度与价值观目标(1)让学生体会数学与物理的密切联系,激发学生学习数学的兴趣。

(2)培养学生严谨的治学态度和勇于探索的精神。

四、教学重难点1、教学重点向量数量积的概念及其运算律。

2、教学难点对向量数量积概念的理解以及向量数量积的应用。

五、教法与学法1、教法(1)启发式教学法:通过创设问题情境,引导学生思考和探究,激发学生的学习兴趣和主动性。

(2)讲授法:对于一些重要的概念和定理,通过教师的讲解,让学生能够准确理解和掌握。

2、学法(1)自主探究法:让学生通过自主思考和探究,理解向量数量积的概念和性质。

(2)合作学习法:组织学生进行小组讨论和合作学习,培养学生的合作意识和交流能力。

六、教学过程1、导入新课通过回顾物理中力做功的公式:\(W =|F|\cdot|s|\cos\theta\),其中\(F\)是力的大小,\(s\)是位移的大小,\(\theta\)是力与位移的夹角。

数学必修4教材梳理 2.4向量的数量积 含解析 精品

数学必修4教材梳理 2.4向量的数量积 含解析 精品

疱丁巧解牛知识·巧学1.平面向量数量积(内积)的定义已知两个非零向量a 与b ,它们的夹角是θ,我们把数量|a ||b |cosθ叫向量a 与b 的数量积(或内积),记作a ·b , 即a ·b =|a ||b |cosθ.我们规定零向量与任一向量的数量积为0. 误区警示 两个向量的数量积称为内积,写成a ·b ;今后要学到两个向量的外积a ×b ,而a ·b 是两个向量的数量的积,书写时要严格区分.符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替,用a ×b 或ab 表示两个向量的数量积都是错误的. 辨析比较 (1)在实数中,若a ≠0,且a ·b =0,则b =0;但是在数量积中,若a ≠0,且a ·b =0,不能推出b =0,因为其中cosθ有可能为0.(2)已知实数a 、b 、c (b ≠0),则ab =bc ⇒a =c .但是a ·b =b ·c 并不一定能得到a =c .两向量的数量积是个数量,而不是向量,它的值为两向量的模与两向量夹角的余弦的乘积,其符号由夹角的余弦值决定. 2.两个非零向量的夹角已知非零向量a 与b ,作=a ,=b ,则∠AOB=θ(0≤θ≤π)叫a 与b 的夹角. 当θ=0时,a 与b 同向;当θ=π时,a 与b 反向;当θ=2π时,a 与b 垂直,记作a ⊥b . 学法一得 在利用两向量的夹角定义求两个向量的夹角时,两个向量必须是同起点的,当起点不同时可通过平移移到同一个起点. 3.两个向量的数量积的性质(1)当a 与b 同向时,a ·b =|a ||b |;当a 与b 反向时,a ·b =-|a ||b |;特别地,a ·a =|a |2或|a |=a a ∙. 该条性质实现了实数与向量的联系,我们在求向量模时,往往先求模的平方,借助向量的数量积运算进行.设a 、b 为两个非零向量,e 是与b 同向的单位向量. (2)a ⊥b ⇔a ·b =0. 若a ⊥b ,则a 与b 的夹角θ=90°,所以a ·b =|a ||b |cos90°=0; 反过来,a ·b =|a ||b |cosθ=0, 因|a |≠0,|b |≠0,所以cosθ=0. 所以θ=90°,则a ⊥b .数量积的这条性质,是解决代数、几何问题中的垂直关系的基本方法.深化升华 利用性质(2)把平面中几何关系问题转化成向量的计算问题,数与形结合起来. (3)cosθ=||||b a ba ∙.这条性质是数量积定义式a ·b =|a ||b |cosθ的等价变形式,侧重于两向量的夹角问题. (4)|a ·b |≤|a ||b |.由数量积的定义a ·b =|a ||b |cosθ可知 |a ·b |=|a ||b ||cosθ|. ∵0≤θ≤180°, ∴|cosθ|≤1. ∴|a ·b |=|a ||b ||cosθ|≤|a ||b |,当且仅当两个向量共线时“等号”成立.特别地,对于(1)、(2)、(3)三条性质,用向量的数量积可以处理有关长度、角度、垂直的问题.辨析比较(1)在实数中|ab|=|a||b|,而在向量中|a·b|≤|a||b|,这是向量与实数的区别.(2)在实数中a2=|a|2,在向量中也有a2=|a|2,这是向量和实数类似的一个性质.4.平面向量数量积的运算律(1)交换律:a·b=b·a.证明:设a、b夹角为θ,则a·b=|a||b|cosθ,b·a=|b||a|cosθ,∴a·b=b·a.(2)数乘结合律:(λa)·b=λ(a·b)=a·(λb).证明:若λ>0,(λa)·b=λ|a||b|cosθ,λ(a·b)=λ|a||b|cosθ,a(λb)=λ|a||b|cosθ,若λ<0,(λa)·b=|λa||b|cos(π-θ)=-λ|a||b|(-cosθ)=λ|a||b|cosθ,λ(a·b)=λ|a||b|cosθ,a·(λb)=|a||λb|cos(π-θ)=-λ|a||b|(-cosθ)=λ|a||b|cosθ.(3)分配律:(a+b)·c=a·c+b·c.如图2-4-2,在平面内取一点O,作=a,AB=b,=c,图2-4-2∵a+b(即)在c方向上的投影等于a、b在c方向上的投影和,即|a+b|cosθ=|a|cosθ1+|b|cosθ2,∴|c||a+b|cosθ=|c||a|cosθ1+|c||b|cosθ2.∴c·(a+b)=c·a+c·b,即(a+b)·c=a·c+b·c.误区警示在实数中,有(a·b)c=a(b·c),但是(a·b)c=a(b·c)不一定成立.因为左端是与c共线的向量,而右端是与a共线的向量,而一般a与c不共线.学法一得平面向量数量积的运算就类似于多项式的乘法,展开后再合并同类项.这样就可以很好地理解公式的来龙去脉.从系统的角度讲,我们所学的知识都是紧密联系的.把我们未知的东西转化到已知内容上去,这是我们学习的一种方法.5.平面两向量数量积的坐标表示已知两个非零向量a=(x1,y1),b=(x2,y2),试用a和b的坐标表示a·b.设i是x轴上的单位向量,j是y轴上的单位向量,它们的方向分别和x、y轴的正向相同,那么a=x1i+y1j,b=x2i+y2j,所以a·b=(x1i+y1j)·(x2i+y2j)=x1x2i2+x1y2i·j+x2y1i·j+y1y2j2,又i·i=1,j·j=1,i·j=j·i=0,所以a·b=x1x2+y1y2.这就是说:两个向量的数量积等于它们对应坐标的乘积的和,即a·b=x1x2+y1y2.深化升华引入坐标后,实现了向量的数量积的运算与两个向量的坐标的运算的转化,从而将它们联系起来,为计算和证明带来了方便,实现了数与形的结合.6.平面内两点间的距离公式(1)设a =(x,y),则|a |2=x 2+y 2,或|a |=22y x +.当平面向量用坐标表示而求模时可代此公式.深化升华 求向量的模通常有两种方法:一是通过数量积的坐标表示推导向量的模;二是向量的模的平方等于向量的平方,即利用向量的数量积来求.(2)如果表示向量AB 的有向线段的起点和终点的坐标分别为(x 1,y 1)、(x 2,y 2),那么|AB |=221221)()(y y x x -+-(平面内两点间的距离公式).这是因为,若表示向量a 的有向线段的起点和终点的坐标分别为(x 1,y 1)、(x 2,y 2),则a =(x 2,y 2)-(x 1,y 1)=(x 2-x 1,y 2-y 1),由(1)可得|a |=221221)()(y y x x -+-.即平面内两点之间的距离等于相应坐标的差的平方和的算术平方根. 向量a 的模也具有一定的几何意义,即|a |=2222)0()0(-+-=+y x y x ,通过简单的构造,体现点(x,y)到原点(0,0)的距离.联想发散 有关二次式的平方和问题,大部分可考虑转化为两点间距离问题,借“形”直观理解“数”的问题.7.两向量夹角的余弦(0≤θ≤π)若a =(x 1,y 1),b =(x 2,y 2)都是非零向量,若设它们的夹角为θ,则有 cosθ=||||b a b a ∙=222221212121y x y x y y x x +++.利用此公式,可直接求出两向量的夹角.利用向量的数量积来求两向量夹角的方法是:先利用平面向量数量积的坐标表示公式求出这两个向量的数量积,再利用|a |=22y x +计算出这两个向量的模,然后由公式cosθ=||||b a ba ∙直接求出cosθ的值,进一步求出θ的值.求几何图形中的内角也常用类似的方法.深化升华 运用向量知识求解几何问题的方法称为向量法.向量是沟通数和形内在联系的有力工具,具有多方面的功能.用向量解几何题的主要思想是:将直线形的各边视为向量,把线段的关系式化为向量的关系式,从而把几何问题转化为向量问题,运用向量运算法则,通过向量的化简与计算,推出结论完成解题. 8.向量垂直的判定由于两个非零向量垂直的充要条件是这两个向量的数量积为零,若设a =(x 1,y 1),b =(x 2,y 2)都是非零向量,则可得a ⊥b ⇔x 1x 2+y 1y 2=0.向量垂直的坐标表示是判定两个向量垂直的非常好用的条件,在实际中应通过训练达到灵活运用它来证明两个向量垂直或三角形为直角三角形或四边形为矩形.误区警示 若a =(x 1,y 1),b =(x 2,y 2)都是非零向量,则a ⊥b 的充要条件是x 1x 2+y 1y 2=0;a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=0.对于初学者来说,这两个充要条件极易混淆,因此对于这两个充要条件要对比记忆,关键是从公式的推导过程记忆. 典题·热题知识点1 向量的数量积例1 判断正误,并简要说明理由.①a ·0=0;②0·a =0;③0-=;④|a ·b |=|a ||b |;⑤若a ≠0,则对任一非零b 有a ·b ≠0;⑥a ·b =0,则a 与b 中至少有一个为0;⑦对任意向量a ,b ,c 都有(a ·b )c =a (b ·c );⑧a 与b 是两个单位向量,则a 2=b 2.思路分析:利用向量数量积的定义、性质和运算律. 解:上述8个命题中只有③⑧正确;对于①,两个向量的数量积是一个实数,应有a ·0=0; 对于②,应有0·a =0;对于④,由数量积定义有|a ·b |=|a |·|b |·|cosθ|≤|a ||b |,这里θ是a 与b 的夹角,只有θ=0或θ=π时,才有|a ·b |=|a |·|b |;对于⑤,若非零向量a 、b 垂直,有a ·b =0; 对于⑥,由a ·b =0可知a ⊥b ,可以都是非零向量; 对于⑦,若a 与c 共线,记a =λc , 则a ·b =(λc )·b =λ(c ·b )=λ(b ·c ), ∴(a ·b )c =λ(b ·c )c =(b ·c )λc =(b ·c )a . 若a 与c 不共线,则(a ·b )c ≠(b ·c )a .方法归纳 这一类型题,要求学生确实把握好数量积的定义、性质、运算律. 误区警示 如果不注意零向量与实数零的区别,则易出现“①②正确”的错误结论.例2 已知a 、b 都是非零向量,且a +3b 与7a -5b 垂直,a -4b 与7a -2b 垂直,求a 与b 的夹角. 思路分析:利用两个向量垂直及两向量夹角公式. 解:因为a +3b 与7a -5b 垂直, 则有(a +3b )·(7a -5b )=0, 即7a 2+16a ·b -15b 2=0. ① 又a -4b 与7a -2b 垂直, 则有(a -4b )·(7a -2b )=0, 即7a 2-30a ·b +8b 2=0. ② 两式相减2a ·b =b 2, 代入①或②得a 2=b 2,设a 、b 的夹角为θ,则cosθ=22||2||||b b b a b a =∙=21, ∴θ=60°.方法归纳 向量的数量积是一个实数,充分利用两向量垂直的条件,把问题转化到实数集中去求解是解本题的关键.误区警示 由于a -4b 与7a -2b 都是向量,在求它们数量积时不能书写成(a -4b )(7a -2b ),这种表示方法是错误的,应书写为(a -4b )·(7a -2b ). 例3 已知|a |=|b |=5,a 与b 的夹角为3π,求|a +b |,|a -b |的值. 思路分析:先求|a ±b |2,再求|a ±b |. 解:∵|a +b |2=a 2+2a ·b +b 2 =25+25+2|a ||b |cos 3π=75, ∴|a +b |=35.同理|a -b |2=a 2-2a ·b +b 2 =25+25-2|a ||b |cos3=25. ∴|a -b |=5.方法归纳 求向量模的问题往往先求模的平方,这样绝对值号就去掉了,也与向量的模以及向量的数量积联系起来了.例4 已知平面上三个向量a 、b 、c 的模均为1,它们相互之间的夹角为120°. (1)求证:(a -b )⊥c ;(2)若|k a +b +c |>1(k ∈R ),求k 的取值范围.思路分析:证明向量垂直问题,一般考虑利用向量的数量积为零.要解决模的问题,往往转化成与模平方有关的问题来解决.(1)证法一:∵|a |=|b |=|c |=1且a 、b 、c 之间的夹角均为120°, ∴(a -b )·c =a ·c -b ·c =|a ||c |cos120°-|b ||c |cos120°=0. ∴(a -b )⊥c .证法二:如图2-4-3,设=a ,=b ,=c ,图2-4-3由题意可知,连结AB 、AC 、BC 的三条线段围成正三角形ABC,O 为△ABC 中心. ∴OC ⊥AB.又∵=a -b ,∴(a -b )⊥c .(2)解:∵|k a +b +c |>1, ∴(k a +b +c )·(k a +b +c )>1, 即k 2a 2+b 2+c 2+2k a ·b +2k a ·c +2b ·c >1. ∵a ·b =a ·c =b ·c =cos120°=-21, ∴k 2-2k >0.解得k <0或k >2,即k 的取值范围是k <0或k >2.方法归纳 证明向量的垂直或判定几何图形中线的垂直关系,往往转化成向量的数量积等于零来证明.与模有关的问题,常先考虑模的平方.深化升华 利用向量的有关知识,可以通过数形结合,提供平面几何中许多问题的新颖、直观、简捷的解法.知识点2 平面两向量数量积的坐标表示例5 设a =(m+1,-3),b =(1,m-1),若(a +b )⊥(a -b ),求m 的值.思路分析:解题时可根据已知条件求出a +b 与a -b ,再利用垂直求得m 的值即可. 解:∵a +b =(m+2,m-4),a -b =(m,-m-2), 又∵(a +b )⊥(a -b ),∴(a +b )·(a -b )=0,即m(m+2)+(m-4)(-m-2)=0. ∴m=-2.方法归纳 解题时可利用向量的坐标运算和向量垂直的坐标表示,列出方程解方程即可求解. 例6 已知a =(4,2),求与a 垂直的单位向量的坐标.思路分析:本题利用向量垂直的坐标表示,设出向量的坐标,利用已知条件建立方程组解之即可.解法一:设e =(x,y),据题意x 2+y 2=1. ① 又a ⊥e ,∴a ·e =0,即4x+2y=0. ②解由①②组成的方程组⎩⎨⎧=+=+,024,122y x y x得⎪⎪⎩⎪⎪⎨⎧-==552,5511y x 或⎪⎪⎩⎪⎪⎨⎧=-=552,5522y x , 即e=(55,-552)或(-55,552).解法二:如图2-4-4,=a =(4,2).过圆点与垂直的直线与单位圆交于B 、C 两点,则与OC 即为所求.图2-4-4cosα2=sinα1=55,sinα2=cosα1=552. 依据三角函数的定义,可求得B(-55,552), 即=(-55,552). ∵与互为相反向量, ∴=(55,-552).方法归纳 要求的单位向量即为以与a 垂直的直线与单位圆相交的交点为终点,原点为起点的两向量,可通过解直角三角形或三角函数的定义求解.例7 已知a =(1,3),b =(3+1,3-1),则a 与b 的夹角是多少?思路分析:要求a 与b 夹角,需先求a ·b 及|a ||b |,再结合夹角θ的范围确定其值. 解:由a =(1,3),b =(3+1,3-1),则 a ·b =3+1+3(3-1)=4,|a |=2,|b |=22, 记a 与b 的夹角为θ,则cosθ=||||b a b a ∙=22,又∵0≤θ≤π,∴θ=4π. 方法归纳 已知三角函数值求角时,应注重角的范围的确定.例8 在△ABC 中,=(3,3),=(1,k),且△ABC 的一个内角为直角,求k 的值.思路分析:由于没指出哪个内角是直角,故需分别讨论,借助向量减法的运算法则求出△ABC 是一边BC 对应的向量,再用两个向量垂直的充要条件,构造出k 的方程,从而求出k 的值. 解:(1)当∠A=90°时,图2-4-5∵·=0, ∴3×1+3k=0,解得k=-1. (2)当∠B=90°时,-==(1-3,k-3)=(-2,k-3),∵AB ·BC =0,∴2×(-2)+3(k-3)=0,解得k=313. (3)当∠C=90°时, ∵AC ·BC =0,∴-2+k(k-3)=0,即k 2-3k-2=0,解得k 1=2173-或k 2=2173+.综合(1)(2)(3)可知k 的值为k=-1或k=313或k=2173±. 方法归纳 本题在△ABC 的一个内角为直角,但不知道哪个角为直角的情况下,进行分类讨论,分类讨论的数学思想贯穿于中学数学的各门具体课程,在不断总结的基础上,根据具体情况,把握分类的标准.例9 如图2-4-6,在Rt △ABC 中,已知BC=a ,若长为2a 的线段PQ 以A 为中点,问与的夹角θ取何值时,·的值最大?并求出这个最大值.图2-4-6思路分析:本小题主要考查向量的概念、平面向量的运算法则,考查运用向量及函数知识的能力.注意图形与坐标的转化,与向量的联系. 解法一:∵⊥AC ,∴·AC =0. ∵-=,-=,-=,∴·=(-)·(-) =·-·-·+· =-a 2-AP ·AB AC +·AP =-a 2+(-) =-a 2+21PQ · =-a 2+a 2cosθ.故当cosθ=1,即θ=0(与BC 方向相同)时,BP ·最大,其最大值为0.解法二:以直角顶点A 为坐标原点,两直角边所在直线为坐标轴建立如图2-4-7所示的平面直角坐标系.图2-4-7设|AB|=c,|AC|=b,则A(0,0)、B(c,0)、C(0,b), 且|PQ|=2a,|BC|=a. 设点P 的坐标为(x,y),则Q(-x,-y),∴=(x-c,y),=(-x,-y-b),=(-c,b),=(-2x,-2y). ∴·=(x-c)(-x)+y(-y-b)=-(x2+y2)+cx-by.∵2a bycx-,∴cx-by=a2cosθ.∴BP·CQ=-a2+a2cosθ.故当cosθ=1,即θ=0(与方向相同)时,·最大,其最大值为0.方法归纳设定OM的坐标(x,y),用坐标表示出MA与MB的数量积,整理成MA·MB是OM的纵坐标的二次函数,通过二次函数知识求MA·MB的最小值.深化升华与最值有关的问题,往往是先选取适当的变量,建立关于取定变量的目标关系式(或函数关系式),通过求最值的基本方法求解.如转化成二次函数或三角函数问题等.问题·探究思维发散探究问题设a、b是不相等的实数,试探求证明不等式(a4+b4)(a2+b2)>(a3+b3)2的方法.探究思路:对于不等式的证明比较常见的方法是作差法,即求出不等式两边式子的差,再根据差与零的关系来达到证明不等式的目的.现在我们又学习了向量数量积的坐标表示,因此可以根据不等式结构构造向量利用向量知识来达到证明不等式的目的.方法一:(a4+b4)(a2+b2)-(a3+b3)2=a6+b6+a4b2+a2b4-a6-b6-2a3b3=a4b2+a2b4-2a3b3=a2b2(a2-ab)+a2b2(b2-ab)=a2b2(a-b)2.由于a、b是不相等的实数,则(a4+b4)(a2+b2)-(a3+b3)2=a2b2(a-b)2>0,即(a4+b4)(a2+b2)>(a3+b3)2.方法二:设m=(a2,b2),n=(a,b),则m·n=a3+b3,又a、b是不相等的实数,则a2b-ab2≠0,即向量m、n不共线,所以有|m·n|<|m||n|,即(a4+b4)(a2+b2)>(a3+b3)2.。

人教A版高中数学必修四平面向量的数量积及运算律(1)

人教A版高中数学必修四平面向量的数量积及运算律(1)
►1Our destiny offers not the cup of despair, but the chalice of opportunity. ►So let us seize it, not in fear, but in gladness. · 命运给予我们的不是失望之酒,而是机会之杯。 因此,让我们毫无畏惧,满心愉悦地把握命运
11
5、数量积的性质:
设 a, b 是 非 零 向 量 ,e 是 与 b 方 向 相 同 的 单 位向 量 ,
是 a 与e 的夹角,则 (1) e a a e | a | cos . (2) a b a b 0.
B
b
e a
O
B1 A
(3)、 当 a 与 b 同 向 时 ,a b a b ;
即 ab
ab
ab
Байду номын сангаас
6
注意: (3) 向量的数量积和实数与向量的积
(数乘)不是一回事. 数量积 a b | a || b | cos 的结果是一个
数量(实数); 实数与向量的积(数乘)还是一个向量.
7
例1 已知| a | = 5,| b | = 4,分别求 满足下列条件的 a b .
(1) a与 b 的夹角 = 120; 10
b
a
当 180时 , 向 量 a 与 b 反 向;
b
a
当 90时 , 则 向量a 与 b 垂 直,
记作 a b.
b
a
4
2、平面向量的数量积:
已 知 两 个 非 零 向 量a 和 b 它 们 的 夹 角 为,
我们把数量 a b cos 叫做 a 与 b 的数量积,
(或内积),记 作 :a b ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修4 向量的数量积(一)分析如果力F与物体位移s方向的夹角为θ(如图),那么
的功W应为
cos Wθ=F s
注意:若把功W看成是两个向量F与s的某种运算结果,那么这个
思考:向量的数量积满足结合律吗?
板书设计 一、情景创设
二、数学建构
定义:已知两个非零向量a 和b ,他们的夹角是θ,我们把数量cos a b θ
叫做向量a 和b 的数量积(或
内积),记作a b
,即 cos a b a b θ
=
我们规定:零向量与任一向量的数量积为0。

归纳:由向量的数量积的定义可知
当a 与b 同向时,a b a b = ;
当a 与b 反向时,a b a b =-

特别地,
2a a a
= 或
a = 三、应用举例 四、小结 五、作业。

相关文档
最新文档