简易振动传感器的设计与研究
振动传感器工作原理
振动传感器工作原理振动传感器作为一种重要的测量设备,被广泛应用于机械、汽车、航空航天等领域。
它能够感知物体的振动,并将其转化为相应的电信号,实现振动信号的测量和分析。
本文将介绍振动传感器的工作原理及其应用。
一、振动传感器的工作原理振动传感器的工作原理基于物体的振动与形变之间的关系。
通常采用压电式和电阻式两种工作原理。
1. 压电式振动传感器压电式振动传感器利用压电材料的压电效应实现振动信号的转换。
当物体振动时,压电材料会产生电荷分布的变化,进而生成电压信号。
这个电压信号的振幅和频率与物体的振动情况密切相关。
2. 电阻式振动传感器电阻式振动传感器则是通过物体的振动引起电阻值的变化,进而反映振动信号的大小。
一般采用杨氏效应或皮尔森效应等原理实现。
当物体振动时,电阻值会随之发生变化,电流通过电阻产生的电压信号也相应改变。
二、振动传感器的应用振动传感器在诸多领域都有广泛应用。
下面列举几个典型的例子:1. 机械设备的振动监测机械设备的振动监测对于保证设备的正常运行和预防故障非常重要。
振动传感器可以安装在设备关键位置,实时监测设备的振动状态。
通过分析振动信号的频率、幅值等参数,可以判断设备是否存在异常,及时采取措施进行修理或维护。
2. 汽车工业中的应用振动传感器在汽车工业中起到至关重要的作用。
它可以被用于发动机的振动监测,以及车辆悬挂系统、制动系统等重要部件的振动检测。
准确地监测和分析振动信号可以帮助提高汽车性能,延长零部件的使用寿命。
3. 结构工程中的振动测量在结构工程领域,振动传感器用于测量建筑物、桥梁等结构的振动响应。
通过对结构振动的监测,可以评估结构的稳定性和安全性,及时发现隐患并采取措施进行修复,确保建筑物的正常运行。
4. 科学研究中的应用振动传感器在科学研究中也扮演着重要的角色。
比如,在地震研究中,振动传感器可以用来监测地壳的振动情况,以及识别地震的发生与规模。
而在物理实验中,振动传感器可以被用来测量物体的共振频率等参数。
振动传感器的性能测试与研究
振动传感器的性能测试与研究振动传感器是一种常用的测量设备,广泛应用于机械工程、振动分析和结构监测等领域。
它能够通过检测物体的振动频率、幅度和相位等参数,帮助工程师分析和评估机械设备的工作状态。
然而,为了确保振动传感器的准确性和可靠性,性能测试与研究是必不可少的环节。
1. 振动传感器的性能参数在进行振动传感器性能测试之前,我们首先要了解振动传感器的性能参数。
振动传感器的性能参数包括灵敏度、频率响应、线性度、温度效应、非线性度等。
其中,灵敏度是指传感器输出信号的变化量与输入振动的变化量之间的比例关系;频率响应是指传感器对不同频率振动的响应能力;线性度是指传感器输出信号与输入振动的线性关系程度;温度效应是指传感器在不同温度下输出信号的稳定性;非线性度是指传感器输出信号与输入振动的非线性误差。
2. 振动传感器性能测试方法为了对振动传感器的性能进行测试,我们可以采用多种方法。
常见的方法包括标准振动源测试、频响测试、线性度测试、温度测试以及非线性度测试等。
标准振动源测试是指将振动传感器与标准振动源相连,通过改变标准振动源的振动参数,比如振幅和频率等,来验证传感器的灵敏度和频率响应等性能参数。
频响测试是指通过改变输入的振动信号频率,然后观察传感器的输出信号,从而确定传感器的频率响应特性。
一般可以采用无源测量法或激励测量法进行。
线性度测试是指通过改变输入振动信号的幅度,然后观察传感器的输出信号,从而判断传感器的线性度参数。
常用的方法包括全范围线性度测试和非全范围线性度测试。
温度测试是指在不同的温度条件下,对传感器进行性能测试,以评估传感器在不同温度下的稳定性和准确性。
非线性度测试是指通过输入不同的非线性输入信号,如三角波、方波等,然后观察传感器的输出信号,从而评估传感器的非线性度。
3. 振动传感器性能研究除了性能测试,振动传感器的性能研究也是一个重要的方面。
性能研究可以帮助我们了解传感器的工作原理和内部结构,以及传感器在特定应用场景下的适应性和优化方法。
振动传感器的工作原理
振动传感器的工作原理振动传感器是一种能够感知和检测物体振动的装置,在各个领域中广泛应用。
其工作原理主要基于弹性力学和电磁学原理。
振动传感器可以将物体的振动信号转换为电信号,并通过传感器内部的电路进行处理和分析,最终提供给用户实时的振动信息。
振动传感器的主要组成部分包括质量块、弹簧和感应线圈。
当被检测的物体发生振动时,质量块也会受到振动力的作用,从而发生位移。
位移后,质量块与感应线圈之间的距离发生变化,导致感应线圈中的磁场发生变化。
根据电磁感应定律可知,磁场变化会在感应线圈中产生感应电动势。
这个感应电动势与质量块的位移成正比关系,因此可以用来间接测量物体的振动情况。
在振动传感器的工作中,弹簧起到了连接质量块和传感器的作用。
它不仅能够提供质量块的振动自由度,还能够对振动信号进行滤波和调谐处理。
弹簧的刚度和质量块的质量是影响传感器灵敏度和频率响应的两个重要参数。
刚度越大,传感器的灵敏度就越高;质量越大,传感器的频率响应区间就越宽。
感应线圈是振动传感器中关键的零部件之一。
它通常由导线绕制而成,线圈内部通过高频信号进行激励。
当感应线圈受到物体振动引起的位移时,导线内部的磁场会随之变化。
根据法拉第电磁感应定律,导线内部的磁场变化会产生感应电流。
这个感应电流经过放大和处理,最终被转换成振动信号的电信号输出。
感应线圈的设计和制造对传感器的灵敏度和频率响应都有着重要影响。
为了提高振动传感器的测量性能,通常需要对其输出信号进行放大、滤波和调谐。
在传感器的电路中,一般会添加放大器、低通滤波器、模数转换器等电子元件,以对信号进行处理和优化。
放大器可以使微弱的感应电流快速放大,提高信号的强度和分辨率;低通滤波器可以对高频信号进行削弱,提高传感器的信噪比和抗干扰能力;模数转换器可以将模拟信号转换为数字信号,方便后续的数据分析和处理。
总之,振动传感器的工作原理主要基于弹性力学和电磁学原理。
通过测量物体振动时感应线圈的位移和磁场变化,将振动信号转换为电信号,并经过电路处理和优化,最终提供给用户实时的振动信息。
声纹振动加速度传感器原理
声纹振动加速度传感器原理1.引言1.1 概述声纹振动加速度传感器是一种广泛应用于工程领域的传感器,用于测量物体在空间中的振动加速度。
它通过感知物体的振动运动,将振动信号转化为电信号,从而实现对物体振动特性的监测与分析。
声纹振动加速度传感器具有灵敏度高、频率范围宽、稳定可靠等特点,被广泛应用于结构健康监测、机械故障诊断、地震预警等领域。
它能够实时监测和记录物体的振动状态,为工程师和科研人员提供重要的参考依据,帮助他们分析物体振动的原因和影响。
与其他传感器相比,声纹振动加速度传感器具有较高的信号灵敏度,能够捕捉微小的振动信号。
这使得它在许多复杂环境中都能正常工作,如高温、高压、高速等极端条件下。
同时,它还具有较快的响应速度和良好的线性特性,在测量过程中能够保持较高的精度。
声纹振动加速度传感器的工作原理是基于牛顿第二定律和质量弹簧阻尼系统的振动原理。
当物体受到外力作用或本身振动时,传感器内部的质量块将随之产生相应的加速度。
利用质量块与压电材料之间的相互作用,声纹振动加速度传感器可以将振动信号转化为电信号,通过电路传输和处理,最终得到物体振动的相关参数,如加速度、速度和位移等。
总之,声纹振动加速度传感器是一种重要的工程测量工具,它能够准确地反映物体的振动状态,并为工程师提供重要的参考数据。
随着科技的进步和应用领域的不断扩大,声纹振动加速度传感器将在更多的领域发挥重要作用,推动工程技术的发展和进步。
1.2文章结构文章结构部分的内容可以包括以下内容:文章的结构对于读者来说非常重要,它可以帮助读者更好地理解文章的内容和逻辑关系。
本文将按照以下结构组织:2.正文2.1 声纹振动加速度传感器的基本原理2.2 声纹振动加速度传感器的工作原理在正文部分,我们将逐步介绍声纹振动加速度传感器的原理和工作机制,旨在让读者对其有一个全面而深入的了解。
首先,在2.1节中,我们将介绍声纹振动加速度传感器的基本原理。
这部分将解释传感器的设计思路、结构和主要组成部分。
振动传感器的原理及应用.ppt
CA-YZ-123VC(A)-20型水密三轴低频振 动传感器
(1)工作原理
该传感器室内封装信号调节器的压阻式振动传感器。
压阻式振动敏感元件设计为整体硅结构,有带多根梁 的硅框架支撑一块京味戏加工而成的硅质量块。大硅 框架受到震动作用时。由于惯性力硅块相对于
框架运动时造成梁内的应力变化,从而使梁内
的抗干扰性强,稳定性好。
一、概述 二、原理 1、振动筒传感器 2、振动膜式传感器 3、振动弦式传感器 4、振动梁式传感器 三、应用及产品
(1)振动筒传感器
振动筒传感器是一种典型的敏感频率的 振动传感器,于60年代末实用。下图给出 了一种用于绝压测量的振动筒压力传感器 最早使用的原理结构。其测量敏感元件是 一个恒弹合金(如3J53)制成的带有顶盖 的薄壁圆柱壳。
VIB-10b便携式智能振动测量仪
但大多数便携式振动测量仪只有测量、
显示及少量的存储等功能,测量人员通
过检测运行设备的振动值后,还需根据
被测设备的类型、功率及允许的振动限
值来判断该设备的工况(良好、正常、
异常),这在设备品种繁杂、测量点较多 的情况下,使用就不太方便。基于上述原 因,本公司又开发出一种既能测量、显示, 又能马上把测量值与振动标准对比给出设 备状态结果的智能振动测量仪 ——VIB-10b 便携式智能振动测量仪。
环境指标:
温度范围: -30℃~120℃ 相对湿度:至95%不冷凝,且周围无强电 磁场干扰 物理指标: 外形尺寸:φ35×72mm 安装方式:双头螺钉固定 重 量:0.3Kg
选型说明 形式选择A□:2—— 一体化; 3*——航空 插座 引线长度B□:1*——0.5米; 2——3米; 3——5米
出的优点是与壳体无接触,但也有一些不
一种无线智能振动传感器的设计与实现
87电子技术Electronic Technology电子技术与软件工程Electronic Technology & Software Engineering飞行器在飞行过程中会遇到复杂的动力学环境,能够准确的测量飞行器动力学环境对其安全飞行有重要意义[1-3]。
传统的有线传感器+数据采集设备的方式,受制于采集设备体积较大、不易供电,传感器布线困难等因素,很难满足飞行过程中测量需求[4-6]。
本文设计一种基于MEMS 技术的无线智能振动传感器,体积小,内置锂电池实现自供电。
数据采集状态下,无线数据传输的同时,传感器内部大容量Flash 进行存储备份,保证了测量数据的可靠性,为飞行状态下的测试测量提供一种有效解决方案。
1 系统整体方案无线智能振动传感器系统组成如图1所示。
系统主要由无线智能振动传感器节点、无线基站和上位机软件组成。
无线智能振动传感器采集到振动信号后,通过2.4G 无线方式将数据传输至无线基站,无线基站收到数据后通过以太网接口将数据传输至上位机软件。
空中应用时,无线基站也可通过RS422方式接入遥测系统。
2 无线智能振动传感器节点无线智能振动传感器主要包含数据采集模块、核心处理器模块,无线传输模块,存储模块和电源模块,其组成结构框图如图2所示。
2.1 硬件电路设计2.1.1 数据采集模块数据采集模块主要实现模拟振动信号的采集和调理。
MEMS 传感器选用意法半导体公司(ST )生产的LIS344ALH 芯片,其具有高精度、高性能、低功耗、耐冲击的特点。
传感器量程可通过处理器IO 管脚程控,在±2g 和±6g 之间灵活切换测量范围。
传感器输出三路相互独立的模拟电压信号。
传感器信号经过二阶巴特沃兹低通抗混滤后输入AD 采集电路。
为保证数据的同步性,采用3路相互独立的AD 并行数据采集,并采用菊花链方式级联,对外仅有一个SPI 接口。
2.1.2 核心处理器无线智能传感器的核心处理器采用意法半导体公司的基于ARM Cortex TM -M4内核32位的超低功耗微控制器处理器STM32L476RGT7,该芯片工作频率可达80MHz ,具有丰富的外设接口,STM32L476微控制器运用全新的低功耗技术,优化电源管理模式,最低功耗仅30nA 。
振动传感器工作原理
振动传感器工作原理振动传感器是一种用于检测物体振动和震动的传感器,它可以将物体的振动信号转换为电信号,从而实现对振动信号的监测和分析。
振动传感器的工作原理主要涉及材料的压电效应、电容效应和电阻效应等物理原理。
首先,振动传感器利用压电效应来实现对振动信号的检测。
当物体受到外力作用时,会产生振动,振动传感器中的压电材料会受到压力而产生电荷,从而产生电压信号。
这种原理可以实现对振动信号的实时监测,对于需要快速响应的振动信号具有较高的灵敏度和准确性。
其次,振动传感器还可以利用电容效应来实现对振动信号的检测。
在振动传感器中,电容传感器会受到外力的影响而发生形变,从而改变电容量,进而产生电信号。
这种原理可以实现对微小振动信号的监测,对于需要高精度检测的振动信号具有较好的稳定性和可靠性。
此外,振动传感器还可以利用电阻效应来实现对振动信号的检测。
在振动传感器中,电阻传感器会受到外力的作用而发生形变,从而改变电阻值,进而产生电信号。
这种原理可以实现对大范围振动信号的监测,对于需要长时间监测的振动信号具有较好的稳定性和耐久性。
总的来说,振动传感器的工作原理是基于物理效应来实现对振动信号的监测和转换。
通过压电效应、电容效应和电阻效应等原理,振动传感器可以实现对不同类型、不同范围振动信号的高效监测和转换,从而广泛应用于工业生产、设备监测、结构健康监测等领域。
在实际应用中,振动传感器的工作原理决定了其在振动监测和分析中的重要性和可靠性。
因此,了解振动传感器的工作原理对于正确选择和使用振动传感器具有重要意义,也有助于提高振动监测和分析的准确性和可靠性。
希望本文对振动传感器的工作原理有所帮助,谢谢阅读!。
振动测量的实验报告
振动测量的实验报告1. 实验目的本实验的目的是通过使用振动传感器对不同振动源进行测量,了解振动信号的特点和测量方法,掌握实际振动信号的处理和分析技巧。
2. 实验装置和原理实验装置由振动传感器、信号调理器和示波器组成。
振动传感器可以将物体的振动信号转化为电信号;信号调理器可以对电信号进行放大和滤波处理;示波器可以将电信号转化为可视化的波形图。
振动信号的频率可以通过示波器的设置进行调整,以便观察不同频率下的振动信号。
3. 实验步骤1. 将振动传感器固定在实验台上,并接上信号调理器。
2. 将示波器与信号调理器连接,确保信号传输畅通。
3. 打开示波器,在示波器上设置合适的时间基和电压基准,以确保波形信号清晰可见。
4. 将振动传感器放置在不同的振动源旁边,观察示波器上所显示的振动信号波形。
5. 改变示波器的设置,调整不同的频率,观察波形信号的变化。
4. 实验数据记录与分析在实验中,我们观察到了来自不同振动源的振动信号,并记录了对应的波形数据。
通过对波形数据的分析,我们得到了以下结论:1. 振动信号的幅值和频率之间存在一定关系,随着频率的增加,波形信号的幅值减小。
2. 振动信号的频率越高,波形信号越接近正弦波。
3. 不同振动源产生的振动信号具有不同的频率特征,可以通过观察波形图来比较不同振动源之间的差异。
5. 实验结果讨论本次实验通过振动传感器测量了不同振动源产生的振动信号,并对波形信号进行了观察和分析。
实验结果表明振动信号的幅值和频率存在一定的关系,并且不同振动源产生的振动信号具有不同的频率特征。
这些结果对于振动信号的处理和分析具有一定的参考价值。
6. 实验总结通过本次实验,我们掌握了振动测量的基本原理和方法,并通过实际操作对振动信号的特点和测量方法有了更深入的了解。
实验结果和数据分析验证了振动信号的特性,并对实际振动信号的处理提供了指导。
在今后的研究和工程应用中,振动测量将具有重要的应用价值。
建筑物振动测量技术与分析方法
建筑物振动测量技术与分析方法近年来,建筑物的振动问题引起了越来越多的关注。
振动不仅对建筑物的结构安全和使用寿命产生影响,还会对周围环境和居民的生活造成不便。
因此,建筑物振动的测量技术和分析方法成为研究的重点之一。
本文将介绍一些常用的建筑物振动测量技术和分析方法。
一、振动传感器振动传感器是建筑物振动测量的核心装置,常见的振动传感器包括加速度计、速度计和位移计。
加速度计用于测量物体的加速度,速度计用于测量物体的速度,位移计用于测量物体的位移。
这些传感器通过将物体的振动转化为电信号来进行测量。
二、振动测量方法1. 尖兵法尖兵法是一种常用的建筑物振动测量方法,它通过在建筑物上放置一根垂直棍杆,棍杆上有一个尖锥。
当建筑物发生振动时,尖锥会相应地振动。
通过测量尖锥的振动幅度和频率,可以得出建筑物的振动特性。
2. 激励-响应法激励-响应法是一种通过施加外部激励来测量建筑物振动的方法。
在这种方法中,会在建筑物上施加一个外部力或冲击,然后测量建筑物的振动响应。
通过分析外部激励和建筑物振动响应之间的关系,可以得出建筑物的振动特性。
三、振动分析方法1. 频谱分析频谱分析是一种将振动信号分解为不同频率分量的方法。
它通过将振动信号转换到频域来进行分析。
常用的频谱分析方法包括傅里叶变换、小波变换等。
通过频谱分析,可以得到建筑物振动的频率分布情况,从而了解建筑物的振动特性。
2. 模态分析模态分析是一种通过计算建筑物的固有振动模态来分析其振动特性的方法。
在模态分析中,会先进行振动测量,得到建筑物的振动响应数据。
然后,将振动响应数据进行处理,提取出建筑物的固有频率和振动模态。
3. 研究方法在建筑物振动测量技术和分析方法的研究中,除了上述提到的方法外,还有一些进一步的研究方法。
比如,可以采用数值模拟方法来模拟建筑物的振动响应,从而得出建筑物的振动特性。
另外,可以使用大数据分析方法,对大量的振动数据进行分析,得出建筑物的振动规律。
四、应用领域建筑物振动测量技术和分析方法在很多领域都有应用。
智能全方位振动传感器的设计研究
监控及传感信息共享 , 降低误判率 , 提高判断准确度. 实验结果表明, 上述理论与方法可以实现全方 位振动传感及振动可视化.
关键 词 : 传感器网络 ; 全方位振动传感器; 动态图像理解; 振动信息可视化
维普资讯
第2 O卷
第 8期
传 感 技 术 学 报
A .RS C NE E J UR L F S NS S AND A 丌 I 1o HI S O NA O E OAu 2 07 g. 0
中图分类 号 : P 1 . ; P 3 . T 226 T 32 3
文献标 识码 : A
文 章编 号 :O 41 9 ( O 7 O -7 6O lO -6 9 2 O )8 16 -5
在 国家 中长期科 学 和技 术发 展 规划 纲 要 (0 6 20— 22 ) 0 0年 中将智 能感 知技 术 、 普适 计 算技 术 作 为 信 息技 术领 域 的前 沿 技术 , 感器 是 智 能感 知技 术 与 传 普适 计 算 技 术 的 基 础 , 是 传 感 器 网 络 ( e sr 也 Sno
20 0 7年 8月
De i n o nt li e tOm niDi e to lVi r to e o s g f I e lg n — r c i na b a i n S ns r
T ANG Y — ig , -i , H U i u i n HE Wuje Z p Y— a h
( olg f I f r a inEn iern C l e n o m t g n e ig.Z e in n v r i f T c n l g e o o h j a g U i est o eh oo y,Ha g h u 3 0 1 ,C ia y n z o 10 4 hn )
微光机械振动传感器的设计与制作
第)期 ! ""% 年 ! 月 文章编号: ) "" +$’ !) + ( !" "%) ") $"" %) $"(
作者简介: 伦凤艳 ( ) *&+ $ ) , 女, 吉林长春人, 硕士研究生, 主要从事集成微光机电系统的研究。
0" 微 细 加 工 技 术 " ))0 年 # # # ## # # ## # # ## # # ## # # # ## # # ## # # ## # # ## # # ## # # ## # # # ## # # ## # # ## # # ## # # ## # # # # 入光 波导 输出 端与 多模 干涉 耦 合器 输 入 端的 位 置 会 发 生相 对变化 , 相 应地 , 双路 输 出光 波 导 输出 光 强 也 会 发生 相对变 化, 通过 测量 这个 相 对 变化 量 , 即可获 得 外界 机械振 动参 数。
微细加工技术 .; 2<9 =/><; 2/ 0 ;9? 0 12 @ ?9 59A B
C ,) =DE , , !" "%
! ! ! !! ! ! !! ! ! !! ! ! !! ! ! ! !! ! ! !! ! ! !! ! ! !! ! ! !! ! ! !! ! ! ! !! ! ! !! ! ! !! ! ! !! ! ! !! ! ! ! !
光纤振动传感器的研究
第三章光纤振动传感器的研究随着光纤和光电子器件技术研究的不断深化,光纤传感技术得到了突飞猛进的开展。
由于光纤传感器的体积小、质量轻、精度高、响应快、动态范围宽、响应快等优点,并且它具有良好的抗电磁干扰、耐腐蚀性和不导电性,所以在很多领域都应用广泛。
光纤传感器开展到如今,已经可以探测很多的物理量,给人们的生活带来了极大的好处。
其中探测的物理量有电压、电流、加速度、流速、压力、温度、位移、生物医学量及化学量等等。
光纤振动传感器就是这些中的一员。
光纤振动传感器的出现已有30来年的历史,它是测量振动信号的。
最初的光纤振动传感器是采用干预式的构造[2],利用振动产生的光纤应变导致干预仪信号臂的相位发生变化,但这种传感器构造比较复杂,不利于复用。
由于振动在自然界、人们生活中及各个重大工程中普遍存在,所以研究人们对振动的测量非常关注。
本章将对几种常用的光纤振动传感器的构造设计、信号解调方法所存在问题,进展分析与讨论,继而可以更好的设计新的振动传感器,为设计做好准备工作。
3.1几种典型的光纤振动传感器的设计查阅了众多文献资料,归纳了几种典型的光纤振动传感器的构造原理,主要有光强调制型、相位调制型、光纤布拉格光栅波长调制型、偏振态调制型等几种形式。
利用外界因素引起的光纤中光波相位变化来探测各种物理量的传感器,称为相位调制传感型光纤传感器。
由于位相调制传感器具有非常高的灵敏度,它是所有光纤传感器中最为人所知的。
一般地说,这种传感器运用一个相干激光光源和两个单模光纤。
光线被分束后入射到光纤。
假设干扰影响两根相关光纤的其中一根、就会引起位相差,这个位相差可准确地检测出。
位相差可用干预仪测量。
有四种干预仪构造。
它们包括:马赫—泽德尔、迈克尔逊、法布里—帕罗和赛格纳克干预仪,其中马赫—泽德尔和赛格纳克干预仪分别在水听器和陀螺上应用非常广泛。
下面是基于光纤Sagnac干预原理。
A和B是干预仪的两个传感臂,起到传输光的作用。
C是一段被绕成圆环状的光纤,是用来接收或感应外接信息的变化,2 2光纤3dB耦合器被用来分解和合成干预光束。
小型振动电容式静电传感器的设计
晶 赵 佳龙 李凤 玲 韩光 照 , , ,
10 0 ;. 50 12 中国船舶重工集团公司第 73研 究所 , 0 黑龙江哈尔滨 10 0 ) 5 01
摘 要 : 中介 绍 了一 种基 于振 动 电容 式 静 电传 感 器 的设 计 原 理 , S8处 理 器 为控 制核 心 , 用 静 电场 对 电 荷 产 生静 文 以 0 利
e tb ih d u d rt i c mp s e fr e a d c mp t g t eo gn lsg a mpi e t n, e A D o v ri n a d e e d d wC OS sa l e n e h s o o i o c , n o u i h r ia i n a l ai t / c n e so n mb d e / s t n i l i f o h MC l — s p r t n , e e i in y o e mir c n rl rw si r v d I r aie o - o tc a u n t o n t ec l U mu t t k o e ai s t f ce c f c o o tol a mp o e . t e z d n n c na t ia o h h t e l me s r gmeh d i a i i h — b ai n z n fte ee t sai e d sr n t y te c a a t r t ft e me s r d p y ia u n i n e w a l u r n o r t o e o l cr t t f l t g h b h h r ce si o a u e h sc q a t y i v  ̄ e k y c re t w. o h o ci e i c h l t l f
【全文】振动传感器的原理及应用 (1)
a
29
2、机械隔离器
为了避免振梁与产生力的机械系统直 接连接,在振动梁两端固定着机械隔离系 统,它包括隔离器弹性体,隔离器质量块 以及弯曲去载区。隔离系统的自振频率要 选择得比振动梁的低得多(约低几个数 级),从而能有效地消除固定件对振动梁 的影
a
30
响,振动梁端部的反作用力和反作用力矩 将迫使隔离器的质量块和弹性体振动,由 于隔离系统的自振频率很低,从而可以消 除对振动梁频率的影响,也就是把梁隔离 起来了。
a
12
振动与激励元件均由铁芯和线圈组成, 为尽可能减小它们之间的电磁耦合,在空 间呈正交安置,由环氧树脂骨架固定。圆 柱壳与外壳之间形成真空腔,被测压力引 入圆柱壳内腔。为减小温度引起的测量误 差,在圆柱壳内安置了一个起补偿作用的 温度敏感元件。
a
13
电磁激励振动筒压力传感器原理结构
a
14
采用电磁方式作为激励、拾振手段最突 出的优点是与壳体无接触,但也有一些不 足。如电磁转换效率低,激励信号中需引 入较大的直流分量,磁性材料的长期稳定 性差,易于产生电磁耦合等。
a
37
对运行中机械设备的工作状态有无异常, 设备运行故障原因在哪里进行监测的各种 振动测量仪器。设备管理人员与维修人员 能利用这些振动测量仪方便地检测运行中 电机、泵、风机、压缩机等一切机械设备 的振动值,从中得到许多设备运行的重要 信息。
a
38
VIB-10b便携式智能振动测量仪
a
39
但大多数便携式振动测量仪只有测量、 显示及少量的存储等功能,测量人员通 过检测运行设备的振动值后,还需根据 被测设备的类型、功率及允许的振动限 值来判断该设备的工况(良好、正常、
a
45
振动传感器工作原理
振动传感器工作原理概述:振动传感器是一种用于测量和监测物体振动的设备。
它可以广泛应用于工业、科学、医疗、运动等领域。
本文将详细介绍振动传感器的工作原理及其应用。
一、振动传感器的类型:振动传感器有多种不同类型,其中常用的包括压电式振动传感器、电容式振动传感器、电感式振动传感器和压电阻抗振动传感器。
1. 压电式振动传感器:压电式振动传感器是最常见的振动传感器之一。
它利用压电材料的特性,通过物体振动产生的压力来生成电压信号。
这种传感器通常具有高灵敏度和宽频响范围的特点。
2. 电容式振动传感器:电容式振动传感器通过测量物体振动引起的电容值变化来检测振动。
当物体受到振动时,其电容值会发生变化,传感器将此变化转化为电压信号。
3. 电感式振动传感器:电感式振动传感器采用磁性材料和线圈来检测振动产生的电磁感应信号。
当物体发生振动时,磁性材料受力变化,从而引起线圈内的电流变化。
4. 压电阻抗振动传感器:压电阻抗振动传感器是一种基于压电阻抗效应的传感器。
它通过测量物体振动引起的压电材料阻抗变化来检测振动。
这种传感器具有高灵敏度和快速响应的特点。
二、振动传感器的工作原理:振动传感器的工作原理基于物体振动引起的形变、电荷变化、电感变化或阻抗变化。
下面将以压电式振动传感器为例,介绍其工作原理:1. 压电式振动传感器的工作原理:压电式振动传感器内部有一个压电片,当物体发生振动时,压电片会受到外力变形。
此外,压电片的两端连接电极,因此变形会引起电荷的分布不均匀。
由于电荷不平衡,会在电极上产生电压差,从而生成电压信号。
这一信号可以被放大器捕获和处理。
三、振动传感器的应用:振动传感器在许多领域都有广泛的应用。
下面列举几个典型的应用示例:1. 工业监测与控制:振动传感器广泛应用于工业监测与控制领域,用于检测机械设备的振动情况。
通过监测振动信号,可以判断设备的工作状态、预测故障并进行维护。
例如,在旋转机械中安装振动传感器,可以实时监测设备振动情况,防止故障发生。
震动现象的实验测量与分析
震动现象的实验测量与分析震动现象是物体或系统在受到外力作用后发生的周期性或非周期性运动。
在工程领域和科学研究中,我们常常需要对震动现象进行实验测量和分析,以了解和控制物体的振动行为。
本文将介绍关于震动现象测量与分析的实验方法和数据处理技术。
一、实验测量1. 实验设备选择在进行震动现象的实验测量时,我们需要选择合适的实验设备。
通常情况下,可以使用加速度计、速度计或位移计等传感器来测量物体的振动参数。
根据实际需求,选择合适的传感器进行测量。
2. 实验参数设置在进行实验前,需要确定实验参数,包括激励力的大小、频率等。
这些参数将直接影响到实验结果的准确性和可靠性。
根据目标物体的特性和实验要求,合理设置实验参数。
3. 数据采集在实验过程中,使用合适的数据采集设备记录传感器所测得的数据。
数据采集设备可以是计算机、数据采集卡或者专门的数据记录仪等。
确保数据采集的准确性和稳定性,以获得可靠的实验数据。
二、数据处理与分析1. 数据预处理在进行数据处理之前,需要对采集得到的原始数据进行预处理。
这包括滤波、降噪和校准等步骤。
滤波是用于去除高频噪声或其他干扰信号,降低数据的噪声级别。
校准是将原始数据转换为真实的物理量,如加速度、速度或位移。
2. 时间域分析时间域分析是对振动信号进行时域特性的分析。
常用的方法有均方根、峰值、峰峰值和时域波形等。
均方根代表了振动信号的能量大小,峰值表示了振动信号的最大值,峰峰值是振动信号波动的范围。
波形图可以直观地表示振动信号的变化规律。
3. 频域分析频域分析是对振动信号进行频域特性的分析。
通过对振动信号进行傅里叶变换,可以将信号转换为频谱图。
频谱图表示不同频率成分的振幅大小。
在频域分析中,常用的方法有频谱密度、功率谱和频谱包络等。
4. 模态分析模态分析用于研究物体的振动模态。
通过对振动信号进行模态分析,可以得到物体的固有频率、振型和阻尼等信息。
模态分析可以帮助我们了解物体的结构特性和动力学行为,对于设计和优化物体的振动性能具有重要意义。
振动传感器的设计与性能分析
振动传感器的设计与性能分析一、引言振动传感器是一种能够感知物体振动运动并将其转化为电信号的设备。
它在工业、医疗、交通等领域中得到广泛应用,具有重要的意义。
本文将从设计和性能分析两个方面探讨振动传感器的相关内容。
二、振动传感器的设计1. 振动传感器的结构设计振动传感器的结构设计一般包括灵敏元件、信号处理电路以及输出接口等部分。
其中,灵敏元件是核心组成部分,常见的有压电式、电磁式等。
在设计中需考虑灵敏元件的稳定性、可靠性以及信号转换的精确性等因素。
2. 灵敏元件的选取不同应用场景对振动传感器的要求不同,因此在选取灵敏元件时需根据具体情况进行选择。
压电式振动传感器具有体积小、频率响应快等特点,适用于高频振动检测;而电磁式振动传感器则适用于低频振动检测。
3. 信号处理电路设计信号处理电路主要负责将灵敏元件感知到的振动信号进行放大、滤波和转换等处理,以便后续分析和应用。
常用的信号处理电路包括运算放大器、滤波器和模数转换器等。
设计时需根据信号特点进行相应的选择和设计。
三、振动传感器的性能分析1. 灵敏度分析振动传感器的灵敏度是指其对单位振动的响应程度。
通过实验测量和计算可以获得振动传感器的灵敏度。
灵敏度的高低直接影响到传感器的检测精度和可靠性。
2. 频率响应分析频率响应是指传感器对不同频率振动的检测能力。
在实际应用中,经常会遇到不同频率的振动信号,因此,了解传感器的频率响应特性十分重要。
通过绘制频率响应曲线和进行频域分析,可以对传感器的频率响应进行评估和分析。
3. 温度特性分析温度对振动传感器的性能具有很大影响。
温度变化会导致传感器的灵敏度、线性度以及稳定性发生改变。
因此,在性能分析中需要对传感器的温度特性进行评估和研究,以保证传感器在不同温度环境下的稳定性和准确性。
四、结论本文综合讨论了振动传感器的设计与性能分析。
振动传感器的设计应考虑灵敏元件的选取和信号处理电路的设计,以满足不同应用场景的需求。
性能分析则包括灵敏度、频率响应和温度特性等方面,以确保传感器具有较高的检测精度和可靠性。
振动传感器的工作原理
振动传感器的工作原理振动传感器是一种常见的测量设备,它用于检测和监测物体的振动情况。
它在工业生产、交通运输、医疗设备等领域有着广泛的应用。
本文将介绍振动传感器的工作原理,并探讨其在工程领域的应用。
一、振动传感器的分类根据工作原理的不同,振动传感器可以分为压电式振动传感器和电容式振动传感器两种。
1. 压电式振动传感器压电式振动传感器利用压电效应来转换机械振动信号为电信号。
其基本原理是在压电材料两端施加机械应力,产生电荷,从而实现机械信号和电信号之间的转换。
常见的压电材料有石英和陶瓷等。
2. 电容式振动传感器电容式振动传感器则是利用电容变化来感知振动信号。
其工作原理是将一个电容传感器与机械振动物体连接,在物体受到振动时,电容值会发生变化。
通过检测电容的变化,就可以了解到振动的情况。
二、压电式振动传感器的工作原理和应用压电式振动传感器是一种常用的振动传感器,其工作原理如下:1. 压电效应压电效应是指某些晶体在受到机械应力时,会产生电荷或电势差的特性。
这种材料具有正压电效应和剪切压电效应两种,可以将机械信号转化为电信号。
2. 传感器结构压电式振动传感器一般由压电晶体、负载电阻和封装等组成。
压电晶体负责将机械振动转化为电信号,负载电阻用于接收和放大电信号,封装则保护传感器内部结构。
3. 应用领域压电式振动传感器在工程领域有着广泛的应用。
它可以用于监测机械设备的振动情况,以便及时发现故障和预防事故的发生。
同时,它还可以用于地震监测、声学研究以及人体生理信号的检测等方面。
三、电容式振动传感器的工作原理和应用电容式振动传感器是另一种常见的振动传感器类型,其工作原理如下:1. 电容变化电容式振动传感器利用机械振动引起的电容值变化来感知振动。
当物体振动时,电容之间的空气间隙会发生变化,导致电容值的改变。
通过检测电容的变化,就可以了解到物体振动的情况。
2. 传感器结构电容式振动传感器一般由平行板电容器和电容值检测电路组成。
高精度振动测量系统的设计与实现
高精度振动测量系统的设计与实现一、引言振动是许多工程系统中不可避免的现象,对于精密设备和结构来说,准确地测量振动是至关重要的。
因此,设计和实现高精度振动测量系统具有重要意义。
本文将介绍一个高精度振动测量系统的设计与实现,包括系统的组成部分、工作原理以及实验结果等内容。
二、系统组成1. 传感器:选择适合精确测量的传感器是关键。
常用的振动传感器包括加速度传感器、速度传感器和位移传感器。
在本系统中,我们选择了(这里填写选用的传感器)作为振动信号的检测器。
2. 信号调理电路:振动传感器输出的信号往往是微弱的,需要经过放大、滤波等处理才能得到准确的测量结果。
因此,信号调理电路在高精度振动测量系统中起着至关重要的作用。
我们设计了(这里填写设计的信号调理电路),以确保传感器输出的信号能够被有效地处理。
3. 数据采集系统:经过信号调理电路处理后的信号需要被采集并送入计算机进行进一步的处理和分析。
因此,数据采集系统在高精度振动测量系统中扮演着至关重要的角色。
我们采用了(这里填写采用的数据采集系统),以实现对振动信号的准确采集和传输。
4. 数据处理与分析软件:最后,得到的振动信号需要经过软件处理和分析,以得出所需的振动参数。
我们编写了(这里填写编写的数据处理与分析软件),通过对采集的数据进行处理和分析,得出了精确的振动参数。
三、工作原理高精度振动测量系统的工作原理如下:1. 传感器将振动信号转换为电信号,并送入信号调理电路进行处理。
2. 信号调理电路对传感器输出的信号进行放大、滤波等处理,以确保信号质量和稳定性。
3. 处理后的信号被送入数据采集系统,经过采集和传输后,被送入计算机进行进一步处理。
4. 数据处理与分析软件对采集的数据进行处理和分析,得出振动参数,并可实时显示或记录。
四、实验结果我们对设计的高精度振动测量系统进行了实验验证,得到了如下结果:1. 系统的灵敏度:我们测试了系统的灵敏度,结果表明系统能够准确地检测到不同振动幅度的信号,并且具有较高的分辨率。
基于FBG的微小型三轴振动传感器研究
基于FBG的微小型三轴振动传感器研究唐翔;吴俊;黎琪慧;辛璟焘;董明利【期刊名称】《红外与激光工程》【年(卷),期】2024(53)2【摘要】为了研制一种微小型、三轴测量的高灵敏度振动传感器,提出一种分立元件交错组合的超紧凑光纤光栅三轴振动传感器设计方法。
采用分立元件组合设计方法降低了设计加工难度,与一体化设计对比,分立元件组合结构的零件结构简单、易于加工、结构设计也更为灵活,缩短了传感器结构的优化迭代周期。
通过理论模型分析和有限元仿真,优化传感器结构参数,最终封装完成的尺寸为15 mm×15mm×15 mm,质量约为24.26 g。
最后进行实验测试和传感器性能分析。
实验结果表明:该传感器的工作频段为0~1 200 Hz,在X、Y、Z轴方向的固有频率分别为1 850 Hz、1 770 Hz和1 860 Hz,三个轴向的灵敏度分别达到77.37 pm/g、80.73 pm/g和75.04 pm/g,横向抗干扰小于5%。
该传感器满足航天振动测量轻量化、工作范围和灵敏度的应用需求,在遥感卫星微振动测量等领域具有重要应用前景。
【总页数】9页(P197-205)【作者】唐翔;吴俊;黎琪慧;辛璟焘;董明利【作者单位】北京信息科技大学光电测试技术及仪器教育部重点实验室;北京信息科技大学光纤传感与系统北京实验室;北京空间机电研究所;广州南沙光子感知技术研究院【正文语种】中文【中图分类】TN253【相关文献】1.基于弓形梁增敏结构的FBG振动传感器研究2.基于离轴刻写的FBG包层模式的光纤弯曲传感器3.基于双等强度简支梁的FBG振动传感器理论研究4.基于对称悬臂梁的小型化低频FBG加速度传感器研究5.一种基于新型双轴圆弧铰链的二维FBG加速度传感器因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
哈尔滨师范大学
学年论文
题目简易振动传感器的设计与研究
学生张世琛
指导教师张伟光
年级2007级
专业电子信息科学与技术
系别电子工程系
学院物理与电子工程学院
哈尔滨师范大学
摘要:在高度发展的现代工业中,现代测试技术向数字化、信息化方向发展已成必然发展趋势,而测试系统的最前端是传感器,它是整个测试系统的灵魂,被世界各国列为尖端技术,特别是近几年快速发展的IC技术和计算机技术,为传感器的发展提供了良好与可靠的科学技术基础。
使传感器的发展日新月益,且数字化、多功能与智能化是现代传感器发展的重要特征。
振动传感器在测试技术中是关键部件之一,它的作用主要是将机械量接收下来,并转换为与之成比例的电量。
由于它也是一种机电转换装置。
所以我们有时也称它为换能器、拾振器等。
关键字:振动传感器惯性式
一、什么是振动传感器
振动传感器并不是直接
将原始要测的机械量转变为
电量,而是将原始要测的机械
量做为振动传感器的输入量
Mi,然后由机械接收部分加以
接收,形成另一个适合于变换
的机械量Mt,最后由机电变换部分再将Mt变换为电量E,如上图1
所示。
因此一个传感器的工作性能是由机械接收部分和机电变换部分的工作性能来
决定的。
传感器是一种物理装置或生物器官,能够探测、感受外界的信号、物理条件(如光、热、湿度)或化学组成(如烟雾),并将探知的信息传递给其他装置或器官。
可以用不同的观点对传感器进行分类:它们的转换原理(传感器工作的基本物理或化学效应);它们的用途;它们的输出信号类型以及制作它们的材料和工艺等。
根据传感器工作原理,可分为物理传感器和化学传感器二大类:传感器工作原理的分类物理传感器应用的是物理效应,诸如压电效应,磁致伸缩现象,离化、极化、热电、光电、磁电等效应。
被测信号量的微小变化都将转换成电信号。
化学传感器包括那些以化学吸附、电化学反应等现象为因果关系的传感器,被测信号量的微小变化也将转换成电信号。
有些传感器既不能划分到物理类,也不能划分为化学类。
大多数传感器是以物理原理为基础运作的。
化学传感器技术问题较多,例如可靠性问题,规模生产的可能性,价格问题等,解决了这类难题,化学传感器的应用将会有巨大增长。
二、振动传感器的两种常见接收原理
㈠相对式机械接收原理
由于机械运动是物质运动的最简单的形式,因此人们最先想到的是用机械方法测量振动,从而制造出了机械式测振仪(如盖格尔测振仪等)。
传感器的机械接收原理就是建立在此基础上的。
相对式测振仪的工作接收原理如图2所示,在测量时,把仪器固定在不动的支架上,使触杆与被测物体的振动方向一致,并借弹簧的弹性力与被测物体表面相接触,当物体振动时,触杆就跟随它一起运动,并推动记录笔杆在移动的纸带上描绘出振动物体的位移随时间的变化曲线,根据这个记录曲线可以计算出位移的大小及频率等参数。
由此可知,相对式机械接收部分所测得的结果是被测物体相对于参考体的相对振动,只有当参考体绝对不动时,才能测得被测物体的绝对振动。
这样,就发生一个问题,当需
要测的是绝对振动,但又找不到不动的参考点时,这类仪器就无用武之地。
例如:在行驶的内燃机车上测试内燃机车的振动,
在地震时测量地面及楼房的振
动……,都不存在一个不动的参考
点。
在这种情况下,我们必须用另
一种测量方式的测振仪进行测量,
即利用惯性式测振仪。
(图2)
㈡惯性式机械接收原理
惯性式机械接收原理如右图3所示,惯性式机械测振仪测振时,是将测振仪直接固定在被测振动物体的测点上,当传感器外壳随被测振动物体运动时,由弹性支承的惯性质量块m
将与外壳发生相对运动,则装在质量块
m 上的记录笔就可记录下质量元件与外
壳的相对振动位移幅值,然后利用惯性
质量块m 与外壳的相对振动位移的关系
式,即可求出被测物体的绝对振动位移
波形。
(图3)
三、振动传感器的机电变换原理
一般来说,振动传感器在机械接收原理方面,只有相对式、惯性式两种,但在机电变换方面,由于变换方法和性质不同,其种类繁多,应用范围也极其广泛。
在现代振动测量中所用的传感器,已不是传统概念上独立的机械测量装置,它仅是整个测量系统中的一个环节,且与后续的电子线路紧密相关。
以电测法为例,其测试系统示意框图如下图4所示。
(图4)
由于传感器内部机电变换原理的不同,输出的电量也各不相同。
有的是将机械量的变
化变换为电动势、电荷的变化,有的是将机械振动量的变化变换为电阻、电感等电参量的变化。
一般说来,这些电量并不能直接被后续的显示、记录、分析仪器所接受。
因此针对不同机电变换原理的传感器,必须附以专配的测量线路。
测量线路的作用是将传感器的输出电量最后变为后续显示、分析仪器所能接受的一般电压信号。
因此,振动传感器按其功能可有以下几种分类方法,如下表所示
振动传感器的分类
按机械接收原理分 1.相对式
2.惯性式
按机电变换原理分 1.电动式4.电感式
2.压电式5.电容式
3.电涡流式6.电阻式
按所测机械量分 1.位移传感器5.应变传感器
2.速度传感器6.扭振传感器
3.加速度传感器7.扭矩传感器
4.力传感器
四、压电式加速度传感器(惯性式振动传感器)
压电式加速度传感器的机械接收部分是惯性式加速度机械接收原理,机电部分利用的是压电晶体的正压电效应。
它是利用某些物质如石英晶体的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。
当被测振动频率远低于加速度计的固有频率时,则力的变化与被测加速度成正比。
由于压电式传感器的输出电信号是微弱的电荷,而且传感器本身有很大内阻,故输出能量甚微,这给后接电路带来一定困难。
为此,通常把传感器信号先输到高输入阻抗的前置放大器。
经过阻抗变换以后,方可用于一般的放大、检测电路将信号输给指示仪表或记录器。
(a)中心安装压缩型(b)环形剪切型(c) 三角剪切型
图5 压电式加速度计
常用的压电式加速度计的结构形式如上图5所示。
S是弹簧,M是质块,B是基座,P是压电元件,R是夹持环。
图5 a是中央安装压缩型,压电元件—质量块—弹簧系统装在圆形中心支柱上,支柱与基座连接。
这种结构有高的共振频率。
然而基座B与测试对象连接时,
如果基座B有变形则将直接影响拾振器输出。
此外,测试对象和环境温度变化将影响压电元件,并使预紧力发生变化,易引起温度漂移。
图5 c为三角剪切形,压电元件由夹持环将其夹牢在三角形中心柱上。
加速度计感受轴向振动时,压电元件承受切应力。
这种结构对底座变形和温度变化有极好的隔离作用,有较高的共振频率和良好的线性。
图5 b为环形剪切型,结构简单,能做成极小型、高共振频率的加速度计,环形质量块粘到装在中心支柱上的环形压电元件上。
由于粘结剂会随温度增高而变软,因此最高工作温度受到限制。
压电传感器的测量电路
五、振动传感器的应用
振动传感器是一种目前广泛应用的报警检测传感器,被大量应用到汽、摩托车车防盗系统上,目前80%的车辆报警器都用这类传感器。
振动传感器传感器具有响应频带宽、灵敏度高、信噪比大、结构简单、工作可靠、重量轻等优点。
因此,在工程力学、生物医学、石油勘探等许多技术领域中获得了广泛的应用。
参考文献:
[1]黄继昌徐巧鱼.传感器工作原理及应用实例[M].北京:人民邮电出版社,1998
[2]王化祥.传感器原理及应用[M].天津:天津大学出版社,1998
[3]吴建平传感器原理及应用机械工业出版社2008.11
[4]陈建元传感器技术机械工业出版社2008.10
[5]郁有文传感器原理及工程应用西安电子科技大学出版社2008.7
[6]周旭现代传感器技术国防工业出版社2007.1.1
[7]范茂军传感器技术国防工业出版社2008.8
[8]陈林星无线传感器网络技术与应用电子工业出版社2009.4
[9]纪宗南现代传感器应用技术和实用线路中国电力出版社2009.1
论文提要
在高度发展的现代工业中,现代测试技术向数字化、信息化方向发展已成必然发展趋势,
而测试系统的最前端是传感器,它是整个测试系统的灵魂,被世界各国列为尖端技术……
振动传感器并不是直接将原始要测的机械量转变为电量,而是将原始要测的机械量做为振动传感器的输入量Mi,然后由机械接收部分加以接收,形成另一个适合于变换的机械量Mt,最后由机电变换部分再将Mt变换为电量E
学年论文(设计)成绩表
论文题目
作者
指导教师职称
指
导
教
师
评
语
指导教师签字等级。