2018-2019学年度下学期九年级月考数学试卷
人教版2018-2019学年度九年级中考数学试卷含答案
人教版2018-2019学年度九年级中考数学模拟试卷含答案一.选择题(共10小题,满分40分,每小题4分)1.﹣2017的倒数是()A.B.﹣C.2017 D.﹣20172.已知25x=2000,80y=2000,则等于()A.2 B.1 C.D.3.光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013 km B.9.5×1012 km C.95×1011 km D.9.5×1011 km4.下面图中所示几何体的左视图是()A.B. C. D.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人7.我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8% B.9% C.10% D.11%8.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A.5 B.6 C.7 D.89.如图①,在正方形ABCD中,点P从点D出发,沿着D→A方向匀速运动,到达点A后停止运动.点Q从点D出发,沿着D→C→B→A的方向匀速运动,到达点A后停止运动.已知点P的运动速度为a,图②表示P、Q两点同时出发x秒后,△APQ的面积y与x的函数关系,则点Q的运动速度可能是()A. a B. a C.2a D.3a10.如图,AB为⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是()A.2B.3 C.3D.3二.填空题(共4小题,满分20分,每小题5分)11.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值=.12.已知关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,则m的取值范围是.13.有一个三角形纸片ABC,∠C=36°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得的两纸片均为等腰三角形,则∠A的度数可以是.14.如图,在直角坐标系中,点A(2,0),点B(0,1),过点A的直线l垂直于线段AB,点P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折180°,使点C落在点D处.若以A,D,P为顶点的三角形与△ABP相似,则所有满足此条件的点P的坐标为.三.解答题(共2小题,满分16分,每小题8分)15.(8分)化简:(1﹣)÷16.(8分)有一石拱桥的桥拱是圆弧形,如下图所示,正常水位下水面宽AB=60m,水面到拱项距离CD=18m,当洪水泛滥时,水面宽MN=32m时,高度为5m的船是否能通过该桥?请说明理由.四.解答题(共2小题,满分16分,每小题8分)17.(8分)在如图所示的网格中,每个小方格的边长都是1.(1)分别作出四边形ABCD关于y轴、原点的对称图形;(2)以原点O为中心,将△ABD顺时针旋转90°,试画出旋转后的图形,并求旋转过程中△ABD扫过图形的面积.18.(8分)学之道在于悟.希望同学们在问题(1)解决过程中有所悟,再继续探索研究问题(2).(1)如图①,∠B=∠C,BD=CE,AB=DC.①求证:△ADE为等腰三角形.②若∠B=60°,求证:△ADE为等边三角形.(2)如图②,射线AM与BN,MA⊥AB,NB⊥AB,点P是AB上一点,在射线AM 与BN上分别作点C、点 D 满足:△CPD为等腰直角三角形.(要求:利用直尺与圆规,不写作法,保留作图痕迹)五.解答题(共2小题,满分20分,每小题10分)19.(10分)随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME 与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF 的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).20.(10分)如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.21.(12分)向阳中学为了解全校学生利用课外时间阅读的情况,调查者随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表(图).根据图表信息,解答下列问题:频率分布表(1)填空:a=,b=,m=,n=;(2)将频数分布直方图补充完整;(3)阅读时间不低于5小时的6人中,有2名男生、4名女生.现从这6名学生中选取两名同学进行读书宣讲,求选取的两名学生恰好是两名女生的概率.七.解答题(共1小题,满分12分,每小题12分)22.(12分)已知抛物线的顶点为(1,﹣4),且经过点B(3,0).(Ⅰ)求该抛物线的解析式及抛物线与x轴的另一个交点A的坐标;(Ⅱ)点P(m,1)为抛物线上的一个动点,点P关于原点的对称点为P′.①当点P′落在该抛物线上时,求m的值;②当P′落在第二象限内,P′A取得最大值时,求m的值.23.(14分)阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含m,n,b的式子表示).参考答案与试题解析1.解:﹣2017的倒数是﹣.故选:B.2.解:∵25x=2000,80y=2000,∴25x=25×80,80y=25×80,∴25x﹣1=80,80y﹣1=25,∴(80y﹣1)x﹣1=80,∴(y﹣1)(x﹣1)=1,∴xy﹣x﹣y+1=1,∴xy=x+y,∵xy≠0,∴=1,∴+=1.故选:B.方法二:25x=2000∴25xy=2000y=(25×80)y=25y•80y=25y•25x=25x+y,∴xy=x+y,∴+=1,故选:B.3.解:9500 000 000 000km用科学记数法表示是9.5×1012 km,故选:B.4.解:图中所示几何体的左视图是.故选:B.5.解:∵解不等式①得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x≤2,在数轴上表示为:,故选:A.6.解:A、本次抽样调查的样本容量是=5000,正确;B、扇形图中的m为10%,正确;C、样本中选择公共交通出行的有5000×50%=2500人,正确;D、若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有50×40%=20万人,错误;故选:D.7.解:设平均每次下调的百分率为x,由题意,得6000(1﹣x)2=4860,解得:x1=0.1,x2=1.9(舍去).答:平均每次下调的百分率为10%.故选:C.8.解:∵l1∥l2∥l3,AB=5,AC=8,DF=12,∴,即,可得;DE=6,故选:B.9.解:本题采用筛选法.首先观察图象,可以发现图象由三个阶段构成,即△APQ的顶点Q所在边应有三种可能.当Q的速度低于点P时,当点P到达A时,点Q还在DC 上运动,之后,因A、P重合,△APQ的面积为零,画出图象只能有一个阶段构成,故A、B错误;当Q的速度是点P速度的2倍,当点P到点A时,点Q到点B.之后,点A、P重合,△APQ的面积为0.期间△APQ面积的变化可以看成两个阶段,与图象不符,C错误.故选:D.10.解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC是直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3,故选:C.11.解:∵①=1;②=3=1+2;③=6=1+2+3;④=10=1+2+3+4,∴=1+2+3+4+…+28=406.12.解:整理方程得:x2﹣2x﹣m=0∴a=1,b=﹣2,c=﹣m,方程有两个不相等的实数根,∴△=b2﹣4ac=4+4m>0,∴m>﹣1.13.解:由题意知△ABD与△DBC均为等腰三角形,①BC=CD,此时∠CDB=∠DBC=(180°﹣∠C)÷2=72°,∴∠BDA=180°﹣∠CDB=180°﹣72°=108°,AB=AD时,∠ABD=108°(舍去);或AB=BD,∠A=108°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=36°;②BC=BD,此时∠CDB=∠C=36°,∴∠BDA=180°﹣∠CDB=180°﹣36°=144°,AB=AD时,∠ABD=144°(舍去);或AB=BD,∠A=144°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=18°;③CD=BD,此时∠CDB=180°﹣2∠C=108°,∴∠BDA=180°﹣∠CDB=180°﹣108°=72°,AB=AD时,∠A=180°﹣2∠ADB=36°;或AB=BD,∠A=72°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=54°.综上所述,∠A的度数可以是18°或36°或54°或72°.故答案为:18°或36°或54°或72°.14.解:∵点A(2,0),点B(0,1),∴直线AB的解析式为y=﹣x+1∵直线l过点A(4,0),且l⊥AB,∴直线L的解析式为;y=2x﹣4,∠BAO+∠PAC=90°,∵PC⊥x轴,∴∠PAC+∠APC=90°,∴∠BAO=∠APC,∵∠AOB=∠ACP,∴△AOB∽△PCA,∴=,∴==,设AC=m,则PC=2m,∵△PCA≌△PDA,∴AC=AD,PC=PD,∴==,如图1:当△PAD∽△PBA时,则=,则==,∵AB==,∴AP=2,∴m2+(2m)2=(2)2,∴m=±2,当m=2时,PC=4,OC=4,P点的坐标为(4,4),当m=﹣2时,如图2,PC=4,OC=0,P点的坐标为(0,﹣4),如图3,若△PAD∽△BPA,则==,PA=AB=,则m2+(2m)2=()2,∴m=±,当m=时,PC=1,OC=,P点的坐标为(,1),当m=﹣时,如图4,PC=1,OC=,P点的坐标为(,﹣1);故答案为:P(4,4),p(0,﹣4),P(,﹣1),P(,1).15.解:原式=•=•=﹣.16.解:不能通过.设OA=R,在Rt△AOC中,AC=30,CD=18,R2=302+(R﹣18)2,R2=900+R2﹣36R+324解得R=34m连接OM,在Rt△MOE中,ME=16,OE2=OM2﹣ME2即OE2=342﹣162=900,∴OE=30,∴DE=34﹣30=4,∴不能通过.(12分)17.解:(1)所画图形如下图所示,(2)如上图所示,△A′B′D′即为△ABD顺时针旋转90°后得到的图形,在旋转过程中可知:△ABD扫过图形的面积即是线段AB所扫过的扇环面积(S1)与△ABD的面积(S2)之和(S),则有:S=S1+S2=[π×OA2﹣π×OB2]+×AD×1=[π×(22+42)﹣π×(12+12)]+×2×1=+1.18.解:(1)①证明:∵∠B=∠C,BD=CE,AB=DC,∴△ABD≌DCE,∴AB=DC,∴△ADE为等腰三角形;②∵△ABD≌△DCE,∴∠BAD=∠CDE,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=∠ADE+∠EDC,又∵∠BAD=∠CDE.∴∠ADE=∠B=60°,∴等腰△ADE为等边三角形.(2)有三种结果,如图所示:19.解:∵AC∥ME,∴∠CAB=∠AEM,在Rt△ABC中,∠CAB=28°,AC=9m,∴BC=ACtan28°≈9×0.53=4.77(m),∴BD=BC﹣CD=4.77﹣0.5=4.27(m),在Rt△BDF中,∠BDF+∠FBD=90°,在Rt△ABC中,∠CAB+∠FBC=90°,∴∠BDF=∠CAB=28°,∴DF=BDcos28°≈4.27×0.88=3.7576≈3.8 (m),答:坡道口的限高DF的长是3.8m.20.解:(1)设反比例函数解析式为y=,把B(﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6,∴反比例函数解析式为y=;把A(3,m)代入y=,可得3m=6,即m=2,∴A(3,2),设直线AB 的解析式为y=ax+b,把A(3,2),B(﹣2,﹣3)代入,可得,解得,∴直线AB 的解析式为y=x﹣1;(2)由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方;(3)存在点C.如图所示,延长AO交双曲线于点C1,∵点A与点C1关于原点对称,∴AO=C1O,∴△OBC1的面积等于△OAB的面积,此时,点C1的坐标为(﹣3,﹣2);如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于△OBC1的面积,∴△OBC2的面积等于△OAB的面积,由B(﹣2,﹣3)可得OB的解析式为y=x,可设直线C1C2的解析式为y=x+b',把C1(﹣3,﹣2)代入,可得﹣2=×(﹣3)+b',解得b'=,∴直线C1C2的解析式为y=x+,解方程组,可得C2(,);如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,设直线AC3的解析式为y=x+b“,把A(3,2)代入,可得2=×3+b“,解得b“=﹣,∴直线AC3的解析式为y=x﹣,解方程组,可得C3(﹣,﹣);综上所述,点C的坐标为(﹣3,﹣2),(,),(﹣,﹣).21.解:(1)∵本次调查的总人数b=9÷0.15=60,∴a=60﹣(9+18+12+6)=15,则m==0.25、n==0.2,故答案为:15、60、0.25、0.2;(2)补全频数分布直方图如下:(3)用X、Y表示男生、A、B、C、D表示女生,画树状图如下:由树状图知共有30种等可能结果,其中选取的两名学生恰好是两名女生的结果数为12,所以选取的两名学生恰好是两名女生的概率为=.22.解:(Ⅰ)∵抛物线的顶点为(1,﹣4),∴可设抛物线解析式为y=a(x﹣1)2﹣4,∵经过点B(3,0),∴0=a(3﹣1)2﹣4,解得a=1,∴抛物线解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3,令y=0可得x2﹣2x﹣3=0,解得x=3或x=﹣1,∴点A的坐标为(﹣1,0);(Ⅱ)①由点P(m,1)在抛物线y=x2﹣2x﹣3上,有l=m2﹣2m﹣3.又点P关于原点的对称点为P′,∴P′(﹣m,﹣1).∵点P′落在抛物线y=x2﹣2x﹣3上,∴﹣l=(﹣m)2﹣2(﹣m)﹣3,即l=﹣m2﹣2m+3,∴m2﹣2m﹣3=﹣m2﹣2m+3,解得m1=,m2=﹣;②∵P′落在第二象限内,∴点P(m,1)在第四象限,即m>0,l<0.23.解:(1)∵点H是AD的中点,∴AH=AD,∵正方形AEOH∽正方形ABCD,∴相似比为:==;故答案为:;(2)在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:=,故答案为:;(3)A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即a:b=b:a,∴a=b;故答案为:②每个小矩形都是全等的,则其边长为b和a,则b:a=a:b,∴a=b;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:b或b.。
人教版2018-2019年第二学期 九年级数学月考试题 含答案
2019年3月份月考九年级数 学 试 题一、选择题(共8小题,每小题3分,共24分)1.反比例函数y =-3x(x <0)如图所示,则矩形OAPB 的面积是( )A .3B .-3 C.32 D .-32(第3题图)2.如图,将两个形状和大小都相同的杯子叠放在一起,则该实物图的主视图为( )3.如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O 为位似中心,相似比为13,在第一象限内把线段AB 缩小后得到线段CD ,则点C 的坐标为( )A .(2,1)B .(2,0)C .(3,3)D .(3,1)4.如图,以原点O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是AB ︵上一点(不与A ,B 重合),连接OP ,设∠POB =α,则点P 的坐标是( )A .(sin α,sin α)B .(cos α,cos α)C .(cos α,sin α)D .(sinα,cos α)第4题图)第5题图)第6题图)5.如图,AB 是⊙O 的直径,D ,E 是半圆上任意两点,连接AD ,DE ,AE 与BD 相交于点C ,要使△ADC 与△BDA 相似,可以添加一个条件.下列添加的条件中错误的是( )A .∠ACD =∠DAB B .AD =DEC .AD ·AB =CD ·BD D .AD 2=BD ·CD6.如图,一次函数y 1=k 1x +b 的图象和反比例函数y 2=k 2x 的图象交于A(1,2),B(-2,-1)两点,若y 1<y 2,则x 的取值范围是( )A .x <1B .x <-2C .-2<x <0或x >1D .x <-2或0<x <17.如图,有一轮船在A 处测得南偏东30°方向上有一小岛P ,轮船沿正南方向航行至B 处,测得小岛P 在南偏东45°方向上,按原方向再航行10海里至C 处,测得小岛P 在正东方向上,则A ,B 之间的距离是( )A .103海里B .(102-10)海里C .10海里D .(103-10)海里,(第7题) (第8题第11题第128.如图,正方形ABCD 的对角线AC 与BD 相交于点O ,∠ACB 的角平分线分别交AB ,BD 于M ,N 两点.若AM =2,则线段ON 的长为( )A.22 B.32 C .1 D.62二、填空题(本大题共8个小题,每小题3分,共24分)9.△ABC 中,∠A ,∠B 都是锐角,若sin A =32,cos B =12,则∠C = .10.已知点A(-1,y 1),B(-2,y 2)和C(3,y 3)都在反比例函数y =kx(k<0)的图象上,则y 1,y 2,y 3的大小关系为__ .(用“<”连接)11.如图,P(12,a)在反比例函数y =60x 的图象上,PH ⊥x 轴于点H ,则tan ∠POH 的值为____.第13题) 第14题 第15题图)12.如图,▱ABCD 中,点E 是边BC 上一点,AE 交BD 于点F ,若BE =2,EC =3,△BEF 的面积是1,则▱ABCD 的面积为_ _.13.全球最大的关公塑像矗立在荆州古城东门外,如图,张三同学在东门城墙上C 处测得塑像底部B处的俯角为18°48′,测得塑像顶部A 处的仰角为45°,点D 在观测点C 正下方城墙底的地面上,若CD=10米,则此塑像的高AB 约为____米.(参考数据:tan78°12′≈4.8)14. 如图是一个几何体的三视图,已知主视图和左视图都是边长为2的等边三角形,则这个几何体的表面积为 .15.如图是由一些大小相同的小正方体搭成的几何体的主视图和俯视图,则搭成该几何体的小正方体最多是____个.16.如图,在△ABC 中,AB =AC =10,点D 是边BC 上一动点(不与B ,C 重合),∠ADE =∠B =α,DE交AC 于点E ,且cos α=45.下列结论:①△ADE ∽△ACD ;②当BD =6时,△ABD 与△DCE 全等;③△DCE为直角三角形时,BD 为8或252;④0<CE ≤6.4.其中正确的结论是 .(填序号) 第16题图)三、解答题(共8题,共72分) 17.(本题8分)解下列方程: (1). 2sin 60°-4cos 230°+sin 45°·tan 60°; (2). (-2018)0+|1-3|-2sin60°+2tan45°-4cos30°.18.(8分)如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm ),求这个立体图形的表面积.19.(9分)如图,△ABC 中,A(-4,4),B(-4,-2),C(-2,2).(1)请画出将△ABC 向右平移8个单位长度后的△A 1B 1C 1; (2)求出∠A 1B 1C 1的余弦值;(3)以O 为位似中心,将△A 1B 1C 1缩小为原来的12,得到△A 2B 2C 2,请在y 轴右侧画出△A 2B 2C 2.20.(8分)如图,在平面直角坐标系x Oy 中,一次函数y =kx +b 的图象与反比例函数y =mx 的图象交于A(2,3),B(-3,n)两点.(1)求一次函数和反比例函数的解析式;(2)若P 是y 轴上一点,且满足△PAB 的面积是5,直接写出OP 的长.20题21题22题 21.(8分)如图,某塔观光层的最外沿点E 为蹦极项目的起跳点.已知点E 离塔的中轴线AB 的距离OE 为10米,塔高AB 为123米(A B 垂直地面BC),在地面C 处测得点E 的仰角α=45°,从点C 沿CB方向前行40米到达D 点,在D 处测得塔尖A 的仰角β=60°,求点E 离地面的高度EF.(结果精确到1米,参考数据2≈1.4,3≈1.7)22.(9分)如图,在△ABC 中,∠ABC =90°,BC =3,D 为AC 延长线上一点,AC =3CD ,过点D 作DH ∥AB ,交BC 的延长线于点H.(1)求BD ·cos ∠HBD 的值; (2)若∠CBD =∠A ,求AB 的长.23.(10分)如图,以点O 为圆心,AB 长为直径作圆,在⊙O 上取一点C ,延长AB 至点D ,连接DC ,过点A 作⊙O 的切线交DC 的延长线于点E ,且∠DCB =∠DAC.(1)求证:CD 是⊙O 的切线;(2)若AD =6,tan ∠DCB =23,求AE 的长.(23题)(24题)24.(12分) (12分)如图,在Rt △ABC 中,∠ACB =90°,AC =8,B C =6,CD ⊥AB 于点D.点P从点D 出发,沿线段DC 向点C 运动,点Q 从点C 出发,沿线段CA 向点A 运动,两点同时出发,速度都为每秒1个单位长度,当点P 运动到C 时,两点都停止.设运动时间为t 秒.(1)求线段CD 的长;(2)设△CPQ 的面积为S ,求S 与t 之间的函数关系式,并确定在运动过程中是否存在某一时刻t ,使得S △CPQ ∶S △ABC =9∶100?若存在,求出t 的值;若不存在,说明理由;(3)当t 为何值时,△CPQ 为等腰三角形?九年级数学参考答案一、选择题(共8小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8 答案ABACCDDC二、填空题(共8小题,每小题3分,共24分) 9.60° 10.y 3<y 2<y 1_ 11.51212. 13,5814._3π15. 716.①②③④三、解答题(共8题,共72分) 17.解:(1) 解:原式=2×32-4×(32)2+22×3=6-3. (2) 解:原式=1+3-1-2×32+2×1-4×32=2-2 3. 18.解:根据三视图可得:上面的长方体长4 mm ,高4 mm ,宽2 mm ,下面的长方体长6 mm ,宽8 mm ,高 2 mm ,∴立体图形的表面积是4×4×2+4×2×2+4×2+6×2×2+8×2×2+6×8×2-4×2=200(mm 2)19.解: (1)△A 1B 1C 1如图所示.(2)B 1C 1=22+42=2 5,cos ∠A 1B 1C 1=42 5=2 55.(3)△A 2B 2C 2如图所示.20.解:(1)y =6x,y =x +1 (2)对于一次函数y =x +1,令x =0求出y =1,即该函数与y 轴的交点为C (0,1),∴OC =1,根据题意得S △ABP =12PC ×2+12PC ×3=5,解得PC =2,则OP =OC +PC =1+2=3或OP =PC -OC =2-1=121.解:在直角△ABD 中,BD =AB tan β=123tan60°=413(米),则DF =BD -OE =413-10(米),CF =DF +CD =413-10+40=413+30(米),则在直角△CEF 中,EF =CF ·tan α=413+30≈41×1.7+30=99.7≈100(米),则点E 离地面的高度EF 是100米.22.解: (1)∵DH ∥AB ,∴∠BHD =∠ABC =90°,∴△ABC ∽△DHC ,∴AC CD =BCCH=3, ∴CH =1,BH =BC +CH =4,在Rt △BHD 中,cos ∠HBD =BHBD,∴BD ·cos ∠HBD =BH =4(2)∵∠CBD =∠A ,∠ABC =∠BHD ,∴△ABC ∽△BHD ,∴BC HD =AB BH ,∵△ABC ∽△DHC ,∴AB DH =ACCD =3,∴AB =3DH ,∴3DH =3DH4,解得DH =2,∴AB =3DH =3×2=6,即AB 的长是623.解: (1)连接OC ,OE ,∵AB 为直径,∴∠ACB =90°,即∠BCO +∠ACO =90°,又∵∠DCB =∠CAD ,∠CAD =∠ACO ,∴∠ACO =∠DCB ,∴∠DCB +∠BCO =90°,即∠DCO =90°,∴CD 是⊙O 的切线(2)∵EA 为⊙O 的切线,∴EC =EA ,EA ⊥AD ,OE ⊥AC ,∴∠BAC +∠CAE =90°,∠CAE +∠OEA =90°,∴∠BAC =∠OEA ,∴∠DCB =∠OEA.∵tan ∠DCB =23,∴tan ∠OEA =OA AE =23,易证Rt △DCO ∽Rt △DAE ,∴CDDA =OC AE =OD DE =23,∴CD =23×6=4,在Rt △DAE 中,设AE =x ,∴(x +4)2=x 2+62,解得x =52,即AE 的长为5224.解:(1)线段CD 的长为4.8(2)过点P 作PH ⊥AC ,垂足为H ,由题意可知DP =t ,CQ =t ,则CP =4.8-t.由△CHP ∽△BCA 得PH AC =PC AB ,∴PH 8=4.8-t 10,∴PH =9625-45t ,∴S △CPQ =12CQ ·PH =12t (9625-45t )=-25t 2+4825t.设存在某一时刻t ,使得S △CPQ ∶S △ABC =9∶100.∵S △ABC =12×6×8=24,且S △CPQ ∶S △ABC =9∶100,∴(-25t 2+4825t )∶24=9∶100,整理得5t 2-24t +27=0,即(5t -9)(t -3)=0,解得t =95或t =3,∵0≤t ≤4.8,∴当t =95或t=3时,S △CPQ ∶S △ABC =9∶100(3)①若CQ =CP ,则t =4.8-t.解得t =2.4;②若PQ =PC ,作PH ⊥QC 于点H ,∴QH =CH =12QC =t 2,∵△CHP ∽△BCA ,∴CH BC =CPAB ,∴t 26=4.8-t 10,解得t =14455; ③若QC =QP ,过点Q 作QE ⊥CP ,垂足为E ,同理可得t =2411.综上所述:当t 为2.4或14455或2411时,△CPQ 为等腰三角形。
安徽省淮南市2018-2019学年度龙湖中学九年级第三次月考数学试卷
淮南市2018-2019龙湖中学九年级第三次月考数学试卷一、选择题(本大题共10小题,每小题3分,共30 分)1.下列图形中是中心对称图形,但不是轴对称图形的是( )A B C D2.用配方法解方程0522=--x x 时,原方程应变形为( )A .()922=+xB .()922=-xC .()612=+xD .()612=-x 3.将抛物线12+=x y 先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是( )A .()222++=x yB .()222-+=x yC .()222+-=x yD .()222--=x y 4.关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,则a 的值是( )A .-1B .1C .1±D .25.下列说法中正确的结论为( )A .平分弦的直径垂直于这系弦 ·B .相等的圆心角所对的弧相等C .等弧所对的弦相等D .全等的两个图形成中心对称6.三角形的外心是( )A .三条中线的交点B .三条角平分线的.交点C .三条高的交点D .三条垂直平分线的交点7.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( )A .45B .35C .25D .158.如图,⊙O 是△ABC 的外接圆,∠OCB =40°,则∠A 的度数是( )A .40°B .50°C .60°D .100°9.半径相等的圆内接正三角形、内接正方形、内接正六边形的边长之比为( )A .3:2:1B .1:2:3C .1:2:3D .3:2:110. 已知二次函数c bx ax y ++=2的图象如图,其对称轴为直线x =-1,给出下列结论:(1)b 2>4ac ;(2)abc >0;(3)2a +b =0;(4)a +b +c >0;(5)x 取-3和x 取1所对应的函数值相同,其中正确的结论有( )A .2个B .3个C .4个D .5个二、填空题(本大题共6小题,每小题4分,共24分)11.已知点A (2,a )与点B (-b ,4)关于原点对称,则=b a .12.一个袋中装有2个红球、10个黄球、8个白球,每个球除颜色外完全相同,从袋中任意摸出一个球,则摸到黄球的概率是 .13. 如图,P A 、PB 切⊙O 于点A 、B ,点C 是优弧AB 上的点,∠C=64°,那么∠P 等于 .14. 一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是 .(结果保留π)15. 如图,在半圆⊙O 中,直径AB =4,点C 、D 是半圆上两点,且∠BOC =84°,∠BOD =36°,P 为直径上一点,则PC +PD 的最小值为 .16. 如图,等边△ABC 内有一点O ,OA =3,OB =4,OC =5,将BO 以点B 为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A 可以由△BOC 绕点B逆时针旋转60°得到;②点O 与O′的距离为4;③∠AOB=150°;④'AOBO s 四边形=6+43,其中正确的结论是 .三、解答题(本大题共7小题, 17、18、19、20、21题每小题8分,22题l2 分、 23题14分,共66分)17. 二次函数y =x 2+bx +c 的图象经过点(4,3),(3,0).(1)求b 、c 的值;(2)求出该二次函数图象的顶点坐标和对称轴.18.在一个不透明的口袋中装有红、白、黑三种颜色的小球若干个,它们只有颜色不同,其中有白球2个、黑球1个.已知从中任意摸出1个球得白球的概率为21. (1)求口袋里有多少个红球;(2)求从袋中一次摸出2个球,得一红一白的概率.(用列表或画出树状图解题)19.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(-4,3),B(-1,2),C (-2,1)(1)画出△ABC关于原点O对称的△A1B1C1,并写出点B1的坐标;(2)画出△ABC绕原点O顺时针方向旋转90°得到的△A2B2C2,并写出点A2的坐标.20.已知关于x的一元二次方程x2-3x+k=0方程有两实根x1和x2.(1)求实数k的取值范围;(2)当x1和x2是一个矩形两邻边的长且矩形的对角线长为5,求k的值.21.如图,点D在半圆⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为4,求图中阴影部分的面积.22.一家用电器开发公司研制出一种新型电子产品,每件的生产成本为18元,按定价40元出售,每月可销售20万件.为了增加销量,公司决定采取降价的办法,经市场调研,每降价1元,月销售量可增加2万件.(1)求出月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)求出月销售利润w(万元)与销售单价x(元)之间的函数关系式;(3)若该月销售利润为480万元,求此时的月销售量和销售单价各是多少元?23.如图①,②,在平面直角坐标系xOy中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与x轴交于O,B两点,OC为弦,∠AOC=60°,P是x轴上的一动点,连接CP.(1)求∠OAC的度数;(2)如图①,当CP与⊙A相切时,求PO的长;(3)如图②,当点P在直径OB上时,CP的延长线与⊙A相交于点Q,问PO为何值时,△OCQ是等腰三角形?。
2018~2019学年度武汉市部分学校九年级调研测试数学试卷(含答案)
2018~2019学年度武汉市部分学校九年级调研测试数学试卷考试时间:2019年1月17日14:00~16:00一、选择题(共10小题,每小题3分,共30分)1.将下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是-6,常数项是1的方程是( )A .3x 2+1=6xB .3x 2-1=6xC .3x 2+6x =1D .3x 2-6x =12.下列图形中,是中心对称图形的是( )3.若将抛物线y =x 2先向右平移1个单位长度,再向上平移2个单位长度,就得到抛物线( )A .y =(x -1)2+2B .y =(x -1)2-2C .y =(x +1)2+2D .y =(x +1)2-24.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A .两枚骰子向上一面的点数之和大于1B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于125.已知⊙O 的半径等于8 cm ,圆心O 到直线l 的距离为9 cm ,则直线l 与⊙O 的公共点的个数为( )A .0B .1C .2D .无法确定6.如图,“圆材埋壁”和我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”用几何语言可表述为:CD 为⊙O 的直径,弦AB ⊥CD 于点E ,CE =1寸,AB =10寸,则直径CD 的长为( )A .12.5寸B .13寸C .25寸D .26寸7.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化,那么3只雏鸟中恰有2只雄鸟的概率是( )A .61B .83C .85D .32 8.如图,将半径为1,圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度,使点O 的对应点D 落在弧AB 上,点B 的对应点为C ,连接BC ,则图中CD 、BC 和弧BD 围成的封闭图形面积是( )A .63π-B .623π-C .823π-D .33π- 9.古希腊数学家欧几里得的《几何原本》记载,形如x 2+ax =b 2的方程的图解法是:如图,画Rt △ABC ,∠ACB =90°,BC =2a ,AC =b ,再在斜边AB 上截取BD =2a ,则该方程的一个正根是( ) A .AC 的长 B .BC 的长 C .AD 的长 D .CD 的长10.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1,与x 轴的一个交点为(2,0).若关于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根,则p 的值有( )A .2个B .3个C .4个D .5个二、填空题(本大题共6个小题,每小题3分,共18分)11.已知3是一元二次方程x 2=p 的一个根,则另一根是___________.12.在平面直角坐标系中,点P 的坐标是(-1,-2),则点P 关于原点对称的点的坐标是_____.13.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,童威为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色……,不断重复上述过程,童威共摸了100次,其中20次摸到黑球,根据上述数据,可估计口袋中的白球大约有___________个.14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉矩形,小郑幸运获得了一张军运会吉祥物“兵兵”的照片.如图,该照片(中间的矩形)长29 cm 、宽为20 cm ,她想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的41.为求镜框的宽度,他设镜框的宽度为x cm ,依题意列方程,化成一般式为____________________.15.如图是抛物线型拱桥,当拱顶离水面2 m 时,水面宽4 m .水面下降2.5 m ,水面宽度增加___________m .16.如图,正方形ABCD 的边长为4,点E 是CD 边上一点,连接AE ,过点B 作BG ⊥AE 于点G ,连接CG 并延长交AD 于点F ,则AF 的最大值是___________.三、解答题(共8题,共72分)17.(本题8分)解方程:x 2-3x -1=0.18.(本题8分)如图,A 、B 、C 、D 是⊙O 上四点,且AD =CB ,求证:AB =CD .19.(本题8分)武汉的早点种类丰富,品种繁多,某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A 、B 、C 、D );乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E 、F 、G 、H ),共八种美食.小童和小郑同时去品尝美食,小童准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A 、B 、E 、F )这四种美食中选择一种,小郑准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C 、D 、G 、H )这四种美食中选择一种,用列举法求小童和小郑同时选择的美食都会甲类食品的概率.20.(本题8分)如图,在边长为1的正方形网格中,A (1,7)、B (5,5)、C (7,5)、D (5,1).(1) 将线段AB 绕点B 逆时针旋转,得到对应线段BE .当BE 与CD 第一次平行时,画出点A 运动的路径,并直接写出点A 运动的路径长;(2) 线段AB 与线段CD 存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标.21.(本题8分)如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆(1) 如图1,求证:AD是⊙O的切线;(2) 如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G.①求证:AG=BG;②若AD=2,CD=3,求FG的长.22.(本题10分)某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系,并且当x=25时,y=550;当x=30时,y=500.物价部门规定,该商品的销售单价不能超过48元/件.(1) 求出y与x的函数关系式;(2) 问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元?(3) 直接写出商家销售该商品每天获得的最大利润.23.(本题10分)如图,等边△ABC与等腰三角形△EDC有公共顶点C,其中∠EDC=120°,AB=CE =62,连接BE,P为BE的中点,连接PD、AD.(1) 为了研究线段AD与PD的数量关系,将图1中的△EDC绕点C旋转一个适当的角度,使CE与CA重合,如图2,请直接写出AD与PD的数量关系;(2) 如图1,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3) 如图3,若∠ACD=45°,求△P AD的面积.24.(本题12分)如图,在平面直角坐标系中,抛物线y=x2+(1-m)x-m交x轴于A、B两点(点A在点B的左边),交y轴负半轴于点C.(1) 如图1,m=3.①直接写出A、B、C三点的坐标;②若抛物线上有一点D,∠ACD=45°,求点D的坐标.(2) 如图2,过点E(m,2)作一直线交抛物线于P、Q两点,连接AP、AQ,分别交y轴于M、N两点,求证:OM·ON是一个定值.。
武汉市光谷实验中学2018~2019学年度下学期九年级4月月考数学试卷
光谷实验中学2018~2019学年度下学期九年级4月月考数学试卷9.已知二次函数y =ax 2+2ax +3a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而增大, 且-2≤x ≤1时,y 的最大值为9,则a 的值为( )A .1或-2B .2-或2C .2D .110.如图,AB 为⊙O 的直径,C 为弧AB 的中点,AN ⊥CD 于M ,CD 交AB 于E ,且C 、D 、N 在⊙O 上.若CM =1,ME =421,连OM ,则OM 的长为( ) A .3 B .4C .24D .2314.已知关于x 、y 的二元一次方程组⎩⎨⎧=+-=+m y x m y x 2232的解满足x -y =4,则m 的值为______ 15.如图,直线y =mx +4与双曲线xy 4=(x >0)只有唯一公共点A 点,与x 轴交于B 点, 与xk y =(x >0)交于C 点,S △OAB =4S △OBC ,则k =___________16.已知等边三角形△ABC ,点D 、E 分别在CA 、CB 的延长线上,且BE =CD ,O 为BC 的 中点,MO ⊥AB 交DE 于点M ,OM =33,AD =2,则AB =___________21.(本题8分)如图,AB 为⊙O 的直径,DB 为弦,BC 平分△OBD 的一个外角交⊙O 于点C ,连接AC ,过点C 作CE ⊥DB 交DB 的延长线于点E ,延长DO 交AC 于点P .(1) 求证:CE 为⊙O 的切线; (2) 若tanA =21,求PCAP 的值22.(本题10分)某公司童威经过市场调查发现:公司生产的某商品在第x 天的售价(1≤x ≤100,且x 为整数)为(x +30)元/件,而该商品每天的销量满足关系式y =200-2x .如果该商品第15天的售价按8折出售,仍然可以获得20%的利润(1) 求该公司生产每件商品的成本为多少元?(2) 问销售该商品第几天时,每天的利润最大?最大利润是多少?(3) 该公司每天需要控制人工、水电和房租支出共计a 元,若考虑这一因素后公司对最大利润要控制在 4000元至4500元之间(包含4000和4500),且保证至少有90天赢利,请直接写出a 的取值范围23.(本题10分)在四边形ABCD中,BD平分∠ABC(1) 如图1,若∠BAD=∠BDC,求证:BD2=AB·BC(2) 如图2,∠A>90°,∠BAD+∠BDC=180°15,BC=8,求BD的长①若∠ABC=90°,AB=4②若BC=3CD=3a,BD=9,则AB的长为___________(用含a的代数式表示)24.(本题12分)已知抛物线442212+--=m mx x y 经过定点A (1) A 点坐标为 ;(2) 直线y =t (t <6)与抛物线交于B 、C 两点(B 在C 的左边),过点A 作AD ⊥BC 于点D ,是否存在t 的值,使得对于任意的m ,∠DAC =∠ABD 恒成立?若存在,请求t 的值;若不存在,请说明理由(3) 如图,当m =1时,直线y =2x 交对称轴于点E ,在直线OE 的右侧作∠EOP 交抛物线于点P ,使得tan ∠EOP =21.已知x 轴上有两点M (t ,0)、N (t +2,0),EM +PN 是否存在最小值?若存在,求t 的值;若不存在,请说明理由。
天津南开翔宇学校 2018-2019学年九年级第一次月考数学试卷(无解析)
南开翔宇2018-2019年度初三第一次月考数学试卷一、选择题1. 下列函数中是二次函数的是A. y=2(x-1)B. y=2(x-1)²-2x²C. y=a(x-1)² D y=2x²-12. 已知关于x的一元二次方程x²+2x+m-2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为A. 6B. 5C. 4D. 33. 二次函数y=-2x²+4x+1的图象如何移动就得到y=-2x²的图象A. 向左移动1个单位,向上移动3个单位B. 向右移动1个单位,向上移动3个单位C. 向左移动1个单位,向下移动3个单位D. 向右移动1个单位,向下移动3个单位4. 某同学将如图两水平线L1、L2的其中一条当成x轴,且向右为正向;两铅直线L3、L4的其中一条当成y轴,且向上为正向,并在此坐标平面上画出二次函数y=ax²+2ax+1的图形、关于他选择x、y轴的叙述,下列哪个结论正确?A. L1为x轴,L3为y轴B. L1为x轴,L4为y轴C. L2为x轴,L3为y轴D. L2为x轴,L4为y轴5. 如图,已知二次函数y=(x+1)²-4,当-2≤x≤2时,则函数y的最小值和最大值A. -3和5B. -4和5C. -4和-3D. -1和56. 如果其二次函数的图像与已知二次函数y=x²-2x的图像关于y轴对称,那么这个二次函数的解析式是A. y=-x²+2xB. y=x²+2xC. y=-x²-2xD. y=x²-2x7. 已知过点A(-1,m),B(1,m)和C(2,m-1)的抛物线的图象大致为8. 如图,Rt△ABC中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图像为下列选项中的9. 由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=ax²+bx+c的图象过点(1,0)…,求证:这个二次函数的图象关于直线x=2对称,根据现有信息,题中的二次函数具有的性质:(1)过点(3,0);(2).顶点是(1,-2)(3)在x轴土截得的线段的长度是2;(4)c=3a;其中正确的个数A. 3个B. 2个C. 1个D. 0个10. 一副三角板(△BCM和△AEG)如图放置,点E在BC上滑动,AE交BM于D,EG交MC于F,且在滑动过程中始终保持EF=ED,若MB=4,设BE=x,△EFC的面积为y,则y关于x的函数表达式是A. y=x2B. y=x2+1C. y=x(x2-x)D. y=x(x2-x)+111. 已知函数y=x²-2m+2016(m为常教)的图像上有三点:A(x1,y1),B(x2,y2),C(x3,y3),其中x1=-+m,x2=,x3=m-1,则y1,y2,y3的大小关系是A. y2<y3<y1B. y3<y1<y2C. y1<y2<y3D. y1<y3<y212. 当-2≤x≤1时,二次函数y=-(x-m)²+m²+1有最大值为4,则实数m的值为A.3B. 3或-3C. 2或-3D. 2或3或-3二. 填空题13. 若关于x的方程(a-1)x1+a²=1是一元二次方程,则a的值是14. 已知二次函数y=ax²'+bx-1(a≠0)的图象经过点(1,1),则代数式3-a-b的值为15. 已知二次函数y=ax²+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:则关于x的一元二次方程ax²+bx+c=-2的根是16. 如图抛物线y=x²+2x-3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为17. 如图,在平面直角坐标系中,抛物线y=-x²+4x+5与x辅交A,B两点,与y轴交于点C,垂直于y轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),(x2<x1),与直线BC交于点N(x3,y3),若x3<x2<x1,设S=x1+x2+x3,则S的取值范围是18. 如图,已知二次函数y=ax²+bx+c(a≠0)的图象与x轴交于点A(-1,0),与y轴的交点B在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0;②4a+2b+c>0;③4ac-b²<-4a;④;⑤b<c. 其中正确结论有(填写所有正确结论的序号)。
2018-2019学年度数学第一次月考试题(含答案)
2018-2019学年度数学第一次月考试题(含答案)D参考答案及评分意见一、选择题(本大题共10小题,每小题4分,满分40分)1--5 C D C A B; 6--10 C A B D A二、填空题(本大题共4小题,每小题5分,满分20分)11.(-5,-3) 12.-1 13. x=4 14.y 1=y 2>y 3三、(本大题共2小题,每小题8分,满分16分)15. 由题意得+c =642+b•4+c =1 ……………3分解这个方程组得c=1b=-4, ……………7分 所以所求二次函数的解析式是y=x 2-4x+1; ……………8分16.(参考) 解:(1)移项,得, ……………1分二次项系数化为1,得, ……………2分配方,得, ……………4分即……………6分∴或,∴,……………8分四、(本大题共2小题,每小题8分,满分16分)17. 解:由题意,得=(-4)2-4(m -)=0,即16-4m+2=0,解得m =.……………4分当m =时,方程有两个相等的实数根x1=x2=2.……………8分18. 解:设AB为x m,则BC为(50-2x)m. ……………1分x(50-2x)=300.……………4分解得x1=10,x2=15.……………6分当x=10时,AD=BC=50-2x=30>25,不合题意,舍去;当x=15时,AD=BC=50-2x=20<25. ……………7分答:AB的长15 m.……………8分五、(本大题共2小题,每小题10分,满分20分)19.解:(1)设这两年该市推行绿色建筑面积的年平均增长率为x,……………1分950(1+x)2=1862.……………4分解得,x1=0.4,x2=-2.4(舍去),……………6分所以这两年该市推行绿色建筑面积的年平均增长率为40%. ……………8分(2)1862(1+40%)=2606.8.∵2606.8>2400,∴2018年我市能完成计划目标.所以如果2018年仍保持相同的年平均增长率,2018年该市能完成计划目标………10分.20.解:(1)由图象可知:B(2,4)在二次函数y 2=ax 2图象上, ∴4=a·22.∴a = 1.则y 2=x 2. ……………4分又∵A(-1,n)在二次函数y 2=x 2图象上, ∴n =(-1)2.∴n =1.则A(-1,1).又∵A ,B 两点在一次函数y 1=kx +b 图象上,∴4=2k +b.1=-k +b ,解得b =2.k =1,则y 1=x +2.∴一次函数解析式为y 1=x +2,二次函数解析式为y 2=x 2. ……………8分(2)根据图象可知:当-1<x<2时,y 1>y 2. ……………10分六、(本题满分12分)21.(1)∵二次函数y=-x 2 +2x+m 的图象与x 轴的一个交点为A (3,0),∴-9+2×3+m=0,解得:m=3; ……………2分(2)∵二次函数的解析式为:y=-x 2 +2x+3,∴当y=0时,-x 2 +2x+3=0,解得:x=3或x=-1,∴B(-1,0);……………6分(3)如图,连接BD、AD,过点D 作DE⊥AB,∵当x=0时,y=3,∴C(0,3),若S △ABD =S △ABC ,则可得OC=DE=3,∴当y=3时,-x 2 +2x+3=3,解得:x=0或x=2,∴点D的坐标为(2,3). (12)分七、(本题满分12分)22.解:(1)10或18元(6分)(2)14元。
烟台市九年级下学期数学第一次月考试卷
烟台市九年级下学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)小丽做了四道题目,正确的是()。
A .B .C .D .2. (2分)下列交通标志图案中,是中心对称图形的是()A .B .C .D .3. (2分) (2019九下·揭西月考) “十二五”期间,将新建保障性住房约37000000套,用于解决中低收入人群和新参加工作的大学生住房的需求,把37000000用科学记数法表示应是()A . 37×106B . 3.7×106C . 3.7×107D . 0.37×1084. (2分) (2019九下·揭西月考) 如图,AB∥CD,O为CD上一点,且∠AOB=90°.若∠B=33°,则∠AOC的度数是().A . 33°5. (2分)一组数据:2,﹣1,0,3,﹣3,2.则这组数据的中位数和众数分别是()A . 0,2B . 1.5,2C . 1,2D . 1,36. (2分)(2016·十堰) 如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积比为()A . 1:3B . 1:4C . 1:5D . 1:97. (2分) (2019九下·揭西月考) 若3x>﹣3y ,则下列不等式中一定成立的是()A .B .C .D .8. (2分) (2019九下·揭西月考) 若实数m,n满足,且m,n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A . 12B . 8C . 10D . 10或89. (2分)(2018·白银) 关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A . k≤﹣410. (2分)(2017·沂源模拟) 如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE= AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A . ①②B . ②③C . ①③D . ①④二、填空题 (共6题;共7分)11. (1分)(2016·天津) 计算(2a)3的结果等于________.12. (1分)已知菱形的周长是20cm,一条对角线长为8cm,则菱形的另一条对角线长为________13. (1分) (2019九下·揭西月考) 若3<a<5,则|5﹣a|+|3﹣a|=________.14. (1分) (2019九下·揭西月考) 如图,△ABC内接于⊙O,∠C=45°,半径OB的长为3,则AB的长为________15. (2分)(2019·邹平模拟) 如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB的面积为________.16. (1分) (2019九下·揭西月考) 如图,直线x=t(t>0)与反比例函数的图象分别交于B,C两点,A为y轴上的任意一点,则△ABC的面积为________.三、解答题 (共9题;共77分)17. (5分)计算:(1)3﹣6×;(2)﹣42÷(﹣2)3﹣×.18. (5分)(﹣15)+(﹣6).19. (5分) (2019九下·揭西月考) 某商场将某种商品的售价从原来的每件40元经两次调价后调至每件32.4元。
2018年秋九年级第一次月考数学试卷
2018-2019学年度上学期富川中学九年级第一次月考数学试卷考试时间:120分钟满分:120分制卷:侯甫银审阅:汪晓玲一、选择题(每小题3分,共30分)1.用公式法解一元二次方程3x2+3=-2x时,首先要确定a、b、c 的值,下列叙述正确的是()A.a=3,b=2,c=3 B.a=-3,b=2,c=3C.a=3,b=2,c=-3 D.a=3,b=-2,c=32.下列抛物线中,在开口向下的抛物线中开口最大的是()A.y=x2 B.y=﹣x2 C.y=x2 D.y=﹣x2 3.把抛物线y=(x-1)2+2绕原点,旋转180°后,得到抛物线为()A.y=-(x-1)2+2 B.y=-(x+1)2+2C.y=-(x+1)2-2 D.y=-(x-1)2-24.函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是()A.k<3 B.k<3且k≠0 C.k≤3 D.k≤3且k≠0 5.对于任意实数x,多项式x2﹣5x+8的值是一个()A.非负数 B.正数 C.负数 D.无法确定6.已知点(﹣1,y1)、(﹣2,y2)、(2,y3)都在二次函数y=﹣3ax2﹣6ax+12(a>0)y1、y2、y3的大小关系为()A.y1>y3>y2 B.y3>y2>y1 C.y3>y1>y2 D.y1>y2>y3 7.若t是一元二次方程ax2+bx+c=0(a≠0)的根,则判别式△=b2﹣4ac和完全平方式M=(2at+b)2的关系是()A.△=M B.△>M C.△<M D.大小关系不能确定8.方程x2+ax+1=0和x2﹣x﹣a=0有一个公共根,则a的值是()A.0 B.1 C.2 D.39.三角形两边的长分别是8和6,第三边的长是一元二次方程x2﹣16x+60=0的一个实数根,则该三角形的面积是()A.24 B.24或8 C.48 D.810.如图,点E、F、G、H分别是正方形ABCD边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x的函数图象可能为()A B C D二、填空题(每小题3分,共18分)11.方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则m= .12.二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,m的取值范围是13.已知(x2+y2+1)(x2+y2﹣3)=5,则x2+y2的值等于.14.已知x2﹣3x﹣2=0,那么代数式的值为.15.若将抛物线y=(x﹣2)2+3向右平移2个单位,再向上平移3个单位,则所得抛物线的一般式是.16、如图1所示,二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0)且与y轴交于负半轴. 给出四个结论:;①a+b+c=0,② abc<0;③2a+b>0;④a+c=1;其中正确的结论的序号是三、解答题(共8个小题,12+8×6+12=72分)17.请用合适的方法解方程:(1)(x+2)2﹣10(x+2)+25=0 (2)4x2﹣8x+1=0 (3)(x﹣2)(x﹣3)=1218. 已知二次函数y=﹣2x2﹣4x+6,(1)求出函数的顶点坐标、对称轴以及描述该函数的增减性.(2)求抛物线与x轴交点和y轴交点坐标;并画出它的大致图像. (3)当-2<X<4时.求函数Y的取值范围.19.某市百货大楼服装柜在销售中发现:“七彩”牌童装平均每天可售出20件,每件盈利40元.为了迎接元旦,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?20.已知一次函数y1=ax+b的图象上有两点A、B,它们的横坐标分别是3,﹣1,若二次函数y2=x2的图象经过A、B两点.(1)请求出一次函数的表达式;(2)设二次函数的顶点为C,求△ABC的面积.21.已知关于x的一元二次方程x2﹣6x﹣k2=0(k为常数).(1)求证:方程有两个不相等的实数根;(2)设x1、x2为方程的两个实数根,且2x1+x2=14,试求出方程的两个实数根和k的值22.如图,A、B、C、D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P、Q分别从点A、C同时出发,点P以3 cm/s的速度向点B移动,点Q以2 cm/s的速度向点D移动,当点P运动到点B停止时,点Q也随之停止运动,问P、Q两点从出发经过几秒时,点P、Q间的距离是10 cm?23.某河上由抛物线形拱桥,当水面距拱顶5m时,水面宽8m,一木船宽4m,高2m,载货后,木船露出水面的部分为m,问:水面涨到与抛物线拱顶相距多少米时,木船开始不能通航?24题图24.抛物线y=mx2﹣4m(m>0)与x轴交于A、B两点(A点在B点左边),与y轴交于C点,已知OC=2OA.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)在抛物线上是否存在一点P,使△PAC三个内角的角平分线的交点在x轴上?若存在,求P点坐标;若不存在.请说明理由.。
2018-2019学年江苏省扬州市邗江区梅岭中学九年级(下)第一次月考数学试卷
2018-2019学年江苏省扬州市邗江区梅岭中学九年级(下)第一次月考数学试卷一、选择题(本大题共 8 小题,共 24 分)1、(3分) |-3|-1的值等于()A.4B.-4C.±4D.22、(3分) 下列计算正确的是()A.a2+a2=2a4B.a2•a3=a6C.(a+1)2=a2+1D.(-a2)2=a43、(3分) 中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为()A.6.75×103吨B.6.75×104吨C.0.675×105吨D.67.5×103吨4、(3分) 下列立体图形中,俯视图是正方形的是()A. B. C. D.5、(3分) 直线a、b、c、d的位置如图所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于()A.58°B.70°C.110°D.116°6、(3分) 下列命题中,假命题是()A.一组对边相等的四边形是平行四边形B.三个角是直角的四边形是矩形C.四边相等的四边形是菱形D.有一个角是直角的菱形是正方形7、(3分) 如图,已知AB 、AD 是⊙O 的弦,∠B=20°,点C 在弦AB 上,连接CO 并延长CO 交于⊙O 于点D ,∠D=15°,则∠BAD 的度数是( )A.30°B.45°C.20°D.35°8、(3分) 若实数x ,y 满足条件2x 2-6x+y 2=0,则x 2+y 2+2x 的最大值是( )A.14B.15C.16D.不能确定二、填空题(本大题共 10 小题,共 30 分)9、(3分) 计算:√16═______. 10、(3分) 化简:−a a−b +b a−b =______.11、(3分) 分解因式:3x 2-6x+3=______.12、(3分) 口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.6,那么摸出黑球的概率是______.13、(3分) 若关于x 的分式方程2x x−4-a 4−x =1解为非负数,则a 的范围______.14、(3分) 已知圆锥的底面半径为1cm ,母线长为3cm ,则其侧面积为______cm 2.(结果保留π)15、(3分) 直角坐标平面上将二次函数y=-2(x-1)2-2的图象向左平移1个单位,再向上平移1个单位,则其顶点为______.16、(3分) 在Rt△ABC 中,AD 是斜边BC 边上的中线,G 是△ABC 重心,如果BC=6,那么线段AG 的长为______.17、(3分) 在关于x ,y 的二元一次方程组{3x +2y =a x −y =1中,若a (2x+3y )=2,则a=______.18、(3分) 如图,矩形ABCD 中,AB=2,BC=4,P ,Q 分别是BC ,AB 上的两个动点,AE=1,△AEQ 沿EQ 翻折形成△FEQ,连接PF ,PD ,则PF+PD 的最小值是______.三、解答题(本大题共 10 小题,共 96 分)19、(8分) 计算(1)|-1|-√4-(1-√2)0+4sin30°(2)解不等式组:{3x −5<x +12x −1≥3x−12.20、(8分) 先化简:(3a+1-a+1)÷a 2−4a+4a+1,并从0,-1,2中选一个合适的数作为a 的值代入求值.21、(8分) 初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如下两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了______名学生;(2)请将条形图补充完整;(3)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?22、(8分) 一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、-2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果;(2)求点A落在第四象限的概率.23、(10分) 某文化用品商店用1 000元购进一批“晨光”套尺,很快销售一空;商店又用倍,所购数量比第一批多100套.1 500元购进第二批该款套尺,购进时单价是第一批的54(1)求第一批套尺购进时单价是多少?(2)若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?24、(10分) 如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=45°,AC=4,求图中阴影部分的面积.25、(10分) 如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.26、(10分) 一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为______件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?27、(12分) 平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点(1,1),(-2,-2),(√2,√2)…,都是梦之点,显然梦之点有无数个.(n为常数,n≠0)的图象上的梦之点,则这个反比例(1)若点P(3,b)是反比例函数y=nx函数解析式为______;(2)⊙O的半径是2,①⊙O上的所有梦之点的坐标为______;②已知点M(m,3),点Q是(1)中反比例函数y=n图象上异于点P的梦之点,过点Q的直线xq与y轴交于点A,tan∠OAQ=1.若在⊙O上存在一点N,使得直线MN∥q,求出m的取值范围.28、(12分) 如图,矩形ABCD,AB=2,BC=10,点E为AD上一点,且AE=AB,点F从点E出发,向终点D运动,速度为1cm/s,以BF为斜边在BF上方作等腰直角△BFG,以BG,BF为邻边作▱BFHG,连接AG.设点F的运动时间为t秒.(1)试说明:△ABG∽△EBF;(2)当点H落在直线CD上时,求t的值;(3)点F从E运动到D的过程中,直接写出HC的最小值.。
2018--2019学年度武汉市部分学校九年级元月调研测试数学试卷
2018--2019学年度武汉市部分学校九年级调研测试数学试卷武汉市教育科学研究院命制 2019.1.17 亲爱的同学在你答题前,请认真阅读下面的注意事项:1.本试卷由第I卷(选择题)和第Ⅱ卷(非选择题)两部分组成。
全卷共8页,七大题,满分120分。
考试用时150分钟。
2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和座位号。
3.答第1卷(选择题)时,选出每小题答案后,用2B铅笔把“答题卡”上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案。
答在..“.试卷...。
..”.上无效4.答第Ⅱ卷(非选择題)时,答案用0.5毫米黑色笔迹签字笔书写在“答题卡”上。
答在....“.试.卷”上无效...。
5.认真阅读答题卡上的注意事项。
预祝你取得优异成绩!第Ⅰ卷(选择题共30分)一、选择题(共10小题,每小题3分,共30分)下列个各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的选项涂黑。
1.将下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是-6,常数项是1的方程是A.3x2+1=6x B.3x2-1=6x C.3x2+6x=1 D.3x2-6x=12.下列图形中,是中心对称图形的是A. B. C. D.3.若将抛物线y=x2先向右平移1个单位长度,再向上平移2个单位长度,就得到抛物线A.y=(x-1)2+2 B.y=(x-1)2-2C.y=(x+1)2+2 D.y=(x+1)2-24.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是A.两枚骰子向上一面的点数之和大于1 B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12 D.两枚骰子向上一面的点数之和等于125.已知⊙O 的半径等于8 cm ,圆心O 到直线l 的距离为9 cm ,则直线l 与⊙O 的公共点的个数为A .0B .1C .2D .无法确定6.如图,“圆材埋壁”和我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”用几何语言可表述为:CD 为⊙O 的直径,弦AB ⊥CD 于点E ,CE =1寸,AB =10寸,则直径CD 的长为A .12.5寸B .13寸C .25寸D .26寸第6题图7.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化,那么3只雏鸟中恰有2只雄鸟的概率是A . 61B .83C .85D .328.如图,将半径为1,圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度,使点O 的对应点D 落在弧AB 上,点B 的对应点为C ,连接BC ,则图中CD 、BC 和弧BD 围成的封闭图形面积A .63π- B .623π- C .823π-D .33π-第8题图9.古希腊数学家欧几里得的《几何原本》记载,形如x 2+ax =b 2的方程的图解法是:如图,画Rt △ABC ,∠ACB =90°,BC =2a ,AC =b ,再在斜边AB 上截取BD =2a,则该方程的一个正根是( )A .AC 的长B .BC 的长C .AD 的长D .CD 的长第9题图10.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1,与x 轴的一个交点为(2,0).若关于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根,则p 的值有A .2个B .3个C .4个D .5个第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6个小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置。
江西省九江市柴桑区三中2018—2019学年度第一次月考九年级数学试卷(无答案)
2018—2019学年度第一次月考九年级数学试卷一.选择题(每小题3分)1.下列方程是一元二次方程的是()A.x-y=7B.x2-2x=3C.(x+2)2+32=x2D.2/x-5=x2.下列命题是假命题的是()A一组对边平行且相等的四边形是平行四边形B.一组对边相等且有一个角是直角的四边形是矩形。
C.一组邻边相等的平行四边形是菱形。
D. 一组邻边相等的矩形是正方形。
3.一元二次方程x2-4x-6=0配方后化为A.(x+2)2=10 B.(x-2)2=10 C.(x+2)2=-2 D.(x+2)2=-24.九江某快递公司随着网络的发展,业务增长迅速,完成快递件数从六月份的10万件增长到八月份的12.1万件。
假定每月增长率相同,设为x.则可列方程为()A.10x+x2=12.1 B.10(x+1)=12.1 C.10(1+x)2=12.1 D.10+10(1+x)=12.15.菱形ABCD中,对角线AC与BD相交于O点,若AB=2,L ABC=600,则BD的长为()A.2 B.3 C. D.26.在矩形ABCD中,O为AC的中点,过点O的一条直线分别与AB、CD交于点E,F,连接BF 交AC于点M,连接DE,BO.若L COB=600,OF=CF则下列结论:(1)FB OC,OM=CM;(2) EOB CMB;(3)四边形EBFD是菱形;(4)MB:OE=3:2,其中正确的个数有()A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分)7.方程(x+2)(X-1)=0的解为8设x1,x2是方程x2-4x+m=0的两个根,且x1+x2-x1x2=1,则x1+x2= ,m=9顺次连接四边形的各边中点,所得四边形是菱形,则该四边形的对角线.10.如上表,不解方程可判断一元二次方程ax2+bx+c=0的一个解的范围是11.如图为某城市部分街道,四边形ABCD为正方形,点G在对角线BD上,GE CD于E,GF BC于F,AD=1500m,小敏行走的路线为B—A—G—E,小聪行走的路线为B—A—D—E—F,若小敏行走的路程为3100m,则小聪行走的路程为m.12.如图,在菱形ABCD中,对角线AC,BD相交于一点,AC=6,BD=8,点P是AC延长线上的一个动点,过点P作PE AD于E点,PF DC,交DC的延长线于点F,则PE-PF=三.(本大题共五小题,每小题6分)13.(6分)解方程(1)x2-2x-3=0 (2).(x-1)(x+3)=1214(6分)矩形ABCD的边AB,BC的长分别是关于X的方程x2+(2m-1)x+m2+3=0的根。
2018-2019学年北京人大附中九年级(下)月考数学试卷(3月份)解析版
2018-2019学年北京人大附中九年级(下)月考数学试卷(3月份)一、选择题(本大题共10小题,共30.0分) 1. 下列说法正确的是( )A. 有理数都是有限小数B. 无理数都是无限不循环小数C. 14的平方根是12D. −27没有立方根2. -√49,π2,3.1415,-227,√5这五个实数中,是无理数的有( )A. 1个B. 2个C. 3个D. 4个3. 下列各数13,π,0,-4,(-3)2,-32,-|-3|,-(-3),3.14-π中有平方根的个数为( )A. 2个B. 3个C. 4个D. 5个 4. √256的平方根是( )A. 16B. ±16C. 4D. ±4 5. 若√(a −3)2=a −3,则a 的取值范围是( )A. a >3B. a ≥3C. a <3D. a ≤36. 三条直线两两相交于同一点时,对顶角有m 对;交于不同三点时,对顶角有n 对,则m 与n 的关系是( ) A. m =n B. m >nC. m <nD. m +n =107. 如图,能够判断AD ∥BC 的条件是( )A. ∠7=∠3B. ∠2=∠6C. ∠1=∠5D. ∠3=∠88. 如果两个角的一边在同一条线上,另一边互相平行,那么这两个角的关系是( )A. 相等B. 互补C. 相等且互补D. 相等或互补 9. 若a ,b ,c 为同一平面内不同的三条直线,要使a ∥b ,则a ,b ,c 应满足的条件是( )A. a ⊥b ,b ⊥cB. a//c ,b ⊥cC. a ⊥c ,b//cD. a//c ,b//c 10. 如图,数轴上表示1、√3的对应点分别为点A 、点B .若点B 关于点A 的对称点为点C ,则点C 所表示的数是( ) A. √3−1 B. 1−√3 C. 2−√3 D. √3−2 二、填空题(本大题共6小题,共18.0分)11. 计算:-√−273=______;±√164=______. 12. 当1≤x <5时,√(x −1)2+|x −5|=______.13. 如图,当直线AB ,CD ,EF 都过点O ,且EF ⊥AB ,OG 平分∠EOD ,∠AOC =28°,则∠GOF =______.14. 已知√x +1+(y -1)2=0,则√x 3+√y 的值为______.15. 若√73的整数部分是a ,小数部分是b ,则2a -b =______. 16. 一个角的对顶角比它的领补角的3倍还大20°,则这个角的补角的度数为______. 三、计算题(本大题共4小题,共28.0分)17. 求下列各式中的x .(1)(4x -1)2=225; (2)√81+8x 3=-11618. 已知3既是x -1的平方根,也是x -2y +1的立方根,求x 2-y 2的平方根.19. 已知A =√m +n +10m−n 是m +n +10的算术平方根,B =√4m +6n −1m−2n+3是4m +6n -1的立方根,求√B −A 3的值.20. 已知a ,b 为实数,且√1+a −(b −1)√1−b =0,求a 2017-b 2018的值.四、解答题(本大题共4小题,共28.0分)21. 用三角板分别过点A ,B ,C 作线段BC ,AC 和AB 所在直线的高线.22.画出△ABC向下平移5格再向右平移4格后的△A1B1C1.23.已知:如图,AB∥CD,AD∥BC.求证:∠A=∠C.证明:∵AB∥CD,(______)∴∠B+∠C=180°.(______)∵AD∥BC,(已知)∴∠A+∠B=180°.(______)∴∠A=∠C.(______)24.如图,已知∠1+∠AEF=180°,∠2+∠AEF=180°,∠3=∠B,判断∠AED与∠C的关系为______,并证明你的结论.答案和解析1.【答案】B【解析】解:A,有理数都是无限循环小数,故该选项错误;B,无理数都是无限不循环小数,故该选项正确;C ,的平方根是±,故该选项错误;D,-27的立方根是-3,不是没有,故该选项错误;故选:B.此题可根据有理数和无理数的定义以及平方根和立方根的概念逐项分析即可.本题考查了有理数和无理数的定义以及平方根和立方根的概念,掌握各种概念是解决问题的关键.2.【答案】B【解析】解:无理数有,,共2个.故选:B.根据无理数的定义(包括①开方开不尽的根式,②含π的,③一些有规律的)判断即可.本题考查了对无理数的定义的理解,能判断一个数是否是无理数是解此题的关键.3.【答案】D【解析】解:∵13>0,π>0,0=0,-4<0,(-3)2=9>0,-32=-9<0,-|-3|=-3<0,-(-3)=3>0,3.14-π<0,∴有平方根的个数是13,π,0,(-3)2,-(-3),共5个.故选:D.由于负数没有平方根,所以只要所给数中的负数淘汰即可解决问题.此题主要考查了平方根的定义,比较简单,关键要细心.4.【答案】D【解析】解:∵=16,∴16的平方根为:±4.故选:D.根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.此题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根,得出=16是解决问题的关键.5.【答案】B【解析】解:,即a-3≥0,解得a≥3;故选:B.根据题中条件可知a-3≥0,直接解答即可.本题主要考查二次根式的性质与化简,题中涉及使根式有意义的知识点,属于基础题.6.【答案】A【解析】解:因为三条直线两两相交形成的对顶角的个数与是否交于同一点无关,所以m=n,故选:A.三条直线两两相交,每对相交的直线就会形成2对对顶角,这三条直线每两条都相交,相交直线的对数,与是否交于同一点无关,因而m=n.直线相交形成的对顶角的对数,只与有多少对直线相交有关.7.【答案】C【解析】解:∵∠1=∠5,∴AD∥BC(内错角相等,两直线平行);故选:C.利用平行线的判定方法判定即可.此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.8.【答案】D【解析】解:如果两个角的一边在同一条线上,另一边互相平行实际是两条平行线被第三条直线所截,得到同位角,内错角,同旁内角.由平行线的性质可得,各对同位角相等,各对内错角相等,相应的同旁内角的关系是互补.故选:D.此题需分情况进行讨论,当两个角同为锐角时或者一个锐角一个钝角时,都符合题中已知条件.本题需注意的知识点为:如果两个角的一边在同一条线上,另一边互相平行,那么这两个角是被平行线所截得的同位角,或内错角或是同旁内角.9.【答案】D【解析】解:A、a⊥b,a⊥c可判定b∥c,故此选项错误;B、a∥b,b⊥c可判定a⊥c,故此选项错误;C、a⊥c,b∥c可判定a⊥b,故此选项错误;D、根据在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行可得a∥b,故此选项正确;故选:D.根据在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行进行分析即可.此题主要考查了平行线的判定,关键是掌握平行线的判定定理.10.【答案】C【解析】解:∵表示1、的对应点分别为点A、点B,∴AB=-1,∵点B关于点A的对称点为点C,∴CA=AB,∴点C的坐标为:1-(-1)=2-.故选:C.首先根据表示1、的对应点分别为点A、点B可以求出线段AB的长度,然后根据点B和点C关于点A对称,求出AC的长度,最后可以计算出点C的坐标.本题考查的知识点为:求数轴上两点间的距离就让右边的数减去左边的数.知道两点间的距离,求较小的数,就用较大的数减去两点间的距离.11.【答案】3 ±18【解析】解:∵(-3)3=-27,∴-=-(-3)=3;∵(±)2=,∴±=±,故答案为3,.利用立方根和平方根的计算方法计算即可.本题考查了立方根和平方根的计算方法,属于基础题,比较简单.12.【答案】4【解析】解:∵1≤x<5,∴x-1≥0,x-5<0.故原式=(x-1)-(x-5)=x-1-x+5=4.根据x的取值范围,可判断出x-1和x-5的符号,然后再根据二次根式的性质和绝对值的性质进行化简.本题主要考查了二次根式及绝对值的化简.13.【答案】149°【解析】解:∵∠AOC=28°,∴∠DOB=28°,∵EF⊥AB,OG平分∠EOD,∴∠EOD=90°-28°=62°,∴∠GOD=31°,∴∠GOF=90°+28°+31°=149°,故答案为:149°.根据对顶角相等得出∠DOB,进而利用互余和角平分线的定义得出∠GOD的度数,进而解答即可.此题考查了角的计算,涉及的知识有:角平分线定义,垂直的定义,以及互余两角的性质,熟练掌握定义及性质是解本题的关键.14.【答案】0【解析】解:∵+(y-1)2=0,∴x+1=0,y-1=0,∴x-1,y=1.∴原式=-1+1=0.故答案为:0根据非负数和为0的性质定理求出x和y的值,然后将其值代入代数式就可以计算出结果了.本题是一道实数计算题,考查了非负数和为0的性质、开平方和开立方运算.15.【答案】24-√73【解析】解:∵8<<9,∴a=8,b=-8,∴2a-b=2×8-(-8)=24-.故答案为:24-.首先确定的范围,即可推出a b的值,把a b的值代入求出即可.考查了估算无理数的大小,解此题的关键是确定的范围.8<<9,得出a,b的值.16.【答案】40°【解析】解:设这个角为x,则它的对顶角为x,邻补角为180°-x,根据题意得x-3(180°-x)=20°,解得x=140°.故这个角的补角的度数为:180°-140°=40°.故答案为:40°.设这个角的度数为x,根据对顶角相等和互为邻补角的两个角的和等于180°分别表示出它的对顶角和邻补角,然后根据等量关系列出方程求解.本题考查互为邻补角的两个角等于180°和对顶角相等的性质,是需要熟记的内容.17.【答案】解:(1)∵(4x-1)2=225,∴4x-1=15或4x-1=-15,解得:x=4或x=-72;(2)∵√81+8x3=-116,∴8x3=-116-9,即8x3=-125,∴x3=-1258,∴x=-52.【解析】(1)先根据平方根的定义得出4x-1=±15,再分别求解可得;(2)先将x3的系数化为1,再根据立方根的定义计算可得.本题主要考查立方根和平方根,解题的关键是掌握立方根和平方根的定义计算可得.18.【答案】解:根据题意得,由①得:x=10,把x=10代入②得:y=-8,∴{y=−8x=10,∴x2-y2=102-(-8)2=36,∵36的平方根是±6,∴x2-y2的平方根是±6.【解析】根据题意得x-1=9,x-2y+1=27,再解方程组求得xy的值,代入即可得出答案.本题考查了平方根和立方根,是基础知识比较简单.19.【答案】解:根据题意得:{m−2n=0m−n=2,解得:{n=2m=4,∴A=√16=4,B=√273=3,则√−13=-1.【解析】利用平方根、立方根定义列出方程组,求出方程组的解得到m与n的值,确定出所求即可.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.【答案】解:∵√1+a−(b−1)√1−b=0,∴√1+a+(1-b)√1−b=0,∵1-b≥0,∴1+a=0,1-b=0,解得a=-1,b=1,∴a2017-b2018=(-1)2017-12018=-1-1=-2.【解析】由已知条件得到+(1-b )=0,利用二次根式有意义的条件得到1-b≥0,再根据几个非负数和的性质得到1+a=0,1-b=0,解得a=-1,b=1,然后根据乘方的意义计算a2017-b2018的值.本题考查了非负数的性质:算术平方根具有非负性.非负数之和等于0时,各项都等于0利用此性质列方程解决求值问题.21.【答案】解:如图所示:【解析】根据三角形的高作图即可.本题考查了作图-基本作图.解决此类题目的关键是熟悉基本几何图形的性质.22.【答案】解:如图所示:△A1B1C1,即为所求.【解析】直接利用平移的性质得出对应点位置进而得出答案.此题主要考查了平移变换,正确得出对应点位置是解题关键.23.【答案】已知两直线平行,同旁内角互补两直线平行,同旁内角互补同角的补角相等【解析】证明:∵AB∥CD,(已知)∴∠B+∠C=180°.(两直线平行,同旁内角互补)∵AD∥BC,(已知)∴∠A+∠B=180°.(两直线平行,同旁内角互补)∴∠A=∠C.(同角的补角相等).根据平行线的性质,求得同旁内角∠B+∠C=180°、∠A+∠B=180°,然后利用同角的补角相等知∠A=∠C.本题考查了平行线的性质.①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补.24.【答案】相等【解析】解:∵∠1+∠AEF=180°,∴AC∥DG,∵∠2+∠AEF=180°,∴∠1=∠2,∴EF∥AB,∴∠AED=∠EDF,∠3=∠ADE,∵∠3=∠B,∴∠B=∠ADE,∴DE∥BC,∴∠AED=∠C,故答案为:相等根据平行线的判定方法和平行线的性质解答即可.本题考查了平行线的判定和性质,其区别和联系为:区别:性质由形到数,用于推导角的关系并计算;判定由数到形,用于判定两直线平行;联系:性质与判定的已知和结论正好相反,都是角的关系与平行线相关.。
2018-2019年度九年级数学月考试卷
第1页,共3页绝密★启用前永昌九年制学校2018-2019年度第一学期月质量检测暨数理化竞赛九年级数学试卷Ⅱ考试总分: 120 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 )1.下列方程中,不是一元二次方程的是( )A. 3y 2+2y +1=0B.12x 2=1−3x C.110a 2−16a +23=0D.x 2+x −3=x 22.用配方法解下列方程时,配方有错误的是( )A.x 2−2x −99=0化为(x −1)2=100B.x 2+8x +9=0化为(x +4)2=25C.2t 2−7t −4=0化为(t −74)2=8116D.3x 2−4x −2=0化为(x −23)2=1093.下列说法正确的是( )A.与圆有公共点的直线是圆的切线B.过三点一定能作一个圆C.垂直于弦的直径一定平分这条弦D.三角形的外心到三边的距离相等4.如图:在等腰梯形ABCD 中,AD // BC ,过D 作DF ⊥BC 于F ,若AD =2,BC =4,DF =2,则DC 的长为( )A.1B. 5C.2D. 35.如图,圆锥的底面半径r 为6cm ,高ℎ为8cm ,则圆锥的侧面积为( )A.30πcm 2B.48πcm 2C.60πcm 2D.80πcm 26.已知线段AB =7cm ,现以点A 为圆心,2cm 为半径画⊙A ;再以点B 为圆心,3cm 为半径画⊙B ,则⊙A 和⊙B 的位置关系( )A.内含B.相交C.外切D.外离7.已知圆内接正三角形的面积为 3,则该圆的内接正六边形的边心距是( )A.2B.1C. 3D. 328.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x ,下面所列的方程中正确的是( ) A.560(1+x )2=315 B.560(1−x )2=315 C.560(1−2x )2=315 D.560(1−x 2)=3159.在同一坐标系中,一次函数y =−mx +n 2与二次函数y =x 2+m 的图象可能是( ) A.B.C.D.10.二次函数的图象如图所示,对称轴为x =1,给出下列结论:①abc<0;②b2>4ac ;③4a +2b +c <0;④2a +b =0.其中正确的结论有( )A.4个B.3个C.2个D.1个卷II (非选择题)二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分 )11.已知菱形两条对角线的长分别为5cm 和8cm ,则这个菱形的面积是________cm 2. 12.关于x 的方程4kx 2+12x −5=0有实数根,则k 的取值范围是________.13.若(m −2)x m 2−2−mx +1=0是一元二次方程,则m 的值为________.14.二次函数y =12x 2−32x −2的图象如图所示,若线段AB 在x 轴上,且AB =43 3,以AB 为边作等边△ABC ,使点C 落在该函数第四象限的图象上,则点C的坐标是________.15.如图,AB是⊙O的直径,CD是弦,AB⊥CD于点E,若AB=10,CD=6,则BE的长是________.16.圆内接四边形ABCD中,已知∠A=70∘,则∠C=________.17.如图,Rt△ABC中,∠B=90∘,AB=3cm,BC=4cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于________cm.18.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(−3, 0),对称轴为直线X=−1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(−52, y1),C(−12, y2)为函数图象上的两点,则y1<y2.其中正确结论是________.19.如图,将Rt△ABC绕直角顶点C顺时针旋转90∘,得到△DEC,连接AD,若∠BAC=25∘,则∠BAD=________.20.如图,在平面直角坐标系中,已知点A(1, 1),以点O为旋转中心,将点A逆时针旋转到点B的位置,则AB的长为________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.选择适当方法解下列方程:(1)x2−5x+1=0;(2)3(x−2)2=x(x−2).22.已知关于x的方程x2+mx+m−2=0.(1)若此方程的一个根为1,求m的值;(2)求证:不论m取何实数,此方程都有两个不相等的实数根.23.如图,在Rt△ABC中,∠A=90∘,AB=6,BC=10,D是AC上一点,CD=5,DE⊥BC于E.求线段DE的长.24.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(1, 3),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点B1的坐标;(2)画出△ABC绕原点O逆时针旋转90∘后得到的△A2B2C2,并写出点C2的坐标.25.如图,在△ABC中,∠C=90∘,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.(1)求证:BC是⊙O切线;(2)若BD=5,DC=3,求AC的长.26.如图,已知直线y=3x−3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).(1)求抛物线的解析式;(2)求△ABC的面积;(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.第2页,共3页第3页,共3页答案1.D2.B3.C4.B5.C6.D7.B8.B9.D10.B 11.2012.k ≥−9513.−214.(0, −2)或(3, −2) 15.116.110∘17.718.①④19.70∘20. 2π421.解:(1)x 2−5x +1=0,∵△=b 2−4ac =25−4×1×1=21>0, ∴x =5± 212;(2)3(x −2)2=x (x −2), 3(x −2)2−x (x −2)=0, (x −2)(3x −6−x )=0, 解得:x 1=2,x 2=3.22.解:(1)根据题意,将x =1代入方程x 2+mx +m −2=0, 得:1+m +m −2=0,解得:m =12;(2)∵△=m 2−4×1×(m −2)=m 2−4m +8=(m −2)2+4>0, ∴不论m 取何实数,该方程都有两个不相等的实数根. 23.解:∵∠C =∠C ,∠A =∠DEC , ∴△DEC ∽△BAC , ∴DEAB =DCBC , 则DE6=510,解得:DE =3.24.解:(1)如图所示,△A 1B 1C 1即为所求,点B 1的坐标为(4, −5);(2)如图所示,△A 2B 2C 2即为所求,点C 2的坐标为(−1, 5). 25.(1)证明:连接OD ; ∵AD 是∠BAC 的平分线, ∴∠1=∠3. ∵OA =OD , ∴∠1=∠2. ∴∠2=∠3.∴OD // AC .∴∠ODB =∠ACB =90∘. ∴OD ⊥BC .∴BC 是⊙O 切线.(2)解:过点D 作DE ⊥AB ,∵AD 是∠BAC 的平分线, ∴CD =DE =3.在Rt △BDE 中,∠BED =90∘,由勾股定理得:BE =2−DE 2= 52−32=4, ∵∠BED =∠ACB =90∘,∠B =∠B , ∴△BDE ∽△BAC . ∴BEBC =DEAC . ∴48=3AC .∴AC =6.26.共存在4个点M 1(−1, 6),M 2(−1, − 6),M 3(−1, 0),M 4(−1, −1)使△ABM 为等腰三角形.。
2018---2019学年度初三数学月考试卷
(C) 0.587 × 107 (D)58.7
× 105
( ) 3.数轴上有 A, B,C, D 四个点,其中表示互为相反数的两个点是
(A) 点 B 与点 C (B) 点 A 与点 C
(C) 点 A 与点 D (D) 点 B 与点 D
(
) 4. 下列各式运算结果为 a9 的是
( A) a3 a 3
(B) (a 3) 3
10、分解因式: m3 4m =________________.
C
11、如图, AB为⊙ O直径,弦 CD⊥ AB,垂足为点 E,连结 OC,若 OC=5,
CD=8,则 AE=______________.
A EO
B
D
12. 写出图象经过点( -1 , 2)的一个函数的表达式 ____________________.
( 1)求证:四边形 CEDF是平行四边形; ( 2)若 AB=4, AD=6,∠ B=60°,求 DE 的长。
(通州 2017 一模) 23. 在平面直角坐标系 xOy 中,过原点 O 的直线 l1 与双曲线 y 2 的一个交点为 A x
( 1,m ).
( 1)求直线 l1 的表达式;
( 2)过动点 P( n, 0)( n>0)且垂直于 x 轴的直线与直线
2018---2019 学年度 初三数学月考试卷
2019.4
班级
姓名
成绩
一、选择题(本题共 16 分,每小题 2 分) 第 1— 8 题均有四个选项,符合题意的选项只有 ..一个.
( ) 1.如图所示,用刻度尺度量线段 AB,
可以读出线段 AB的长度为
(A) 5.2cm
(B) 5.4cm
(C) 6.2cm
2018-2019年度人教版九年级数学月考试卷含答案
2018—2019学年度第一学期月考试卷(十月月考)九年级数学试卷一、选择题:(本大题共10小题,每小题4分,共40分)1.下列方程是关于 x的一元二次方程的是()A.1x2+1x =2 B.3(x+1)2=2(x+1) C.ax2+bx+c=0 D.x2+2x=x2-12. 方程的根的情况是()A.两个不相等的实数根B.两个相等的实数根C.没有实数根D.无法判断3. 方程x2+4x=2的负根为()A.-2- 6B. -2+ 6C. 2- 6D. 2+64.关于函数y=-3x2的性质的叙述,正确的是()A.顶点是原点B. y有最小值C.当x>0时,y随x增大而增大D.当x<0时,y随x的增大而减小5. 方程x2-3x-2的两根为x1,x2,则下列结论正确的是()A. x1=-1,x2=2B. x1=1,x2=-2C. x1x2=2D. x1+x2=36. 有x支球队参加篮球比赛,共比赛了45场,若每两队之间都比赛一场,下列方程中符合题意的是()A. 12 x(x-1)=45 B.12 x(x+1)=45 C. x(x-1)=45 D. x(x+1)=457. 当ab>0时,y=ax2与y=ax+b图象大致是()8.已知抛物线y=-(x-1)2+k的图象经过点(2,0),则使星函数值y<0成立的x的取值范围是()A. x<-4或x>2B. x<0或x>2C.-4<x<2D.0<x<29. 某篮球运动员在距离篮球中心水平距离4m处起跳投篮,球沿一条抛物线运动。
当球在运动过程中,水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内,已知篮圈中心离地面高度为3.05m,在如图所示的平面坐标系内,下列说法正确的是()A.此抛物线的解析式是y=- 15 x2+3.5 B.篮圈中心的坐标是(4,3.05)C.此抛物线的顶点坐标是(3.05,0)D.篮球出手时离地面的高度是2m。
广东省中山市东区中学2018_2019学年九年级数学下学期第二次月考试卷(含解析)
2018-2019学年广东省中山市东区中学九年级(下)第二次月考数学试卷一.选择题(共5小题,满分15分,每小题3分)1.3的相反数是()A.﹣3 B.3 C.D.﹣2.我国研制的“曙光3000超级服务器”排在全世界运算速度最快的500台高性能计算机的第80位,它的峰值速度达到每秒403 200 000 000次,用科学记数法表示它的峰值计算速度为每秒()A.0.4032×1012次B.403.2×109次C.4.032×1011次D.4.032×108次3.点A(a,4)、点B(3,b)关于x轴对称,则(a+b)2010的值为()A.0 B.﹣1 C.1 D.720104.如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m5.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B.C.4﹣2D.3﹣4二.填空题(共5小题,满分20分,每小题4分)6.计算:(﹣)5×26=.7.如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,∠A=45°,∠BDC=60°,则∠BDE=度.8.已知反比例函数的图象在第二、四象限,则m的取值范围是.9.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是.10.如图,正三角形ABC内接于圆O,AD⊥BC于点D交圆于点E,动点P在优弧BAC上,且不与点B,点C重合,则∠BPE等于.三.解答题(共12小题,满分85分)11.计算: +()﹣1﹣4cos45°﹣()0.12.先化简,再求值:,其中.13.已知二次函数y=﹣x2+2x+3.(1)写出这个二次函数的开口方向、对称轴、顶点坐标和最大值;(2)求出这个抛物线与坐标轴的交点坐标.14.如图,在平行四边形ABCD中,以点A为圆心,以任意长为半径画圆弧,分别交边AD、AB于点M、N,再分别以点M、N为圆心,以大于MN长为半径画圆弧,两弧交于点P,作射线AP交边CD 于点E,过点E作EF∥BC交AB于点F.求证:四边形ADEF是菱形.15.已知:如图,在△ABC中,∠1=∠2,DE∥AC,求证:△ADE是等腰三角形.16.某商场在元旦期间,开展商品促销活动.将某型号的电视机按进价提高35%后,打9折另送50元路费的方式销售,结果每台电视机仍获利208元,问每台电视机的进价是多少元?17.某校举行手工制作比赛,赛后整理参赛同学的成绩,并制作成图表如下:请根据以上图表提供的信息,解答下列问题:(1)表中m和n所表示的数分别为:m=______,n=______,(2)请在图中,补全频数分布直方图;(3)比赛成绩的中位数落在哪个分数段?(4)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少?18.某市在地铁施工期间,交管部门在施工路段设立了矩形路况警示牌BCEF(如图所示),已知立杆AB的高度是3米,从侧面D点测到路况警示牌顶端C点和底端B点的仰角分别是60°和45°,求路况警示牌宽BC的值.19.如图,△ABC为圆O的内接三角形,BD为⊙O的直径,AB=AC,AD交BC于E,AE=2,ED=4.(1)求证:△ABE∽△ADB,并求AB的长;(2)延长DB到F,使BF=BO,连接FA,那么直线FA与⊙O相切吗?为什么?20.我市某西瓜产地组织40辆汽车装运完A,B,C三种西瓜共200吨到外地销售.按计划,40辆汽车都要装运,每辆汽车只能装运同一种西瓜,且必须装满.根据下表提供的信息,解答以下问题:(1)设装运A种西瓜的车辆数为x辆,装运B种西瓜的车辆数为y辆,求y与x的函数关系式;(2)如果装运每种西瓜的车辆数都不少于10辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要是此次销售获利达到预期利润25万元,应采取怎样的车辆安排方案?21.已知矩形PMON的边OM、ON分别在x、y轴上,O为坐标原点,且点P的坐标为(﹣2,3).将矩形PMON沿x轴正方向平移4个单位,得到矩形P1M1O1N1再将矩形P1M1O1N1绕着点O1旋转90°得到矩形P2M2O2N2.在坐标系中画出矩形P2M2O2N2,并求出直线P1P2的解析式.22.如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.(1)求点B的坐标;(2)当∠CPD=∠OAB,且=,求这时点P的坐标.2018-2019学年广东省中山市东区中学九年级(下)第二次月考数学试卷参考答案与试题解析一.选择题(共5小题,满分15分,每小题3分)1.3的相反数是()A.﹣3 B.3 C.D.﹣【分析】依据相反数的定义回答即可.【解答】解:3的相反数是﹣3.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.我国研制的“曙光3000超级服务器”排在全世界运算速度最快的500台高性能计算机的第80位,它的峰值速度达到每秒403 200 000 000次,用科学记数法表示它的峰值计算速度为每秒()A.0.4032×1012次B.403.2×109次C.4.032×1011次D.4.032×108次【分析】在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.确定a×10n(1≤|a|<10,n为整数)中n的值是易错点,由于403 200 000 000有12位,所以可以确定n=12﹣1=11.【解答】解:403 200 000 000=4.032×1011.故选:C.【点评】把一个数M记成a×10n(1≤|a|<10,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0.3.点A(a,4)、点B(3,b)关于x轴对称,则(a+b)2010的值为()A.0 B.﹣1 C.1 D.72010【分析】根据关于关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,可得a、b的值,进而得到答案.【解答】解:∵点A(a,4)、点B(3,b)关于x轴对称,∴a=3,b=﹣4,∴(a+b)2010=1,故选:C.【点评】此题主要考查了关于x轴对称点的坐标特点,关键是掌握关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.4.如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m【分析】小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化.【解答】解:设小明在A处时影长为x,AO长为a,B处时影长为y.∵AC∥OP,BD∥OP,∴△ACM∽△OPM,△BDN∽△OPN,∴,,则,∴x=;,∴y=,∴x﹣y=3.5,故变短了3.5米.故选:C.【点评】此题考查相似三角形对应边成比例,应注意题中三角形的变化.5.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B.C.4﹣2D.3﹣4【分析】根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠DAE的度数,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的倍计算即可得解.【解答】解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD﹣DE=4﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=BE=×(4﹣4)=4﹣2.故选:C.【点评】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD是解题的关键,也是本题的难点.二.填空题(共5小题,满分20分,每小题4分)6.计算:(﹣)5×26=﹣2 .【分析】根据幂的乘方解答即可.【解答】解:,故答案为:﹣2【点评】此题考查幂的乘方,关键是根据幂的乘方的法则解答.7.如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,∠A=45°,∠BDC=60°,则∠BDE=15 度.【分析】利用三角形的外角性质先求∠ABD,再根据角平分线的定义,可得∠DBC=∠ABD,运用平行线的性质得∠BDE的度数.【解答】解:∵∠A=45°,∠BDC=60°,∴∠ABD=∠BDC﹣∠A=15°.∵BD是△ABC的角平分线,∴∠DBC=∠ABD=15°,∵DE∥BC,∴∠BDE=∠DBC=15°.【点评】本题比较简单,考查的是平行线的性质及三角形内角与外角的关系.8.已知反比例函数的图象在第二、四象限,则m的取值范围是m<﹣2 .【分析】反比例函数的图象在二四象限,让比例系数小于0列式求值即可.【解答】解:∵反比例函数的图象在第二、四象限,∴m+2<0,解得m<﹣2,故答案为m<﹣2.【点评】考查反比例函数的性质;用到的知识点为:对于反比例函数(k≠0),k<0,反比例函数图象在第二、四象限内.9.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是.【分析】由在10个外观相同的产品中,有2个不合格产品,直接利用概率公式求解即可求得答案.【解答】解:∵在10个外观相同的产品中,有2个不合格产品,∴现从中任意抽取1个进行检测,抽到合格产品的概率是:=.故答案为:.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.10.如图,正三角形ABC内接于圆O,AD⊥BC于点D交圆于点E,动点P在优弧BAC上,且不与点B,点C重合,则∠BPE等于30°.【分析】由于点P始终在优弧BAC上移动,故∠P度数不易直接求,可转化为求同弧所对的其他它圆周角的度数.【解答】解:∵△ABC为正三角形,AD⊥BC,∴AD为∠BAC的平分线,∴∠BAE=60°×=30°,又∵∠BPE=∠BAE,∴∠BPE=30°.【点评】在解此类动点问题时,一般将位置不固定的角转化为固定角来解,体现了转化思想在解题中的应用.三.解答题(共12小题,满分85分)11.计算: +()﹣1﹣4cos45°﹣()0.【分析】先根据二次根式的化简、负整数指数幂、特殊角的三角函数值及0指数幂把原式化简,再根据实数混合运算的法则进行计算即可.【解答】解:原式=2+2﹣4×﹣1,=2+2﹣2﹣1,=1.故答案为:1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂及二次根式等考点的运算.12.先化简,再求值:,其中.【分析】首先将括号内的式子进行通分,然后将除法统一为乘法运算,再约分、化简即可.【解答】解:====;当x=﹣3时,原式==.【点评】此题是典型的“化简求值”类问题,解题的关键在于化简,应熟练掌握分式混合运算的解题方法.13.已知二次函数y=﹣x2+2x+3.(1)写出这个二次函数的开口方向、对称轴、顶点坐标和最大值;(2)求出这个抛物线与坐标轴的交点坐标.【分析】(1)根据二次项系数确定开口方向,根据顶点坐标公式确定顶点坐标和对称轴.(2)当y=0时,﹣x2+2x+3=0,解方程可求得与x轴的交点为(﹣1,0),(3,0);当x=0时,y=3,即求得与y轴的交点坐标为(0,3).【解答】解:∵y=﹣x2+2x+3=﹣(x﹣1)2+4∴开口方向向下,对称轴x=1,顶点坐标是(1,4)当x=1时,y有最大值是4(2)∵当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3当x=0时,y=3∴抛物线与x轴的交点坐标是(﹣1,0),(3,0),与y轴的交点坐标是(0,3).【点评】此题主要考查了二次函数的性质,利用解析式求坐标轴的交点的方法以及顶点坐标公式是本题的关键.14.如图,在平行四边形ABCD中,以点A为圆心,以任意长为半径画圆弧,分别交边AD、AB于点M、N,再分别以点M、N为圆心,以大于MN长为半径画圆弧,两弧交于点P,作射线AP交边CD 于点E,过点E作EF∥BC交AB于点F.求证:四边形ADEF是菱形.【分析】利用基本作法克判定AE平分∠BAD,再根据平行四边形的性质得到AD∥EF,则可判断四边形ADEF是平行四边形,再利用AE平分∠BAD证明∠AED=∠DAE,则AD=AE,然后根据菱形的判定方法可判断四边形ADEF是菱形.【解答】证明:由作法得AE平分∠BAD,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴DE∥AF,∠AED=∠BAE,∵EF∥BC,∴AD∥EF,∴四边形ADEF是平行四边形,∵AE平分∠BAD,∴∠DAE=∠BAE.∴∠AED=∠DAE.∴AD=AE,∴四边形ADEF是菱形.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的性质.15.已知:如图,在△ABC中,∠1=∠2,DE∥AC,求证:△ADE是等腰三角形.【分析】欲证明△ADE是等腰三角形,只要证明∠ADE=∠1即可.【解答】证明:∵DE∥AC,∴∠ADE=∠2,∵∠1=∠2,∴∠ADE=∠1,∴EA=ED,即△ADE是等腰三角形.【点评】本题考查等腰三角形的判定,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.某商场在元旦期间,开展商品促销活动.将某型号的电视机按进价提高35%后,打9折另送50元路费的方式销售,结果每台电视机仍获利208元,问每台电视机的进价是多少元?【分析】若设每台电视机的进价是x元,则进价提高35%后为(1+35%)x,再打九折后为0.9(1+35%)x,再另送50元路费后的售价为0.9(1+35%)x﹣50,然后根据获利208元,即可列出方程.【解答】解:设每台电视机的进价是x元.根据题意得:0.9(1+35%)x﹣50=x+208,解得:x=1200.答:每台电视机的进价是1200元.【点评】注意要正确找到题目中的实际售价.同时注意在利润问题中的公式:售价=利润+进价.17.某校举行手工制作比赛,赛后整理参赛同学的成绩,并制作成图表如下:请根据以上图表提供的信息,解答下列问题:(1)表中m和n所表示的数分别为:m=______,n=______,(2)请在图中,补全频数分布直方图;(3)比赛成绩的中位数落在哪个分数段?(4)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少?【分析】(1)根据统计表中,频数与频率的比值相等,可得关于m、n的关系式;进而计算可得m、n的值;(2)根据(1)的结果,可以补全直方图;(3)根据中位数的定义判断;(4)读图可得比赛成绩80分以上的人数,除以总人数即可得答案.【解答】解:(1)根据统计表中,频数与频率的比值相等,即有==解可得:m=90,n=0.3;(2)图为:;(3)根据中位数的求法,先将数据按从小到大的顺序排列,读图可得:共200人,第100、101名都在70分~80分,故比赛成绩的中位数落在70分~80分;(4)读图可得比赛成绩80分以上的人数为60+20=80,故获奖率为获奖率为: %=40%【点评】本题考查条形统计图、图表等知识.结合生活实际,绘制条形统计图或从统计图中获取有用的信息,是近年中考的热点.只要能认真准确读图,并作简单的计算,一般难度不大.18.某市在地铁施工期间,交管部门在施工路段设立了矩形路况警示牌BCEF(如图所示),已知立杆AB的高度是3米,从侧面D点测到路况警示牌顶端C点和底端B点的仰角分别是60°和45°,求路况警示牌宽BC的值.【分析】在Rt△ABD中,知道了已知角的对边,可用正切函数求出邻边AD的长;同理在Rt△ABC 中,知道了已知角的邻边,用正切值即可求出对边AC的长;进而由BC=AC﹣AB得解.【解答】解:∵在Rt△ADB中,∠BDA=45°,AB=3米,∴DA=3米,在Rt△ADC中,∠CDA=60°,∴tan60°=,∴CA=3.∴BC=CA﹣BA=(3﹣3)米.答:路况显示牌BC是(3﹣3)米.【点评】此题主要考查了解直角三角形的应用,当两个直角三角形有公共边时,先求出这条公共边的长是解答此类题的一般思路.19.如图,△ABC为圆O的内接三角形,BD为⊙O的直径,AB=AC,AD交BC于E,AE=2,ED=4.(1)求证:△ABE∽△ADB,并求AB的长;(2)延长DB到F,使BF=BO,连接FA,那么直线FA与⊙O相切吗?为什么?【分析】(1)易得△ABE与△ADB的三个内角相等,故△ABE∽△ADB,进而可得;代入数据可得答案.(2)连接OA,根据勾股定理可得BF=BO=AB;易得∠OAF=90°,故可得直线FA与⊙O相切.【解答】(1)证明:∵AB=AC,∴∠ABC=∠C.∵∠C=∠D,∴∠ABC=∠D.又∵∠BAE=∠DAB,∴△ABE∽△ADB,∴,∴AB2=AD•AE=(AE+ED)•AE=(2+4)×2=12,∴AB=2.(5分)(2)解:直线FA与⊙O相切.理由如下:连接OA,∵BD为⊙O的直径,∴∠BAD=90°,∴BD=,∴BF=BO=.∵AB=2,∴BF=BO=AB,∴∠OAF=90°.∴直线FA与⊙O相切.(8分)【点评】本题考查常见的几何题型,包括切线的判定及相似三角形证明与性质的运用,要求学生掌握常见的解题方法,并能结合图形选择简单的方法解题.20.我市某西瓜产地组织40辆汽车装运完A,B,C三种西瓜共200吨到外地销售.按计划,40辆汽车都要装运,每辆汽车只能装运同一种西瓜,且必须装满.根据下表提供的信息,解答以下问题:(1)设装运A种西瓜的车辆数为x辆,装运B种西瓜的车辆数为y辆,求y与x的函数关系式;(2)如果装运每种西瓜的车辆数都不少于10辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要是此次销售获利达到预期利润25万元,应采取怎样的车辆安排方案?【分析】(1)关键描述语是:用40辆汽车装运完A,B,C三种西瓜共200吨到外地销售;依据三种车装载的西瓜的总量是200吨,即可求解.(2)关键描述语是:装运每种西瓜的车辆数都不少于10辆;(3)关键描述语是:此次销售获利达到预期利润25万元.【解答】解:(1)根据题意得4x+5y+6(40﹣x﹣y)=200,整理得y=﹣2x+40,则y与x的函数关系式为y=﹣2x+40;(2)设装运A种西瓜的车辆数为x辆,装运B种西瓜的车辆数为y辆,装运C种西瓜的车辆数为z辆,则x+y+z=40,∵,∴z=x,∵x≥10,y≥10,z≥10,∴有以下6种方案:①x=z=10,y=20;装运A种西瓜的车辆数为10辆,装运B种西瓜的车辆数20辆,装运C种西瓜的车辆数为10辆;②x=z=11,y=18;装运A种西瓜的车辆数为11辆,装运B种西瓜的车辆数为18辆,装运C种西瓜的车辆数为11辆;③x=z=12,y=16;装运A种西瓜的车辆数为12辆,装运B种西瓜的车辆数为16辆,装运C种西瓜的车辆数为12辆;④x=z=13,y=14;装运A种西瓜的车辆数为13辆,装运B种西瓜的车辆数为14辆,装运C种西瓜的车辆数为13辆;⑤x=z=14,y=12;装运A种西瓜的车辆数为14辆,装运B种西瓜的车辆数为12辆,装运C种西瓜的车辆数为14辆;⑥x=z=15,y=10;装运A种西瓜的车辆数为15辆,装运B种西瓜的车辆数为10辆,装运C种西瓜的车辆数为15辆;(3)由题意得:1600×4x+1000×5y+1200×6z≥250000,将y=﹣2x+40,z=x,代入得3600x+200000≥250000,解得x≥13,经计算当x=z=14,y=12;获利=250400元;当x=z=15,y=10;获利=254000元;故装运A种西瓜的车辆数为14辆,装运B种西瓜的车辆数为12辆,装运C种西瓜的车辆数为14辆;或装运A种西瓜的车辆数为15辆,装运B种西瓜的车辆数为10辆,装运C种西瓜的车辆数为15辆.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.21.已知矩形PMON的边OM、ON分别在x、y轴上,O为坐标原点,且点P的坐标为(﹣2,3).将矩形PMON沿x轴正方向平移4个单位,得到矩形P1M1O1N1再将矩形P1M1O1N1绕着点O1旋转90°得到矩形P2M2O2N2.在坐标系中画出矩形P2M2O2N2,并求出直线P1P2的解析式.【分析】由点P的坐标为(﹣2,3).将矩形PMON沿x轴正方向平移4个单位,得到矩形P1M1O1N1,得到P1的坐标为(2,3).将矩形P1M1O1N1绕着点O1顺时针旋转90°得到矩形P2M2O2N2,得P2的坐标为(7,2);当将矩形P1M1O1N1绕着点O1逆时针旋转90°得到矩形P2M2O2N2,得P2的坐标为(1,﹣2),然后利用待定系数法分别求出它们的直线解析式.【解答】解:如图:当将矩形P1M1O1N1绕着点O1顺时针旋转90°得到矩形P2M2O2N2.∵点P的坐标为(﹣2,3).将矩形PMON沿x轴正方向平移4个单位,得到矩形P1M1O1N1,∴P1的坐标为(2,3),∵将矩形P1M1O1N1绕着点O1顺时针旋转90°得到矩形P2M2O2N2.∴P2的坐标为(7,2),设P1P2的解析式为:y=kx+b,把P1(2,3),P2(7,2)代入得,2k+b=3①,7k+b=2②,解由①②组成的方程组得,k=﹣,b=.所以直线P1P2的解析式为y=﹣x+;当将矩形P1M1O1N1绕着点O1逆时针旋转90°得到矩形P2M2O2N2.如图,∴P2的坐标为(1,﹣2),设P1P2的解析式为:y=kx+b,把P1(2,3),P2(1,﹣2)代入得,2k+b=3①,k+b=﹣2②,解由①②组成的方程组得,k=5,b=﹣7.所以直线P1P2的解析式为y=5x﹣7;【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了图形的平移和矩形的性质以及用待定系数法求直线解析式.22.如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.(1)求点B的坐标;(2)当∠CPD=∠OAB,且=,求这时点P的坐标.【分析】(1)依题意可得∠BAQ=∠COA,已知AB=4,∠COA度数利用三角函数可求出BQ,AQ,OQ的值.(2)利用相似三角形的判定证明△OCP∽△APD,根据等比性质可求出AP,OP的值.【解答】解:(1)作BQ⊥x轴于Q.∵四边形OABC是等腰梯形,∴∠BAQ=∠COA=60°在Rt△BQA中,BA=4,BQ=AB•sin∠BAO=4×sin60°=(1分)AQ=AB•cos∠BAO=4×cos60°=2,(1分)∴OQ=OA﹣AQ=7﹣2=5点B在第一象限内,∴点B的坐标为(5,)(1分)(2)∵∠CPA=∠OCP+∠COP,即∠CPD+∠DPA=∠COP+∠OCP,而∠CPD=∠OAB=∠COP=60°,∴∠OCP=∠APD.(1分)∵∠COP=∠PAD,(1分)∴△OCP∽△APD.(1分)∴.∴OP•AP=OC•AD.(1分)∵,且AB=4,∴BD=AB=,AD=AB﹣BD=4﹣=.∵AP=OA﹣OP=7﹣OP,∴OP(7﹣OP)=4×,(1分)解得:OP=1或6.∴点P坐标为(1,0)或(6,0).(2分)【点评】本题综合考查了三角函数,相似三角形的判定和性质,等腰梯形性质的运用,难度中上.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
邵樊片九年级月考数学试卷2019. 03
(本试卷满分150分,考试时间120分)
请将本卷所有答案写在答题卡上
..............
一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰
有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡
....上)
...相应位置
1.如果把收入100元记作+100元,那么支出80元记作()
A.﹣80元B.+100元C.+80元D.+20元
2.若分式有意义,则a的取值范围是()
A.a=0B.a=﹣2C.a≠2D.a≠0
3.如图是某几何体的三视图,则这个几何体是()
A.棱B.圆柱C.棱锥D.圆锥
第3题图第7题图第8题图
4.在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说法正确的是()A.中位数是90B.众数是87C.平均数是90D.极差是9
5.下列事件属于必然事件的是()
A.经过有交通信号的路口,遇到红灯B.任意买一张电影票,座位号是双号
C.向空中抛一枚硬币,不向地面掉落D.三角形中,任意两边之和大于第三边
6.已知一次函数y=﹣x+m和y=2x+n的图象都经过A(﹣4,0),且与y轴分别交于B、C两点,则△ABC的面积为()
A.48B.36C.24D.18
7.如图,一大桥有一段抛物线型的拱粱,小王骑自行车从O 匀速沿直线到拱粱一端A ,再匀速通过拱粱部分的桥面AC ,小王从O 到A 用了4秒,当小王骑自行车行驶10秒时和20秒时拱粱的高度相同,则小王骑自行车通过拱粱部分的桥面AC 共需 秒.
A 、 22
B 、 24
C 、 26
D 、28
8.如图,点M (-3,4),点P 从O 点出发,沿射线OM 方向1个单位/秒匀速运动,运动的过
程中以P 为对称中心,O 为一个顶点作正方形OABC ,当正方形面积为128时,点A 坐标( )
A. 365(,)26
B. 856(,)55
C.
D. 二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......
上) 9.PM 2.5是指大气中直径小于或等于0.000 002 5m 的颗粒物,将0.000 002 5用科学记数法表示为 .
10、分解因式:2a 2﹣8ab +8b 2
= . 11、从平行四边形、菱形、正五边形、圆、角中随机抽取一个图形,抽到既是中心对称图形又是轴对称图形的概率是 .
12、一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是 .
13、 关于x 、y 的二元一次方程组
的解满足不等式x ﹣y >4,则m 的取值范围是 .
14.如图,半圆的半径OC =2,线段BC 与CD 是半圆的两条弦,BC =CD ,延长CD 交直径BA 的延长线于点E ,若AE =2,则弦BD 的长为 .
第14题图 第17题图 第18题图
15、已知关于x 的分式方程
﹣2=有一个正数解,则k 的取值范围为 .
=-+与O相交,则b的取值范围16.以坐标原点O为圆心,作半径为3的圆,若直线y x b
是.
17、以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,
(x>0)经过建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y=3
x
点D,则OB•BE的值为.
18、如图,已知AB=6,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD 和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为.
三、解答题(本大题共有10小题,共96分.请在答题卡指定区域
.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤)
19.(本题满分8分)计算或化简:
(1)2﹣1+(2018﹣π)0﹣sin30°
(2)(a+1)2﹣a(a+1)﹣1.
20.(本题满分8分)已知关于x的一元二次方程:x2﹣2x﹣k﹣2=0有两个不相等的实数根.(1)求k的取值范围;
(2)给k取一个负整数值,解这个方程.
21.(本题满分8分) 某校在一次社会实践活动中,组织学生参观了虎园、烈士陵园、博物馆和植物园,为了解本次社会实践活动的效果,学校随机抽取了部分学生,对“最喜欢的景点”进行了问卷调查,并根据统计结果绘制了如下不完整的统计图.其中最喜欢烈士陵园的学生人数与最喜欢博物馆的学生人数之比为2:1,请结合统计图解答下列问题:
(1)本次活动抽查了名学生;
(2)请补全条形统计图;
(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是度;
(4)该校此次参加社会实践活动的学生有720人,请求出最喜欢烈士陵园的人数约有多少人?
22.(本题满分8分)动画片《小猪佩奇》风靡全球,受到孩子们的喜爱,现有4张(小猪佩奇)角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同)姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.(1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为.
(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的方法求出恰好姐姐抽
到A佩奇,弟弟抽到B乔治的概率.
23.(本题满分10分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因
素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.
(1)求该企业从2014年到2016年利润的年平均增长率;
(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?
24.(本题满分10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于
点D、E,过点D作DF⊥AC于点F.
(1)求证:DF是⊙O的切线;
(2)若⊙O的半径为3,∠CDF=15°,求阴影部分的面积.
25、(本题满分10分)如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由△DAM平移得到.若过点E作EH⊥AC,H为垂足.
①求证:△DHK是等腰直角三角形;
②若∠DHC=60°时,求证:DM=2BE.
26.(本题满分10分)
小军经销某品牌食品,他销售的该食品进价为40 元/盒,售价为60 元/盒,每月可卖出300 盒,经市场调研发现,售价在60 元/盒的基础上每涨1 元,每月要少卖10 盒,为获更大利润,现将售价提高x (x>0) 元,设月销售量为y ( y>0) 件.
(1)写出销售量y 与x 的函数关系式,并写出自变量x 的取值范围;
(2)求当售价定为多少元/盒时,才能使月销售利润最大?最大月利润是多少?
(3)为了使月销售利润不少于6090 元,提价后售价a 应在什么范围?(直接写出答案)
27.(本题满分12分)阅读理解:
我们知道,四边形具有不稳定性,容易变形.如图1,一个矩形发生变形后成为一个平行四边形.设这个平行四边形相邻两个内角中较小的一个内角为α,我们把的值叫做这个平行
四边形的变形度.
(1)若矩形发生变形后的平行四边形有一个内角是150°,则这个平行四边形的变形度是;猜想证明:
(2)若矩形的面积为S1,其变形后的平行四边形面积为S2,试猜想S1,S2,之间的数
量关系,并说明理由;
拓展探究:
(3)如图2,在矩形ABCD中,E是AD边上的一点,且AB2=AE•AD,这个矩形发生变形后
为平行四边形A1B1C1D1,E1为E的对应点,连接B1E1,B1D1,若矩形ABCD m
>0),平行四边形A1B1C1D1(m>0),试求∠A1E1B1+∠A1D1B1的度数.
28.(本题满分12分)如图①,二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,
0)两点,与y轴交于点C,在x轴上有一个动点D(m,0),其中0<m<3.
(1)求抛物线的解析式;
(2)过点D作x轴的垂线交直线AC于点E,交抛物线于点F,过点F作FG⊥AC于点G,设△ADE的周长为C1,△EFG的周长为C2,若=,求m的值.
(3)如图②,动点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC 边运动,其中一点到达端点时,另一点也随之停止运动,当P,Q运动到t秒时,△APQ沿PQ所在的直线翻折,点A恰好落在抛物线上H点处,请直接判定此时四边形APHQ的形状,并求出点H坐标.
命题人:昭关中学沙峰
审核人:昭关中学许吕松。