11 12 1材料力学C

合集下载

材料力学公式总结

材料力学公式总结

材料力学公式总结材料力学是研究材料在外力作用下的力学性能和变形规律的学科,它是材料科学的基础和核心。

在材料力学中,有许多重要的公式,它们可以帮助我们理解材料的性能和行为。

本文将对材料力学中的一些重要公式进行总结,希望能对大家的学习和工作有所帮助。

1. 应力和应变的关系公式。

在材料力学中,应力和应变是两个非常重要的概念。

应力是单位面积上的力,通常用σ表示,而应变是材料单位长度的变形量,通常用ε表示。

它们之间的关系可以用胡克定律来描述,即σ = Eε,其中E为杨氏模量,是描述材料抵抗变形能力的一个重要参数。

2. 弹性模量的计算公式。

弹性模量是描述材料在受力后能够恢复原状的能力的一个重要参数。

对于各向同性材料,弹性模量E可以用杨氏模量和泊松比来表示,即E = 2G(1+μ),其中G 为剪切模量,μ为泊松比。

3. 应力-应变曲线的公式。

材料在受力时,应力和应变之间的关系通常通过应力-应变曲线来描述。

对于线弹性材料来说,应力-应变曲线是一条直线,其斜率就是杨氏模量E。

而对于非线性材料来说,应力-应变曲线通常是一条曲线,可以用一些复杂的数学公式来描述。

4. 塑性变形的公式。

当材料受到超过其屈服强度的应力时,就会发生塑性变形。

塑性变形的特点是应力和应变不再呈线性关系,而是出现了一定的变形硬化。

塑性变形的公式通常比较复杂,需要根据具体的材料和加载条件来确定。

5. 断裂力学的公式。

材料在受到过大的应力时会发生断裂,断裂力学是研究材料断裂行为的学科。

在断裂力学中,有许多重要的公式,如格里菲斯断裂准则、弗兰克-雷迪公式等,它们可以帮助我们预测材料的断裂行为。

总结。

材料力学中的公式是我们理解材料性能和行为的重要工具,通过对这些公式的学习和掌握,我们可以更好地应用材料力学知识,解决工程实际问题。

希望本文对大家有所帮助,也希望大家能够深入学习材料力学,为材料科学的发展做出贡献。

同学们自己总结的11材料力学考研重点

同学们自己总结的11材料力学考研重点

同学们自己总结的11材料力学考研重点我总结一下第四版的材料力学的重点,希望对大家能有一个导向的作用,注意这是第四版的,用第五版教材的每章都差不多,也有一定的借鉴价值。

第一章看第一章第三节简称1-3(以后都这样表示,单独列出的数字表示的章节都要看),1-4(即第一章第四节要仔细看),1-5。

第二章看2-1,2-2,例题2-1,2-3,公式的推导过程,就是关于积分的那部分不用看,只记住最后的公式就行了,例题2-2,例题2-3(这个题和专业课笔记上的那个很相似,是应该记住的题型),2-4,例题2-5关于变形的协调关系是重点,2-5,2-6这一节容易出选择,例题2-7,2-7,例题2-8,2-9,2-10.2-8不看。

思考题不做,以后的思考题如果没有特殊情况都不做。

习题2-21和2-22只写步骤,不查表。

其他习题第一遍复习时全做。

第三章看3-1,3-2,3-3例题3-1,3-4介绍的几何方面,物理方面,静力学方面是做材力题的三大步骤,要有这个概念,这一节开始接触应力状态,要看会那个框框上扎个箭头是什么意思,而且自己会画,以后到第七章的时候会大量用到。

看例题3-2,例题3-3不看,例题3-4看。

3-5,例题3-5,例题3-6,3-6,例题3-7记住里面的公式。

3-7记住那个切应力变化的示意图,图3-16,其他不看,例题3-18不做。

3-8不看。

思考题只看3-9,习题3-21到3-26不做。

第四章看4-1,例题4-1,4-2,例题4-2到例题4-9全看,例题4-10不看,例题4-11例题4-12看,4-3,例题4-13是10年真题的基础图形,看,例题4-14这个图形也考过,看,4-4,例题4-15到例题4-19,4-5,记住那四个弯曲最大切应力的公式就好,例题4-20和例题4-21看一下切应力流的变化,这点09真题考过,例题4-22看,4-6。

思考题看4-13,4-14,4-17,4-18。

习题4-4全做,其他那些画图的每题可以自己选择性的删除四分之一左右,只要练会了就行,习题4-9选做,4-10也选做吧,但是这个要记住结果,习题4-16,4-17,4-18,4-20,4-34,4-35,4-43,都不做,其余遇到选择工字钢号码的也不查表,对照答案得到最后数据,不查表,其他全做。

材料力学学习指导与练习

材料力学学习指导与练习

材料力学学习指导与练习第二章2.1预备知识一、基本概念1、 轴向拉伸与压缩承受拉伸或压缩杆件的外力作用线与杆轴线重合,杆件沿杆轴线方向伸长或缩短,这种变形形式称为轴向拉伸或轴向压缩。

2、 轴力和轴力图轴向拉压杆的内力称为轴力,用符号F N 表示。

当F N 的方向与截面外向法线方向一致时,规定为正,反之为负。

求轴力时仍然采用截面法。

求内力时,一般将所求截面的内力假设为正的数值,这一方法称为“设正法”。

如果结果为正,则说明假设正确,是拉力;如是负值,则说明假设错误,是压力。

设正法在以后求其他内力时还要到。

为了形象的表明各截面轴力的变化情况,通常将其绘成“轴力图”。

作法是:以杆的左端为坐标原点,取χ轴为横坐标轴,称为基线,其值代表截面位置,取F N 轴为纵坐标轴,其值代表对应截面的轴力值,正值绘在基线上方,负值绘在基线下方。

3、 横截面上的应力根据圣维南(Saint-Venant)原理,在离杆一定距离之外,横截面上各点的变形是均匀的,各点的应力也是均匀的,并垂直于横截面,即为正应力,设杆的横截面面积为A ,则有AN =σ 正应力的符号规则:拉应力为正,压应力为负。

4、 斜截面上的应力与横截面成α角的任一斜截面上,通常有正应力和切应力存在,它们与横截面正应力σ的关系为:()⎪⎪⎩⎪⎪⎨⎧=+=αστασσαα2sin 22cos 12α角的符号规则:杆轴线x 轴逆时针转到α截面的外法线时,α为正值;反之为负。

切应力的符号规则:截面外法线顺时针转发900后,其方向和切应力相同时,该切应力为正值;反之为负值。

当α=00时,正应力最大,即横截面上的正应力是所有截面上正应力中的最大值。

当α=±450时,切应力达到极值。

5、轴向拉伸与压缩时的变形计算与虎克定律(1) 等直杆受轴向拉力F 作用,杆的原长为l ,面积为A ,变形后杆长由l 变为l +∆l ,则杆的轴向伸长为EAFl l =∆ 用内力表示为EAll N F =∆ 上式为杆件拉伸(压缩)时的虎克定律。

材料力学填空与判断题解

材料力学填空与判断题解

第一章 绪论第1 章 绪论一、是非判断题1-1 材料力学是研究构件承载能力的一门学科。

( √ ) 1-2 材料力学的任务是尽可能使构件安全地工作。

( × ) 1-3 材料力学主要研究弹性范围内的小变形情况。

( √ )1-4 因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。

(×) 1-5 外力就是构件所承受的载荷。

( × )1-6 材料力学研究的内力是构件各部分间的相互作用力。

( × )1-7 用截面法求内力时,可以保留截开后构件的任一部分进行平衡计算。

( √ ) 1-8 压强是构件表面的正应力。

( × ) 1-9 应力是横截面上的平均内力。

( × )1-10 材料力学只研究因构件变形引起的位移。

( √ ) 1-11 线应变是构件中单位长度的变形量。

( × ) 1-12 构件内一点处各方向线应变均相等。

( × )1-13 切应变是变形后构件中任意两根微线段夹角的变化量。

( × ) 1-14 材料力学只限于研究等截面直杆。

( × )1-15 杆件的基本变形只是拉(压)、剪、扭和弯四种。

如果还有另一种变形,必定是这四种变形的某种组合。

( √ )第 2 章 轴向拉伸与压缩 一、是非判断题2-1 使杆件产生轴向拉压变形的外力必须是一对沿杆轴线的集中力。

(×) 2-2 拉杆伸长后,横向会缩短,这是因为杆有横向应力存在。

(×) 2-3 虎克定律适用于弹性变形范围内。

(×) 2-4 材料的延伸率与试件尺寸有关。

(√)2-5 只有超静定结构才可能有装配应力和温度应力。

(√) 二、填空题2-6 承受轴向拉压的杆件,只有在(加力端一定距离外)长度范围内变形才是均匀的。

2-7 根据强度条件][σσ≤可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。

2-8 低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。

材料力学 第11章 组合变形习题集

材料力学 第11章  组合变形习题集

横截面m-m上任一点C(y,z)处由 弯矩Mz和My引起的正应力分别为
M z y M cos y M y z M sin z
Iz
Iz
Iy
Iy
38
C点的正应力
' ''
M
cos
Iz
y
sin
Iy
z
悬臂梁固定端截面A的弯矩Mz和My 均达到最大值,故该截
面是危险截面。设yo、zo为中性轴上任一点的坐标,并令σ
算 圆轴表面上与轴线成30°方位上的正应变。
32
解: (1)由内力图知,所有截面均为危险截面,危险点为靠近
轴表面的各点,应力状态如图。计算危险点的主应力。轴力
引起的正应力
FN 4F
A πd 2
扭矩引起的切应力
T M 8F
Wp Wp 5πd 2
危险点处的主应力为
1
2
(
)2
( )2
它在y、z两轴上的截距分别为
y* z* h / 2
该截面惯性半径的平方为
iy2
Iy A
h2 12
iz2
Iz A
b2 12
28
中性轴①对应的核心边界上点1的坐标为
ey1
iz2 y*
0
ez1
iy2 z*
h 6
按上述方法可求得与它们对应的截面核
心边界上的点2、3、4,其坐标依次为:
ey2
b 6
ez2 0
车臂的直径d。
18
解:两个缆车臂各承担缆车重量的一半,如 图。则缆车臂竖直段轴力为FN=W/2=3kN 弯矩为M=Wb/2=540N·m 危险截面发生在缆车臂竖直段左侧,由强度条件

材料力学基础

材料力学基础

材料力学基础材料力学是研究材料在外力作用下的变形、破坏和性能的一门学科。

它是材料科学的重要组成部分,对于材料的设计、制备和应用具有重要的指导意义。

本文将介绍材料力学的基础知识,包括应力、应变、弹性模量、屈服强度等内容。

首先,我们来介绍应力和应变的概念。

应力是单位面积上的力,通常用σ表示,其计算公式为F/A,其中F为受力,A为受力面积。

应变是物体长度相对于初始长度的变化量,通常用ε表示,其计算公式为ΔL/L,其中ΔL为长度变化量,L为初始长度。

应力和应变是描述材料在外力作用下的变形情况的重要物理量。

接下来,我们将介绍材料的弹性模量。

弹性模量是描述材料抵抗变形的能力的物理量,通常用E表示。

对于线弹性材料,弹性模量可以通过应力-应变关系来计算,即E=σ/ε。

弹性模量是衡量材料刚度和变形能力的重要参数,不同材料的弹性模量具有很大差异,对于材料的选择和设计具有重要意义。

除了弹性模量,材料的屈服强度也是一个重要的力学性能参数。

屈服强度是材料在受力过程中开始发生塑性变形的应力值,通常用σy表示。

当材料受到的应力超过屈服强度时,材料会发生塑性变形,这对于材料的加工和使用具有重要的影响。

屈服强度是衡量材料抗拉伸能力的重要指标,对于材料的工程应用具有重要意义。

此外,材料的断裂行为也是材料力学研究的重要内容。

材料的断裂行为通常可以通过拉伸试验来研究,通过拉伸试验可以得到材料的断裂应力和断裂应变。

断裂应力和断裂应变是描述材料断裂性能的重要参数,对于材料的设计和评价具有重要意义。

综上所述,材料力学是研究材料在外力作用下的变形、破坏和性能的重要学科,其基础知识包括应力、应变、弹性模量、屈服强度等内容。

这些基础知识对于材料的设计、制备和应用具有重要的指导意义,是材料科学不可或缺的重要组成部分。

希望本文的介绍能够对读者对材料力学有所了解,并对材料科学的学习和研究有所帮助。

第11、12章 材料力学的基本概念和杆件拉压

第11、12章 材料力学的基本概念和杆件拉压
18 §9-2
目录
A
1 B
1 F2
2 C
2
3 D
例题
F1
F1 F1
F3 3
FN2
F4
FN1 F2
10

已知F1=10kN;F2=20kN; F3=35kN;F4=25kN;试画 出图示杆件的轴力图。 解:1、计算各段的轴力。
AB段
0 FN1 F1 10kN
x x
F
FN3

FN kN
25
F4
BC段
x
F
0 FN 2 F2 F1

FN 2 F1 F2
10
CD段
10 20 10kN Fx 0
FN 3 F4 25kN
2、绘制轴力图。
19
练习 一等直杆及受力情况如图(a)所示,试作杆的轴 力图。如何调整外力,使杆上轴力分布得比较合理。
F
F
F
F
F
F
拉杆
压杆
16
二、拉压杆的轴力及轴力图
1、轴力:横截面上的内力
m F m F FN FN F
F
2、截面法求轴力 截: 假想沿m-m横截面将杆切开
取: 留下左半段或右半段
代: 将抛掉部分对留下部分的作 用用内力代替 平: 对留下部分写平衡方程求出 内力即轴力的值
F
x
0 FN F 0 FN F
F m F FN
F
4)平——对保留段列平衡方程 ,即可求得相应的内力。
F
x
0
FN F 0
FN F
11
§11、12-2 轴向拉伸与压缩内力计算
§9-1

(完整版)材料力学选择题答案

(完整版)材料力学选择题答案

《材料力学》选择题1.在美国“9.11”事件中,恐怖分子的飞机撞击国贸大厦后,该大厦起火燃烧,然后坍塌。

该大厦的破坏属于( A )A .强度坏;B .刚度坏;C .稳定性破坏;D .化学破坏。

2.细长柱子的破坏一般是( C )A .强度坏;B .刚度坏;C .稳定性破坏;D .物理破坏。

3.不会引起静定结构产生内力的因素是( D ) A .集中力;B .集中力偶;C .分布力;D .温度变化。

4.轴心拉/压杆横截面上的内力是( C ) A .M ;B .s F ;C .N F ;D .T 。

5.扭转实心圆轴横截面上的内力是( D ) A .M ;B .s F ;C .N F ;D .T 。

6.平面弯曲梁横截面上的内力是( A ) A .M 和s F ;B .s F ;C .N F ;D .T 。

7.纯弯曲梁横截面上的应力是( A ) A .σ;B .τ;C .σ和τ;D .0 。

8.横力弯曲梁横截面上的应力是( C ) A .σ;B .τ;C .σ和τ;D .0 。

9.中性轴上的切应力( A )A .最大;B .最小;C .为零;D .不确定 。

10.平面弯曲梁的横截面上,最大正应力出现在( D ) A .中性轴;B .左边缘;C .右边缘;D .离中性轴最远处 。

11.第一强度理论适用于( A )A .脆性材料;B .塑性材料;C .变形固体;D .刚体。

12.第三强度理论适用于( B )MPa3σA .脆性材料;B .塑性材料;C .变形固体;D .刚体。

13.“顺正逆负”的正负规定适用于( A )。

A .剪力;B .弯矩;C .轴力;D .扭矩。

14.多余约束出现在( B )中。

A .静定结构;B .超静定结构;C .框架结构;D .桁架。

15.在剪力为零处,弯矩为( A )。

A .最大值;B .最小值;C .零;D .不能确定。

16.如图所示的单元体,X 面的应力是( A ) A .X(3,2);B .X(3,-2);C .X(-1,-2);D .X(-1,0)。

复合材料力学答案

复合材料力学答案

复合材料力学答案【篇一:材料力学】教程第二版 pdf格式下载单辉祖主编本书是单辉祖主编《材料力学教程》的第2版。

是根据高等工业院校《材料力学教学基本要求》修订而成。

可作为一般高等工业院校中、少学时类材料力学课程的教材,也可作为多学时类材料力学课程基本部分的教材,还可供有关工程技术人员参考。

内容简介回到顶部↑本教村是普通高等教育“十五”国家级规划教材。

. 本教材仍保持第一版模块式的特点,由《材料力学(Ⅰ)》与《材料力学(Ⅱ)》两部分组成。

《材料力学(Ⅰ)》包括材料力学的基本部分,涉及杆件变形的基本形式与组合形式,涵盖强度、刚度与稳定性问题。

《材料力学(Ⅱ)》包括材料力学的加深与扩展部分。

本书为《材料力学(Ⅱ)》,包括非对称弯曲与特殊梁能量法(二)、能量法(二)、静不定问题分析、杆与杆系分析的计算机方法、应力分析的实验方法、疲劳与断裂以及考虑材料塑性的强度计算等八章。

各章均附有复匀题与习题,个别章还安排了利用计算机解题的作业。

..与第一版相同,本教材具有论述严谨、文字精炼、重视基础与应用、重视学生能力培养、专业面宽与教学适用性强等特点,而且,在选材与论述上,特别注意与近代力学的发展相适应。

本教材可作为高等学校工科本科多学时类材料力学课程教材,也可供高职高专、成人高校师生以及工程技术人员参考。

以本教材为主教材的相关教学资源,尚有《材料力学课堂教学多媒体课件与教学参考》、《材料力学学习指导书》、《材料力学网上作业与查询系统》与《材料力学网络课程》等。

...作译者回到顶部↑本书提供作译者介绍单辉祖,北京航空航天大学教。

1953年毕业于华东航空学院飞机结构专业,1954年在北京航空学院飞机结构专业研究生班学习。

1992—1993年,在美国特拉华大学复合材料中心.从事合作研究。

.历任教育部工科力学教材编审委员、国家教委工科力学课程指导委员会委员、中国力学学会教育工作委员会副主任委员、北京航空航天大学校务委员会委员、校学科评审组成员与校教学指导委员会委员等。

材料力学 第11章 超静定结构

材料力学 第11章 超静定结构

心有所信,方能行远。
本课件部分图片来源网络,仅供教学使用
材料力学
11.3 对称及对称性质的应用
一、对称结构的对称变形与反对称变形 结构几何尺寸、形状,构件材料及约束条件均对称于某一
轴,则称此结构为对称结构。 若外力对称于结构对称轴, 结构将产生对称变形。 若外力反对称于结构对称轴,结构将产生反对称变形。
X
2
8EI
0
⑥求其它支反力
由平衡方程得其它支反力, 全部表示于图中。
X
1
1 qa() 28
X
2
3 7
qa()
A
q B
冯康 (1920-1993)
【人物介绍】
冯康,浙江绍兴人 ,出生于 江苏省南京市,数学家、中国有限 元法创始人、计算数学研究的奠基 人和开拓者。
1965年发表名为《基于变分 原理的差分格式》的论文,这篇论 文被国际学术界视为中国独立发展 “有限元法”的重要里程碑 。
3. 在结构外部和内部均存在多余约束,即支反力和内 力都是超静定的。
四. 超静定结构的分析方法 1.力法:以未知力为基本未知量的求解方法。
2.位移法:以未知位移为基本未知量的求解方法。
材料力学
外力超静定
内力超静定 外力和内力超静定
材料力学
11.2 用力法解超静定结构
一、力法的基本思路(举例说明)
a A
a
②选取并去除多余约束,代以多 q 余约束反力。
③建立力法正则方程
B q
A X1 X2
④计算系数dij和自由项DiP
B
用莫尔定理求得
材料力学
A x1 q
x2
B
A
x2
x1 1

材料力学:第11章:组合变形

材料力学:第11章:组合变形

2
≤[σ]
2
M + 0.75T W
3
≤[σ]
πd
32
例:图示悬臂梁的横截面为等边三角形, 图示悬臂梁的横截面为等边三角形, C为形心,梁上作用有均布载荷q,其作用方 为形心,梁上作用有均布载荷q,其作用方 为形心 q, 向及位置如图所示,该梁变形有四种答案: 向及位置如图所示,该梁变形有四种答案: A)平面弯曲; (√ )平面弯曲; (C)纯弯曲; )纯弯曲; (B)斜弯曲; )斜弯曲; (D)弯扭结合。 )弯扭结合。
Mz y My σ′=− =− sin ϕ Iz Iz
σ ′′ = −
ቤተ መጻሕፍቲ ባይዱ
My z Iy
Mz =− cos ϕ Iy
Py
Mz
Pz
My
y z σ = σ ′ + σ ′′ = − M sin ϕ + cos ϕ I Iy z
下面确定中性轴的位置: 下面确定中性轴的位置: 设中性轴上某一点的坐标为 y0 、 z0,则
α
ϕ
中性轴
ϕ
中性轴
二、位移计算 斜弯曲概念 为了计算梁在斜弯曲时的挠度, 为了计算梁在斜弯曲时的挠度,仍应用叠加法
fy = Py l
3
3EI Z
Pl3 = sin ϕ 3EI Z
Pl3 Pz l 3 fz = = cosϕ 3EI y 3EI y
ϕ
f =
2 fy
+f
2 z
tg β =
fy fz
=
Iy Iz
tg ϕ
tg β = tgα
α
β =α
ϕ
中性轴 总挠度f与中 总挠度 与中 性轴垂直

材料力学公式完全版

材料力学公式完全版

材料力学公式完全版材料力学是研究材料内部力学性能的一门学科。

它是工程学中的一个重要分支,广泛应用于机械、土木、航空航天等领域。

在材料力学中,有一些重要的公式和方程式,下面是材料力学公式的完全版,共包含了应力、应变、变形、强度和刚度等方面的内容。

1.应力方面应力(σ):表示单位面积上的内力。

常用的单位是Pa(帕斯卡)。

σ=F/A其中,F为受力,A为受力面积。

2.应变方面线性弹性应变(ε):表示材料由于受力而发生的形变。

ε=ΔL/L其中,ΔL为长度变化,L为初始长度。

3.变形方面胀缩变形(ΔL):表示材料由于受热导致的体积变化。

ΔL=α×L×ΔT其中,α为热膨胀系数,ΔT为温度变化。

4.应力-应变关系钢材的Hooke定律:描述材料的线性弹性行为。

σ=E×ε其中,E为弹性模量。

5.弯曲方面梁的弯曲应变(ε):表示材料在弯曲时发生的形变。

ε=M/(E×I)其中,M为弯矩,E为弹性模量,I为截面转动惯量。

6.胀缩方面热膨胀(ΔL):表示材料在受热时的线膨胀。

ΔL=α×L×ΔT其中,α为热膨胀系数,L为初始长度,ΔT为温度变化。

7.强度方面拉伸强度(σt):表示材料在拉伸过程中能承受的最大应力。

σt=F/A其中,F为拉伸力,A为受力面积。

8.刚度方面弹性模量(E):表示材料在受力后发生弹性变形的能力。

E=σ/ε其中,σ为应力,ε为应变。

9.复合材料方面拉伸强度(σt):表示复合材料在拉伸过程中能承受的最大应力。

σt=F/A其中,F为拉伸力,A为受力面积。

10.断裂方面断裂强度(σf):表示材料在断裂前能承受的最大应力。

σf=F/A其中,F为断裂力,A为受力面积。

11.龙骨方面龙骨截面面积(A):表示材料的截面面积。

A=b×h其中,b为龙骨宽度,h为龙骨高度。

12.塑性方面屈服强度(σy):表示材料开始产生塑性变形的最大应力。

σy=F/A其中,F为受力,A为受力面积。

《材料力学》11-1能量法

《材料力学》11-1能量法

F1 dF
0
与外力功
W
1 0
Fd之和等于矩形面积
F1 1
线弹性范围内外力功等
F
F
于余功,能等于余能。
F1
F1
o
1
o
1
例题
试计算图示结构在荷载 F1 作用下的余能,结构中两杆的 长度均为 l,横截面面积均为A材料在单轴拉伸时的应力
—应变曲线如图所示。
B
D
K1nn1 1
C
F1
解:由结点C的平衡方程,可得两杆的轴力为
例题
xy平面内,由k根杆组成的杆系,在结点A处用铰链结 在一起,受到水平荷载和铅垂荷载作用,截面分别 为 A1,A2,Ai,Ak ,试用卡氏第一定理求各杆的轴力。
1
2
i
k
F1 A
F2
这种以位移为基本未知量,把它的求解当作关键性问题的方法称为位移法
本章作业
(II)3-2,
(II)3-4,
(II)3-10,
例题
图示在线弹性范围内工作的一端固定、另一端自由的圆轴,在自由端截面
上承受扭转力偶矩M1。材料的切变模量G和轴的长度 l 以及直径 d 均已知。 试计算轴两端的相对扭转角。
M1
d
A
B
l
四 余功、余能及卡氏第二定理
Wc
F1 dF
0
与余功相应的能称为余能
Vc V vcdV
vc
1 d
0
Vc
Wc
V cvc2Al2A nK lnn1 cF 1 o sn1
卡氏第二定理
F1
F2
F3
Fn
A
B
1
2
3
n

材料力学-第十一章交变应力

材料力学-第十一章交变应力

在一定的循环特征 r 下:
max , N ; max , N
疲劳极限或有限寿命持久极限:
材料在规定的应力循环次数N下,不发生疲劳破环的最
大应力值,记作

N r
(
N r
)

无限寿命疲劳极限或持久极限 r :


m
a
不超过某一极限值,材料可以经受“无数次”应力
x
循环而不发生破坏,此极限值称为无限寿命疲劳极限或持久极限。
r 1
(2)脉动循环:如齿轮
max 2 m 2 a min 0
r 0

max
a
m in
t
max m
a t
材料力学 2019/10/30
8
(3)静应力:如拉压杆
max min m
a 0
r 1
(4)非对称循环:
max min 0
甚至小于屈服极限 s 。
2、破坏时,不论是脆性材料和塑性材料,均无明显的塑性变形, 且为突然断裂,通常称疲劳破坏。
3、疲劳破坏的断口,可分为光滑区及晶粒粗糙区。在光滑区可 见到微裂纹的起始点(疲劳源),周围为中心逐渐向四周扩 展的弧形线。
材料力学 2019/10/30
3
材料力学 2019/10/30
劳极限),疲劳曲线不出现水平渐近线。
步骤:
max

min

M W

Pa/ 2
1 d 3

16Pa
d 3
32
材料力学 2019/10/30
11
材料力学 2019/10/30
12
步骤:

材料力学填空与判断题解

材料力学填空与判断题解

第一章 绪论第1 章 绪论一、是非判断题1-1 材料力学是研究构件承载能力的一门学科。

( √ ) 1-2 材料力学的任务是尽可能使构件安全地工作。

( × ) 1-3 材料力学主要研究弹性范围内的小变形情况。

( √ )1-4 因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。

(×) 1-5 外力就是构件所承受的载荷。

( × )1-6 材料力学研究的内力是构件各部分间的相互作用力。

( × )1-7 用截面法求内力时,可以保留截开后构件的任一部分进行平衡计算。

( √ ) 1-8 压强是构件表面的正应力。

( × ) 1-9 应力是横截面上的平均内力。

( × )1-10 材料力学只研究因构件变形引起的位移。

( √ ) 1-11 线应变是构件中单位长度的变形量。

( × ) 1-12 构件内一点处各方向线应变均相等。

( × )1-13 切应变是变形后构件中任意两根微线段夹角的变化量。

( × ) 1-14 材料力学只限于研究等截面直杆.( × )1-15 杆件的基本变形只是拉(压)、剪、扭和弯四种。

如果还有另一种变形,必定是这四种变形的某种组合。

( √ )第 2 章 轴向拉伸与压缩 一、是非判断题2—1 使杆件产生轴向拉压变形的外力必须是一对沿杆轴线的集中力.(×) 2—2 拉杆伸长后,横向会缩短,这是因为杆有横向应力存在.(×) 2-3 虎克定律适用于弹性变形范围内。

(×) 2-4 材料的延伸率与试件尺寸有关。

(√)2-5 只有超静定结构才可能有装配应力和温度应力。

(√) 二、填空题2—6 承受轴向拉压的杆件,只有在(加力端一定距离外)长度范围内变形才是均匀的。

2—7 根据强度条件][σσ≤可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。

2-8 低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。

材料力学-学习指导及习题答案

材料力学-学习指导及习题答案

材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。

试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。

解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。

1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力ζ与切应力η。

解:应力p与斜截面m-m的法线的夹角α=10°,故ζ=p cosα=120×cos10°=118.2MPaη=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为ζmax=100 MPa,底边各点处的正应力均为零。

试问杆件横截面上存在何种内力分量,并确定其大小。

图中之C点为截面形心。

解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×0.04×0.1/2=200×103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示。

试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。

解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。

解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。

材料力学题库及答案

材料力学题库及答案

《材料力学》试题库及答案一、判断题(共266小题)材料力学主要研究杆件受力后变形与破坏的规律。

( A )2、内力只能是力。

( B )3、若物体各点均无位移,则该物体必定无变形。

( A )4、截面法是分析应力的基本方法。

( B )5、构件抵抗破坏的能力,称为刚度。

( B )6、构件抵抗变形的能力,称为强度。

( B )7、构件在原有几何形状下保持平衡的能力,称为构件的稳定性。

( A )8、连续性假设,是对变形固体所作的基本假设之一。

( A )9、材料沿不同方向呈现不同的力学性能,这一性质称为各向同性。

( B )10、材料力学只研究处于完全弹性变形的构件。

( A )11、长度远大于横向尺寸的构件,称为杆件。

( A )12、研究构件的内力,通常采用实验法。

( B )13、求内力的方法,可以归纳为“截-取-代-平”四个字。

( A )14、1MPa=109Pa=1KN/mm2。

( B )15、轴向拉压时 45º斜截面上切应力为最大,其值为横截面上正应力的一半( A )16、杆件在拉伸时,纵向缩短,ε<0。

( B )17、杆件在压缩时,纵向缩短,ε<0;横向增大,ε'>0。

( A )18、σb是衡量材料强度的重要指标。

( A)19、δ=7%的材料是塑性材料。

( A )20、塑性材料的极限应力为其屈服点应力。

( A )21、“许用应力”为允许达到的最大工作应力。

( A )22、“静不定系统”中一定存在“多余约束力”。

( A )23、用脆性材料制成的杆件,应考虑“应力集中”的影响。

( A )24、进行挤压计算时,圆柱面挤压面面积取为实际接触面的正投影面面积。

( A )25、冲床冲剪工件,属于利用“剪切破坏”问题。

( A )26、同一件上有两个剪切面的剪切称为单剪切。

( B )27、等直圆轴扭转时,横截面上只存在切应力。

( A )28、圆轴扭转时,最大切应力发生在截面中心处。

( B )29、在截面面积相等的条件下,空心圆轴的抗扭能力比实心圆轴大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

━ ━ ━ ━ ━ ━ ━ ━ ━ 装 ━ ━ ━ ━ ━ ━ ━ 订 ━ ━ ━ ━ ━ ━ ━ 线 ━ ━ ━ ━ ━ ━ ━ ━ ━
防灾科技学院
2011 ~ 2012 学年 第一学期期末考试
材料力学试卷 (C) 使用班级1050211/1050212/1050213/1050221/1050222/1050223 答题时间120分钟
一、
填空题(本大题共7小题,每空2 分,共20分。


1、在材料力学中分析杆件内力的基本方法是__________,步骤是_____________________。

2、铸铁试件的压缩破坏和_____应力有关。

3、若将受扭实心圆轴的直径增加一倍,则其刚度是原来的_____倍。

4、阶梯形实心圆轴承受扭转变形,固定端处切应力为τ=__________。

5、下面所示的梁跨中截面上A 、B 两点的应力σA=________;τB =_________。

6、矩形截面梁在横力弯曲下,梁的上下边缘各点处于 向应力状态。

7、(勘查技术与工程专业学生作答)用积分法求图示梁的挠曲线时,确定积分常数使用的边界条件是________________;使用的连续条件是___________________。

7、(土木工程专业学生作答)按临界应力总图,1λλ≥的压杆称为 ;
2λλ≤的压杆称为 。

二、
选择题(本大题共10小题,每题2分,共20分。


1、单位长度扭转角ϕ'
与( )无关。

(A )杆的长度; (B )扭矩; (C )材料性质; (D )截面几何性质。

l
A C
━━━━━━━━━装━━━━━━━订━━━━━━━线━━━━━━━━━
2、图示拉杆的外表面上有一斜线,当拉杆变形时,斜线将()。

(A)平动;(B)转动;(C)不动;(D)平动加转动。

3
)。

(A)增大杆3的横截面积;(B)减小杆3的横截面积;
(C)减小杆1的横截面积;(D)减小杆2的横截面积。

4、阶梯圆轴的最大切应力发生在()。

(A)扭矩最大的截面;(B)直径最小的截面;
(C)单位长度扭转角最大的截面;(D)不能确定。

5、静矩的量纲是()。

(A)ML2T-2;(B)L;(C)L2;
(D)L3.
6、如图示悬臂梁上作用集中力F和集中力偶M,若将M在梁上移动时,将()。

(A)对剪力图大小、形状均无影响;
(B)对弯曲图形状无影响,只大小有影响;
(C)对剪力图、弯矩图的形状及大小均有影响;
(D)对剪力图、弯矩图的形状及大小均无影响。

7、直梁横截面面积一定,试问图所示四种截面形状中,那一种抗弯能力最强。

A 矩形
B 工字形
C 圆形
D 正方形
8、跨度和荷载相同的两根简支梁,其截面形状不同,但抗弯刚度EI相同,则两梁的()。

(A)内力不同,挠度相同;(B)内力不同,挠度不同;
(C)内力相同,挠度不同;(D)内力相同,挠度相同。

9、在单元体的主平面上()。

(A)正应力一定最大;(B)正应力一定为零;
(C)剪应力一定最大;(D)剪应力一定为零。

10、(勘查技术与工程专业学生作答)图示空间折杆BC段是变形。

(A)拉弯;(B)弯扭;
(C)压弯;(D)拉扭。

━━━━━━━━━装━━━━━━━订━━━━━━━线━━━━━━━━━
F
10、
a
CD 为细长杆,结构承载能力将 。

B
P (b)
(A )提高; (B )降低; (C )不变。

三、 计算题(本题10分)
托架AC 为圆钢杆,直径为d ,许用应力[σ]钢=160MPa ;BC 为方木,边长为b ,许用应力[σ]木=4 MPa ,F =60KN ,试求d 和b 。

四、
计算题(本题10分)
作出图示梁的剪力图和弯矩图,并指出剪力和弯矩绝对值的最大值。

━ ━ ━ ━ ━ ━ ━ ━ ━ 装 ━ ━ ━ ━ ━ ━ ━ 订 ━ ━ ━ ━ ━ ━ ━ 线 ━ ━ ━ ━ ━ ━ ━ ━ ━
五、
计算题(本题10分)
试用叠加法求图示各梁A 截面的挠度和转角。

抗弯刚度EIz 均为常量。

六、
计算题(本题10分)
图示槽形截面悬臂梁,已知惯性矩IZ=1.02×108mm4,yc=96.4mm 。

P=10KN ,m=70KN·m 。

试求梁的最大拉应力(σt )max 和最大压应力(σc )max (C为形心)。

单位:mm
━ ━ ━ ━ ━ ━ ━ ━
━ 装 ━ ━ ━ ━ ━ ━ ━ 订 ━ ━ ━ ━ ━ ━ ━ 线 ━ ━ ━ ━ ━ ━ ━ ━ ━

计算题(本题10分)
用解析法求图示单元体上ab 面上的应力(
30=α),并求最大切应力及主应力。

八、
计算题(本题10分)
铁道路标信号板,装在外径D=60mm 的空心圆柱AB 上,空心圆柱AB 的壁厚t=3mm ,信号板所受最大风载p=2KN/m2,[σ]=60MPa ,试按第三强度理论校核空心圆柱的强度。

相关文档
最新文档