通用版中考数学二轮复习专题10等腰三角形探究同步测试

合集下载

中考数学复习《等腰三角形》专项测试卷(带答案)

中考数学复习《等腰三角形》专项测试卷(带答案)

中考数学复习《等腰三角形》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题1. 如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32(B )33(C )34(D )362. 如图,⊿ABC 和⊿CDE 均为等腰直角三角形,点B,C,D 在一条直线上,点M 是AE 的中点,下列结论:①tan ∠AEC=CDBC;②S ⊿ABC +S ⊿CDE ≧S ⊿ACE ;③BM ⊥DM;④BM=DM.正确结论的个数是( )(A )1个 (B )2个 (C )3个(D )4个MECA3. 如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°, 四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交CE 于点G ,连结BE . 下列结论中:① CE =BD ; ② △ADC 是等腰直角三角形; ③ ∠ADB =∠AEB ; ④ CD ·AE =EF ·CG ; 一定正确的结论有(第1题)A BCD EA.1个 B.2个 C.3个 D.4个4. 如图,ΔABC中,以B 为圆心,BC长为半径画弧,分别交AC和AB于D、E两点,并连接BD、DE若∠A=30∘,AB=AC,则∠BDE的度数为何?A. 45 B. 52.5 C. 67.5 D. 755. 如图(1),有两全等的正三角形ABC、DEF,且D、A分别为△ABC、△DEF的重心.固定D点,将△DEF逆时针旋转,使得A落在DE上,如图(2)所示.求图(1)与图(2)中,两个三角形重迭区域的面积比为何?图1 图2A.2:1 B. 3:2 C. 4:3 D. 5:46. 如果一个等腰三角形的两边长分别是5cm和6cm,那么此三角形的周长是A.15cm B.16cmC.17cm D.16cm或17cm7. 如图,在ABC△中13AB AC==,10BC=点D为BC的中点DE DE AB⊥垂足为点E,则DE等于()A.1013B.1513C.6013D.7513 ABCDE FG8.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为 A .16 B .18 C .20 D .16或209.等腰三角形的顶角为80°,则它的底角是( ) A . 20° B . 50° C . 60° D . 80°10.把等腰△ABC 沿底边BC 翻折,得到△DBC ,那么四边形ABDC ( )11.如图,△ABC 是等边三角形,P 是∠ABC 的平分线BD 上一点,PE ⊥AB 于点E ,线段BP 的垂直平分线交BC 于点F ,垂足为点Q .若BF =2,则PE 的长为( )A . 2B .23C .3D .312.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N ,若BM+CN=9,则线段MN 的长为( )A .6B .7C .8D .9第11题图AD E F PQC13.已知实数x ,y 满足,则以x ,y 的值为两边长的等腰三角形的周长是( )A . 20或16B . 20C . 16D .以上答案均不对14.如图,在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC 交AC 于点D ,若AC =2,则AD 的长是( )A .512- B .512+ C .51- D .51+15.如图,△ABC 为等边三角形,点E 在BA 的延长线上,点D 在BC 边上,且ED=EC .若△ABC 的边长为4,AE=2,则BD 的长为( )A . 2B . 3C .D . +116.如图,在菱形ABCD 中,∠A =60°,E ,F 分别是AB ,AD 的中点,DE ,BF 相交于点G ,连接BD ,CG ,有下列结论:①∠BGD =120° ;②BG +DG =CG ;③△BDF ≌△CGB ;④234ABD S AB =△.其中正确的结论有( )A .1个B .2个C .3个D .4个 二.填空题1. 边长为6cm 的等边三角形中,其一边上高的长度为________.2. 等腰三角形的周长为14,其一边长为4,那么,它的底边为 .3. 在等腰Rt △ABC 中,∠C =90°,AC =1,过点C 作直线l ∥AB ,F 是l 上的一点,且AB =AF ,则点F 到直线BC 的距离为 .4. 已知等边△ABC 中,点D,E 分别在边AB,BC 上,把△BDE 沿直线DE 翻折,使点B 落在点B ˊ处,DB ˊEB ˊ分别交边AC 于点F ,G ,若∠ADF=80º ,则∠EGC 的度数为5. 如图,在△ABC 中,AB =AC ,︒=∠40A 则△ABC 的外角∠BCD = °.6. 如图(四)所示,在△ABC 中,AB=AC ,∠B=50°,则∠A=_______。

备考2024年中考数学二轮复习-图形的性质_三角形_等腰三角形的判定与性质-综合题专训及答案

备考2024年中考数学二轮复习-图形的性质_三角形_等腰三角形的判定与性质-综合题专训及答案

备考2024年中考数学二轮复习-图形的性质_三角形_等腰三角形的判定与性质-综合题专训及答案等腰三角形的判定与性质综合题专训1、(2019通辽.中考真卷) 如图,内接于⊙,是⊙的直径,,连接交于点,延长至点,使,连接.(1)判断直线与⊙的位置关系,并说明理由.(2)若,,求的长.2、(2018大连.中考真卷) 阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,∠ACB=90°,点D在AB上,且∠BAC=2∠DCB,求证:AC=AD.小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:方法1:如图2,作AE平分∠CAB,与CD相交于点E.方法2:如图3,作∠DCF=∠DCB,与AB相交于点F.(1)根据阅读材料,任选一种方法,证明AC=AD.用学过的知识或参考小明的方法,解决下面的问题:(2)如图4,△ABC中,点D在AB上,点E在BC上,且∠BDE=2∠ABC,点F在BD上,且∠AFE=∠BAC,延长DC、FE,相交于点G,且∠DGF=∠BDE.①在图中找出与∠DEF相等的角,并加以证明;②若AB=kDF,猜想线段DE与DB的数量关系,并证明你的猜想.3、(2017满洲里.中考模拟) 如图(1),抛物线 y=﹣ x2平移后过点A(8,0)和原点,顶点为B,对称轴与x轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式及点D的坐标;(2)直接写出阴影部分的面积 S阴影;(3)如图(2),直线AB与y轴相交于点P,点M为线段OA上一动点(点M不与点A,O重合),∠PMN为直角,MN与AP相交于点N,设OM=t,试探究:t为何值时,△MAN为等腰三角形?4、(2017吉林.中考模拟) 如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),直接写出线段AD与NE的数量关系为.(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),判断△ACN是什么特殊三角形并说明理由.(3)将图1中△BCE绕点B旋转到图3位置,此时A,B,M三点在同一直线上.若AC=3 ,AD=1,则四边形ACEN的面积为.5、(2017哈尔滨.中考模拟) 图1、图2是两张形状大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,线段AB、EF的端点均在小正方形的顶点上.(1)如图1,作出以AB为对角线的正方形并直接写出正方形的周长;(2)如图2,以线段EF为一边作出等腰△EFG(点G在小正方形顶点处)且顶角为钝角,并使其面积等于4.6、(2017苏州.中考模拟) 如图,在Rt△ABC中,∠C=90°,AC=9,BC=12,在Rt△DEF中,∠DFE=90°,EF=6,DF=8,E、F两点在BC边上,DE、DF两边分别与AB边交于点G、H.固定△ABC不动,△DEF从点F与点B重合的位置出发,沿BC边以每秒1个单位的速度向点C运动;同时点P从点F出发,在折线FD﹣DE上以每秒2个单位的速度向点E运动.当点E到达点C时,△DEF和点P同时停止运动.设运动时间为t(秒).(1)当t=2时,PH=cm,DG=cm;(2)当t为何值时,△PDG为等腰三角形?请说明理由;(3)当t为何值时,点P与点G重合?写出计算过程.7、(2018安徽.中考真卷) 如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.8、(2018青岛.中考模拟) 在▱ABCD中,E是AD上一点,AE=AB,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.(1)如图1,当EF与AB相交时,若∠EAB=60°,求证:EG=AG+BG;(2)如图2,当EF与AB相交时,若∠EAB=α(0°<α<90°),请你直接写出线段EG、AG、BG之间的数量关系(用含α的式子表示);(3)如图3,当EF与CD相交时,且∠EAB=90°,请你写出线段EG、AG、BG之间的数量关系,并证明你的结论.9、(2018崇阳.中考模拟) 如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.10、(2016株洲.中考真卷) 已知AB是半径为1的圆O直径,C是圆上一点,D是BC延长线上一点,过点D的直线交AC于E点,且△AEF 为等边三角形(1)求证:△DFB是等腰三角形;(2)若DA= AF,求证:CF⊥AB.11、(2019潮南.中考模拟) 如图①,在矩形ABCD中,AB=,BC=3,在BC边上取两点E、F(点E在点F的左边),以EF为边所作等边△PEF,顶点P恰好在AD上,直线PE、PF分别交直线AC于点G、H.(1)求△PEF的边长;(2)若△PEF的边EF在线段CB上移动,试猜想:PH与BE有何数量关系?并证明你猜想的结论;(3)若△PEF的边EF在射线CB上移动(分别如图②和图③所示,CF>1,P不与A重合),(2)中的结论还成立吗?若不成立,直接写出你发现的新结论.12、(2012河池.中考真卷) 如图,已知AB是⊙O的直径,⊙O过BC的中点D,且DE⊥AC于点E.(1)试判断DE与⊙O的位置关系,并证明你的结论;(2)若∠C=30°,CE=6,求⊙O的半径.13、(2020曲靖.中考模拟) 如图,在△ABC中,以BC为直径的⊙O交AC于点E,过点E作AB的垂线交AB于点F,交CB的延长线于点G,且∠ABG=2∠C.(1)求证:EG是⊙O的切线;(2)若tanC= ,AC=8,求⊙O的半径.14、(2020洪洞.中考模拟) 如图,在平面直角坐标系中,二次函数交轴于A、B两点,(点A在点B的左侧)与y轴交于点C,连接AC.(1)求点A、点B和点C的坐标;(2)若点D为第四象限内抛物线上一动点,点D的横坐标为m,△BCD的面积为S.求S关于m的函数关系式,并求出S的最大值;(3)抛物线的对称轴上是否存在点P,使△BCP为等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.15、如图,一次函数y=-x+1的图象与两坐标轴分别交于A,B两点,与反比例函数的图象交于点.(1)求反比例函数的解析式;(2)若点P在y轴正半轴上,且与点B,C构成以为腰的等腰三角形,请求出所有符合条件的P点坐标.等腰三角形的判定与性质综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。

等腰三角形的性质与判定综合练习

等腰三角形的性质与判定综合练习

数学问题中的应用
等腰三角形在几何证明中 的应用
等腰三角形在三角函数中 的应用
等腰三角形在代数方程中 的应用
等腰三角形在实际问题中 的应用
解题技巧
利用等腰三角形的性质,将问题转化为已知问题求解。 结合等腰三角形的判定定理,确定等腰三角形的边和角。 利用等腰三角形的性质和判定定理,证明三角形中的等腰关系。 结合实际应用,利用等腰三角形的性质解决实际问题。
综合判定
定义:等腰三角形是两边长度 相等的三角形
判定方法:通过角度、边长、 高线等条件判定
判定定理:等腰三角形的两底 角相等,且顶角平分底角
判定辅助线:作等腰三角形的 高线,证明高线与底边垂直
03
等腰三角形的应用
实际问题中的应用
建筑学应用:等腰三角形在建筑设计中的稳定性 物理学应用:等腰三角形在力学中的平衡原理 计算机图形学应用:等腰三角形在图像处理中的对称性 日常生活应用:等腰三角形在生活用品设计中的应用,如衣架、椅子等
等腰三角形的底 边上的中点到顶 点的距离相等, 等于等腰三角形 的高。
面积计算
等腰三角形面积公式:面积 = (底 × 高) ÷ 2 面积与边长的关系:等腰三角形的底边长相等,高相等,因此面积相等 面积与角度的关系:等腰三角形的两个底角相等,因此面积与角度无关 面积与轴对称性的关系:等腰三角形是轴对称图形,因此面积可以通过轴对称性质计算
角相等
等腰三角形的 两个底角相等
底角相等是等 腰三角形的基
本性质之一
两个底角相等 是等腰三角形 的一个重要特

等腰三角形的 底角相等,这 是等腰三角形 的一个重要性

轴对称
等腰三角形是轴 对称图形,其对 称轴为底边的垂 直平分线。

初中数学专题复习等腰三角形的性质与判定精讲精练(含答案)

初中数学专题复习等腰三角形的性质与判定精讲精练(含答案)

等腰三角形的性质与判定一、重点和难点都是等腰三角形的性质和判定1.尺规作图尺规作图与通常的画图题不同,它规定只准用直尺和圆规为工具,而且每一步都必须有根有据不能随便画。

对于较复杂的作图题,要经过严格的分析,才能找到作图的根据和方法,这对推理能力的要求比较高。

2.等腰三角形的性质与判定(1)性质性质定理:等腰三角形的两个底角相等。

定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

判定定义:有两边相等的三角形是等腰三角形。

判定定理:有两个角相等的三角形是等腰三角形。

推论1 三个角都相等的三角形是等边三角形。

推论2 有一个角等于60°的等腰三角形是等边三角形。

推论3 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

3.等腰三角形性质与判定的应用(1)计算角的度数利用等腰三角形的性质,结合三角形内角和定理及推论计算角的度数,是等腰三角形性质的重要应用。

①已知角的度数,求其它角的度数;②已知条件中有较多的等腰三角形(此时往往设法用未知数表示图中的角,从中得到含这些未知数的方程或方程组);(2)证明线段或角相等;(3)有等腰三角形条件时的常用辅助线。

如图:若AB=AC①作AD ⊥BC 于D ,必有结论:∠1=∠2,BD=DC ②若BD=DC ,连结AD ,必有结论:∠1=∠2,AD ⊥BC ③作AD 平分∠BAC 必有结论:AD ⊥BC ,BD=DC 作辅助线时,一定要作满足其中一个性质的辅助线,然后证出其它两个性质,不能这样作:作AD ⊥BC ,使∠1=∠2. 二、例题分析例1 已知一腰和底边上的高,求作等腰三角形。

分析:我们首先在草稿上画好一个示意图,然后对照此图写出已知和求作并构思整个作图过程……已知:线段a 、h求作:△ABC ,使AB=AC=a ,高AD=h 作法:1、作PQ ⊥MN ,垂足为D ;2、在DM 上截取DA=h ;3、以点A 为圆心,以a 为半径作弧,交PQ 于点B 、C ;4、连结AB 、AC ; 则△ABC 为所求的三角形。

中考数学真题《等腰三角形与直角三角形》专项测试卷(附答案)

中考数学真题《等腰三角形与直角三角形》专项测试卷(附答案)

中考数学真题《等腰三角形与直角三角形》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(共26道)一 、单选题1.(2023·江苏徐州·统考中考真题)如图,在ABC 中 90,30,2,B A BC D ︒︒∠=∠==为AB 的中点.若点E 在边AC 上 且AD DEAB BC=,则AE 的长为( )A .1B .2C .13D .1或22.(2023·甘肃兰州·统考中考真题)如图,在矩形ABCD 中 点E 为BA 延长线上一点 F 为CE 的中点 以B 为圆心 BF 长为半径的圆弧过AD 与CE 的交点G 连接BG .若4AB = 10CE =,则AG =( )A .2B .2.5C .3D .3.53.(2023·北京·统考中考真题)如图,点A B C 在同一条线上 点B 在点A C 之间 点D E 在直线AC 同侧 AB BC < 90A C ∠=∠=︒ EAB BCD ≌△△ 连接DE 设AB a BC b = DE c = 给出下面三个结论:①a b c +< ①22a b a b ++ )2a b c +>上述结论中 所有正确结论的序号是( ) A .①①B .①①C .①①D .①①①4.(2023·江苏无锡·统考中考真题)如图ABC 中 90,4,,ACB AB AC x BAC α︒∠===∠= O 为AB 中点 若点D 为直线BC 下方一点 且BCD △与ABC 相似,则下列结论:①若45α=︒ BC 与OD 相交于E ,则点E 不一定是ABD △的重心 ①若60α=︒,则AD 的最大值为7 ①若60,ABC CBD α=︒∽,则OD 的长为3 ①若ABC BCD △∽△,则当2x =时 AC CD +取得最大值.其中正确的为( )A .①①B .①①C .①①①D .①①①5.(2023·浙江·统考中考真题)如图,在四边形ABCD 中 ,45AD BC C ∠=︒∥ 以AB 为腰作等腰直角三角形BAE 顶点E 恰好落在CD 边上 若1AD =,则CE 的长是( )A 2B .22C .2D .16.(2023·四川眉山·统考中考真题)如图,在正方形ABCD 中 点E 是CD 上一点 延长CB 至点F 使BF DE = 连结,,AE AF EF EF 交AB 于点K 过点A 作AG EF ⊥ 垂足为点H 交CF 于点G 连结HD HC ,.下列四个结论:①AH HC = ①HD CD = ①FAB DHE ∠=∠ ①22AK HD HE ⋅=.其中正确结论的个数为( )A .1个B .2个C .3个D .4个二 填空题7.(2023·湖南·统考中考真题)七巧板是我国民间广为流传的一种益智玩具 某同学用边长为4dm 的正方形纸板制作了一副七巧板(如图) 由5个等腰直角三角形 1个正方形和1个平行四边形组成.则图中阴影部分的面积为__________3dm .8.(2023·天津·统考中考真题)如图,在边长为3的正方形ABCD 的外侧 作等腰三角形ADE 52EA ED ==.(1)ADE 的面积为________(2)若F 为BE 的中点 连接AF 并延长 与CD 相交于点G ,则AG 的长为________.9.(2023·河南·统考中考真题)矩形ABCD 中 M 为对角线BD 的中点 点N 在边AD 上 且1AN AB ==.当以点D M N 为顶点的三角形是直角三角形时 AD 的长为______.10.(2023·湖北·统考中考真题)如图,,BAC DEB △△和AEF △都是等腰直角三角形90BAC DEB AEF ∠=∠=∠=︒ 点E 在ABC 内 BE AE > 连接DF 交AE 于点,G DE 交AB 于点H 连接CF .给出下面四个结论:①DBA EBC ∠=∠ ①BHE EGF ∠∠= ①AB DF = ①AD CF =.其中所有正确结论的序号是_________.11.(2023·山东·统考中考真题)如图,ABC 是边长为6的等边三角形 点D E ,在边BC 上 若30DAE ∠=︒1tan 3EAC ∠=,则BD =_________.12.(2023·山东日照·统考中考真题)如图,矩形ABCD 中 68AB AD ==, 点P 在对角线BD 上 过点P 作MN BD ⊥ 交边AD BC ,于点M N 过点M 作ME AD ⊥交BD 于点E 连接EN BM DN ,,.下列结论:①EM EN = ①四边形MBND 的面积不变 ①当:1:2AM MD =时 9625MPE S =△ ①BM MN ND ++的最小值是20.其中所有正确结论的序号是__________.13.(2023·四川遂宁·统考中考真题)如图,以ABC 的边AB AC 为腰分别向外作等腰直角ABE ACD 连结ED BD EC 过点A 的直线l 分别交线段DF BC 于点M N 以下说法:①当AB AC BC ==时30AED ∠=︒ ①EC BD = ①若3AB = 4AC = 6BC =,则23DE = ①当直线l BC ⊥时 点M 为线段DE 的中点.正确的有_________.(填序号)14.(2023·四川眉山·统考中考真题)如图,在平面直角坐标系xOy 中 点B 的坐标为()86-,过点B 分别作x 轴 y 轴的垂线 垂足分别为点C 点A 直线26y x =--与AB 交于点D .与y 轴交于点E .动点M 在线段BC 上 动点N 在直线26y x =--上 若AMN 是以点N 为直角顶点的等腰直角三角形,则点M 的坐标为________15.(2023·江苏苏州·统考中考真题)如图,90,32BAC AB AC ∠=︒==过点C 作CD BC ⊥ 延长CB 到E 使13BE CD = 连接,AE ED .若2ED AE =,则BE =________________.(结果保留根号)16.(2023·山西·统考中考真题)如图,在四边形ABCD 中 90BCD ∠=︒ 对角线,AC BD 相交于点O .若5,6,2AB AC BC ADB CBD ===∠=∠,则AD 的长为__________.17.(2023·湖北十堰·统考中考真题)在某次数学探究活动中 小明将一张斜边为4的等腰直角三角形()90ABC A ∠=︒硬纸片剪切成如图所示的四块(其中D E F 分别为AB AC BC 的中点 G H 分别为DE BF 的中点) 小明将这四块纸片重新组合拼成四边形(相互不重叠 不留空隙),则所能拼成的四边形中周长的最小值为____________ 最大值为___________________.三 解答题18.(2023·北京·统考中考真题)在ABC 中 ()045B C αα∠=∠=︒<<︒ AM BC ⊥于点M D 是线段MC 上的动点(不与点M C 重合) 将线段DM 绕点D 顺时针旋转2α得到线段DE .(1)如图1 当点E 在线段AC 上时 求证:D 是MC 的中点(2)如图2 若在线段BM 上存在点F (不与点B M 重合)满足DF DC = 连接AE EF 直接写出AEF ∠的大小 并证明.19.(2023·黑龙江·统考中考真题)如图① ABC 和ADE 是等边三角形 连接DC 点F G H 分别是,DE DC 和BC 的中点 连接,FG FH .易证:3FH FG =.若ABC 和ADE 都是等腰直角三角形 且90BAC DAE ∠=∠=︒ 如图①:若ABC 和ADE 都是等腰三角形 且120BAC DAE ∠=∠=︒ 如图①:其他条件不变 判断FH 和FG 之间的数量关系 写出你的猜想 并利用图①或图①进行证明.20.(2023·黑龙江齐齐哈尔·统考中考真题)综合与实践数学模型可以用来解决一类问题 是数学应用的基本途径.通过探究图形的变化规律 再结合其他数学知识的内在联系 最终可以获得宝贵的数学经验 并将其运用到更广阔的数学天地.(1)发现问题:如图1 在ABC 和AEF △中 AB AC = AE AF = 30BAC EAF ∠=∠=︒ 连接BE CF 延长BE 交CF 于点D .则BE 与CF 的数量关系:______ BDC ∠=______︒(2)类比探究:如图2 在ABC 和AEF △中 AB AC = AE AF = 120BAC EAF ∠=∠=︒ 连接BE CF 延长BE FC 交于点D .请猜想BE 与CF 的数量关系及BDC ∠的度数 并说明理由(3)拓展延伸:如图3 ABC 和AEF △均为等腰直角三角形 90BAC EAF ∠=∠=︒ 连接BE CF 且点B E F 在一条直线上 过点A 作AM BF ⊥ 垂足为点M .则BF CF AM 之间的数量关系:______(4)实践应用:正方形ABCD 中 2AB = 若平面内存在点P 满足90BPD ∠=︒ 1PD =,则ABP S =△______.21.(2023·四川成都·统考中考真题)探究式学习是新课程倡导的重要学习方式 某兴趣小组拟做以下探究. 在Rt ABC △中 90,C AC BC ∠=︒= D 是AB 边上一点 且1AD BD n=(n 为正整数) E 是AC 边上的动点 过点D 作DE 的垂线交直线BC 于点F .【初步感知】(1)如图1 当1n =时 兴趣小组探究得出结论:2AE BF AB += 请写出证明过程. 【深入探究】(2)①如图2 当2n = 且点F 在线段BC 上时 试探究线段AE BF AB ,,之间的数量关系 请写出结论并证明①请通过类比 归纳 猜想 探究出线段AE BF AB ,,之间数量关系的一般结论(直接写出结论 不必证明) 【拓展运用】(3)如图3 连接EF 设EF 的中点为M .若22AB = 求点E 从点A 运动到点C 的过程中 点M 运动的路径长(用含n 的代数式表示).22.(2023·吉林长春·统考中考真题)如图①.在矩形ABCD .35AB AD ==, 点E 在边BC 上 且2BE =.动点P 从点E 出发 沿折线EB BA AD --以每秒1个单位长度的速度运动 作90PEQ ∠=︒ EQ 交边AD 或边DC 于点Q 连续PQ .当点Q 与点C 重合时 点P 停止运动.设点P 的运动时间为t 秒.(0t >)(1)当点P 和点B 重合时 线段PQ 的长为__________ (2)当点Q 和点D 重合时 求tan PQE ∠(3)当点P 在边AD 上运动时 PQE 的形状始终是等腰直角三角形.如图①.请说明理由(4)作点E 关于直线PQ 的对称点F 连接PF QF 当四边形EPFQ 和矩形ABCD 重叠部分图形为轴对称四边形时 直接写出t 的取值范围.23.(2023·甘肃武威·统考中考真题)【模型建立】(1)如图1 ABC 和BDE 都是等边三角形 点C 关于AD 的对称点F 在BD 边上. ①求证:AE CD =①用等式写出线段AD BD DF 的数量关系 并说明理由. 【模型应用】(2)如图2 ABC 是直角三角形 AB AC = CD BD ⊥ 垂足为D 点C 关于AD 的对称点F 在BD 边上.用等式写出线段AD BD DF 的数量关系 并说明理由. 【模型迁移】(3)在(2)的条件下 若42AD = 3BD CD = 求cos AFB ∠的值.24.(2023·重庆·统考中考真题)如图,在等边ABC 中 AD BC ⊥于点D E 为线段AD 上一动点(不与AD 重合) 连接BE CE 将CE 绕点C 顺时针旋转60︒得到线段CF 连接AF .(1)如图1 求证:CBE CAF ∠=∠(2)如图2 连接BF 交AC 于点G 连接DG EF EF 与DG 所在直线交于点H 求证:EH FH = (3)如图3 连接BF 交AC 于点G 连接DG EG 将AEG 沿AG 所在直线翻折至ABC 所在平面内 得到APG 将DEG 沿DG 所在直线翻折至ABC 所在平面内 得到DQG 连接PQ QF .若4AB = 直接写出PQ QF +的最小值.25.(2023·湖南岳阳·统考中考真题)如图1 在ABC 中 AB AC = 点,M N 分别为边,AB BC 的中点 连接MN .初步尝试:(1)MN 与AC 的数量关系是_________ MN 与AC 的位置关系是_________.特例研讨:(2)如图2 若90,42BAC BC ∠=︒= 先将BMN 绕点B 顺时针旋转α(α为锐角) 得到BEF △ 当点,,A E F 在同一直线上时 AE 与BC 相交于点D 连接CF .(1)求BCF ∠的度数(2)求CD 的长.深入探究:(3)若90BAC ∠<︒ 将BMN 绕点B 顺时针旋转α 得到BEF △ 连接AE CF .当旋转角α满足0360α︒<<︒ 点,,C E F 在同一直线上时 利用所提供的备用图探究BAE ∠与ABF ∠的数量关系 并说明理由.参考答案一 单选题1.(2023·江苏徐州·统考中考真题)如图,在ABC 中 90,30,2,B A BC D ︒︒∠=∠==为AB 的中点.若点E 在边AC 上 且AD DE AB BC=,则AE 的长为( )A .1B .2C .13D .1或2【答案】D【分析】根据题意易得3,4==AB AC 然后根据题意可进行求解.【详解】解:①90,30,2B A BC ∠︒∠︒=== ①323,24AB BC AC BC ====①点D 为AB 的中点 ①132AD AB =①AD DE AB BC= ①1DE =①当点E 为AC 的中点时 如图,①122AE AC == ①当点E 为AC 的四等分点时 如图所示:①1AE =综上所述:1AE =或2故选D .【点睛】本题主要考查含30度直角三角形的性质及三角形中位线 熟练掌握含30度直角三角形的性质及三角形中位线是解题的关键.2.(2023·甘肃兰州·统考中考真题)如图,在矩形ABCD 中 点E 为BA 延长线上一点 F 为CE 的中点 以B 为圆心 BF 长为半径的圆弧过AD 与CE 的交点G 连接BG .若4AB = 10CE =,则AG =( )A .2B .2.5C .3D .3.5【答案】C 【分析】利用直角三角形斜边中线的性质求得5BG BF == 在Rt ABG △中 利用勾股定理即可求解.【详解】解:①矩形ABCD 中①90ABC BAC ∠=∠=︒①F 为CE 的中点 10CE = ①152BG BF CE === 在Rt ABG △中 2222543AG BG AB =--故选:C.【点睛】本题考查了矩形的性质 直角三角形斜边中线的性质 勾股定理 掌握“直角三角形斜边中线的长等于斜边的一半”是解题的关键.3.(2023·北京·统考中考真题)如图,点A B C 在同一条线上 点B 在点A C 之间 点D E 在直线AC 同侧 AB BC < 90A C ∠=∠=︒ EAB BCD ≌△△ 连接DE 设AB a BC b = DE c = 给出下面三个结论:①a b c +< ①22a b a b ++ )2a b c +>上述结论中 所有正确结论的序号是( )A .①①B .①①C .①①D .①①① 【答案】D【分析】如图,过D 作DF AE ⊥于F ,则四边形ACDF 是矩形,则DF AC a b ==+ 由DF DE < 可得a b c +< 进而可判断①的正误 由EAB BCD ≌△△ 可得BE BD = CD AB a == AE BC b ==ABE CDB ∠=∠,则90EBD ∠=︒ BDE △是等腰直角三角形 由勾股定理得 2222BE AB AE a b ++ 由AB AE BE +> 可得22a b a b +>+ 进而可判断①的正误 由勾股定理得222DE BD BE =+ 即()2222c a b =+,则)2222c a b a b =++ 进而可判断①的正误.【详解】解:如图,过D 作DF AE ⊥于F ,则四边形ACDF 是矩形①DF AC a b ==+①DF DE <①a b c +< ①正确 故符合要求①EAB BCD ≌△△①BE BD = CD AB a == AE BC b == ABE CDB ∠=∠①90CBD CDB ∠+∠=︒①90∠+∠=︒CBD ABE 90EBD ∠=︒①BDE △是等腰直角三角形由勾股定理得 2222BE AB AE a b ++①AB AE BE +> ①22a b a b ++ ①正确 故符合要求由勾股定理得222DE BD BE =+ 即()2222c a b =+ ①)2222c a b a b ++ ①正确 故符合要求故选:D .【点睛】本题考查了矩形的判定与性质 全等三角形的性质 勾股定理 等腰三角形的判定 不等式的性质 三角形的三边关系等知识.解题的关键在于对知识的熟练掌握与灵活运用.4.(2023·江苏无锡·统考中考真题)如图ABC 中 90,4,,ACB AB AC x BAC α︒∠===∠= O 为AB 中点 若点D 为直线BC 下方一点 且BCD △与ABC 相似,则下列结论:①若45α=︒ BC 与OD 相交于E ,则点E 不一定是ABD △的重心 ①若60α=︒,则AD 的最大值为7 ①若60,ABC CBD α=︒∽,则OD 的长为3 ①若ABC BCD △∽△,则当2x =时 AC CD +取得最大值.其中正确的为( )A .①①B .①①C .①①①D .①①①【答案】A 【分析】①有3种情况 分别画出图形 得出ABD △的重心 即可求解 当60α=︒ BD BC ⊥时 AD 取得最大值 进而根据已知数据 结合勾股定理 求得AD 的长 即可求解 ①如图5 若60α=︒ C ABC BD ∽△△ 根据相似三角形的性质求得3CD = 3GE DF == 32CF = 进而求得OD 即可求解 ①如图6 根据相似三角形的性质得出214CD BC =在Rt ABC △中 2216BC x =- 根据二次函数的性质 即可求AC CD +取得最大值时 2x =. 【详解】①有3种情况 如图1 BC 和OD 都是中线 点E 是重心如图2 四边形ABDC 是平行四边形 F 是AD 中点 点E 是重心如图3 点F 不是AD 中点 所以点E 不是重心①正确①当60α=︒ 如图4时AD 最大 4AB =∴2AC BE == 23BC AE == 36BD BC ==∴8DE = ∴1927AD =≠∴①错误①如图5 若60α=︒ C ABC BD ∽△△①60BCD ∠=︒ 90CDB ∠=︒ 4AB = 2AC = 3BC = 3OE = 1CE = ①3CD = 3GE DF ==32CF = ①52EF DG == 3OG ①723OD =≠①①错误①如图6 ABC BCD ∽△△ ①CD BC BC AB= 即214CD BC =在Rt ABC △中 2216BC x =- ①()221116444CD x x =-=-+ ①22114(2)544AC CD x x x +=-+=--+ 当2x =时 AC CD +最大为5①①正确.故选:C .【点睛】本题考查了三角形重心的定义 勾股定理 相似三角形的性质 二次函数的性质 分类讨论 画出图形是解题的关键.5.(2023·浙江·统考中考真题)如图,在四边形ABCD 中 ,45AD BC C ∠=︒∥ 以AB 为腰作等腰直角三角形BAE 顶点E 恰好落在CD 边上 若1AD =,则CE 的长是( )A 2B 2C .2D .1【答案】A 【分析】先根据等腰三角形的性质可得2BE = 45ABE AEB ∠=∠=︒ 90BAE ∠=︒ 再判断出点,,,A B E D 四点共圆 在以BE 为直径的圆上 连接BD 根据圆周角定理可得90BDE ∠=︒45ADB AEB ∠=∠=︒ 然后根据相似三角形的判定可得ABD EBC 根据相似三角形的性质即可得.【详解】解:BAE 是以AB 为腰的等腰直角三角形 2BE AB ∴ 45ABE AEB ∠=∠=︒ 90BAE ∠=︒,45AD BC C ∠=︒∥180135ADE C ∴∠=︒-∠=︒180ADE ABE ∴∠+∠=︒∴点,,,A B E D 四点共圆 在以BE 为直径的圆上如图,连接BD由圆周角定理得:90BDE ∠=︒ 45ADB AEB ∠=∠=︒45ADB C CBD ∴∠=∠=∠=︒45ABD DBE EBC DBE ∴∠+∠=︒=∠+∠ABD EBC ∠=∠∴在ABD △和EBC 中 ADB C ABD EBC ∠=∠⎧⎨∠=∠⎩ABD EBC ∴2CE EB AD AB∴== 2212CE AD ∴==故选:A .【点睛】本题考查了圆内接四边形 圆周角定理 相似三角形的判定与性质 等腰三角形的性质等知识点 正确判断出点,,,A B E D 四点共圆 在以BE 为直径的圆上是解题关键.6.(2023·四川眉山·统考中考真题)如图,在正方形ABCD 中 点E 是CD 上一点 延长CB 至点F 使BF DE = 连结,,AE AF EF EF 交AB 于点K 过点A 作AG EF ⊥ 垂足为点H 交CF 于点G 连结HD HC ,.下列四个结论:①AH HC = ①HD CD = ①FAB DHE ∠=∠ ①22AK HD HE ⋅=.其中正确结论的个数为( )A .1个B .2个C .3个D .4个【答案】C 【分析】根据正方形ABCD 的性质可由SAS 定理证ABF ADE △≌△ 即可判定AEF △是等腰直角三角形 进而可得12HE HF AH EF === 由直角三角形斜边中线等于斜边一半可得12HC EF = 由此即可判断①正确 再根据ADH EAD DHE AEH ∠+∠=∠+∠ 可判断①正确 进而证明AFK HDE 可得AF AK HD HE = 结合22AF HE == 即可得出结论①正确 由AED ∠随着DE 长度变化而变化 不固定 可 判断①HD CD =不一定成立.【详解】解:①正方形ABCD①AB AD = 90ADC ABC BAD BCD ∠=∠=∠=∠=︒①90ABF ADC ∠=∠=︒①BF DE =①ABF ADE △≌△SAS ()①BAF DAE ∠=∠ AF AE =①90FAE BAF BAE DAE BAE BAD ∠∠∠∠∠∠=+=+==︒①AEF △是等腰直角三角形 45AEF AFE ∠=∠=︒①AH EF ⊥ ①12HE HF AH EF ===①90DCB ∠=︒ ①12CH HE EF == ①CH AH = 故①正确又①AD CD =,HD HD =,①(SSS)AHD CHD ≅, ①1452ADH CDH ADC ∠=∠=∠=︒ ①ADH EAD DHE AEH ∠+∠=∠+∠ 即:4545EAD DHE ︒+∠=∠+︒①EAD DHE ∠=∠①FAB DHE EAD ∠=∠=∠ 故①正确又①45AFE ADH ∠=∠=︒①AFK HDE ①AF AK HD HE= 又①22AF AH HE = ①22AK HD HE ⋅= 故①正确①若HD CD =,则1804567.52DHC DCH ︒-︒∠=∠==︒ 又①CH HE =①67.5HCE HEC ∠=∠=︒而点E 是CD 上一动点 AED ∠随着DE 长度变化而变化 不固定而18045135HEC AED AED ∠=︒-∠-︒=︒-∠则故67.5HEC ∠=︒不一定成立 故①错误综上 正确的有①①①共3个故选:C .【点睛】本题考查三角形综合 涉及了正方形的性质 全等三角形 相似三角形的判定与性质 等腰三角形"三线合一"的性质 直角三角形的性质 熟练掌握正方形的性质 全等三角形的判定与性质 相似三角形的判定和性质 直角三角形斜边中线等于斜边的一半的性质是解题的关键.二 填空题7.(2023·湖南·统考中考真题)七巧板是我国民间广为流传的一种益智玩具 某同学用边长为4dm 的正方形纸板制作了一副七巧板(如图) 由5个等腰直角三角形 1个正方形和1个平行四边形组成.则图中阴影部分的面积为__________3dm .【答案】2【分析】根据正方形的性质 以及七巧板的特点 求得OE 的长 即可求解.【详解】解:如图所示依题意 222OD AD == 122OE OD ==①图中阴影部分的面积为2222OE ==故答案为:2. 【点睛】本题考查了正方形的性质 勾股定理 七巧板 熟练掌握以上知识是解题的关键.8.(2023·天津·统考中考真题)如图,在边长为3的正方形ABCD 的外侧 作等腰三角形ADE 52EA ED ==.(1)ADE 的面积为________(2)若F 为BE 的中点 连接AF 并延长 与CD 相交于点G ,则AG 的长为________.【答案】 3 13【分析】(1)过点E 作EH AD ⊥ 根据正方形和等腰三角形的性质 得到AH 的长 再利用勾股定理 求出EH 的长 即可得到ADE 的面积(2)延长EH 交AG 于点K 利用正方形和平行线的性质 证明()ASA ABF KEF ≌ 得到EK 的长 进而得到KH 的长 再证明AHK ADG △∽△ 得到KH AH GD AD= 进而求出GD 的长 最后利用勾股定理 即可求出AG 的长.【详解】解:(1)过点E 作EH AD ⊥正方形ABCD 的边长为33AD ∴= ADE 是等腰三角形 52EA ED ==EH AD ⊥ 1322AH DH AD ∴=== 在Rt AHE 中 222253222EH AE AH ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭1132322ADE S AD EH ∴=⋅=⨯⨯=, 故答案为:3(2)延长EH 交AG 于点K正方形ABCD 的边长为390BAD ADC ∴∠=∠=︒ 3AB =AB AD ∴⊥ CD AD ⊥EK AD ⊥AB EK CD ∴∥∥ABF KEF ∴∠=∠F 为BE 的中点BF EF ∴=在ABF △和KEF 中ABF KEF BF EFAFB KFE ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA ABF KEF ∴≌3EK AB ∴==由(1)可知 12AH AD =2EH = 1KH ∴=KH CD ∥ AHK ADG ∴△∽△KH AH GD AD∴= 2GD在Rt ADG 中 22223213AG AD GD =++ 13【点睛】本题考查了正方形的性质 等腰三角形的性质 全等三角形的判定和性质 相似三角形的判定和性质 勾股定理等知识 作辅助线构造全等三角形和相似三角形是解题关键.9.(2023·河南·统考中考真题)矩形ABCD 中 M 为对角线BD 的中点 点N 在边AD 上 且1AN AB ==.当以点D M N 为顶点的三角形是直角三角形时 AD 的长为______.【答案】221【分析】分两种情况:当90MND ∠=︒时和当90NMD ∠=︒时 分别进行讨论求解即可.【详解】解:当90MND ∠=︒时①四边形ABCD 矩形①90A ∠=︒,则∥MN AB 由平行线分线段成比例可得:ANBMND MD =又①M 为对角线BD 的中点①BM MD = ①1ANBMND MD ==即:1ND AN ==①2AD AN ND =+=当90NMD ∠=︒时①M 为对角线BD 的中点 90NMD ∠=︒①MN 为BD 的垂直平分线①BN ND =①四边形ABCD 矩形 1AN AB ==①90A ∠=︒,则222BN AB AN =+= ①2BN ND ==①21AD AN ND =+综上 AD 的长为221故答案为:221.【点睛】本题考查矩形的性质 平行线分线段成比例 垂直平分线的判定及性质等 画出草图进行分类讨论是解决问题的关键.10.(2023·湖北·统考中考真题)如图,,BAC DEB △△和AEF △都是等腰直角三角形90BAC DEB AEF ∠=∠=∠=︒ 点E 在ABC 内 BE AE > 连接DF 交AE 于点,G DE 交AB 于点H 连接CF .给出下面四个结论:①DBA EBC ∠=∠ ①BHE EGF ∠∠= ①AB DF = ①AD CF =.其中所有正确结论的序号是_________.【答案】①①①【分析】由题意易得,45AB AC ABC DBE =∠=︒=∠ AE EF = DE BE = 90DEB AEF BAC ∠=∠=∠=︒,则可证()SAS AEB FED ≌ 然后根据全等三角形的性质及平行四边形的性质与判定可进行求解.【详解】解:①,BAC DEB △△和AEF △都是等腰直角三角形①,45AB AC ABC DBE =∠=︒=∠ AE EF = DE BE = 90DEB AEF BAC ∠=∠=∠=︒①,DBA DBE ABE EBC ABC ABE ∠=∠-∠∠=∠-∠ ,AEB AED DEB FED AEF AED ∠=∠+∠∠=∠+∠ ①,DBA EBC AEB FED ∠=∠∠=∠ 故①正确①()SAS AEB FED ≌①,AB DF AC ABE FDE ==∠=∠ BAE DFE ∠=∠ 故①正确①90,90ABE BHE EFD EGF ∠+∠=︒∠+∠=︒ 90BAE EAC ∠+∠=︒ BE AE >①BHE EGF ∠≠∠ EGF EAC ∠=∠ 故①错误①DF AC ∥①DF AC =①四边形ADFC 是平行四边形①AD CF = 故①正确故答案为①①①.【点睛】本题主要考查全等三角形的性质与判定 等腰直角三角形的性质及平行四边形的性质与判定 熟练掌握全等三角形的性质与判定 等腰直角三角形的性质及平行四边形的性质与判定是解题的关键. 11.(2023·山东·统考中考真题)如图,ABC 是边长为6的等边三角形 点D E ,在边BC 上 若30DAE ∠=︒1tan 3EAC ∠=,则BD =_________.【答案】33【分析】过点A 作AH BC ⊥于H 根据等边三角形的性质可得60BAC ∠=︒ 再由AH BC ⊥ 可得=30BAD DAH ∠+∠︒ 再根据=30BAD EAC ∠+∠︒ 可得DAH EAC ∠=∠ 从而可得1tan =tan =3DAH EAC ∠∠ 利用锐角三角函数求得sin 6033AH AB =⋅︒= 再由1==333DH AH 求得3DH = 即可求得结果.【详解】解:过点A 作AH BC ⊥于H①ABC 是等边三角形①6AB AC BC === 60BAC ∠=︒①AH BC ⊥ ①1302BAH BAC ∠=∠=︒ ①=30BAD DAH ∠+∠︒①30DAE ∠=︒①=30BAD EAC ∠+∠︒①DAH EAC ∠=∠ ①1tan =tan =3DAH EAC ∠∠ ①132BH AB == ① 3=sin 60=6=3AH AB ⋅︒①1==333DH AH ①3DH = ①==33BD BH DH - 故答案为:33【点睛】本题考查等边三角形的性质 锐角三角函数 熟练掌握等边三角形的性质证明DAH EAC ∠=∠是解题的关键.12.(2023·山东日照·统考中考真题)如图,矩形ABCD 中 68AB AD ==, 点P 在对角线BD 上 过点P 作MN BD ⊥ 交边AD BC ,于点M N 过点M 作ME AD ⊥交BD 于点E 连接EN BM DN ,,.下列结论:①EM EN = ①四边形MBND 的面积不变 ①当:1:2AM MD =时 9625MPE S =△ ①BM MN ND ++的最小值是20.其中所有正确结论的序号是__________.【答案】①①①【分析】根据等腰三角形的三线合一可知MP PN = 可以判断① 利用相似和勾股定理可以得出10BD =152MN = 利用MBND 12S MN BD =⨯四边形判断① 根据相似可以得到2MPE DAB S ME S BD ⎛⎫= ⎪⎝⎭ 判断① 利用将军饮马问题求出最小值判断①.【详解】解:①EM EN = MN BD ⊥①MP PN =在点P移动过程中不一定MP PN =相矛盾延长ME 交BC 于点P ,则ABPM 为矩形 ①22226810BD AB AD +=+①ME AD ⊥ MN BD ⊥①90MED MDE MEP EMN ∠+∠=∠+∠=︒,①MDE EMN ∠=∠①MPN DAB ∽ ①MP PN MN AD AB BD == 即68610PN MN == 解得:91522PN MN ==, ①1111157510222222BMN DMN MBND S SS MN BP MN DP MN BD =+=⨯+⨯=⨯=⨯⨯=四边形 故①正确①ME AB ①DME DAB ∽①23ME MD AB AD == ①4ME =①MDE EMN ∠=∠ 90MPE A ∠=∠=︒ ①MPE DAB ∽①2425MPE DAB S ME SBD ⎛⎫== ⎪⎝⎭ ①44196682525225MPE DAB S S ==⨯⨯⨯=152BM MN ND BM ND ++=++ 即当MB ND +最小时,BM MN ND ++的最小值 作B D 关于AD BC 、的对称点11B D 、, 把图1中的1CD 向上平移到图2位置 使得9CD 2=连接11B D 即11B D 为MB ND +的最小值,则172AC BD == 112BB =, 这时222211117251222B D BD BB ⎛⎫=++= ⎪⎝⎭即BM MN ND ++的最小值是20故①正确故答案为:①①①【点睛】本题考查矩形的性质 相似三角形的判定和性质 轴对称 掌握相似三角形的判定和性质是解题的关键.13.(2023·四川遂宁·统考中考真题)如图,以ABC 的边AB AC 为腰分别向外作等腰直角ABE ACD 连结ED BD EC 过点A 的直线l 分别交线段DF BC 于点M N 以下说法:①当AB AC BC ==时 30AED ∠=︒ ①EC BD = ①若3AB = 4AC = 6BC =,则23DE = ①当直线l BC ⊥时 点M 为线段DE 的中点.正确的有_________.(填序号)【答案】①①①【分析】①当AB AC BC ==时 ABC 是等边三角形 根据等角对等边 以及三角形的内角和定理即可得出()1180120302AED ADE ∠=∠=︒-︒=︒ 进而判断① 证明BAD EAC ≌ 根据全等三角形的性质判断① 作直线MN BC ⊥于点N 过点D 作DG MN ⊥于点G 过点E 作EH MN ⊥于点H 证明ACN DAG ≌ ABN EAH ≌ (AAS)EHM DGM ≌ 即可得M 是ED 的中点 故①正确 证明()Rt Rt HL MEH MDG ≌ 可得MG MH = 在Rt ABN △中 222AN AB BN =- 在Rt ANC △中 222AN AC CN =- 得出 2912a = 在Rt MGD 中 勾股定理即可求解. 【详解】解:①当AB AC BC ==时 ABC 是等边三角形①60BAC ∠=︒①360909060120EAD ∠=︒-︒-︒-︒=︒①等腰直角ABE ACD①,BA BE BA AD ==①AE AD = ①()1180120302AED ADE ∠=∠=︒-︒=︒ 故①正确 ①①等腰直角ABE ACD①,AB AE AD AC == 90BAE DAC ∠=∠=︒①BAD EAC ∠=∠①BAD EAC ≌①EC BD = 故①正确①如图所示 作直线MN BC ⊥于点N 过点D 作DG MN ⊥于点G 过点E 作EH MN ⊥于点H①90BAE ∠=︒ MN BC ⊥①90ABN BAN ∠+∠=︒又90EAM BAN ∠+∠=︒①EAM ABN ∠=∠又①EA AB =①EAH ABN ≌()AAS同理得 ACN DAG ≌①GD AN = AG CN = ,EH AN AH BN == ①EMH DMG ∠=∠ 90EHM DGM ∠=∠=︒ ①(AAS)EHM DGM ≌①EM DM = 即M 是ED 的中点 故①正确 ①MG MH =设BN a =,则6CN BC BN a =-=-在Rt ABN △中 222AN AB BN =-在Rt ANC △中 222AN AC CN =-①2222AB BN AC CN -=-①()2222346a a -=-- 解得:2912a = ①294361212AG CN ==-= ①222229455312AN AB BN ⎛⎫=-=-= ⎪⎝⎭ ①2976262126GH AG AH AN BN a =-=-=-=-⨯=①1772612MG =⨯= 在Rt MGD 中 222274551412122MD GD MG ⎛⎫⎛⎫=++ ⎪ ⎪ ⎪⎝⎭⎝⎭①214ED MD ==故①错误故答案为:①①①.【点睛】本题考查了等腰直角三角形的性质 勾股定理 全等三角形的性质与判定 等腰三角形的性质 等边三角形的性质与判定 熟练掌握全等三角形的性质与判定是解题的关键. 14.(2023·四川眉山·统考中考真题)如图,在平面直角坐标系xOy 中 点B 的坐标为()86-,过点B 分别作x 轴 y 轴的垂线 垂足分别为点C 点A 直线26y x =--与AB 交于点D .与y 轴交于点E .动点M 在线段BC 上 动点N 在直线26y x =--上 若AMN 是以点N 为直角顶点的等腰直角三角形,则点M 的坐标为________【答案】()8,6M -或28,3M ⎛⎫- ⎪⎝⎭ 【分析】如图,由AMN 是以点N 为直角顶点的等腰直角三角形 可得N 在以AM 为直径的圆H 上 MN AN = 可得N 是圆H 与直线26y x =--的交点 当,M B 重合时 符合题意 可得()8,6M - 当N 在AM 的上方时 如图,过N 作NJ y ⊥轴于J 延长MB 交BJ 于K ,则90NJA MKN ∠=∠=︒ 8JK AB == 证明MNK NAJ ≌ 设(),26N x x -- 可得MK NJ x ==- 266212KN AJ x x ==---=-- 而8KJ AB ==,则2128x x ---= 再解方程可得答案.【详解】解:如图,①AMN 是以点N 为直角顶点的等腰直角三角形①N 在以AM 为直径的圆H 上 MN AN =①N 是圆H 与直线26y x =--的交点当,M B 重合时①()8,6B -,则()4,3H -①4MH AH NH === 符合题意①()8,6M -当N 在AM 的上方时 如图,过N 作NJ y ⊥轴于J 延长MB 交BJ 于K ,则90NJA MKN ∠=∠=︒ 8JK AB ==①90NAJ ANJ ∠+∠=︒①AN MN = 90ANM ∠=︒①90MNK ANJ ∠+∠=︒①MNK NAJ ∠=∠①MNK NAJ ≌ 设(),26N x x --①MK NJ x ==- 266212KN AJ x x ==---=--而8KJ AB ==①2128x x ---= 解得:203x =-,则22263x --= ①22202333CM CK MK =-=-= ①28,3M ⎛⎫- ⎪⎝⎭ 综上:()8,6M -或28,3M ⎛⎫- ⎪⎝⎭. 故答案为:()8,6M -或28,3M ⎛⎫- ⎪⎝⎭. 【点睛】本题考查的是坐标与图形 一次函数的性质 等腰直角三角形的判定与性质 全等三角形的判定与性质 圆周角定理的应用 本题属于填空题里面的压轴题 难度较大 清晰的分类讨论是解本题的关键.15.(2023·江苏苏州·统考中考真题)如图,90,32BAC AB AC ∠=︒==过点C 作CD BC ⊥ 延长CB 到E使13BE CD = 连接,AE ED .若2ED AE =,则BE =________________.(结果保留根号) 71/17【分析】如图,过E 作EQ CQ ⊥于Q 设,==BE x AE y 可得3,2CD x DE y == 证明26BC AB ==6CE x =+ CQE △为等腰直角三角形 )222632QE CQ x x ===+= 2AQ 由勾股定理可得:()()()222222263223222y x x y x x ⎧=++⎪⎪⎨⎛⎫⎛⎫=+⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎩再解方程组可得答案. 【详解】解:如图,过E 作EQ CQ ⊥于Q设,==BE x AE y ①13BE CD = 2ED AE = ①3,2CD x DE y == ①90,32BAC AB AC ∠=︒== ①26BC == 6CE x =+ CQE △为等腰直角三角形 ①)222632222QE CQ x x ===+= ①2AQ = 由勾股定理可得:()()()2222222632232y x x y x x ⎧=++⎪⎪⎨⎫⎛⎫=+⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎩整理得:2260x x --= 解得:17x = 经检验17x = ①17BE x == 故答案为:17【点睛】本题考查的是等腰直角三角形的性质 勾股定理的应用 一元二次方程的解法 作出合适的辅助线构建直角三角形是解本题的关键.16.(2023·山西·统考中考真题)如图,在四边形ABCD 中 90BCD ∠=︒ 对角线,AC BD 相交于点O .若5,6,2AB AC BC ADB CBD ===∠=∠,则AD 的长为__________.971973【分析】过点A 作AH BC ⊥于点H 延长AD BC 交于点E 根据等腰三角形性质得出132===BH HC BC 根据勾股定理求出224AH AC CH =-= 证明CBD CED ∠=∠ 得出DB DE = 根据等腰三角形性质得出6CE BC == 证明CD AH ∥ 得出CD CE AH HE = 求出83CD = 根据勾股定理求出2222829763DE CE CD ⎛⎫++= ⎪⎝⎭ 根据CD AH ∥ 得出DE CE AD CH = 即297633AD = 求出结果即可.【详解】解:过点A 作AH BC ⊥于点H 延长AD BC 交于点E 如图所示:则90AHC AHB ∠=∠=︒①5,6AB AC BC ===①132===BH HC BC ①224AH AC CH -=①ADB CBD CED ∠=∠+∠ 2ADB CBD ∠=∠①CBD CED ∠=∠①DB DE =①90BCD ∠=︒①DC BE ⊥①6CE BC ==①9EH CE CH =+=①DC BE ⊥ AH BC ⊥①CD AH ∥①~ECD EHA ①CD CE AH HE = 即649CD = 解得:83CD = ①2222829763DE CE CD ⎛⎫=++= ⎪⎝⎭①CD AH ∥ ①DE CE AD CH= 即297633AD = 解得:97AD =. 97. 【点睛】本题主要考查了三角形外角的性质 等腰三角形的判定和性质 勾股定理 平行线分线段成比例 相似三角形的判定与性质 平行线的判定 解题的关键是作出辅助线 熟练掌握平行线分线段成比例定理及相似三角形的判定与性质.17.(2023·湖北十堰·统考中考真题)在某次数学探究活动中 小明将一张斜边为4的等腰直角三角形()90ABC A ∠=︒硬纸片剪切成如图所示的四块(其中D E F 分别为AB AC BC 的中点 G H 分别为DE BF 的中点) 小明将这四块纸片重新组合拼成四边形(相互不重叠 不留空隙),则所能拼成的四边形中周长的最小值为____________ 最大值为___________________.【答案】 8 822+【分析】根据题意 可固定四边形GFCE 平移或旋转其它图形 组合成四边形 求出周长 判断最小值 最大值.【详解】如图1 4BC = 24222AC 122CI BD CE AC4DI BC①四边形BCID 周长=4422=8+22如图2 2AF AI IC FC①四边形AFCI 周长为248⨯=故答案为:最小值为8 最大值822+【点睛】本题考查图形变换及勾股定理 通过平移 旋转组成满足要求的四边形是解题的关键.三 解答题18.(2023·北京·统考中考真题)在ABC 中 ()045B C αα∠=∠=︒<<︒ AM BC ⊥于点M D 是线段MC 上的动点(不与点M C 重合) 将线段DM 绕点D 顺时针旋转2α得到线段DE .(1)如图1 当点E 在线段AC 上时 求证:D 是MC 的中点(2)如图2 若在线段BM 上存在点F (不与点B M 重合)满足DF DC = 连接AE EF 直接写出AEF ∠的大小 并证明.【答案】(1)见解析(2)90AEF ∠=︒ 证明见解析【分析】(1)由旋转的性质得DM DE = 2MDE α∠= 利用三角形外角的性质求出C DEC α∠=∠= 可得DE DC = 等量代换得到DM DC =即可(2)延长FE 到H 使FE EH = 连接CH AH 可得DE 是FCH 的中位线 然后求出B ACH ∠∠= 设DM DE m == CD n = 求出2BF m CH == 证明()SAS ABF ACH ≅ 得到AF AH = 再根据等腰三角形三线合一证明AE FH ⊥即可.【详解】(1)证明:由旋转的性质得:DM DE = 2MDE α∠=①C α∠=①D DEC M E C α∠-∠∠==①C DEC ∠=∠①DE DC =①DM DC = 即D 是MC 的中点(2)90AEF ∠=︒证明:如图2 延长FE 到H 使FE EH = 连接CH AH①DF DC =。

中考数学总复习《等腰三角形和直角三角形》专项测试卷带答案

中考数学总复习《等腰三角形和直角三角形》专项测试卷带答案

中考数学总复习《等腰三角形和直角三角形》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.已知等腰三角形两边的长分别是3和5,求此等腰三角形的周长.小明的解答过程如下:“当3是腰长时,底边长为5,则三角形周长为:3+3+5=11;当5是腰长时,底边长为3,则三角形周长为:3+5+5=13.”小明的解答方法体现的数学思想是( ) A.方程思想B.分类讨论思想C.公理化思想D.转化思想2.(2024·玉林模拟)学完等腰三角形的性质后,小丽同学将课后练习“一个等腰三角形的顶角是36°,求底角的度数”改为“等腰三角形的一个角是36°,求底角的度数”.下面的四个答案,你认为正确的是( )A.36°B.144°C.36°或72°D.72°或144°3.(2024·兰州)如图,在△ABC中,AB=AC,∠BAC=130°,DA⊥AC,则∠ADB=( )A.100°B.115°C.130°D.145°4.一技术人员用刻度尺(单位:cm)测量某三角形部件的尺寸.如图所示,已知∠ACB=90°,点D为边AB的中点,点A,B对应的刻度分别为1,7,则CD=( )A.3.5 cmB.3 cmC.4.5 cmD.6 cm5.(2024·青海)如图,在Rt△ABC中,D是AC的中点,∠BDC=60°,AC=6,则BC的长是( )A.3B.6C.√3D.3√36.(2024·湖南)若等腰三角形的一个底角的度数为40°,则它的顶角的度数为°.7.如图,在△ABC中,AB=AC,AD是BC边的中线,若AB=5,BC=6,则AD的长度为.8.如图,在△ABC中,若AB=AC,AD=BD,∠CAD=24°,则∠C=°.B层·能力提升9.如图,已知△ABC的面积为48,AB=AC=8,点D为BC边上一点,过点D分别作DE ⊥AB于E,DF⊥AC于F,若DF=2DE,则DE长为( )A.2B.3C.4D.610.(2024·南充)如图,已知线段AB,按以下步骤作图:①过点B作BC⊥AB,使BC=12AB,连接AC;②以点C为圆心,以BC长为半径画弧,交AC于点D;③以点A 为圆心,以AD长为半径画弧,交AB于点E.若AE=mAB,则m的值为( )A.√5−12B.√5−22C.√5-1D.√5-211.已知点P是等边△ABC的边BC上的一点,若∠APC=104°,则在以线段AP,BP,CP为边的三角形中,最小内角的大小为( )A.14°B.16°C.24°D.26°12.(2024·新疆)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=8.若点D在直线AB上(不与点A,B重合),且∠BCD=30°,则AD的长为.13.如图,P为等边△ABC内的一点,且P到三个顶点A,B,C的距离分别为6,8,10,则△ABC的面积为.14.问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA=EC.若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由;(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.C层·挑战冲A+15.(2024·滨州)【问题背景】某校八年级数学社团在研究等腰三角形“三线合一”性质时发现:①如图,在△ABC中,若AD⊥BC,BD=CD,则有∠B=∠C;②某同学顺势提出一个问题:既然①正确,那么进一步推得AB=AC,即知AB+BD=AC+CD.若把①中的BD=CD替换为AB+BD=AC+CD,还能推出∠B=∠C 吗?基于此,社团成员小军、小民进行了探索研究,发现确实能推出∠B=∠C,并分别提供了不同的证明方法.小军小民证明:分别延长DB,DC至E,F两点,使得……证明:∵AD⊥BC∴△ADB与△ADC均为直角三角形根据勾股定理,得……【问题解决】(1)完成①的证明;(2)把②中小军、小民的证明过程补充完整.参考答案A层·基础过关1.已知等腰三角形两边的长分别是3和5,求此等腰三角形的周长.小明的解答过程如下:“当3是腰长时,底边长为5,则三角形周长为:3+3+5=11;当5是腰长时,底边长为3,则三角形周长为:3+5+5=13.”小明的解答方法体现的数学思想是(B) A.方程思想B.分类讨论思想C.公理化思想D.转化思想2.(2024·玉林模拟)学完等腰三角形的性质后,小丽同学将课后练习“一个等腰三角形的顶角是36°,求底角的度数”改为“等腰三角形的一个角是36°,求底角的度数”.下面的四个答案,你认为正确的是(C)A.36°B.144°C.36°或72°D.72°或144°3.(2024·兰州)如图,在△ABC中,AB=AC,∠BAC=130°,DA⊥AC,则∠ADB=(B)A.100°B.115°C.130°D.145°4.一技术人员用刻度尺(单位:cm)测量某三角形部件的尺寸.如图所示,已知∠ACB=90°,点D为边AB的中点,点A,B对应的刻度分别为1,7,则CD=(B)A.3.5 cmB.3 cmC.4.5 cmD.6 cm5.(2024·青海)如图,在Rt△ABC中,D是AC的中点,∠BDC=60°,AC=6,则BC的长是(A)A.3B.6C.√3D.3√36.(2024·湖南)若等腰三角形的一个底角的度数为40°,则它的顶角的度数为100°.7.如图,在△ABC中,AB=AC,AD是BC边的中线,若AB=5,BC=6,则AD的长度为4.8.如图,在△ABC中,若AB=AC,AD=BD,∠CAD=24°,则∠C=52°.B层·能力提升9.如图,已知△ABC的面积为48,AB=AC=8,点D为BC边上一点,过点D分别作DE ⊥AB于E,DF⊥AC于F,若DF=2DE,则DE长为(C)A.2B.3C.4D.610.(2024·南充)如图,已知线段AB,按以下步骤作图:①过点B作BC⊥AB,使BC=12AB,连接AC;②以点C为圆心,以BC长为半径画弧,交AC于点D;③以点A 为圆心,以AD长为半径画弧,交AB于点E.若AE=mAB,则m的值为(A)A.√5−12B.√5−22C.√5-1D.√5-211.已知点P是等边△ABC的边BC上的一点,若∠APC=104°,则在以线段AP,BP,CP为边的三角形中,最小内角的大小为(B)A.14°B.16°C.24°D.26°12.(2024·新疆)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=8.若点D在直线AB上(不与点A,B重合),且∠BCD=30°,则AD的长为6或12.13.如图,P为等边△ABC内的一点,且P到三个顶点A,B,C的距离分别为6,8,10,则△ABC的面积为36+25√3.14.问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA=EC.若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由;【解析】(1)∠DAC的度数不会改变.∵EA=EC,∴∠AED=2∠C,①∵∠BAE=90°,BA=BD[180°-(90°-2∠C)]=45°+∠C∴∠BAD=12∴∠DAE=90°-∠BAD=90°-(45°+∠C)=45°-∠C,②由①,②得,∠DAC=∠DAE+∠CAE=45°.(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.【解析】(2)设∠ABC=m°,则∠BAD=12(180°-m°)=90°-12m°,∠AEB=180°-n°-m°∴∠DAE=n°-∠BAD=n°-90°+12m°∵EA=EC,∴∠CAE=12∠AEB=90°-12n°-12m°,∴∠DAC=∠DAE+∠CAE=n°-90°+12m°+90°-12n°-12m°=12n°.C层·挑战冲A+15.(2024·滨州)【问题背景】某校八年级数学社团在研究等腰三角形“三线合一”性质时发现:①如图,在△ABC中,若AD⊥BC,BD=CD,则有∠B=∠C;②某同学顺势提出一个问题:既然①正确,那么进一步推得AB=AC,即知AB+BD=AC+CD.若把①中的BD=CD替换为AB+BD=AC+CD,还能推出∠B=∠C 吗?基于此,社团成员小军、小民进行了探索研究,发现确实能推出∠B=∠C,并分别提供了不同的证明方法.小军小民证明:分别延长DB,DC至E,F两点,使得……证明:∵AD⊥BC∴△ADB与△ADC均为直角三角形根据勾股定理,得……【问题解决】(1)完成①的证明;【证明】(1)∵AD⊥BC∴∠ADB =∠ADC =90°在△ADB 和△ADC 中,{AD =AD∠ADB =∠ADC BD =CD∴△ADB ≌△ADC (SAS) ∴∠B =∠C ;(2)把②中小军、小民的证明过程补充完整. 【证明】(2)小军的证明过程:分别延长DB ,DC 至E ,F 两点,使得BE =BA ,CF =CA ,如图所示∵AB +BD =AC +CD∴BE +BD =CF +CD ,∴DE =DF ∵AD ⊥BC ,∴∠ADE =∠ADF =90° 在△ADE 和△ADF 中,{AD =AD∠ADE =∠ADF DE =DF∴△ADE ≌△ADF (SAS),∴∠E =∠F ∵BE =BA ,CF =CA∴∠E =∠BAE ,∠F =∠CAF∵∠ABC =∠E +∠BAE ,∠ACB =∠F +∠CAF ,∴∠ABC =∠ACB ; 小民的证明过程: ∵AD ⊥BC∴△ADB 与△ADC 均为直角三角形根据勾股定理,得:AD 2+BD 2=AB 2,AD 2+CD 2=AC 2,∴AB 2-BD 2=AC 2-CD 2∴AB2+CD2=AC2+BD2∵AB+BD=AC+CD∴AB-CD=AC-BD∴(AB-CD)2=(AC-BD)2,∴AB2-2AB·CD+CD2=AC2-2AC·BD+BD2∴AB·CD=AC·BD,∴ABAC =BD CD设ABBD =ACCD=k,BD=a,CD=b∴AB=kBD=ka,AC=kCD=kb根据勾股定理AD=√AB2−BD2=√AC2−CD2∴AD=√k2a2−a2=√k2−1aAD=√k2b2−b2=√k2−1b∴a=b,∴AB=AC∴∠B=∠C.第11页共11页。

中考数学复习《等腰三角形》测试题(含答案)

中考数学复习《等腰三角形》测试题(含答案)

中考数学复习《等腰三角形》测试题(含答案)一、选择题(每题6分,共30分)1.[2016·中考预测]等腰三角形的一个内角是80°,则它的顶角的度数是(B) A.80°B.80°或20°C.80°或50°D.20°2.[2015·内江]如图23-1,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为(A) A.40°B.45°C.60°D.70°【解析】∵AE∥BD,∴∠CBD=∠E=35°,图23-1∴∠CBA=70°,∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°-70°×2=40°.3.[2015·黄石]如图23-2,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD=(B)A.36°B.54°图23-2 C.18°D.64°【解析】∵AB=AC,∠ABC=72°,∴∠ABC=∠ACB=72°,∴∠A=36°,∵BD⊥AC,∴∠ABD=90°-36°=54°.4.如图23-3,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为(D)A.6 B.7C.8 D.9【解析】∵∠ABC,∠ACB的平分线相交于点E,∴∠MBE=∠EBC,∠ECN=∠ECB.∵MN∥BC,∴∠EBC=∠MEB,∠NEC=∠ECB,∴∠MBE=∠MEB,∠NEC=∠ECN,∴BM=ME,EN=CN.∵MN=ME+EN,∴MN=BM+CN.∵BM+CN=9,∴MN=9,故选D.5.[2015·遂宁]如图23-4,在△ABC中,AC=4 cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7 cm,则BC的长为(C)A.1 cm B.2 cmC.3 cm D.4 cm【解析】∵MN是线段AB的垂直平分线,∴AN=BN,∵△BCN的周长是7 cm,∴BN+NC+BC=7(cm),图23-3图23-4∴AN +NC +BC =7(cm),∵AN +NC =AC ,∴AC +BC =7(cm), 又∵AC =4 cm ,∴BC =7-4=3(cm). 二、填空题(每题6分,共30分)6.[2014·丽水]如图23-5,在△ABC 中,AB =AC ,AD ⊥BC 于点D .若AB =6,CD =4,则△ABC 的周长是__20__.7.[2015·绍兴]由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图23-6①,衣架杆OA =OB =18 cm ,若衣架收拢时,∠AOB =60°,如图23-6②,则此时A ,B 两点之间的距离是__18__cm.图23-6【解析】 ∵OA =OB ,∠AOB =60°, ∴△AOB 是等边三角形, ∴AB =OA =OB =18 cm.8.[2015·乐山]如图23-7,在等腰三角形ABC 中,AB =AC ,DE 垂直平分AB ,已知∠ADE =40°,则∠DBC =__15__°. 【解析】 ∵DE 垂直平分AB , ∴AD =BD ,∠AED =90°,∴∠A =∠ABD , ∵∠ADE =40°,图23-5图23-7∴∠A=90°-40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C =12(180°-∠A)=65°,∴∠DBC=∠ABC-∠ABD=65°-50°=15°.9.[2014·益阳]如图23-8,将等边△ABC绕顶点A沿顺时针方向旋转,使边AB 与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是__60°__.图23-8 图23-910.如图23-9,在等边△ABC中,AB=6,点D是BC的中点.将△ABD绕点A旋转后得到△ACE,那么线段DE的长度为__33__.三、解答题(共8分)11.(8分)[2014·衡阳]如图23-10在△ABC中,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F.求证:△BED≌△CFD.图23-10证明:∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC.又∵BD=CD,∴△BED≌△CFD(AAS).12.(8分)如图23-11,点D,E在△ABC的边BC上,连结AD,AE.①AB=AC;②AD=AE;③BD=CE.以此三个等式中的两个作为命题的题设,另一个作图23-11为命题的结论,构成三个命题:①②⇒③;①③⇒②;②③⇒①.(1)以上三个命题是真命题的为(直接作答)__①②⇒③;①③⇒②;②③⇒①__;(2)请选择一个真命题进行证明.(先写出所选命题,然后证明)解:(2)选择①③⇒②,∵AB=AC,∴∠B=∠C,又∵BD=CE,∴△ABD≌△ACE,∴AD=AE.13.(12分)[2015·南充]如图23-12,△ABC中,AB=AC,AD⊥BC,CE⊥AB,垂足分别为D,E,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.图23-12证明:(1)∵AD⊥BC,CE⊥AB,∴∠BCE+∠CFD=90°,∠BCE+∠B=90°,∴∠CFD=∠B,∵∠CFD=∠AFE,∴∠AFE=∠B,在△AEF 与△CEB 中, ⎩⎪⎨⎪⎧∠AFE =∠B ,∠AEF =∠CEB ,AE =CE ,∴△AEF ≌△CEB (AAS ); (2)∵AB =AC ,AD ⊥BC , ∴BC =2CD , ∵△AEF ≌△CEB , ∴AF =BC , ∴AF =2CD .14.(12分)[2015·铜仁]已知,如图23-13,点D 在等边三角形ABC 的边AB 上,点F 在边AC 上,连结DF 并延长交BC 的延长线于点E ,EF =FD . 求证:AD =CE .图23-13证明:如答图所示,作DG ∥BC 交AC 于G ,则∠DGF =∠ECF ,在△DFG 和△EFC 中,第14题答图⎩⎪⎨⎪⎧∠DGF =∠ECF ,∠DFG =∠EFC ,FD =EF ,∴△DFG ≌△EFC (AAS ), ∴GD =CE ,∵△ABC 是等边三角形, ∴∠A =∠B =∠ACB =60°, ∵DG ∥BC ,∴∠ADG =∠B ,∠AGD =∠ACB , ∴∠A =∠ADG =∠AGD , ∴△ADG 是等边三角形, ∴AD =GD , ∴AD =CE .。

中考数学专题复习《等腰三角形》测试卷(附带答案)

中考数学专题复习《等腰三角形》测试卷(附带答案)

中考数学专题复习《等腰三角形》测试卷(附带答案) 学校:___________班级:___________姓名:___________考号:___________一单选题1.如图在▱ABCD中AD=5AB=3DE平分∠ADC交BC边于点E则BE=()A.2B.3C.4D.52.如图在▱ABCD中∠B=40°,AB=AC将△ADC沿对角线AC翻折AF交BC于点E 点D的对应点为点F则∠AEC的度数是()A.80°B.90°C.100°D.110°3.菱形ABCD如图E为AD上一点F为CB延长线上一点EF⊥AC于点P交AB于G若AE=13AD则AGFC的值为()A.13B.15C.25D.164.如图△ABC是等腰三角形∠BAC=90°BC=7.点D在BC上且BD:CD=2:5.连接AD将线段AD绕点A顺时针旋转90°得到线段AE连接BE DE.则△BDE的面积是()A.4B.5C.6D.75.如图在△ABC中AB=AC=6∠BAC=120°以边BC为直径作⊙O与线段CA,BA的延长线分别交于点D,E则弧DE的长为()A.3πB.2πC.√3πD.2√3π6.如图EF为半圆形量角器直径直角三角板ABC与半圆形量角器如图放置其中斜边AB 与半圆形量角器交于A D两点AC经过点F AB∥EF若BD=8AF=BF则AD长度是()A.4B.4√3C.6D.4√67.如图矩形ABCD对角线AC、BD相交于点O,DE平分∠ADC交AB于点E过点A作AF⊥DE交DE于F点连接FO若DF=√2CD=3则FO的长为()A.1B.23C.12D.148.如图△ABC中∠ABC=45°CD⊥AB于D BE平分∠ABC且BE⊥AC于E与CD相交于点F H是BC边的中点连接DH与BE相交于点G.下列结论正确的有()个.①BF=AC②CE=12BF③△DGF是等腰三角形④BD+DF=BC⑤S△BDFS△BCF=BDBCA.5B.4C.3D.2二填空题9.已知:等腰△ABC,BA=BC点D在AB上点E在BC的延长线上AD=CE连接DE 交AC于点F作DH⊥AC于点H∠HDF−∠E=30°CE=6,CF=2则HF的长为.10.如图矩形ABCD的对角线相交于O AE平分∠BAD交BC于E若∠CAE=15°则∠COE=度.11.如图菱形ABCD中∠ABC=135°DH⊥AB于H交对角线AC于E过E作EF⊥AD 于F若△DEF的周长为2 则菱形ABCD的边长为.12.如图在△ABC中∠B=90°AB=4BC=6以AC为斜边作等腰直角三角形ADC 连接BD则BD的长为.13.如图平行四边形A BCD的对角线AC BD相交于点O AB⊥AC AB=3∠ACB= 30°点P从点A出发沿AD以每秒1个单位长度的速度向终点D运动.连接PO并延长交BC于点Q设点P的运动时间为t秒在点P的运动过程中当△APO是等腰三角形时t的值为.14.如图在△ABC中AB=AC点D为线段BC上一动点(不与点B C重合)连接AD 作∠ADE=∠B=40°DE交线段AC于点E下列结论:①∠DEC=∠BDA②若AB=DC则AD=DE③当DE⊥AC时则D为BC中点④当△ADE为等腰三角形时∠BAD=40°.正确的有.(填序号)15.如图已知A,B为反比例函数y=4x图象上两点连接AB线段AB经过原点O C为反比例函数y=kx(k<0)在第四象限内图象上一点当△CAB是以AB为底的等腰三角形且CA AB =58时k的值为.16.如图已知直线L:y=x+2交x轴于点A交y轴于点A1点A2A3…在直线L上点B1 B2B3…在x轴的正半轴上若△A1OB1△A2B1B2△A3B2B3…均为等腰直角三角形直角顶点都在x轴上则△A2024B2023B2024的面积为.三解答题17.如图在△ABC中CD是AB边上的高.AB(1)若∠ABC=∠ACB=15°请证明:CD=12(2)若∠ABC=30°CD=3点E是BC边上的中点求AC+AE的最小值.18.如图已知△ABC中∠B=90°AB=8cm BC=6cm P Q是△ABC边上的两个动点其中点P从点A开始沿A→B方向运动且速度为每秒1cm点Q从点B开始沿B→C 方向运动且速度为每秒2cm它们同时出发设出发的时间为t秒.(1)当t=2秒时求PQ的长(2)求出发时间为几秒时△PQB是等腰三角形?(3)若Q沿B→C→A方向运动则当点Q在边CA上运动时求能使△BCQ成为等腰三角形的运动时间.19.已知△ACB和△ECD都是等腰直角三角形CA=CB,CE=CD,∠ACB=∠ECD=90°,△ACB的顶点A在△ECD的斜边DE上.(1)如图1 连接BD.①请你探究AE与BD之间的关系并证明你的结论②求证:AE2+AD2=2AC2.(2)如图2 若AE=2,AC=2√5点F是AD的中点求CF的长.20.如图在▱ABCD中∠BAD的平分线交边BC于点E交边DC的延长线于点F.(1)如图1 求证:CE=CF(2)如图2 若∠ABC=90°,G是EF的中点分别连结CG,BG,DG求证:DG⊥BG(3)如图3 若∠ABC=120°四边形CFGE为平行四边形分别连结DB,DG试判断△BDG的形状并证明.21.【问题背景】已知:在△ABC中AB=AC点D E分别为直线BC上两动点探究线段BD DE EC三条线段之间的数量关系:(1)如图1 当∠BAC=90°时点D E分别为线段BC上两动点且∠DAE=45°猜想BD DE EC三条线段之间存在的数量关系式直接写出你的猜想__________【问题拓展】(2)如图2 当动点E在线段BC上动点D运动在线段CB延长线上时其它条件不变(1)中探究的结论是否发生改变?请说明你的猜想并给予证明【问题迁移】(3)如图3 当∠BAC=60°时点D E在边BC上2BD−DE=3点F在边AB上点F到AC的距离是2√3且∠DFE=30°CE=7求△FDE的面积.参考答案1.解:∵四边形ABCD为平行四边形AD=5AB=3∵AD∥BC,CD=AB=3,BC=AD=5∵∠ADE=∠DEC∵DE平分∠ADC∵∠ADE=∠CDE∵∠DEC=∠CDE∵CE=CD=3∵BE=BC−CE=5−3=2.故选:A.2.解:∵四边形ABCD为平行四边形∵AD∥BC∵∠DAC=∠ACB∵∠B=40°,AB=AC且AD∥BC∵∠B=∠ACB=40°,∠BAD=140°∵∠DAC=∠ACB=40°由折叠的性质可知∠DAC=∠FAC=40°∵∠AEC=180°−(∠ACB+∠FAC)=180°−(40°+40°)=100°.故选:C.3.解:∵菱形ABCD∵∠AEF=∠F∠EAC=∠ACF∠BAC=∠DAC AD=BC∵△APE∽△PFC∵∠AGE=∠BGF∵△AEG∽△BGF∵EF⊥AC∵在△AGP和△AEP中{∠BAC=∠DAC AP=AP ∠APG=∠APE∵△AGP≌△AEP∵AG=AE∵AE=13AD∵AE=13BC∵设AG=AE=x则BG=2x∵AG GB =12∵BF=2x ∵FC=5x∵AG FC =x5x=15故选:B.4.解:∵线段AD绕点A顺时针旋转90°得到线段AE ∵AD=AE,∠DAE=90°∵∠EAB+∠BAD=90°在△ABC中∠BAC=90°,AB=AC∵∠BAD+∠CAD=90°,∠C=∠ABC=45°∵∠EAB=∠CAD∵△EAB≌△DAC(SAS)∵∠C=∠ABE=45°,CD=BE∵∠EBC=∠EBA+∠ABC=90°∵BC=7,BD:CD=2:5∵BD=2,CD=BE=5∵S△BDE=12BD⋅BE=12×2×5=5故选:B.5.解:如图连接OA,OD,OE,CE∵∠BAC=120°AB=AC=6(180°−∠BAC)=30°∴∠CBE=∠BCD=12∵BC为⊙O的直径∴∠BEC=90°∴∠BCE=90°−∠CBE=60°∵∠DCE=∠BCE−∠BCD=30°∴∠DOE=2∠DCE=60°∵AB=AC=6OB=OC∴AO⊥BC∴OB=AB⋅cos∠CBE=AB⋅cos30°=3√3∴OD=OE=OB=3√3∴弧DE的长=60×3√3π=√3π180故选:C.6.解:如图连接OD DF.∵AD∥EF∠BAC=30°∵∠AFE=∠CAB=30°∠DOF=2∠CAB=60°∵OD=OF∵△ODF是等边三角形∵∠OFD=60°∵∠AFD=∠OFD−∠AFE=60°−30°=30°∵∠DAF=∠AFD=30°∵AD=DF∵FA=FB∵∠A=∠ABF=30°∵∠AFB=180°−30°−30°=120°∵∠BFD=∠AFB−∠AFD=120°−30°=90°∵DF=12DB∵BD=8∵AD=DF=4.故选:A.7.解:四边形ABCD为矩形CD=3∴AB=CD=3∠ADC=∠BAD=90°,OD=OB ∵DE平分∠ADC∴ADE=∠CDE=12∠ADC=45°∴△ADE为等腰直角三角形∴AD=AE∵AF⊥DE∴DF=EF,∠AFD=90°∴△ADF为等腰直角三角形∴AD=√DF2+AF2=√2DF=2∴AE=AD=2∴BE=AB−AE=3−2=1∵DF=EF,OD=OB即点F O分别为DE、BD的中点∴OF为△BDE的中位线∴OF=12BE=12故选:C.8.解:∵CD⊥AB,BE⊥AC∵∠BDC=∠ADC=∠AEB=90°∵∠A+∠ABE=90°,∠ABE+∠DFB=90°∵∠A=∠DFB∵∠ABC=45°,∠BDC=90°∵∠DCB =90°−45°=45°=∠DBC∵BD =DC在△BDF 和△CDA 中{∠BDF =∠CDA∠A =∠DFB BD =CD∵△BDF≌△CDA (AAS )∵BF =AC 故①正确.∵∠ABE =∠EBC =22.5°,BE ⊥AC∵∠A =∠BCA =67.5°∵BA =BC∵BE ⊥AC∵AE =EC =12AC =12BF 故②正确 ∵BE 平分∠ABC ,∠ABC =45°∵∠ABE =∠CBE =22.5°∵∠BDC =90°,BH =HC∵∠BHG =90°∵∠BDF =∠BHG =90°∵∠BGH =∠BFD =67.5°∵∠DGF =∠DFG =67.5°∵DG =DF∵△DGF 是等腰直角三角形 故③正确.∵△BDF≌△CDA∵DF =AD∵BC =AB =BD +AD =BD +DF 故④正确∵BE 平分∠ABC∵点F 到AB 的距离等于点F 到BC 的距离∵ S △BDFS △BCF = BD BC 故⑤正确所以 正确的结论是①②③④⑤ 共5个故选:A .9.解:如图过点D作DG∥BC交AC于点G.∵BA=BC∵∠A=∠BCA∵DG∥BC∵∠DGA=∠BCA,∠DGF=∠ECF∵∠A=∠DGA∵DA=DG∵AD=CE∵DG=CE=6在△DFG和△EFC中{∠DFG=∠CFE ∠DGF=∠EFC DG=EC∵△DFG≌△EFC(AAS)∵GF=CF=2,∠GDF=∠E∵∠HDF−∠E=30°∵∠HDG=∠HDF−∠GDF=30°∵DH⊥AC∵GH=12DG=3∵HF=GH+GF=3+2=5.故答案为:5.10.解:在矩形ABCD中AO=BO=CO=DO∠ABC=90°∵∠CAE=15°AE平分∠BAD∴∠BAE=∠BEA=45°∴AB=BE∴∠BAC=60°OA=OB∴△AOB是等边三角形∴∠BAC=60°AC=BO∴∠BCA=30°AB=12∴BE=BO又∵∠DBC=∠ACB=30°在△BOE中∠BOE=(180°−∠DBC)÷2=75°∴∠COE=180°−60°−75°=45°.故答案为:45.11.解:∵四边形ABCD是菱形∠ABC=135°∵AD∥BC∠DAC=∠BAC∵∠DAB=45°∵DH⊥AB EF⊥AD∵EF=EH∵AH=DH∵∠ADH=45°且EF⊥AD∵∠ADH=∠DEF=45°∵DF=EF∵DE=√2EF∵∵DEF的周长为2∵DE+EF+DF=2∵(2+√2)EF=2∵EF=2−√2∵EH=2−√2DE=2√2−2∵DH=DE+EH=√2∵AH=DH=√2∵AD=√2AH=2∵菱形ABCD的边长为2故答案为:212.解:当在AC上方作等腰直角三角形时过D作DE⊥BA DF⊥BC如图所示:∴∠DEA=∠DFC=∠DFB=90°设∠ACB=α则在Rt△ABC中∠BAC=90°−α∵△ADC是等腰直角三角形∴∠DCA=∠DAC=45°DA=DC∴∠BCD=α+45°∠BAD=∠BAC+∠DAC=(90°−α)+45°=135°−α∴∠DAE=180°−∠BAD=α+45°∵∠EAD=∠FCD∴Rt△DEA≌Rt△DFC(AAS)∴DE=DF∵∠DEA=∠B=∠DFB=90°∴四边形BFDE是正方形在Rt△ABC中AC=√AB2+BC2=2√13∵S四边形ABCD=S△ABC+S ADC=S△ABD+S BDC∴12AB⋅BC+12AC×12AC=12AB⋅DE+12BC⋅DF即4×6+12×(2√13)2=4DE+6DF=10DF解得DF=5即正方形BFDE的边长为5∵BD是正方形BFDE的对角线∴BD=√BF2+DF2=5√2当在AC下方作等腰直角三角形时过D作DE⊥BA DF⊥BC如图所示:∴∠DEA=∠DFC=∠EBF=90°设∠ACB=α则在Rt△ABC中∠BAC=90°−α∵△ADC是等腰直角三角形∴∠DCA=∠DAC=45°DA=DC∴∠BCD=45°−α∠BAD=∠BAC−∠DAC=(90°−α)−45°=45°−α∴Rt△DEA≌Rt△DFC(AAS)∴DE=DF AE=FC∵∠DEA=∠EBF=∠DFB=90°∴四边形BFDE是正方形即BE=BF∵AB=4,BC=6∴AB+BE=BC−BF即4+BE=6−BE解得BE=1即正方形BFDE的边长为1∵BD是正方形BFDE的对角线∴BD=√BF2+DF2=√2综上所述BD的长为5√2或√2故答案为:5√2或√2.13.解:如图所示作点E G M使得AE=OE AG=AO AO=MO当点P分别运动到点E G M时△APO是等腰三角形①当点P运动到点E:此时∠BFE=∠DEF=2∠EAO=2∠ACB=60°又∵∠ABC =90°−∠ACB =60° 且AE ∥BF∴四边形ABFE 为等腰梯形∴AE =OE =12EF =12AB =32∴t 1=32②当点P 运动到点G :此时AG =AO =12AC =√32AB =3√32∴t 2=3√32③当点P 运动到点M :AO =MO作OT ⊥AM 交AM 于点T ∠CAD =∠AMO =30°根据等腰三角形三线合一得:AM =2AT =2AO ⋅√32=√32AC =√32⋅AB ⋅√3=92∴t 3=92. 答:点P 的运动时间为32或3√32或92. 14.解:①∵∠ADC =∠B +∠BAD ,∠B =∠ADE =40° ∵∠BAD =∠CDE∵AB =AC∵∠B =∠C∵由三角形内角和定理知:∠DEC =∠BDA 故①正确 ②∵AB =AC∵∠B =∠C =40°由①知:∠DEC =∠BDA∵AB =DC∵△ABD ≌△DCE (AAS )∵AD =DE 故②正确③∵DE ⊥AC∵∠DEC =90°∵∠CDE=50°∵∠ADC=90°∵AD⊥BC∵AB=AC∵BD=CD∵D为BC中点故③正确④∵∠C=40°∵∠AED>40°∵∠ADE≠∠AED∵△ADE为等腰三角形∵AE=DE或AD=DE当AE=DE时∠DAE=∠ADE=40°∵∠BAC=180°−40°−40°=100°∵∠BAD=60°当AD=DE时∠DAE=∠DEA=70°∵∠BAD=30°故④不正确.∵正确的有①②③故答案为:①②③.15.解:如图:作AE⊥y轴于E CF⊥y轴于F.连接OC.∵A、B关于原点对称∵AC=BC,OA=OB∵OC⊥AB∵∠CFO=∠COA=∠AEO=90°∵∠COF+∠AOE=90°,∠AOE+∠EAO=90°∵∠COF=∠OAE∵△CFO∽△OEA∵S△COF S△AOE =(COOA)2∵CA AB =58AO=OB∵CA:OA=5:4又∵AC2=OA2+OC2∵CO:OA=3:4∵S△COF S△AOE =(COOA)2=916即12|k|12×4=916∵k<0∵k=−94故答案为:−94.16.解:y=x+2交y轴于点A1∴A1(0,2)∵△A1OB1是等腰直角三角形∴B1(2,0)∵若△A1OB1△A2B1B2△A3B2B3…均为等腰直角三角形∴A2(2,4)B2(6,0)A3(6,8)B3(14,0)∴S△A1OB1=12×2×2=21S△A2B1B2=12×4×4=23S△A3B2B3=12×8×8=25…S△An B n−1B n=22n−1∴△A2024B2023B2024的面积为=24047故答案为:24047.17.(1)证明:∵∠ABC=∠ACB=15°CD是AB边上的高.∵AB=AC,∠CAD=30°∵CD=12AC=12AB(2)延长CD到C′使C′D=CD=3连接AC′,C′E如图:∵CD是AB边上的高∵BD是CC′的垂直平分线∵AC′=AC∴AC+AE=AC′+AE≥C′E,即AC+AE的最小值为C′E∵∠ABC=30°,CD=3∴BC=2CD=6∵ 点E是BC边上的中点∴CE=3=CD∵BC=C′C=6∠BCD=∠C′CE∴△BCD≌△C′CE(SAS)∴BD=C′EBD=√BC2−CD2=√62−32=3√3∴C′E=3√3即最小值为3√3.18.(1)解:∵AP=2×1=2(cm)BQ=2×2=4(cm)∵BP=AB−AP=8−2×1=6(cm)∵∠B=90°∵PQ=√BQ2+BP2=√42+62=2√13(cm)(2)解:根据题意得:BQ=BP即2t=8−t解得:t=83即出发时间为83秒时△PQB是等腰三角形(3)解:分三种情况:当CQ=BQ时如图1所示:则∠C=∠CBQ∵∠ABC=90°∴∠CBQ+∠ABQ=90°∠A+∠C=90°∴∠A=∠ABQ∴BQ=AQ∵CQ=AQ∵∠B=90°AB=8cm BC=6cm∴AC=√82+62=10(cm)∴CQ=AQ=12AC=5(cm)∴BC+CQ=11(cm)∴t=11÷2=5.5(秒).当CQ=BC时如图2所示:则BC+CQ=12(cm)∴t=12÷2=6(秒).当BC=BQ时如图3所示:过B点作BE⊥AC于点E∵S△ABC=12AB×BC=12AC×BE则BE=AB⋅BCAC =6×810=4.8(cm)∴CE=√BC2−BE2=3.6(cm)∴CQ=2CE=7.2cm∴BC+CQ=13.2cm∴t=13.2÷2=6.6(秒).由上可知当t为5.5秒或6秒或6.6秒时ΔBCQ为等腰三角形.19.(1)解:①AE=BD理由如下:∵∠ACB=∠ECD=90°∵∠ACE=∠BCD又∵CA=CB,CE=CD,∵△ACE≌△BCD(SAS)∵AE=BD②∵△ACB和△ECD都是等腰直角三角形CA=CB,CE=CD ∵∠ECA+∠ACD=∠ACD+∠DCB=90°,∠CEA=∠CDE=45°,∠CAB=∠CBA=45°∵∠ECA=∠DCB在△ECA和△DCB中{CE=CD ∠ECA=∠DCB AC=BC∴△ECA≌△DCB(SAS),∵AE=BD,∠CEA=∠CDB=45°,∴∠ADB=∠CDB+∠EDC=90°∴△ADB是直角三角形∴AD2+BD2=AB2,∴AD2+AE2=AB2,∴AE2+AD2=2AC2.(2)解:过点C作CH⊥DE于H如图:∵AC2+BC2=2AC2,AD2+AE2=AB2,AE=2,AC=2,∴AD=6,∴DE=AE+AD=8,∵点F是AD的中点∴AF=DF=3,∴△ECD是等腰直角三角形∴CH=DH=EH=4,∴HF=DH−DF=1,∴CF=√GH2+HF2=√42+12=√17.20.(1)证明:∵四边形ABCD是平行四边形∵AB∥CD,AD∥BC∵∠F=∠BAF∠CEF=∠DAF∵AF平分∠BAD∵∠BAF=∠DAF∵∠F=∠CEF∵CE=CF.(2)证明:∵四边形ABCD是平行四边形∠ABC=90°∵四边形ABCD是矩形∵AD=BC,∠ADC=∠BCD=90°∵∠BCF=90°∵G是EF的中点∵CG=EG=FG∵△CEG和△CFG都是等腰直角三角形∵∠ECG=∠F=45°∵∠ADC=90°∵∠DAF=45°∵△DAF是等腰直角三角形∵DA=DF∵BC=DF∵△BCG≌△DFG(SAS)∵∠BGC=∠DGF∵∠BGC−∠DGC=∠DGF−∠DGC=∠CGF=90°∵DG⊥BG.(3)解:△BDG是等边三角形理由如下:如图延长AB、FG交于点H连接DH∵FG∥CE,CE∥AD∵FH∥BC∥AD∵AH∥DF∵四边形AHFD是平行四边形∵∠DFA=∠FAB=∠DAF∵DA=DF∵四边形AHFD是菱形∵FD=FH,AD=AH∵∠ABC=120°∵∠DFH=∠DAH=60°∵△FDH和△ADH都是等边三角形∵∠DFG=∠DHB=∠FDH=60°,FD=HD ∵四边形BCFH是平行四边形∵BH=CF∵FG=CE,CE=CF∵FG=BH在△DFG和△DHB中{FG=BH∠GFD=∠BHD, FD=HD∵△DFG≌△DHB(SAS)∵∠FDG=∠HDB,DG=DB∵∠BDG=∠HDB+∠HDG=∠FDG+∠HDG=∠FDH=60°∵△BDG是等边三角形.21.解:(1)DE2=BD2+EC2证明:如图将△ADB沿直线AD对折得△AFD连FE∵△AFD≌△ABD∵AF=AB FD=DB∠FAD=∠BAD∠AFD=∠ABD∵∠BAC=90°∠DAE=45°∵∠BAD+∠CAE=45°,∠FAD+∠FAE=45°∵∠CAE=∠FAE又∵AE=AE,AF=AB=AC∵△AFE≌△ACE∵∠DFE=∠AFD+∠AFE=45°+45°=90°∵DE2=FD2+EF2∵DE2=BD2+EC2(2)关系式DE2=BD2+EC2仍然成立.证明:将△ADB沿直线AD对折得△AFD连FE∵△AFD≌△ABD∵AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD又∵AB=AC∵AF=AC∵∠FAE=∠FAD+∠DAE=∠FAD+45°∠EAC=∠BAC﹣∠BAE=90°−(∠DAE−∠DAB)=45°+∠DAB∵∠FAE=∠EAC又∵AE=AE∵△AFE≌△ACE∵FE=EC∠AFE=∠ACE=45°∠AFD=∠ABD=180°−∠ABC=135°,∵∠DFE=∠AFD−∠AFE=135°−45°=90°∵在Rt△DFE中DE2=FD2+EF2即DE2=BD2+EC2(3)过点F作FH∥AC交BC于点H作FG⊥AC于点G则FG=2√3∵∠BAC=60°∵∠AFG=30°AF∵AG=12AF)2+(2√3)2又∵AF2=AG2+FG2即AF2=(12解得:AF=4或AF=−4(舍)又∵AB=AC∵△ABC是等边三角形∵BA=BC又∵FH∥AC∵∠BFH=∠A=∠C=∠FHB=∠B=60°∵BF=BH=FH即AF =CH =4∵EH =EC −EH =7−4=3将△FDB 沿直线FD 对折 得△FMD 连ME 过E 点作EN ⊥DM 交DM 的延长线于点N ∵△FBD ≌△FMD∵FB =FM BD =DM ∠BFD =∠MFD ∠FBD =∠FMD∵∠BFH =60° ∠DFE =30°∵∠BFD +∠HFE =30°,∠DFM +∠MFE =30°∵∠HFEE =∠MFE又∵FE =FE,FH =FB =FM∵△FHE ≌△FME∵∠FME =∠FHE =60° EM =EH =3∵∠DME =∠FMD +∠FME =60°+60°=120°∵∠NME =60°∵∠MEN =30°∵MN =12EM =32 EN =√MF 2−MN 2=√32−(32)2=32√3∵DN =DM +MN =BD +MN =BD +32 又∵2BD −DE =3∵DE =2BD −3在Rt △DNE 中 DE 2=DN 2+EN 2 即(2BD −3)2=(BD +32)2+(32√3)2解得:BD =0(舍)或BD =5∵DE =7 BF =BH =BD +DE +EH =5+7+3=15过点F 作FQ ⊥BC 于点Q∵∠BFQ=30°∵BQ=12BF=152FQ=√BF2−BQ2=√152−(152)2=152√3∵S△DEF=12DE⋅FQ=12×7×152√3=105√34.。

中考数学总复习《等腰三角形》专项提升练习题(附答案)

中考数学总复习《等腰三角形》专项提升练习题(附答案)

中考数学总复习《等腰三角形》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.若一个等腰三角形的两边长分别是2和5,则它的周长为( )A.12B.9C.12或9D.9或72.若等腰三角形的顶角为40°,则它的底角度数为( )A.40°B.50°C.60°D.70°3.如图,在等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为( )A.36°B.60°C.72°D.108°4.如图,在△ABC中,D为BC的中点,AD⊥BC,E为AD上一点,∠ABC=60°,∠ECD=40°,则∠ABE=( )A.10°B.15°C.20°D.25°5.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为( )A.BD=CEB.AD=AEC.DA=DED.BE=CD6.等腰三角形补充下列条件后,仍不一定成为等边三角形的是( )A.有一个内角是60°B.有一个外角是120°C.有两个角相等D.腰与底边相等7.等边△ABC的两条角平分线BD和CE相交所夹锐角的度数为( )A.60°B.90°C.120°D.150°8.如图,等边△OAB的边长为2,则点B的坐标为( )A.(1,1)B.(3,1)C.(3,3)D.(1,3)9.如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B为( )A.75°B.76°C.77°D.78°10.如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6 cm,DE=2 cm,则BC的长为( )A.4 cmB.6 cmC.8 cmD.12 cm二、填空题11.等腰三角形的一个内角为100°,则顶角的度数是________.12.如图,已知△ABC的角平分线CD交AB于D,DE∥BC交AC于E,若DE=3,AE=4,则AC=.13.如图,l∥m,等边△ABC的顶点B在直线m上,∠1=20°,则∠2的度数为.14.如图所示,△ABC为等边三角形,AD⊥BC,AE=AD,则∠ADE=________.15.已知一张三角形纸片ABC(如图甲),其中AB=AC.将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为BD(如图乙).再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为EF(如图丙).原三角形纸片ABC中,∠ABC的大小为.16.《蝶几图》是明朝人戈汕所作的一部组合家具的设计图(蜨,同“蝶”),如图为某蝶几设计图,其中△ABD和△CBD为“大三斜”组件(大三斜组件为两个全等的等腰直角三角形),已知某人位于点P处,点P与点A关于直线DQ对称,连接CP、DP.若∠ADQ=25°,则∠DCP的度数为.三、解答题17.如图,在△ABC中,AC=DC=DB,∠ACD=100°,求∠B的度数.18.如图,△ABC中,AC=BC,点D在BC上,作∠ADF=∠B,DF交外角∠ACE的平分线CF于点F.(1)求证:CF∥AB;(2)若∠CAD=20°,求∠CFD的度数.19.如图,等边△ABC中,AD是∠BAC的角平分线,E为AD上一点,以BE为一边且在BE下方作等边△BEF,连接CF.(1)求证:AE=CF;(2)求∠ACF的度数.20.如图,△ABC是等边三角形,D、E、F分别是AB、BC、AC上一点,且∠DEF=60°.(1)若∠1=50°,求∠2;(2)连接DF,若DF∥BC,求证:∠1=∠3.21.如图,在△ABC中,AB=BC,CD⊥AB于点D,CD=BD,BE平分∠ABC,点H是BC 边的中点,连接DH,交BE于点G,连接CG.(1)求证:△ADC≌△FDB;(2)求证:CE=12BF;(3)判断△ECG的形状,并证明你的结论;22.如图,已知在等边三角形ABC中,点D、E分别在直线AB、直线AC上,且AE=BD.(1)当点D、E分别在边AC、边AB上时,如图1所示,EB与CD相交于点G,求∠CGE 的度数;(2)当点D、E分别在边CA、边AB的延长线上时,如图2所示,∠CGE的度数是否变化?如不变,请说明理由.如变化,请求出∠CGE的度数.答案1.A2.D3.C4.C.5.C6.C7.A8.D9.D10.C.11.答案为:100°.12.答案为:7.13.答案为:40°.14.答案为:75°15.答案为:72°.16.答案为:20°.17.解:∵AC=DC=DB,∠ACD=100°∴∠CAD=(180°﹣100°)÷2=40°∵∠CDB是△ACD的外角∴∠CDB=∠A+∠ACD=100°=40°+100°=140°∵DC=DB∴∠B=(180°﹣140°)÷2=20°.18.(1)证明:∵AC=BC∴∠B=∠BAC∵∠ACE=∠B+∠BAC∴∠BAC=12∠ACE∵CF平分∠ACE∴∠ACF=∠ECF=12∠ACE∴∠BAC =∠ACF∴CF ∥AB ;(2)解:∵∠BAC =∠ACF ,∠B =∠BAC ,∠ADF =∠B ∴∠ACF =∠ADF∵∠ADF+∠CAD+∠AGD =180°,∠ACF+∠F+∠CGF =180° 又∵∠AGD =∠CGF∴∠F =∠CAD =20°.19.证明:(1)∵△ABC 是等边三角形∴AB =BC ,∠ABE +∠EBC =60°.∵△BEF 是等边三角形∴EB =BF ,∠CBF +∠EBC =60°.∴∠ABE =∠CBF.在△ABE 和△CBF 中⎩⎨⎧AB =BC ,∠ABE =∠CBF EB =BF ,∴△ABE ≌△CBF(SAS).∴AE =CF.(2)∵等边△ABC 中,AD 是∠BAC 的角平分线∴∠BAE =30°,∠ACB =60°.∵△ABE ≌△CBF∴∠BCF =∠BAE =30°.∴∠ACF =∠BCF +∠ACB =30°+60°=90°.20.解:(1)∵△ABC 是等边三角形∴∠B =∠A =∠C =60°∵∠B +∠1+∠DEB =180°∠DEB +∠DEF +∠2=180°∵∠DEF =60°∴∠1+∠DEB =∠2+∠DEB∴∠2=∠1=50°;(2)连接DF∵DF∥BC∴∠FDE=∠DEB∵∠B+∠1+∠DEB=180°,∠FDE+∠3+∠DEF=180°∵∠B=60°,∠DEF=60°∴∠1=∠3.21.证明:(1)∵AB=BC,BE平分∠ABC∴BE⊥AC,CE=AE∵CD⊥AB∴∠ACD=∠DBF在△ADC和△FDB中∴△ADC≌△FDB(ASA);(2)∵△ADC≌△FDB∴AC=BF又∵CE=AE∴CE=12BF;(3)△ECG为等腰直角三角形.∵点H是BC边的中点∴GH垂直平分BC∴GC=GB∵∠DBF=∠GBC=∠GCB=∠ECF,得∠ECG=45°又∵BE⊥AC∴△ECG为等腰直角三角形.22.(1)证明:∵△ABC为等边三角形∴AB=BC,∠A=∠ABC=60°在△ABE和△BCD中AE=BD,∠A=∠DBC,AB=BC∴△ABE≌△BCD∴∠ABE=∠BCD∵∠ABE+∠CBG=60°∴∠BDG+∠CBG=60°∵∠CGE=∠BCG+∠CBG∴∠CGE=60°;(2)证明:∵△ABC为等边三角形∴AB=BC,∠CAB=∠ABC=60°∴∠EAB=∠CBD=120°在△ABE和△BCD中AB=BC,∠EAB=∠CBD,AE=BD∴△ABE≌△BCD(SAS)∴∠D=∠E∵∠ABE=∠DBG,∠CAB=∠E+ABE=60°∴∠CGE=∠D+∠DBG=60°.。

等腰三角形典型例题练习含答案

等腰三角形典型例题练习含答案

添加标题
添加标题
性质:两腰相等,底边与两腰之间 的比例为固定值
应用:在几何问题和实际问题中, 利用等腰三角形的边长比例解决问 题
等腰三角形的边长计算
等腰三角形的两 腰相等,底边与 两腰之间的夹角 相等。
等腰三角形的边 长关系可以根据 勾股定理进行计 算。
等腰三角形的高、 中线和角平分线 等性质可用于计 算边长。
等腰三角形的角度关系
第四章
等腰三角形的角度性质
等腰三角形的顶角与底角互 补,即它们的角度之和为 180度。
等腰三角形的两个底角相等, 即两个角大小相等。
等腰三角形的一个角为顶角, 其余两个角为底角,且三个 角度之和为180度。
等腰三角形的一个角为底角, 其余两个角为顶角,且三个 角度之和为180度。
等腰三角形的角度计算
等腰三角形两底角相等,角度和为180度 顶角与底角的角度关系:顶角 = 180度 - 2 × 底角度数 等腰三角形的高、中线和角平分线重合 等腰三角形中的角度计算可以通过三角函数或勾股定理进行求解
等腰三角形的角度证明
等腰三角形两底角相等,证明方法 为取等腰三角形ABC,作底边BC的 中点D,连接AD,则 ∠BAD=∠CAD。
自然界:蜂巢、蜘蛛网等自然现象 中经常出现等腰三角形的形状。
添加标题
添加标题
添加标题
添加标题
建筑学:等腰三角形在建筑设计中 有广泛的应用,如金字塔、塔楼等。
艺术创作:等腰三角形在绘画、雕 塑和图案设计中常被用作基本构图 元素。
等腰三角形在实际问题中的应用
桥梁设计:利用等腰三角形的性质,实现桥梁的稳定和平衡 建筑结构:等腰三角形在建筑设计中用于增强结构的稳定性 机械零件:等腰三角形的特殊性质使其在某些机械零件中具有特殊用途 自然界中的等腰三角形:例如蜂巢、蜘蛛网等自然现象中存在等腰三角形的实际应用

中考数学真题《等腰三角形与直角三角形》专项测试卷(带答案)

中考数学真题《等腰三角形与直角三角形》专项测试卷(带答案)

中考数学真题《等腰三角形与直角三角形》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________(25道)一、单选题1.如图,直角ABC 中 30B ∠=︒ 点O 是ABC 的重心 连接CO 并延长交AB 于点E 过点E 作EF AB ⊥交BC 于点F 连接AF 交CE 于点M ,则MO MF的值为( )A .12 B 5C .23 D 32.将一副直角三角板和一把宽度为2cm 的直尺按如图方式摆放:先把60︒和45︒角的顶点及它们的直角边重合 再将此直角边垂直于直尺的上沿 重合的顶点落在直尺下沿上 这两个三角板的斜边分别交直尺上沿于A B 两点,则AB 的长是( )A .23B .232C .2D .233.如图,ABC 是等腰三角形 36AB AC A =∠=︒,.以点B 为圆心 任意长为半径作弧 交AB 于点F 交BC 于点G 分别以点F 和点G 为圆心 大于12FG 的长为半径作弧 两弧相交于点H 作射线BH 交AC 于点D 分别以点B 和点D 为圆心 大于12BD 的长为半径作弧 两孤相交于M N 两点 作直线MN 交AB 于点E 连接DE .下列四个结论:①AED ABC ∠=∠ ①BC AE = ①12ED BC = ①当2AC =时 51AD =.其中正确结论的个数是( )A .1B .2C .3D .44.如图ABC 中 90,4,,ACB AB AC x BAC α︒∠===∠= O 为AB 中点 若点D 为直线BC 下方一点 且BCD △与ABC 相似,则下列结论:①若45α=︒ BC 与OD 相交于E ,则点E 不一定是ABD △的重心 ①若60α=︒,则AD 的最大值为 ①若60,ABC CBD α=︒∽,则OD 的长为 ①若ABC BCD △∽△,则当2x =时 AC CD +取得最大值.其中正确的为( )A .①①B .①①C .①①①D .①①①5.如图,在ABC 中 90,30,2,B A BC D ︒︒∠=∠==为AB 的中点.若点E 在边AC 上 且AD DE AB BC =,则AE 的长为( )A .1B .2C .1D .1或26.如图,在Rt ABC 中 9053C AB BC ∠=︒==,, 以点A 为圆心 适当长为半径作弧 分别交AB AC,于点E F , 分别以点E F ,为圆心 大于12EF 的长为半径作弧 两弧在BAC ∠的内部相交于点G 作射线AG 交BC 于点D ,则BD 的长为( )A .35B .34C .43D .537.5月26日 “2023中国国际大数据产业博览会”在贵阳开幕 在“自动化立体库”中有许多几何元素 其中有一个等腰三角形模型(示意图如图所示) 它的顶角为120︒ 腰长为12m ,则底边上的高是( )A .4mB .6mC .10mD .12m8.如图,ABC 为等边三角形 点D E 分别在边BC AB 上 60ADE ∠=︒ 若4BD DC = 2.4DE =,则AD 的长为( )A .1.8B .2.4C .3D .3.29.下面是“作已知直角三角形的外接圆”的尺规作图过程: 已知:如图1 在Rt ABC △中 90C ∠=︒.求作:Rt ABC △的外接圆.作法:如图2.(1)分别以点A 和点B 为圆心 大于12AB 的长为半径作弧 两弧相交于P Q 两点 (2)作直线PQ 交AB 于点O(3)以O 为圆心 OA 为半径作O O 即为所求作的圆.下列不属于...该尺规作图依据的是() A .两点确定一条直线B .直角三角形斜边上的中线等于斜边的一半C .与线段两个端点距离相等的点在这条线段的垂直平分线上D .线段垂直平分线上的点与这条线段两个端点的距离相等10.如图,在ABC 中 9034ABC AB BC ∠=︒==,, 点D 在边AC 上 且BD 平分ABC 的周长,则BD的长是( )A B C D11.ABC 的三边长a b c 满足2()|0a b c --=,则ABC 是( )A .等腰三角形B .直角三角形C .锐角三角形D .等腰直角三角形12.四边形ABCD 的边长如图所示 对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时 对角线AC 的长为( )A .2B .3C .4D .5二 填空题13.将形状 大小完全相同的两个等腰三角形如图所示放置 点D 在AB 边上 ①DEF 绕点D 旋转 腰DF 和底边DE 分别交①CAB 的两腰CA CB 于M N 两点 若CA=5 AB=6 AB=1:3,则MD+12⋅MA DN的最小值为 .14.如图,在Rt ABC △中 90ACB ∠=︒ 点D 为BC 的中点 过点C 作CE AB ∥交AD 的延长线于点E 若4AC = 5CE =,则CD 的长为 .15.如图,在Rt ABC 中 90ACB ∠=︒ 3AC BC == 点D 在直线AC 上 1AD = 过点D 作DE AB ∥直线BC 于点E 连接BD 点O 是线段BD 的中点 连接OE ,则OE 的长为 .16.如图,在ABC 中 90,6C AC BC ∠=︒==.P 为边AB 上一动点 作PD BC ⊥于点D PE AC ⊥于点E ,则DE 的最小值为 .17.如图.四边形ABCD 中 AB AD = BC DC = 60C ∠=︒ AE CD ∥交BC 于点E 8BC = 6AE =,则AB 的长为 .18.如图,已知50ABC ∠=︒ 点D 在BA 上 以点B 为圆心 BD 长为半径画弧 交BC 于点E 连接DE ,则BDE ∠的度数是 度.19.如图,在ABC 中 以A 为圆心 AC 长为半径作弧 交BC 于C D 两点 分别以点C 和点D 为圆心 大于12CD 长为半径作弧 两弧交于点P 作直线AP 交CD 于点E 若5AC = 6CD =,则AE = .20.如图,在ABC 中 以点C 为圆心 任意长为半径作弧 分别交AC BC 于点D E 分别以点DE 为圆心 大于12DE 的长为半径作弧 两弧交于点F 作射线CF 交AB 于点G 若9AC = 6BC = BCG 的面积为8,则ACG 的面积为 .21.如图,CD 为Rt ABC △斜边AB 上的中线 E 为AC 的中点.若8AC = 5CD =,则DE = .22.在 Rt △ABC 中, △ACB =90° AC =6 BC =8 D 是AB 的中点,则 CD = .三 解答题23.在Rt ABC △中 90BAC AD ∠=︒,是斜边BC 上的高.(1)证明:C ABD BA ∽△△(2)若610AB BC ==, 求BD 的长.24.如图,BD 是等边ABC 的中线 以D 为圆心 DB 的长为半径画弧 交BC 的延长线于E 连接DE .求证:CD CE =.25.如图,在四边形ABCD 中 点E 是边BC 上一点 且BE CD = B AED C ∠=∠=∠.(1)求证:EAD EDA ∠=∠(2)若60C ∠=︒ 4DE =时 求AED △的面积.参考答案一、单选题1.如图,直角ABC 中 30B ∠=︒ 点O 是ABC 的重心 连接CO 并延长交AB 于点E 过点E 作EF AB ⊥交BC 于点F 连接AF 交CE 于点M ,则MO MF的值为( )A .12BC .23 D【答案】D 【详解】解:①点O 是①ABC 的重心 ①OC =23CE ①①ABC 是直角三角形 ①CE =BE =AE ①①B =30° ①①F AE =①B =30° ①BAC =60° ①①F AE =①CAF =30° ①ACE 是等边三角形 ①CM =12CE ①OM =23CE ﹣12CE =16CE 即OM =16AE ①BE =AE ①EF①EF ①AB ①①AFE =60° ①①FEM =30° ①MF =12EF ①MF①MO MF1AE故选D .2.将一副直角三角板和一把宽度为2cm 的直尺按如图方式摆放:先把60︒和45︒角的顶点及它们的直角边重合 再将此直角边垂直于直尺的上沿 重合的顶点落在直尺下沿上 这两个三角板的斜边分别交直尺上沿于A B 两点,则AB 的长是( )A.2B.2 C .2 D.【答案】B 【分析】根据等腰直角三角形的性质可得2cm AD CD == 由含30度角直角三角形的性质可得24cm BC CD == 由勾股定理可得BD 的长 即可得到结论.【详解】解:如图,在Rt ACD △中 45ACD ∠=︒①45CAD ACD ∠=︒=∠①2cm AD CD ==在Rt BCD 中 60BCD ∠=︒①30CBD ∠=︒①24cm BC CD == ①)22224223cm BD BC CD --= ①()233cm AB BD AD =-=.故选:B .【点睛】本题考查了勾股定理 等腰直角三角形的性质 含30︒角直角三角形的性质 熟练掌握勾股定理是解题的关键.3.如图,ABC 是等腰三角形 36AB AC A =∠=︒,.以点B 为圆心 任意长为半径作弧 交AB 于点F 交BC 于点G 分别以点F 和点G 为圆心 大于12FG 的长为半径作弧 两弧相交于点H 作射线BH 交AC 于点D 分别以点B 和点D 为圆心 大于12BD 的长为半径作弧 两孤相交于M N 两点 作直线MN 交AB 于点E 连接DE .下列四个结论:①AED ABC ∠=∠ ①BC AE = ①12ED BC = ①当2AC =时 51AD =.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C 【分析】根据等腰三角形两底角相等与36A ∠=︒ 得到72ABC C ∠=∠=︒ 根据角平分线定义得到36ABD CBD ∠=∠=︒ 根据线段垂直平分线性质得到EB ED = 得到EBD EDB ∠=∠ 推出EDB CBD ∠=∠ 得到DE BC ∥ 推出AED ABC ∠=∠ ①正确 根据等角对等边得到AD AE = AD BD = 根据三角形外角性质得到72BDC C ∠=︒=∠ 得到BC BD = 推出BC AE = ①正确 根据AED ABC △∽△ 得到ED AD AD BC AC AD DC ==+ 推出ED = ①错误 根据2AC =时CD AD = 2AD AD =-,推出1AD = ①正确. 【详解】①ABC 中 AB AC = 36A ∠=︒ ①()1180722ABC C A ∠=∠=︒-∠=︒ 由作图知 BD 平分ABC ∠ MN 垂直平分BD ①1362ABD CBD ABC ∠=∠=∠=︒EB ED = ①EBD EDB ∠=∠①EDB CBD ∠=∠①DE BC ∥①AED ABC ∠=∠ ①正确 ADE C ∠=∠①AED ADE ∠=∠①AD AE =①A ABD ∠=∠①AD BD =①72BDC A ABD ∠=∠+∠=︒ ①BDC C ∠=∠①BC BD =①BC AE = ①正确设ED x = BC a =则AD a = BE x =①CD BE x ==①AED ABC △∽△ ①EDADADBC AC AD DC ==+ ①x aa a x =+①220x ax a +-=①0x >①51x -= 即51ED -=①错误 当2AC =时 2CD AD =- ①51CD AD -=512AD AD -=-, ①51AD = ①正确①正确的有①①① 共3个.故选:C .【点睛】本题主要考查了等腰三角形 相似三角形 解决问题的关键是熟练掌握等腰三角形判定和性质 相似三角形的判定和性质 角平分线的定义和线段垂直平分线的性质.4.如图ABC 中 90,4,,ACB AB AC x BAC α︒∠===∠= O 为AB 中点 若点D 为直线BC 下方一点 且BCD △与ABC 相似,则下列结论:①若45α=︒ BC 与OD 相交于E ,则点E 不一定是ABD △的重心 ①若60α=︒,则AD 的最大值为27 ①若60,ABC CBD α=︒∽,则OD 的长为23 ①若ABC BCD △∽△,则当2x =时 AC CD +取得最大值.其中正确的为( )A .①①B .①①C .①①①D .①①①【答案】A 【分析】①有3种情况 分别画出图形 得出ABD △的重心 即可求解 当60α=︒ BD BC ⊥时 AD 取得最大值 进而根据已知数据 结合勾股定理 求得AD 的长 即可求解 ①如图5 若60α=︒ C ABC BD ∽△△ 根据相似三角形的性质求得3CD = 3GE DF == 32CF = 进而求得OD 即可求解 ①如图6 根据相似三角形的性质得出214CD BC =在Rt ABC △中 2216BC x =- 根据二次函数的性质 即可求AC CD +取得最大值时 2x =. 【详解】①有3种情况 如图1 BC 和OD 都是中线 点E 是重心如图2 四边形ABDC 是平行四边形 F 是AD 中点 点E 是重心如图3 点F 不是AD 中点 所以点E 不是重心①正确①当60α=︒ 如图4时AD 最大 4AB =∴2AC BE == BC AE == 6BD ==∴8DE =∴AD =≠∴①错误①如图5 若60α=︒ C ABC BD ∽△△①60BCD ∠=︒ 90CDB ∠=︒ 4AB = 2AC = BC = OE = 1CE =①CD = GE DF ==32CF =①52EF DG == OG①OD =≠①①错误①如图6 ABC BCD ∽△△①CD BC BC AB= 即214CD BC =在Rt ABC △中 2216BC x =- ①()221116444CD x x =-=-+ ①22114(2)544AC CD x x x +=-+=--+ 当2x =时 AC CD +最大为5①①正确.故选:A .【点睛】本题考查了三角形重心的定义 勾股定理 相似三角形的性质 二次函数的性质 分类讨论 画出图形是解题的关键.5.如图,在ABC 中 90,30,2,B A BC D ︒︒∠=∠==为AB 的中点.若点E 在边AC 上 且AD DE AB BC=,则AE 的长为( )A .1B .2C .13D .1或2【答案】D 【分析】根据题意易得3,4==AB AC 然后根据题意可进行求解.【详解】解:①90,30,2B A BC ∠︒∠︒=== ①323,24AB BC AC BC ====①点D 为AB 的中点 ①132AD AB =①AD DE AB BC= ①1DE =①当点E 为AC 的中点时 如图①122AE AC == ①当点E 为AC 的四等分点时 如图所示:①1AE =综上所述:1AE =或2故选D .【点睛】本题主要考查含30度直角三角形的性质及三角形中位线 熟练掌握含30度直角三角形的性质及三角形中位线是解题的关键.6.如图,在Rt ABC 中 9053C AB BC ∠=︒==,, 以点A 为圆心 适当长为半径作弧 分别交AB AC,于点E F , 分别以点E F ,为圆心 大于12EF 的长为半径作弧 两弧在BAC ∠的内部相交于点G 作射线AG 交BC 于点D ,则BD 的长为( )A .35B .34C .43D .53【答案】D 【分析】过点D 作DM AB ⊥于M 由勾股定理可求得4AC = 由题意可证明ADC ADM △≌△,则可得4AM AC == 从而有1BM = 在Rt DMB 中 由勾股定理建立方程即可求得结果.【详解】解:过点D 作DM AB ⊥于M 如图由勾股定理可求得4AC =由题中作图知 AD 平分BAC ∠①DM AB AC BC ⊥⊥,①DC DM =①AD AD =①Rt Rt ADC ADM △≌△①4AM AC ==①1BM AB AM =-=设BD x =,则3MD CD BC BD x ==-=-在Rt DMB 中 由勾股定理得:2221(3)x x +-= 解得:53x = 即BD 的长为为53故选:D .【点睛】本题考查了作图:作角平分线 角平分线的性质定理 全等三角形的判定与性质 勾股定理 利用全等的性质 利用勾股定理建立方程是解题的关键.7.5月26日 “2023中国国际大数据产业博览会”在贵阳开幕 在“自动化立体库”中有许多几何元素 其中有一个等腰三角形模型(示意图如图所示) 它的顶角为120︒ 腰长为12m ,则底边上的高是( )A .4mB .6mC .10mD .12m【答案】B 【分析】作AD BC ⊥于点D 根据等腰三角形的性质和三角形内角和定理可得()1180302B C BAC ∠=∠=︒-∠=︒ 再根据含30度角的直角三角形的性质即可得出答案. 【详解】解:如图,作AD BC ⊥于点DABC 中,120BAC ∠=︒ AB AC =∴()1180302B C BAC ∠=∠=︒-∠=︒AD BC ⊥∴11126m 22AD AB ==⨯=故选B .【点睛】本题考查等腰三角形的性质 三角形内角和定理 含30度角的直角三角形的性质等解题的关键是掌握30度角所对的直角边等于斜边的一半.8.如图,ABC 为等边三角形 点D E 分别在边BC AB 上 60ADE ∠=︒ 若4BD DC =2.4DE =,则AD 的长为( )A .1.8B .2.4C .3D .3.2【答案】C【分析】证明ADC DEB ∽△△ 根据题意得出45BD BC = 进而即可求解.【详解】解:①ABC 为等边三角形①60B C ∠=∠=︒①ADB ADE BDE C DAC ∠=∠+∠=∠+∠ 60ADE ∠=︒①BDE DAC ∠=∠①ADC DEB ∽△△ ①AD ACDE BD =①4BD DC = ①45BD BC =①AD AC DE BD =5445BC BC == ① 2.4DE = ①534AD DE =⨯= 故选:C .【点睛】本题考查了相似三角形的性质与判定 等边三角形的性质 熟练掌握相似三角形的性质与判定是解题的关键.9.下面是“作已知直角三角形的外接圆”的尺规作图过程: 已知:如图 1 在Rt ABC △中 90C ∠=︒.求作:Rt ABC △的外接圆.作法:如图2.(1)分别以点A 和点B 为圆心 大于12AB 的长为半径作弧 两弧相交于P Q 两点 (2)作直线PQ 交AB 于点O(3)以O 为圆心 OA 为半径作O O 即为所求作的圆.下列不属于...该尺规作图依据的是() A .两点确定一条直线B .直角三角形斜边上的中线等于斜边的一半C .与线段两个端点距离相等的点在这条线段的垂直平分线上D .线段垂直平分线上的点与这条线段两个端点的距离相等【答案】D【分析】利用直角三角形斜边中线的性质证明:OC OA OB ==即可.【详解】解:作直线PQ (两点确定一条直线)连接PA PB QA QB OC ,,,,①由作图 PA PB QA QB ==,①PQ AB ⊥且AO BO =(与线段两个端点距离相等的点在这条线段的垂直平分线上).①90ACB ∠=︒ ①12OC AB =(直角三角形斜边中线等于斜边的一半) ①OA OB OC ==①A B C 三点在以O 为圆心 AB 为直径的圆上.①O 为ABC 的外接圆.故选:D .【点睛】本题考查作图-复杂作图 线段的垂直平分线的定义 直角三角形斜边中线的性质等知识 解题的关键熟练掌握基本知识 属于中考常考题型.10.如图,在ABC 中 9034ABC AB BC ∠=︒==,, 点D 在边AC 上 且BD 平分ABC 的周长,则BD 的长是( )A B C D 【答案】C 【分析】如图所示 过点B 作BE AC ⊥于E 利用勾股定理求出5AC = 进而利用等面积法求出125BE =,则可求出95AE = 再由BD 平分ABC 的周长 求出32AD CD ==, 进而得到65DE =,则由勾股定理得BD ==【详解】解:如图所示 过点B 作BE AC ⊥于E①在ABC 中 9034ABC AB BC ∠=︒==,, ①225AC AB +BC ①1122ABC S AC BE BC AC =⋅=⋅△ ①125AB BC BE AC ⋅== ①2295AE AB BE =-= ①BD 平分ABC 的周长①AD AB BC CD +=+ 即34AD CD +=+又①5AD CD AC +==①32AD CD ==, ①65DE AD AE =-= ①2265BD BE DE =+=故选C .【点睛】本题主要考查了勾股定理 正确作出辅助线构造直角三角形是解题的关键.11.ABC 的三边长a b c 满足2()23|320a b a b c ----=,则ABC 是( )A .等腰三角形B .直角三角形C .锐角三角形D .等腰直角三角形【答案】D【分析】由等式可分别得到关于a b c 的等式 从而分别计算得到a b c 的值 再由222+=a b c 的关系 可推导得到ABC 为直角三角形.【详解】解①2()23|320a b a b c ---+-=又①()20230320a b a b c ⎧-≥⎪⎪--⎨-≥⎪⎩①()2000a b c ⎧-=-=⎪⎩①02300a b a b c ⎧-=⎪--=⎨⎪-⎩解得33a b c ⎧=⎪=⎨⎪=⎩ ①222+=a b c 且a b =①ABC 为等腰直角三角形故选:D .【点睛】本题考查了非负性和勾股定理逆定理的知识 求解的关键是熟练掌握非负数的和为0 每一个非负数均为0 和勾股定理逆定理.12.四边形ABCD 的边长如图所示 对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时 对角线AC 的长为( )A .2B .3C .4D .5【答案】B 【分析】利用三角形三边关系求得04AC << 再利用等腰三角形的定义即可求解.【详解】解:在ACD 中 2AD CD ==①2222AC -<<+ 即04AC <<当4AC BC ==时 ABC 为等腰三角形 但不合题意 舍去若3AC AB ==时 ABC 为等腰三角形故选:B .【点睛】本题考查了三角形三边关系以及等腰三角形的定义 解题的关键是灵活运用所学知识解决问题.二 填空题13.将形状 大小完全相同的两个等腰三角形如图所示放置 点D 在AB 边上 ①DEF 绕点D 旋转 腰DF 和底边DE 分别交①CAB 的两腰CA CB 于M N 两点 若CA=5 AB=6 AB=1:3,则MD+12⋅MA DN的最小值为 .【答案】23【分析】先求出AD=2 BD=4 根据三角形的一个外角等于与它不相邻的两个内角的和可得①AMD+①A=①EDF+①BDN 然后求出①AMD=①BDN 从而得到①AMD 和①BDN 相似 根据相似三角形对应边成比例可得MA MD BD DN= 求出MA•DN=4MD 再将所求代数式整理出完全平方的形式 然后根据非负数的性质求出最小值即可.【详解】①AB=6 AB=1:3 ①AD=6×13=2 BD=6﹣2=4 ①①ABC 和①FDE 是形状 大小完全相同的两个等腰三角形①①A=①B=①FDE 由三角形的外角性质得 ①AMD+①A=①EDF+①BDN ①①AMD=①BDN①①AMD①①BDN ①MA MD BD DN= ①MA•DN=BD•MD=4MD ①MD+12⋅MA DN =MD+2233()(2323MD MD MD+- =①3MD MD 即3MD+12⋅MA DN 有最小值为23故答案为考点:相似三角形的判定与性质 等腰三角形的性质 旋转的性质 最值问题 综合题.14.如图,在Rt ABC △中 90ACB ∠=︒ 点D 为BC 的中点 过点C 作CE AB ∥交AD 的延长线于点E 若4AC = 5CE =,则CD 的长为 .【答案】32/112/1.5 【分析】先根据AAS 证明BDA CDE △≌△ 推出5==BA CE 再利用勾股定理求出BC 最后根据中点的定义即可求CD 的长. 【详解】解:CE AB ∥∴BAD CED ∠=∠点D 为BC 的中点∴BD CD = 又BDA CDE ∠=∠∴BDA CDE △≌△()AAS∴5==BA CERt ABC △中 90ACB ∠=︒ 4AC =∴3BC === ∴1322CD BC ==. 故答案为:32. 【点睛】本题考查全等三角形的判定与性质 勾股定理 平行线的性质等 证明BDA CDE △≌△是解题的关键.15.如图,在Rt ABC 中 90ACB ∠=︒ 3AC BC == 点D 在直线AC 上 1AD = 过点D 作DE AB ∥直线BC 于点E 连接BD 点O 是线段BD 的中点 连接OE ,则OE 的长为 .541【分析】分两种情况当D 在CA 延长线上和当D 在CA 上讨论 画出图形 连接OC 过点O 作ON BC ⊥于N 利用勾股定理解题即可【详解】解:当在线段上时 连接OC 过点O 作ON BC ⊥于N①当D 在线段AC 上时1AD =2CD AC AD ∴=-=90BCD ∠=︒22222313BD CD BC ∴=+=+点O 是线段BD 的中点1132OC OB OD BD ∴====ON BC ⊥1322CN BN BC ∴===AB DE45COE A CBA CED ∴∠=∠=∠=∠=︒2CE CD ∴==31222NE ∴=-=221ON CO CN =-2222151()2OE ON NE ∴=++=②当D 在CA 延长线上时,则4CD AD AC =+=O 是线段BD 的中点 90BCD ∠=︒12OC OB OD BD ∴=== ON BC ⊥1322CN BN BC ∴=== OB OD =122ON CD ∴== AB DE45CAB COE CBA CED ∴∠=∠=∠=∠=︒4CE CD ∴==35422EN CE CN ∴=-=-=OE ∴==OE ∴【点睛】本题考查等腰直角三角形的判定和性质 勾股定理 正确作出辅助线是解题的关键.16.如图,在ABC 中 90,6C AC BC ∠=︒==.P 为边AB 上一动点 作PD BC ⊥于点D PE AC ⊥于点E ,则DE 的最小值为 .【答案】32【分析】连接CP 利用勾股定理列式求出AB 判断出四边形CDPE 是矩形 根据矩形的对角线相等可得DE CP = 再根据垂线段最短可得CP AB ⊥时 线段DE 的值最小 然后根据直角三角形的面积公式列出方程求解即可.【详解】解:如图,连接CP①90,6C AC BC ∠=︒== ①22226662AB AC BC ++=①PD BC ⊥于点D PE AC ⊥于点E 90ACB ∠=︒①四边形CDPE 是矩形①DE CP =由垂线段最短可得CP AB ⊥时 线段CP 的值最小 此时线段DE 的值最小此时 1122ABC S AC BC AB CP ==△⋅⋅ 代入数据:11666222CP ①32CP =①DE 的最小值为32故答案为:【点睛】本题考查了矩形的判定与性质 垂线段最短的性质 勾股定理 判断出CP AB ⊥时 线段DE 的值最小是解题的关键.17.如图.四边形ABCD 中 AB AD = BC DC = 60C ∠=︒ AE CD ∥交BC 于点E 8BC = 6AE =,则AB 的长为 .【答案】【分析】连接AC BD 交于点O 过点E 作EF AC ⊥ 交AC 于点F 先证明BCD △是等边三角形 AC垂直平分BD 求得30EAC ACD ACB ∠=∠=∠=︒ 6AE EC == 再解三角形求出AO AC CO =-= 4BO = 最后运用勾股定理求得AB 即可.【详解】解:如图:连接AC BD 交于点O又①BC DC = 60C ∠=︒①BCD △是等边三角形①8BD BC CD ===①AB AD = BC DC =①AC BD ⊥ 142BO DO BD === ①1302ACD ACB BCD ∠=∠=∠=︒ 又①AE CD ∥①30EAC ACD ACB ∠=∠=∠=︒.①6AE EC ==过点E 作EF AC ⊥ 交AC 于点F ①3cos30633CF CE =⋅︒==3cos30633AF AE =⋅︒==3cos3083CO BC =⋅︒==①63AC CF AF =+=①634323AO AC CO =-==①在Rt BOA 中 2222(23)427AB BO AO ++= 故答案为:27【点睛】本题属于四边形综合题 主要考查了等边三角形的判定和性质 平行线的性质 垂直平分线 勾股定理 解直角三角形等知识点 正确作出辅助线成为解答本题的关键.18.如图,已知50ABC ∠=︒ 点D 在BA 上 以点B 为圆心 BD 长为半径画弧 交BC 于点E 连接DE ,则BDE ∠的度数是 度.【答案】65【分析】根据题意可得BD BE = 再根据等腰三角形两个底角相等和三角形内角和为180°进行计算即可解答.【详解】解:根据题意可得:BD BE =①BDE BED ∠=∠①18050ABC BDE BED ABC ∠+∠+∠=︒∠=︒,①65BDE BED ∠=∠=︒.故答案为:65.【点睛】本题主要考查了等腰三角形的性质 三角形内角和等知识点 掌握等腰三角形的性质是解答本题的关键.19.如图,在ABC 中 以A 为圆心 AC 长为半径作弧 交BC 于C D 两点 分别以点C 和点D 为圆心 大于12CD 长为半径作弧 两弧交于点P 作直线AP 交CD 于点E 若5AC = 6CD =,则AE = .【答案】4【分析】利用圆的性质得出AP 垂直平分CD 和5AD AC == 运用勾股定理便可解决问题.【详解】解:根据题意可知 以点C 和点D 为圆心 大于12CD 长为半径作弧 两弧交于点P ①AP 垂直平分CD ,即90AED ∠=︒ ①132DE CD == 又①在ABC 中 以A 为圆心 AC 长为半径作弧 交BC 于C D 两点 其中5AC =①5AD AC ==在ADE 中 4AE =故答案为:4.【点睛】本题主要考查圆和三角形的相关性质 掌握相关知识点是解题的关键.20.如图,在ABC 中 以点C 为圆心 任意长为半径作弧 分别交AC BC 于点D E 分别以点DE 为圆心 大于12DE 的长为半径作弧 两弧交于点F 作射线CF 交AB 于点G 若9AC = 6BC = BCG 的面积为8,则ACG 的面积为 .【答案】12【分析】过点B 作BM AC ∥交CG 的延长线于点M 证明ACG BMG ∽ 得出AG AC AC GB BM BC == 根据96ACG BCG S AG AC S GB BC ===32= 即可求解. 【详解】解:如图所示 过点B 作BM AC ∥交CG 的延长线于点M①ACM CMB ∠=∠由作图可得CG 是ACB ∠的角平分线①ACM BCM ∠=∠①BCM CMB ∠=∠①BC BM =①BM AC ∥①ACG BMG ∽ ①AG AC AC GB BM BC== ①96ACG BCG S AG AC S GB BC ===32= ①BCG 的面积为8①ACG 的面积为12故答案为:12.【点睛】本题考查了相似三角形的性质与判定 作角平分线 熟练掌握基本作图以及相似三角形的性质与判定是解题的关键.21.如图,CD 为Rt ABC △斜边AB 上的中线 E 为AC 的中点.若8AC = 5CD =,则DE = .【答案】3【分析】首先根据直角三角形斜边中线的性质得出AB 然后利用勾股定理即可得出BC 最后利用三角形中位线定理即可求解.【详解】解:①在Rt ABC △中 CD 为Rt ABC △斜边AB 上的中线 5CD =①210AB CD ==①6BC①E 为AC 的中点 ①132DE BC == 故答案为:3.【点睛】本题主要考查直角三角形的性质 三角形中位线定理 掌握直角三角形中斜边上的中线等于斜边的一半是解题的关键.22.在 Rt △ABC 中, △ACB =90° AC =6 BC =8 D 是AB 的中点,则 CD = .【答案】5【分析】先根据题意画出图形 再运用勾股定理求得AB 然后再根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】解:如图:①△ACB =90° AC =6 BC =8 ①22226810AB AC BC①①ACB =90° D 为AB 的中点①CD =12AB =12×10=5.故答案为5.【点睛】本题主要考查了运用勾股定理解直角三角形 直角三角形斜边上的中线等于斜边的一半的性质等知识点 掌握“直角三角形斜边上的中线等于斜边的一半”成为解题的关键.三 解答题23.在Rt ABC △中 90BAC AD ∠=︒,是斜边BC 上的高.(1)证明:C ABD BA ∽△△(2)若610AB BC ==, 求BD 的长.【答案】(1)见解析 (2)185BD = 【分析】(1)根据三角形高的定义得出90ADB ∠=︒ 根据等角的余角相等 得出BAD C ∠=∠ 结合公共角B B ∠=∠ 即可得证(2)根据(1)的结论 利用相似三角形的性质即可求解.【详解】(1)证明:①90BAC AD ∠=︒,是斜边BC 上的高.①90ADB ∠=︒ 90B C ∠+∠=︒①90B BAD ∠+∠=︒①BAD C ∠=∠又①B B ∠=∠①C ABD BA ∽△△(2)①C ABD BA ∽△△ ①AB BD CB AB=又610AB BC ==, ①23618105AB BD CB ===. 【点睛】本题考查了相似三角形的性质与判定 熟练掌握相似三角形的性质与判定是解题的关键. 24.如图,BD 是等边ABC 的中线 以D 为圆心 DB 的长为半径画弧 交BC 的延长线于E 连接DE .求证:CD CE =.【答案】见解析【分析】利用三线合一和等腰三角形的性质 证出2E ∠=∠ 再利用等边对等角即可.【详解】证明:BD 为等边ABC 的中线BD AC ∴⊥ 160∠=︒330∴∠=︒BD DE =330E ∴∠=∠=︒2160E ∠+∠=∠=︒230E ∴∠=∠=︒CD CE ∴=【点睛】本题考查了等边三角形 等腰三角形的性质和判定 理解记忆相关定理是解题的关键.25.如图,在四边形ABCD 中 点E 是边BC 上一点 且BE CD = B AED C ∠=∠=∠.(1)求证:EAD EDA ∠=∠(2)若60C ∠=︒ 4DE =时 求AED △的面积.【答案】(1)见解析 (2)3【分析】(1)由B AED ∠=∠求出BAE CED ∠=∠ 然后利用AAS 证明BAE CED ≅ 可得EA ED = 再由等边对等角得出结论(2)过点E 作EF AD ⊥于F 根据等腰三角形的性质和含30︒直角三角形的性质求出DF 和AD 然后利用勾股定理求出EF 再根据三角形面积公式计算即可.【详解】(1)证明:①B AED ∠=∠①180180B AED ︒-∠=︒-∠ 即BEA BAE BEA CED ∠+∠=∠+∠①BAE CED ∠=∠在BAE 和CED △中 B C BAE CED BE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩①()AAS BAE CED ≅①EA ED =①EAD EDA ∠=∠(2)解:过点E 作EF AD ⊥于F由(1)知EA ED =①60C AED ︒∠=∠=①30AEF DEF ∠=∠=︒①4DE = ①122DF DE == ①24AD DF == 22224223EF DE DF =--①11422AED S AD EF =⋅=⨯⨯=【点睛】本题考查了三角形内角和定理 全等三角形的判定和性质 等腰三角形的性质 含30︒直角三角形的性质以及勾股定理等知识 正确寻找证明三角形全等的条件是解题的关键.。

通用版中考数学二轮复习专题10:等腰三角形探究同步测试(含答案)

通用版中考数学二轮复习专题10:等腰三角形探究同步测试(含答案)

通用版中考数学二轮复习专题10:等腰三角形探究同步测试(含答案)一、选择题1.如图,Rt△ABC的斜边AB与量角器的直径恰好重合,B点与0刻度线的一端重合,∠ABC=40°,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将△ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是( D )A.40°B.70°C.70°或80°D.80°或140°,第1题图) ,第2题图) 2.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有( D )A.1个B.2个C.3个D.3个以上【解析】如图,在OA,OB上截取OE=OF=OP,作∠MPN=60°.∵OP平分∠AOB,∴∠EOP=∠POF=60°,∵OP=OE=OF,∴△OPE,△OPF是等边三角形,∴EP=OP,∠EPO=∠OEP =∠PON=∠MPN=60°,∴∠EPM=∠OPN,可证△PEM≌△PON(ASA),∴PM=PN,∵∠MPN =60°,∴△POM是等边三角形,∴只要∠MPN=60°,△PMN就是等边三角形,故这样的三角形有无数个.二、填空题3.正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点,若△PBE 是等腰三角形,则腰长为22.【解析】如图①,当E ,C 重合时,PB =PC =25;在AB 上取E 使PE =EB ,如图②,设AE =x ,∴(4-x )2=x 2+4,解得x =32,使PE =52;在BP 上取中点M ,如图③,作ME ⊥PB 交DC 于E .设EC =x ,由PE =BE 知42+x 2=22+(4-x )2,解得x =12,∴PE =22+(4-12)2=652.4.如图,在菱形ABCD 中,AB =4 cm ,∠ADC =120°,点E ,F 同时由A ,C 两点出发,分别沿AB ,CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1 cm/s ,点F 的速度为2 cm/s ,经过t 秒△DEF 为等边三角形,则t 的值为__43__.三、解答题5.如图,已知点A (1,2)是反比例函数y =kx图象上的一点,连结AO 并延长交双曲线的另一分支于点B ,点P 是x 轴上一动点;若△PAB 是等腰三角形,求点P 的坐标.解:∵反比例函数y =k x图象关于原点对称,∴A ,B 两点关于O 对称,∴O 为AB 的中点,且B (-1,-2),∴当△PAB 为等腰三角形时有PA =AB 或PB =AB ,设P 点坐标为(x ,0),∵A (1,2),B (-1,-2),∴AB =[1-(-1)]2+[2-(-2)]2=25,PA =(x -1)2+22,PB =(x +1)2+(-2)2,当PA =AB 时,则有(x -1)2+22=25,解得x =-3或5,此时P 点坐标为(-3,0)或(5,0);当PB =AB 时,则有(x +1)2+(-2)2=25,解得x =3或-5,此时P 点坐标为(3,0)或(-5,0).综上可知P 点的坐标为(-3,0)或(5,0)或(3,0)或(-5,0)6.已知抛物线c 1的顶点为A (-1,4),与y 轴的交点为D (0,3),抛物线c 1关于y 轴对称的抛物线记作c 2.(1)求c 2的解析式;(2)若c 2与x 轴正半轴交点记作B ,试在x 轴上求点P ,使△PAB 为等腰三角形.解:(1)∵抛物线的顶点为A (-1,4),∴c 1设的解析式为:y =a (x +1)2+4,∵抛物线c 1与y 轴的交点为D (0,3)∴3=a +4,即a =-1,∴y =-(x +1)2+4.∵抛物线c 1关于y 轴对称的抛物线记作c 2,∴c 2:y =-x 2+2x +3(2)∵c 2与x 轴正半轴交点记作B ,∴点B (3,0),∵点A (-1,4),∴AB =42+42=42,当PB =AB 时,点P (3-42,0)或(3+42,0);当PA =AB 时,点P (-5,0);当PA=PB 时,点P (-1,0),所以,当点P 为(3-42,0)或(3+42,0)或(-5,0)或(-1,0)时,△PAB 为等腰三角形7.在等腰直角三角形ABC 中,∠BAC =90°,AB =AC ,直线MN 过点A 且MN ∥BC ,过点B 为一锐角顶点作Rt △BDE ,∠BDE =90°,且点D 在直线MN 上(不与点A 重合),如图1,DE 与AC 交于点P ,易证:BD =DP .(无需写证明过程)(1)在图2中,DE 与CA 的延长线交于点P ,BD =DP 是否成立?如果成立,请给予证明;如果不成立,请说明理由;(2)在图3中,DE 与AC 的延长线交于点P ,BD 与DP 是否相等?请直接写出你的结论,无需证明.解:(1)BD =DP 成立,证明:如图②,过点D 作DF ⊥MN ,交AB 的延长线与点F ,则△ADF 为等腰直角三角形,∴DA =DF.∵∠1+∠ADB =90°,∠ADB +∠2=90°,∴∠1=∠2.在△BDF 与△PDA 中,⎩⎪⎨⎪⎧∠2=∠1,DF =DA ,∠DFB =∠DAP =45°,∴△BDF ≌△PDA (ASA ),∴BD =DP(2)BD =DP.证明:如图③,过点D 作DF ⊥MN ,交BA 的延长线于点F ,则△ADF 为等腰直角三角形,∴DA =DF.在△BDF 与△PDA 中,⎩⎪⎨⎪⎧∠F =∠PAD =45°,DF =DA ,∠BDF =∠PDA ,∴△BDF ≌△PDA (ASA ),∴BD =DP8.如图1,在平面直角坐标系中,矩形ABCO ,抛物线y =-12x 2+bx +c 经过矩形ABCO 的顶点B (4,3),C ,D 为BC 的中点,直线AD 与y 轴交于E 点,与抛物线交于第四象限的F 点.(1)求该抛物线解析式与F 点坐标;(2)如图2,动点P 从点C 出发,沿线段CB 以每秒1个单位长度的速度向终点B 运动;同时,动点M 从点A 出发,沿线段AE 以每秒132个单位长度的速度向终点E 运动.过点P 作PH ⊥OA ,垂足为H , 连结MP ,MH .设点P 的运动时间为t 秒.若△PMH 是等腰三角形,求出此时t 的值.解:(1)∵矩形ABCO ,B 点坐标为(4,3),∴C 点坐标为(0,3),∵抛物线y =-12x 2+bx+c 经过矩形ABCO 的顶点B ,C ,∴⎩⎪⎨⎪⎧c =3,-8+4b +c =3,解得:⎩⎪⎨⎪⎧c =3,b =2,∴该抛物线解析式y=-12x 2+2x +3,设直线AD 的解析式为y =k 1x +b 1,∵A (4,0),B (2,3),∴⎩⎪⎨⎪⎧4k 1+b 1=0,2k 1+b 1=3,∴⎩⎪⎨⎪⎧k 1=-32,b 1=6,∴y =-32x +6,联立⎩⎪⎨⎪⎧y =-32x +6,y =-12x 2+2x +3,∵F 点在第四象限,∴F (6,-3)(2)如图①过M 作MN ⊥OA 交OA 于N ,∵△AMN ∽△AEO ,∴AM AE=AN AO =MN EO,∴AN =t ,MN =32t ,①如图③,当PM =HM 时,M 在PH 的垂直平分线上,∴MN =12PH ,∴MN =32t=32,∴t =1;②如图①,当HM =HP 时,MH =3,MN =32t ,HN =OA -AN -OH =4-2t ,在Rt △HMN 中,MN 2+HN 2=MH 2,∴(32t )2+(4-2t )2=32,解得:t 1=2(舍去),t 2=1425;③如图②,如图④,当PH =PM 时,∵PM =3,MT =|3-32t|,PT =BC -CP -BT =|4-2t|,∴在Rt △PMT 中,MT 2+PT 2=PM 2,即(3-32t )2+(4-2t )2=32,解得:t 1=165,t 2=45.综上所述:t =1425或45或1或165.。

2021年中考数学 二轮专题汇编:等腰三角形(含答案)

2021年中考数学 二轮专题汇编:等腰三角形(含答案)

2021中考数学 二轮专题汇编:等腰三角形一、选择题 1. 如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC=45°,则∠ACE 等于 ( )A .15°B .30°C .45°D .60°2. 如K19-6,BD 是△ABC 的角平分线,AE ⊥BD ,垂足为F .若∠ABC=35°,∠C=50°,则∠CDE 的度数为 ( )A .35°B .40°C .45°D .50°3. 如图,∠AOB =50°,OM 平分∠AOB ,MA ⊥OA于点A ,MB ⊥OB 于点B ,则∠MAB 等于( )A .50°B .40°C .25°4. (2019•广西)如图,在ABC ∆中,,40AC BC A =∠=︒,观察图中尺规作图的痕迹,可知BCG ∠的度数为A.40︒B.45︒C.50︒D.60︒5. (2020·玉林)如图,A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个()A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形6. (2020·绍兴)如图,等腰直角三角形ABC中,∠ABC=90°,BA=BC,将BC 绕点B顺时针旋转θ(0°<θ<90°),得到BP,连结CP,过点A作AH⊥CP交CP的延长线于点H,连结AP,则∠P AH的度数()A.随着θ的增大而增大B.随着θ的增大而减小C.不变D.随着θ的增大,先增大后减小7. 如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A. x-y2=3B. 2x-y2=9C. 3x-y2=15D. 4x-y2=218. (2020·烟台)七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数学活动课上,小明用边长为4cm的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品﹣﹣“奔跑者”,其中阴影部分的面积为5cm2的是()A .B .C .D .二、填空题9. 若等腰三角形的顶角为120°,腰长为2 cm ,则它的底边长为________ cm .10. (2020·襄阳)如图,在△ABC 中,AB =AD =DC ,∠BAD =20°,则∠C =__________°.DCB A11. 如图,AD 是△ABC 的边BC 上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是________.(把所有正确答案的序号都填写在横线上) ①∠BAD =∠ACD ②∠BAD =∠CAD③ AB +BD =AC +CD ④ AB -BD =AC -CD12. (2020·营口)如图,△ABC为等边三角形,边长为6,AD ⊥BC ,垂足为点D ,点E 和点F 分别是线段AD 和AB 上的两个动点,连接CE ,EF ,则CE +EF 的最小值为 .EFA13. 如图,BO 平分∠CBA ,CO 平分∠ACB ,MN 过点O 且MN ∥BC ,设AB =12,AC =18,则△AMN 的周长为________.14. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.15. (2019•哈尔滨)在ABC△中,50A∠=︒,30B∠=︒,点D在AB边上,连接CD,若ACD△为直角三角形,则BCD∠的度数为__________.16. (2020·聊城)如图,在直角坐标系中,点A(1,1),B(3,3)是第一象限角平分线上的两点,点C的纵坐标为1,且CA=CB,在y轴上取一点D,连接AC,BC,AD,BD,使得四边形ACBD的周长最小,这个最小周长的值为.三、解答题17. 如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.18. 已知:如图,B,E,F,C四点在同一条直线上,AB=DC,BE=CF,∠B =∠C.求证:OA=OD.ODABCxy19. 如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=1,CF=2时,求AC的长.20. 如图,在△ABC中,CD是AB边上的高,BE是AC边上的中线,且BD=CE.求证:(1)点D在BE的垂直平分线上;(2)∠BEC=3∠ABE.21. 如图,在四边形ABCD中,∠DAB=∠ABC=90°,AB=BC,E是AB的中点,CE⊥BD,连接AC交DE于点M.(1)求证:AD=BE;(2)求证:AC是线段ED的垂直平分线;(3)△DBC是等腰三角形吗?说明理由.22. 如图,已知等腰直角三角形ABC,点P是斜边BC上一点(不与B,C重合),PE是△ABP的外接圆⊙O的直径.(1)求证:△APE是等腰直角三角形;(2)若⊙O的直径为2,求PC2+PB2的值.23. (1)如图①,在四边形ABCD中,AB∥DC,点E是BC的中点,若AE是∠BAD 的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB,AD,DC之间的等量关系为;(2)问题探究:如图②,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,点E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.①②24. 如图,在△ABC中,AB=AC=5 cm,BC=6 cm,AD是BC边上的高.点P由C出发沿CA方向匀速运动.速度为1 cm/s.同时,直线EF由BC出发沿DA方向匀速运动,速度为1 cm/s,EF//BC,并且EF分别交AB、AD、AC于点E,Q,F,连接PQ.若设运动时间为t(s)(0<t <4),解答下列问题:(1)当t为何值时,四边形BDFE是平行四边形?(2)设四边形QDCP的面积为y(cm2),求出y与t之间的函数关系式;(3)是否存在某一时刻t,使点Q在线段AP的垂直平分线上?若存在,求出此时点F到直线PQ的距离h;若不存在,请说明理由.2021中考数学二轮专题汇编:等腰三角形-答案一、选择题1. 【答案】A[解析]∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD,AD是BC的垂直平分线,∴BE=CE,∴∠EBC=∠ECB=45°,∴∠ECA=60°-45°=15°.2. 【答案】C[解析]因为BD平分∠ABC,AE⊥BD,BF=BF,所以△ABF≌△EBF,易得BD是线段AE的垂直平分线,∠BAF=∠BEF,所以AD=ED,所以∠DEA=∠DAE,所以∠BAD=∠BED=180°-35°-50°=95°,所以∠CDE=∠BED-∠C=95°-50°=45°,故选C.3. 【答案】C[解析] ∵OM平分∠AOB,MA⊥OA于点A,MB⊥OB于点B,∴∠AOM=∠BOM=25°,MA=MB.∴∠OMA=∠OMB=65°.∴∠AMB=130°.∴∠MAB=12×(180°-130°)=25°.故选C.4. 【答案】C【解析】由作法得CG AB ⊥,∵AB AC =,∴CG 平分ACB ∠,A B ∠=∠,∵1804040100ACB ∠=︒-︒-︒=︒,∴1502BCG ACB ∠=∠=︒.故选C .5. 【答案】A【解析】如图所示:∵C 岛在A 岛的北偏东35°方向,∴∠CAD =35°, ∵B 岛在A 岛的北偏东80°方向,∴∠BAD =80°,∴∠CAB =∠BAD -∠CAD =45°,∵C 岛在B 岛北偏西55°方向,∴∠CBE =55°,又∵DA ∥EB ,∴∠ABE +∠BAD =180°,∴∠ABE =100°, ∵∠CBE =55°,∴∠CBA =100°-55°=45°,∴∠CBA =∠CAB ,∴CA =CB , 在△ABC 中,∴∠C =180°-∠ABC -∠CAB =180°-45°-45°=90°,∴△ABC 为等腰直角三角形,故选:C . 6. 【答案】C【解析】本题考查了等腰三角形的性质,三角形的内角和,旋转的性质.由旋转得BC=BP=BA ,∴△BCP 和△ABP 均是等腰三角形.在△BCP 中,∠CBP=θ,BC=BP ,∴∠BPC=90°-12θ.在△ABP 中,∠ABP=90°-θ,同理得∠APB=45°+12θ,∴∠APC=∠BPC +∠APB =135°,又∵∠AHC=90°,∴∠PAH=45°,即其度数是个定值,不变.因此本题选C .7. 【答案】B 【解析】连接DE ,过点A 作AF ⊥BC ,垂足为F ,过E 作EG ⊥BC ,垂足为G .∵AB =AC ,AF ⊥BC ,BC =12,∴BF =FC =6,又∵E 是AC 的中点,EG ⊥BC ,∴EG ∥AF ,∴CG =FG =12CF =3,∵在Rt △CEG 中,tan C =EGCG ,∴EG =CG×tan C =3y ;∴DG =BF +FG -BD =6+3-x =9-x ,∵HD 是BE 的垂直平分线,∴BD =DE =x ,∵在Rt △EGD 中,由勾股定理得,ED 2=DG 2+EG 2,∴x 2=(9-x)2+(3y)2,化简整理得,2x -y 2=9.8. 【答案】最小的等腰直角三角形的面积42=1(cm 2),平行四边形面积为2cm 2,中等的等腰直角三角形的面积为2cm 2,最大的等腰直角三角形的面积为4cm2,则A、阴影部分的面积为2+2=4(cm2),不符合题意;B、阴影部分的面积为1+2=3(cm2),不符合题意;C、阴影部分的面积为4+2=6(cm2),不符合题意;D、阴影部分的面积为4+1=5(cm2),符合题意.故选:D.二、填空题9. 【答案】23【解析】如解图,由已知得,∠B=∠C=12(180°-120°)=30°,AB=2,∴底边长为:BC=2BD=2AB·cos30°=23(cm).10. 【答案】40.【解析】∵AB=AD=DC,∴∠ABD=∠ADB,∠DAC=∠C.∵∠BAD=20°,∴∠ADB=180202︒-︒=80°.又∵∠ADB=∠DAC+∠C,∴∠C=12∠ADB=40°.故答案为40.序号正误逐项分析①×△BAD与△ACD中,虽有两角和一边相等,但不是对应关系的角和边,所以不能判定两三角形全等,因而也就不能得出AB=AC②√∠BAD=∠CAD结合AD是△ABC的边BC上的高,可得∠B=∠C,所以AB=AC,因而△ABC是等腰三角形③√由于AD是△ABC的边BC上的高,所以∠ADB=∠ADC=90°,因而AB2-BD2=AC2-CD2,于是(AB+BD)(AB-BD)=(AC+CD)(AC-CD),由AB+BD=AC+CD ,得AB-BD=AC-CD ,两式相加得2AB=2AC,所以,AB=AC,得△ABC是等腰三角形④√由于AD是△ABC的边BC上的高,所以∠ADB=∠ADC=90°,因而AB2-BD2=AC2-CD2,于是(AB+BD)(AB-BD)=(AC+CD)(AC-CD),由AB-BD=AC-CD ,得AB+BD=AC+CD ,两式相加得2AB=2AC,所以AB=AC,得△ABC是等腰三角形12. 【答案】33【解析】如图1,根据两点之间线段最短,可得CE+EF≥CF,又根据垂线段最短可得,当CF⊥AB时,CF有最小值,此时CF与AD的交点即为点E(如图2),在R t △AFC 中,AC=6,∠AFC=90°,∠FAC=60°,∴FC=AC·sin 60°=6×32=33.13. 【答案】30[解析] ∵MN ∥BC ,∴∠MOB =∠OBC.∵∠OBM =∠OBC , ∴∠MOB =∠OBM. ∴MO =MB.同理NO =NC. ∴△AMN 的周长=AM +MO +AN +NO =AM +MB +AN +NC=AB +AC=30.14. 【答案】6[解析] 已知三角形的一外角为120°,则相邻内角度数为60°,那么含有60°角的等腰三角形是等边三角形.已知等边三角形的一边长为2,则其周长为6.15. 【答案】60︒或10︒【解析】分两种情况: ①如图1,当90ADC ∠=︒时,∵30B ∠=︒,∴903060BCD ∠=︒-︒=︒; ②如图2,当90ACD ∠=︒时,DEFAFE D图1图2∵50A ∠=︒,30B ∠=︒,∴1803050100ACB ∠=︒-︒-︒=︒,∴1009010BCD ∠=︒-︒=︒,综上,则BCD ∠的度数为60︒或10︒.故答案为:60︒或10︒.16. 【答案】4+25【解析】先求点C 的坐标,再利用最短路径知识确定D 点位置,最后求四边形ACBD 的最小周长即可.由点A 与点C 的纵坐标均为1,可知AC ∥x 轴,又点A ,B 是第一象限角平分线上的两点,∴∠BAC =45°,又∵CA =CB ,∴∠CBA =45°,∴AC ⊥BC ,∴C(3,1),则AC =BC =2.如图,作点A 关于y 轴的对称点E ,连接BE 交y 轴于点D ,此时AD +BD 的值最小,为线段BE 的长.由轴对称性可知AE=2,则EC=4.在R t △BCE 中,根据勾股定理,得BE =22EC BC +=2242+=25.∴四边形ACBD 的最小周长为2+2+25=4+25. 三、解答题17. 【答案】解:(1)(方法一):∵AB=AC ,∠C=42°,∴∠B=∠C=42°,∴∠BAC=180°-∠B -∠C=180°-42°-42°=96°.∵AD ⊥BC ,OD A BC xyE∴∠BAD=∠BAC=×96°=48°.(方法二):∵AB=AC ,∠C=42°,∴∠B=∠C=42°.∵AD ⊥BC 于点D ,∴∠ADB=90°,∴∠BAD=180°-90°-42°=48°.(2)证明:∵EF ∥AC ,∴∠CAF=∠F ,∵AB=AC ,AD ⊥BC ,∴∠CAF=∠BAF ,∴∠F=∠BAF ,∴AE=FE.18. 【答案】证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE.在△ABF 和△DCE 中,⎩⎨⎧AB =DC ,∠B =∠C ,BF =CE ,∴△ABF ≌△DCE.∴AF =DE ,∠AFB =∠DEC.∴OF =OE.∴AF -OF =DE -OE ,即OA =OD.19. 【答案】解:(1)证明:∵CF ∥AB ,∴∠B=∠FCD ,∠BED=∠F .∵AD 是BC 边上的中线,∴BD=CD ,∴△BDE ≌△CDF .(2)∵△BDE ≌△CDF ,∴BE=CF=2,∴AB=AE +BE=1+2=3.∵AD ⊥BC ,BD=CD , ∴AC=AB=3.20. 【答案】证明:(1)如图,连接DE.∵CD 是AB 边上的高,∴CD ⊥AB.∴∠ADC=90°.∵AE=CE ,∴DE=AC=CE=AE.∵BD=CE ,∴DE=BD.∴点D 在线段BE 的垂直平分线上.(2)∵BD=DE ,∴∠ADE=2∠ABE.∵DE=AE ,∴∠A=∠ADE=2∠ABE.∴∠BEC=∠ABE +∠A=3∠ABE.21. 【答案】解:(1)证明:∵∠ABC =90°,∴∠ABD +∠DBC =90°.∵CE ⊥BD ,∴∠BCE +∠DBC =90°.∴∠ABD =∠BCE.在△DAB 和△EBC 中,⎩⎨⎧∠ABD =∠BCE ,AB =BC ,∠DAB =∠EBC =90°,∴△DAB ≌△EBC(ASA).∴AD =BE.(2)证明:∵E 是AB 的中点,∴AE =BE.∵BE =AD ,∴AE =AD.∴点A 在线段ED 的垂直平分线上.∵AB =BC ,∠ABC =90°,∴∠BAC =∠BCA =45°.∵∠BAD =90°,∴∠BAC =∠DAC =45°.在△EAC 和△DAC 中,⎩⎨⎧AE =AD ,∠EAC =∠DAC ,AC =AC ,∴△EAC ≌△DAC(SAS).∴CE =CD.∴点C 在线段ED 的垂直平分线上.∴AC 是线段ED 的垂直平分线.(3)△DBC 是等腰三角形.理由:由(1)知△DAB ≌△EBC ,∴BD =CE.由(2)知CE =CD.∴BD =CD.∴△DBC 是等腰三角形.22. 【答案】【思路分析】(1)因为PE 是直径,所以∠PAE =90°,要证△PAE 是等腰直角三角形,只要证PA =EA ,由已知得∠PBA =45°,而∠PEA 与∠PBA 是同弧所对的圆周角,所以∠PEA =∠PBA ,问题得证;(2)由(1)得△PAC ≌△EAB ,所以PC =BE ,因为PE 是直径,所以∠PBE =90°,所以PC 2+PB 2=BE 2+PB 2=PE 2=4.解图(1)证明:如解图,∵△ABC 是等腰直角三角形,∴AC =AB ,∠CAB =90°,∠PBA =45°,∵在⊙O 中,∠PEA 与∠PBA 都是AP ︵所对的圆周角,∴∠PEA =∠PBA =45°,∵PE 为⊙O 的直径,∴∠PAE =90°,(4分)∴△PAE 为等腰直角三角形且AP =AE ;(5分)(2)∵∠PAE =∠CAB =90°,∴∠CAB -∠PAB =∠PAE -∠PAB ,∴∠CAP =∠BAE ,∴△CAP ≌△BAE(SAS ),(8分)∠C =∠ABE =45°,∠PBE =∠PBA +∠ABE =90°(10分)在Rt △PBE 中,PC 2+PB 2=PE 2=4.(12分)23. 【答案】解:(1)AD=AB +DC[解析]延长AE 交DC 的延长线于点F ,∵AB ∥DC ,∴∠BAF=∠F .∵E 是BC 的中点,∴CE=BE.在△AEB 和△FEC 中,∴△AEB ≌△FEC ,∴AB=FC.∵AE 是∠BAD 的平分线,∴∠DAF=∠BAF ,∴∠DAF=∠F ,∴DF=AD ,∴AD=DC +CF=DC +AB.故答案为:AD=AB +DC.(2)AB=AF +CF .证明:如图,延长AE 交DF 的延长线于点G ,∵E 是BC 的中点,∴CE=BE ,∵AB ∥DC ,∴∠BAE=∠G .在△AEB 和△GEC 中, ∴△AEB ≌△GEC ,∴AB=GC.∵AE 是∠BAF 的平分线,∴∠BAG=∠F AG ,∴∠F AG=∠G ,∴F A=FG ,∴AB=CG=AF +CF .24. 【答案】(1)如解图①,连接DF ,解图①∵AB =AC =5,BC =6,AD ⊥BC ,∴BD =CD =3, 在Rt △ABD 中AD =52-32=4,∵EF //BC ,∴△AEF ∽△ABC ,∴EF BC =AQ AD ,∴EF 6=4-t 4,∴EF =32(4-t ),∵EF //BD ,∴当EF =BD 时,四边形EFDB 是平行四边形, ∴32(4-t )=3, ∴t =2,∴当t =2s 时,四边形EFDB 是平行四边形;(2)如解图②,作PN ⊥AD 于N ,解图②∵PN //DC ,∴PN DC =AP AC ,∴PN 3=5-t 5,∴PN =35(5-t ),∴y =12DC ·AD -12AQ ·PN=6-12(4-t ) ·35(5-t )=6-(310t 2-2710t +6)=-310t 2+2710t (0<t <4);(3)存在.理由如下:如解图③,作QN ⊥AC 于N ,作FH ⊥PQ 于H .解图③∵当QN 为AP 的垂直平分线时QA =QP ,QN ⊥AP ,∴AN =NP =12AP =12(5-t ),由题意cos ∠CAD =AD AC =AN AQ ,∴12(5-t )4-t=45,∴t =73, ∴当t =73s 时,点Q 在线段AP 的垂直平分线上.∵sin ∠FPH =FH PF =sin ∠CAD =35,∵P A =5-73=83,AF =AQ ÷45=2512, ∴PF =712,∴FH =720.∴点F 到直线PQ 的距离h =720(cm).。

2021届初三数学中考复习 等腰三角形 专项复习练习 含答案

2021届初三数学中考复习 等腰三角形 专项复习练习 含答案

2021届初三数学中考复习等腰三角形专项复习练习1.如图,在△ABC中,AB=AD=DC,∠B=70°,那么∠C的度数为( ) A.35° B.40° C.45° D.50°2. 等腰三角形的一边长为4,另一边长为8,那么这个等腰三角形的周长为( )A.16 B.20或16 C.20 D.123. 如图,假设△ABC是等边三角形,AB=6,BD是∠ABC的平分线,延长BC到E,使CE=CD,那么BE=( )A.7 B.8 C.9 D.104. 某城市几条道路的位置关系如下图,AB∥CD,AE与AB的夹角为48°,假设CF与EF的长度相等,那么∠C的度数为( )A.48° B.40° C.30° D.24°5. 实数x,y满足|x-4|+y-8=0,那么以x,y的值为两边长的等腰三角形的周长是( )A.20或16 B.20 C.16 D.以上答案均不对6. 如图,在等边三角形ABC中,D是AC边上的中点,延长BC到点E,使CE=CD,那么∠E的度数为( )A.15° B.20° C.30° D.40°7. 如图,在△ABC中,AB=AC,D为BC上一点且DA=DC,BD=BA,那么∠B的大小为( )A.40° B.36° C.30° D.25°8. 如图,等边△OAB的边长为2,那么点B的坐标为( )A.(1,1) B.(3,1) C.(3,3) D.(1,3)9. 如图,是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,假如点P是某个小矩形的顶点,连接PA,PB,那么使△ABP为等腰直角三角形的点P的个数是( )A.2个 B.3个 C.4个 D.5个10. 如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE 和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB平分∠AMC.其中结论正确的有( )A.1个 B.2个 C.3个 D.4个11. 等腰三角形一腰上的高与腰的夹角为50°,那么顶角的度数为___________.12. 如图1所示是一把园林剪刀,把它抽象为图2,其中OA=OB.假设剪刀张开的角为30°,那么∠A=________度.13. 等腰三角形的一个内角为80°,那么顶角的度数是__________________.14. 如图,锐角△ABC的两条高BD,CE相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的平分线上,并说明理由.参考答案:1---10 ACCDB CBDBD11. 140°或40°12. 7513. 80°或20°14. 解:(1)∵BO=OC,∠BEO=∠CDO=90°,∠BOE=∠COD,∴△BEO≌△CDO,∴∠EBO=∠DCO.又∵∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形(2)点O在∠BAC的平分线上.理由:连接AO,∵AB=AC,BO=OC,AO=AO,∴△ABO≌△ACO,∴∠BAO=∠CAO,∴点O在∠BAC的平分线上。

初三中考数学复习等腰三角形专项基础训练题含答案

初三中考数学复习等腰三角形专项基础训练题含答案

2019 初三中考数学复习等腰三角形专项基础训练题1.若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D.70°2.如图,在△ ABC 中,点 D 在 BC 上, AB =AD =DC,∠ B=80°,则∠ C 的度数为()A.30°B.40°C.45°D.60°3. 在△ ABC 中,∠ B=∠ C,AB =5,则 AC 的长为 ()A.2B.3C.4D.54. 以下条件中,不可以判断△A BC 是等腰三角形的是 ()A.a=3,b=3,c=4B.a∶b∶c=2∶3∶4C.∠ B=50°,∠ C=80°D.∠ A∶∠ B∶∠ C=1∶1∶25.如图,在△ ABC 中,∠ A=36°,AB=AC ,BD 是∠ ABC 的均分线.若在边AB 上截取 BE=BC ,连结 DE,则图中等腰三角形共有()A.2 个B.3 个C.4 个D.5 个6.如图,在△ ABC 和△ DCB 中,∠ A=∠ D=72°,∠ ACB =∠ DBC =36°,则图中等腰三角形有 ()A.2 个B.3 个C.4 个D.5 个7. 有两个角等于 60°的三角形是三角形;有一个角等于60°的三角形是等边三角形 .8. 在△ ABC 中,∠ A=30°,当∠ B=_____________时,△ ABC 是等腰三角形.9.如图,△ ABC 为等边三角形, D,E,F 分别在边 BC,CA,AB 上,且 AE=CD =BF,则△ DEF 为_______三角形.10.如图,∠ BOC =60°,点 A 是 BO 延伸线上的一点, OA =10 cm,动点 P 从点A 出发沿 AB 以 2 cm/s 的速度挪动,动点Q 从点 O 出发沿 OC 以 1 cm/s 的速度移动,假如点 P,Q 同时出发,用 t(s)表示挪动的时间,当t=_________时,△ POQ 是等腰三角形.11.如图,△ABC 内有一点 D,且 DA =DB=DC,∠DAB = 20°,∠DAC =30°,则∠ BDC 的大小是 ________.12.如图,已知直线 l 1∥l2,将等边三角形如图搁置.若∠α=40 °,则∠ β=_________ .°13. 如图,在正方形ABCD的外侧作等边三角形ADE ,则∠ BED 的度数是________.14.如图,在△ ABC 中, AC=8,BC=5, AB 的垂直均分线 DE 交 AB 于点 D,交边 AC 于点 E,则△ BCE 的周长为 _________.15.如图,已知 AB ∥EF,CE=CA,∠ E=65°,求∠ CAB 的度数.16.如图,△ ABC 为等边三角形, BD=AB ,BD 与 AC 交于点 E,当点 E 在 AC上运动时,∠ ADC 的大小能否发生变化?假如变化,恳求出变化范围;假如不变,请说明原因.参照答案:1---6DBDBD D7.等边等腰8.75°或 30°9.等边1011.100°12.2013.45°14.1315.解:∵ CE=CA,∴∠ CAE=∠ E=65°,∴∠ ACE=180°-∠ CAE-∠ E=50°,∵ AB ∥EF,∴∠ CAB =∠ ACE=50°.16.解:∠ ADC 的大小不变.原因:∵△ ABC 是等边三角形,∴ AB= AC=BC,∠ABC =60°.∵BD =AB =BC,∴∠ BAD =∠ BDA ,∠ BDC=∠ BCD. ∵∠ BDA +∠ BAD +∠ BDC +∠ BCD +∠ ABC =360°,∴ 2∠BDA + 2∠ BDC + 60°=360°,∴∠ BDA +∠ BDC =150°,即∠ ADC =150°.。

备考2024年中考数学二轮复习-图形的性质_三角形_等腰直角三角形-解答题专训及答案

备考2024年中考数学二轮复习-图形的性质_三角形_等腰直角三角形-解答题专训及答案

备考2024年中考数学二轮复习-图形的性质_三角形_等腰直角三角形-解答题专训及答案等腰直角三角形解答题专训1、(2012淮安.中考真卷) 如图,△ABC中,∠C=90°,点D在AC上,已知∠BDC=45°,BD=10 ,AB=20.求∠A的度数.2、(2018红桥.中考模拟) 在平面直角坐标系中,O为原点,点A(1,0),点B(0,),把△ABO绕点O顺时针旋转,得A′B′O,记旋转角为α.(Ⅰ)如图①,当α=30°时,求点B′的坐标;(Ⅱ)设直线AA′与直线BB′相交于点M.如图②,当α=90°时,求点M的坐标;②点C(﹣1,0),求线段CM长度的最小值.(直接写出结果即可)3、(2019相城.中考模拟) 如图,等腰直角△POA的直角顶点P在反比例函数 (x>0)的图象上,A点在x轴正半轴上,求A点坐标.4、(2019.中考模拟) 在平面直角坐标系中,O为原点,点A(1,0),点B(0,),把△ABO绕点O顺时针旋转,得A′B′O,记旋转角为α.(Ⅰ)如图①,当α=30°时,求点B′的坐标;(Ⅱ)设直线AA′与直线BB′相交于点M.①如图②,当α=90°时,求点M的坐标;②点C(﹣1,0),求线段CM长度的最小值.(直接写出结果即可)5、(2017永康.中考模拟) 小张在甲楼A处向外看,由于受到前面乙楼的遮挡,最近只能看到地面D处,俯角为α.小颖在甲楼B处(B在A的正下方)向外看,最近能看到地面E处,俯角为β,地面上G,F,D,E在同一直线上,已知乙楼高CF为10m,甲乙两楼相距FG为15m,俯角α=45°,β=35°.(1)求点A到地面的距离AG;(2)求A,B之间的距离.(结果精确到0.1m)(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)6、(2017城.中考模拟) 如图,在活动课上,小明和小红合作用一副三角板来测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7m,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M在同一条直线上,测得旗杆顶端M仰角为45°;小红眼睛与地面的距离(CD)是1.5m,用同样的方法测得旗杆顶端M的仰角为30°.两人相距28米且位于旗杆两侧(点B、N、D在同一条直线上).求出旗杆MN的高度.(参考数据:,,结果保留整数.)7、(2018威海.中考真卷) 如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF= +1,求BC的长.8、(2017鹤壁.中考模拟) 如图,已知∠ABC=90°,D是直线AB上的点,AD=BC,过点A作AF⊥AB,并截取AF=BD,连接DC,DF,CF,判断△CDF的形状并证明.9、(2017株洲.中考真卷) 如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.①求证:△DAE≌△DCF;②求证:△ABG∽△CFG.10、(2018遵义.中考模拟) 如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.11、(2016铜仁.中考真卷) 如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF.12、(2019云南.中考模拟) 如图,△ABC,△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上,求证:△CDA≌△CEB.13、(2018弥勒.中考模拟) 已知:如图所示△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD.求证:AE=BD.14、(2020漳平.中考模拟) 阅读下面的例题及点拨,并解决问题:例题:如图①,在等边中,是边上一点(不含端点 ),是的外角的平分线上一点,且.求证: .点拨:如图②,作,与的延长线相交于点,得等边,连接 .易证:,可得;又,则,可得;由,进一步可得又因为,所以,即:.问题:如图③,在正方形中,是边上一点(不含端点 ),是正方形的外角的平分线上一点,且 .求证: .15、(2018天水.中考真卷) 如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90º,∠CED=45º,∠DCE=30º,DE=,BE=2 .求CD的长和四边形ABCD的面积.等腰直角三角形解答题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。

备考2024年中考数学二轮复习-图形的性质_三角形_等腰三角形的性质-单选题专训及答案

备考2024年中考数学二轮复习-图形的性质_三角形_等腰三角形的性质-单选题专训及答案

备考2024年中考数学二轮复习-图形的性质_三角形_等腰三角形的性质-单选题专训及答案等腰三角形的性质单选题专训1、(2013淮安.中考真卷) 若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为()A . 5B . 7C . 5或7D . 62、(2015宿迁.中考真卷) 若等腰三角形中有两边长分别为2和5,则这个三角形的周长为( )A . 9B . 12C . 7或9D . 9或123、(2015泰州.中考真卷) 如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是( )A . 1对B . 2对C . 3对D . 4对4、(2017平房.中考模拟) 如图,在△ABC中,AB=AC=5,BC=6,点M为BC边中点,MN⊥AC于点N,那么MN等于()A .B .C .D .5、(2017永嘉.中考模拟) 如图,在菱形ABCD中,tan∠ABC= ,P为AB上一点,以PB为边向外作菱形PMNB,连结DM,取DM中点E,连结AE,PE,则的值为()A .B .C .D .6、(2019湖州.中考模拟) 在△ABC中,AB=AC,∠A=40°,点D在AB上,若CD=AD,则∠BCD的大小是()A . 25°B . 30°C . 40°D . 45°7、(2019温州.中考模拟) 如图,在△ABC中,∠ACB=90°,∠A=20°.将△ABC绕点C按逆时针方向旋转得△A′B′C,且点B在A′B′上,CA′交AB于点D,则∠BDC的度数为()A . 40°B . 50°C . 60°D . 70°8、(2017湖州.中考模拟) 如图,在△ABC中,AC=4,BC=2,点D是边AB上一点,CD将△ABC分成△ACD和△BCD,若△ACD是以AC为底的等腰三角形,且△BCD与△BAC相似,则CD的长为()A .B . 2C . 4 ﹣4D .9、(2017邵阳.中考模拟) 如图,D、E、F分别是△ABC的边AB、BC、AC的中点.若四边形ADEF是菱形,则△ABC必须满足的条件是()A . AB⊥ACB . AB=AC C . AB=BCD . AC=BC10、(2017宿州.中考模拟) 如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=1,将△ABC绕点C顺时针旋转得△A1B1C1,且点A1落在边AB边上,取BB1的中点D,连接CD,则CD的长为()A .B .C . 2D . 311、(2017淄川.中考模拟) 如图,在△ABC中,D是BC上一点,AB=AD,E,F分别是AC,BD的中点,EF=2,则AC的长是()A . 3B . 4C . 5D . 612、(2016枣庄.中考真卷) (2016•枣庄)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为( )A . 15°B . 17.5°C . 20°D . 22.5°13、(2017襄阳.中考模拟) 如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A . 50°B . 51°C . 51.5°D . 52.5°14、(2019封开.中考模拟) 如图,在2×2正方形网格中,以格点为顶点的△ABC的面积等于,则sin∠CAB=()A .B .C .D .15、(2019封开.中考模拟) 若等腰三角形的两边分别是一元二次方程x2﹣7x+12=0的两根,则等腰三角形的周长为()A . 10B . 11C . 10或11D . 以上都不对16、(2017深圳.中考模拟) 如图,在已知的∆ABC中,按以下步骤作图:①分别以B,C为圆心,以大于 BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为()A . 90°B . 95°C . 100°D . 105°17、(2019广西壮族自治区.中考模拟) 如图,已知点A(12,0),O为坐标原点,P是线段OA上任一点(不含端点O、A),二次函数y1的图象过P、O两点,二次函数y2的图象过P、A两点,它们的开口均向下,顶点分别为B,C,射线OB与射线AC相交于点D.则当OD=AD=9时,这两个二次函数的最大值之和等于()个A . 8B . 3C . 2D . 618、(2018.中考模拟) 如图,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,点F是AC的中点,AD与FE,CE分别交于点G、H ,∠BCE=∠CAD,有下列结论:①图中存在两个等腰直角三角形;②△AHE≌△CBE;③BC•AD= AE2;④S△ABC=4S△ADF.其中正确的个数有()A . 1B . 2C . 3D . 419、(2020丰润.中考模拟) 如图,在正六边形ABCDEF中,AC=2 ,则它的边长是()A . 1B .C .D . 220、(2017银川.中考模拟) 已知3是关于x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为()A . 7B . 10C . 11D . 10或1121、(2019曲靖.中考模拟) 若等腰三角形的三边长均满足方程x2﹣7x+10=0,则此三角形的周长为()A . 9B . 12C . 9或12D . 不能确定22、(2017白银.中考模拟) 如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A . 矩形B . 菱形C . 正方形D . 梯形23、(2020西安.中考模拟) 如图在△ABC中,AC=BC,过点C作CD⊥AB,垂足为点D,过D作DE∥BC交AC于点E,若BD=6,AE =5,则sin∠EDC的值为()A .B .C .D .24、(2019长沙.中考模拟) 如图,己知菱形ABCD中,∠A=40°,则∠ADB的度数是()A . 40°B . 50°C . 60°D . 70°25、(2020北京.中考模拟) 如图,在中,,,直线,顶点在直线上,直线交于点,交与点,若,则的度数是()A . 30°B . 35°C . 40°D . 45°26、(2020赤峰.中考真卷) 如图,中,AB=AC,AD是∠BAC的平分线,EF是AC的垂直平分线,交AD于点O.若OA =3,则外接圆的面积为()A .B .C .D .27、(2020哈尔滨.中考模拟) 如图,在⊙O中,AB是直径,∠OCA=26°,则∠BOC=()A . 60°B . 56°C . 52°D . 48°28、(2020呼伦贝尔.中考真卷) 如图,的垂直平分线交于点D,若,则的度数是()A . 25°B . 20°C . 30°D . 15°29、如图,在等腰中,,, BD是的角平分线,则的度数等于()A .B .C .D .30、(2021房.中考模拟) 如图,在△ABC中,AB=AC,∠BAC=100°,在同一平面内,将△ABC绕点A顺时针旋转到△AB1C1的位置,连接BB1,若BB1∥AC1,则∠CAC1的度数是()A . 10°B . 20°C . 30°D . 40°等腰三角形的性质单选题答案1.答案:B2.答案:B3.答案:D4.答案:C5.答案:C6.答案:B7.答案:C8.答案:D9.答案:B10.答案:A11.答案:B12.答案:A13.答案:D14.答案:B15.答案:C16.答案:D17.答案:B18.答案:C19.答案:D20.答案:D21.答案:C22.答案:A23.答案:A24.答案:D25.答案:26.答案:27.答案:28.答案:29.答案:30.答案:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题集训10 等腰三角形探究
一、选择题
1.如图,Rt △ABC 的斜边AB 与量角器的直径恰好重合,B 点与0刻度线的一端重合,∠ABC =40°,射线CD 绕点C 转动,与量角器外沿交于点D ,若射线CD 将△ABC 分割出以BC 为边的等腰三角形,则点D 在量角器上对应的度数是( D )
A .40°
B .70°
C .70°或80°
D .80°或140°
,第1题图) ,第2题图)
2.如图,∠AOB =120°,OP 平分∠AOB ,且OP =2.若点M ,N 分别在OA ,OB 上,且△PMN 为等边三角形,则满足上述条件的△PMN 有( D )
A .1个
B .2个
C .3个
D .3个以上 【解析】
如图,在OA ,OB 上截取OE =OF =OP ,作∠MPN =60°.∵OP 平分∠AOB ,∴∠EOP =∠POF =60°,∵OP =OE =OF ,∴△OPE ,△OPF 是等边三角形,∴EP =OP ,∠EPO =∠OEP =∠PON =∠MPN =60°,∴∠EPM =∠OPN ,可证△PEM ≌△PON (ASA),∴PM =PN ,∵∠MPN =60°,∴△POM 是等边三角形,∴只要∠MPN =60°,△PMN 就是等边三角形,故这样的三角形有无数个.
二、填空题
3.正方形ABCD 的边长是4,点P 是AD 边的中点,点E 是正方形边上的一点,若△PBE 是等腰三角形,则腰长为22
. 【解析】如图①,当E ,C 重合时,PB =PC =25;在AB 上取E 使PE =EB ,如图②,设
AE =x ,∴(4-x )2=x 2+4,解得x =3
2,使PE =52
;在BP 上取中点M ,如图③,作ME ⊥PB 交
DC 于E .设EC =x ,由PE =BE 知42+x 2=22+(4-x )2
,解得x =12,∴PE =
22
+(4-12
)2=
652
.
4.如图,在菱形ABCD 中,AB =4 cm ,∠ADC =120°,点E ,F 同时由A ,C 两点出发,分别沿AB ,CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1 cm/s ,点F 的速度为2 cm/s ,经过t 秒△DEF 为等边三角形,则t 的值为__43
__.
三、解答题
5.如图,已知点A (1,2)是反比例函数y =k
x
图象上的一点,连结AO 并延长交双曲线的另一分支于点B ,点P 是x 轴上一动点;若△PAB 是等腰三角形,求点P 的坐标.
解:∵反比例函数y =k x
图象关于原点对称,∴A ,B 两点关于O 对称,∴O 为AB 的中点,且B (-1,-2),∴当△PAB 为等腰三角形时有PA =AB 或PB =AB ,设P 点坐标为(x ,0),∵A (1,2),B (-1,-2),∴AB =[1-(-1)]2
+[2-(-2)]2
=25,PA =(x -1)2
+22
,PB =(x +1)2
+(-2)2
,当PA =AB 时,则有(x -1)2
+22
=25,解得x =-3或5,此时P 点坐标为(-3,0)或(5,0);当PB =AB 时,则有(x +1)2
+(-2)
2
=25,解得x =3或-5,此时P 点坐标为(3,0)或(-5,0).综上可知P 点的坐标为(-3,
0)或(5,0)或(3,0)或(-5,0)
6.已知抛物线c 1的顶点为A (-1,4),与y 轴的交点为D (0,3),抛物线c 1关于y 轴对称的抛物线记作c 2.
(1)求c 2的解析式;
(2)若c 2与x 轴正半轴交点记作B ,试在x 轴上求点P ,使△PAB 为等腰三角形.
解:(1)∵抛物线的顶点为A(-1,4),∴c1设的解析式为:y=a(x+1)2+4,∵抛物线c1与y轴的交点为D(0,3)∴3=a+4,即a=-1,∴y=-(x+1)2+4.∵抛物线c1关于y 轴对称的抛物线记作c2,∴c2:y=-x2+2x+3
(2)∵c2与x轴正半轴交点记作B,∴点B(3,0),∵点A(-1,4),∴AB=42+42=42,当PB=AB时,点P(3-42,0)或(3+42,0);当PA=AB时,点P(-5,0);当PA=PB 时,点P(-1,0),所以,当点P为(3-42,0)或(3+42,0)或(-5,0)或(-1,0)时,△PAB为等腰三角形
7.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,过点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合),如图1,DE与AC交于点P,易证:BD=DP.(无需写证明过程)
(1)在图2中,DE与CA的延长线交于点P,BD=DP是否成立?如果成立,请给予证明;如果不成立,请说明理由;
(2)在图3中,DE与AC的延长线交于点P,BD与DP是否相等?请直接写出你的结论,无需证明.
解:
(1)BD =DP 成立,证明:如图②,过点D 作DF⊥MN ,交AB 的延长线与点F ,则△ADF 为等腰直角三角形,∴DA =DF.∵∠1+∠ADB =90°,∠ADB +∠2=90°,∴∠1=∠2.在
△BDF 与△PDA 中,
⎩⎪⎨⎪
⎧∠2=∠1,DF =DA ,
∠DFB =∠DAP =45°,
∴△BDF ≌△PDA (ASA ),∴BD =DP
(2)BD =DP.证明:如图③,过点D 作DF⊥MN ,交BA 的延长线于点F ,则△ADF 为等腰
直角三角形,∴DA =DF.在△BDF 与△PDA 中,⎩⎪⎨⎪⎧∠F =∠PAD =45°,DF =DA ,
∠BDF =∠PDA ,
∴△BDF ≌△PDA (ASA ),∴BD =DP
8.如图1,在平面直角坐标系中,矩形ABCO ,抛物线y =-12x 2
+bx +c 经过矩形ABCO
的顶点B (4,3),C ,D 为BC 的中点,直线AD 与y 轴交于E 点,与抛物线交于第四象限的F 点.
(1)求该抛物线解析式与F 点坐标;
(2)如图2,动点P 从点C 出发,沿线段CB 以每秒1个单位长度的速度向终点B 运动;同时,动点M 从点A 出发,沿线段AE 以每秒
13
2
个单位长度的速度向终点E 运动.过点P 作PH ⊥OA ,垂足为H , 连结MP ,MH .设点P 的运动时间为t 秒.若△PMH 是等腰三角形,求出此时t 的值.
解:(1)∵矩形ABCO ,B 点坐标为(4,3),∴C 点坐标为(0,3),∵抛物线y =-12
x 2

bx +c 经过矩形ABCO
的顶点B ,C ,∴⎩⎪⎨⎪⎧c =3,-8+4b +c =3,解得:⎩
⎪⎨⎪⎧c =3,
b =2,∴该抛物线解析式y
=-1
2
x 2
+2x +3,设直线AD 的解析式为y =k 1x +b 1,∵A (4,0),B (2,3),∴⎩⎪⎨⎪
⎧4k 1+b 1=0,2k 1+b 1=3,
∴⎩⎪⎨⎪⎧k 1=-32,b 1=6,
∴y =-32x +6,联立⎩
⎪⎨⎪⎧y =-3
2x +6,y =-12
x 2+2x +3,∵F 点在第四象限,∴F (6,-3)
(2)如图①过M 作MN⊥OA 交OA 于N ,∵△AMN ∽△AEO ,∴AM AE =
AN AO =MN
EO ,∴AN =t ,MN =32
t ,①如图③,当PM =HM 时,M 在PH 的垂直平分线上,∴MN =12
PH ,∴MN =32
t =32
,∴t =1;②如图①,当HM =HP 时,MH =3,MN =32
t ,HN =OA -AN -OH =4-2t ,在Rt △HMN 中,
MN 2+HN 2=MH 2,∴(32t )2+(4-2t )2=32,解得:t 1=2(舍去),t 2=14
25
;③如图②,如图④,
当PH =PM 时,∵PM =3,MT =|3-3
2
t|,PT =BC -CP -BT =|4-2t|,∴在Rt △PMT 中,MT 2
+PT 2
=PM 2
,即(3-32
t )2+(4-2t )2=32
,解得:t 1=165,t 2=45.综上所述:t =1425或45或1或165
.。

相关文档
最新文档