中考数学复习方程(组)的应用1[人教版]
中考数学专题复习《整式方程(组)的应用》经典题型讲解
中考数学专题复习《整式方程(组)的应用》经典题型讲解类型之一一元一次方程的应用【经典母题】汽车队运送一批货物.若每辆车装4 t,还剩下8 t未装;若每辆车装4.5 t,恰好装完.这个车队有多少辆车?解:设这个车队有x辆车,依题意,得4x+8=4.5x,解得x=16.答:这个车队有16辆车.【思想方法】利用一元一次方程解决实际问题是学习二元一次方程组、分式方程、一元二次方程、一元一次不等式(组)等的基础,是课标要求,也是热门考点.【中考变形】1.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是(C) A.25台B.50台C.75台D.100台【解析】设今年购置计算机的数量是x台,去年购置计算机的数量是(100-x)台,根据题意可得x=3(100-x),解得x=75.2.[2016·盐城校级期中]小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈说:“今天买这两样菜共花了45元,上月买同重量的这两种菜只要36元”.爸爸说:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”.小明说:爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?请你通过列一元一次方程求解这天萝卜、排骨的单价(单位:元/斤).解:设上月萝卜的单价是x 元/斤,则排骨的单价36-3x 2元/斤,根据题意,得3(1+50%)x +2(1+20%)⎝ ⎛⎭⎪⎫36-3x 2=45, 解得x =2,则36-3x 2=36-3×22=15. ∴这天萝卜的单价是(1+50%)×2=3(元/斤),这天排骨的单价是(1+20%)×15=18(元/斤).答:这天萝卜的单价是3元/斤,排骨的单价是18元/斤.【中考预测】[2016·株洲模拟]根据如图Z4-1的对话,分别求小红所买的笔和笔记本的价格.图Z4-1解:设笔的价格为x 元/支,则笔记本的价格为3x 元/本,由题意,得10x +5×3x =30,解得x =1.2,∴3x =3.6.答:笔的价格为1.2元/支,笔记本的价格为3.6元/本.类型之二 二元一次方程组的应用【经典母题】用如图Z4-2①中的长方形和正方形纸板做侧面和底面,做成如图②的竖式和横式两种无盖纸盒.现在仓库里有1 000张正方形纸板和2 000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?图Z4-2解:设做竖式纸盒x 个,横式纸盒y 个,可恰好将库存的纸板用完.根据题意,得⎩⎪⎨⎪⎧4x +3y =2 000,x +2y =1 000,解得⎩⎪⎨⎪⎧x =200,y =400.答:竖式纸盒做200个,横式纸盒做400个,恰好将库存的纸板用完.【思想方法】 利用方程(组)解决几何计算问题,是较好的方法,体现了数形结合思想.【中考变形】1.小华写信给老家的爷爷,问候“八·一”建军节.折叠长方形信纸,装入标准信封时发现:若将信纸按图Z4-3①连续两次对折后,沿着信封口边线装入时宽绰3.8 cm ;若将信纸按图②三等分折叠后,同样方法装入时宽绰1.4 cm.试求出信纸的纸长与信封的口宽.①②图Z4-3解:设信纸的纸长为x cm ,信封口的宽为y cm.由题意,得⎩⎪⎨⎪⎧y =x 4+3.8,y =x 3+1.4,解得⎩⎪⎨⎪⎧x =28.8,y =11. 答:信纸的纸长为28.8 cm ,信封的口宽为11 cm.2.某中学新建了一栋四层的教学楼,每层楼有10间教室,进出这栋教学楼共有4个门,其中两个正门大小相同,两个侧门大小也相同.安全检查中,对4个门进行了测试,当同时开启一个正门和两个侧门时,2 min 内可以通过560名学生;当同时开启一个正门和一个侧门时,4 min 内可以通过800名学生.(1)求平均每分钟一个正门和一个侧门各可以通过多少名学生?(2)检查中发现,出现紧急情况时,因学生拥挤,出门的效率将降低20%,安全检查规定:在紧急情况下全楼的学生应在5 min 内通过这4个门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问:该教学楼建造的这4个门是否符合安全规定?请说明理由.解:(1)设一个正门平均每分钟通过x 名学生,一个侧门平均每分钟通过y 名学生,由题意,得⎩⎪⎨⎪⎧2x +4y =560,4x +4y =800,解得⎩⎪⎨⎪⎧x =120,y =80.答:一个正门平均每分钟通过120名学生,一个侧门平均每分钟通过80名学生;(2)由题意得共有学生45×10×4=1 800(人),学生通过的时间为1 800÷[(120+80)×0.8×2]=458(min).∵5<458,∴该教学楼建造的这4个门不符合安全规定.【中考预测】随着“互联网+”时代的到来,一种新型的手机打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p 元/km 计算,耗时费按q 元/min 计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与车速如下表:(1)求p ,q 的值; (2)如果小华也用该打车方式,车速55 km/h ,行驶了11 km ,那么小华的打车总费用为多少?解:(1)小明的里程数是8 km ,时间为8 min ;小刚的里程数为10 km ,时间为12 min.由题意得⎩⎪⎨⎪⎧8p +8q =12,10p +12q =16,解得⎩⎨⎧p =1,q =12;(2)小华的里程数是11 km ,时间为12 min.则总费用是11p +12q =17(元).类型之三 一元二次方程的应用【经典母题】某租赁公司拥有汽车100辆,据统计,当每辆车的月租金为3 000元时,可全部租出,每辆车的月租金每增加50元,未租出的车将会增加1辆.租出的车每辆每月需要维护费为150元,未租出的车每辆每月只需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆?(2)当每辆车的月租金定为多少元时,租赁公司的月收益(租金收入扣除维护费)可达到306 600元?解:(1)100-3 600-3 00050=88(辆). 答:当每辆车的月租金定为3 600元时,能租出88辆.(2)设每辆车的月租金定为(3 000+x )元,则⎝ ⎛⎭⎪⎫100-x 50[(3 000+x )-150]-x 50×50=306 600, 解得x 1=900,x 2=1 200,∴3 000+900=3 900(元),3 000+1 200=4 200(元).答:当每辆车的月租金为3 900元或4 200元时,月收益可达到306 600元.【思想方法】利润=收入-支出,即利润=租出去车辆的租金-租出去车辆的维护费-未租出去车辆的维护费.【中考变形】1.[2017·眉山]东坡某烘焙店生产的蛋糕礼盒分为6个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1 080元,该烘焙店生产的是第几档次的产品?解:(1)设此批次蛋糕属第a 档次产品,则10+2(a -1)=14,解得a =3. 答:此批次蛋糕属第3档次产品.⎝⎛⎭⎪⎫或:∵14-102+1=3,∴此批蛋糕属第3档次产品. (2)设该烘焙店生产的是第x 档次的产品,根据题意,得[10+2(x -1)][76-4(x -1)]=1 080,解得x 1=5,x 2=11(舍去).答:该烘焙店生产的是第5档次的产品.2.[2017·重庆B 卷]某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400 kg ,其中枇杷的产量不超过樱桃的产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售.该果农去年樱桃的市场销售量为100 kg,销售均价为30元/kg,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200 kg,销售均价为20元/kg,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%.该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【解析】(1)根据“枇杷的产量不超过樱桃的产量的7倍”即可列出不等式求得今年收获樱桃的质量;(2)抓住关键语句,仔细梳理,根据去年、今年樱桃销售量、销售均价,求出各自的销售额,可以用一张表格概括其中数量关系:然后根据“今年樱桃和枇杷的销售总金额与去年樱桃和枇杷的市场销售总金额相同”可列方程求解.解:(1)设该果农今年收获樱桃至少x kg,今年收获枇杷(400-x)kg,依题意,得400-x≤7x,解得x≥50.答:该果农今年收获樱桃至少50 kg.(2)由题意,得3 000×(1-m %)+4 000×(1 +2m%)×(1-m%)=7 000,解得m1=0(不合题意,舍去),m2=12.5.答:m的值为12.5.【中考预测】某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400 kg.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20 kg.(1)当每千克涨价多少元时,每天的盈利最多?最多是多少?(2)若商场只要求保证每天的盈利为4 420元,同时又可使顾客得到实惠,每千克应涨价多少元?解:(1)设每千克涨价x元,总利润为y元.则y=(10+x)(400-20x)=-20x2+200x+4 000=-20(x-5)2+4 500.当x=5时,y取得最大值,最大值为4 500元.答:当每千克涨价5元时,每天的盈利最多,最多为4 500元;(2)设每千克应涨价a元,则(10+a)(400-20a)=4 420.解得a=3或a=7,为了使顾客得到实惠,∴a=3.答:每千克应涨价3元.。
人教版初中数学中考复习一轮复习——一元二次方程解法及其应用(1)
D 1.(2021·河南) 若方程 x2-2x+m=0没有实数根,则 m的值可以是( )
A.-1
B.0
C.1
D. 3
2.(2021•岳阳)已知关于x的一元二次方程x2+6x+k=0有两个相等 的实数根,则实数k的值为 k 9.
3.(2021•台州)关于x的方程x2﹣4x+m=0有两个不相等的实数根,
a 1,b 3, c 4
b2 4ac -3 2 41(- 4) 9 16 25 0
所以方程有两个不等实数根
x b 3 25 3 5
2a
2
2
x1 4, x2 1
考点二:一元二次方程的解法
1x2 3x 4
2x2 6x 7 0
32 x2 4x 5 0
解:a 1,b (k 3),c 1 k
b2 4ac (k 3)2 41 (1 k) k 2 2k 5 k 2 2k 1 4 (k 1)2 4
因为(k 1)2 4 0, 所以方程有两个不等实数根。
考点三:判别式和一元二次方程根的情况
5.(2021•烟台)已知关于x的一元二次方程x2﹣mnx+m+n=0,其中
考点二:一元二次方程的解法
2.配方法
对应练习: 1x2 4x 1 0
22x2 8x 3 0
12x2 1 3x
22x2 8x 3 0 x2 4x 3 0
2
x2 4x 3 2
x2 4x 4 3 4 2
x22 11 2
x 2 22 2
x1 2
22 ,x 2
变式2.若方程ax2+2x+1=0有两个不相等的实数根,则实数a的 取值范围是(a 1且a 0 )
人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第二节 一元二次方程及其应用
解:设参加交流会的茶叶制作商有 m 人.依题意得 m(m-1)=380,解得 m1=20,m2=-19(舍去). 答:参加交流会的茶叶制作商有 20 人.
4.(2022·荆州第 7 题 3 分)关于 x 的方程 x2-3kx-2=0 实数根的情况,
下列判断中正确的是
(B)
A.有两个相等实数根
B.有两个不等实数根
C.没有实数根
D.有一个实数根
5.(2020·荆州第 9 题 3 分)定义新运算“a*b”:对于任意实数 a,b,都
有 a*b=(a+b)(a-b)-1,其中等式右边是通常的加法、减法、乘法运
解:设小路宽为 x m, 由题意,得(16-2x)(9-x)=112. 整理,得 x2-17x+16=0. 解得 x1=1,x2=16>9(不合题意,舍去).∴x=1. 答:小路的宽应为 1m.
17.(数学文化)《田亩比类乘除捷法》是我国古代数学家杨辉的著作, 其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长 多阔几何?”意思是:一块矩形田地的面积为 864 平方步,只知道它的 长与宽共 60 步,问它的长比宽多多少步?根据题意,长比宽多__112__步.
100.8
解:设后两次采购价格的平均增长率为 x,依题意得 480(1+x)2=480+100.8,解得 x1=0.1,x2=-2.1(舍). 答:后两次采购价格的平均增长率为 10%.
解:设售价为 y 元/袋时,每周的销售额为 32 400 元.依题意可列方程
y-260
为 y100-
10
=32 400,解得 y1=360,y2=900.
第二节 一元二次方程及 其应用
【考情分析】湖北近 3 年主要考查:1.选择合适的方法解一元二次方程, 常在压轴题中涉及考查;2.用一元二次方程根的判别式判断方程根的情 况或者根据根的情况求字母系数的取值范围,根与系数的关系的应用; 3.一元二次方程的应用主要以选择题的形式考查列方程,常在解答题中 与不等式、函数的实际应用结合考查,难度较大,分值一般 3-10 分.
人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用
∴原方程组的解为y=1,将y=1 代入 2kx-3y<5 得 2×k×2-3<5,解得 k<2.
命题点 2:一次方程(组)的应用(近 3 年考查 15 次)
7.(数学文化)(2021·武汉第 7 题 3 分)我国古代数学名著《九章算术》
中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价
32 人.2 艘大船与 1 艘小船一次共可以满载游客 46 人.则 1 艘大船与 1
艘小船一次共可以满载游客的人数为
( B)
A.30
B.26
C.24
D.22
11.★(2022·武汉第 10 题 3 分)幻方是古老的数学问题,我国古代的《洛 书》中记载了最早的幻方——九宫格.将 9 个数填入幻方的空格中,要 求每一横行、 每一竖列以及两条对角线上的 3 个数之和相等,例如图① 就是一个幻方.图②是一个未完成的幻方,则 x 与 y 的和是 ( D ) A.9 B.10 C.11 D.12
14.(2020·仙桃第 12 题 3 分)篮球联赛中,每场比赛都要分出胜负,每 队胜 1 场得 2 分,负 1 场得 1 分.某队 14 场比赛得到 23 分,则该队胜 了__99__场.
15.(2020·黄冈第 19 题 6 分)为推广黄冈各县市名优农产品,市政府组 织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买 6 盒 羊角春牌绿茶和 4 盒九孔牌藕粉,共需 960 元,如果购买 1 盒羊角春牌 绿茶和 3 盒九孔牌藕粉共需 300 元,请问每盒羊角春牌绿茶和每盒九孔 牌藕粉分别需要多少元?
【分层分析】设购进创意文具袋 x 个,由题干信息①得购进笔记本为
((2x2+x+10)个,由题干信息②可列方程为 xx++(2(x2+x1+0)1=0)190.
2020年人教版初中数学中考一轮复习(一次方程(组)及其应用)
梳 理
种2棵树.设男生有x人,则 D ( )
高
A.2x+3(72-x)=30
B.3x+2(72-x)=30
频
C.2x+3(30-x)=72
考
D.3x+2(30-x)=72
向
2.[2019·临沂]用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板
探
究
可制成3件甲种产品和2件乙种产品.要生产甲种产品37件,乙种产品18件,则恰
解:①+②,得:3x+x=-8+0, ∴4x=-8,x=-2,
识
梳
把 x=-2 代入②,得-2+2y=0,∴y=1,
理 高
∴原方程组的解为
������ ������
= =
-������, ������.
频
考
向
探
究
考 点
考向二 一次方程(组)的应用
知 识
例2 (1)[2019·黔三州]某品牌旗舰店平日将某商品按进价提高40%后标价,在某
好需用A,B两种型号的钢板共 11 块.
考
3.[2019·盐城]体育器材室有A,B两种型号的实心球,1只A型球与1只B型球的质量
点
知
共7千克,3只A型球与1只B型球的质量共13千克.
识
梳
(1)一只A型球、B型球的质量分别是多少千克?
理
(2)现有A型球、B型球的质量共17千克,则A型球、B型球各有多少只?
梳 理
次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的
进价是2000 元.
高 频 考 向 探 究
考
例 2 (2)[2019·德州《] 孙子算经》中有一道题,原文是:“今有木,不知长短,引绳度之,
九年级数学 人教版 中考专题复习-方程和方程组篇
中考复习-方程和方程组篇学生学校年级九年级次数科目数学教师日期时段课题中考复习-方程和方程组篇教学重点一元一次方程,二元一次方程组,一元一次不等式组教学难点分式方程;一元二次方程教学目标1、熟练计算各类方程教学步骤及教学内容一、错题回顾二、内容讲解1几个概念2一元一次方程方程与方程组3一元二次方程4方程组6应用三、课堂总结错题回顾已知直线y=kx+b ,若k+b=-9,kb=8,那么该直线不.经过..第 象限.(如图,直线y=3 x+3与两坐标轴分别交于A 、B 两点(1)求∠ABO 的度数(2)过A 的直线l 交x 轴半轴于C ,AB=AC ,求直线l 的函数解析式.如图,直线y=23x+4与x 轴、y 轴分别交于点A 和点B ,点C 、D 分别为线段AB 、OB 的中点,点P 为OA 上一动点,PC+PD 值最小时点P 的坐标为( )管理人员签字: 日期: 年 月 日A .(﹣3,0)B .(﹣6,0)C .(﹣32,0) D .(﹣52,0)【方程和方程组篇】二、内容讲解【学生总结】等式的性质:①性质1:等式两边都加(减) 所得结果仍是等式,即:若a=b,那么a±c=②性质2:等式两边都乘以或除以 (除数不为0)所得结果仍是等式即:若a=b,那么a c= ,若a=b (c≠o )那么ac=二、方程的有关概念:1、含有未知数的 叫做方程2、使方程左右两边相等的 的值,叫做方程的组3、 叫做解方程4、一个方程两边都是关于未知数的 ,这样的方程叫做整式方程【解一元一次方程】一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是 的 方程叫做一元一次方程,一元一次方程一般可以化成 的形式。
2、解一元一次方程的一般步骤: 1。
2。
3。
4。
5。
概念考点:(1)若关于x 的方程22(2)10()a a x x ---+=是一元一次方程,求a 的值.(2)若关于x 的方程5413524n x -+=是一元一次方程,求n 的值.解方程:(1) 3131=+-x x (2)x x x -=--+22132(3)53210232213+--=-+x x x (4)32116110412xx x --=+++*带小数方程4x 1.55x 0.8 1.2x0.50.20.1----=【二元一次方程组】二元一次方程组及解法:1、二元一次方程的一般形式:ax+by+c=0(a.b.c 是常数,a≠0,b≠0);2、由几个含有相同未知数的 合在一起,叫做二元一次方程组;3、 二元一次方程组中两个方程的 叫做二元一次方程组的解;4、 解二元一次方程组的基本思路是: ;5、 二元一次方程组的解法:① 消元法 ② 消元法例1 解方程组: 213211x y x y +=⎧⎨-=⎩①②.对应训练(1)解方程组: 2()134123()2(2)3x y x yx y x y -+⎧-=-⎪⎨⎪+--=⎩.3(2)3814x y x y -=⎧⎨-=⎩23(3)253s t t s =⎧⎪+⎨=⎪⎩356(4)415x y x y -=⎧⎨+=-⎩43(1)4(4)(5)(6)35115(1)3(5)7525x x y x y y x y x +-⎧-=-=⎧⎪⎨⎨-=+⎩⎪=+⎩152343(1)4(4)(4)(5)(6)3532115(1)3(5)7525x x yx y x y x y y x y x +-⎧+=-=-=⎧⎧⎪⎨⎨⎨-=-=+⎩⎩⎪=+⎩*含参方程组.已知关于x 、y 的方程组52111823128x y a x y a +=+⎧⎨-=-⎩①②的解满足x >0,y >0,求实数a 的取值范围.【一元一次不等式组】掌握有关概念的含义,并能翻译成式子.(1)和、差、积、商、幂、倍、分等运算.(2)“至少”、“最多”、“不超过”、“不少于”等词语.例题:用不等式表示:①a 为非负数,a 为正数,a 不是正数 解: ②(2)8与y 的2倍的和是正数; (3)x 与5的和不小于0;(5)x 的4倍大于x 的3倍与7的差;【学生总结:】基本性质1、不等式两边都加上(或减去)同一个 或同一个 不等号的方向 ,即:若a <b,则a+c b+c(或a-c b-c)基本性质2:不等式两边都乘以(或除以)同一个 不等号的方向 ,即:若a <b ,c>0则a c b c (或acb c )基本性质3、不等式两边都乘以(或除以)同一个 不等号的方向 ,即:若a <b ,c <0则a c b c (或acb c )例题:①解不等式 31(1-2x )>2)12(3 x②一本有300页的书,计划10天内读完,前五天因各种原因只读完100页.问从第六天起,每天至少读多少页? 解:(1) 在数轴上表示解集:“大右小左”“” (2) 写出下图所表示的不等式的解集3、不等式组:求解集口诀:同大取大,同小取小,交叉中间,分开两边例题:①不等式组⎩⎨⎧-<<,3,2x x ⎩⎨⎧->>,3,2x x ⎩⎨⎧-<>,3,2x x ⎩⎨⎧-><,3,2x x 数轴表示解集考点二:在数轴上表示不等式(组)的解 例2 把不等式组1215x x >⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .对应训练2.不等式组2(5)65212x x x +≥⎧⎨->+⎩的解集在数轴上表示正确的是( )A .B .C .D .考点三:不等式(组)的解法例3 不等式2x-1>3的解集是.例4 解不等式组23120xx+>⎧⎨-≥⎩,并把解集在数轴上表示出来.对应训练3.不等式2x-4<0的解集是.4.解不等式组211 00x xx+>⎧⎨-<⎩①②,并把它的解集在数轴上表示出来.考点四:不等式(组)的特殊解例5 不等式组21312xx-<⎧⎪⎨-≤⎪⎩的整数解有()个.A.1 B.2 C.3 D.4 对应训练5.求不等式组21025xx x+>⎧⎨>-⎩的正整数解.考点五:确定不等式(组)中字母的取值范围 例6 若不等式组0122x a x x +≥⎧⎨->-⎩有解,则a 的取值范围是 .对应训练6.已知x=3是关于x 的不等式3x-22ax +>23x的解,求a 的取值范围.课堂总结:针对练习【分式方程】1.解分式方程1x -1-2=31-x,去分母得( )A .1-2(x -1)=-3B .1-2(x -1)=3C .1-2x -2=-3D .1-2x +2=32. 分式方程x x -1-1=3(x -1)(x +2)的解为( )A .x =1B .x =-1C .无解D .x =-23. 分式方程2x +13-x =32的解是___________ __.4. 分式方程4x -3-1x=0的根是____________.5. 关于x的分式方程mx2-4-1x+2=0无解,则m=_____________.解方程:=0.6.①解方程:2﹣=1;②利用①的结果,先化简代数式(1+)÷,再求值.11。
人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理
第二单元《方程(组)与不等式(组)》中考知识点梳理第5讲一次方程(组)第6讲一元二次方程第7讲分式方程三、知识清单梳理第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.。
人教版九年级中考数学复习课件:方程(组)和不等式的应用(共9张PPT)
方程(组)和不等式的应用
考点梳理
1.解应用题的一般步骤:(1) 设未知数;(2)根据 题意列方程(组)或不等式(组); (3)解方程(组)或不等式(组);(4)检验及答.
2.如果列出的是不等式(组),除了满足题目本身 的要求外,还要具有实际意义.
知识点1:一元一次方程的应用
1.某城市居民用水实施阶梯收费.每户每月用水 量如果未超过20吨,按每吨1.9元收费;每户每 月用水量如果超过20吨,未超过的部分仍按每吨 1.9元收费,超过的部分则按每吨2.8元收费.设 某户每月用水量为x吨,应收水费为y元. (1)分别写出每月用水量未超过20吨和超过20吨 时,y与x间的函数关系式; (2)若该城市某户5月份水费平均为每吨2.2元, 求该户5月份用水多少吨?
3. 解: (1)实际应支付:120×0.95=114(元)
(2)设所购商品的价格为x元,依题意得 168+0.8x<0.95x
解得:x>1120
∴ 当所购商品的价格高于1120元时, 选方案一组)解应用题时关键是找等量关系, 要善于把生活语言转化为数学语言,可结合图象法 、列表法等,将题目的已知和结论借助一些辅助工 具分析,从而快速找出相等关系.
1.解:(1)当x≤20 时,y=1.9x; 当x>20时,
y=1.9×20+2.8(x-20)=2.8x-18
(2)设该户5月份用水x吨,则 2.8x-18=2.2x 解得:x=30
答:该户5月份用水30吨.
知识点2:二元一次方程组的应用 2. 2017年5月14日至15日,“一带一路”国际合 作高峰论坛在北京举行,本届论坛期间,中国同30 多个国家签署经贸合作协议,某厂准备生产甲、乙 两种商品共8万件销往“一带一路”沿线国家和地 区,已知2件甲种商品与3件乙种商品的销售收入相 同,3件甲种商品比2件乙种商品的销售收入多1 500元. 求甲种商品与乙种商品的销售单价各多少 元?
人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第三节 分式方程及其应用
命题点 2:分式方程解的运用(近 6 年考查 4 次)
5 . (2020 · 荆 门 第
11
题
3
分)已经关于
x
的
分
式
方
程
2x+3 x-2
=
(x-2)k(x+3)+2 的解满足-4<x<-1,且 k 为整数,则符合条件的
所有 k 值的乘积为
(A )
A.正数 B.负数
C.零 D.无法确定
6.★(2021·荆州第 15 题 3 分)若关于 x 的方程 2xx-+2m+x2--1x=3 的解是
【分层分析】设第二次购买材料 x t,由②得第二次购买的单价为x2211x0000
元,由③得第一次购买材料的吨数为 2x2 t,由①,③得第一次购买的
45210000 单价为x 2x
元,由④可列方程为x452x0x00-211000=0021
000 x
.
45 000 解:设第二次购买材料 x t,则第一次购买材料 2x t.根据题意得 2x
周
【考情分析】湖北近 3 年主要考查:1.分式方程的解法,应用分式方程 解决简单的实际问题.分式方程的解法考查形式有:直接解分式方程; 根据分式方程解的情况求字母的值或取值范围;2.分式方程的应用主要 以选择题的形式考查列方程,常在解答题中与不等式、函数的实际应用 结合考查,难度较大,分值一般 3-10 分.
4 是原来每天用水量的5,这样 120 t 水可多用 3 天.求现在每天用水量是 多少吨?
4 解:设原来每天的用水量为 x t,则现在每天的用水量为5x t,由题意可 列方程: 1542x0-1x20=3,解得 x=10, 经检验,x=10 是原方程的解.
44 而5x=5×10=8. 答:现在每天的用水量为 8 t.
人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用
有 3 个整数解,则 a 的取值范围为
( A)
A.1<a≤2
B.1<a<2
C.1≤a<2
D.1≤a≤2
6 . (2019 · 鄂 州 第 12 题 3 分 ) 若 关 于 x , y 的 二 元 一 次 方 程 组
x-3y=4m+3,
x+5y=5
的解满足 x+y≤0,则 m
的取值范围是__mm≤≤--22__.
③学校购买篮球和足球共 40 个.
(1)
若④购买篮球的个数不少于足球个数的23,则最少可购买篮球
116 6
个;
【分层分析】(1)设购买篮球 x 个,则由题干③可得购买足球((440 0--x)
个,由题干④可列不等式为
2 xx≥≥3((4400--xx)),解此不等式得
x) xx≥≥1166.
(2)若⑤购买篮球的费用不超过购买足球的费用,则最多可购买篮球115
(2)若此不等式组的解集为-4≤x<1,则 a 的值为--22; 【分层分析】(2)由题意得1a.-25168=0--m4 m,即 a=--22;
重难点 2:一元一次不等式的应用
(一题多设问)某校为举行体育比赛活动,准备购买若干个足球和篮
球作为奖品,已知①篮球的单价为 100 元/个,②足球的单价为 60 元/个,
第四节 一元一次不等式 (组)及其应用
【考情分析】湖北近 3 年主要考查:1.一元一次不等式(组)的解法及解集 表示,考查形式有:①求不等式(组)的解集;②求不等式(组)的解集并在 数轴上表示;③求不等式组的整数解;④确定不等式组中字母参数的取 值范围.2.一元一次不等式的应用,考查形式有:①利用不等式判断哪种 方案合算;②与方程(组)、函数结合确定方案问题,设题背景有购买问题、 销售费用问题,以解答题为主
中考总复习数学第1节 一次方程(组)及其应用
【自主作答】(1)x=1;(2)xy==12,.
类型3:列一次方程(组)解实际问题
►例3(2020·绍兴)有两种消费券:A 券,满 60 元减 20
元;B 券,满 90 元减 30 元,即一次购物大于等于 60 元、
90 元,付款时分别减 20 元、30 元.小敏有一张 A 券,
小聪有一张 B 券,他们都购了一件标价相同的商品,各
【自主作答】100 或 85
►例4某一天,蔬菜经营户老李用了 145 元从蔬菜批
发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄
子当天的批发价与零售价如下表所示:
品名
黄瓜
茄子
批发价/(元/千克)
3
4
零售价/(元/千克)
4
7
当天他卖完这些黄瓜和茄子共赚了 90 元,这天他批 发的黄瓜与茄子分别是多少千克?
(1)请求出 A,B 两个品种去年平均亩产量分别是多 少.
(2)今年,科技小组加大了小麦种植的科研力度,在 A,B 种植亩数不变的情况下,预计 A,B 两个品种平均 亩产量将在去年的基础上分别增加 a%和 2a%,由于 B 品种深受市场的欢迎,预计每千克价格将在去年的基础 上上涨 a%,而 A 品种的售价不变.A,B 两个品种全部 售出后总收入将在去年的基础上增加290a%.求 a 的值.
自付款,若能用券时用券,这样两人共付款 150 元,则
所购商品的标价是
元.
分析:设所购商品的标价是 x 元,由题意,得
①所购商品的标价小于 90 元, x-20+x=150 ,
解得 x= 85
;②所购商品的标价大于 90 元,
x-20+x-30=150 ,解得 x= 100 .故所购商品
的标价是 100 或 85 元.
中考数学复习用方程(组)解决问题1[人教版]
后来,我深深理解了父亲,他那唠叨里包含的全都是无限的期待和浓浓的父爱,有时候,我不愿意听,并产生怨言,真是不孝。于是对自己说:“不管怎样,一定要多利用空闲时间常回家看看。”
接着父亲仿佛严肃起来,语重心长地告诉我:“现在你们正年轻,正是干事业的时候,所以必须要有脾气,对工作要有激情,一件工作任务交到你们手里,必须全神贯注,心无旁骛,投入全部精力 确保任务圆满完成。”我用力点了点头,并表示我会当作人生信条,永记心头,认真遵守。bbin网上平台
更多的时候,父亲唠唠叨叨起来说的都是陈年旧事,有些是他年轻时遭受的一些挫折和总结的一些人生经验,希望我和弟弟作为前车之鉴,避免重蹈覆辙。父亲曾经说过:“世界上没有不犯错误的 人,错了想尽千方百计改正,千万别耿耿于怀地找客观理由为自己开脱。”
还有就是他一再教育我和弟弟:“要孝敬父母,特别是为了我们家操劳了一辈子的母亲,羊有跪乳之恩,鸦有反
中考数学复习用方程(组)解决问题1[人教版]
Hale Waihona Puke 多少人,梦里也不曾梦到,此生会自觉隔离在家一月有余,竟然成为一种全国行动?洪水猛兽般新型冠状病毒性肺炎,就这样被我们隔在城池外,任其自生自灭亡,能不令人欢欣鼓舞!一个强大的 国家,一个人类历史上最能代表人民利益的政党,是中流砥柱,是人民生命安全的保护神。沧海横流,方显英雄本色。
惊蜇的风味里,淡化了前一向泪水的咸味儿。想想看,我们的家园距离武汉近若咫尺,一城人却安然无恙,能不算作不幸中的万幸!能不感谢党中央的英明果断,高瞻远瞩!
倾一国之力,一方有难,八方支援。全国数万医护人员奔赴抗疫前线,在随时都会牺牲的前线上视死如归,救死扶伤。大灾大难面前,社会主义制度的优越性彰显得淋漓尽致,这在人类历史上绝无 仅有;整个民族的团结奋斗精神,与疫情作斗争,大打狙击战,人定胜天毅力,举世无双。包括湖北在内,30多个省市自治区直辖市,服从统一指挥,党中央一声令下,坚守城池,怎么也不出,哪怕疫 情在城池外声嘶力竭骂阵,说不出就不出,可奈我何!新2足球投注网址
中考数学考点总动员系列 专题36 方程(组)的应用-人教版初中九年级全册数学试题
考点三十六:方程(组)的应用聚焦考点☆温习理解1.列方程(组)解应用题的一般步骤(1)审题;(2)设未知数;(3)找出包含未知数的等量关系式;(4)列出方程(组;(5)求出方程(组)的解;(6)检验并作答.2.各类应用题的等量关系(1)行程问题:路程=速度×时间;相遇问题:两者路程之和=全程;追及问题:快者路程=慢者先走路程(或相距路程)+慢者后走路程.(2)工程问题:工作量=工作效率×工作时间.(3)几何图形问题面积问题:体积问题还有其他几何图形问题:如线段、周长等(4)增长率问题:如果基数用a表示,末数用A表示,x表示增长率,时间间隔用n表示,那么增长率问题的数量关系表示为:a(1±x)n=A(5)利润问题利润=销售价-进货价利润率=利润进货价销售价=(1+利润率)×进货价(6)利息问题利息=本金×利率×期数本息和=本金+利息名师点睛☆典例分类考点典例一、一元一次方程的应用【例1】(2015.某某市,第23题,10分)(本小题10分)1号探测气球从海拔5 m处出发,以1m/min的速度上升.与此同时,2号探测气球从海拔15m处出发,以0.5m/min的速度上升. 两个气球都匀速上升了50x min(0≤x≤50).(Ⅰ)根据题意,填写下表上升时间/min 10 30 (x)1号探测气球所在位置的海拔/m 15 …2号探测气球所在位置的海拔/m 30 …(Ⅱ)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(Ⅲ)当30≤x≤50时,两个气球所在位置的海拔最多相差多少米?【答案】(Ⅰ)35,x+5;20,0.5x+15.(Ⅱ)两个气球能位于同一高度,理由见解析,此时,气球上升了20min,都位于海拔25m的高度. (Ⅲ)两个气球所在位置的海拔最多相差15米.试题解析:(Ⅰ)35,x+5;20,0.5x+15.(Ⅱ)两个气球能位于同一高度.根据题意,x+5=0.5x+15,解得x=20.有x+5=25.答:此时,气球上升了20min,都位于海拔25m的高度.(Ⅲ))当30≤x≤50时,由题意,可知1号气球所在位置的海拔始终高于2号气球,设两个气球在同一时刻所在位置的海拔相差有y米,则y=(x+5)——10.∵0.5>0,∴y随x的增大而增大.∴当x=50时,y取得最大值15.答:两个气球所在位置的海拔最多相差15米.考点:列代数式;一元一次方程的应用;一次函数的应用.【点睛】本题考查了一元一次不等式的应用,一元一次方程的应用.解答本题的关键是读懂题意,设出未知数,找出等量(不等量)关系,列方程(不等式)求解.(1)列方程解应用题,要抓住关键性词语,如共、多、少、倍、几分之几等,顺着题意来理清等量关系,可采用直接设未知数,也可以采用间接设未知数的方法,要根据实际情况灵活运用.(2)当要求的未知量有两个时,可以用字母x表示其中一个,再根据两个未知量之间的关系,用含x的式子表示另一个量,解方程后,再代入求出另一个未知量的值.【举一反三】(2015·某某某某)美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量是国画作品数量的2倍多7幅,则展出的油画作品有___________幅.【答案】69【解析】试题分析:设国画为x幅,则油画为(2x+7)幅,根据题意可得:x+2x+7=100,解得:x=31,则2x+7=69,即油画作品的数量为69幅.考点:一元一次方程的应用.考点典例二、二元一次方程组的应用【例2】(2015·某某黄冈,16题,分)(6分)已知A,B两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130 元,问A,B两件服装的成本各是多少元?【答案】300,200.考点:二元一次方程组的应用.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.【举一反三】(2015·某某某某)(本题满分9分)某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(4分)(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?(5分)【答案】(1)⎩⎨⎧==12y x ;(2)违背.【解析】试题分析:(1)根据题目中2个等量关系列出⎩⎨⎧=+=+7342y x y x ,求出结果⎩⎨⎧==12y x ;(2)通过一次函数的增减性求出最大值为2800,小于开始的承诺3000,故可以判断违背了广告承诺。