常微分方程试卷及答案
福师《常微分方程》期末试卷解析
福师《常微分方程》期末试卷解析一、选择题(共10题,每题2分,共20分)1. 答案:A解析:对常微分方程dy/dx = f(x)g(y)的分离变量法,可得:dy/g(y) = f(x)dx,再进行积分即可得到结果。
2. 答案:C解析:对常微分方程dy/dx + p(x)y = q(x)的一阶线性方程,可以使用常数变易法求解。
将y = v(x)exp(-∫p(x)dx)代入方程,再进行积分,最后解出y。
3. 答案:B解析:常微分方程dy/dx = ky是一个一阶线性齐次微分方程,可以使用分离变量法求解。
将dy/y = kdx,再进行积分,最后解出y。
4. 答案:D解析:常微分方程dy/dx = -y/x是一个一阶线性齐次微分方程,可以使用分离变量法求解。
将dy/y = -dx/x,再进行积分,最后解出y。
5. 答案:A解析:常微分方程dy/dx = f(x)g(y)的分离变量法,可得:dy/g(y) = f(x)dx,再进行积分即可得到结果。
6. 答案:C解析:对常微分方程dy/dx + p(x)y = q(x)的一阶线性方程,可以使用常数变易法求解。
将y = v(x)exp(-∫p(x)dx)代入方程,再进行积分,最后解出y。
7. 答案:B解析:常微分方程dy/dx = ky是一个一阶线性齐次微分方程,可以使用分离变量法求解。
将dy/y = kdx,再进行积分,最后解出y。
8. 答案:D解析:常微分方程dy/dx = -y/x是一个一阶线性齐次微分方程,可以使用分离变量法求解。
将dy/y = -dx/x,再进行积分,最后解出y。
9. 答案:A解析:常微分方程dy/dx = f(x)g(y)的分离变量法,可得:dy/g(y) = f(x)dx,再进行积分即可得到结果。
10. 答案:C解析:对常微分方程dy/dx + p(x)y = q(x)的一阶线性方程,可以使用常数变易法求解。
将y = v(x)exp(-∫p(x)dx)代入方程,再进行积分,最后解出y。
常微分方程计算题及答案
计 算 题(每题10分)1、求解微分方程2'22x y xy xe -+=。
2、试用逐次逼近法求方程2y x dxdy+=通过点(0,0)的第三次近似解. 3、求解方程'2x y y y e -''+-=的通解4、求方程组dx dt ydydtx y ==+⎧⎨⎪⎩⎪2的通解5、求解微分方程'24y xy x +=6、试用逐次逼近法求方程2y x dxdy-=通过点(1,0)的第二次近似解。
7、求解方程''+-=-y y y e x '22的通解8、求方程组dxdt x ydydtx y =+=+⎧⎨⎪⎩⎪234的通解9、求解微分方程xy y x '-2=24 10、试用逐次逼近法求方程2y x dxdy-=通过(0,0)的第三次近似解. 11、求解方程''+-=-y y y e x '24的通解12、求方程组dxdtx y dydtx y =+=+⎧⎨⎪⎩⎪2332的通解13、求解微分方程x y y e x (')-=14、试用逐次逼近法求方程22x y dxdy+=通过点(0,0)的第三次逼近解. 15、求解方程''+-=--y y y e x '22的通解16、求解方程x e y y y -=-+''32 的通解17、求方程组⎪⎩⎪⎨⎧-+=-+=yx dt dydtdx x y dt dy dt dx243452的通解 18、解微分方程22(1)(1)0x y dx y x dy -+-= 19、试用逐次逼近法求方程2dyx y dx=-满足初始条件(0)0y =的近似解:0123(),(),(),()x x x x ϕϕϕϕ.20、利用逐次逼近法,求方程22dyy x dx=-适合初值条件(0)1y =的近似解:012(),(),()x x x ϕϕϕ。
常微分方程试题及答案
常微分方程试题及答案一、单项选择题(每题5分,共20分)1. 下列哪一项不是常微分方程的特点?A. 未知函数是连续的B. 未知函数是可微的C. 未知函数的导数是未知的D. 方程中包含未知函数的导数答案:A2. 常微分方程的解是指满足方程的函数,下列哪一项不是解的性质?A. 唯一性B. 存在性C. 可微性D. 可积性答案:D3. 一阶线性微分方程的一般形式是:A. \( y' + p(x)y = q(x) \)B. \( y' = p(x)y + q(x) \)C. \( y' - p(x)y = q(x) \)D. \( y' + p(x)y = q(x) \) 或 \( y' - p(x)y = q(x) \)答案:A4. 已知微分方程 \( y'' - y = 0 \) 的一个特解是 \( y = e^x \),那么它的通解是:A. \( y = C_1e^x + C_2e^{-x} \)B. \( y = C_1e^x + C_2 \)C. \( y = C_1e^x + C_2e^x \)D. \( y = C_1 + C_2e^{-x} \)答案:A二、填空题(每题5分,共20分)1. 微分方程 \( y'' + y' + y = 0 \) 的通解是 \( y = C_1e^{-x}+ C_2e^{-\frac{1}{2}x} \),其中 \( C_1 \) 和 \( C_2 \) 是常数。
2. 微分方程 \( y'' - 4y = 0 \) 的通解是 \( y = C_1\cos(2x) +C_2\sin(2x) \),其中 \( C_1 \) 和 \( C_2 \) 是常数。
3. 微分方程 \( y'' + 4y = 0 \) 的通解是 \( y = C_1\cos(2x) +C_2\sin(2x) \),其中 \( C_1 \) 和 \( C_2 \) 是常数。
《常微分方程》题库计算题
故方程的通解为 y Y y1 c1ex c2e-2x e-x
8、解:由方程解出 y,得 y x 2 1 p x , 代入 dx 1 dy 得 dx dp 即 p cx
2x 2p
p
xp
故通解为 y c (x2 1) 1
2
2c
9、解:方程化为 y 2 y 2x3 x
对应的齐次方程 y 2 y 0 的通解为 y=cx2 (4¹) x
6、试用逐次逼近法求方程 dy x y 2 通过点(1,0)的第二次近似解。 dx
7、求解方程 y y 2y 2ex 的通解
8、求方程组
dx dt dy dt
2x y 3x 4y
的通解
9、求解微分方程 xy 2y 2x4
10、试用逐次逼近法求方程 dy x y 2 通过(0,0)的第三次近似解. dx
75、利用代换 y u 将方程 ycos x 2ysin x 3y cos x ex 化简,并求出原方程的 cos x
通解。
76、求下列线性微分方程组
dx
dt dy
2x 2x
4y 2y
4e2t
(1) (2)
dt
dy1
dx
2 y1
2 y2
77、解下列微分方程组
dy2 dx
y2
58、 x x sin at, a 0
59、 2y 5y cos2 x
60、 y 4y xsin 2x
61、 y 2y 3 4sin 2x
62、 y 2y 2y 4ex cos x
63、 y 9y 18cos3x 30sin 3x
64、 x x sin t cos 2t
11、求解方程 y y 2y 4ex 的通解
常微分方程答案
《常微分方程》测试题 1 答案一、填空题(每空5分)12、 z=34、5、二、计算题(每题10分)1、这是n=2时的伯努利不等式,令z=,算得代入原方程得到,这是线性方程,求得它的通解为z=带回原来的变量y,得到=或者,这就是原方程的解。
此外方程还有解y=0.2、解:积分:故通解为:3、解:齐线性方程的特征方程为,,故通解为不是特征根,所以方程有形如把代回原方程于是原方程通解为4、解三、证明题(每题15分)1、证明:令的第一列为(t)= ,这时(t)==(t)故(t)是一个解。
同样如果以(t)表示第二列,我们有(t)== (t)这样(t)也是一个解。
因此是解矩阵。
又因为det=-t故是基解矩阵。
2、证明:(1),(t- t)是基解矩阵。
(2)由于为方程x=Ax的解矩阵,所以(t)也是x=Ax的解矩阵,而当t= t时,(t)(t)=E, (t- t)=(0)=E. 故由解的存在唯一性定理,得(t)=(t- t)《常微分方程》测试题2 答案一、填空题:(每小题3分,10×3=30分)1. 2. 3 3.4. 充分条件5. 平面6. 无7. 1 8. 9.10. 解组线性无关二. 求下列微分方程的通解:(每小题8分,8×5=40分)1、解:将方程变形为………(2分)令,于是得……(2分)时,,积分得从而…(2分)另外,即也是原方程的解………(2分)2、解:由于……………………(3分)方程为恰当方程,分项组合可得…………(2分)故原方程的通解为……(3分)3、解:齐线性方程的特征方程为特征根…(2分)对于方程,因为不是特征根,故有特解…(3分)代入非齐次方程,可得.所以原方程的解为…(3分)4、解:线性方程的特征方程,故特征根…………………(2分)对于,因为是一重特征根,故有特解,代入,可得……(2分)对于,因为不是特征根,故有特解,代入原方程,可得…(2分)所以原方程的解为…(2分)5、解:当时,方程两边乘以,则方程变为…(2分),即于是有,即……(3分)故原方程的通解为另外也是原方程的解. …(3分)三、解:, ,解的存在区间为…(3分)即令……(4分)又误差估计为:(3分)四、解:方程组的特征方程为特征根为,(2分)对应的特征向量应满足可解得类似对应的特征向量分量为…(3分)原方程组的的基解矩阵为…………………(2分)………(3分)五、证明题:(10分)证明:设,是方程的两个解,则它们在上有定义,其朗斯基行列式为…………………(3分)由已知条件,得…………………(2分)故这两个解是线性相关的.由线性相关定义,存在不全为零的常数,使得,由于,可知.否则,若,则有,而,则,这与,线性相关矛盾.(3分)故(2分)《常微分方程》测试题3答案1.辨别题(1)一阶,非线性(2)一阶,非线性(3)四阶,线性(4)三阶,非线性(5)二阶,非线性(6)一阶,非线性2.填空题(1).(2).(3).(4).3.单选题(1).B (2).C (3).A (4).B (5). A (6). B 7. A 4. 计算题(1).解当时,分离变量得等式两端积分得即通解为(2).解齐次方程的通解为令非齐次方程的特解为代入原方程,确定出原方程的通解为+(3).解由于,所以原方程是全微分方程.取,原方程的通积分为即(4). 令,则,代入原方程,得,当时,分离变量,再积分,得,即:5. 计算题令,则原方程的参数形式为由基本关系式,有积分得得原方程参数形式通解为5.计算题解方程的特征根为,齐次方程的通解为因为不是特征根。
第七章常微分方程练习题(含答案)
第7章 常微分方程一、单项选择题1.微分方程3245(''')3('')(')0y y y x -++=阶数是( b )A.4阶 B .3阶 C .2阶 D .1阶2.微分方程222y x dxdy x +=是( b ) A.一阶可分离变量方程 B.一阶齐次方程 C.一阶非齐次线性方程 D.一阶齐次线性方程3.下列方程中,是一阶线性微分方程的是( c )A.0'2)'(2=+-x yy y xB.0'2=-+x yy xyC.0'2=+y x xyD.0)()67(=++-dy y x dx y x4.方程x y xy =-'满足初始条件11==x y 的特解是( a )A.x x x y +=lnB.Cx x x y +=lnC.x x x y +=ln 2D.Cx x x y +=ln 25.微分方程y y x 2='的通解为( c )A .2x y =B . c x y +=2C . 2cx y =D .0=y6.微分方程y y x ='满足1)1(=y 的特解为 ( a )A.x y =B. c x y +=C.cx y =D.0=y8.微分方程05))(sin(2''=+-+x y y xy y 是( a )A 一阶微分方程B 二阶微分方程C 可分离变量的微分方程D 一阶线性微分方程9.微分方程2y xy '=的通解为( c )A .2x y e C =+B . x y Ce =C . 2x y Ce =D .22x y Ce =二、填空题1.微分方程34()"30y y y y '++=的阶数为__2____;2.微分方程0=+y dxdy 的通解是x y ce -=; 3.微分方程02=+'xy y 的通解是2x y ce -=;4.微分方程x y y e +'=的通解是()10,0x ye C e C ++=<; 5. 一阶线性微分方程()()y P x y Q x '+=的通解为()()()()P x dx P x dx P x dx y Ce e Q x e dx --⎰⎰⎰=+⎰; 6. n 阶微分方程的通解含有__n __个独立的任意常数。
(整理)常微分方程试题及参考答案
(整理)常微分方程试题及参考答案常微分方程试题一、填空题(每小题3分,共39分)1.常微分方程中的自变量个数是________.2.路程函数S(t)的加速度是常数a,则此路程函数S(t)的一般形式是________.3.微分方程=g( )中g(u)为u的连续函数,作变量变换________,方程可化为变量分离方程.4.微分方程F(x,y′)=0中令P=y′,若x、P平面上的曲线F(x,P)=0的参数形式为x= (t),P=ψ(t),t为参数,则方程参数形式的通解为________.5.方程=(x+1)3的通解为________.6.如果函数f(x,y)连续,y= (x)是方程=f(x,y)的定义于区间x0≤x≤x0+h上,满足初始条件(x0)=y0的解.则y= (x)是积分方程________定义于x0≤x≤x0+h 上的连续解.7.方程=x2+xy,满足初始条件y(0)=0的第二次近似解是________.8.方程+a1(t) +…+a n-1(t) +a n(t)x=0中a i(t) i=1,2,…,n是〔a,b〕上的连续函数,又x1(t),x2(t),…,x n(t)为方程n 个线性无关的解,则其伏朗斯基行列式W(t) 应具有的性质是:________.9.常系数线性方程x(4)(t)-2x″(t)+x(t)=0的通解为________.10.设A(t)是区间a≤t≤b上的连续n×n矩阵,x1(t),x2(t),…,x n(t)是方程组x′=A(t)x的n个线性无关的解向量.则方程组的任一解向量x(t)均可表示为:x(t)=________的形式.11.初值问题(t)+2x″(t)-tx′(t)+3x(t)=e-t,x(1)=1,x′(1)=2,x″(1)=3 可化为与之等价的一阶方程组________.12.如果A是3×3的常数矩阵,-2为A的三重特征值,则方程组x′=Ax的基解矩阵exp A t=________.13.方程组的奇点类型是________.二、计算题(共45分)1.(6分)解方程= .2.(6分)解方程x″(t)+ =0.3.(6分)解方程(y-1-xy)dx+xdy=0.4.(6分)解方程5.(7分)求方程:S″(t)-S(t)=t+1满足S(0)=1, (0)=2的解.6.(7分)求方程组的基解矩阵Φ(t).7.(7分)验证方程:有奇点x1=1, x2=0,并讨论相应驻定方程的解的稳定性.三、证明题(每小题8分,共16分)1.设f(x,y)及连续,试证方程dy-f(x,y)dx=0为线性方程的充要条件是它有仅依赖于x的积分因子.2.函数f(x)定义于-∞<x<+∞,且满足条件|f(x1)-f(x2)|≤n|x1-x2|,其中0<n<1,证明< p="">方程x=f(x)存在唯一的一个解.常微分方程试题参考答案一、填空题(每小题3分,共39分)1.12. 2+c1t+c23.u=4. c为任意常数5.y= (x+1)4+c(x+1)26.y=y0+7. (x)=8.对任意t9.x(t)=c1e t+c2te t+c3e-t+c4te-t10.x(t)=c1x1(t)+c2x2(t) +c n x n(t)11. x1(1)=1,x2(1)=2, x3(1)=312.expAt=e-2t[E+t(A+2E)+ ]13.焦点二、计算题(共45分)1.解:将方程分离变量为改写为等式两边积分得y-ln|1+y|=ln|x|-即y=ln 或e y=2.解:令则得=0当0时-arc cosy=t+c1y=cos(t+c1) 即则x=sin(t+c1)+c2当=0时y= 即x3.解:这里M=y-1-xy, N=x令u=xye-xu关于x求偏导数得与Me-x=ye-x-e-x-xye-x 相比有则因此u=xye-x+e-x方程的解为xye-x+e-x=c4.解:方程改写为这是伯努利方程,令z=y1-2=y-1 代入方程得解方程z==于是有或5.特征方程为特征根为对应齐线性方程的通解为s(t)=c1e t+c2e-t f(t)=t+1, 不是特征方程的根从而方程有特解=(At+B),代入方程得-(At+B)=t+1两边比较同次幂系数得A=B=-1故通解为S(t)=c1e t+c2e-t-(t+1)据初始条件得c1=因此所求解为:S(t)=6.解:系数矩阵A=则,而det特征方程det( )=0, 有特征根对对对因此基解矩阵7.解:因故x1=1,x2=0是方程组奇点令X1=x1-1, X2=x2, 即x1=X1+1,x2=X2代入原方程,得化简得*这里R(X)= , 显然(当时)方程组*中,线性部分矩阵det(A- )=由det(A- )=0 得可见相应驻定解渐近稳定三、证明题(每小题8分,共16分)1.证明:若dy-f(x,y)dx=0为线性方程则f(x,y)=因此仅有依赖于x的积分因子反之,若仅有依赖于x的积分因子。
常微分方程期末考试试卷(6)
常微分方程期末考试试卷(6)学院 ______ 班级 _______ 学号 _______ 姓名 _______ 成绩 _______一. 填空题 (共30分,9小题,10个空格,每格3分)。
1.当_______________时,方程M(x,y)dx+N(x,y)dy=0称为恰当方程,或称全微分方程。
2、________________称为齐次方程。
3、求dxdy =f(x,y)满足00)(y x =ϕ的解等价于求积分方程____________________的连续解。
4、若函数f(x,y)在区域G 内连续,且关于y 满足利普希兹条件,则方程),(y x f dxdy = 的解 y=),,(00y x x ϕ作为00,,y x x 的函数在它的存在范围内是__________。
5、若)(),..(),(321t x t x t x 为n 阶齐线性方程的n 个解,则它们线性无关的充要条件是__________________________________________。
6、方程组x t A x )(/=的_________________称之为x t A x )(/=的一个基本解组。
7、若)(t φ是常系数线性方程组Ax x =/的基解矩阵,则expAt =____________。
8、满足___________________的点(**,y x ),称为方程组的奇点。
9、当方程组的特征根为两个共轭虚根时,则当其实部________时,零解是稳定的,对应的奇点称为___________。
二、计算题(共6小题,每题10分)。
1、求解方程:dx dy =312+++-y x y x2.解方程: (2x+2y-1)dx+(x+y-2)dy=03、讨论方程23=dx dy 31y 在怎样的区域中满足解的存在唯一性定理的条件,并求通过点(0,0)的一切解4、求解常系数线性方程:t e x x x t cos 32///-=+-5、试求方程组Ax x =/的一个基解矩阵,并计算⎪⎪⎭⎫ ⎝⎛3421,为其中A e At 6、试讨论方程组cy dtdy by ax dtdx =+=, (1)的奇点类型,其中a,b,c 为常数,且ac ≠0。
(完整版)常微分方程练习试卷及答案
常微分方程练习试卷一、填空题。
1.方程 x 3 d2x 10 是阶(线性、非线性)微分方程 .dt 22. 方程 x dyf (xy ) 经变换 _______ ,能够化为变量分别方程.y dx3.微分方程 d 3 y y 2x 0 知足条件 y(0) 1, y (0)2 的解有个 .dx 34. 设 常 系 数 方程 yy*2 xxx,则此方程的系数ye x 的 一个 特解 y ( x) eexe,, .5. 朗斯基队列式 W (t )0是函数组 x 1(t), x 2 (t),L , x n (t ) 在 a x b 上线性有关的条件 .6. 方程 xydx (2 x 2 3y 2 20) dy 0 的只与 y 有关的积分因子为.7. 已知 X A(t) X 的基解矩阵为 (t ) 的,则 A(t ).8. 方程组 x '2 0.0 x 的基解矩阵为59. 可用变换 将伯努利方程化为线性方程 .10 . 是知足方程 y2 y 5y y 1 和初始条件的独一解 .11. 方程的待定特解可取的形式 :12. 三阶常系数齐线性方程 y 2 y y 0 的特点根是二、计算题1. 求平面上过原点的曲线方程 , 该曲线上任一点处的切线与切点和点 (1,0) 的连线互相垂直 .dy x y 1 2.求解方程.dxx y 3d 2 x dx 2。
3. 求解方程 x2( )dt dt4.用比较系数法解方程 . .5.求方程y y sin x 的通解.6.考证微分方程(cos x sin x xy 2 )dx y(1 x2 )dy0 是适合方程,并求出它的通解.311A X 的一个基解基解矩阵(t) ,求dXA X7.设 A,,试求方程组dX241dt dt 知足初始条件x(0)的解 .8.求方程dy2x13y2经过点 (1,0)的第二次近似解 . dx9.求dy)34xy dy8y20 的通解(dxdx10. 若A 21试求方程组 x Ax 的解(t ),(0)141,并求expAt2三、证明题1.若(t), (t ) 是 X A(t) X 的基解矩阵,求证:存在一个非奇怪的常数矩阵 C ,使得(t)(t )C .2.设 ( x) (x0 , x) 是积分方程y(x)y0x2 y( )]d ,x0 , x [ , ] [x0的皮卡逐渐迫近函数序列 {n (x)} 在 [,] 上一致收敛所得的解,而(x) 是这积分方程在 [ ,] 上的连续解,试用逐渐迫近法证明:在[,] 上( x)( x) .3. 设都是区间上的连续函数 ,且是二阶线性方程的一个基本解组 . 试证明 :(i)和都只好有简单零点(即函数值与导函数值不可以在一点同时为零);(ii)和没有共同的零点;(iii)和没有共同的零点.4. 试证:假如(t ) 是dXAX 知足初始条件(t0 )的解,那么(t) exp A(t t 0 ) dt.答案一 . 填空题。
常微分方程期末试卷
常微分方程期末试卷一、填空题(每小题4分,共20分)1. 方程13d 1d y y x=+解存在唯一的区域是 . 2. 方程x x y xy e sin d d =+的任一解的最大存在区间是 . 3. 如果函数),(y x f 在区域G 内 ,则方程),(d d y x f xy =的解00(,)y x x y ϕ=作为00,,y x x 的函数在它的存在范围内连续. 4. 向量函数组12(),(),,()n y x y x y x 在区间[,]a b 上的朗斯基行列式0)(=x W 是它们在区间[,]a b 上线性相关的 条件.5. 若方程0)()(=+'+''y x q y x p y 中的)(),(x q x p 满足条件 ,则方程有形如n n n x ax y ∑∞==0α的特解.二、解下列方程(每小题9分,共45分) 1.tan .dy y y dx x x =+ 2. 33y x xy dxdy =+. 3. 22().2dy dy x y x dx dx =-+ 4. 033222=-+y dx dy x dx y d x . 5. x y dx dy dx y d 2cos 4422=++. 三、证明题(每小题10分,共20分)1.试导出方程0),(),(=+dy y x N dx y x M 具有形为)(y x +μ的积分因子的充要条件.2. 设12(),(),,()n x t x t x t 为方程组()x A t x '=的基本解组,这里()A t 是区间a t b ≤≤上连续的n n ⨯矩阵,则方程组的任一解()x t 可表示为1122()()()(),n n x t c x t c x t c x t =+++ 其中12,,,n c c c 为确定的常数. 四、计算题(共15分)试求方程组2302x x ⎡⎤'=⎢⎥⎣⎦的标准基解矩阵At ex p , 并求满足条件⎥⎦⎤⎢⎣⎡=21)0(X 的特解.。
(完整版)常微分方程试题及答案2023年修改整理
第十二章 常微分方程(A)一、是非题1.任意微分方程都有通解。
( X )2.微分方程的通解中包含了它所有的解。
( X )3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。
( O ) 4.函数x e x y ⋅=2是微分方程02=+'-''y y y 的解。
( X )5.微分方程0ln =-'x y x 的通解是()C x y +=2ln 21 (C 为任意常数)。
( O )6.y y sin ='是一阶线性微分方程。
( X ) 7.xy y x y +='33不是一阶线性微分方程。
( O ) 8.052=+'-''y y y 的特征方程为0522=+-r r 。
( O )9.221xy y x dxdy +++=是可分离变量的微分方程。
( O )二、填空题1.在横线上填上方程的名称①()0ln 3=-⋅-xdy xdx y 是可分离变量微分方程。
②()()022=-++dy y x y dx x xy 是可分离变量微分方程。
③xy y dx dy x ln ⋅=是齐次方程。
④x x y y x sin 2+='是一阶线性微分方程。
⑤02=-'+''y y y 是二阶常系数齐次线性微分方程。
2.x x y x y cos sin =-'+'''的通解中应含 3 个独立常数。
3.x e y 2-=''的通解是21241C x C e x ++-。
4.x x y cos 2sin -=''的通解是21cos 2sin 41C x C x x +++-。
5.124322+=+'+'''x y x y x y x 是 3 阶微分方程。
6.微分方程()06='-''⋅y y y 是 2 阶微分方程。
常微分试题及答案
常微分试题及答案一、选择题1. 若微分方程 dy/dx = 3x^2,则它的通解为:A. y = x^3 + CB. y = x^2 + CC. y = x^3/3 + CD. y = x^4/2 + C答案:C2. 设 y = e^x 是微分方程 dy/dx - y = 0 的解,则该微分方程的通解为:A. y = e^xB. y = e^(2x)C. y = e^(3x)D. y = e^(4x)答案:A3. 设 y = x^2 是齐次微分方程 y'' - y' - 2y = 0 的解,则该微分方程的通解为:A. y = x^2B. y = x^2 + CC. y = e^x + CD. y = e^(2x) + C答案:B二、计算题1. 解微分方程 dy/dx = 2x + 1,并求出满足初始条件 y(0) = 1 的特解。
解:对微分方程进行分离变量得:dy = (2x + 1)dx两边同时积分得:∫dy = ∫(2x + 1)dxy = x^2 + x + C代入初始条件 y(0) = 1 得:1 = 0^2 + 0 + CC = 1特解为:y = x^2 + x + 12. 求微分方程 y'' + 2y' + y = 0 的通解。
解:首先设通解为 y = e^(rx),带入微分方程得:r^2e^(rx) + 2re^(rx) + e^(rx) = 0化简得:e^(rx)(r^2 + 2r + 1) = 0由指数函数的性质可知,e^(rx) 不等于 0,因此:r^2 + 2r + 1 = 0求解这个二次方程得:r = -1 (二重根)所以,通解为 y = (C1 + C2x)e^(-x)三、应用题有一容器中装有某种细菌,已知初始时刻容器中有 1000 个细菌,随着时间的推移,细菌的数量的变化率与它们的数量成正比。
经实验测得 2 小时后细菌的数量增加到 2000 个。
常微分方程练习题及答案
常微分方程练习试卷一、23210d x x dt += ()x dy f xy y dx=_______ 3230d y y x dx--=(0)1,(0)2y y '== x y y y e αβγ'''++=*2()x x x y x e e xe =++α=β=γ=()0W t ≡12(),(),,()n x t x t x t L a x b ≤≤22(2320)0xydx x y dy ++-=y()X A t X '=()t Φ()A t =20'05⎡⎤=⎢⎥⎣⎦x x251y y y y ''''''+++=20y y y '''''-+=二、13dy x y dx x y +-=-+ 222()0d x dx x dt dt+=sin y y x '=+22(cos sin )(1)0x x xy dx y x dy -+-=3124A -⎡⎤=⎢⎥-⎣⎦⎥⎦⎤⎢⎣⎡-=11ηX A dt dX =)(t ΦX A dt dX =η=)0(x2213dyx y dx =--(1,0)(),t ϕ12(0),ηϕηη⎡⎤==⎢⎥⎣⎦expAt(),()t t Φψ()X A t X '=C ()()t t C ψ=Φ),()(0βαϕ≤≤x x x],[,,])([)(0200βαξξξξ∈++=⎰x x d y y x y xx )}({x n ϕ],[βα)(x ψ],[βα],[βα)()(x x ϕψ≡)(t ϕAX dt dX=ηϕ=)(0t ηϕ)(ex p )(0t t A t -=u xy =11(()1)du dx u f u x =+3,2,1αβγ=-==-3y 1()()t t -'ΦΦ25 00tAt t e e e ⎡⎤=⎢⎥⎣⎦13dy x y dx x y +-=-+ 10,30x y x y +-=⎧⎨-+=⎩1,2x y =-=1,2,x y ξη=-⎧⎨=+⎩ .d d ηξηξξη+=-z ηξ=2(1)1z dz d z ξξ-=+21arctan ln(1)ln ||2z z C ξ-+=+2arctanln 1y C x -=+ 222()0d x dx x dt dt+= ,直接计算可得,于是原方程化为 ,故有或,积分后得,即,所以 就是原方程的通解,这里为任意常数。
常微分方程练习试卷及答案
常微分方程练习试卷及答案常微分方程练试卷一、填空题。
1.方程d2x/dt2+1=是二阶非线性微分方程。
2.方程xdy/ydx=f(xy)经变换ln|x|=g(xy)可以化为变量分离方程。
3.微分方程d3y/dx3-y2-x=0满足条件y(0)=1,y'(0)=2的解有一个。
4.设常系数方程y''+αy'+βy=γex的一个特解y(x)=e-x+e2x,则此方程的系数α=-1,β=2,γ=1.5.朗斯基行列式W(t)≠0是函数组x1(t),x2(t)。
xn(t)在[a,b]上线性无关的条件。
6.方程xydx+(2x2+3y2-20)dy=0的只与y有关的积分因子为1/y3.7.已知X'=A(t)X的基解矩阵为Φ(t),则A(t)=Φ(t)-1dΦ(t)/dt。
8.方程组x'=[2,5;1,0]x的基解矩阵为[2e^(5t),-5e^(5t);e^(5t),1]。
9.可用变换将伯努利方程y'+p(x)y=q(x)化为线性方程。
10.方程y''-y'+2y=2e^x的通解为y(x)=C1e^x+C2e^2x+e^x。
11.方程y'''+2y''+5y'+y=1和初始条件y(0)=y'(0)=y''(0)=0的唯一解为y(x)=e^-x/2[sin(5^(1/2)x/2)-cos(5^(1/2)x/2)]。
12.三阶常系数齐线性方程y'''-2y''+y=0的特征根是1,1,-1.二、计算题1.设曲线方程为y(x)=kx/(1-k^2),则曲线上任一点处的斜率为y'(x)=k/(1-k^2),切点为(0,0),切线方程为y=kx,点(1,0)的连线斜率为-1/k,因此k=-1,曲线方程为y=-x/(1+x)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010-2011学年第二学期常微分方程考试A B 卷答案理学院年级信息与计算科学专业 填空题(每题4分,共20分)1.形如)()('x Q y x P y +=()(),(x Q x P 连续)的方程是一阶线性微分 方程,它的通解为⎪⎭⎫ ⎝⎛⎰+⎰-⎰=c dx dxx P e x Q dx x P e y )()()(.2.形如0y y '''-=的方程是3阶__齐次__(“齐次”还是”非齐次”)___常__系数的微分方程,它的特征方程为310λ-=.3.形如1111110n n nn n n n n d y d y dy x a x a x a y dx dx dx----++++=L L 的方程为欧拉方程,可通过变换t x e =把它转化成常系数方程.4.2(1)0,ydx x dy ++=满足初始条件:x =0,y =1的特解11ln 1y x=++5.5.微分方程0000(,),(),:,dyf x y y x y R x x a y y b dx==-≤-≤满足的解存在且唯一的条件是:(,)f x y 在R 上连续且满足利普希茨条件一、下列微分方程的解(每题5分,共30分) 1.dxdy =2)(1y x + 解:令x+y=u ,则dx dy =dxdu-1……………………….3 dx du -1=21uu-arctgu=x+c y-arctg(x+y)=c (5)2.()()053243=+++xdy ydx y xdy ydx x 解:两边同乘以y x 2得:()()0532*******=+++ydy x dx y x ydy x dx y x (3)故方程的通解为:c y x y x=+5324 (5)3.2⎪⎭⎫⎝⎛-=dx dy y x解:令p dxdy =,则2p x y +=,两边对x 求导,得dxdp pp 21+= pp dx dp 21-=,……………………….3 解之得()c p p x +-+=21ln 2,所以()c p p p y +-++=221ln 2, (4)且y=x+1也是方程的解,但不是奇解 (5)4.04)5(='''-x x解:特征方程0435=-λλ有三重根0=λ,42λ=,52λ=-............................3 故通解为54232221c t c t c e c e c x t t ++++=-. (5)5.4523x x x t ''''''--=+解:特征方程32450λλλ--=有根=1λ0,231,5λλ=-= 齐线性方程的通解为x=5123t t c e c e c t -++ (3)又因为=λ0是特征根,故可以取特解行如2xAt Bt =+%代入原方程解得A=1425,B=25- (4)故通解为x=5212325t t c e c e c t t -++- (5)6.2ln 0,xy y y '-=初值条件:y(1)=e解:原方程可化为ln dy y y dx x= (1)分离变量可得ln dy dxy y x=…………………………………………………..3两边积分可得ln y cx =…………………………………………………..4将初值代入上式求得方程的解:ln2y x = (5)二、求下列方程(组)的通解(每题10分,共30分)1.求一曲线,使其任一点的切线在OY 轴上的截距等于该切线的斜率. 解:设(,)p x y 为所求曲线上的任一点,则在p 点的切线l 在Y 轴上的截距为:dyy xdx-……………………….3 由题意得dyy x x dx-=即11dy y dx x =- 也即ydx xdy dx -+=- 两边同除以2x ,得2ydx xdy dxx x-+=-………………….5 即()ln yd d x x=- (7)即ln y cx x x =+……………………….10 为方程的解。
2.'2'43x x yy x y=+⎧⎨=+⎩满足初值条件(0)3(0)3x y =⎧⎨=⎩解:方程组的特征值125, 1λλ==-,……………………….2 对应特征值15λ=的特征向量12u u u ⎛⎫= ⎪⎝⎭应满足 对任意常数0α≠,2u αα⎛⎫= ⎪⎝⎭,取1α=,得12u ⎛⎫= ⎪⎝⎭ (4)对应特征值21λ=-的特征向量12v v v ⎛⎫= ⎪⎝⎭应满足对任意常数0β≠,v ββ⎛⎫= ⎪-⎝⎭,取1β=,得11v ⎛⎫= ⎪-⎝⎭ (6)所以基解矩阵为:55()2t t t t e e t ee φ--⎛⎫= ⎪-⎝⎭……………………….8 55551211333312113333t t t t t t t t e e e e e e e e ----⎛⎫+- ⎪= ⎪ ⎪-+ ⎪⎝⎭33⎛⎫ ⎪⎝⎭=5524t t tt e e e e --⎛⎫+ ⎪-⎝⎭………….10 3.求方程2213dyx y dx=--通过点(1,0)的第二次近似解. 解:令0()0x ϕ=,于是221001()[213()],xx y x x dx x x ϕϕ=+--=-⎰ (5)2234520111433()[213()],1525xx y x x dx x x x x x ϕϕ=+--=-+-+-⎰…………….10 五、应用题(10分)33. 摩托艇以5米/秒的速度在静水运动,全速时停止了发动机,过了20秒钟后,艇的速度减至13v =米/秒。
确定发动机停止2分钟后艇的速度。
假定水的阻力与艇的运动速度成正比例。
解:dvF ma m dt==,又1F k v =,由此 即dvkv dt=………………….5 其中1kk m=,解之得又0t =时,5v =;2t =时,3v =。
故得13ln 205k =,ln5c =从而方程可化为2035()5t v = (7)当260120t =⨯=时,有120203(20)5()0.233285v =⨯=米/秒 (8)即为所求的确定发动机停止2分钟后艇的速度。
………………….10 六、证明题(10分)1、试证:非齐次线性微分方程组的叠加原理:即:设12(),()x t x t 分别是方程组 的解,则)()(21t x t x +是方程组 的解.证明:)()(1't f x t A x +=(1))()(2't f x t A x +=(2)分别将)(),(21t x t x 代入(1)和(2) 则)()(11'1t f x t A x +=)()(2'2t f x t A x += (5)则)()()]()()[(2121'2'1t f t f t x t x t A x x +++=+ 令)()(21t x t x x +=即证)()()(21't f t f x t A x ++= (10)2010-2011学年第二学期常微分方程考试B 卷答案理学院年级信息与计算科学专业 一、填空题(每题4分,共20分)1.0),(),(=+dy y x N dx y x M 是恰当方程的充要条件是M Ny x∂∂=∂∂; 其通解可用曲线积分表示为(,)(,)M x y dx N M x y dx dy c y ⎡⎤∂+-=⎢⎥∂⎣⎦⎰⎰⎰.3.形如24y y x ''-=的方程是2阶非齐次(“齐次”还是”非齐次”)_常系数的微分方程,它的特征方程的特征根为2, 2-.4.若)(),(t t ψΦ是同一线性方程X t A dtdX)(=的基解方阵,则它们间有关系 ()(), t C t C Φ=ψ为可逆矩阵.5.5.微分方程0000(,),(),:,dyf x y y x y R x x a y y b dx==-≤-≤满足的解存在且唯一的条件是:(,)f x y 在R 上连续且满足利普希茨条件二、下列微分方程的解(每题5分,共30分)1.32x y x y dx dy += 解:令u xy=…………….1 则:21u x u dx du x u dx dy +=+=即21u x dx du x =得到22x dx u du =故c xu +-=-11 即211x x c y +=…………………….4 另外0=y 也是方程的解。
.…………………….5 2.dxdy=x y sin + 解:y =dx e ⎰(⎰x sin dxe -⎰c dx +) (3)=x e [-21e x-(x x cos sin +)+c] =c e x -21(x x cos sin +)是原方程的解。
(5)3.y y y '+'=132。
设t t y t y 13,2+==' (3)dt t dt tt t y dy dx 32616--=-='= (4)C tt x ++=2216, 解为⎪⎩⎪⎨⎧+=++=t t y C t t X 1321622…………………….5 4.2100y y y '''++=解:特征方程01022=++λλ有复数根=1λ13i =-+,213i λ=--……….3 故通解为t e c t e c x t t 3sin 3cos 21--+=…………………….5 5.0xdy ydx +=解:原方程可化为0dxy = 故xy C =…………………….5 6.268t x x x e -'''++=解:特征方程2680λλ++=有根=1λ-2,=2λ-4…………………….1 故齐线性方程的通解为x=2412t tc e c e --+ (3)=λ-2是特征方程的根,故2t xAte -=%代入原方程解得A=14-……………….4 故通解为x=t t e c e c 521--+214t e - (5)三、求下列方程(组)的通解(每题10分,共30分)1.22xy ay a y e '''++=解:特征方程0222=++a a λλ有2重根=λ-a ………………..2 当a=-1时,齐线性方程的通解为s=t tte c e c 21+,=λ1是特征方程的2重根,故t e At x 2~=代入原方程解得A=21通解为s=22121t te c e c t t++,……………………………………..6 当a ≠-1时,齐线性方程的通解为s=at atte c e c --+21,=λ1不是特征方程的根,故t Ae x =~代入原方程解得A=2)1(1+a故通解为s=at atte c e c --+21+te a 2)1(1+…………………………..10 2.22dxx y dt dy x y dt⎧=-+⎪⎪⎨⎪=-+⎪⎩求其基解矩阵.解:det (λE -A )=0得1λ=3,2λ=-3 (3)对应于1λ的特征向量为u =α⎪⎪⎭⎫⎝⎛+321,(α≠0) 对应于2λ的特征向量为v =⎪⎪⎭⎫⎝⎛-321β,(0≠β)……………….5 ∴u =⎪⎪⎭⎫⎝⎛+321,v =⎪⎪⎭⎫⎝⎛-321是对应于1λ,2λ的两个线性无关的特征向量 Ф(t)=⎪⎪⎭⎫⎝⎛-+--t ttt e ee e3333)32()32(是一个基解矩阵……………….10 3.求方程2dyx y dx=-通过点(1,0)的第二次近似解. 解:令0()0x ϕ=,于是22100111()[()],22xx y x x dx x ϕϕ=+-=-⎰ (5)22352011111111()[()],3042620x x y x x dx x x x x ϕϕ=+-=--++-⎰ (10)五、应用题(10分)1.求一曲线,过点(1,1),其任一点的切线在OY 轴上的截距等于2a .解:设(,)p x y 为所求曲线上的任一点,则在p 点的切线l 在Y 轴上的截距为:dyy xdx-……………………….3 由题意得2dyy x a dx -=两边同除以2x ,得2dy dxy a x=--...............................5 即2ln ln d y a d x -=-............................7 即2y cx a =+.. (8)将1,1x y ==代入上式得21c a =-。