2014届高考数学一轮复习教学案圆锥曲线的综合问题

合集下载

高考数学(理)一轮复习精品资料 专题53 圆锥曲线的综合问题(教学案)含解析

高考数学(理)一轮复习精品资料 专题53 圆锥曲线的综合问题(教学案)含解析

圆锥曲线是平面解析几何的核心部分,也是每年高考必考的一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高,通常作为压轴题的形式出现.高频考点一圆锥曲线中的定点、定值问题定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题.【例1】椭圆C:x2a2+y2b2=1(a>b>0)的离心率为32,过其右焦点F与长轴垂直的弦长为1.(1)求椭圆C的方程;(2)设椭圆C的左、右顶点分别为A,B,点P是直线x=1上的动点,直线P A与椭圆的另一交点为M,直线PB与椭圆的另一交点为N.求证:直线MN经过一定点.联立得⎩⎨⎧y =t3(x +2),x 24+y 2=1,即(4t 2+9)x 2+16t 2x +16t 2-36=0,(8分) 可知-2x M =16t 2-364t 2+9,所以x M =18-8t 24t 2+9,则⎩⎪⎨⎪⎧x M =18-8t 24t 2+9,yM =12t4t 2+9.同理得到⎩⎪⎨⎪⎧x N =8t 2-24t 2+1,y N =4t 4t 2+1.(10分)由椭圆的对称性可知这样的定点在x 轴上,不妨设这个定点为Q (m ,0), 又k MQ =12t 4t 2+918-8t 24t 2+9-m ,k NQ=4t4t 2+18t 2-24t 2+1-m , k MQ =k NQ ,所以化简得(8m -32)t 2-6m +24=0,令⎩⎪⎨⎪⎧8m -32=0,-6m +24=0,得m =4,即直线MN 经过定点(4,0).(13分)探究提高 (1)求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(2)定点问题的常见解法:①假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点;②从特殊位置入手,找出定点,再证明该点适合题意.【变式探究】如图,已知双曲线C :x 2a 2-y 2=1(a >0)的右焦点为F ,点A ,B 分别在C 的两条渐近线上,AF⊥x 轴,AB ⊥OB ,BF ∥OA (O 为坐标原点).(1)求双曲线C 的方程;(2)过C 上一点P (x 0,y 0)(y 0≠0)的直线l :x 0x a 2-y 0y =1与直线AF 相交于点M ,与直线x =32相交于点N.(2)证明 由(1)知a =3,则直线l 的方程为x 0x3-y 0y =1(y 0≠0),即y =x 0x -33y 0.因为直线AF 的方程为x =2,所以直线l 与AF 的交点M ⎝⎛⎭⎫2,2x 0-33y 0;直线l 与直线x =32的交点为N ⎝ ⎛⎭⎪⎫32,32x 0-33y 0.则|MF |2|NF |2=(2x 0-3)2(3y 0)214+⎝⎛⎭⎫32x 0-32(3y 0)2=(2x 0-3)29y 204+94(x 0-2)2 =43·(2x 0-3)23y 20+3(x 0-2)2, 因为P (x 0,y 0)是C 上一点,则x 203-y 20=1,代入上式得 |MF |2|NF |2=43·(2x 0-3)2x 20-3+3(x 0-2)2=43·(2x 0-3)24x 20-12x 0+9=43,所以所求定值为|MF ||NF |=23=233. 高频考点二 圆锥曲线中的最值、范围问题圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.【例2】 在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线y =x 被椭圆C 截得的线段长为4105.(1)求椭圆C 的方程;(2)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD ⊥AB ,直线BD 与x 轴、y 轴分别交于M ,N 两点. ①设直线BD ,AM 的斜率分别为k 1,k 2,证明存在常数λ使得k 1=λk 2,并求出λ的值; ②求△OMN 面积的最大值.(2)①证明 设A (x 1,y 1)(x 1y 1≠0),D (x 2,y 2), 则B (-x 1,-y 1),因为直线AB 的斜率k AB =y 1x 1,又AB ⊥AD ,所以直线AD 的斜 率k =-x 1y 1.设直线AD 的方程为y =kx +m , 由题意知k ≠0,m ≠0.由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,得(1+4k 2)x 2+8mkx +4m 2-4=0. 所以x 1+x 2=-8mk 1+4k 2,因此y 1+y 2=k (x 1+x 2)+2m =2m1+4k 2. 由题意知x 1≠-x 2,所以k 1=y 1+y 2x 1+x 2=-14k =y 14x 1.所以直线BD 的方程为y +y 1=y 14x 1(x +x 1). 令y =0,得x =3x 1,即M (3x 1,0),可得k 2=-y 12x 1.所以k 1=-12k 2,即λ=-12.因此存在常数λ=-12使得结论成立.②解 直线BD 的方程为y +y 1=y 14x 1(x +x 1),令x =0,得y =-34y 1,即N ⎝⎛⎭⎫0,-34y 1. 由①知M (3x 1,0),可得△OMN 的面积S =12×3|x 1|×34|y 1|=98|x 1||y 1|.因为|x 1||y 1|≤x 214+y 21=1,当且仅当|x 1|2=|y 1|=22时等号成立,此时S 取得最大值98, 所以△OMN 面积的最大值为98.【感悟提升】圆锥曲线中的最值问题解决方法一般分两种:一是代数法,从代数的角度考虑,通过建立函数、不等式等模型,利用二次函数法和基本不等式法、换元法、导数法等方法求最值;二是几何法,从圆锥曲线的几何性质的角度考虑,根据圆锥曲线几何意义求最值.【变式探究】 设点P (x ,y )到直线x =2的距离与它到定点(1,0)的距离之比为2,并记点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设M (-2,0),过点M 的直线l 与曲线C 相交于E ,F 两点,当线段EF 的中点落在由四点C 1(-1,0),C 2(1,0),B 1(0,-1),B 2(0,1)构成的四边形内(包括边界)时,求直线l 斜率的取值范围.由根与系数的关系得x 1+x 2=-8k 21+2k 2,于是x 0=x 1+x 22=-4k 21+2k 2,y 0=k (x 0+2)=2k 1+2k 2, 因为x 0=-4k 21+2k 2≤0,所以点G 不可能在y 轴的右边,又直线C 1B 2和C 1B 1的方程分别为y =x +1,y =-x -1, 所以点G 在正方形内(包括边界)的充要条件为 ⎩⎪⎨⎪⎧y 0≤x 0+1,y 0≥-x 0-1,即⎩⎪⎨⎪⎧2k 1+2k 2≤-4k 21+2k 2+1,2k 1+2k 2≥4k 21+2k 2-1, 亦即⎩⎪⎨⎪⎧2k 2+2k -1≤0,2k 2-2k -1≤0.解得-3-12≤k ≤3-12,②由①②知,直线l 斜率的取值范围是⎣⎢⎡⎦⎥⎤-3-12,3-12. 高频考点三 圆锥曲线中的探索性问题圆锥曲线的探索性问题主要体现在以下几个方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否成立.涉及这类命题的求解主要是研究直线与圆锥曲线的位置关系问题.【例3】如图,设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求该椭圆的标准方程;(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.从而|DF 1|=22.(3分) 由DF 1⊥F 1F 2,得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=322.所以2a =|DF 1|+|DF 2|=22, 故a =2,b 2=a 2-c 2=1.因此,所求椭圆的标准方程为x 22+y 2=1.(4分)探究提高 (1)探索性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法.【变式探究】 在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q . (1)求k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数k ,使得向量OP →+OQ →与AB →垂直?如果存在,求k 值;如果不存在,请说明理由.1.【2016高考新课标3理数】已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明ARFQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程. 【答案】(Ⅰ)见解析;(Ⅱ)21y x =-.2.【2016高考浙江理数】(本题满分15分)如图,设椭圆2221x y a+=(a >1).(I )求直线y =kx +1被椭圆截得的线段长(用a 、k 表示);(II )若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值 范围.【答案】(I )22221a k a k +(II )02e <≤.所以a >因此,任意以点()0,1A 为圆心的圆与椭圆至多有3个公共点的充要条件为1a <≤,由c e a a ==得,所求离心率的取值范围为02e <≤.3.【2016高考新课标2理数】已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.【答案】(Ⅰ)14449;(Ⅱ))2.因此()33212k k t k -=-.3t >等价于()()232332122022k k k k k k k -+-+-=<--,即3202k k -<-.由此得32020k k ->⎧⎨-<⎩,或32020k k -<⎧⎨->⎩2k <<.因此k 的取值范围是)2.4.【2016年高考北京理数】(本小题14分)已知椭圆C :22221+=x y a b(0a b >>)的离心率为2 ,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N. 求证:BM AN ⋅为定值.【答案】(1)2214x y +=;(2)详见解析.直线PB 的方程为110+-=x x y y . 令0=y ,得100--=y x x N ,从而12200-+=-=y x x AN N . 所以221120000-+⋅-+=⋅x y y x BM AN228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN . 综上,BM AN ⋅为定值.5.【2016年高考四川理数】(本小题满分13分)已知椭圆E :22221(0)x y a b a b+=>>的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线:3l y x =-+与椭圆E 有且只有一个公共点T .(Ⅰ)求椭圆E 的方程及点T 的坐标;(Ⅱ)设O 是坐标原点,直线l’平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P .证明:存在常数λ,使得2PTPA PB λ=⋅,并求λ的值.【答案】(Ⅰ)22163x y +=,点T 坐标为(2,1);(Ⅱ)45λ=.方程②的判别式为2=16(92)m ∆-,由>0∆,解得22m -<<. 由②得212124412=,33m m x x x x -+-=.所以123m PA x ==-- ,同理223m PB x =--, 所以12522(2)(2)433m mPA PB x x ⋅=---- 21212522(2)(2)()433m mx x x x =---++ 225224412(2)(2)()43333m m m m -=----+2109m =.故存在常数45λ=,使得2PT PA PB λ=⋅. 6.【2016高考上海理数】(本题满分14)有一块正方形菜地EFGH ,EH 所在直线是一条小河,收货的蔬菜可送到F 点或河边运走。

2014届高考数学(理科)专题教学案:圆锥曲线的综合问题(含答案)

2014届高考数学(理科)专题教学案:圆锥曲线的综合问题(含答案)

常考问题13 圆锥曲线的综合问题[真题感悟](2013·山东卷)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1,F 2,离心率为32,过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为1. (1)求椭圆C 的方程;(2)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1,PF 2,设∠F 1PF 2的角平分线PM 交C 的长轴于点M (m,0),求m 的取值范围;(3)在(2)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线PF 1,PF 2的斜率分别为k 1,k 2,若k ≠0,试证明1kk 1+1kk 2为定值,并求出这个定值.解 (1)由于c 2=a 2-b 2,将x =-c 代入椭圆方程x 2a 2+y 2b 2=1,得y =±b 2a ,由题意知2b2a=1,即a =2b 2.又e =c a =32,所以a =2,b =1.故椭圆C 的方程为x 24+y 2=1.(2)法一 如图,由题意知|F 1M ||MF 2|=|PF 1||PF 2|,即|PF 1|4-|PF 1|=c +m c -m =3+m 3-m ,整理得m =32(|PF 1|-2). 又a -c <|PF 1|<a +c ,即2-3<|PF 1|<2+ 3. ∴-32<m <32.故m 的取值范围是m ∈⎝ ⎛⎭⎪⎫-32,32.法二 由题意知PF 1→·PM→|PF 1→||PM →|=PF 2→·PM→|PF 2→||PM →|,即PF 1→·PM →|PF 1→|=PF 2→·PM→|PF 2→|.设P (x 0,y 0),其中x 20≠4,将向量坐标化得m (4x 20-16)=3x 30-12x 0. 所以m =34x 0,而x 0∈(-2,2),所以m ∈⎝ ⎛⎭⎪⎫-32,32.(3)设P (x 0,y 0)(y 0≠0),则直线l 的方程为y -y 0=k (x -x 0).联立⎩⎪⎨⎪⎧x 24+y 2=1,y -y 0=k x -x 0,整理得(1+4k 2)x 2+8(ky 0-k 2x 0)x +4(y 20-2kx 0y 0+k 2x 20-1)=0.所以Δ=0.即(4-x 20)k 2+2x 0y 0k +1-y 20=0.又x 204+y 20=1,所以16y 20k 2+8x 0y 0k +x 20=0.故k =-x 04y 0,由(2)知1k 1+1k 2=x 0+3y 0+x 0-3y 0=2x 0y 0.所以1kk 1+1kk 2=1k ⎝ ⎛⎭⎪⎫1k 1+1k 2=⎝ ⎛⎭⎪⎫-4y 0x 0·⎝ ⎛⎭⎪⎫2x 0y 0=-8.所以1kk 1+1kk 2为定值,这个定值为-8.[考题分析] 题型 解答题难度 中档 有关椭圆、双曲线等知识的综合考查.高档 有关直线与椭圆相交下的定点、定值、最值、范围等问题.1.有关弦长问题有关弦长问题,应注意运用弦长公式;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算.(1)斜率为k 的直线与圆锥曲线交于两点P 1(x 1,y 1),P 2(x 2,y 2),则所得弦长|P 1P 2|= 1+k 2|x 2-x 1|或|P 1P 2|=1+1k2|y 2-y 1|.(2)弦的中点问题有关弦的中点问题,应灵活运用“点差法”来简化运算. 2.圆锥曲线中的最值 (1)椭圆中的最值F 1,F 2为椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,P 为椭圆上的任意一点,B 为短轴的一个端点,O 为坐标原点,则有 ①|OP |∈[b ,a ]; ②|PF 1|∈[a -c ,a +c ]; ③|PF 1|·|PF 2|∈[b 2,a 2]; ④∠F 1PF 2≤∠F 1BF 2.(2)双曲线中的最值F 1,F 2为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,O 为坐标原点,则有①|OP |≥a ; ②|PF 1|≥c -a . 3.定点、定值问题定点、定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点、一个值,就是要求的定点、定值.化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量. 4.解决最值、范围问题的方法解决圆锥曲线中最值、范围问题的基本思想是建立目标函数或建立不等关系,根据目标函数或不等式求最值、范围,因此这类问题的难点,就是如何建立目标函数和不等关系.建立目标函数或不等关系的关键是选用一个合适的变量,其原则是这个变量能够表达要解决的问题,这个变量可以是直线的斜率、直线的截距、点的坐标等,要根据问题的实际情况灵活处理.热点一 圆锥曲线的弦长问题【例1】 如图,F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是椭圆C 的顶点,B 是直线AF 2与椭圆C 的另一个交点,∠F 1AF 2=60°.(1)求椭圆C 的离心率;(2)已知△AF 1B 的面积为40 3,求a ,b 的值.解 (1)设椭圆的半焦距为c .由题意可知,△AF 1F 2为等边三角形,所以b =3c ,b 2=3c 2,a 2=4c 2,a =2c ,所以e =12.(2)法一 因为a 2=4c 2,b 2=3c 2, 所以直线AB 的方程可为y =-3(x -c ). 将其代入椭圆方程3x 2+4y 2=12c 2, 得B ⎝ ⎛⎭⎪⎫85c ,-3 35c .所以|AB |=1+3·⎪⎪⎪⎪⎪⎪85c -0=165c .由S △AF 1B =12|AF 1||AB | sin ∠F 1AB =12a ·165c ·32=235a 2=403,解得a =10,b =5 3.法二 设|AB |=t .因为|AF 2|=a ,所以|BF 2|=t -a .由椭圆定义|BF 1|+|BF 2|=2a ,可知|BF 1|=3a -t . 再由余弦定理(3a -t )2=a 2+t 2-2at cos 60°, 可得t =85a .由S △AF 1B =12a ·85a ·32=235a 2=403,知a =10,b =5 3.[规律方法] 在解析几何问题中,转化题目条件或者设参数解决问题时,根据题目条件,选择适当的变量是解题的一个关键,能够起到简化运算的作用(本例中可设|AB |=t ).【训练1】 设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,过点F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,A F →=2F B →.(1) 求椭圆C 的离心率;(2)如果|AB |=154,求椭圆C 的方程.解 设A (x 1,y 1),B (x 2,y 2),由题意知y 1<0,y 2>0. (1)直线l 的方程为y =3(x -c ),其中c =a 2-b 2.联立⎩⎪⎨⎪⎧y =3x -c ,x 2a 2+y 2b2=1,得(3a 2+b 2)y 2+23b 2cy -3b 4=0.解得y 1=-3b 2c +2a 3a 2+b 2,y 2=-3b 2c -2a 3a 2+b2. 因为A F →=2F B →,所以-y 1=2y 2,即3b 2c +2a 3a 2+b 2=2·-3b 2c -2a 3a 2+b 2,得离心率e =c a=23. (2)因为|AB |=1+13|y 2-y 1|,所以23·43ab 23a 2+b2=154. 由c a =23,得b =53a ,所以54a =154,得a =3,b = 5.故椭圆C 的方程为x 29+y 25=1. 热点二 定点、定值问题【例2】 如图,在平面直角坐标系xOy 中,椭圆C ∶x 2a 2+y 2b 2=1(a >b >0)的离心率为32,以原点为圆心,椭圆C 的短半轴长为半径的圆与直线x -y +2=0相切.(1)求椭圆C 的方程;(2)已知点P (0,1),Q (0,2),设M ,N 是椭圆C 上关于y 轴对称的不同两点,直线PM 与QN 相交于点T .求证:点T 在椭圆C 上. (1)解 由题意知b =22= 2.因为离心率e =c a =32,所以b a= 1-⎝ ⎛⎭⎪⎫c a 2=12. 所以a =2 2.所以椭圆C 的方程为x 28+y 32=1.(2)证明 由题意可设M ,N 的坐标分别为(x 0,y 0),(-x 0,y 0),则直线PM 的方程为y =y 0-1x 0x +1.①直线QN 的方程为y =y 0-2-x 0x +2.② 法一 联立①②解得x =x 02y 0-3,y =3y 0-42y 0-3,即T ⎝ ⎛⎭⎪⎫x 02y 0-3,3y 0-42y 0-3由x 208+y 202=1可得x 20=8-4y 20, 因为18⎝ ⎛⎭⎪⎫x 02y 0-32+12⎝ ⎛⎭⎪⎫3y 0-42y 0-32=x 20+43y 0-4282y 0-32=8-4y 20+43y 0-4282y 0-32=32y 20-96y 0+7282y 0-32=82y 0-3282y 0-32=1.所以点T 坐标满足椭圆C 的方程,即点T 在椭圆C 上. 法二 设T (x ,y )联立①②解得x 0=x 2y -3,y 0=3y -42y -3,因为x 208+y 202=1,所以18⎝ ⎛⎭⎪⎫x 2y -32+12⎝ ⎛⎭⎪⎫3y -42y -32=1.整理得x 28+3y -422=(2y -3)2,所以x 28+9y 22-12y +8=4y 2-12y +9,即x 28+y 22=1. 所以点T 坐标满足椭圆C 的方程,即点T 在椭圆C 上.[规律方法] (1)定点和定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的.(2)解圆锥曲线中的定点、定值问题也可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.【训练2】 (2013·安徽卷)设椭圆E :x 2a 2+y 21-a 2=1的焦点在x 轴上.(1)若椭圆E 的焦距为1,求椭圆E 的方程;(2)设F 1,F 2分别是椭圆E 的左、右焦点,P 为椭圆E 上第一象限内的点,直线F 2P 交y 轴于点Q ,并且F 1P ⊥F 1Q .证明:当a 变化时,点P 在某定直线上. (1)解 因为焦距为1,且焦点在x 轴上,所以2a 2-1=14,解得a 2=58.故椭圆E 的方程为8x 25+8y23=1.(2)证明 设P (x 0,y 0),F 1(-c,0),F 2(c,0), 其中c =2a 2-1.由题设知x 0≠c ,则直线F 1P 的斜率kF 1P =y 0x 0+c.直线F 2P 的斜率kF 2P =y 0x 0-c.故直线F 2P 的方程为y =y 0x 0-c(x -c ).当x =0时,y =cy 0c -x 0,即点Q 坐标为⎝ ⎛⎭⎪⎫0,cy 0c -x 0. 因此,直线F 1Q 的斜率为kF 1Q =y 0c -x 0. 由于F 1P ⊥F 1Q ,所以kF 1P ·kF 1Q =y 0x 0+c ·y 0c -x 0=-1.化简得y 20=x 20-(2a 2-1),①将①代入椭圆E 的方程,由于点P (x 0,y 0)在第一象限. 解得x 0=a 2,y 0=1-a 2. 即点P 在定直线x +y =1上. 热点三 最值、范围问题【例3】 (2013·新课标全国Ⅱ卷)平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b2=1(a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ABCD 面积的最大值. 解 (1)设A (x 1,y 1),B (x 2,y 2),P 0(x 0,y 0),则x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,y 1-y 2x 1-x 2=-1,由此可得b 2x 1+x 2a 2y 1+y 2=-y 2-y 1x 2-x 1=1.因为P 为AB 的中点,且OP 的斜率为12,所以x 1+x 2=2x 0,y 1+y 2=2y 0,y 0x 0=12.所以y 0=12x 0,即y 1+y 2=12(x 1+x 2).所以可以解得a 2=2b 2,又由题意知,M 的右焦点为(3,0),故a 2-b 2=3.所以a 2=6,b 2=3. 所以M 的方程为x 26+y 23=1.(2)将x +y -3=0代入x 26+y 23=1,解得⎩⎪⎨⎪⎧x =433,y =-33或⎩⎨⎧x =0,y = 3.所以可得|AB |=463;由题意可设直线CD 方程为y =x +m , 所以设C (x 3,y 3),D (x 4,y 4),将y =x +m 代入x 26+y 23=1,得3x 2+4mx +2m 2-6=0,解得x 1=-2m +18-2m23,x 2=-2m -18-2m 23,则|CD |=2|x 1-x 2|=439-m 2,又因为Δ=16m 2-12(2m 2-6)>0,即-3<m <3, 所以当m =0时,|CD |取得最大值4,所以四边形ACBD 面积的最大值为12|AB |·|CD |=863.[规律方法] 求最值或求范围问题常见的解法有两种:(1)几何法.若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法.(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值,这就是代数法.【训练3】 已知椭圆C :x 2m2+y 2=1(常数m >1),P 是曲线C 上的动点,M 是曲线C 的右顶点,定点A的坐标为(2,0).(1)若M与A重合,求曲线C的焦点坐标;(2)若m=3,求PA的最大值与最小值;(3)若PA的最小值为MA,求实数m的取值范围.解 (1)由题意知m =2,椭圆方程为x 24+y 2=1,c =4-1=3, ∴左、右焦点坐标分别为(-3,0),(3,0).(2)m =3,椭圆方程为x 29+y 2=1,设P (x ,y ),则 PA 2=(x -2)2+y 2=(x -2)2+1-x 29=89⎝ ⎛⎭⎪⎫x -942+12(-3≤x ≤3) ∴当x =94时,PA min =22;当x =-3时,PA max =5. (3)设动点P (x ,y ),则PA 2=(x -2)2+y 2=(x -2)2+1-x 2m 2 =m 2-1m 2⎝ ⎛⎭⎪⎫x -2m 2m 2-12-4m 2m 2-1+5(-m ≤x ≤m ). ∵当x =m 时,PA 取最小值,且m 2-1m2>0, ∴2m 2m 2-1≥m 且m >1,解得1<m ≤1+ 2.备课札记:希望对大家有所帮助,多谢您的浏览!。

(聚焦典型)2014届高三数学一轮复习《圆锥曲线的热点问题》理 新人教B版

(聚焦典型)2014届高三数学一轮复习《圆锥曲线的热点问题》理 新人教B版

[第53讲 圆锥曲线的热点问题](时间:45分钟 分值:100分)基础热身1.过抛物线y =2x 2的焦点的直线与抛物线交于A (x 1,y 1),B (x 2,y 2),则x 1x 2=( )A .-2B .-12C .-4D .-1162.在椭圆x 216+y 24=1中,以点(1,1)为中点的弦的斜率是( ) A .4 B .-4 C.14 D .-143.[2013·济宁模拟] 设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交于不同两点,则y 0的取值范围是( )A .(0,2)B .[0,2]C .(2,+∞)D .[2,+∞) 4.已知椭圆x 29+y 24=1的焦点分别为F 1,F 2,点P 为其上的动点,当∠F 1PF 2为钝角时,点P 的横坐标x 0的取值范围是________________.能力提升5.已知椭圆C :x 24+y 2b=1,直线l :y =mx +1,若对任意的m ∈R ,直线l 与椭圆C 恒有公共点,则实数b 的取值范围是( )A .[1,4)B .[1,+∞)C .[1,4)∪(4,+∞)D .(4,+∞)6.[2013·德化一中模拟] 双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线将平面划分为“上,下,左,右”四个区域(不含边界),若点(1,2)在“上”区域内,则双曲线离心率e 的取值范围是( )A .(3,+∞)B .(5,+∞)C .(1,3)D .(1,5)7.已知椭圆C 1:x 2m +2+y 2n =1与双曲线C 2:x 2m -y 2n=1共焦点,则椭圆C 1的离心率e 的取值范围为( )A.⎝ ⎛⎭⎪⎫22,1B.⎝ ⎛⎭⎪⎫0,22C .(0,1) D.⎝ ⎛⎭⎪⎫0,128.[2013·哈尔滨第六中学三模] 过椭圆x 29+y 24=1上一点M 作圆x 2+y 2=2的两条切线,点A ,B 为切点.过A ,B 的直线l 与x 轴,y 轴分别交于P ,Q 两点,则△POQ 的面积的最小值为( )A.12B.23 C .1 D.439.[2013·黄冈模拟] 若点O 和点F (-2,0)分别是双曲线x 2a2-y 2=1(a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为( )A .[3-23,+∞)B .[3+23,+∞) C.⎣⎢⎡⎭⎪⎫-74,+∞ D.⎣⎢⎡⎭⎪⎫74,+∞ 10.[2013·荆州中学三模] 抛物线y 2=8x 的准线为l ,点Q 在圆C :x 2+y 2+6x +8y +21=0上,设抛物线上任意一点P 到直线l 的距离为m ,则m +|PQ |的最小值为________.11.[2013·江西六校联考] 双曲线x 2a 2-y 2b 2=1(a ,b >0)一条渐近线的倾斜角为π3,离心率为e ,则a 2+eb的最小值为________.12.[2013·咸阳三模] 设椭圆x 2a 2+y 2b2=1(a >b >0)的中心,右焦点,右顶点依次分别为O ,F ,G ,且直线x =a 2c 与x 轴相交于点H ,则|FG ||OH |最大时椭圆的离心率为________.13.过抛物线y 2=x 的焦点F 的直线m 的倾斜角θ≥π4,m 交抛物线于A ,B 两点,且A 点在x 轴上方,则|FA |的取值范围是________.14.(10分)[2013·西城二模] 已知抛物线y 2=4x 的焦点为F ,过点F 的直线交抛物线于A ,B 两点.(1)若AF →=2FB →,求直线AB 的斜率;(2)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值.15.(13分)[2013·海淀二模] 已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (1,0),且点⎝⎛⎭⎪⎫-1,22在椭圆C 上. (1)求椭圆C 的标准方程;(2)已知动直线l 过点F ,且与椭圆C 交于A ,B 两点.试问x 轴上是否存在定点Q ,使得QA →·QB →=-716恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.难点突破16.(12分)[2013·东北四校一模] 已知椭圆M 的中心为坐标原点,且焦点在x 轴上,若M 的一个顶点恰好是抛物线y 2=8x 的焦点,M 的离心率e =12,过M 的右焦点F 作不与坐标轴垂直的直线l ,交M 于A ,B 两点.(1)求椭圆M 的标准方程;(2)设点N (t ,0)是一个动点,且(NA →+NB →)⊥AB →,求实数t 的取值范围.课时作业(五十三)【基础热身】1.D [解析] 抛物线的焦点坐标是⎝ ⎛⎭⎪⎫0,18,设直线AB 的方程为y =kx +18,代入抛物线方程得2x 2-kx -18=0,根据韦达定理得x 1x 2=-116.2.D [解析] 设弦的端点是A (x 1,y 1),B (x 2,y 2),则x 2116+y 214=1,x 2216+y 224=1,作差得(x 1+x 2)(x 1-x 2)16+(y 1+y 2)(y 1-y 2)4=0,x 1+x 2=2,y 1+y 2=2,得k AB =y 1-y 2x 1-x 2=-14.3.C [解析] 圆心到准线的距离为4,由题意只要|FM |>4即可,而|FM |=y 0+2,∴y 0>2.4.-355<x 0<355[解析] 方法一:以c =5为半径,O 为圆心的圆为x 2+y 2=5,求得该圆与椭圆的交点横坐标为x =±35,易知当∠F 1PF 2为钝角时,对应点的横坐标满足条件-355<x 0<355.方法二:已知a 2=9,b 2=4,∴c =5,|PF 1|=a +ex =3+53x ,|PF 2|=3-53x ,由余弦定理,cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22·|PF 1|·|PF 2|=59x 20-1⎝ ⎛⎭⎪⎫9-59x 20,∵∠F 1PF 2是钝角,∴-1<cos∠F 1PF 2<0,即-1<59x 20-1⎝ ⎛⎭⎪⎫9-59x 20<0,解得-355<x 0<35 5.【能力提升】5.C [解析] 直线恒过定点(0,1),只要该点在椭圆内部或椭圆上即可,故只要b ≥1且b ≠4.6.D [解析] 双曲线的渐近线方程为y =±b a x ,由于点(1,2)在上区域,故2>b a,所以e =c a=1+⎝ ⎛⎭⎪⎫b a 2< 5.又e >1,所以所求的范围是(1,5). 7.A [解析] 根据已知,只能m >0,n >0,且m +2-n =m +n ,即n =1,所以椭圆的离心率为e =m +1m +2=1-1m +2.由于m >0,所以1-1m +2>12,所以22<e <1.8.B [解析] 设M (x 0,y 0),根据圆的切线知识可得过A ,B 的直线l 的方程为x 0x +y 0y=2,由此得P ⎝ ⎛⎭⎪⎫2x 0,0,Q ⎝ ⎛⎭⎪⎫0,2y 0,故△POQ 的面积为12×⎪⎪⎪⎪⎪⎪2x 0·⎪⎪⎪⎪⎪⎪2y 0=2|x 0y 0|.点M 在椭圆上,所以x 209+y 204=1≥2⎪⎪⎪⎪⎪⎪x 03·⎪⎪⎪⎪⎪⎪y 02,由此得|x 0y 0|≤3,所以2|x 0y 0|≥23,等号当且仅当|x 0|3=|y 0|2时成立.9.B [解析] 因为F (-2,0)是已知双曲线的左焦点,所以a 2+1=4,即a 2=3,所以双曲线方程为x 23-y 2=1.设点P (x 0,y 0),则有x 203-y 20=1(x 0≥3),解得y 20=x 203-1(x 0≥3),因为FP →=(x 0+2,y 0),OP →=(x 0,y 0),所以OP →·FP →=x 0(x 0+2)+y 20=x 0(x 0+2)+x 203-1=4x 203+2x 0-1,此二次函数对应的抛物线的对称轴为x 0=-34,因为x 0≥3,所以当x 0=3时,OP →·FP →取得最小值43×3+23-1=3+23,故OP →·FP →的取值范围是[3+23,+∞),选B.10.41-2 [解析] 由抛物线的定义得,点P 到直线l 的距离为m 即为点P 到抛物线的焦点F (2,0)的距离.设线段FC 与圆交于点E ,则|FE |即为m +|PQ |的最小值.圆C :x 2+y 2+6x +8y +21=0化为标准方程是(x +3)2+(y +4)2=4,其半径r =2,故|FE |=|FC |-r =(-3-2)2+(-4-0)2-2=41-2.11.263 [解析] 由已知得b a =3,此时b =3a 且双曲线的离心率为e =1+⎝ ⎛⎭⎪⎫b a 2=2,所以a 2+e b =a 2+23a ≥22a 3a=263,等号当且仅当a =2时成立.12.12 [解析] 根据已知O (0,0),F (c ,0),G (a ,0),H ⎝ ⎛⎭⎪⎫a 2c ,0,所以|FG ||OH |=a -c a 2c=ac -c 2a 2=e -e 2=-⎝ ⎛⎭⎪⎫e -122+14≤14,所以当|FG ||OH |最大时e =12.13.⎝ ⎛⎦⎥⎤14,1+22 [解析] 取值范围的左端点是p 2=14,右端点是当直线的倾斜角等于π4时,此时直线方程是y =x -14,代入抛物线方程得x 2-32x +116=0,根据题意点A 的横坐标是x =32+⎝ ⎛⎭⎪⎫322-142=34+22,根据抛物线定义该点到焦点的距离等于其到准线的距离,故这个距离是34+22+14=1+22.14.解:(1)依题意F (1,0),设直线AB 方程为x =my +1.将直线AB 的方程与抛物线的方程联立,消去x 得y 2-4my -4=0. 设A (x 1,y 1),B (x 2,y 2),所以y 1+y 2=4m ,y 1y 2=-4.①因为AF →=2FB →, 所以y 1=-2y 2.②联立①和②,消去y 1,y 2,得m =±24.所以直线AB 的斜率是±2 2.(2)由点C 与原点O 关于点M 对称,得M 是线段OC 的中点,从而点O 与点C 到直线AB 的距离相等,所以四边形OACB 的面积等于2S △AOB .因为2S △AOB =2×12·|OF |·|y 1-y 2|,=(y 1+y 2)2-4y 1y 2=41+m 2,所以m =0时,四边形OACB 的面积最小,最小值是4. 15.解:(1)由题意知,c =1.根据椭圆的定义得,2a =(-1-1)2+⎝ ⎛⎭⎪⎫222+22,即a = 2.所以b 2=2-1=1.所以椭圆C 的标准方程为x 22+y 2=1.(2)假设在x 轴上存在点Q (m ,0),使得QA →·QB →=-716恒成立.当直线l 的斜率为0时,A (2,0),B (-2,0).则(2-m ,0)·(-2-m ,0)=-716.解得m =±54.当直线l 的斜率不存在时,A ⎝⎛⎭⎪⎫1,22,B ⎝⎛⎭⎪⎫1,-22. 由于⎝ ⎛⎭⎪⎫1+54,22·⎝ ⎛⎭⎪⎫1+54,-22≠-716,所以m ≠-54.下面证明m =54时,QA →·QB →=-716恒成立.显然直线l 的斜率为0时,QA →·QB →=-716.当直线l 的斜率不为0时,设直线l 的方程为:x =ty +1,A (x 1,y 1),B (x 2,y 2). 由⎩⎪⎨⎪⎧x 22+y 2=1,x =ty +1可得(t 2+2)y 2+2ty -1=0,显然Δ>0. ⎩⎪⎨⎪⎧y 1+y 2=-2t t 2+2,y 1y 2=-1t 2+2.因为x 1=ty 1+1,x 2=ty 2+1,所以⎝ ⎛⎭⎪⎫x 1-54,y 1·⎝ ⎛⎭⎪⎫x 2-54,y 2=⎝⎛⎭⎪⎫ty 1-14ty 2-14+y 1y 2 =(t 2+1)y 1y 2-14t (y 1+y 2)+116=-(t 2+1)1t 2+2+14t 2t t 2+2+116=-2t 2-2+t 22(t 2+2)+116=-716. 综上所述,在x 轴上存在点Q ⎝ ⎛⎭⎪⎫54,0,使得QA →·QB →=-716恒成立. 【难点突破】16.解:(1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0).抛物线焦点坐标(2,0),所以a =2,ca=12,所以c =1,b 2=a 2-c 2=3, 所以椭圆M 的标准方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),设l :x =my +1(m ∈R ,m ≠0), ⎩⎪⎨⎪⎧x =my +1,x 24+y23=1⇒(3m 2+4)y 2+6my -9=0.由韦达定理得y 1+y 2=-6m3m 2+4.① (NA →+NB →)⊥AB →⇒|NA |=|NB |⇒(x 1-t )2+y 21=(x 2-t )2+y 22⇒(x 1-x 2)(x 1+x 2-2t )+(y 21-y 22)=0,将x 1=my 1+1,x 2=my 2+1代入上式整理得,(y 1-y 2)[(m 2+1)(y 1+y 2)+m (2-2t )]=0.由y 1≠y 2知(m 2+1)(y 1+y 2)+m (2-2t )=0,将①代入得t =13m 2+4,所以实数t ∈⎝ ⎛⎭⎪⎫0,14.。

高三数学教案:圆锥曲线的综合问题

高三数学教案:圆锥曲线的综合问题

第八节 圆锥曲线的综合应用一、基本知识概要:1知识精讲:圆锥曲线的综合问题包括:解析法的应用,数形结合的思想,与圆锥曲线有关的定值、最值等问题,主要沿着两条主线,即圆锥曲线科内综合与代数间的科间综合,灵活运用解析几何的常用方法,解决圆锥曲线的综合问题;通过问题的解决,进一步掌握函数与方程、等价转化、分类讨论等数学思想.2重点难点:正确熟练地运用解析几何的方法解决圆锥曲线的综合问题,从中进一步体会分类讨论、等价转化等数学思想的运用.3思维方式:数形结合的思想,等价转化,分类讨论,函数与方程思想等.4特别注意:要能准确地进行数与形的语言转换和运算、推理转换,并在运算过程中注意思维的严密性,以保证结果的完整。

二、例题:例1. A ,B 是抛物线)0(22>=p px y 上的两点,且OA OB ⊥(O 为坐标原点)求证:(1)A ,B 两点的横坐标之积,纵坐标之积分别是定植; (2)直线AB 经过一个定点证明:(1)设,,2,2),,(),,(21212221212211=+∴⊥==y y x x OB OA px y px y y x B y x A 则两式相乘得2212214,4p x x p y y =-=)0,2),0,2),2(2).(2,2,),(2)2(212112112121212221p x x p p x y y p y x x y y p y y AB y y p k x x x x p y y AB 时,显然也过点(当过定点(化简得的方程所以直线当=-+=-+=-+=≠-=-所以直线AB 过定点(2p,0)例2、(2005年春季北京,18)如图,O 为坐标原点,直线l 在x 轴和y 轴上的截距分别是a 和b )0,0(≠>b a ,且交抛物线)(),(于22112,N ,M )0(2y x y x p px y >=两点。

(1) 写出直线l 的截距式方程 (2) 证明:by y 11121=+(3) 当p a 2=时,求MON ∠的大小。

高考数学一轮教案(圆锥曲线的综合问题)

高考数学一轮教案(圆锥曲线的综合问题)

高考数学一轮教案(圆锥曲线的综合问题)§9.8圆锥曲线的综合问题★ 知识分类★1.直线与圆锥曲线c的位置关系:通过将线l的方程代入曲线C的方程,并消除y或X,我们得到了方程AX2+BX+C=0(1)交点个数:① 当a=0或a≠ 0,s=0,曲线和直线之间只有一个交点;② 当≠ 0且s>0时,曲线与直线有两个交点;③ 当s<0时,曲线和直线之间没有交点。

(2)弦长公式:|ab|?1?k2?|x2?x1|?1?k2?(x1?x2)2?4x1?x22.对称问题:曲线上的两点与已知直线对称:① 曲线上两点的直线垂直于已知的直线(获得斜率);② 曲线上两点的直线和曲线有两个公共点(s>0);③ 曲线上两点的中点在对称直线上。

3.求出运动点的轨迹方程:①轨迹类型已确定的,一般用待定系数法;②动点满足的条件在题目中有明确的表述且轨迹类型未知的,一般用直接法;③一动点随另一动点的变化而变化,一般用代入转移法。

★ 重点难点突破★重点:掌握直线与圆锥曲线的位置关系的判断方法及弦长公式;掌握弦中点轨迹的求法;理解和掌握求曲线方程的方法与步骤,能利用方程求圆锥曲线的有关范围与最值难点:轨迹方程的求法及圆锥曲线的有关范围与最值问题重点和难点:综合运用方程、函数、不等式和轨迹知识解决相关问题1.体验解题时“设而不求”的简化运算功能①求弦长时用韦达定理设而不求;②弦中点问题用“点差法”设而不求.2.体验数学思维方法(主要是方程思维、变换思维、数形结合)在问题解决中的应用x2y2??1的左焦点,点a(1,1),动点p在椭圆上,则|pa|?|pf问题1:已知点f1为椭圆1|的最小值95为.刻度盘:将F2设置为椭圆的右焦点,使用定义将|Pf1 |转换为|PF2 |并组合图形,|pa|?|pf1|?6?|pa|?|pf2|,当p、a、f2共线时最小,最小值为6-2★ 热门考点问题类型分析★考点1直线与圆锥曲线的位置关系题型1:交点个数问题[示例1]让抛物线y2=8x的准直与点Q处的x轴相交。

江苏省响水中学高三数学一轮复习 第47-48课时 圆锥曲线的综合应用教学案 文

江苏省响水中学高三数学一轮复习 第47-48课时 圆锥曲线的综合应用教学案 文

江苏省响水中学2014届高三数学文科一轮复习教学案第47-48课时圆锥曲线的综合应用一、复习目标:1、 利用圆锥曲线的几何性质解决实际问题,灵活运用解析几何的常用方法解决问题.2、会处理圆锥曲线内部知识综合以及与向量、数列、三角等其它知识的综合问题。

3、通过问题的解决,理解函数与方程、等价转化、数形结合以及分类讨论等数学思想.二、基础训练:1、已知点),(y x P 是椭圆12422=+y x 上的动点, 21,F F 是左右焦点,则||||21PF PF ⋅的取值范围是_______,21PF F ∠的最大值为_________,21PF PF ⋅的取值范围是_______.2、设圆锥曲线I’的两个焦点分别为F 1,F 2,若曲线I’上存在点P 满足1PF :12F F :2PF = 4:3:2,则曲线I’的离心率等于_________3、若动点(),x y 在曲线()22104x y b b+=>上变化,则22x y +的最大值为 .4、在平面直角坐标系xOy 中,已知ABC ∆顶点(4,0)A -和(4,0)C ,顶点B 在椭圆 192522=+y x 上,则sin sin sin A C B += .5、已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率是63,过椭圆上一点M 作直线MA ,MB 交椭圆于A ,B 两点,且斜率分别为k 1,k 2.若点A ,B 关于原点对称,则k 1·k 2的值为________.6、设12,F F 为双曲线()22440x y a a -=>的两个焦点,点P 在双曲线上, 且满足120PF PF ∙=,122PF PF ∙=,则a 的值为三、例题讲解:1、(1)设AB 是过椭圆x a y ba b 222210+=>>()中心的弦,椭圆的左焦点为F c 10()-,,则△F 1AB 的面积最大为 ;(2)已知双曲线x a y ba b 2222100-=>>(),的左右焦点分别为F 1,F 2,点P 在双曲线的右支上,且||||PF PF 124=,则此双曲线的离心率的最大值是 ;(3)已知A (3,2)、B (-4,0),P 是椭圆x y 222591+=上一点, 则|PA|+|PB|的最大值为2、在平面直角坐标系x Oy 中,抛物线y=x 2上异于坐标原点O 的两不同动点A 、B 满足AO ⊥BO(如图所示).(1) 求证:直线AB 过定点.(2)求ΔAOB 的重心G(即三角形三条中线的交点)的轨迹方程;(3)ΔAOB 的面积是否存在最小值?3、已知半椭圆x 2a 2+y 2b 2=1(x ≥0)(焦点为F 0)与半椭圆y 2b 2+x 2c 2=1(x ≤0)(相应椭圆的左右焦点为F 1,F 2)组成的曲线称为“果圆”,其中a 2=b 2+c 2,a >b >c >0.(1)若△F 0F 1F 2是边长为1的等边三角形,求“果圆”的方程;(2)设A 1,A 2为“果圆”在x 轴上的端点,B 1,B 2为“果圆”在y 轴上的端点,若|A 1A 2|>|B 1B 2|,求b a的取值范围.4、某地政府为科技兴市,欲将如图所示的一块不规则的非农业用地规划成一个矩形高科技工业园区.已知,AB BC OA ⊥∥BC 且24AB BC AO km ===,曲线段OC 是以点O 为顶点且开口向右的抛物线的一段. (1) 建立适当的坐标系,求曲线段的方程; (2)如果要使矩形的相邻两边分别落在AB 、BC 上,且一个顶点落在OC 上,问如何规划才能使矩形工业园区的用地面积最大?并求出最大的用地面积。

高考数学一轮复习 第八章 平面解析几何 第九节 圆锥曲线的综合问题教案(含解析)-高三全册数学教案

高考数学一轮复习 第八章 平面解析几何 第九节 圆锥曲线的综合问题教案(含解析)-高三全册数学教案

第九节 圆锥曲线的综合问题1.直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程.即⎩⎪⎨⎪⎧Ax +By +C =0,F x ,y =0消去y ,得ax 2+bx +c =0.(1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C 相交;Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行; 若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合. 2.弦长公式设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则 |AB |=1+k 2|x 1-x 2| =1+k 2·x 1+x 22-4x 1x 2=1+1k2·|y 1-y 2|=1+1k2·y 1+y 22-4y 1y 2.[小题体验]1.(教材习题改编)直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A .相交B .相切C .相离D .不确定解析:选A 直线y =kx -k +1=k (x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.2.顶点在坐标原点,焦点在x 轴上的抛物线截得直线y =2x +1所得的弦AB 的长为15,则该抛物线的标准方程为____________.解析:设抛物线的方程为y 2=mx (m ≠0),A (x 1,y 1),B (x 2,y 2).由方程组⎩⎪⎨⎪⎧y 2=mx ,y =2x +1可得4x 2+(4-m )x +1=0.所以x 1+x 2=-4-m 4,x 1x 2=14.所以|AB |=1+22[x 1+x 22-4x 1x 2]=5⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-m 42-1=15,解得m =12或m =-4.所以抛物线的标准方程为y 2=12x 或y 2=-4x . 答案:y 2=12x 或y 2=-4x1.直线与双曲线交于一点时,易误认为直线与双曲线相切,事实上不一定相切,当直线与双曲线的渐近线平行时,直线与双曲线相交于一点.2.直线与抛物线交于一点时,除直线与抛物线相切外易忽视直线与对称轴平行时也相交于一点.[小题纠偏]1.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( ) A .1条 B .2条 C .3条D .4条解析:选C 结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0).2.直线y =b a x +3与双曲线x 2a 2-y 2b2=1的交点个数是( )A .1B .2C .1或2D .0解析:选A 因为直线y =ba x +3与双曲线的渐近线y =b ax 平行,所以它与双曲线只有1个交点.考点一 直线与圆锥曲线的位置关系重点保分型考点——师生共研[典例引领]在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y 轴的距离多1.记点M 的轨迹为C .(1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点P (-2,1),若直线l 与轨迹C 恰好有一个公共点,求实数k 的取值范围.解:(1)设点M (x ,y ),依题意|MF |=|x |+1, ∴x -12+y 2=|x |+1,化简得y 2=2(|x |+x ),故轨迹C 的方程为y 2=⎩⎪⎨⎪⎧4x ,x ≥0,0,x <0.(2)在点M 的轨迹C 中,记C 1:y 2=4x (x ≥0),C 2:y =0(x <0). 依题意,可设直线l 的方程为y -1=k (x +2).联立⎩⎪⎨⎪⎧y -1=kx +2,y 2=4x 消去x ,可得ky 2-4y +4(2k +1)=0.①当k =0时,此时y =1.把y =1代入轨迹C 的方程,得x =14.故此时直线l :y =1与轨迹C 恰好有一个公共点⎝ ⎛⎭⎪⎫14,1. 当k ≠0时,方程①的Δ=-16(2k 2+k -1)=-16(2k -1)(k +1),② 设直线l 与x 轴的交点为(x 0,0),则由y -1=k (x +2),令y =0,得x 0=-2k +1k.③(ⅰ)若⎩⎪⎨⎪⎧Δ<0,x 0<0,由②③解得k <-1或k >12.所以当k <-1或k >12时,直线l 与曲线C 1没有公共点,与曲线C 2有一个公共点,故此时直线l 与轨迹C 恰好有一个公共点.(ⅱ)若⎩⎪⎨⎪⎧Δ=0,x 0≥0,即⎩⎪⎨⎪⎧2k 2+k -1=0,2k +1k<0,解集为∅.综上可知,当k <-1或k >12或k =0时,直线l 与轨迹C 恰好有一个公共点.故实数k 的取值范围为(-∞,-1)∪{0}∪⎝ ⎛⎭⎪⎫12,+∞. [由题悟法]1.直线与圆锥曲线位置关系的判定方法(1)代数法:即联立直线与圆锥曲线方程可得到一个关于x ,y 的方程组,消去y (或x )得一元方程,此方程根的个数即为交点个数,方程组的解即为交点坐标.(2)几何法:即画出直线与圆锥曲线的图象,根据图象判断公共点个数. 2.判定直线与圆锥曲线位置关系的注意点(1)联立直线与圆锥曲线的方程消元后,应注意讨论二次项系数是否为零的情况. (2)判断直线与圆锥曲线位置关系时,判别式Δ起着关键性的作用,第一:可以限定所给参数的范围;第二:可以取舍某些解以免产生增根.[即时应用]1.直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k 的值为( ) A .1 B .1或3 C .0D .1或0解析:选D 由⎩⎪⎨⎪⎧y =kx +2,y 2=8x ,得k 2x 2+(4k -8)x +4=0,若k =0,则y =2,符合题意.若k ≠0,则Δ=0,即64-64k =0,解得k =1,所以直线y =kx +2与抛物线y 2=8x 有且只有一个公共点时,k =0或1.2.已知双曲线x 2a 2-y 2b2=1与直线y =2x 有交点,则双曲线离心率的取值范围为( )A .(1,5)B .(1,5]C .(5,+∞)D .[5,+∞)解析:选C 因为双曲线的一条渐近线方程为y =b ax ,则由题意得b a >2,所以e =c a=1+⎝ ⎛⎭⎪⎫b a 2>1+4= 5.考点二 弦长问题重点保分型考点——师生共研[典例引领](2018·浙江六校联考)如图,椭圆C 1:x 2a 2+y 2b2=1(a >b >0)和圆C 2:x 2+y 2=b 2,已知圆C 2将椭圆C 1的长轴三等分,且圆C 2的面积为π.椭圆C 1的下顶点为E ,过坐标原点O 且与坐标轴不重合的任意直线l 与圆C 2相交于点A ,B ,直线EA ,EB 与椭圆C 1的另一个交点分别是点P ,M .(1)求椭圆C 1的方程;(2)求△EPM 面积最大时直线l 的方程. 解:(1)由题意得:b =1,则a =3b , 所以椭圆C 1的方程为:x 29+y 2=1.(2)由题意得:直线PE ,ME 的斜率存在且不为0,PE ⊥EM , 不妨设直线PE 的斜率为k (k >0),则PE :y =kx -1,由⎩⎪⎨⎪⎧y =kx -1,x 29+y 2=1得⎩⎪⎨⎪⎧x =18k9k 2+1,y =9k 2-19k 2+1或⎩⎪⎨⎪⎧x =0,y =-1.所以P ⎝ ⎛⎭⎪⎫18k 9k 2+1,9k 2-19k 2+1,同理得M ⎝ ⎛⎭⎪⎫-18k k 2+9,9-k 2k 2+9,则k PM =k 2-110k,由⎩⎪⎨⎪⎧y =kx -1,x 2+y 2=1,得A ⎝ ⎛⎭⎪⎫2k 1+k 2,k 2-11+k 2,所以k AB =k 2-12k , 所以S △EPM =12|PE |·|EM |=162k +k39k 4+82k 2+9=162⎝⎛⎭⎪⎫k +1k 9k 2+82+9k 2.设t =k +1k ,则S △EPM =162t9t 2+64=1629t +64t≤278,当且仅当t =k +1k =83时取等号,所以k -1k =±237,则直线AB :y =k 2-12k x =12⎝ ⎛⎭⎪⎫k -1k x , 所以所求直线l 方程为:y =±73x . [由题悟法]弦长的3种常用计算方法(1)定义法:过圆锥曲线的焦点的弦长问题,利用圆锥曲线的定义,可优化解题. (2)点距法:将直线的方程和圆锥曲线的方程联立,求出两交点的坐标,再运用两点间距离公式求弦长.(3)弦长公式法:它体现了解析几何中设而不求的思想,其实质是利用两点之间的距离公式以及一元二次方程根与系数的关系得到的.[提醒] 直线与圆锥曲线的对称轴平行或垂直的特殊情况.[即时应用](2018·温州二模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴长为4,离心率为12,过右焦点的直线l 与椭圆相交于M ,N 两点,点P 的坐标为(4,3),记直线PM ,PN 的斜率分别为k 1,k 2.(1)求椭圆C 的方程;(2)当|MN |=247时,求直线l 的斜率.解:(1)∵2a =4,∴a =2,又e =c a =12,∴c =1,∴b 2=3.∴椭圆C 的方程为x 24+y 23=1.(2)椭圆右焦点(1,0),当l 斜率不存在时,|MN |=3,不合题意; 当l 斜率k 存在时,设直线l 的方程为y =k (x -1),M (x 1,y 1),N (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 23=1,y =k x -1,得(3+4k 2)x 2-8k 2x +4(k 2-3)=0,Δ=144(k 2+1)>0成立, ∴x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-33+4k 2, ∴|MN |=1+k 2·x 1+x 22-4x 1x 2=1+k 2·⎝ ⎛⎭⎪⎫8k 23+4k 22-4×4k 2-33+4k 2=247, 解得k =±1.故直线l 的斜率为±1.考点三 定点、定值问题重点保分型考点——师生共研[典例引领]已知抛物线C :y 2=2px (p >0)的焦点F (1,0),O 为坐标原点,A ,B 是抛物线C 上异于O 的两点.(1)求抛物线C 的方程;(2)若直线OA ,OB 的斜率之积为-12,求证:直线AB 过x 轴上一定点.解:(1)因为抛物线y 2=2px (p >0)的焦点坐标为(1,0), 所以p2=1,即p =2.所以抛物线C 的方程为y 2=4x .(2)证明:①当直线AB 的斜率不存在时,设A ⎝ ⎛⎭⎪⎫t 24,t ,B ⎝ ⎛⎭⎪⎫t 24,-t . 因为直线OA ,OB 的斜率之积为-12,所以t t24·-t t 24=-12,化简得t 2=32. 所以A (8,t ),B (8,-t ),此时直线AB 的方程为x =8. ②当直线AB 的斜率存在时,设其方程为y =kx +b ,A (x A ,y A ),B (x B ,y B ),联立方程组⎩⎪⎨⎪⎧y 2=4x ,y =kx +b ,消去x 得ky 2-4y +4b =0.由根与系数的关系得y A y B =4bk,因为直线OA ,OB 的斜率之积为-12,所以y A x A ·y B x B =-12,即x A x B +2y A y B =0.即y 2A 4·y 2B4+2y A y B =0, 解得y A y B =0(舍去)或y A y B =-32. 所以y A y B =4bk=-32,即b =-8k ,所以y =kx -8k ,即y =k (x -8).综合①②可知,直线AB 过定点(8,0).[由题悟法]1.圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关. 2.定值问题常见的2种求法(1)从特殊入手,求出定值,再证明这个值与变量无关. (2)引进变量法:其解题流程为[即时应用]1.(2018·宁波模拟)如图,中心在坐标原点,焦点分别在x 轴和y 轴上的椭圆T 1,T 2都过点M (0,-2),且椭圆T 1与T 2的离心率均为22. (1)求椭圆T 1与椭圆T 2的标准方程;(2)过点M 引两条斜率分别为k ,k ′的直线分别交T 1,T 2于点P ,Q ,当k ′=4k 时,问直线P Q 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.解:(1)设椭圆T 1,T 2的方程分别为x 2a 2+y 2b 2=1(a >b >0),y 2a ′2+x 2b ′2=1(a ′>b ′>0),由题意得b =2,e =ca =22,又a 2=b 2+c 2,解得a =2. 同理可得a ′=2,b ′=1,所以椭圆T 1和椭圆T 2的方程分别为x 24+y 22=1,y 22+x 2=1.(2)直线MP 的方程为y =kx -2,联立⎩⎪⎨⎪⎧x 24+y 22=1,y =kx -2消去y 得(2k 2+1)x 2-42kx =0,则点P 的横坐标为42k 2k 2+1,所以点P 的坐标为⎝ ⎛⎭⎪⎫42k 2k 2+1,22k 2-22k 2+1. 同理可得点Q 的坐标为⎝ ⎛⎭⎪⎫22k ′k ′2+2,2k ′2-22k ′2+2.又k ′=4k ,则点Q 的坐标为⎝ ⎛⎭⎪⎫42k 8k 2+1,82k 2-28k 2+1, 所以k P Q =82k 2-28k 2+1-22k 2-22k 2+142k 8k 2+1-42k2k 2+1=-12k ,则直线P Q 的方程为y -22k 2-22k 2+1=-12k ⎝ ⎛⎭⎪⎫x -42k 2k 2+1, 化简得y -2=-12kx ,故直线P Q 过定点(0,2).2.(2018·嘉兴模拟)如图,椭圆E :x 2a 2+y 2b2=1(a >b >0)经过点A (0,-1),且离心率为22. (1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同两点P ,Q(均异于点A ),证明:直线AP 与A Q 的斜率之和为定值.解:(1)由题意知c a =22,b =1, 由a 2=b 2+c 2,得a =2, 所以椭圆E 的方程为x 22+y 2=1.(2)证明:设直线P Q 的方程为y =k (x -1)+1(k ≠2), 代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0, 由题意知Δ>0,设P (x 1,y 1),Q(x 2,y 2),且x 1x 2≠0, 则x 1+x 2=4kk -11+2k 2,x 1x 2=2k k -21+2k2, 所以直线AP 与A Q 的斜率之和k AP +k A Q =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-k x 2=2k +(2-k )⎝ ⎛⎭⎪⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k k -12k k -2=2k -2(k -1) =2.故直线AP 与A Q 的斜率之和为定值2.考点四 最值、范围问题重点保分型考点——师生共研[典例引领](2018·浙江原创猜题卷)设抛物线C :y 2=2px (p >0)的焦点为F ,过点F 的直线l 交抛物线C 于P ,Q 两点,且|P Q|=8,线段P Q 的中点到y 轴的距离为3.(1)求抛物线C 的方程;(2)若点A (x 1,y 1),B (x 2,y 2)是抛物线C 上相异的两点,满足x 1+x 2=2,且AB 的中垂线交x 轴于点M ,求△AMB 的面积的最大值及此时直线AB 的方程.解:(1)设P (x P ,y P ),Q(x Q ,y Q ), 则P Q 的中点坐标为⎝ ⎛⎭⎪⎫x P +x Q 2,y P +y Q 2.由题意知x P +x Q2=3,∴x P +x Q =6,又|P Q|=x P +x Q +p =8,∴p =2, 故抛物线C 的方程为y 2=4x .(2)当AB 垂直于x 轴时,显然不符合题意, 所以可设直线AB 的方程为y =kx +b (k ≠0),由⎩⎪⎨⎪⎧y =kx +b ,y 2=4x 消去y 并整理,得k 2x 2+(2kb -4)x +b 2=0,Δ=16(1-kb )>0,∴由x 1+x 2=4-2kb k2=2,得b =2k-k , ∴直线AB 的方程为y =k (x -1)+2k.∵AB 中点的横坐标为1,∴AB 中点的坐标为⎝⎛⎭⎪⎫1,2k .可知AB 的中垂线的方程为y =-1k x +3k,∴M 点的坐标为(3,0).∵直线AB 的方程为k 2x -ky +2-k 2=0, ∴M 到直线AB 的距离d =|3k 2+2-k 2|k 4+k 2=2k 2+1|k |.由⎩⎪⎨⎪⎧k 2x -ky +2-k 2=0,y 2=4x ,得k 24y 2-ky +2-k 2=0,Δ=k 2(k 2-1)>0,∴y 1+y 2=4k ,y 1y 2=8-4k2k2,∴|AB |=1+1k 2|y 1-y 2|=4k 2+1k 2-1k2. 设△AMB 的面积为S , 则S =12|AB |·d =4⎝ ⎛⎭⎪⎫1+1k 21-1k2,设1-1k2=t ,则0<t <1,∴S =4t (2-t 2)=-4t 3+8t ,S ′=-12t 2+8, 由S ′=0,得t =63(负值舍去), 即当k =±3时,S max =1669,此时直线AB 的方程为3x ±3y -1=0.[由题悟法]解决圆锥曲线中的取值范围问题的5种常用解法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围. (2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.[即时应用]1.如图,设抛物线y 2=2px (p >0)的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1.(1)求p 的值;(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M ,求M 的横坐标的取值范围.解:(1)由题意可得,抛物线上点A 到焦点F 的距离等于点A 到直线x =-1的距离, 由抛物线的定义得p2=1,即p =2.(2)由(1)得,抛物线方程为y 2=4x ,F (1,0), 可设A (t 2,2t ),t ≠0,t ≠±1.因为AF 不垂直于y 轴,所以可设直线AF 的方程为x =sy +1(s ≠0),由⎩⎪⎨⎪⎧y 2=4x ,x =sy +1消去x 得y 2-4sy -4=0.故y 1y 2=-4,所以B ⎝ ⎛⎭⎪⎫1t 2,-2t.又直线AB 的斜率为2tt 2-1, 故直线FN 的斜率为-t 2-12t,从而得直线FN 的方程为y =-t 2-12t(x -1).又直线BN 的方程为y =-2t,所以N ⎝ ⎛⎭⎪⎫t 2+3t 2-1,-2t .设M (m,0),由A ,M ,N 三点共线得2tt 2-m=2t +2tt 2-t 2+3t 2-1,于是m =2t 2t 2-1=21-1t2,得m <0或m >2.经检验,m <0或m >2满足题意.综上,点M 的横坐标的取值范围是(-∞,0)∪(2,+∞).2.(2018·温州期末)已知椭圆的焦点坐标为F 1(-1,0),F 2(1,0),过F 2垂直于长轴的直线交椭圆于P ,Q 两点,且|P Q|=3,(1)求椭圆的方程;(2)如图,过F 2的直线l 与椭圆交于不同的两点M ,N ,则△F 1MN 的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.解:(1)设椭圆方程为x 2a 2+y 2b2=1(a >b >0),由焦点坐标可得c =1, 由|P Q|=3,可得2b2a=3,解得a =2,b =3,故椭圆的方程为x 24+y 23=1.(2)设M (x 1,y 1),N (x 2,y 2),△F 1MN 的内切圆的半径为R , 则△F 1MN 的周长为4a =8,S △F 1MN =12(|MN |+|F 1M |+|F 1N |)R =4R ,因此S △F 1MN 最大,R 就最大,S △F 1MN =12|F 1F 2|(y 1-y 2)=y 1-y 2.由题知,直线l 的斜率不为零,可设直线l 的方程为x =my +1,由⎩⎪⎨⎪⎧x =my +1,x 24+y23=1得(3m 2+4)y 2+6my -9=0,解得y 1=-3m +6m 2+13m 2+4,y 2=-3m -6m 2+13m 2+4, 则S △F 1MN =y 1-y 2=12m 2+13m 2+4. 令t =m 2+1,则t ≥1, 所以S △F 1MN =12t 3t 2+1=123t +1t,令f (t )=3t +1t ,则f ′(t )=3-1t2,当t ≥1时, f (t )在[1,+∞)上单调递增,有f (t )≥f (1)=4,S △F 1MN ≤ 124=3,即当t =1,m =0时,取等号,又S △F 1MN =4R ,所以R max =34,故所求内切圆面积的最大值为916π.所以直线l 的方程为x =1时,△F 1MN 的内切圆面积取得最大值916π.一保高考,全练题型做到高考达标1.(2019·台州模拟)已知双曲线x 212-y 24=1的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线的斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤-33,33 B .[-3,3]C.⎝⎛⎭⎪⎫-33,33 D .(-3,3)解析:选A 易知该双曲线的渐近线方程为y =±33x ,当过右焦点的两条直线分别与两条渐近线平行,即两条直线的斜率分别为33和-33时,这两条直线与双曲线右支分别只有一个交点,所以此直线的斜率的取值范围是⎣⎢⎡⎦⎥⎤-33,33. 2.(2018·宁波调研)已知不过原点O 的直线交抛物线y 2=2px 于A ,B 两点,若OA ,AB 的斜率分别为k OA =2,k AB =6,则OB 的斜率为( )A .3B .2C .-2D .-3解析:选 D 由题意可知,直线OA 的方程为y =2x ,与抛物线方程y 2=2px 联立得⎩⎪⎨⎪⎧y =2x ,y 2=2px ,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =p 2,y =p ,所以A ⎝ ⎛⎭⎪⎫p2,p ,则直线AB 的方程为y -p =6⎝ ⎛⎭⎪⎫x -p 2,即y =6x -2p ,与抛物线方程y 2=2px 联立得⎩⎪⎨⎪⎧y =6x -2p ,y 2=2px ,解得⎩⎪⎨⎪⎧x =2p 9,y =-2p3或⎩⎪⎨⎪⎧x =p 2,y =p ,所以B ⎝ ⎛⎭⎪⎫2p9,-2p 3,所以直线OB 的斜率k OB =-2p32p 9=-3.3.(2018·杭州二模)倾斜角为π4的直线经过椭圆x 2a 2+y2b 2=1(a >b >0)的右焦点F ,与椭圆交于A ,B 两点,且AF =2FB ,则该椭圆的离心率为( )A.32 B.23 C.22D.33解析:选B 由题可知,直线的方程为y =x -c ,与椭圆方程联立得⎩⎪⎨⎪⎧x 2a 2+y 2b2=1,y =x -c ,∴(a 2+b 2)y 2+2b 2cy -b 4=0,且Δ>0.设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧ y 1+y 2=-2b 2c a 2+b2,y 1y 2=-b4a 2+b 2,又AF =2FB ,∴(c -x 1,-y 1)=2(x 2-c ,y 2),∴-y 1=2y 2,即⎩⎪⎨⎪⎧-y 2=-2b 2c a 2+b 2,-2y 22=-b4a 2+b2,∴12=4c 2a 2+b 2,∴e =23,故选B. 4.(2018·温州十校联考)已知点P 是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)右支上一点,F 1是双曲线的左焦点,且双曲线的一条渐近线恰是线段PF 1的中垂线,则该双曲线的离心率是( )A. 2B. 3 C .2D. 5解析:选D 设直线PF 1:y =a b (x +c ),则与渐近线y =-b a x 的交点为M ⎝ ⎛⎭⎪⎫-a 2c ,ab c .因为M 是PF 1的中点,利用中点坐标公式,得P ⎝ ⎛⎭⎪⎫-2a2c+c ,2ab c ,因为点P 在双曲线上,所以满足b 2-a 22a 2c 2-4a 2b 2c 2b2=1,整理得c 4=5a 2c 2,解得e = 5.5.(2019·丽水五校联考)已知抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,过点F 且倾斜角为60°的直线交C 于A ,B 两点,AM ⊥l ,BN ⊥l ,M ,N 为垂足,点Q 为MN 的中点,|Q F |=2,则p =________.解析:如图,由抛物线的几何性质可得,以AB 为直径的圆与准线相切,且切点为Q ,△MFN 是以∠MFN 为直角的直角三角形,∴|MN |=2|Q F |=4,过B 作BD ⊥AM ,垂足为D ,∴|AB |=|BD |sin 60°=432=833.设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y 2=2px ,y =3⎝ ⎛⎭⎪⎫x -p 2,得12x 2-20px+3p 2=0,∴x 1+x 2=53p ,∴|AB |=x 1+x 2+p =53p +p =83p =833,∴p = 3.答案: 36.已知双曲线x 2-y 23=1上存在两点M ,N 关于直线y =x +m 对称,且MN 的中点在抛物线y 2=18x 上,则实数m 的值为________.解析:设M (x 1,y 1),N (x 2,y 2),MN 的中点P (x 0,y 0),则⎩⎪⎨⎪⎧x 21-y 213=1,x 22-y223=1,两式相减,得(x 2-x 1)(x 2+x 1)=13(y 2-y 1)(y 2+y 1),显然x 1≠x 2.∴y 2-y 1x 2-x 1·y 2+y 1x 2+x 1=3,即k MN ·y 0x 0=3, ∵M ,N 关于直线y =x +m 对称,∴k MN =-1,∴y 0=-3x 0.又∵y 0=x 0+m ,∴P ⎝ ⎛⎭⎪⎫-m 4,3m 4,代入抛物线方程得916m 2=18×⎝ ⎛⎭⎪⎫-m 4, 解得m =0或-8,经检验都符合. 答案:0或-87.(2019·湖州六校联考)设抛物线C :y 2=4x 的焦点为F ,过点P (-1,0)作直线l 与抛物线C 交于A ,B 两点,若S △ABF =2,且|AF |<|BF |,则|AF ||BF |=________.解析:设直线l 的方程为x =my -1,将直线方程代入抛物线C :y 2=4x 的方程,得y2-4my +4=0,Δ=16(m 2-1)>0.设A (x 1,y 1),B (x 2,y 2),|y 1|<|y 2|,所以y 1+y 2=4m ,y 1·y 2=4,又S △ABF =2,所以121+m 2·|y 2-y 1|·2m 2+1=|y 2-y 1|=2,因此y 21+y 22=10,所以y 21+y 22y 1·y 2=104=52,从而⎪⎪⎪⎪⎪⎪y 1y 2=12,即|AF ||BF |=|x 1+1||x 2+1|=|my 1-1+1||my 2-1+1|=⎪⎪⎪⎪⎪⎪y 1y 2=12.答案:128.(2019·衢州模拟)已知椭圆C :x 22+y 2=1,若一组斜率为14的平行直线被椭圆C 所截线段的中点均在直线l 上,则l 的斜率为________.解析:设弦的中点坐标为M (x ,y ),设直线y =14x +m 与椭圆相交于A (x 1,y 1),B (x 2,y 2)两点,由⎩⎪⎨⎪⎧y =14x +m ,x22+y 2=1消去y ,得9x 2+8mx +16m 2-16=0,Δ=64m 2-4×9×(16m2-16)>0,解得-324<m <324,x 1+x 2=-8m 9,x 1x 2=16m 2-169,∵M (x ,y )为弦AB 的中点,∴x 1+x 2=2x ,解得x =-4m9,∵m ∈⎝ ⎛⎭⎪⎫-324,324,∴x ∈⎝ ⎛⎭⎪⎫-23,23,由⎩⎪⎨⎪⎧y =14x +m ,x =-4m9消去m ,得y =-2x ,则直线l 的方程为y =-2x ,x ∈⎝ ⎛⎭⎪⎫-23,23, ∴直线l 的斜率为-2. 答案:-29.(2018·东阳适应)已知椭圆x 2a2+y 2=1(a >1).(1)若A (0,1)到焦点的距离为3,求椭圆的离心率.(2)Rt △ABC 以A (0,1)为直角顶点,边AB ,AC 与椭圆交于两点B ,C .若△ABC 面积的最大值为278,求a 的值.解:(1)由题可得a =3,所以c =2,所以e =c a =63. (2)不妨设AB 斜率k >0,则AB :y =kx +1, AC :y =-1kx +1,由⎩⎪⎨⎪⎧y =kx +1,x 2a2+y 2=1得(1+a 2k 2)x 2+2a 2kx =0,解得x B =-2a 2k 1+a 2k 2,同理x C =2a 2k k 2+a 2, S =12|AB ||AC |=2a 4·k 1+k2a 2k 4+a 4k 2+k 2+a2 =2a 4·k +1ka 2k 2+a 2k2+a 4+1=2a 4·k +1ka 2⎝ ⎛⎭⎪⎫k +1k 2+a 2-12,设t =k +1k,则t ≥2,S =2a 4·ta 2t 2+a 2-12=2a4a 2t +a 2-12t≤a 3a 2-1,当且仅当t =a 2-1a ≥2,即a ≥1+2时取等号, 由a 3a 2-1=278,解得a =3,a =3+29716(舍), 若a <1+2,显然无解.∴a =3.10.(2019·嘉兴模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为33,F 1,F 2分别为椭圆C 的左、右焦点,过F 2的直线l 与C 相交于A ,B 两点,△F 1AB 的周长为4 3.(1)求椭圆C 的方程;(2)若椭圆C 上存在点P ,使四边形OAPB 为平行四边形,求此时直线l 的方程. 解:(1)∵椭圆的离心率为33,∴c a =33,∴a =3c , 又△F 1AB 的周长为43,∴4a =43, 解得a =3,∴c =1,b =2,∴椭圆C 的标准方程为x 23+y 22=1.(2)设点A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),∵当直线l 的斜率不存在时,这样的直线不满足题意, ∴设直线l 的斜率为k ,则直线l 的方程为y =k (x -1), 将直线l 的方程代入椭圆方程, 整理得(2+3k 2)x 2-6k 2x +3k 2-6=0, ∴x 1+x 2=6k22+3k2,故y 1+y 2=k (x 1+x 2)-2k =6k 32+3k 2-2k =-4k2+3k 2.∵四边形OAPB 为平行四边形,∴OP =OA +OB , 从而x 0=x 1+x 2=6k 22+3k 2,y 0=y 1+y 2=-4k2+3k2,又P (x 0,y 0)在椭圆上,∴⎝ ⎛⎭⎪⎫6k 22+3k 223+⎝ ⎛⎭⎪⎫-4k 2+3k 222=1,化简得3k 4-4k 2-4=0,解得k =±2, 故所求直线l 的方程为y =±2(x -1). 二上台阶,自主选做志在冲刺名校1.(2018·湖州质检)已知椭圆E :x 2a 2+y 2b2=1(a >b >0),不经过原点O 的直线l :y =kx+m (k >0)与椭圆E 相交于不同的两点A ,B ,直线OA ,AB ,OB 的斜率依次构成等比数列.(1)求a ,b ,k 的关系式;(2)若离心率e =12且|AB |=7⎪⎪⎪⎪⎪⎪m +1m ,当m 为何值时,椭圆的焦距取得最小值? 解:(1)设A (x 1,y 1),B (x 2,y 2), 由题意得k 2=k OA ·k OB =y 1y 2x 1x 2. 联立⎩⎪⎨⎪⎧x 2a 2+y 2b2=1,y =kx +m消去y ,整理得(b 2+a 2k 2)x 2+2a 2kmx +a 2m 2-a 2b 2=0,故Δ=(2a 2km )2-4(b 2+a 2k 2)(a 2m 2-a 2b 2)>0, 即b 2-m 2+a 2k 2>0,且x 1+x 2=-2a 2km b 2+a 2k 2,x 1·x 2=a 2m 2-a 2b2b 2+a 2k 2, 所以k 2=y 1y 2x 1x 2=k 2x 1x 2+km x 1+x 2+m 2x 1x 2,即km (x 1+x 2)+m 2=0,-2a 2k 2m 2b 2+a 2k2+m 2=0.又直线不经过原点,所以m ≠0,所以b 2=a 2k 2,即b =ak . (2)因为e =12,则a =2c ,b =3c ,k =32,所以x 1+x 2=-2a 2km b 2+a 2k 2=-23m 3,x 1·x 2=a 2m 2-a 2b 2b 2+a 2k 2=23m 2-2c 2, 所以|AB |=1+k2|x 1-x 2|=72x 1+x 22-4x 1·x 2=72·⎝⎛⎭⎪⎫-23m 32-4⎝ ⎛⎭⎪⎫23m 2-2c 2=72·-4m 23+8c 2=7⎪⎪⎪⎪⎪⎪m +1m , 化简得2c 2=4m 23+1m 2+2≥433+2(Δ>0恒成立),当且仅当4m 23=1m 2,即m =±4122时,焦距最小.综上,当m =±4122时,椭圆的焦距取得最小值. 2.(2018·学军适考)已知抛物线C :x 2=4y ,过点P (0,m )(m >0)的动直线l 与C 相交于A ,B 两点,抛物线C 在点A 和点B 处的切线相交于点Q ,直线A Q ,B Q 与x 轴分别相交于点E ,F .(1)写出抛物线C 的焦点坐标和准线方程; (2)求证:点Q 在直线y =-m 上;(3)判断是否存在点P ,使得四边形PE Q F 为矩形?若存在,求出点P 的坐标;若不存在,说明理由.解:(1)焦点坐标为(0,1),准线方程为y =-1. (2)证明:由题意知直线l 的斜率存在,故设l 的方程为y =kx +m . 由方程组⎩⎪⎨⎪⎧y =kx +m ,x 2=4y ,得x 2-4kx -4m =0,由题意,得Δ=16k 2+16m >0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4m , 所以抛物线在点A 处的切线方程为y -14x 21=12x 1(x -x 1),化简,得y =12x 1x -14x 21,①同理,抛物线在点B 处的切线方程为y =12x 2x -14x 22.②联立方程①②,得12x 1x -14x 21=12x 2x -14x 22,即12(x 1-x 2)x =14(x 1-x 2)(x 1+x 2),因为x 1≠x 2,所以x =12(x 1+x 2), 代入①,得y =14x 1x 2=-m ,所以点Q ⎝⎛⎭⎪⎫x 1+x 22,-m ,即Q(2k ,-m ).所以点Q 在直线y =-m 上.(3)假设存在点P ,使得四边形PE Q F 为矩形, 由四边形PE Q F 为矩形,得E Q ⊥F Q ,即A Q ⊥B Q , 所以k A Q ·k B Q =-1,即12x 1·12x 2=-1.由(2),得14x 1x 2=14(-4m )=-1,解得m =1.所以P (0,1).以下只要验证此时的四边形PE Q F 为平行四边形即可.在①中,令y =0,得E ⎝ ⎛⎭⎪⎫12x 1,0.同理得F ⎝ ⎛⎭⎪⎫12x 2,0.所以直线EP 的斜率为k EP =1-00-12x 1=-2x 1, 直线F Q 的斜率k F Q =0--112x 2-x 1+x 22=-2x 1,所以k EP =k F Q ,即EP ∥F Q. 同理PF ∥E Q.所以四边形PE Q F 为平行四边形.综上所述,存在点P (0,1),使得四边形PE Q F 为矩形. 命题点一 椭圆1.(2018·全国卷Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,A 是C的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )A.23 B.12C.13D.14解析:选D 如图,作PB ⊥x 轴于点B .由题意可设|F 1F 2|=|PF 2|=2,则c =1.由∠F 1F 2P =120°,可得|PB |=3,|BF 2|=1,故|AB |=a +1+1=a +2,tan ∠PAB =|PB ||AB |=3a +2=36,解得a =4,所以e =c a =14.2.(2018·浙江高考)已知点P (0,1),椭圆x 24+y 2=m (m >1)上两点A ,B 满足AP ―→=2PB ―→,则当m =________时,点B 橫坐标的绝对值最大.解析:设A (x 1,y 1),B (x 2,y 2),由AP ―→=2PB ―→,得⎩⎪⎨⎪⎧-x 1=2x 2,1-y 1=2y 2-1,即x 1=-2x 2,y 1=3-2y 2.因为点A ,B 在椭圆上,所以⎩⎪⎨⎪⎧4x 224+3-2y 22=m ,x224+y 22=m ,解得y 2=14m +34,所以x 22=m -(3-2y 2)2=-14m 2+52m -94=-14(m -5)2+4≤4,所以当m =5时,点B 横坐标的绝对值最大. 答案:53.(2018·全国卷Ⅰ)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB . 解:(1)由已知得F (1,0),l 的方程为x =1. 则点A 的坐标为⎝ ⎛⎭⎪⎫1,22或⎝ ⎛⎭⎪⎫1,-22. 又M (2,0),所以直线AM 的方程为y =-22x +2或y =22x -2, 即x +2y -2=0或x -2y -2=0.(2)证明:当l 与x 轴重合时,∠OMA =∠OMB =0°. 当l 与x 轴垂直时,OM 为AB 的垂直平分线, 所以∠OMA =∠OMB .当l 与x 轴不重合也不垂直时,设l 的方程为y =k (x -1)(k ≠0),A (x 1,y 1),B (x 2,y 2),则x 1<2,x 2<2,直线MA ,MB 的斜率之和为k MA +k MB =y 1x 1-2+y 2x 2-2.由y 1=kx 1-k ,y 2=kx 2-k ,得k MA +k MB =2kx 1x 2-3k x 1+x 2+4kx 1-2x 2-2.将y =k (x -1)代入x 22+y 2=1, 得(2k 2+1)x 2-4k 2x +2k 2-2=0, 所以x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1.则2kx 1x 2-3k (x 1+x 2)+4k =4k 3-4k -12k 3+8k 3+4k2k 2+1=0. 从而k MA +k MB =0, 故MA ,MB 的倾斜角互补. 所以∠OMA =∠OMB . 综上,∠OMA =∠OMB 成立.4.(2018·天津高考)设椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的离心率为53,点A 的坐标为(b,0),且|FB |·|AB |=6 2. (1)求椭圆的方程.(2)设直线l :y =kx (k >0)与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q ,若|A Q||P Q|=524sin ∠AO Q(O 为原点),求k 的值. 解:(1)设椭圆的焦距为2c ,由已知有c 2a 2=59,又由a 2=b 2+c 2,可得2a =3b .①由已知可得|FB |=a ,|AB |=2b , 又|FB |·|AB |=62,可得ab =6.② 联立①②解得a =3,b =2. 所以椭圆的方程为x 29+y 24=1.(2)设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2). 由已知有y 1>y 2>0,故|P Q|sin ∠AO Q =y 1-y 2.又因为|A Q|=y 2sin ∠OAB ,而∠OAB =π4,所以|A Q|=2y 2.由|A Q||P Q|=524sin ∠AO Q ,可得5y 1=9y 2. 由方程组⎩⎪⎨⎪⎧y =kx ,x 29+y24=1消去x ,可得y 1=6k 9k 2+4.易知直线AB 的方程为x +y -2=0, 由方程组⎩⎪⎨⎪⎧y =kx ,x +y -2=0消去x ,可得y 2=2kk +1. 由5y 1=9y 2,可得5(k +1)=39k 2+4,两边平方, 整理得56k 2-50k +11=0,解得k =12或k =1128.所以k 的值为12或1128.5.(2018·全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0).(1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP ―→+FA ―→+FB ―→=0.证明:|FA ―→|,|FP ―→|,|FB ―→|成等差数列,并求该数列的公差.解:(1)证明:设A (x 1,y 1),B (x 2,y 2), 则x 214+y 213=1,x 224+y 223=1. 两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0. 由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m.①由题设得0<m <32,故k <-12.(2)由题意得F (1,0).设P (x 3,y 3),则(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0). 由(1)及题设得x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0.又点P 在C 上,所以m =34,从而P ⎝ ⎛⎭⎪⎫1,-32,|FP ―→|=32, 于是|FA ―→|=x 1-12+y 21= x 1-12+3⎝ ⎛⎭⎪⎫1-x 214 =2-x 12.同理|FB ―→|=2-x 22.所以|FA ―→|+|FB ―→|=4-12(x 1+x 2)=3.故2|FP ―→|=|FA ―→|+|FB ―→|,即|FA ―→|,|FP ―→|,|FB ―→|成等差数列.设该数列的公差为d ,则2|d |=|FB ―→|-|FA ―→|=12|x 1-x 2|=12x 1+x 22-4x 1x 2.②将m =34代入①得k =-1,所以l 的方程为y =-x +74,代入C 的方程,并整理得7x 2-14x +14=0.故x 1+x 2=2,x 1x 2=128,代入②解得|d |=32128.所以该数列的公差为32128或-32128.命题点二 双曲线1.(2018·全国卷Ⅱ)双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±3xC .y =±22x D .y =±32x 解析:选A ∵e =c a =a 2+b 2a=3,∴a 2+b 2=3a 2,∴b =2a . ∴渐近线方程为y =±2x .2.(2018·全国卷Ⅲ)设F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C 的离心率为( )A. 5 B .2 C. 3D. 2解析:选C 法一:不妨设一条渐近线的方程为y =b ax ,则F 2到y =b ax 的距离d =|bc |a 2+b 2=b .在Rt △F 2PO 中,|F 2O |=c , 所以|PO |=a ,所以|PF 1|=6a ,又|F 1O |=c ,所以在△F 1PO 与Rt △F 2PO 中, 根据余弦定理得cos ∠POF 1=a 2+c 2-6a22ac=-cos ∠POF 2=-a c,即3a 2+c 2-(6a )2=0,得3a 2=c 2,所以e =c a= 3.法二:如图,过点F 1向OP 的反向延长线作垂线,垂足为P ′,连接P ′F 2,由题意可知,四边形PF 1P ′F 2为平行四边形,且△PP ′F 2是直角三角形.因为|F 2P |=b ,|F 2O |=c ,所以|OP |=a .又|PF 1|=6a =|F 2P ′|,|PP ′|=2a ,所以|F 2P |=2a =b ,所以c =a 2+b 2=3a ,所以e =c a= 3.3.(2018·天津高考)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( )A.x 24-y 212=1 B.x 212-y 24=1C.x 23-y 29=1 D.x 29-y 23=1解析:选C 法一:如图,不妨设A 在B 的上方,则A ⎝ ⎛⎭⎪⎫c ,b 2a ,B ⎝⎛⎭⎪⎫c ,-b 2a . 又双曲线的一条渐近线为bx -ay =0,则d 1+d 2=bc -b 2+bc +b 2a 2+b 2=2bcc =2b=6,所以b =3.又由e =ca=2,知a 2+b 2=4a 2,所以a = 3.所以双曲线的方程为x 23-y 29=1.法二:由d 1+d 2=6,得双曲线的右焦点到渐近线的距离为3,所以b =3.因为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,所以c a =2,所以a 2+b 2a 2=4,所以a 2+9a2=4,解得a 2=3,所以双曲线的方程为x 23-y 29=1.4.(2018·全国卷Ⅰ)已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |=( )A.32 B .3 C .2 3D .4解析:选B 法一:由已知得双曲线的两条渐近线方程为y =±13x .设两条渐近线的夹角为2α,则有tan α=13=33,所以α=30°.所以∠MON =2α=60°.又△OMN 为直角三角形,由于双曲线具有对称性,不妨设MN ⊥ON ,如图所示.在Rt △ONF 中,|OF |=2,则|ON |= 3.在Rt △OMN 中,|MN |=|ON |·tan 2α=3·tan 60°=3.法二:因为双曲线x 23-y 2=1的渐近线方程为y =±33x ,所以∠MON =60°.不妨设过点F 的直线与直线y =33x 交于点M ,由△OMN 为直角三角形,不妨设∠OMN =90°,则∠MFO =60°,又直线MN 过点F (2,0),所以直线MN 的方程为y =-3(x -2),由⎩⎪⎨⎪⎧y =-3x -2,y =33x ,得⎩⎪⎨⎪⎧x =32,y =32,所以M ⎝ ⎛⎭⎪⎫32,32,所以|OM |=⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫322=3, 所以|MN |=3|OM |=3.5.(2018·江苏高考)在平面直角坐标系xOy 中,若双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点F (c,0)到一条渐近线的距离为32c ,则其离心率的值为________. 解析:∵双曲线的渐近线方程为bx ±ay =0, ∴焦点F (c,0)到渐近线的距离d =|bc ±0|b 2+a 2=b ,∴b =32c ,∴a =c 2-b 2=12c , ∴e =c a=2. 答案:26.(2018·北京高考)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2-y 2n 2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为________.解析:法一:如图,∵双曲线N 的渐近线方程为y =±nmx ,∴n m=tan 60°=3,∴双曲线N 的离心率e 1满足e 21=1+n 2m2=4,∴e 1=2.由⎩⎪⎨⎪⎧y =3x ,x 2a 2+y 2b2=1,得x 2=a 2b 23a 2+b2.设D 点的横坐标为x ,由正六边形的性质得|ED |=2x =c ,∴4x 2=c 2. ∴4a 2b 23a 2+b2=a 2-b 2,得3a 4-6a 2b 2-b 4=0, ∴3-6b 2a2-⎝ ⎛⎭⎪⎫b 2a 22=0,解得b2a2=23-3.∴椭圆M 的离心率e 2=1-b 2a2=4-23=3-1. 法二:∵双曲线N 的渐近线方程为y =±n mx ,∴n m=tan 60°= 3.又c 1=m 2+n 2=2m , ∴双曲线N 的离心率为c 1m=2.如图,连接EC ,由题意知,F ,C 为椭圆M 的两焦点,设正六边形边长为1,则|FC |=2c 2=2,即c 2=1.又E 为椭圆M 上一点, 则|EF |+|EC |=2a , 即1+3=2a ,a =1+32.∴椭圆M 的离心率为c 2a =21+3=3-1.答案:3-1 2 命题点三 抛物线1.(2017·全国卷Ⅰ)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为( )A .16B .14C .12D .10解析:选A 抛物线C :y 2=4x 的焦点为F (1,0), 由题意可知l 1,l 2的斜率存在且不为0. 不妨设直线l 1的斜率为k ,则l 1:y =k (x -1),l 2:y =-1k(x -1),由⎩⎪⎨⎪⎧y 2=4x ,y =k x -1消去y ,得k 2x 2-(2k 2+4)x +k 2=0,设A (x 1,y 1),B (x 2,y 2), ∴x 1+x 2=2k 2+4k 2=2+4k2,由抛物线的定义可知,|AB |=x 1+x 2+2=2+4k 2+2=4+4k2.同理得|DE |=4+4k 2,∴|AB |+|DE |=4+4k2+4+4k 2=8+4⎝ ⎛⎭⎪⎫1k 2+k 2≥8+8=16,当且仅当1k2=k 2,即k =±1时取等号,故|AB |+|DE |的最小值为16.2.(2018·全国卷Ⅰ)设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM ―→·FN ―→=( )A .5B .6C .7D .8解析:选D 由题意知直线MN 的方程为y =23(x +2),联立⎩⎪⎨⎪⎧y =23x +2,y 2=4x ,解得⎩⎪⎨⎪⎧x =1,y =2或⎩⎪⎨⎪⎧x =4,y =4.不妨设M (1,2),N (4,4). ∵抛物线焦点为F (1,0), ∴FM ―→=(0,2),FN ―→=(3,4). ∴FM ―→·FN ―→=0×3+2×4=8.3.(2018·全国卷Ⅲ)已知点M (-1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________.解析:法一:设点A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,∴y 21-y 22=4(x 1-x 2),∴k =y 1-y 2x 1-x 2=4y 1+y 2. 设AB 中点为M ′(x 0,y 0),抛物线的焦点为F ,分别过点A ,B 作准线x =-1的垂线,垂足分别为A ′,B ′,则|MM ′|=12|AB |=12(|AF |+|BF |)=12(|AA ′|+|BB ′|). ∵M ′(x 0,y 0)为AB 中点,。

【高考A计划】2014高考数学第一轮复习第55课时圆锥曲线应用(1)学案新人教A版

【高考A计划】2014高考数学第一轮复习第55课时圆锥曲线应用(1)学案新人教A版

k 的取值范围.
五.课后作业:
班级
学号
姓名
x2 y2 1. AB 为过椭圆 a2 b2 1 (a b 0) 中心的弦, F (c,0) 是椭圆的右焦点, 则 ABF 面
积的最大值是


( A) bc
( B) ac
(C ) ab
( D) b2
2.若抛物线 y
x2
x2 m 与椭圆
y2 1 有四个不同的交点, 则 m 的取值范围是 (
8.已知椭圆的两个焦点分别是
22
F1(0, 2 2), F2 (0,2 2) ,离心率 e
,一条不与坐标轴平行的直线 l 与椭圆交于不同的两点 M , N ,且
线段 MN 中点的横坐标为
1
,求直线
l 的倾斜角的范围.
2
4
ax2 bx c 0 无实数
根,则此双曲线的离心率 e 的取值范围是 (1,2 5) .
四.例题分析:
例 1 .过抛物线 y2 4 x (a 0) 的焦点 F ,作相互垂直的两条焦点弦
AB 和 CD ,求
| AB | |CD |的最小值.
解:抛物线的焦点 F 坐标为 ( a,0) ,设直线 AB 方程为 y k ( x a) ,则 CD 方程为
点为 M ,则 2a | MF1 | | MF2 | | MF | | MF2 | | FF2 | 6 5 ,
x2 y2
∴ amin 3 5 ,此时椭圆方程是
1.
45 36
小结:本题可以从代数、几何等途径寻求解决,通过不同角度的分析和处理,拓宽思路.
例 3.直线 y kx 1 与双曲线 x2 y2 1的左支交于 A, B 两点,直线 l 经过点 ( 2,0) 及

高三数学高考一轮复习系列教案第八章 圆锥曲线 大纲版

高三数学高考一轮复习系列教案第八章 圆锥曲线 大纲版

第八章圆锥曲线知识结构高考能力要求1.掌握椭圆的定义、标准方程、简单的几何性质、了解椭圆的参数方程.2.掌握双曲线的定义、标准方程、简单的几何性质.3.掌握抛物线的定义、标准方程、简单的几何性质.4.了解圆锥曲线的初步应用.高考热点分析圆锥曲线是高中数学的一个重要内容,它的基本特点是数形兼备,兼容并包,可与代数、三角、几何知识相沟通,历来是高考的重点内容。

纵观近几年高考试题中对圆锥曲线的考查,基本上是两个客观题,一个主观题,分值21分~24分,占15%左右,并且主要体现出以下几个特点:1.圆锥曲线的基本问题,主要考查以下内容:①圆锥曲线的两种定义、标准方程及a、b、c、e、p 五个参数的求解.②圆锥曲线的几何性质的应用.2、求动点轨迹方程或轨迹图形在高考中出现的频率较高,此类问题的解决需掌握四种基本方法:直译法、定义法、相关点法、参数法.3.有关直线与圆锥曲线位置关系问题,是高考的重热点问题,这类问题常涉及圆锥曲线的性质和直线的基本知识以及线段中点、弦长等,分析这类问题时,往往要利用数形结合思想和“设而不求”的方法、对称的方法及韦达定理,多以解答题的形式出现.4.求与圆锥曲线有关的参数或参数范围问题,是高考命题的一大热点,这类问题综合性较大,运算技巧要求较高;尤其是与平面向量、平面几何、函数、不等式的综合,特别近年出现的解析几何与平面向量结合的问题,是常考常新的试题,将是今后高考命题的一个趋势.高考复习建议1.圆锥曲线的定义、标准方程及几何性质是本章的基本内容.复习中对基本概念的理解要深,对公式的掌握要活,充分重视定义在解题中的地位和作用,重视知识间的内在联系.椭圆、双曲线、抛物线它们都可以看成是平面截圆锥所得的截线,其本质是统一的.因此这三种曲线可统一为“一个动点P到定点F和定直线l的距离之比是一个常数e的轨迹”,当0<e<1、e=1、e>1时,分别表示椭圆、抛物线和双曲线.复习中有必要将椭圆、抛物线和双曲线的定义,标准方程及几何性质进行归类、比较,把握它们之间的本质联系,要学会在知识网络交汇处思考问题、解决问题.2.计算能力的考查已引起高考命题者的重视,这一章的复习要注意突破“运算关”,要寻求合理有效的解题途径与方法.3.加强直线与圆锥曲线的位置关系问题的复习,注重数形结合思想和设而不求法与弦长公式及韦达定理的运用.4.重视圆锥曲线与平面向量、函数、方程、不等式、三角、平面几何的联系,重视数学思想方法的训练,达到优化解题思维、简化解题过程的目的.8.1 椭圆知识要点1.椭圆的两种定义(1) 平面内与两定点F1,F2的距离的和等于常数(大于21F F )的点的轨迹叫椭圆,这两个定点叫做椭圆的 , 之间的距离叫做焦距.注:①当2a =|F 1F 2|时,P 点的轨迹是 .②当2a <|F 1F 2|时,P 点的轨迹不存在.(2) 椭圆的第二定义:到 的距离与到 的距离之比是常数e ,且∈e 的点的轨迹叫椭圆.定点F 是椭圆的 ,定直线l 是 ,常数e 是 .2.椭圆的标准方程(1) 焦点在x 轴上,中心在原点的椭圆标准方程是:12222=+b y a x ,其中( > >0,且=2a ) (2) 焦点在y 轴上,中心在原点的椭圆标准方程是12222=+bx ay ,其中a ,b 满足: .3.椭圆的几何性质(对12222=+by a x ,a > b >0进行讨论)(1) 范围: ≤ x ≤ , ≤ y ≤ (2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标: ,焦点坐标: ,长半轴长: ,短半轴长: ;准线方程: .(4) 离心率:=e ( 与 的比),∈e ,e 越接近1,椭圆越 ;e 越接近0,椭圆越接近于 .(5) 焦半径公式:设21,F F 分别为椭圆的左、右焦点,),(00y x P 是椭圆上一点,则=1PF ,122PF a PF -== .(6) 椭圆的参数方程为 . 4.焦点三角形应注意以下关系: (1) 定义:r 1+r 2=2a(2) 余弦定理:21r +22r -2r 1r 2cos θ=(2c )2(3) 面积:21F PF S ∆=21r 1r 2 sin θ=21·2c | y 0 |(其中P(00,y x )为椭圆上一点,|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ)例题讲练【例1】 中心在原点,一个焦点为F 1(0,52)的椭圆被直线y =3x -2截得的弦的中点的横坐标为21,求此椭圆的方程.【例2】 已知点P(3, 4)是椭圆2222b y a x +=1 (a >b >0) 上的一点,F 1、F 2是它的两焦点,若PF 1⊥PF 2,求:(1) 椭圆的方程; (2) △PF 1F 2的面积.【例3】如图,射线OA 、OB 分别与x 轴、 y 轴所成的角均为︒30;已知线段PQ 的长度为2,并且保持线段的端点),(11y x P 在射线OA 上运动,点),(22y x Q 在射线OB 上运动(1) 试求动点),(21x x M 的轨迹C 的方程(2) 求轨迹C 上的动点N 到直线03=--y x 的距离的最大值和最小值.【例4】 (2005年全国卷I )已知椭圆的中心在原点,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,+与=(3, -1)共线.(1) 求椭圆的离心率;(2) 设M 是椭圆上任意一点,且=μλ+(λ、μ∈R),证明22μλ+为定值.小结归纳 1.在解题中要充分利用椭圆的两种定义,灵活处理焦半径,熟悉和掌握a 、b 、c 、e 关系及几何意义,能够减少运算量,提高解题速度,达到事半功倍之效.2.由给定条件求椭圆方程,常用待定系数法.步骤是:定型——确定曲线形状;定位——确定焦点位置;定量——由条件求a 、b 、c ,当焦点位置不明确时,方程可能有两种形式,要防止遗漏.3.解与椭圆的焦半径、焦点弦有关的问题时,一般要从椭圆的定义入手考虑;椭圆的焦半径的取值范围是],[c a c a +-.4.“设而不求”,“点差法”等方法,是简化解题过程的常用技巧,要认真领会.5.解析几何与代数向量的结合,是近年来高考的热点,在2005年的考题中足以说明了这一点,应引起重视.基础训练题 一、选择题1. 动点M 到定点)0,4(1-F 和)0,4(2F 的距离的和为8,则动点M 的轨迹为 ( ) A .椭圆 B .线段 C .无图形 D .两条射线2. (2005年全国高考试题III) 设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是 ( )A .22 B .212- C .2-2D .2-13. (2004年高考湖南卷)F 1、F 2是椭圆C :14822=+y x 的焦点,在C 上满足PF 1⊥PF 2的点P 的个数为( ) A .2个 B .4个 C .无数个 D .不确定4. 椭圆171622=+y x 的左、右焦点为F 1、F 2,一直线过F 1交椭圆于A 、B 两点,则△ABF 2的周长为 ( ) A .32 B .16 C .8 D .45. 已知点P 在椭圆(x -2)2+2y 2=1上,则xy的最小值为( )A .36-B .26-C .6-D .66-6. 我们把离心率等于黄金比215-的椭圆称为“优美椭圆”,设)0(12222>>=+b a by a x 是优美椭圆,F 、A 分别是它的左焦点和右顶点,B 是它的短轴的一个端点,则ABF ∠等于 ( ) A .︒60 B .︒75 C .︒90 D .︒120二、填空题 7. 椭圆400162522=+y x 的顶点坐标为 和 ,焦点坐标为 ,焦距为 ,长轴长为 ,短轴长为 ,离心率为 ,准线方程为 .8. 设F 是椭圆16722=+y x 的右焦点,且椭圆上至少有21个不同的点P i (i =1,2, ),使得|FP 1|、|FP 2|、|FP 3|…组成公差为d 的等差数列,则d 的取值范围是 . 9. 设1F ,2F 是椭圆14322=+y x 的两个焦点,P 是椭圆上一点,且121=-PF PF ,则得=∠21PF F . 10.若椭圆2222)1(-+m y m x =1的准线平行于x 轴则m 的取值范围是 .三、解答题11.根据下列条件求椭圆的标准方程(1) 和椭圆1202422=+y x 共准线,且离心率为21.(2) 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为534和532,过P 作长轴的垂线恰好过椭圆的一个焦点.12.椭圆14922=+y x 的焦点为21,F F ,点P 为其上的动点,当∠21PF F 为钝角时,求点P 横坐标的取值范围.13.(2005年高考湖南卷)已知椭圆C :12222=+by a x (a >0,b >0)的左、右焦点分别是F 1、F 2,离心率为e .直线l :y =ex +a 与x 轴,y 轴分别交于点A 、B 、M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设=λ. (Ⅰ)证明:λ=1-e 2;(Ⅱ)若λ=43,△MF 1F 2的周长为6,写出椭圆C 的方程;(Ⅲ)确定λ的值,使得△PF 1F 2是等腰三角形.提高训练题14.(2006年高考湖南卷)已知C 1:13422=+y x ,抛物线C 2:(y -m )2=2px (p >0),且C 1、C 2的公共弦AB 过椭圆C 1的右焦点.(Ⅰ)当AB ⊥x 轴时,求p 、m 的值,并判断抛物线C 2的焦点是否在直线AB 上;(Ⅱ)若p =34,且抛物线C 2的焦点在直线AB 上,求m 的值及直线AB 的方程.15.(成都市2006届毕业班摸底测试)设向量i =(1, 0),j =(0, 1),=(x +m )i +y j ,=(x -m )i +y j ,且||+||=6,0< m < 3,x >0,y ∈R . ( I )求动点P(x ,y )的轨迹方程;( II ) 已知点A(-1, 0),设直线y =31(x -2)与点P 的轨迹交于B 、C 两点,问是否存在实数m ,使得AC AB ⋅=31?若存在,求出m 的值;若不存在,请说明理由.8.2 双 曲 线知识要点 1.双曲线的两种定义(1) 平面内与两定点F 1,F 2的 常数(小于 )的点的轨迹叫做双曲线.注:①当2a =|F 1F 2|时,p 点的轨迹是 .②2a >|F 1F 2|时,p 点轨迹不存在.(2) 平面内动点P 到一个定点F 和一条定直线l (F 不在 上)的距离的比是常数e ,当∈e 时动点P 的轨迹是双曲线.设P 到1F 的对应准线的距离为d ,到2F 对应的准线的距离为2d ,则e d PF d PF ==22112.双曲线的标准方程 (1) 标准方程:12222=-b y a x ,焦点在 轴上;12222=-bx ay ,焦点在 轴上.其中:a 0,b 0,=2a .(2) 双曲线的标准方程的统一形式:)0(122<=+nm ny mx3.双曲线的几何性质(对0,0,122>>=-b a b y a x 进行讨论)(1) 范围:∈x ,∈y .(2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标为 ,焦点坐标为 ,实轴长为 ,虚轴长为 ,准线方程为 ,渐近线方程为 .(4) 离心率e = ,且∈e ,e 越大,双曲线开口越 ,e 越小,双曲线开口越 ,焦准距P = .(5) 焦半径公式,设F 1,F 2分别是双曲线的左、右焦点,若),(00y x P 是双曲线右支上任意一点,=1PF ,=2PF ,若),(00y x P 是双曲线左支上任意一点,=1PF ,=2PF . (6) 具有相同渐近线x aby ±=的双曲线系方程为 (7) 的双曲线叫等轴双曲线,等轴双曲线的渐近线为 ,离心率为 .(8) 12222=-b y a x 的共轭双曲线方程为 .例题讲练【例1】 根据下列条件,写出双曲线的标准方程 (1) 中心在原点,一个顶点是(0,6),且离心率是1.5.(2) 与双曲线x 2-2y 2=2有公共渐近线,且过点M(2,-2).【例2】 (04年高考湖北卷)直线l :y =kx +1与双曲线C :2x 2-y 2=1的右支交于不同的两点A 、B .(1)求实数k 的取值范围;(2)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由.【例3】 在双曲线1121322-=-y x 的一支上有不同的三点A(x 1,y 1),B(x 2,6),C(x 3,y 3)与焦点F(0,5)的距离成等差数列.(1)求y 1+y 3;(2)求证:线段AC 的垂直平分线经过某一定点,并求出这个定点的坐标.【例4】 (2004年高考全国卷II )设双曲线C :)0(1222>=-a y a x 与直线l :x +y =1相交于两个不同的点.(1) 求双曲线C 的离心率e 的取值范围;(2) 设直线l 与y 的交点为P ,且=125,求a的值.小结归纳1.复习双曲线要与椭圆进行类比,尤其要注意它们之间的区别,如a 、b 、c 、e 的关系.2.双曲线的渐近线的探求是一个热点.①已知双曲线方程求渐近线方程;②求已知渐近线方程的双曲线方程.3.求双曲线的方程,经常要列方程组,因此,方程思想贯穿解析几何的始终,要注意定型(确定曲线形状)、定位(曲线的位置)、定量(曲条件求参数).4.求双曲线的方程的常用方法: (1) 定义法.(2) 待定系数法.涉及到直线与圆锥曲线的交点问题,经常是“设而不求”.5.例2的第(1)问是数材P 132第13题的引申,因此高考第一轮复习要紧扣教材.6.对于直线与双曲线的位置关系,要注意“数形转化”“数形结合”,既可以转化为方程组的解的个数来确定,又可以把直线与双曲线的渐近线进行比较,从“形”的角度来判断.基础训练题 一、选择题1. A 、B 是平面内两定点,动点P 到A 、B 两点的距离的差是常数,则P 的轨迹是 ( ) A .双曲线 B .椭圆 C .双曲线的一支 D .不能确定2. (04年高考湖南卷)如果双曲线1121322=-y x 上一点p 到右焦点的距离等于13,那么点p 到右焦线的距离是 ( )A .513 B .13 C .5D .1353. 已知双曲线的渐近线方程是2xy ±=,焦点在坐标轴上且焦距是10,则此双曲线的方程为 ( )A .152022=-y x B .152022±=-y x C .120522=-y xD .120522±=-y x4. (2005年高考湖南卷)已知双曲线12222=-by a x (a >0,b >0)的右焦点为F ,右焦线与一条渐近线交于点A ,△OAF 的面积为22a ,(0为原点)则两条渐近线的夹角为( ) A .30° B .45° C .60°D .90°5. 已知双曲线14922=-y x ,则过点A(3,1)且与双曲线仅有唯一的公共点的直线有 ( ) A .1条 B .2条 C .3条 D .4条6. (2005年江苏高考最后冲刺题) 设双曲线16x 2-9y 2=144的右焦点为F 2,M 是双曲线上任意一点,点A 的坐标为(9,2),则|MA|+53|MF 2|的最小值为( )A .9B .536C .542D .554二、填空题7. 中心在原点,坐标轴为对称轴,实轴与虚轴长之差为2,离心率为45的双曲线方程为 .8. (2004年高考·吉林、四川)设中心在原点,坐标轴为对称轴的椭圆与双曲线12222=-y x 有公共焦点,且它们的离心率互为倒数,则椭圆方程为 .9. (2006年高考湖南卷)过双曲线M :1222=-b y x 的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于点B 、C ,且|AB|=|BC|,则双曲线M 的离心率是 .10.可以证明函数x bax y +=(b ≠0)的图象是双曲线,试问双曲线C :xx y 33+=的离心率e 等于 .三、解答题11.(1) 已知双曲线的渐近线方程为032=±yx ,且过点(2,-6),求双曲线的方程;(2) 已知双曲线的右准线为x =4,右焦点为F(10,0),离心率为e =2,求双曲线的方程. 12.ABC ∆中,固定底边BC ,让顶点A 移动,已知4=BC ,且A B C sin 21sin sin =-,求顶点A 的轨迹方程.13.双曲线12222=-by a x )0,0(>>b a 的右支上存在与右焦点和左准线等距离的点,求离心率e 的取值范围.提高训练题 14.已知动点p 与双曲线13222=-y x 的两个焦点F 1、F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为-91.(1) 求动点p 的轨迹方程;(2) 若已知点D(0,3),点M 、N 在动点p 的轨迹上且λ=,求实数λ的取值范围.15.(2005年武汉市高三调考)已知等轴双曲线C :)0(222>=-a a y x 上一定点P(00,y x )及曲线C 点上两个动点A 、B ,满足0=⋅PB PA(1) M 、N 分别为PA 、PB 中点,求证:0=⋅ON OM (O 为坐标原点);(2) 求|AB|的最小值及此时A 点坐标.抛 物 线 1.抛物线定义:离 的点的轨迹叫抛物线,焦点, 叫做抛物线的准线2.抛物线的标准方程和焦点坐标及准线方程① px y 22=,焦点为 ,准线为 . ② px y 22-=,焦点为 ,准线为 . ③ py x 22=,焦点为 ,准线为 . ④ py x 22-=,焦点为 ,准线为 . 3.抛物线的几何性质:对)0(22>=p px y 进行讨论. ① 点的范围: 、 . ② 对称性:抛物线关于 轴对称. ③ 离心率=e .④ 焦半径公式:设F 是抛物线的焦点,),(o o y x P 是抛物线上一点,则=PF .⑤ 焦点弦长公式:设AB 是过抛物线焦点的一条弦(焦点弦)i) 若),(11y x A ,),(22y x B ,则AB = ,21y y .ii) 若AB 所在直线的倾斜角为θ()0≠θ则AB = .特别地,当θ2π=时,AB 为抛物线的通径,且AB = .iii) S △AOB = (表示成P 与θ的关系式).iv) ||1||1BF AF +为定值,且等于 . 例题讲练【例1】 已知抛物线顶点在原点,对称轴是x 轴,抛物线上的点),3(n A -到焦点的距离为5,求抛物线的方程和n 的值.【例2】 已知抛物线C :x y 42=的焦点为F ,过点F 的直线l 与C 相交于A 、B .(1) 若316=AB ,求直线l 的方程.(2) 求AB 的最小值.【例3】 若A(3,2),F 为抛物线x y 22=的焦点,P 为抛物线上任意一点,求PA PF +的最小值及取得最小值时的P 的坐标.【例4】 (05全国卷(Ⅲ))设A(x 1,y 1),B(x 2,y 2),两点在抛物线y =2x 2上,l 是AB 的垂直平分线.(1)当且仅当x 1+x 2取何值时,直线l 经过抛物线的焦点F ?证明你的结论?(2)当直线l 的斜率为2时,求在y 轴上的截距的取值范围.小结归纳 1.求抛物线方程要注意顶点位置和开口方向,以便准确设出方程,然后用待定系数法.2.利用好抛物线定义,进行求线段和的最小值问题的转化.3.涉及抛物线的弦的中点和弦长等问题要注意利用韦达定理,能避免求交点坐标的复杂运算.4、解决焦点弦问题时,抛物线的定义有广泛的应用,应注意焦点弦的几何性质.基础训练题 一、选择题1. 过抛物线)0(22>=P px y 的焦点作直线交抛物线于),(11y x A ,),(22y x B 两点,若P x x 321=+,则AB等于( )A .2PB .4PC .6PD .8P2. 已知动点),(y x P 满足22)2()1(5-+-y x =|1243|++y x ,则P 点的轨迹是 ( )A .两条相交直线B .抛物线C .双曲线D .椭圆3. 已知抛物线212:x y C =与抛物线2C 关于直线x y -=对称,则2C 的准线方程是( )A .81-=x B .21=xC .81=x D .21-=x4. (2005年高考上海卷)过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线 ( ) A .有且仅有一条 B .有且仅有两条 C .有无数条 D .不存在5. (2003年新课程卷)抛物线2ax y =的准线方程是2=y ,则a 的值为 ( )A .81B .81-C .8D .8-6. (04年高考湖北卷)与直线2x -y +4=0平行的抛物线y =x 2的切线方程是 ( ) A .2x -y +3=0 B .2x -y -3=0 C .2x -y +1=0 D .2x -y -1=0二、填空题7. 点M 与点F(4,0)的距离比它到连线l :x +5=0的距了小1,则点M 的轨迹方程为 . 8. 某桥的桥洞是抛物线,桥下水面宽16米,当水面上涨2米后达警戒水位,水面宽变为12米,此时桥洞顶部距水面高度为 米(精确到0.1米). 9. 过点(3,3)的直线与抛物线y 2=3x 只有一个公共点,则这样的直线的条数为 .10.一个酒杯的轴截面是抛物线的一部分,它的方程是x 2)200(2≤≤=y y ,在杯内放入一个玻璃球,要使球触及酒杯底部,则玻璃球的半径r 的取值范围是三、解答题11.求顶点在原点,对称轴是x 轴,并且顶点与焦点的距离等于6的抛物线方程.12.正方形ABCD 中,一条边AB 在直线y =x +4上,另外两顶点C 、D 在抛物线y 2=x 上,求正方形的面积.13.设A 和B 为抛物线y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线?提高训练题 14.过抛物线y 2=2px (p >0)的焦点F 作直线交抛物线于A 、B 两点,试问:以AB 为直径的圆与抛物线的准线是相交、相切还是相离?若把抛物线改为椭圆12222=+b y a x 或双曲线12222=-b y a x ,结果又如何呢?15.(2004年高考上海卷)如图,直线x y 21=与抛物线4812-=x y 交于A 、B 两点,线段AB 的垂直平分线与直线5-=y 交于Q 点. (1) 求点Q 的坐标;(2) 当P 为抛物线上位于线段AB(含点A 、B)下方的动点时,求OPQ ∆面积的最大值.8.4 直线与圆锥曲线的位置关系知识要点 1.直线与圆锥曲线的位置关系,常用研究方法是将曲线方程与直线方程联立,由所得方程组的解的个数来决定,一般地,消元后所得一元二次方程的判别式记为△,△>0时,有两个公共点,△=0时,有一个公共点,△<0时,没有公共点.但当直线方程与曲线方程联立的方程组只有一组解(即直线与曲线只有一个交点)时,直线与曲线未必相切,在判定此类情形时,应注意数形结合.(对于双曲线,重点注意与渐近线平行的直线,对于抛物线,重点注意与对称轴平行的直线)2.直线与圆锥曲线的交点间的线段叫做圆锥曲线的弦.设弦AB 端点的坐标为A(x 1,y 1),B(x 2,y 2),直线AB 的斜率为k ,则:|AB |=————————或:—————————.利用这个公式求弦长时,要注意结合韦达定理. 当弦过圆锥曲线的焦点时,可用焦半径进行运算. 3.中点弦问题:设A(x 1,y 1),B(x 2,y 2)是椭圆12222=+b y a x 上不同的两点,且x 1≠x 2,x 1+x 2≠0,M(x 0,y 0)为AB 的中点,则 ⎪⎪⎩⎪⎪⎨⎧=+=+11222222221221b y ax b y a x 两式相减可得2221212121ab x x y y x x y y -=++⋅--即 .对于双曲线、抛物线,可得类似的结论.例题讲练 【例1】 直线y =ax +1与双曲线3x 2-y 2=1相交于A 、B 两点.(1) 当a 为何值时,A 、B 两点在双曲线的同一支上?当a 为何值时,A 、B 两点分别在双曲线的两支上?(2) 当a 为何值时,以AB 为直径的圆过原点?x【例2】 已知双曲线方程2x 2-y 2=2.(1) 求以A(2,1)为中点的双曲线的弦所在直线方程; (2) 过点B(1,1)能否作直线l ,使l 与所给双曲线交于Q 1、Q 2两点,且点B 是弦Q 1Q 2的中点?这样的直线l 如果存在,求出它的方程;如果不存在,说明理由.【例3】 在抛物线y 2=4x 上恒有两点关于直线y =kx +3对称,求k 的取值范围.【例4】 (2006届苏州市高三调研测试)已知椭圆222y ax +=1(a 为常数,且a >1),向量m =(1, t ) (t >0),过点A(-a , 0)且以为方向向量的直线与椭圆交于点B ,直线BO 交椭圆于点C (O 为坐标原点).(1) 求t 表示△ABC 的面积S( t );(2) 若a =2,t ∈[21, 1],求S( t )的最大值.小结归纳1.判断直线与圆锥曲线的位置关系时,注意数形结合;用判别式的方法时,若所得方程二次项的系数有参数,则需考虑二次项系数为零的情况.2.涉及中点弦的问题有两种常用方法:一是“设而不求”的方法,利用端点在曲线上,坐标满足方程,作差构造出中点坐标和斜率的关系,它能简化计算;二是利用韦达定理及中点坐标公式.对于存在性问题,还需用判别式进一步检验.3.对称问题,要注意两点:垂直和中点.基础训练题 一、选择题1. 曲线x 2+4y 2+D x +2E y +F =0与x 轴有两个交点,且这两个交点在原点的两侧的充要条件是 ( ) A .D ≠0,E =0,F >0 B .E =0,F <0 C .D 2-F >0 D .F <0 2. 若椭圆193622=+y x 的弦被点(4,2)平分,则此弦所在直线的斜率为 ( ) A .2 B .-2C .31D .-213. 经过抛物线)0(22>=p px y 的所有焦点弦中,弦长的最小值为 ( ) A .p B .2p C .4p D .不确定4. 过双曲线1222=-y x 的右焦点作直线l ,交双曲线于A 、B 两点,若∣AB ∣=4,则这样的直线l 有( ) A .1条 B .2条 C .3条 D .4条5. (华师大二附中2005年模拟试卷2) 直线l :y =kx +1(k ≠0)椭圆E :1422=+y m x ,若直线l 被椭圆E 所截弦长为d ,则下列直线中被椭圆E 截得的弦长不是d 的是 ( ) A .kx +y +1=0 B .kx -y -1=0 C .kx +y -1=0 D .kx +y =06. 椭圆mx 2+ny 2=1与直线y =1-x 交于M 、N 两点,过两点O 与线段MN 之中点的直线的斜率为22,则xnm的值是 ( )A .22B .332 C .229D .2732二、填空题7. 已知直线x -y =2与抛物线y 2-4x 交于A 、B 两点,那么线段AB 的中点坐标是 .8. 对任意实数k ,直线y =kx +b 与椭圆⎩⎨⎧==θθs i n 4c o s 2y x (0≤θ<2π)恒有公共点,则b 的取值范围是 .9. 已知抛物线y 2=4x 的一条弦AB ,A(x 1,y 1),B(x 2,y 2),AB 所在直线与y 轴交点坐标为(0,2),则2111y y += .10.若直线mx +ny -3=0与圆x 2+y 2=3没有公共点,则m 、n 的关系式为___________;以(m ,n )为点P 的坐标,过点P 的一条直线与椭圆13722=+y x 的公共点有____个.三、解答题 11.已知直线l 交椭圆162022y x +=1于M 、N 两点,B(0,4)是椭圆的一个顶点,若△BMN 的重心恰是椭圆的右焦点,求直线l 的方程.12.已知直线y =(a +1)x -1与曲线y 2=ax 恰有一个公共点,求实数a 的值.13.(05重庆)已知椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (1)求双曲线C 2的方程;(2)若直线l :y =kx +2与椭圆C 1及双曲线C 2恒有两个不同的交点,且l 与C 2的两个交点A 和B 的满足6<⋅(其中O 为原点),求k 的取值范围. 提高训练题14.已知椭圆的一个顶点为A(0,-1),焦点在x 轴上,若右焦点到直线022=+-y x 的距离为3. ⑴ 求椭圆的方程;⑵ 设椭圆与直线y =kx +m (k ≠0)相交于不同的两点M 、N ,当AN AM =时,求m 的取值范围.15.(04湖南)过抛物线x 2=4y 的对称轴上任一点P(0,m )(m >0),作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点. (Ⅰ)设点P 分有向线段所成的比为λ,证明:)(λ-⊥;(Ⅱ)设直线AB 的方程是x -2y +12=0,过A 、B 两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.8.5 轨迹方程知识要点1.直接法求轨迹的一般步骤:建系设标,列式表标,化简作答(除杂).2.求曲线轨迹方程,常用的方法有:直接法、定义法、代入法(相关点法、转移法)、参数法、交轨法等.例题讲练【例1】一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2-6x-91=0内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线.【例2】已知抛物线过点N(1,-1),且准线为l:x =-3,求抛物线顶点M的轨迹.【例3】已知直线l与椭圆12223=+byax(a>b>0)有且仅有一个交点Q,且与x轴、y轴交于R、S,求以线段SR 为对角线的矩形ORPS的顶点P的轨迹方程.【例4】已知点H(0,-3),点P在x轴上,点Q 在y轴正半轴上,点M在直线PQ上,且满足PMHP⋅=0,MQPM23-=.(1) 当点P在x轴上移动时,求动点M的轨迹曲线C 的方程;(2) 过定点A(a,b)的直线与曲线C相交于两点S、R,求证:抛物线S、R两点处的切线的交点B恒在一条直线上.小结归纳1.直接法求轨迹方程关键在于利用已知条件,找出动点满足的等量关系,这个等量关系有的可直接利用已知条件,有的需要转化后才能用.2.回归定义是解决圆锥曲线轨迹问题的有效途径.3.所求动点依赖于已知曲线上的动点的运动而运动,常用代入法求轨迹.4.参数法求轨迹关键在于如何选择好参数,建立起x ,y 的参数方程,以便消参,选择n 个参数,要建立n +1个方程,消参时,要注意等价性.5.求轨迹比求轨迹方程多一个步骤,求轨迹最后须说明轨迹的形状、大小、位置、方向.基础训练题 一、选择题1. 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得| PQ |=| PF 2 |,那么动点Q 的轨迹是 ( ) A .圆 B .椭圆 C .双曲线的一支 D .抛物线2. 动点P 与定点)0,1(,)0,1(B A -的连结的斜率之积为1-,则P 点的轨迹方程是( ) A .x 2+y 2=1 B .x 2+y 2=1)1(±≠x C .x 2+y 2=1)0(≠x D .21x y -=3. 已知动点P(x 、y )满足1022)2()1(-+-y x =|3x +4y+2|,则动点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .无法确定4. 设P 为椭圆12222=+by a x 上一点,过右焦点F 2作∠F 1PF 2的外角平分线的垂线,垂足为Q ,则点Q 的轨迹是( ) A .直线 B .抛物线 C .圆 D .双曲线 5. 设P 为双曲线12222=-b y a x 上一点, 过右焦点F 2作∠F 1PF 2的内角平分线的垂线,垂足为Q ,则点Q 的轨迹是 ( ) A .圆 B .抛物线 C .直线 D .椭圆 6. 已知点P(x ,y )在以原点为圆心,半径为1的圆上运动,则点(x +y ,xy )的轨迹是 ( ) A .半圆 B .抛物线的一部分 C .椭圆 D .双曲线的一支二、填空题7. 长为2a 的线段AB 的两个端点分别在x 轴、y 轴上滑动,则AB 中点的轨迹方程为 .8. 经过定点M(1,2),以y 轴为准线,离心率为21的椭圆左顶点的轨迹方程 . 9. 已知抛物线)(12R m mx x y ∈-+-=,当m 变化时抛物线焦点的轨迹方程为 . 10.(04北京)在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与到直线C 1D 1的距离相等,则动点P 的轨迹是 .三、解答题 11.以动点P 为圆心的圆与圆A :(x +5)2+y 2=49及圆B :(x -5)2+y 2=1都外切,求动点P 的轨迹.12.已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q. (1) 求直线A 1P 与A 2Q 交点M 的轨迹方程; (2) 当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.13.设直线l :y =kx +1与椭圆C :ax 2+y 2=2(a >1)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点).(1)若k =1,且四边形OAPB 为矩形,求a 的值; (2)若a =2,当k 变化时,(k ∈R),求点P 的轨迹方程.提高训练题14.设椭圆方程为1422=+y x ,过点M(0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足)(21OB OA OP +=,点N 的坐标为)21,21(,当l 绕点M 旋转时,求:(1) 动点P 的轨迹方程; (2) ||NP 的最小值与最大值.A1。

高考数学一轮复习讲义 第58课时 圆锥曲线的综合问题 理

高考数学一轮复习讲义 第58课时 圆锥曲线的综合问题 理

451课题:直线和圆锥曲线的综合问题考纲要求:1.理解数形结合的思想.2.了解圆锥曲线的简单应用. 教材复习1.对相交弦长问题及中点弦问题要正确运用“设而不求”,常结合韦达定理 .2.解决直线和圆锥曲线的位置关系问题时,经常转化为它们所对应的方程构成的方程组是否 有解或解的个数问题.对于消元后的一元二次方程,必须讨论二次项的系数和判别式△,注意直线与圆锥曲线相切必有一个公共点,对圆与椭圆来说反之亦对,但对双曲线和抛物线来说直线与其有一公共点,可能是相交的位置关系.有时借助图形的几何性质更为方便.3.涉及弦的中点问题,除利用韦达定理外,也可以运用“点差法”,但必须以直线与圆锥曲线相交为前提,否则不宜用此法.4.直线与圆锥曲线相交的弦长计算:()1连结圆锥曲线上两点的线段称为圆锥曲线的弦;()2易求出弦端点坐标时用距离公式求弦长;()3一般情况下,解由直线方程和圆锥曲线方程组成的方程组,得到关于x (或y )的一元二次方程,利用方程组的解与端点坐标的关系,结合韦达定理得到弦长公式:d ==2212))(11(y y k-+. 5.涉及垂直关系问题,一般是利用斜率公式及韦达定理求解,设()11,A x y 、()22,B x y ,()00,P x y 是直线与圆锥曲线的两个交点,O 为坐标原点,则OA OB ⊥⇔12120x x y y +=,AP BP ⊥⇔()()()()010201020x x x x y y y y -⋅-+-⋅-=6.解析几何解题的基本方法:数形结合法,以形助数,用数定形.常用此法简化运算.基本知识方法1.在几何问题中,有些几何量与参数无关,这就构成了定值问题,解决这类问题一种思路是进行一般计算推理求出其结果;另一种是通过考查极端位置,探索出“定值”是多少,然后再进行一般性证明或计算,即将该问题涉及的几何式转化为代数式或三角形式,证明该式是恒定的.如果试题以客观题形式出现,特殊方法往往比较奏效.2.对满足一定条件曲线上两点连结所得直线过定点或满足一定条件的曲线过定点问题,设该直线(曲线)上两点的坐标,利用坐标在直线(或曲线)上,建立点的坐标满足的方程(组),求出相应的直线(或曲线),然后再利用直线(或曲线)过定点的知识加以解决. 可从特殊情况入手,先探求定点,再证明一般情况.3.解析几何的最值和范围问题,一般先根据条件列出所求目标的函数关系式,然后根据函数关系式的特征选用参数法、配方法、判别式法、不等式法、单调性法、导数法以及三角函数最值法等求出它的最大值和最小值. 典例分析:452考点一 弦长问题问题1.设直线l 过双曲线2213y x -=的一个焦点,交双曲线于A 、B 两点,O 为坐标原点,若0OA OB ⋅=,求AB 的值.考点二 焦点弦问题问题2.过抛物线22y px =(0p >)的焦点作一条直线交抛物线于()11,A x y 、()22,B x y , 两点,设直线的倾斜角为θ.求证:()1212y y p ⋅=-;()222sin pAB θ=考点三 范围与最值问题问题3.(2010湖北)已知一条曲线C 在y 轴右边,C 上每一点到点()1,0F 的距离减去它到y 轴距离的差都是1.(Ⅰ)求曲线C 的方程;(Ⅱ)是否存在正数m ,对于过点(),0M m 且与曲线C 有两个交点,A B 的任一直线,都有0FA FB <?若存在,求出m 的取值范围;若不存在,请说明理由.453问题4.(2012浙江) 如图,椭圆C :2222+1x y a b =(0a b >>)的离心率为12,其左焦点到点()2,1PO 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP 平分. (Ⅰ)求椭圆C 的方程;(Ⅱ) 求ABP △的面积取最大时直线l 的方程.454考点四 定点定值问题问题5.(2013陕西)已知动圆过定点()4,0A , 且在y 轴上截得的弦MN 的长为8. (Ⅰ) 求动圆圆心的轨迹C 的方程;(Ⅱ) 已知点()1,0B -, 设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P , Q , 若x 轴是PBQ ∠的角平分线, 证明直线l 过定点.455问题6.(2011山东) 已知直线l 与椭圆C : 22132x y +=交于()11,P x y ,()22,Q x y 两不同点,且OPQ △的面积S =,其中Q 为坐标原点. (Ⅰ)证明2212x x +和2212y y +均为定值; (Ⅱ)设线段PQ 的中点为M ,求OM PQ ⋅的最大值;(Ⅲ)略.456考点五 探索性问题问题7.(04湖北)直线l :1y kx =+与双曲线C :2221x y -=的右支交于不同的两点A 、B .(Ⅰ)求实数k 的取值范围;(Ⅱ)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由.课后作业:1.(07南通九校联考)过双曲线2212y x -=的右焦点作直线l 交双曲线于A 、B 两点,若4AB =,则满足条件的直线l 有 .A 2条 .B 3条 .C 4条 .D 无数条4572.已知双曲线C :2214y x -= ,过点P (1,1)作直线l ,使l 与C 有且只有一个公共点,则满足上述条件的直线l 共有 .A 1 条 .B 2条 .C 3条 .D 4条3.(07北京海淀区)若不论k 为何值,直线()2y k x b =-+与直线221x y -=总有公共点,则b 的取值范围是.A ( .B ⎡⎣ .C ()2,2- .D []2,2-4.直线10kx y k -++=与椭圆2212516x y +=公共点的个数是.A 0 .B 1 .C 2 .D 随k 变化而改变5.椭圆122=+ny mx 与直线1=+y x 交于,M N 两点,MN 的中点为P ,且OP 的斜率为22,则n m 的值为 .A 22 .B 322 .C 229 .D 27326.已知椭圆2224x y+=,则以(1,1)为中点的弦的长度是.A.B.C.D7.若直线1y kx=+和椭圆22125x ym+=恒有公共点,则实数m的取值范围为8.过椭圆2222x y+=的一个焦点的直线交椭圆于P、Q两点,求POQ△面积的最大值9.中心在原点,焦点在x轴上的椭圆的左焦点为F,离心率为13e=,过F作直线l交椭圆于,A B两点,已知线段AB的中点到椭圆左准线的距离是6,则AB=45845910. 已知椭圆22221x y a b+=(0a b >>)的右焦点为F ,过F 作直线与椭圆相交于A 、B两点,若有2BF AF =,求椭圆离心率的取值范围.11.抛物线22y px =的顶点任意作两条互相垂直的弦OA 、OB求证:AB 交抛物线的对称轴上一定点.460走向高考:12.(06福建)已知双曲线12222=-by a x (0a >,0b >)的右焦点为F ,若过点F 且倾斜角为60︒的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是.A (]1,2 .B ()1,2 .C [)2,+∞ .D ()2,+∞13.(06江西)P 是双曲线221916x y -=的右支上一点,,M N 分别是圆()2254x y ++=和()2251x y -+=上的点,则PM PN -的最大值为 .A 6 .B 7 .C 8 .D 914.(2013安徽) 已知直线y a =交抛物线2y x =于,A B 两点.若该抛物线上存在 点C ,使得ABC ∠为直角,则a 的取值范围为15.(07全国Ⅰ)已知椭圆22132x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于,B D 两点,过2F 的直线交椭圆于,A C 两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<; (Ⅱ)求四边形ABCD 的面积的最小值.。

高考数学一轮复习备课手册第52课圆锥曲线的综合应用

高考数学一轮复习备课手册第52课圆锥曲线的综合应用

第课圆锥曲线的综合应用一教学目标.了解直线与圆锥曲线的位置关系,会用代数方法判断其位置关系,会求两个圆锥曲线的之间的几何性质的问题。

.能运用常见的数学思想方法解决直线与椭圆的简单综合问题二基础知识回顾与梳理、(本题由课本例题与习题改编)⑴椭圆的焦点坐标,离心率,准线方程.⑵双曲线的焦点坐标,离心率,准线方程,渐近线方程.【教学建议】⑴本题是为了帮助学生对椭圆、双曲线标准方程的理解;⑵题中的分析可引导学生讨论得到,让学生学会先由方程研究曲线的几何性质,再运用几何性质解决有关问题(如作图等),进一步体会数形结合的思想方法;⑶“离心率”这个名词很形象,在题目中注意的求解;⑷将椭圆、双曲线的离心率的范围加以比较,为圆锥曲线的统一定义作铺垫。

、(本题选自课本例题)已知双曲线的两个焦点分别为,双曲线上一点到的距离的差的绝对值等于,则双曲线的标准方程为.【教学建议】⑴师生交流:题目中有坐标,是否还需要建立坐标系?⑵充分引导学生利用双曲线的定义解题,定性→定位→定量;⑶本题是双曲线及其标准方程的基本题型,教学中可作适度的变式训练,如【变式】:将条件中“绝对值”去掉,结论如何?【变式】:焦点坐标变为,结论如何?、(本题选自课本例题)将圆上的点的横坐标保持不变,纵坐标变为原来的一半,则所得曲线的方程为.【教学建议】⑴通过本题证实:椭圆可用圆通过压缩变换得到,揭示了两者之间的联系,有利于类比得出椭圆的相关性质;⑵同时也给出了一种求曲线的方法:坐标转移法⑶教学中应充分说明“为什么时候可以这么做?”,“怎么想到这样做的?”这两个问题,渗透“转化”,即未知向已知转化的思想方法。

⑷教学中可作适度的变式训练,如将条件“纵坐标变为原来的一半”改为“纵坐标变为原来的两倍”,注意焦点的变化。

、(本题由课本例题改编)已知、两地相距米,一炮弹在某处爆炸,在处听到爆炸声的时间比在处迟秒,设声速为米秒,爆炸点在什么曲线上,并求此曲线方程。

【教学建议】⑴利用两个不同的观测点,可以确定爆炸点所在的曲线,但不能完全确定爆炸点的位置,要确定,需几个?(个)⑵这里渗透了确定曲线交点的思想方法,帮助学生增强“用数学”的意识。

高考数学一轮复习 8.10 圆锥曲线的综合问题精品教学案(教师版) 新人教版

高考数学一轮复习 8.10 圆锥曲线的综合问题精品教学案(教师版) 新人教版

【考纲解读】1.了解圆锥曲线的简单应用,理解数形结合的思想. 2.领会转化的数学思想,提高综合解题能力.【考点预测】高考对此部分内容考查的热点与命题趋势为:1.平面解析几何是历年来高考重点内容之一,经常与逻辑、不等式、三角函数等知识结合起来考查,在选择题、填空题与解答题中均有可能出现,在解答题中考查,一般难度较大,与其他知识结合起来考查,在考查平面解析几何基础知识的同时,又考查数形结合思想、转化思想和分类讨论等思想,以及分析问题、解决问题的能力.2.2013年的高考将会继续保持稳定,坚持考查解析几何与其他知识的结合,在选择题、填空题中继续搞创新,命题形式会更加灵活. 【要点梳理】1.圆锥曲线中的最值问题2.圆锥曲线中的面积问题3.圆锥曲线中的定点或定值问题 【例题精析】考点一 圆锥曲线中的最值与面积问题 例1. (2012年高考重庆卷文科21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分) 已知椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为12,F F ,线段12,OF OF 的中点分别为12,B B ,且△12AB B 是面积为4的直角三角形。

(Ⅰ)求该椭圆的离心率和标准方程;(Ⅱ)过1B 作直线交椭圆于,P Q ,22PB QB ,求△2PB Q 的面积【答案】(Ⅰ)220x +24y =116102PB Q 的面积121211610||||29S B B y y =-= 当2m =- 时,同理可得(或由对称性可得)2PB Q 的面积16109S =综上所述,2PB Q 的面积为16109. 【名师点睛】本小题主要考查直线与椭圆,考查了圆锥曲线中的面积问题,熟练基本知识是解决本类问题的关键. 【变式训练】1.(2012年高考安徽卷文科20)(本小题满分13分)如图,21F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A 是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点,1F ∠A 2F =60°.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知△A B F 1的面积为403,求,a b 的值.法二:设2BF m =;则12BF a m =-,则在12BFF ∆中,由余弦定理可得考点二定点(定值)问题例2.(2012年高考福建卷文科21)(本小题满分12分)如图,等边三角形OAB的边长为83,且其三个顶点均在抛物线E:x2=2py(p>0)上。

高三数学一轮复习圆锥曲线综合问题

高三数学一轮复习圆锥曲线综合问题

直线与圆锥曲线的位置关系 [典题导入]
(2014· 长春三校调研)在直角坐标系 xOy 中, 点
1 M2,-2 ,
点 F 为抛物线 C:y=mx2(m>0)的焦点,线段 MF 恰被抛物线 C 平分. (1)求 m 的值; (2)过点 M 作直线 l 交抛物线 C 于 A、B 两点,设直线 FA、FM、 FB 的斜率分别为 k1、k2、k3,问 k1、k2、k3 能否成公差不为零的 等差数列?若能,求直线 l 的方程;若不能,请说明理由.
解析
(1)设 A(x1,y1),B(x2,y2),P(x0,y0),
[跟踪训练] 2. (2013· 新课标全国卷Ⅱ高考)平面直角坐标系 xOy 中, 过椭圆 M: x2 y2 + =1(a>b>0)右焦点的直线 x+y- 3=0 交 M 于 A,B a2 b2 1 两点,P 为 AB 的中点,且 OP 的斜率为 . 2 (1)求 M 的方程; (2)C,D 为 M 上两点,若四边形 ACBD 的对角线 CD⊥AB,求 四边形 ACBD 面积的最大值.






2 .在利用代数法解决最值与范围问题时常从 以下五个方面考虑: (1) 利用判别式来构造不等关系,从而确定参 数的取值范围; (2) 利用已知参数的范围,求新参数的范围, 解这类问题的核心是在两个参数之间建立等量 关系; (3) 利用隐含或已知的不等关系建立不等式, 从而求出参数的取值范围; (4)利用基本不等式求出参数的取值范围; (5) 利用函数的值域的求法,确定参数的取值 范围.
所以当且仅当 m=1- 7时,u(m)取到最大值. 故当且仅当 m=1- 7时,S 取到最大值. 综上,所求直线 l 的方程为 3x+2y+2 7-2=0.

高三数学 第十二章 圆锥曲线的综合问题 复习教案

高三数学 第十二章 圆锥曲线的综合问题  复习教案

第十一节 圆锥曲线的综合问题————热点考点题型探析一、复习目标:掌握圆锥曲线中有关定点、定值问题的解法;能利用方程求圆锥曲线的有关范围与最值;掌握对称问题的求法。

二、重难点:重点:掌握圆锥曲线中有关定点、定值问题的解法;能利用方程求圆锥曲线的有关范围与最值。

难点:圆锥曲线的有关范围与最值问题。

三、教学方法:讲练结合,探析归纳 四、教学过程 (一)、热点考点题型探析 考点1.对称问题[例1]若直线l 过圆x2+y2+4x-2y=0的圆心M 交椭圆49:22y x C +于A 、B 两点,若A 、B 关于点M 对称,求直线L 的方程.[解析] )1,2(-M ,设),(),,(2211y x B y x A ,则2,42121=+-=+y y x x又1492121=+y x ,1492222=+y x ,两式相减得:04922122212=-+-y y x x ,化简得0))((9))((421212121=-++-+y y y y x x x x ,把2,42121=+-=+y y x x 代入得982112=--=x x y y k AB故所求的直线方程为)2(211--=-x y ,即042=-+y x 所以直线l 的方程为 :8x-9y+25=0.【反思归纳】要抓住对称包含的三个条件:(1)中点在对称轴上(2)两个对称点的连线与轴垂直(3)两点连线与曲线有两个交点(0>∆),通过该不等式求范围 考点2. 圆锥曲线中的范围、最值问题题型:求某些变量的范围或最值[例2]已知椭圆22122:1(0)x y C a b a b +=>>与直线10x y +-=相交于两点A B 、.当椭圆的离心率e满足e ≤≤,且0O A O B ⋅= (O 为坐标原点)时,求椭圆长轴长的取值范围.【解题思路】通过“韦达定理”沟通a 与e 的关系[解析]由22222210b x a y a b x y ⎧+=⎨+-=⎩,得222222()2(1)0a b x a x a b +-+-= 由22222(1)0a b a b =+-> ,得221a b +>此时222121222222(1),a a b x x x x a b a b -+==++ 由0OA OB ⋅=,得12120x x y y +=,∴12122()10x x x x -++=即222220a b a b +-=,故22221a b a =- 由222222c a b e a a -==,得2222b a a e =-∴221211a e =+-由2e ≤≤得25342a ≤≤2a ≤≤【反思归纳】求范围和最值的方法:几何方法:充分利用图形的几何特征及意义,考虑几何性质解决问题代数方法:建立目标函数,再求目标函数的最值. 考点3 定点,定值的问题题型:论证曲线过定点及图形(点)在变化过程中存在不变量[例3] 已知P 、Q 是椭圆C :12422=+y x 上的两个动点,)26,1(M 是椭圆上一定点,F 是其左焦点,且|PF|、|MF|、|QF|成等差数列。

高中数学第一轮总复习 第八章 8.7 圆锥曲线的综合问题教案 新人教A版

高中数学第一轮总复习 第八章 8.7 圆锥曲线的综合问题教案 新人教A版

8.7 圆锥曲线的综合问题巩固·夯实基础一、自主梳理解析几何考查的重点是圆锥曲线,在历年的高考中,占解析几何总分值的四分之三以上.解析几何的综合问题也主要以圆锥曲线为载体,通常从以下几个方面进行考查:1.位置问题,直线与圆锥曲线的位置关系问题,是研究解析几何的重点内容,常涉及直线与曲线交点的判断、弦长、面积、对称、共线等问题.其解法是充分利用方程思想以及韦达定理.2.最值问题,最值问题是从动态角度去研究解析几何中的数学问题的主要内容.其解法是设变量、建立目标函数、转化为求函数的最值.3.范围问题,范围问题主要是根据条件,建立含有参变量的函数关系式或不等式,然后确定参数的取值范围,其解法主要有运用圆锥曲线上点的坐标的取值范围,运用求函数的值域、最值以及二次方程实根的分布等知识.以上这些问题由于综合性较强,所以备受命题者的青睐.常用来综合考查学生在数形结合、等价转化、分类转化、逻辑推理等多方面的能力.二、点击双基1.方程22)2()2(-++y x =|x-y+3|表示的曲线是( )A.直线B.双曲线C.椭圆D.抛物线解析:原方程变形为2|3|)2()2(22+--++y x y x =2.它表示点(x,y)到点(-2,2)与定直线x-y+3=0的距离比是2.故选B.答案:B2.若点(x,y )在椭圆4x 2+y 2=4上,则2-x y 的最小值为( ) A.1 B.-1 C.-323 D.以上都不对 解析:2-x y 的几何意义是椭圆上的点与定点(2,0)连线的斜率.显然直线与椭圆相切时取得最值,设直线y=k(x-2),代入椭圆方程消去y 得(4+k 2)x 2-4k 2x+4k 2-4=0.令Δ=0,k=±323. ∴k min =-323.答案:C 3.双曲线22a x -22b y =1的离心率为e 1,双曲线22b y -22ax =1的离心率为e 2,则e 1+e 2的最小值为( ) A.42 B.2 C.22 D.4解析:(e 1+e 2)2=e 12+e 22+2e 1e 2 =222a b a ++222b a b ++2·a b a 22+·b a b 22+ =2+22a b +22b a +2(a b +ba ) ≥2+2+2×2=8.当且仅当a=b 时取等号.故选C.答案:C4.若椭圆x 2+a 2y 2=a 2的长轴长是短轴长的2倍,则a=___________________.解析:方程化为22ax +y 2=1, 若a 2>1,∴2|a|=2×2,a=±2.当0<a 2<1,∴2=4|a|.∴a=±21. 答案:±2,±21 5.P 是双曲线32x -y 2=1的右支上一动点,F 是双曲线的右焦点,已知A(3,1),则|PA|+|PF|的最小值为____________________________.解析:设F ′为双曲线的左焦点,∴|PF ′|-|PF|=23.∴|PA|+|PF|=|PA|+|PF ′|-23≥|AF ′|-23=26-23.答案:26-23诱思·实例点拨【例1】如图,O 为坐标原点,直线l 在x 轴和y 轴上的截距分别是a 和b(a>0,b ≠0),且交抛物线y 2=2px(p>0)于M(x 1,y 1),N(x 2,y 2)两点.(1)写出直线l 的截距式方程;(2)证明11y +21y =b1;(3)当a=2p 时,求∠MON 的大小.剖析:易知直线l 的方程为a x +b y =1,欲证11y +21y =b 1,即求2121y y y y +的值,为此只需求直线l 与抛物线y 2=2px 交点的纵坐标.由根与系数的关系易得y 1+y 2、y 1y 2的值,进而证得11y +21y =b 1.由OM ·ON =0易得∠MON=90°.亦可由k OM ·k ON =-1求得∠MON=90°.(1)解:直线l 的截距式方程为a x +b y =1. ① (2)证明:由①及y 2=2px 消去x 可得by 2+2pay-2pab=0. ②点M 、N 的纵坐标y 1、y 2为②的两个根,故y 1+y 2=bpa 2-,y 1y 2=-2pa. 所以11y +21y =2121y y y y +=pa b pa22--=b1. (3)解:设直线OM 、ON 的斜率分别为k 1、k 2,则k 1=11x y ,k 2=22x y . 当a=2p 时,由(2)知,y 1y 2=-2pa=-4p 2,由y 12=2px 1,y 22=2px 2,相乘得(y 1y 2)2=4p 2x 1x 2,x 1x 2=22214)(p y y =2224)4(p p -=4p 2,因此k 1k 2=2121x x y y =2244p p -=-1. 所以OM ⊥ON,即∠MON=90°.讲评:本题主要考查直线、抛物线等基本知识,考查运用解析几何的方法分析问题和解决问题的能力.【例2】已知椭圆C 的方程为22a x +22b y =1(a>b>0),双曲线22a x -22by =1的两条渐近线为l 1、l 2,过椭圆C 的右焦点F 作直线l,使l ⊥l 1,又l 与l 2交于P 点,设l 与椭圆C 的两个交点由上至下依次为A 、B.(如图)(1)当l 1与l 2夹角为60°,双曲线的焦距为4时,求椭圆C 的方程;(2)当FA =λAP 时,求λ的最大值.剖析:(1)求椭圆方程即求a 、b 的值,由l 1与l 2的夹角为60°易得a b =33,由双曲线的距离为4易得a 2+b 2=4,进而可求得a 、b. (2)由FA =λAP ,欲求λ的最大值,需求A 、P 的坐标,而P 是l 与l 1的交点,故需求l 的方程.将l 与l 2的方程联立可求得P 的坐标,进而可求得点A 的坐标.将A 的坐标代入椭圆方程可求得λ的最大值.解:(1)∵双曲线的渐近线为y=±a b x,两渐近线夹角为60°, 又ab <1, ∴∠POx=30°,即a b =tan30°=33. ∴a=3b.又a 2+b 2=4,∴a 2=3,b 2=1. 故椭圆C 的方程为32x +y 2=1. (2)由已知l:y=b a (x-c),与y=ab x 解得P(c a 2,c ab ), 由FA =λAP 得A(λλ+•+12c a c ,λλ+•1c ab ). 将A 点坐标代入椭圆方程得(c 2+λa 2)2+λ2a 4=(1+λ)2a 2c 2.∴(e 2+λ)2+λ2=e 2(1+λ)2.∴λ2=2224--e e e =-[(2-e 2)+222e -]+3≤3-22. ∴λ的最大值为2-1.讲评:本题考查了椭圆、双曲线的基础知识,及向量、定比分点公式、重要不等式的应用.解决本题的难点是通过恒等变形,利用重要不等式解决问题的思想.本题是培养学生分析问题和解决问题能力的一道好题.【例3】 已知直线y=-2上有一个动点Q ,过Q 作直线l 垂直于x 轴,动点P 在直线l 上,且OP ⊥OQ ,记点P 的轨迹为C 1.(1)求曲线C 1的方程.(2)设直线l 与x 轴交于点A ,且OB =PA (OB ≠0).试判断直线PB 与曲线C 1的位置关系,并证明你的结论.(3)已知圆C 2:x 2+(y-a)2=2,若C 1、C 2在交点处的切线互相垂直,求a 的值.解:(1)设P 的坐标为(x,y),则点Q 的坐标为(x,-2).∵OP ⊥OQ ,∴OP ·OQ =0.∴x 2-2y=0.∴点P 的轨迹方程为x 2=2y(x ≠0).(2)直线PB 与曲线C 1相切,设点P 的坐标为(x 0,y 0),点A 的坐标为(x 0,0). ∵OB =PA ,∴OB =(0,-y 0).∴点B 的坐标为(0,-y 0).∵OB ≠0,∴直线PB 的斜率为k=002x y . ∵x 02=2y 0,∴k=x 0.∴直线PB 的方程为y=x 0x-y 0.代入x 2=2y,得x 2-2x 0x+2y 0=0.∵Δ=4x 02-8y 0=0,∴直线PB 与曲线C 1相切.(3)不妨设C 1、C 2的一个交点为N(x 1,y 1),C 1的解析式即为y=21x 2,则在C 1上N 处切线的斜率为k ′=x 1,圆C 2过N 点的半径的斜率为k=11x a y . ① 又∵点N(x 1,y 1)在C 1上,所以y 1=21x 12. ② 由①②得y 1=-a,x 12=-2a,∵N(x 1,y 1)在圆C 2上,∴-2a+4a 2=2.∴a=-21或a=1. ∵y 1>0,∴a<0. ∴a=-21.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线的综合问题(文视情况[知识能否忆起]1.直线与圆锥曲线的位置关系判定直线与圆锥曲线的位置关系时,通常是将直线方程与曲线方程联立,消去变量y (或x )得关于变量x (或y )的方程:ax 2+bx +c =0(或ay 2+by +c =0).若a ≠0,可考虑一元二次方程的判别式Δ,有: Δ>0⇔直线与圆锥曲线相交; Δ=0⇔直线与圆锥曲线相切; Δ<0⇔直线与圆锥曲线相离.若a =0且b ≠0,则直线与圆锥曲线相交,且有一个交点. 2.圆锥曲线的弦长问题设直线l 与圆锥曲线C 相交于A 、B 两点,A (x 1,y 1),B (x 2,y 2),则弦长|AB |=1+k 2|x 1-x 2|或1+1k2|y 1-y 2|. [小题能否全取]1.(教材习题改编)与椭圆x 212+y 216=1焦点相同,离心率互为倒数的双曲线方程是( )A .y 2-x 23=1 B.y 23-x 2=1C.34x 2-38y 2=1D.34y 2-38x 2=1 解析:选A 设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0),则⎩⎪⎨⎪⎧a 2+b 2=c 2,ca =2,c =2,得a =1,b = 3.故双曲线方程为y 2-x 23=1.2.(教材习题改编)直线y =kx -k +1与椭圆x 29+y 24=1的位置关系是( )A .相交B .相切C .相离D .不确定解析:选A 由于直线y =kx -k +1=k (x -1)+1过定点(1,1),而(1,1)在椭圆内,故直线与椭圆必相交.3.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( ) A .1条 B .2条 C .3条D .4条解析:选C 结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0).4.过椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点A 且斜率为1的直线与椭圆的另一个交点为M ,与y 轴的交点为B ,若|AM |=|MB |,则该椭圆的离心率为________.解析:由题意知A 点的坐标为(-a,0),l 的方程为y =x +a ,所以B 点的坐标为(0,a ),故M 点的坐标为⎝⎛⎭⎫-a 2,a 2,代入椭圆方程得a 2=3b 2,则c 2=2b 2,则c 2a 2=23,故e =63. 答案:635.已知双曲线方程是x 2-y 22=1,过定点P (2,1)作直线交双曲线于P 1,P 2两点,并使P (2,1)为P 1P 2的中点,则此直线方程是________________.解析:设点P 1(x 1,y 1),P 2(x 2,y 2),则由x 21-y 212=1,x 22-y 222=1,得k =y 2-y 1x 2-x 1=2(x 2+x 1)y 2+y 1=2×42=4,从而所求方程为4x -y -7=0.将此直线方程与双曲线方程联立得14x 2-56x +51=0,Δ>0,故此直线满足条件.答案:4x -y -7=01.直线与圆锥曲线的位置关系,主要涉及弦长、弦中点、对称、参数的取值范围、求曲线方程等问题.解题中要充分重视根与系数的关系和判别式的应用.2.当直线与圆锥曲线相交时:涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目中的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”.典题导入[例1] (2012·北京高考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为22.直线y =k (x -1)与椭圆C 交于不同的两点M ,N .(1)求椭圆C 的方程; (2)当△AMN 的面积为103时,求k 的值. [自主解答] (1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,解得b =2,所以椭圆C 的方程为x 24+y 22=1.(2)由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 22=1,得(1+2k 2)x 2-4k 2x +2k 2-4=0.设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则 y 1=k (x 1-1),y 2=k (x 2-1),x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2,所以|MN |=(x 2-x 1)2+(y 2-y 1)2 =(1+k 2)[(x 1+x 2)2-4x 1x 2] =2(1+k 2)(4+6k 2)1+2k 2.又因为点A (2,0)到直线y =k (x -1)的距离d =|k |1+k 2, 所以△AMN 的面积为 S =12|MN |· d =|k |4+6k 21+2k 2. 由|k |4+6k 21+2k2=103,解得k =±1. 由题悟法研究直线与圆锥曲线的位置关系时,一般转化为研究其直线方程与圆锥方程组成的方程组解的个数,但对于选择、填空题也可以利用几何条件,用数形结合的方法求解.以题试法1.(2012·信阳模拟)设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A.⎣⎡⎦⎤-12,12 B .[-2,2] C .[-1,1]D .[-4,4]解析:选C 易知抛物线y 2=8x 的准线x =-2与x 轴的交点为Q (-2,0),于是,可设过点Q (-2,0)的直线l 的方程为y =k (x +2)(由题可知k 是存在的),联立⎩⎪⎨⎪⎧y 2=8x ,y =k (x +2)⇒k 2x 2+(4k 2-8)x +4k 2=0.当k =0时,易知符合题意;当k ≠0时,其判别式为Δ=(4k 2-8)2-16k 4=-64k 2+64≥0, 可解得-1≤k ≤1.典题导入[例2] (2012·浙江高考)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.不过原点O 的直线l 与C相交于A ,B 两点,且线段AB 被直线OP 平分.(1)求椭圆C 的方程;(2)求△ABP 面积取最大值时直线l 的方程.[自主解答] (1)设椭圆左焦点为F (-c,0),则由题意得⎩⎪⎨⎪⎧(2+c )2+1=10,c a =12,得⎩⎪⎨⎪⎧c =1,a =2. 所以椭圆方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M .当直线AB 与x 轴垂直时,直线AB 的方程为x =0,与不过原点的条件不符,舍去.故可设直线AB 的方程为y =kx +m (m ≠0),由⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2=12消去y ,整理得 (3+4k 2)x 2+8kmx +4m 2-12=0, ① 则Δ=64k 2m 2-4(3+4k 2)(4m 2-12)>0,⎩⎪⎨⎪⎧x 1+x 2=-8km 3+4k 2,x 1x 2=4m 2-123+4k 2.所以线段AB 的中点为M ⎝⎛⎭⎫-4km 3+4k 2,3m3+4k 2.因为M 在直线OP :y =12x 上,所以3m3+4k 2=-2km 3+4k 2. 得m =0(舍去)或k =-32.此时方程①为3x 2-3mx +m 2-3=0,则 Δ=3(12-m 2)>0,⎩⎪⎨⎪⎧x 1+x 2=m ,x 1x 2=m 2-33.所以|AB |=1+k 2·|x 1-x 2|=396·12-m 2, 设点P 到直线AB 的距离为d ,则 d =|8-2m |32+22=2|m -4|13. 设△ABP 的面积为S ,则 S =12|AB |·d =36·(m -4)2(12-m 2). 其中m ∈(-23,0)∪(0,23).令u (m )=(12-m 2)(m -4)2,m ∈[-23,2 3 ],u ′(m )=-4(m -4)(m 2-2m -6)=-4(m -4)(m -1-7)(m -1+7). 所以当且仅当m =1-7时,u (m )取到最大值. 故当且仅当m =1-7时,S 取到最大值. 综上,所求直线l 的方程为3x +2y +27-2=0.由题悟法1.解决圆锥曲线的最值与范围问题常见的解法有两种:几何法和代数法.(1)若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决,这就是几何法;(2)若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,这就是代数法.2.在利用代数法解决最值与范围问题时常从以下五个方面考虑: (1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;(3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; (4)利用基本不等式求出参数的取值范围; (5)利用函数的值域的求法,确定参数的取值范围.以题试法2.(2012·东莞模拟)已知抛物线y 2=2px (p ≠0)上存在关于直线x +y =1对称的相异两点,则实数p 的取值范围为( )A.⎝⎛⎭⎫-23,0 B.⎝⎛⎭⎫0,23 C.⎝⎛⎭⎫-32,0D.⎝⎛⎭⎫0,32 解析:选B 设抛物线上关于直线x +y =1对称的两点是M (x 1,y 1)、N (x 2,y 2),设直线MN 的方程为y =x +b .将y =x +b 代入抛物线方程,得x 2+(2b -2p )x +b 2=0,则x 1+x 2=2p -2b ,y 1+y 2=(x 1+x 2)+2b =2p ,则MN 的中点P 的坐标为(p -b ,p ).因为点P 在直线x +y =1上,所以2p -b =1,即b =2p -1.又Δ=(2b -2p )2-4b 2=4p 2-8bp >0,将b =2p -1代入得4p 2-8p (2p -1)>0,即3p 2-2p <0,解得0<p <23.典题导入[例3] (2012·辽宁高考)如图,椭圆C0:x 2a 2+y 2b 2=1(a >b >0,a ,b 为常数),动圆C 1:x 2+y 2=t 21,b <t 1<a .点A 1,A 2分别为C 0的左,右顶点,C 1与C 0相交于A ,B ,C ,D 四点.(1)求直线AA 1与直线A 2B 交点M 的轨迹方程;(2)设动圆C 2:x 2+y 2=t 22与C 0相交于A ′,B ′,C ′,D ′四点,其中b <t 2<a ,t 1≠t 2.若矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,证明:t 21+t 22为定值.[自主解答] (1)设 A (x 1,y 1),B (x 1,-y 1),又知A 1(-a,0),A 2(a,0),则直线A 1A 的方程为y =y 1x 1+a(x +a ),①直线A 2B 的方程为y =-y 1x 1-a (x -a ).②由①②得y 2=-y 21x 21-a2(x 2-a 2).③由点A (x 1,y 1)在椭圆C 0上,故x 21a 2+y 21b2=1.从而y 21=b2⎝⎛⎭⎫1-x 21a 2,代入③得x 2a 2-y 2b2=1(x <-a ,y <0). (2)证明:设A ′(x 2,y 2),由矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,得4|x 1||y 1|=4|x 2|·|y 2|,故x 21y 21=x 22y 22.因为点A ,A ′均在椭圆上,所以 b 2x 21⎝⎛⎭⎫1-x 21a 2=b 2x 22⎝⎛⎭⎫1-x 22a 2. 由t 1≠t 2,知x 1≠x 2,所以x 21+x 22=a 2,从而y 21+y 22=b 2, 因此t 21+t 22=a 2+b 2为定值.由题悟法1.求定值问题常见的方法有两种(1)从特殊入手,求出表达式,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 2.定点的探索与证明问题(1)探索直线过定点时,可设出直线方程为y =kx +b ,然后利用条件建立b 、k 等量关系进行消元,借助于直线系方程找出定点;(2)从特殊情况入手,先探求定点,再证明一般情况.以题试法3.(2012·山东省实验中学模拟)已知抛物线y 2=2px (p ≠0)及定点A (a ,b ),B (-a,0),ab ≠0,b 2≠2pa ,M 是抛物线上的点.设直线AM ,BM 与抛物线的另一个交点分别为M 1,M 2,当M 变动时,直线M 1M 2恒过一个定点,此定点坐标为________.解析:设M ⎝⎛⎭⎫y 202p ,y 0,M 1⎝⎛⎭⎫y 212p ,y 1,M 2⎝⎛⎭⎫y 222p ,y 2,由点A ,M ,M 1共线可知y 0-b y 202p-a=y 1-y 0y 212p -y 202p,得y 1=by 0-2pa y 0-b ,同理由点B ,M ,M 2共线得y 2=2pay 0.设(x ,y )是直线M 1M 2上的点,则y 2-y 1y 222p -y 212p =y 2-y y 222p-x ,即y 1y 2=y (y 1+y 2)-2px ,又y 1=by 0-2pa y 0-b ,y 2=2pay 0, 则(2px -by )y 02+2pb (a -x )y 0+2pa (by -2pa )=0. 当x =a ,y =2pab时上式恒成立,即定点为⎝⎛⎭⎫a ,2pa b .答案:⎝⎛⎭⎫a ,2pa b1.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则1PA ,·2PF ,的最小值为( )A .-2B .-8116C .1D .0解析:选A 设点P (x ,y ),其中x ≥1.依题意得A 1(-1,0),F 2(2,0),由双曲线方程得y 2=3(x 2-1).1PA ,·2PF,=(-1-x ,-y )·(2-x ,-y )=(x +1)(x -2)+y 2=x 2+y 2-x -2=x 2+3(x 2-1)-x -2=4x 2-x -5=4⎝⎛⎭⎫x -182-8116,其中x ≥1.因此,当x =1时,1PA ,·2PF ,取得最小值-2.2.过抛物线y 2=2x 的焦点作一条直线与抛物线交于A 、B 两点,它们的横坐标之和等于2,则这样的直线( )A .有且只有一条B .有且只有两条C .有且只有三条D .有且只有四条解析:选B 设该抛物线焦点为F ,则|AB |=|AF |+|FB |=x A +p 2+x B +p2=x A +x B +1=3>2p =2.所以符合条件的直线有且仅有两条.3.(2012·南昌联考)过双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 作与x 轴垂直的直线,分别与双曲线、双曲线的渐近线交于点M 、N (均在第一象限内),若FM ,=4MN,,则双曲线的离心率为( )A.54B.53C.35D.45解析:选B 由题意知F (c,0),则易得M ,N 的纵坐标分别为b 2a ,bca,由FM ,=4MN ,得b 2a =4·⎝⎛⎭⎫bc a -b 2a ,即bc =45.又c 2=a 2+b 2,则e =c a =53. 4.已知椭圆x 225+y 216=1的焦点是F 1,F 2,如果椭圆上一点P 满足PF 1⊥PF 2,则下面结论正确的是( )A .P 点有两个B .P 点有四个C .P 点不一定存在D .P 点一定不存在解析:选D 设椭圆的基本量为a ,b ,c ,则a =5,b =4,c =3.以F 1F 2为直径构造圆,可知圆的半径r =c =3<4=b ,即圆与椭圆不可能有交点.5.已知椭圆C :x 22+y 2=1的两焦点为F 1,F 2,点P (x 0,y 0)满足x 202+y 20≤1,则|PF 1|+|PF 2|的取值范围为________.解析:当P 在原点处时,|PF 1|+|PF 2|取得最小值2;当P 在椭圆上时,|PF 1|+|PF 2|取得最大值22,故|PF 1|+|PF 2|的取值范围为[2,2 2 ].答案:[2,2 2 ]6.(2013·长沙月考)直线l :x -y =0与椭圆x 22+y 2=1相交于A 、B 两点,点C 是椭圆上的动点,则△ABC 面积的最大值为________.解析:由⎩⎪⎨⎪⎧x -y =0,x 22+y 2=1,得3x 2=2,∴x =±63, ∴A ⎝⎛⎭⎫63,63,B ⎝⎛⎭⎫-63,-63, ∴|AB |=433. 设点C (2cos θ,sin θ),则点C 到AB 的距离d =|2cos θ-sin θ|2=32·⎪⎪sin(θ-φ)⎪⎪≤32, ∴S △ABC =12|AB |·d ≤12×433×32= 2.答案: 27.设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左,右焦点,过F 1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求|AB |;(2)若直线l 的斜率为1,求b 的值. 解:(1)由椭圆定义知|AF 2|+|AB |+|BF 2|=4, 又2|AB |=|AF 2|+|BF 2|,得|AB |=43.(2)l 的方程为y =x +c ,其中c =1-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2+y 2b 2=1,化简得(1+b 2)x 2+2cx +1-2b 2=0.则x 1+x 2=-2c 1+b 2,x 1x 2=1-2b 21+b 2.因为直线AB 的斜率为1,所以|AB |=2|x 2-x 1|,即43=2|x 2-x 1|.则89=(x 1+x 2)2-4x 1x 2=4(1-b 2)(1+b 2)2-4(1-2b 2)1+b 2=8b 4(1+b 2)2, 解得b =22. 8.(2012·黄冈质检)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆上任意一点到右焦点F 的距离的最大值为2+1.(1)求椭圆的方程;(2)已知点C (m,0)是线段OF 上一个动点(O 为坐标原点),是否存在过点F 且与x 轴不垂直的直线l 与椭圆交于A ,B 点,使得|AC |=|BC |?并说明理由.解:(1)∵⎩⎪⎨⎪⎧e =c a =22a +c =2+1,∴⎩⎨⎧a =2c =1,∴b =1,∴椭圆的方程为x 22+y 2=1.(2)由(1)得F (1,0),∴0≤m ≤1. 假设存在满足题意的直线l ,设l 的方程为y =k (x -1),代入x 22+y 2=1中,得(2k 2+1)x 2-4k 2x +2k 2-2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1,∴y 1+y 2=k (x 1+x 2-2)=-2k2k 2+1.设AB 的中点为M ,则M ⎝⎛⎭⎫2k 22k 2+1,-k2k 2+1.∵|AC |=|BC |,∴CM ⊥AB ,即k CM ·k AB =-1,∴k 2k 2+1m -2k 22k 2+1·k =-1,即(1-2m )k 2=m . ∴当0≤m <12时,k =±m1-2m,即存在满足题意的直线l ; 当12≤m ≤1时,k 不存在,即不存在满足题意的直线l . 9.(2012·江西模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),直线y =x +6与以原点为圆心,以椭圆C 的短半轴长为半径的圆相切,F 1,F 2为其左,右焦点,P 为椭圆C 上任一点,△F 1PF 2的重心为G ,内心为I ,且IG ∥F 1F 2.(1)求椭圆C 的方程;(2)若直线l :y =kx +m (k ≠0)与椭圆C 交于不同的两点A ,B ,且线段AB 的垂直平分线过定点C ⎝⎛⎭⎫16,0,求实数k 的取值范围.解:(1)设P (x 0,y 0),x 0≠±a ,则G ⎝⎛⎭⎫x 03,y 03. 又设I (x I ,y I ),∵IG ∥F 1F 2, ∴y I =y 03,∵|F 1F 2|=2c ,∴S △F 1PF 2=12·|F 1F 2|·|y 0|=12(|PF 1|+|PF 2|+|F 1F 2|)·| y 03| , ∴2c ·3=2a +2c ,∴e =c a =12,又由题意知b =|6|1+1,∴b =3,∴a =2,∴椭圆C 的方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 23=1y =kx +m ,消去y ,得(3+4k 2)x 2+8kmx +4m 2-12=0,由题意知Δ=(8km )2-4(3+4k 2)(4m 2-12)>0,即m 2<4k 2+3,又x 1+x 2=-8km3+4k 2,则y 1+y 2=6m3+4k 2,∴线段AB 的中点P 的坐标为⎝⎛⎭⎫-4km 3+4k 2,3m3+4k 2.又线段AB 的垂直平分线l ′的方程为y =-1k ⎝⎛⎭⎫x -16,点P 在直线l ′上,∴3m 3+4k 2=-1k ⎝⎛⎭⎫-4km 3+4k 2-16, ∴4k 2+6km +3=0,∴m =-16k (4k 2+3),∴(4k 2+3)236k 2<4k 2+3,∴k 2>332,解得k >68或k <-68, ∴k 的取值范围是⎝⎛⎭⎫-∞,-68∪⎝⎛⎭⎫68,+∞.1.(2012·长春模拟)已知点A (-1,0),B (1,0),动点M 的轨迹曲线C 满足∠AMB =2θ,|AM|,·|BM |,cos 2θ=3,过点B 的直线交曲线C 于P ,Q 两点.(1)求|AM |,+|BM|,的值,并写出曲线C 的方程;(2)求△APQ 的面积的最大值.解:(1)设M (x ,y ),在△MAB 中,|AB |,=2,∠AMB =2θ,根据余弦定理得|AM |,2+|BM |,2-2|AM |,·|BM |,cos 2θ=|AB |,2=4,即(|AM |,+|BM |,)2-2|AM |,·|BM |,·(1+cos 2θ)=4,所以(|AM |,+|BM |,)2-4|AM |,| BM |,·cos 2θ=4.因为|AM |,·|BM |,cos 2θ=3,所以(|AM |,+|BM |,)2-4×3=4,所以|AM |,+|BM|,=4. 又|AM |,+|BM |,=4>2=|AB |,因此点M 的轨迹是以A ,B 为焦点的椭圆(点M 在x 轴上也符合题意),设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0), 则a =2,c =1,所以b 2=a 2-c 2=3. 所以曲线C 的方程为x 24+y 23=1.(2)设直线PQ 的方程为x =my +1. 由⎩⎪⎨⎪⎧x =my +1x 24+y 23=1,消去x ,整理得(3m 2+4)y 2+6my -9=0.①显然方程①的判别式Δ=36m 2+36(3m 2+4)>0, 设P (x 1,y 1),Q (x 2,y 2),则△APQ 的面积S △APQ =12×2×|y 1-y 2|=|y 1-y 2|.由根与系数的关系得y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4,所以(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=48×3m 2+3(3m 2+4)2.令t =3m 2+3,则t ≥3,(y 1-y 2)2=48t +1t+2, 由于函数φ(t )=t +1t在[3,+∞)上是增函数,所以t +1t ≥103,当且仅当t =3m 2+3=3,即m =0时取等号,所以(y 1-y 2)2≤48103+2=9,即|y 1-y 2|的最大值为3,所以△APQ 的面积的最大值为3,此时直线PQ 的方程为x =1.2.(2012·郑州模拟)已知圆C 的圆心为C (m,0),m <3,半径为5,圆C 与离心率e >12的椭圆E :x 2a 2+y 2b2=1(a >b >0)的其中一个公共点为A (3,1),F 1,F 2分别是椭圆的左、右焦点.(1)求圆C 的标准方程;(2)若点P 的坐标为(4,4),试探究直线PF 1与圆C 能否相切?若能,设直线PF 1与椭圆E 相交于D ,B 两点,求△DBF 2的面积;若不能,请说明理由.解:(1)由已知可设圆C 的方程为(x -m )2+y 2=5(m <3), 将点A 的坐标代入圆C 的方程中,得(3-m )2+1=5, 即(3-m )2=4,解得m =1,或m =5. ∴m <3,∴m =1.∴圆C 的标准方程为(x -1)2+y 2=5. (2)直线PF 1能与圆C 相切,依题意设直线PF 1的斜率为k ,则直线PF 1的方程为y =k (x -4)+4,即kx -y -4k +4=0,若直线PF 1与圆C 相切,则|k -0-4k +4|k 2+1= 5.∴4k 2-24k +11=0,解得k =112或k =12.当k =112时,直线PF 1与x 轴的交点的横坐标为3611,不合题意,舍去.当k =12时,直线PF 1与x 轴的交点的横坐标为-4,∴c =4,F 1(-4,0),F 2(4,0). ∴由椭圆的定义得:2a =|AF 1|+|AF 2|=(3+4)2+12+(3-4)2+12=52+2=6 2. ∴a =32,即a 2=18,∴e =432=223>12,满足题意.故直线PF 1能与圆C 相切.直线PF 1的方程为x -2y +4=0,椭圆E 的方程为x 218+y 22=1.设B (x 1,y 1),D (x 2,y 2),把直线PF 1的方程代入椭圆E 的方程并化简得,13y 2-16y -2=0,由根与系数的关系得y 1+y 2=1613,y 1y 2=-213,故S △DBF 2=4|y 1-y 2|=4(y 1+y 2)2-4y 1y 2=241013.1.已知抛物线C 的顶点在坐标原点,焦点为F (1,0),过焦点F 的直线l 与抛物线C 相交于A ,B 两点,若直线l 的倾斜角为45°,则弦AB 的中点坐标为( )A .(1,0)B .(2,2)C .(3,2)D .(2,4)解析:选C 依题意得,抛物线C 的方程是y 2=4x ,直线l 的方程是y =x -1.由⎩⎪⎨⎪⎧y 2=4x ,y =x -1消去y 得(x -1)2=4x ,即x 2-6x +1=0,因此线段AB 的中点的横坐标是62=3,纵坐标是y=3-1=2,所以线段AB 的中点坐标是(3,2).2.若直线mx +ny =4和圆O :x 2+y 2=4没有交点,则过点(m ,n )的直线与椭圆x 29+y 24=1的交点个数为( )A .至多1个B .2个C .1个D .0个解析:选B 由题意得4m 2+n2>2,即m 2+n 2<4,则点(m ,n )在以原点为圆心,以2为半径的圆内,此圆在椭圆x 29+y 24=1的内部.3.(2012·深圳模拟)如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,以椭圆C的左顶点T 为圆心作圆T :(x +2)2+y 2=r 2(r >0),设圆T 与椭圆C 交于点M 与点N .(1)求椭圆C 的方程;(2)求TM ,·TN ,的最小值,并求此时圆T 的方程;(3)设点P 是椭圆C 上异于M ,N 的任意一点,且直线MP ,NP 分别与x 轴交于点R ,S ,O 为坐标原点,求证:|OR |·|OS |为定值.解:(1)依题意,得a =2,e =c a =32,∴c =3,b =a 2-c 2=1. 故椭圆C 的方程为x 24+y 2=1.(2)易知点M 与点N 关于x 轴对称,设M (x 1,y 1),N (x 1,-y 1),不妨设y 1>0. 由于点M 在椭圆C上,∴y 21=1-x 214.(*)由已知T (-2,0),则TM ,=(x 1+2,y 1),TN,=(x 1+2,-y 1), ∴TM ,·TN ,=(x 1+2,y 1)·(x 1+2,-y 1)=(x 1+2)2-y 21=(x 1+2)2-⎝⎛⎭⎫1-x 214=54x 21+4x 1+3=54⎝⎛⎭⎫x 1+852-15. 由于-2<x 1<2,故当x 1=-85时,TM ,·TN ,取得最小值-15. 把x 1=-85代入(*)式,得y 1=35,故M ⎝⎛⎭⎫-85,35,又点M 在圆T 上,代入圆的方程得r 2=1325. 故圆T 的方程为(x +2)2+y 2=1325.(3)设P (x 0,y 0),则直线MP 的方程为:y -y 0=y 0-y 1x 0-x 1(x -x 0),令y =0,得x R =x 1y 0-x 0y 1y 0-y 1,同理:x S =x 1y 0+x 0y 1y 0+y 1,故x R ·x S =x 21y 20-x 20y 21y 20-y 21.(**)又点M 与点P 在椭圆上,故x 20=4(1-y 20),x 21=4(1-y 21),代入(**)式,得x R ·x S =4(1-y 21)y 20-4(1-y 20)y 21y 20-y 21=4⎝ ⎛⎭⎪⎫y 20-y 21y 20-y 21=4. 所以|OR |·|OS |=|x R |·|x S |=|x R ·x S |=4为定值.平面解析几何(时间:120分钟,满分150分)一、选择题(本题共12小题,每小题5分,共60分)1.(2012·佛山模拟)已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( )A .1B .-1C .-2或-1D .-2或1解析:选D 由题意得a +2=a +2a,解得a =-2或a =1.2.若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A.13B .-13C .-32D.23解析:选B 设P (x P ,1),由题意及中点坐标公式得x P +7=2,解得x P =-5,即P (-5,1),所以k =-13.3.(2012·长春模拟)已知点A (1,-1),B (-1,1),则以线段AB 为直径的圆的方程是( ) A .x 2+y 2=2 B .x 2+y 2= 2 C .x 2+y 2=1D .x 2+y 2=4解析:选A AB 的中点坐标为(0,0), |AB |=[1-(-1)]2+(-1-1)2=22, ∴圆的方程为x 2+y 2=2.4.(2012·福建高考)已知双曲线x 24-y 2b 2=1的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )A. 5B .4 2C .3D .5解析:选A ∵抛物线y 2=12x 的焦点坐标为(3,0),故双曲线x 24-y 2b 2=1的右焦点为(3,0),即c =3,故32=4+b 2,∴b 2=5,∴双曲线的渐近线方程为y =±52x ,∴双曲线的右焦点到其渐近线的距离为⎪⎪⎪⎪52×31+54= 5.5.(2012·郑州模拟)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,线段F 1F 2被抛物线y 2=2bx 的焦点分成7∶3的两段,则此双曲线的离心率为( )A.98B.53C.324D.54解析:选B 依题意得,c +b 2=77+3×2c ,即b =45c (其中c 是双曲线的半焦距),a =c 2-b 2=35c ,则c a =53,因此该双曲线的离心率等于53. 6.设双曲线的左,右焦点为F 1,F 2,左,右顶点为M ,N ,若△PF 1F 2的一个顶点P 在双曲线上,则△PF 1F 2的内切圆与边F 1F 2的切点的位置是( )A .在线段MN 的内部B .在线段F 1M 的内部或NF 2内部C .点N 或点MD .以上三种情况都有可能解析:选C 若P 在右支上,并设内切圆与PF 1,PF 2的切点分别为A ,B ,则|NF 1|-|NF 2|=|PF 1|-|PF 2|=(|P A |+|AF 1|)-(|PB |+|BF 2|)=|AF 1|-|BF 2|.所以N 为切点,同理P 在左支上时,M 为切点. 7.圆x 2+y 2-4x =0在点P (1, 3)处的切线方程为( ) A .x +3y -2=0 B .x +3y -4=0 C .x -3y +4=0D .x -3y +2=0解析:选D 圆的方程为(x -2)2+y 2=4,圆心坐标为(2,0),半径为2,点P 在圆上,设切线方程为y -3=k (x -1),即kx -y -k +3=0,所以|2k -k +3|k 2+1=2,解得k =33.所以切线方程为y -3=33(x -1),即x -3y +2=0. 8.(2012·新课标全国卷)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为( )A. 2B .2 2C .4D .8解析:选C 抛物线y 2=16x 的准线方程是x =-4,所以点A (-4,23)在等轴双曲线C :x 2-y 2=a 2(a >0)上,将点A 的坐标代入得a =2,所以C 的实轴长为4.9.(2012·潍坊适应性训练)已知双曲线C :x 24-y 25=1的左,右焦点分别为F 1,F 2,P 为C 的右支上一点,且|PF 2|=|F 1F 2|,则|PF 2|=|F 1F 2|,则1PF ,·2PF,等于( ) A .24 B .48 C .50D .56解析:选C 由已知得|PF 2|=|F 1F 2|=6,根据双曲线的定义可得|PF 1|=10,在△F 1PF 2中,根据余弦定理可得cos ∠F 1PF 2=56,所以1PF ,·2PF ,=10×6×56=50. 10.(2012·南昌模拟)已知△ABC 外接圆半径R =1433,且∠ABC =120°,BC =10,边BC 在x 轴上且y 轴垂直平分BC 边,则过点A 且以B ,C 为焦点的双曲线方程为( )A.x 275-y 2100=1 B.x 2100-y 275=1 C.x 29-y 216=1D.x 216-y 29=1 解析:选D ∵sin ∠BAC =BC 2R =5314, ∴cos ∠BAC =1114,|AC |=2R sin ∠ABC =2×1433×32=14,sin ∠ACB =sin(60°-∠BAC ) =sin 60°cos ∠BAC -cos 60°sin ∠BAC =32×1114-12×5314=3314, ∴|AB |=2R sin ∠ACB =2×1433×3314=6,∴2a =||AC |-|AB ||=14-6=8,∴a =4,又c =5,∴b 2=c 2-a 2=25-16=9, ∴所求双曲线方程为x 216-y 29=1.11.(2012·乌鲁木齐模拟)已知抛物线y 2=2px (p >0)的焦点为F ,P ,Q 是抛物线上的两个点,若△PQF 是边长为2的正三角形,则p 的值是( )A .2±3B .2+ 3 C.3±1D.3-1解析:选A 依题意得F ⎝⎛⎭⎫p 2,0,设P ⎝⎛⎭⎫y 212p ,y 1,Q ⎝⎛⎭⎫y 222p ,y 2(y 1≠y 2).由抛物线定义及|PF |=|QF |,得y 212p +p 2=y 222p +p 2,所以y 21=y 22,所以y 1=-y 2.又|PQ |=2,因此|y 1|=|y 2|=1,点P ⎝⎛⎭⎫12p ,y 1.又点P 位于该抛物线上,于是由抛物线的定义得|PF |=12p +p2=2,由此解得p =2±3. 12.已知中心在原点,焦点在坐标轴上,焦距为4的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为( )A .32或4 2B .26或27C .25或27D.5或7解析:选C 设椭圆方程为mx 2+ny 2=1(m ≠n 且m ,n >0),与直线方程x +3y +4=0联立,消去x 得(3m +n )y 2+83my +16m -1=0,由Δ=0得3m +n =16mn ,即3n +1m =16,①又c =2,即1m -1n=±4,②由①②联立得⎩⎨⎧m =17n =13或⎩⎪⎨⎪⎧m =1n =15, 故椭圆的长轴长为27或2 5.二、填空题(本题有4小题,每小题5分,共20分)13.(2012·青岛模拟)已知两直线l 1:x +y sin θ-1=0和l 2:2x sin θ+y +1=0,当l 1⊥l 2时,θ=________.解析:l 1⊥l 2的充要条件是2sin θ+sin θ=0,即sin θ=0,所以θ=k π(k ∈Z ).所以当θ=k π(k ∈Z )时,l 1⊥l 2.答案:k π(k ∈Z )14.已知F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,A ,B 分别是此椭圆的右顶点和上顶点,P 是椭圆上一点,O 是坐标原点,OP ∥AB ,PF 1⊥x 轴,|F 1A |=10+5,则此椭圆的方程是______________________.解析:由于直线AB 的斜率为-b a ,故直线OP 的斜率为-b a ,直线OP 的方程为y =-ba x .与椭圆方程联立得x 2a 2+x 2a 2=1,解得x =±22a .根据PF 1⊥x 轴,取x =-22a ,从而-22a =-c ,即a =2c .又|F 1A |=a +c =10+5,故 2c +c =10+5,解得c =5,从而a =10.所以所求的椭圆方程为x 210+y 25=1.答案:x 210+y 25=115.(2012·陕西高考)右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.解析:设抛物线的方程为x 2=-2py ,则点(2,-2)在抛物线上,代入可得p =1,所以x 2=-2y .当y =-3时,x 2=6,即x =±6,所以水面宽为2 6.答案:2 616.(2012·天津高考)设m ,n ∈R ,若直线l :mx +ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且l 与圆x 2+y 2=4相交所得弦的长为2,O 为坐标原点,则△AOB 面积的最小值为________.解析:由直线与圆相交所得弦长为2,知圆心到直线的距离为3,即1m 2+n 2=3,所以m 2+n 2=13≥2|mn |,所以|mn |≤16,又A ⎝⎛⎭⎫1m ,0,B ⎝⎛⎭⎫0,1n ,所以△AOB 的面积为12|mn |≥3,最小值为3.答案:3三、解答题(本题共6小题,共70分)17.(10分)求过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且到点P (0,4)距离为2的直线方程.解:由⎩⎪⎨⎪⎧ x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2.所以l 1与l 2的交点为(1,2),设所求直线y -2=k (x -1)(由题可知k 存在),即kx -y +2-k =0,∵P (0,4)到直线距离为2,∴2=|-2-k |1+k 2,解得k =0或k =43.∴直线方程为y =2或4x -3y +2=0.18.(12分)(2012·南昌模拟)已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称.(1)求圆C 的方程;(2)过点P 作两条相异直线分别与圆C 相交于A ,B ,且直线P A 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由.解:设圆心C (a ,b ),则⎩⎪⎨⎪⎧ a -22+b -22+2=0,b +2a +2=1,解得⎩⎪⎨⎪⎧a =0,b =0, 则圆C 的方程为x 2+y 2=r 2,将点P 的坐标代入得r 2=2,故圆C 的方程为x 2+y 2=2.(2)由题意知,直线P A 和直线PB 的斜率存在,且互为相反数,故可设P A :y -1=k (x -1),PB :y -1=-k (x -1),由⎩⎪⎨⎪⎧y -1=k (x -1),x 2+y 2=2得(1+k 2)x 2+2k (1-k )x +(1-k )2-2=0.因为点P 的横坐标x =1一定是该方程的解,故可得x A =k 2-2k -11+k 2.同理可得x B =k 2+2k -11+k 2,所以k AB =y B -y A x B -x A =-k (x B -1)-k (x A -1)x B -x A =2k -k (x B +x A )x B -x A=1=k OP , 所以,直线AB 和OP 一定平行.19.(12分)(2012·天津高考)已知椭圆x 2a 2+y 2b 2=1(a >b >0),点P ⎝⎛⎭⎫55a ,22a 在椭圆上. (1)求椭圆的离心率;(2)设A 为椭圆的左顶点,O 为坐标原点.若点Q 在椭圆上且满足|AQ |=|AO |,求直线OQ 的斜率的值.解:(1)因为点P ⎝⎛⎭⎫55a ,22a 在椭圆上,故a 25a 2+a 22b 2=1,可得b 2a 2=58. 于是e 2=a 2-b 2a 2=1-b 2a 2=38,所以椭圆的离心率e =64. (2)设直线OQ 的斜率为k ,则其方程为y =kx ,设点Q 的坐标为(x 0,y 0).由条件得⎩⎪⎨⎪⎧y 0=kx 0,x 20a 2+y 20b2=1,消去y 0并整理得 x 20=a 2b 2k 2a 2+b2.① 由|AQ |=|AO |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2. 整理得(1+k2)x 20+2ax 0=0,而x 0≠0,故x 0=-2a 1+k 2,代入①,整理得(1+k 2)2=4k 2·a 2b 2+4. 由(1)知a 2b 2=85,故(1+k 2)2=325k 2+4, 即5k 4-22k 2-15=0,可得k 2=5.所以直线OQ 的斜率k =±5.20.(12分)(2012·河南模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,短轴的一个端点为M (0,1),直线l :y =kx -13与椭圆相交于不同的两点A ,B . (1)若|AB |=4269,求k 的值; (2)求证:不论k 取何值,以AB 为直径的圆恒过点M .解:(1)由题意知c a =22,b =1. 由a 2=b 2+c 2可得c =b =1,a =2,∴椭圆的方程为x 22+y 2=1. 由⎩⎨⎧ y =kx -13,x 22+y 2=1得(2k 2+1)x 2-43kx -169=0. Δ=169k 2-4(2k 2+1)×⎝⎛⎭⎫-169=16k 2+649>0恒成立, 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k 3(2k 2+1),x 1x 2=-169(2k 2+1). ∴|AB |=1+k 2·|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=4(1+k 2)(9k 2+4)3(2k 2+1)=4269, 化简得23k 4-13k 2-10=0,即(k 2-1)(23k 2+10)=0,解得k =±1.(2)∵MA ,=(x 1,y 1-1),MB ,=(x 2,y 2-1),∴MA ,·MB ,=x 1x 2+(y 1-1)(y 2-1),=(1+k 2)x 1x 2-43k (x 1+x 2)+169=-16(1+k 2)9(2k 2+1)-16k 29(2k 2+1)+169=0.∴不论k 取何值,以AB 为直径的圆恒过点M . 21. (2012·广州模拟)设椭圆M :x 2a 2+y 22=1(a >2)的右焦点为F 1,直线l :x =a 2a 2-2与x 轴交于点A ,若1OF ,+21AF ,=0(其中O 为坐标原点).(1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆N :x 2+(y -2)2=1的任意一条直径(E ,F 为直径的两个端点),求PE ,·PF ,的最大值.解:(1)由题设知,A ⎝ ⎛⎭⎪⎫a 2a 2-2,0,F 1(a 2-2,0),由1OF ,+21AF ,=0,得a 2-2=2⎝ ⎛⎭⎪⎫a 2a 2-2-a 2-2, 解得a 2=6.所以椭圆M 的方程为x 26+y 22=1. (2)设圆N :x 2+(y -2)2=1的圆心为N ,则PE ,·PF ,=(NE ,-NP ,)·(NF ,-NP ,) =(-NF ,-NP ,)·(NF ,-NP ,)=NP ,2-NF ,2=NP ,2-1.从而将求PE ,·PF ,的最大值转化为求NP ―→,2的最大值. 因为P 是椭圆M 上的任意一点,设P (x 0,y 0),所以x 206+y 202=1,即x 20=6-3y 20. 因为点N (0,2),所以NP ,2=x 20+(y 0-2)2=-2(y 0+1)2+12.因为y 0∈[-2, 2],所以当y 0=-1时,NP ,2取得最大值12.所以PE ,·PF ,的最大值为11.22. (2012·湖北模拟)如图,曲线C 1是以原点O 为中心,F 1,F 2为焦点的椭圆的一部分.曲线C 2是以O 为顶点,F 2为焦点的抛物线的一部分,A 是曲线C 1和C 2的交点且∠AF 2F 1为钝角,若|AF 1|=72,|AF 2|=52. (1)求曲线C 1和C 2的方程; (2)设点C 是C 2上一点,若|CF 1|= 2|CF 2|,求△CF 1F 2的面积.解:(1)设椭圆方程为x 2a 2+y 2b2=1(a >b >0), 则2a =|AF 1|+|AF 2|=72+52=6,得a =3. 设A (x ,y ),F 1(-c,0),F 2(c,0),则(x +c )2+y 2=⎝⎛⎭⎫722,(x -c )2+y 2=⎝⎛⎭⎫522,两式相减得xc =32.由抛物线的定义可知|AF 2|=x +c =52, 则c =1,x =32或x =1,c =32.又∠AF 2F 1为钝角,则x =1,c =32不合题意,舍去.当c =1时,b =22,所以曲线C 1的方程为x 29+y 28=1⎝⎛⎭⎫-3≤x ≤32,曲线C 2的方程为y 2=4x ⎝⎛⎭⎫0≤x ≤32. (2)过点F 1作直线l 垂直于x 轴,过点C 作CC 1⊥l 于点C 1,依题意知|CC 1|=|CF 2|. 在Rt △CC 1F 1中,|CF 1|= 2|CF 2|=2|CC 1|,所以∠C 1CF 1=45°, 所以∠CF1F 2=∠C 1CF 1=45°.在△CF 1F 2中,设|CF 2|=r ,则|CF 1|=2r ,|F 1F 2|=2.由余弦定理得22+(2r )2-2×2×2r cos 45°=r 2,解得r =2,所以△CF 1F 2的面积S △CF 1F 2=12|F 1F 2|·|CF 1|sin 45°=12×2×22sin 45°=2.。

相关文档
最新文档