2010年普通高等学校招生全国统一考试数学理科试题(广东卷)真题精品解析

合集下载

2010年广东高考数学试卷(理科)分析

2010年广东高考数学试卷(理科)分析

2010年广东高考数学试卷(理科)分析一、考点分布二、考点变化试卷中分值比重较大的包括不等式、三角函数、立体几何和解析几何四部分,分值约占总分的一半。

不等式部分变化最大,其一,线性规划解答题近年来全国罕见,打破出选择题的常规(2008年广东考了一道选择题);其二,不等式证明是近几年来首次单独在解答题中来考查,而且是含绝对值的不等式作为压轴题,非常少见。

与此形成对比的是,在教材中课时比重较大且历年来高考惯出的数列、导数及其应用部分则考查的很少。

理科试卷中数列部分仅考查等差等比数列的基本性质,而07、08、09年都是数列的压轴题,而近几年的高考考查热点导数及其应用一分未考,令人匪夷所思。

可以说今年的理科卷会让很多老师大跌眼镜,并会感到有点无所适从,因为传统套路完全被打破了,而高考复习工作也必须做出相应的变化。

但事情有两面性,从反面来看,这未必是一件不好的事情,甚至是一件让人欣喜的事情!三、试卷特点1、注重双基选择题、填空题的比较简单,主要考查基本知识、基本技巧和基本技能,没有需要特别有技巧的题目。

题目基本都是条件明了,可直接计算求得。

题目中融入了生活背景,注重对学生对数学感知以及与生活的联系。

2、联系生活计数原理题结合实际生活背景(09、10年均是以亚运会为背景),程序框图题、线性规划题也是结合实际生活背景,这个三道题让人感觉比较亲切,体现数学与生活越来越紧密的联系,符合高考改革的趋势。

3、侧重思维多想少算是命题者对这套试题的一个出发点。

这和去年比较大的计算量是一个鲜明的对比。

这样设计并不意味着计算不重要,更多的是侧重考查学生对数学的理解、热爱,以及对数学本质的认识。

比如立体几何中求二面角,最后一题的考查。

4、传统与创新共存一些知识点的考查延续传统,比如复数、计算原理、三角函数等,同时对一些知识的考查敢于大胆创新。

比如传统重点考查知识数列、导数及其应用分值很少,不等式分量加大,二面角的考查更侧重对图形的理解和空间想象能力的考查。

2010年普通高等学校招生全国统一考试(新课标全国卷)(数学[理])

2010年普通高等学校招生全国统一考试(新课标全国卷)(数学[理])

2010年普通高等学校招生全国统一考试(新课标全国卷)数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.其中第Ⅱ卷第22~24题为选考题,其他题为必考题.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x ||x |≤2,x ∈R},B ={x |x ≤4,x ∈Z},则A ∩B =( ) A .(0,2) B .[0,2] C .{0,2}D .{0,1,2}解析:∵A ={x |-2≤x ≤2,x ∈R},B ={x |0≤x ≤16,x ∈Z}, ∴A ∩B ={x |0≤x ≤2,x ∈Z}={0,1,2}. 答案:D 2.已知复数z =3+i(1-3i )2,z 是z 的共轭复数,则z ·z =( )A.14B.12C .1D .2解析:∵z =3+i (1-3i )2=3+i1-23i -3 =3+i-2-23i =3+i-2(1+3i )=(3+i )(1-3i )-2×(1+3)=3-3i +i +3-8=23-2i -8=3-i-4, ∴z =3+i -4,∴z ·z =|z |2=14.答案:A 3.曲线y =xx +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -2解析:∵y ′=x ′(x +2)-x (x +2)′(x +2)2=2(x +2)2,∴k =y ′|x =-1=2(-1+2)2=2, ∴切线方程为:y +1=2(x +1),即y =2x +1. 答案:A4.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数图象大致为( )解析:法一:(排除法)当t =0时,P 点到x 轴的距离为2,排除A 、D ,由角速度为1知,当t =π4或t =5π4时,P 点落在x 轴上,即P 点到x 轴的距离为0,故选C. 法二:由题意知P (2cos(t -π4),2sin(t -π4)),∴P 点到x 轴的距离为d =|y 0|=2|sin(t -π4)|,当t =0时,d =2; 当t =π4时,d =0.故选C.答案:C5.已知命题p 1:函数y =2x -2-x在R 为增函数.p 2:函数y =2x +2-x在R 为减函数.则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是( )A .q 1,q 3B .q 2,q 3C .q 1,q 4D .q 2,q 4解析:p 1是真命题,则綈p 1为假命题;p 2是假命题,则綈p 2为真命题; ∴q 1:p 1∨p 2是真命题,q 2:p 1∧p 2是假命题, ∴q 3:(綈p 1)∨p 2为假命题,q 4:p 1∧(綈p 2)为真命题. ∴真命题是q 1,q 4. 答案:C6.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400解析:记“不发芽的种子数为ξ”,则ξ~B (1 000,0.1),所以Eξ=1 000×0.1=100,而X =2ξ,故EX =E (2ξ)=2Eξ=200.答案:B7.如果执行如图的框图,输入N =5,则输出的数等于( )A.54B.45C.65D.56解析:由框图知:k =1时,S =0+11×2;k =2时,S =11×2+12×3;当k =3时,S =11×2+12×3+13×4;当k =4时,S =11×2+12×3+13×4+14×5;满足条件k <5,故还需进行下一步运算,当k =5时,S =11×2+12×3+13×4+14×5+15×6=(1-12)+(12-13)+…+(15-16)=1-16=56,不满足条件k <5,故输出S ,选D. 答案:D8.设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( ) A .{x |x <-2或x >4} B .{x |x <0或x >4} C .{x |x <0或x >6}D .{x |x <-2或x >2}解析:当x <0时,-x >0, ∴f (-x )=(-x )3-8=-x 3-8, 又f (x )是偶函数, ∴f (x )=f (-x )=-x 3-8,∴f (x )=⎩⎪⎨⎪⎧x 3-8,x ≥0-x 3-8,x <0.∴f (x -2)=⎩⎪⎨⎪⎧(x -2)3-8,x ≥2-(x -2)3-8,x <2,⎩⎨⎧ x ≥2(x -2)3-8>0或⎩⎨⎧x <2-(x -2)3-8>0, 解得x >4或x <0. 答案:B9.若cos α=-45,α是第三象限的角,则1+tanα21-tanα2=( ) A .-12B.12C .2D .-2解析:∵cos α=-45且α是第三象限的角,∴sin α=-35,∴1+tan α21-tan α2=cos α2+sin α2cos α2cos α2-sinα2cos α2=cos α2+sin α2cos α2-sin α2=(cos α2+sin α2)2(cos α2-sin α2)(cos α2+sin α2)=1+sin αcos 2α2-sin 2α2=1+sin αcos α=1-35-45=-12.答案:A10.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2B.73πa 2C.113πa 2D .5πa 2解析:三棱柱如图所示,由题意可知:球心在三棱柱上、下底面的中心O 1、O 2的连线的中点O 处, 连接O 1B 、O 1O 、OB ,其中OB 即为球的半径R , 由题意知:O 1B =23×3a 2=3a 3,所以半径R 2=(a 2)2+(3a 3)2=7a 212,所以球的表面积是S =4πR 2=7πa 23.答案:B11.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)解析:由a ,b ,c 互不相等,结合图象可知 : 这三个数分别在区间(0,1),(1,10),(10,12)上, 不妨设a ∈(0,1),b ∈(1,10),c ∈(10,12), 由f (a )=f (b )得lg a +lg b =0,即lg ab =0,所以ab =1,所以abc ∈(10,12). 答案:C12.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1D.x 25-y 24=1 解析:设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),由题意知c =3,a 2+b 2=9, 设A (x 1,y 1),B (x 2,y 2)则有:⎩⎨⎧x 21a 2-y 21b2=1x 22a 2-y 22b 2=1,两式作差得:y 1-y 2x 1-x 2=b 2(x 1+x 2)a 2(y 1+y 1)=-12b 2-15a 2=4b 25a 2, 又AB 的斜率是-15-0-12-3=1,所以将4b 2=5a 2代入a 2+b 2=9得 a 2=4,b 2=5,所以双曲线标准方程是x 24-y 25=1.答案:B第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.设y =f (x )为区间[0,1]上的连续函数,且恒有0≤f (x )≤1,可以用随机模拟方法近似计算积分10⎰f (x )d x .先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…,x N 和y 1,y 2,…,y N ,由此得到N 个点(x i ,y i )(i =1,2,…,N ).再数出其中满足y i ≤f (x i )(i =1,2,…,N )的点数N 1,那么由随机模拟方法可得积分10⎰f (x )d x 的近似值为________.解析:由均匀随机数产生的原理知:在区间[0,1]满足y i ≤f (x i )的点都落在了函数y =f (x )的下方, 又因为0≤f (x )≤1, 所以由⎩⎪⎨⎪⎧0≤x ≤10≤y ≤1y ≤f (x )围成的图形的面积是N 1N,由积分的几何意义知10⎰f (x )d x =N 1N.答案:N 1N14.正视图为一个三角形的几何体可以是________.(写出三种)解析:正视图是三角形的几何体,最容易想到的是三棱锥,其次是四棱锥、圆锥;对于五棱锥、六棱锥等,正视图也可以是三角形.答案:三棱锥、四棱锥、圆锥(其他正确答案同样给分)15.过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为________________.解析:设圆的标准方程为(x -a )2+(y -b )2=r 2,由题意知:⎩⎪⎨⎪⎧(4-a )2+(1-b )2=r 2b -1a -2=-1|a -b -1|2=r,解之得:a =3,b =0,r =2,所以圆的方程是:(x -3)2+y 2=2. 答案:(x -3)2+y 2=216.在△ABC 中,D 为边BC 上一点,BD =12CD ,∠ADB =120°,AD =2.若△ADC 的面积为3-3,则∠BAC =________.解析:由∠ADB =120°知∠ADC =60°,又因为AD =2,所以S △ADC =12AD ·DC sin60°=3-3,所以DC =2(3-1),又因为BD =12DC ,所以BD =3-1,过A 点作AE ⊥BC 于E 点,则S △ADC =12DC ·AE =3-3,所以AE =3,又在直角三角形AED 中,DE =1,所以BE =3,在直角三角形ABE 中,BE =AE ,所以△ABE 是等腰直角三角形,所以∠ABC =45°,在直角三角形AEC 中,EC =23-3, 所以tan ∠ACE =AE EC =323-3=2+3,所以∠ACE =75°,所以∠BAC =180°-75°-45°=60°. 答案:60°三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)设数列{a n }满足a 1=2,a n +1-a n =3·22n -1.(1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n . 解:(1)由已知得,当n ≥1时,a n +1=[(a n +1-a n )+(a n -a n -1)+…+(a 2-a 1)]+a 1=3(22n -1+22n -3+…+2)+2=22(n +1)-1,而a 1=2,所以数列{a n }的通项公式为a n =22n -1. (2)由b n =na n =n ·22n -1知S n =1·2+2·23+3·25+…+n ·22n -1①从而22·S n =1·23+2·25+3·27+…+n ·22n +1② ①-②得(1-22)S n =2+23+25+…+22n -1-n ·22n +1. 即S n =19[(3n -1)22n +1+2].18.(本小题满分12分)如图,已知四棱锥P -ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高,E 为AD 中点.(1)证明:PE ⊥BC ;(2)若∠APB =∠ADB =60°,求直线PA 与平面PEH 所成角的正弦值. 解:以H 为原点,HA ,HB ,HP 所在直线分别为x ,y ,z 轴,线段HA 的长为单位长,建立空间直角坐标系如图,则A (1,0,0),B (0,1,0).(1)证明:设C (m,0,0),P (0,0,n )(m <0,n >0), 则D (0,m,0),E (12,m2,0).可得PE =(12,m2,-n ),BC =(m ,-1,0).因为PE ·BC =m 2-m2+0=0, 所以PE ⊥BC .(2)由已知条件可得m =-33,n =1, 故C (-33,0,0),D (0,-33,0),E (12,-36,0),P (0,0,1). 设n =(x ,y ,z )为平面PEH 的法向量, 则⎩⎪⎨⎪⎧n ·HE =0,n ·HP =0,即⎩⎪⎨⎪⎧12x -36y =0,z =0.因此可以取n =(1,3,0).由PA =(1,0,-1),可得|cos 〈PA ,n 〉|=24, 所以直线PA 与平面PEH 所成角的正弦值为24. 19.(本小题满分12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:性别是否需要志愿者男 女 需要 40 30 不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关? (3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.附:P (K 2≥k )0.050 0.010 0.001 k3.8416.63510.828K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估计值为70500=14%.(2)K 2=500×(40×270-30×160)2200×300×70×430≈9.967.由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关. (3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法,比采用简单随机抽样方法更好.20.(本小题满分12分)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 1斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求E 的离心率;(2)设点P (0,-1)满足|PA |=|PB |,求E 的方程.解:(1)由椭圆定义知|AF 2|+|BF 2|+|AB |=4a ,又2|AB |=|AF 2|+|BF 2|,得|AB |=43a . l 的方程为y =x +c, 其中c =a 2-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y 2b 2=1.化简得(a 2+b 2)x 2+2a 2cx +a 2(c 2-b 2)=0, 则x 1+x 2=-2a 2c a 2+b 2,x 1x 2=a 2(c 2-b 2)a 2+b 2. 因为直线AB 斜率为1,所以|AB |=2|x 2-x 1|=2[(x 1+x 2)2-4x 1x 2]. 得43a =4ab 2a 2+b 2,故a 2=2b 2, 所以E 的离心率e =c a =a 2-b 2a =22. (2)设AB 的中点为N (x 0,y 0),由(1)知x 0=x 1+x 22=-a 2c a 2+b 2=-23c ,y 0=x 0+c =c 3. 由|PA |=|PB |得k PN =-1. 即y 0+1x 0=-1, 得c =3,从而a =32,b =3.故椭圆E 的方程为x 218+y 29=1. 21.(本小题满分12分)设函数f (x )=e x -1-x -ax 2.(1)若a =0,求f (x )的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围.解:(1)a =0时,f (x )=e x -1-x ,f ′(x )=e x -1.当x ∈(-∞,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.故f (x )在(-∞,0)单调减少,在(0,+∞)单调增加.(2)f ′(x )=e x -1-2ax .由(1)知e x ≥1+x ,当且仅当x =0时等号成立.故f ′(x )≥x -2ax =(1-2a )x ,从而当1-2a ≥0,即a ≤12时,f ′(x )≥0(x ≥0),而f (0)=0, 于是当x ≥0时,f (x )≥0.由e x >1+x (x ≠0)可得e -x >1-x (x ≠0),从而当a >12时,f ′(x )<e x -1+2a (e -x -1)=e -x (e x -1)(e x -2a ),故当x ∈(0,ln2a )时, f ′(x )<0,而f (0)=0,于是当x ∈(0,ln2a )时,f (x )<0,综合得a 的取值范围为(-∞,12]. 请考生在第22、23、24三题中任选一题做答.如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,已知圆上的弧AC =BD ,过C 点的圆的切线与BA 的延长线交于E 点,证明:(1)∠ACE =∠BCD ;(2)BC 2=BE ×CD .证明:(1)因为AC =BD ,所以∠BCD =∠ABC .又因为EC 与圆相切于点C ,故∠ACE =∠ABC ,所以∠ACE =∠BCD .(2)因为∠ECB =∠CDB ,∠EBC =∠BCD ,所以△BDC ∽△ECB ,故BC BE =CD BC ,即BC 2=BE ×CD .23.(本小题满分10分)选修4-4:坐标系与参数方程已知直线C 1:⎩⎪⎨⎪⎧ x =1+t cos α,y =t sin α,(t 为参数),圆C 2:⎩⎪⎨⎪⎧x =cos θy =sin θ,(θ为参数). (1)当α=π3时,求C 1与C 2的交点坐标; (2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点.当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.解:(1)当α=π3时,C 1的普通方程为y =3(x -1),C 2的普通方程为x 2+y 2=1. 联立方程组⎩⎪⎨⎪⎧y =3(x -1),x 2+y 2=1,解得C 1与C 2的交点为(1,0),(12,-32). (2)C 1的普通方程为x sin α-y cos α-sin α=0.A 点坐标为(sin 2α,-cos αsin α),故当α变化时,P 点轨迹的参数方程为 ⎩⎨⎧ x =12sin 2α,y =-12sin αcos α,(α为参数).P 点轨迹的普通方程为(x -14)2+y 2=116. 故P 点轨迹是圆心为(14,0),半径为14的圆.24.(本小题满分10分)选修4-5:不等式选讲设函数f (x )=|2x -4|+1.(1)画出函数y =f (x )的图象;(2)若不等式f (x )≤ax 的解集非空,求a 的取值范围.解:(1)由于f (x )=⎩⎪⎨⎪⎧-2x +5,x <2,2x -3,x ≥2,则函数y =f (x )的图象如图所示.(2)由函数y=f(x)与函数y=ax的图象可知,或a<-2时,函数y=f(x)与函数y=ax的图象有交点.当且仅当a≥12,+∞).故不等式f(x)≤ax的解集非空时,a的取值范围为(-∞,-2)∪[12毋意,毋必,毋固,毋我。

2010年普通高等学校招生全国统一考试(广东卷)(理综)

2010年普通高等学校招生全国统一考试(广东卷)(理综)

2010年普通高等学校招生全国统一考试(广东卷)理科综合本试卷共10页,36小题,满分300分。

考试用时150分钟。

注意事项: 1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选择其他答案,答案不能答在试卷上。

3. 非选择题必须用黑色字钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4. 考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

可能用到的相对原子量:H 1 Li 7 B 11 C 12 N 14 O16 Na 23一、单项选择题:本大题共16小题,每小题4分。

共64分。

在每小题给出的四个选项中,只有一个选项符合题目要求,选对的得4分,选错或不答的得0分。

1. 图1是植物从土壤中吸收某矿质离子示意图。

据图判断,该离子跨膜进入根毛细胞的方式为A. 自由扩散B. 协助扩散C. 主动运输D. 被动运输2. 谚语“苗多欺草,草多欺苗”反映的种间关系是 A.竞争 B.共生 C.寄生 D.捕食3. 骨髓移植是治疗白血病常用的有效方法之一,最主要的原因是移植骨髓中的造血干细胞可在患者体内 A.正常生长 B. 增殖并分化成多种细胞 C.分泌抗体 D. 杀死各种病原菌 4. 下列叙述正确的是A.DNA 是蛋白质合成的直接模板B. 每种氨基酸仅有一种密码子编码C.DNA 复制就是基因表达的过程D. DNA 是主要的遗传物质5. 黄曲霉毒素是主要由黄曲霉菌产生的可致癌毒素,其生物合成受多个基因控制,也受温度、pH 等因素影响。

下列选项正确的是A .环境因子不影响生物体的表现型B .不产生黄曲霉毒素菌株的基因型都相同C .黄曲霉毒素致癌是表现型D .黄曲霉菌产生黄曲霉毒素是表现型6.重症肌无力患者由于体内存在某种抗体,该抗体与神经-肌肉突触的受体特异性结合,使该受体失去功能,最终导致A.刺激神经不能引起肌肉收缩 B 出现全身性过敏反应C.肌肉对神经递质的反应性提高 D 机体对病原体的反应能力提高 7.能在溶液中大量共存的一组离子是A . 4NH + 、Ag + 、34PO - 、CI - B.3Fe +、H +、I -、 3HCO -C.K +、 +Na 、 -3NO 、 -4MnO D.3+AI 、2+Mg 、2-4SO 、 2-3CO8.设 A n 为阿伏加德罗常数的数值,下列说法正确的是A.16g 4CH 中含有4A n 个C-H 键B.1mol ·1L -NaCl 溶液含有A n 个Na +C.1mol Cu 和足量稀硝酸反应产生 A n 个NO 分子D.常温常压下,22.4L 2CO 中含有 A n 个2CO 分子9.在298K 、100kPa 时,已知:2222()(g)2()H O g O H g =+ ⊿1H 22(g)(g)2l(g)Cl H HC += ⊿2H 2222(g)2(g)4l(g)(g)Cl H O HC O +=+ ⊿3H 则⊿3H 与⊿1H 和⊿2H 间的关系正确的是A .⊿3H =⊿1H +2⊿2HB ⊿3H =⊿1H +⊿2H C. ⊿3H =⊿1H -2⊿2H D. ⊿3H =⊿1H - ⊿2H10.短周期金属元素甲~戊在元素周期表中的相对位置如右表所示:下面判断正确的是 A.原子半径: 丙丁戊 B 金属性:甲丙 C.氢氧化物碱性:丙丁戊 D.最外层电子数:甲乙11.下列说法正确的是A .乙烯和乙烷都能发生加聚反应B .蛋白质水解的最终产物是多肽C .米酒变酸的过程涉及了氧化反应D .石油裂解和油脂皂化都有高分子生成小分子的过程12. HA 为酸性略强与醋酸的一元弱酸。

2010年全国高考理科数学试题-广东

2010年全国高考理科数学试题-广东

3.非选择题必须用黑色 迹钢笔或签 笔作答, 答案必须写在答题卡各题目指定区域内 相应位置 如需改动, 先划掉原来的答案, 然 再写 新的答案 准使用铅笔和涂改液
按以 要求作答的答案无效 4.作答选做题时,请先用 2B 铅笔填涂选做题的题号对应的信息点,再作答 漏涂 错 涂 多涂的,答案无效 5.考 必须保持答题卡的整洁 考试结束 ,将试卷和答题卡一并交回
品数 2 在 述抽取的 40 件产品中任取 2 件,设 y 重 超过 505 克的产品数 ,求 y 的分 列 3 从该流水线 任取 5 件产品,求恰由 2 件产品的重 超过 505 克的概率 18. 本小题满分 14 分
AEC 是半径 如图 5,
a 的半圆,AC
直径,点 E
AC 的中点,点 B 和点 C
15. 坐标系 参数方程选作题 在极坐标系
ρ ,θ
0 ≤ θ ≤ 2π
中,曲线 ρ = 2sin θ
ρ cos θ = −1 的交点的极坐标
解答题 本大题共 6 小题,满分 80 分,解答 写出文字说明 证明过程和演算 骤 16. 本小题满分 14 分 已知函数 f ( x ) =Asin 3 x + ϕ 1 求 f ( x ) 的最小 周期 2 求 f ( x ) 的解析式 3 若f A>0, x
2010 年普通高等学校招生全国统一考试
广东卷
数学
理科
本试卷共 4 页,21 小题,满 注意事项
150
考试用时 120

1.答卷前,考 务必用黑色 迹的钢笔或签 笔将自 的姓 和考 号 试室号 座位 号填写在答题卡 用 2B 铅笔将试卷类型 A 填涂在答题卡相应位置 将条形码横贴
在答题卡右 角 条形码粘贴处 2.选择题每小题选出答案 ,用 2B 铅笔把答题卡 对应题目选项的答案信息点涂黑, 如需改动,用橡皮擦 净 ,再选涂其他答案,答案 能答在试卷

2010年高考试题——理科数学(广东卷)解析版

2010年高考试题——理科数学(广东卷)解析版

绝密★启用前 试卷类型:A2010年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时.请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的.答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}|21A x x =-<<,{}|02B x x =<<,则集合AB =A .{}|11x x -<<B .{}|21x x -<<C .{}|22x x -<<D .{}|01x x << 2.若复数11z i =+,23z i =-,则12z z ⋅=A .4B .2+ iC .2+2 iD .3 3.若函数()33xxf x -=+与()33xxg x -=-的定义域均为R ,则A .()f x 与()g x 均为偶函数B .()f x 为奇函数,()g x 为偶函数C .()f x 与()g x 均为奇函数D .()f x 为偶函数.()g x 为奇函数4.已知数列{}n a 为等比数列,n S 是是它的前n 项和,若2312a a a ⋅=,且4a 与27a 的等差中项为54,则5S = A .35 B .33 C .3l D .29 5.“14m <”是“一元二次方程20x x m ++=有实数解”的 A .充分非必要条件 B .充分必要条件 C .必要非充分条件 D .非充分非必要条件6.如图1,ABC 为正三角形,'''////AA BB CC ,'CC ⊥平面ABC ,''32BB ==且3AA 'CC AB =,则多面体'''ABC A B C -的正视图(也称主视图)是7. 已知随机变量X 服从正态分布(3,1)N ,且(24)0.6826P X ≤≤=,则(4)P X >= B . C586 D8.为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定。

2010年全国统一高考数学试卷(理科)(新课标)(含解析版)

2010年全国统一高考数学试卷(理科)(新课标)(含解析版)
【专题】11:计算题;12:应用题. 【分析】首先分析题目已知某种种子每粒发芽的概率都为 0.9,现播种了 1000 粒,即不发芽率为
0.1,故没有发芽的种子数 ξ 服从二项分布,即 ξ~B(1000,0.1).又没发芽的补种 2 个,故补 种的种子数记为 X=2ξ,根据二项分布的期望公式即可求出结果. 【解答】解:由题意可知播种了 1000 粒,没有发芽的种子数 ξ 服从二项分布,即 ξ~B(1000, 0.1). 而每粒需再补种 2 粒,补种的种子数记为 X 故 X=2ξ,则 EX=2Eξ=2×1000×0.1=200. 故选:B. 【点评】本题主要考查二项分布的期望以及随机变量的性质,考查解决应用问题的能力.属于基础 性题目. 7.(5 分)如果执行如图的框图,输入 N=5,则输出的数等于( )
A.q1,q3
B.q2,q3
C.q1,q4
D.q2,q4
【考点】2E:复合命题及其真假;4Q:指数函数与对数函数的关系. 菁优网版权所有
【专题】5L:简易逻辑. 【分析】先判断命题 p1 是真命题,P2 是假命题,故 p1∨p2 为真命题,(﹣p2)为真命题,p1∧
【考点】CH:离散型随机变量的期望与方差;CN:二项分布与 n 次独立重复试验的模型. 菁优网版权所有
2,…,N)的点数 N1,那么由随机模拟方案可得积分
的近似值为 .
14.(5 分)正视图为一个三角形的几何体可以是 (写出三种) 15.(5 分)过点 A(4,1)的圆 C 与直线 x﹣y=1 相切于点 B(2,1),则圆 C 的方程为 . 16.(5 分)在△ABC 中,D 为边 BC 上一点,BD= DC,∠ADB=120°,AD=2,若△ADC 的面积为



第 4 页(共 14 页)

2010年普通高等学校招生全国统一考试(广东A卷)数学(理科)

2010年普通高等学校招生全国统一考试(广东A卷)数学(理科)
1 [2010年普通高等学校招生全国统一考试(广东A卷)数学(理科)]
2 [2010年普通高等学校招生全国统一考试(广东A卷)数学(理科)]
1.若集合A={x|-2<x<1},B={x|0<x<2},则集合A∩B=() A. {x|-1<x<1} B. {x|-2<x<1} C. {x|-2<x<2} D. {x|0<x<1} 2.若复数z1=1+i,z2=3-i,则z1· 2=( z ) A.4+2i B. 2+i C. 2+2i D.3 3.若函数f(x)=3x+3-x与g(x)=3x-3-x的定义域均为R,则( ) A.f(x)与g(x)均为偶函数 B. f(x)为偶函数,g(x)为奇函数 C.f(x)与g(x)均为奇函数 D. f(x)为奇函数,g(x)为偶函数 4. 已知{an }为等比数列,Sn是它的前n项和.若 a2 a3 2a1 ,
5 [2010年普通高等学校招生全国统一考试(广东A卷)数学(理科)]
12.已知圆心在x轴上,半径为 2 的圆O位于y轴左侧,且 与直线x+y=0相切,则圆O的方程是 .
13.某城市缺水问题比较突出, 为了制定节水管理办法,对 全市居民某年的月均用水量 进行了抽样调查,其中n位 居民的月均用水量分别为 x1…xn(单位:吨),根据图2 所示的程序框图,若n=2,且 x1,x2 分别为1,2,则输出地 结果s为 .
11.已知a,b,c分别是△ABC的三个内角A,B,C所对的边, 若a=1,b= 3 , A+C=2B,则sinC= 1 .
9 [2010年普通高等学校招生全国统一考试(广东A卷)数学(理科)]
12.已知圆心在x轴上,半径为 2 的圆O位于y轴左侧,且 2 2 与直线x+y=0相切,则圆O的方程是 ( x 2) y 2 .

2010年全国高考数学(理)试题及答案(新课标卷) 详解版

2010年全国高考数学(理)试题及答案(新课标卷)  详解版

绝密★启用前2010年普通高等学校招生全国统一考试(课标版) 理科数学第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{}2,RA x x x =≤∈,{}4,ZB x =≤∈,则A B =(A )()0,2 (B )[]0,2 (C ){}0,2 (D ){}0,1,2(2)已知复数1z=,z 是z 的共轭复数,则z z ⋅=(A )14(B )12(C )1 (D )2(3)曲线2xy x =+在点()1,1--处的切线方程为 (A )21y x =+ (B )21y x =- (C )23y x =-- (D )22y x =--(4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0P ,角速度为1,那么点P 到x 轴距离d 关于时间t的函数图像大致为(5)已知命题1p :函数22x x y -=-在R 为增函数, 2p :函数22x x y -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p -∨和4q :()12p p ∧-中,真命题是(A )1q ,3q (B )2q ,3q (C )1q ,4q (D )2q ,4q(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为 (A )100 (B )200 (C )300 (D )400 (7)如果执行右面的框图,输入5N=,则输出的数等于 (A )54(B )45(C )65 (D )56(8)设偶函数()f x 满足()()380f x x x =-≥,则(){}20x f x -=>(A ){}2x x x <-或>4 (B ){}0x x x <或>4 (C ){}0x x x <或>6 (D ){}2x x x <-或>2(9)若4cos 5α=-,α是第三象限的角,则1tan 21tan2αα+=-(A )12-(B )12(C )2 (D )2-(10)设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为 (A )2a π (B )273a π (C )2113a π (D )25a π (11)已知函数()lg ,010,16,02x x f x x x ⎧≤⎪=⎨-+⎪⎩<>1若a ,b ,c 互不相等,且()()()f a f b f c ==,则abc 的取值范围是 (A )()1,10 (B )()5,6 (C )()10,12 (D )()20,24(12)已知双曲线E 的中心为原点,F(3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N(-12,-15),则E 的方程为(A )22136x y -= (B ) 22145x y -= (C ) 22163x y -= (D )22154x y -= 第Ⅱ卷二、填空题:本大题共4小题,每小题5分。

2010年高考数学广东卷试题和答卷分析

2010年高考数学广东卷试题和答卷分析

重基础重能力重应用重创新--- 2010年高考数学广东卷试题和答卷分析及若干建议通过高考阅卷和对高考试题的的深入分析,我们可以看到,2010年普通高考数学广东卷(以下简称广东卷)的命题严格遵循了《考试大纲》和《考试说明》的要求,充分体现了数学新课程标准的核心理念,对中学数学教学实施素质教育起到了很好的引导作用。

本文在对今年广东高考数学试卷和试题进行全面分析的基础上,结合考生在答卷中暴露出的主要问题,对中学数学教学提出一些建议。

1.试卷综述1.1 实行文理分科命题,尊重学生的个性选择,符合中学数学教学的实际。

For personal use only in study and research; not for commercial use2010年普通高考数学广东卷继续实行文理分科命题和制卷,根据文科与理科考生在数学教学上的不同要求,在知识与能力的考查上有所区别。

今年的广东文、理卷,除了少量试题相同或相似外,绝大部分试题都是不同的。

相同的题目有:文理科的第3题(函数的奇偶性)、第4题(数列)、文科的第9题和理科的第6题(三视图),文理科的第19题(线性规划);相似的问题有:文理科的第1题(集合运算),文科的第2题与理科的第9题(对数函数的定义域),文科的第5题与理科的第10题(向量的坐标表示及运算),文科的第6题与理科的第12题(解析几何中圆的切线),文科的第8题与理科的第5题(充要条件的判断),文科的第11题与理科的第13题(算法与程序框图),文科的第13题与理科的第11题(用正弦定理和余弦定理解三角形),文理科中的第18题(立体几何中垂直关系的证明、角与距离的计算)。

在类似问题中,一般而言,文科题目比理科题目容易一些。

这样的命题方式,既符合中学数学教学的实际,又便于对文理科学生的数学水平进行科学评价。

1.2注重对数学基础知识的考查,引导学生从概念和原理出发解题,符合数学教学的基本规律。

试卷紧密结合广东实施新课程标准实验的教学实际和课程标准的基础性要求,重视对中学数学基本概念和基本原理的考查。

2010.广东省高考数学(理科)

2010.广东省高考数学(理科)

2010年广东省高考数学试卷(理科)一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2010•广东)若集合A={x|﹣2<x<1},B={x|0<x<2},则集合A∩B=()A.{x|﹣1<x<1} B.{x|﹣2<x<1} C.{x|﹣2<x<2} D.{x|0<x<1}2.(5分)(2010•广东)若复数z1=1+i,z2=3﹣i,则z1•z2=()A.4+2i B.2+i C.2+2i D.33.(5分)(2010•广东)若函数f(x)=3x+3﹣x与g(x)=3x﹣3﹣x的定义域均为R,则()A.f(x)与g(x)均为偶函数B.f(x)为奇函数,g(x)为偶函数C.f(x)与g(x)均为奇函数D.f(x)为偶函数,g(x)为奇函数4.(5分)(2010•广东)已知数列{a n}为等比数列,S n是它的前n项和,若a2•a3=2a1且a4与2a7的等差中项为,则S5=()A.35 B.33 C.31 D.295.(5分)(2010•广东)“”是“一元二次方程x2+x+m=0有实数解”的()A.充分非必要条件B.充分必要条件C.必要非充分条件D.非充分非必要条件6.(5分)(2010•广东)如图,△ABC为三角形,AA′∥BB′∥CC′,CC′⊥平面ABC 且3AA′=BB′=CC′=AB,则多面体△ABC﹣A′B′C′的正视图(也称主视图)是()A.B.C.D.7.(5分)(2010•广东)sin7°cos37°﹣sin83°cos53°的值为()A.﹣B.C.D.﹣8.(5分)(2010•广东)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定.每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同,记这5个彩灯有序地闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且只有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间至少是()A.1205秒B.1200秒C.1195秒D.1190秒9.(5分)(2011•上海)函数f(x)=lg(x﹣2)的定义域是_________.10.(5分)(2010•广东)若向量,,,满足条件,则x=_________.11.(5分)(2010•广东)已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b=,A+C=2B,则sinC=_________.12.(5分)(2010•广东)若圆心在x轴上、半径为的圆O位于y轴左侧,且与直线x+y=0相切,则圆O的方程是_________.13.(5分)(2010•广东)某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为x1,…,x4(单位:吨).根据如图所示的程序框图,若分别为1,1.5,1.5,2,则输出的结果s为_________.14.(5分)(2010•广东)如图,AB,CD是半径为a的圆O的两条弦,他们相交于AB的中点P,,∠OAP=30°,则CP=_________.15.(2010•广东)在极坐标系(ρ,θ)(0≤θ<2π)中,曲线ρ=2sinθ与ρcosθ=﹣1的交点的极坐标为_________.16.(14分)(2010•广东)已知函数f(x)=Asin(3x+ρ)(A>0,x∈(﹣∞,+∞),0<ρ<π)在时取得最大值4.(1)求f(x)的最小正周期;(2)求f(x)的解析式;(3)若,求sinα.17.(12分)(2010•广东)某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求重量超过505克的产品数量.(2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列.(3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率.18.(14分)(2010•广东)如图,是半径为a的半圆,AC为直径,点E为的中点,点B和点C为线段AD(2)已知点Q,R为线段FE,FB上的点,,,求平面BED与平面RQD所成二面角的正弦值.19.(12分)(2010•广东)某营养师要求为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营状中至少含64个单位的碳水化合物和42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?20.(14分)(2010•广东)已知双曲线的左、右顶点分别为A1,A2,点P(x1,y1),Q(x1,﹣y1)是双曲线上不同的两个动点.(1)求直线A1P与A2Q交点的轨迹E的方程;21.(14分)(2010•广东)设A(x1,y1),B(x2,y2)是平面直角坐标系xOy上的两点,现定义由点A到点B的一种折线距离ρ(A,B)为ρ(A,B)=|x2﹣x1|+|y2﹣y1|对于平面xOy上给定的不同的两点A(x1,y1),B(x2,y2),(1)若点C(x,y)是平面xOy上的点,试证明ρ(A,C)+ρ(C,B)≥ρ(A,B);(2)在平面xOy上是否存在点C(x,y),同时满足①ρ(A,C)+ρ(C,B)=ρ(A,B)②ρ(A,C)=ρ(C,B)若存在,请求出所有符合条件的点,请予以证明.参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.D 2.A3.D 4. C5. 解:由x2+x+m=0知,⇔.(或由△≥0得1﹣4m≥0,∴.),反之“一元二次方程x2+x+m=0有实数解”必有,未必有,因此“”是“一元二次方程x2+x+m=0有实数解”的充分非必要条件.故选A.6. 解:△ABC为三角形,AA′∥BB′∥CC′,CC′⊥平面ABC,且3AA′=BB′=CC′=AB,则多面体△ABC﹣A′B′C′的正视图中,CC′必为虚线,排除B,C,3AA′=BB′说明右侧高于左侧,排除A.故选D7. 解:sin7°cos37°﹣sin83°cos53°=cos83°cos37°﹣sin83°sin37°=cos(83°+37°)=cos120°=﹣,8. 解:由题意知共有5!=120个不同的闪烁,每个闪烁时间为5秒,共5×120=600秒;每两个闪烁之间的间隔为5秒,共5×(120﹣1)=595秒.那么需要的时间至少是600+595=1195秒.故选C二、填空题(共7小题,满分30分)9.(2,+∞10.211. 1.12.(x+2)2+y2=213. 解:程序运行过程中,各变量值变化情况如下表:第一(i=1)步:s1=s1+x i=0+1=1第二(i=2)步:s1=s1+x i=1+1.5=2.5第三(i=3)步:s1=s1+x i=2.5+1.5=4第四(i=4)步:s1=s1+x i=4+2=6,s=×6=第五(i=5)步:i=5>4,输出s=故答案为:14. 解:因为点P是AB的中点,由垂径定理知,OP⊥AB.在Rt△OPA中,.即,所以.故填:15. 解:两条曲线的普通方程分别为x2+y2=2y,x=﹣1.解得由得点(﹣1,1),极坐标为.故填:三、解答题(共6小题,满分80分)16.解:(1)由周期计算公式,可得T=(2)由f(x)的最大值是4知,A=4,即sin()=1∵0<ρ<π,∴∴,∴∴f(x)=4sin(3x+)(3)f()=4sin[3()+]=,即sin[3()+]=,,,,17. 解:(1)重量超过505克的产品数量是40×(0.05×5+0.01×5)=12件;(2)Y的所有可能取值为0,1,2;,,,Y的分布列为(3)从流水线上任取5件产品,恰有2件产品合格的重量超过505克的概率服从二项分布∴从流水线上任取5件产品,恰有2件产品合格的重量超过505克的概率为=18. 1)证明:连接CF,因为是半径为a的半圆,AC为直径,点E为的中点,所以EB⊥AC.在RT△BCE中,.在△BDF中,,△BDF为等腰三角形,且点C是底边BD的中点,故CF⊥BD.因为CF⊥BD,CF⊥EC,且CE∩BD=C,所以CF⊥平面BED,而EB⊂平面BED,∴CF⊥EB.因为EB⊥AC,EB⊥CF,且AC∩CF=C,所以EB⊥平面BDF,而FD⊂平面BDF,∴EB⊥FD.(2)解:设平面BED与平面RQD的交线为DG.由,,知QR∥EB.而EB⊂平面BDE,∴QR∥平面BDE,而平面BDE∩平面RQD=DG,∴QR∥DG∥EB.由(1)知,BE⊥平面BDF,∴DG⊥平面BDF,而DR,DB⊂平面BDF,∴DG⊥DR,DG⊥DB,∴∠RDB是平面BED与平面RQD所成二面角的平面角.在Rt△BCF中,,,.在△BDR中,由知,,由余弦定理得,=由正弦定理得,,即,.故平面BED与平面RQD所成二面角的正弦值为.19. 解:设为该儿童分别预订x个单位的午餐和y个单位的晚餐,设费用为F,则F=2.5x+4y,由题意知约束条件为:画出可行域如下图:20. 解:(1)由A 1,A2为双曲线的左右顶点知,,则,,两式相乘得,因为点P(x1,y1)在双曲线上,所以,即,所以,即,故直线A1P与A2Q交点的轨迹E的方程为.(x≠,x≠0)(2)设l1:y=kx+h(k>0),则由l1⊥l2知,.将l1:y=kx+h代入得,即(1+2k2)x2+4khx+2h2﹣2=0,若l1与椭圆相切,则△=16k2h2﹣4(1+2k2)(2h2﹣2)=0,即1+2k2=h2;同理若l2与椭圆相切,则.由l1与l2与轨迹E都只有一个交点包含以下四种情况:[1]直线l1与l2都与椭圆相切,即1+2k2=h2,且,消去h2得,即k2=1,从而h2=1+2k2=3,即;[2]直线l 1过点,而l2与椭圆相切,此时,,解得;[3]直线l 2过点,而l1与椭圆相切,此时,1+2k2=h2,解得;[4]直线l 1过点,而直线l2过点,此时,,∴.综上所述,h的值为.21. (1)证明:由绝对值不等式知,ρ(A,C)+ρ(C,B)=|x﹣x1|+|x2﹣x|+|y﹣y1|+|y2﹣y≥|(x﹣x1)+(x2﹣x)|+|(y﹣y1)+(y2﹣y)|=|x2﹣x1|+|y2﹣y1|=ρ(A,B)当且仅当(x﹣x1)•(x2﹣x)≥0,且(y﹣y1)•(y2﹣y)≥0时等号成立.(2)解:由ρ(A,C)+ρ(C,B)=ρ(A,B)得(x﹣x1)•(x2﹣x)≥0且(y﹣y1)•(y2﹣y)≥0 (Ⅰ)由ρ(A,C)=ρ(C,B)得|x﹣x1|+|y﹣y1|=|x2﹣x|+|y2﹣y|(Ⅱ)因为A(x1,y1),B(x2,y2)是不同的两点,则:1°若x1=x2且y1≠y2,由(Ⅱ)得,此时,点C是线段AB的中点,即只有点满足条件;2°若x1≠x2且y1=y2,同理可得:只有AB的中点满足条件;3°若x1≠x2且y1≠y2,不妨设x1<x2且y1<y2,由(Ⅰ)得x1≤x≤x2且y1≤y≤y2,由(Ⅱ)得,此时,所有符合条件的点C的轨迹是一条线段,即:过AB的中点,斜率为﹣1的直线夹在矩形AA1BB1之间的部分,其中A(x1,y1),A1(x2,y1),B(x2,y2),B1(x1,y2).。

2010广东高考数学答案

2010广东高考数学答案

2010广东高考数学答案【篇一:2010年广东省高考数学试卷(理科)答案与解析】ss=txt>参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分) 1.(5分)(2010?广东)若集合a={x|﹣2<x<1},b={x|0<x<2},则集合a∩b=() a.{x|﹣1<x<1} b.{x|﹣2<x<1} c.{x|﹣2<x<2} d.{x|0<x<1} 【考点】并集及其运算.【专题】集合.【分析】由于两个集合已知,故由交集的定义直接求出两个集合的交集即可.【解答】解:a∩b={x|﹣2<x<1}∩{x|0<x<2}={x|0<x<1}.故选d.【点评】常用数轴图、函数图、解析几何中的图或文恩图来解决集合的交、并、补运算.2.(5分)(2010?广东)若复数z1=1+i,z2=3﹣i,则z1?z2=() a.4+2i b.2+i c.2+2i d.3【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】把复数z1=1+i,z2=3﹣i代入z1?z2,按多项式乘法运算法则展开,化简为a+bi(a,b∈r)的形式.【点评】本题考查复数代数形式的乘除运算,考查计算能力,是基础题.3.(5分)(2010?广东)若函数f(x)=3+3与g(x)=3﹣3的定义域均为r,则() a.f(x)与g(x)均为偶函数 b.f(x)为奇函数,g(x)为偶函数 c.f(x)与g(x)均为奇函数 d.f(x)为偶函数,g(x)为奇函数【考点】函数奇偶性的判断.【专题】函数的性质及应用.【分析】首先应了解奇函数偶函数的性质,即偶函数满足公式f(﹣x)=f(x),奇函数满足x﹣xx﹣x公式g(﹣x)=﹣g(x).然后在判断定义域对称性后,把函数f (x)=3+3与g(x)=3﹣x﹣3代入验证.即可得到答案.【解答】解:由偶函数满足公式f(﹣x)=f(x),奇函数满足公式g(﹣x)=﹣g(x).x﹣x﹣xx﹣xx对函数f(x)=3+3有f(﹣x)=3+3满足公式f(﹣x)=f(x)所以为偶函数.﹣x﹣xxx对函数g(x)=3﹣3有g(﹣x)=3﹣3=﹣g(x).满足公式g (﹣x)=﹣g(x)所以为奇函数.所以答案应选择d.【点评】此题主要考查函数奇偶性的判断,对于偶函数满足公式f (﹣x)=f(x),奇函数满足公式g(﹣x)=﹣g(x)做到理解并记忆,以便更容易的判断奇偶性.4.(5分)(2010?广东)已知数列{an}为等比数列,sn是它的前n项和,若a2?a3=2a1,且a4与2a7的等差中项为,则s5=() a.35 b.33 c.31 d.29【考点】等比数列的性质;等比数列的前n项和.x【专题】等差数列与等比数列.【分析】用a1和q表示出a2和a3代入a2?a3=2a1求得a4,再根据a4+2a7=a4+2a4q,求得q,进而求得a1,代入s5即可.2【解答】解:a2?a3=a1q?a1q=2a1 ∴a4=233∴q=,a1==16故s5==31故选c.【点评】本题主要考查了等比数列的性质.属基础题.5.(5分)(2010?广东)“”是“一元二次方程x+x+m=0有实数解”的()2a.充分非必要条件 b.充分必要条件c.必要非充分条件 d.非充分非必要条件【考点】必要条件、充分条件与充要条件的判断;一元二次方程的根的分布与系数的关系.【专题】简易逻辑.【分析】利用充分必要条件的判断法判断这两个条件的充分性和必要性.关键看二者的相互推出性.【解答】解:由x+x+m=0知,(或由△≥0得1﹣4m≥0,∴22?.),,未必有.反之“一元二次方程x+x+m=0有实数解”必有因此“2,”是“一元二次方程x+x+m=0有实数解”的充分非必要条件.故选a.【点评】本题考查充分必要条件的判断性,考查二次方程有根的条件,注意这些不等式之间的蕴含关系.6.(5分)(2010?广东)如图,△abc为三角形,aa′∥bb′∥cc′,cc′⊥平面abc 且3aa′=bb′=cc′=ab,则多面体△abc﹣a′b′c′的正视图(也称主视图)是()a. b. c. d.【考点】简单空间图形的三视图.【专题】立体几何.【分析】根据几何体的三视图的作法,结合图形的形状,直接判定选项即可.【解答】解:△abc为三角形,aa′∥bb′∥cc′,cc′⊥平面abc,且3aa′=bb′=cc′=ab,则多面体△abc﹣a′b′c′的正视图中,cc′必为虚线,排除b,c,3aa′=bb′说明右侧高于左侧,排除a.故选dc.d.﹣【考点】两角和与差的余弦函数.【专题】三角函数的求值.故选:a.【点评】本题考查两角和与差的公式,是一个基础题,解题时有一个整理变化的过程,把式子化归我可以直接利用公式的形式是解题的关键,熟悉公式的结构是解题的依据.8.(5分)(2010?广东)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定.每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同,记这5个彩灯有序地闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且只有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间至少是()a.1205秒 b.1200秒 c.1195秒 d.1190秒【考点】分步乘法计数原理;排列及排列数公式.【专题】排列组合.【点评】本题考查的是排列问题,把排列问题包含在实际问题中,解题的关键是看清题目的实质,把实际问题转化为数学问题,解出结果以后再还原为实际问题.二、填空题(共7小题,满分30分) 9.(5分)(2011?上海)函数f(x)=lg(x﹣2)的定义域是【考点】对数函数的定义域.【专题】函数的性质及应用.【分析】对数的真数大于0,可得答案.【解答】解:由x﹣2>0,得x>2,所以函数的定义域为(2,+∞).故答案为:(2,+∞).【点评】本题考查对数函数的定义域,是基础题.10.(5分)(2010?广东)若向量满足条件,,则x= 2 .,,【考点】空间向量运算的坐标表示.【专题】空间向量及应用.【分析】先求出,再利用空间向量的数量积公式,方程,求出x 【解答】解:,,解得x=2,故答案为2.【点评】本题考查了空间向量的基本运算,以及空间向量的数量积,属于基本运算.11.(5分)(2010?广东)已知a,b,c分别是△abc的三个内角a,b,c所对的边,若a=1,b=,a+c=2b,则sinc=.【考点】正弦定理.建立【专题】解三角形.;,22相切,则圆o的方程是(x+2).【考点】关于点、直线对称的圆的方程.【专题】直线与圆.【分析】设出圆心,利用圆心到直线的距离等于半径,可解出圆心坐标,求出圆的方程.【解答】解:设圆心为(a,0)(a<0),则22,解得a=﹣2.圆的方程是(x+2)+y=2.22故答案为:(x+2)+y=2.【点评】圆心到直线的距离等于半径,说明直线与圆相切;注意题目中圆o位于y轴左侧,容易疏忽出错.13.(5分)(2010?广东)某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为x1,…,x4(单位:吨).根据如图所示的程序框图,若分别为1,1.5,1.5,2,则输出的结果s为.【篇二:2010年广东高考理科数学试题及答案word版】010年普通高等学校招生全国统一考试(广东a卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分。

2010年普通高等学校招生全国统一考试(全国新课标卷)数学试题 (理科)(解析版)

2010年普通高等学校招生全国统一考试(全国新课标卷)数学试题 (理科)(解析版)

2010年普通高等学校招生全国统一考试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,其中第II 卷第(22)-(24)题为选考题,其他题为必考题。

考生作答时,将答案答在答题卡上,在本试卷上答题无效。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1、答题前,考生务必先将自己的姓名,准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2、选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚。

3、请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4、保持卷面清洁,不折叠,不破损。

5、做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。

参考公式:样本数据n x x x ,,21的标准差锥体体积公式s =13V Sh=其中x 为样本平均数其中S 为底面面积,h 为高柱体体积公式球的表面积,体积公式V Sh=24S R π=343V R π=其中S 为底面面积,h 为高其中R 为球的半径第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}2,R A x x x =≤∈,{}4,Z B x =≤∈,则A B = ()(A)()0,2(B)[]0,2(C){}0,2(D){}0,1,2【答案】D【解析】{22},{0,1,2,3,4}A B={0,1,2}A x x B =-≤≤=∴⋂,,选D 命题意图:考察集合的基本运算(2)已知复数z =,z 是z 的共轭复数,则z z ⋅=()(A)14(B)12(C)1(D)2【答案】A 命题意图:考察复数的四则运算【解析】2323244i iz ===-⨯4z =,14z z ⋅=(3)曲线2xy x =+在点()1,1--处的切线方程为()(A)21y x =+(B)21y x =-(C)23y x =--(D)22y x =--【答案】A【解析】''122,|2(2)x y k y x =-=∴==+ ,切线方程为[](1)2(1)y x --=--,即21y x =+.命题意图:考察导数的几何意义(4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0P ,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为()【答案】C【解析】当点P 在0P ,即0t =,P 到x。

2010年高考新课标全国卷理科数学试题(附答案)

2010年高考新课标全国卷理科数学试题(附答案)

2010年普通高等学校招生全国统一考试(新课标全国卷)理科数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{||2}A x R x =∈≤},{|4}B x Z x =∈≤,则A B ⋂=(A)(0,2) (B)[0,2] (C ){0,2] (D){0,1,2} (2)已知复数23(13)iz i +=-,z 是z 的共轭复数,则z z ⋅= (A )14 (B )12(C ) 1 (D )2 (3)曲线2xy x =+在点(1,1)--处的切线方程为(A )21y x =+ (B)21y x =- (C) 23y x =-- (D )22y x =-- (4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0(2,2)P -,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为tdπ42OA B C D(5)已知命题1p :函数22x x y -=-在R 为增函数, 2p :函数22x x y -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p ⌝∨和4q :()12p p ∧⌝中,真命题是(A )1q ,3q (B )2q ,3q (C)1q ,4q (D )2q ,4q(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为 (A )100 (B )200 (C)300 (D )400(7)如果执行右面的框图,输入5N =,则输出的数等于(A )54 (B )45(C )65 (D )56(8)设偶函数()f x 满足3()8(0)f x x x =-≥, 则{|(2)0}x f x ->=(A ) {|24}x x x <->或 (B ) {|04}x x x <>或 (C ) {|06}x x x <>或 (D ) {|22}x x x <->或(9)若4cos 5α=-,α是第三象限的角,则1tan21tan 2αα+=- (A ) 12- (B ) 12(C ) 2 (D ) 2-(10)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为 (A) 2a π(B)273a π (C)2113a π (D) 25a π(11)已知函数|lg |,010,()16,10.2x x f x x x <≤⎧⎪=⎨-+>⎪⎩若,,a b c 互不相等,且()()(),f a f b f c ==则abc 的取值范围是(A) (1,10) (B) (5,6)(C ) (10,12)(D ) (20,24)(12)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为(A )22136x y -= (B ) 22145x y -= (C ) 22163x y -= (D) 22154x y -=第Ⅱ卷本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须做答,第(22)题~第(24)题为选考题,考试根据要求做答。

2010高考理科综合试卷(精美解析版)-广东理综

2010高考理科综合试卷(精美解析版)-广东理综

2010年普通高等学校招生全国统一考试(广东卷)理科综合能力测试一、单项选择题:本大题共16小题,每小题4分。

共64分。

在每小题给出的四个选项中,只有一个选项符合题目要求,选对的得4分,选错或不答的得0分。

13.(2010广东理综·13)图2为节日里悬挂灯笼的一种方式,A、B点等高,O为结点,轻绳AO、BO长度相等,拉力分别为F A、F B,灯笼受到的重力为G.下列表述正确的是( )A.F A一定小于GB.F A与F B大小相等C.F A与F B是一对平衡力D.F A与F B大小之和等于G【答案】B【解析】由等高等长知,左右力对称,选项B正确。

选项A错误,有可能大于;选项D错误,不是大小之和而是矢量之和。

选项C错误,这两个力的矢量和与重力是平衡力。

14.(2010广东理综·14)图3是密闭的气缸,外力推动活塞P压缩气体,对缸内气体做功800J,同时气体向外界放热200J,缸内气体的( )A.温度升高,内能增加600JB.温度升高,内能减少200JC.温度降低,内能增加600JD.温度降低,内能减少200J【答案】A【解析】由能量守恒,ΔE =Q+W = −200+800 = 600J,内能增加600J,则温度一定升高。

15.(2010广东理综·15)如图4所示,某种自动洗衣机进水时,与洗衣缸相连的细管中会封闭一定质量的空气,通过压力传感器感知管中的空气压力,从而控制进水量。

设温度不变,洗衣缸内水位升高,则细管中被封闭的空气( )A.体积不变,压强变小B.体积变小,压强变大C.体积不变,压强变大D.体积变小,压强变小【答案】B【解析】由图可知空气被封闭在细管内,水面升高时,根据玻意尔定律,气体压强增大,气体体积减小。

16.(2010广东理综·16)如图5所示,平行导轨间有一矩形的匀强磁场区域,细金属棒PQ沿导轨从MN处匀速运动到M'N'的过程中,棒上感应电动势E随时间t变化的图示,可能正确的是()【答案】A【解析】导线做匀速直线运动切割磁感线时,E=BLv,是常数。

(完整word)2010年高考新课标全国卷理科数学试题(附答案)

(完整word)2010年高考新课标全国卷理科数学试题(附答案)

2010年普通高等学校招生全国统一考试(新课标全国卷)理科数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{||2}A x R x =∈≤},{|4}B x Z x =∈≤,则A B ⋂=(A)(0,2) (B)[0,2] (C){0,2] (D){0,1,2} (2)已知复数23(13)iz i +=-,z 是z 的共轭复数,则z z ⋅= (A)14 (B)12(C) 1 (D)2 (3)曲线2xy x =+在点(1,1)--处的切线方程为(A)21y x =+ (B)21y x =- (C) 23y x =-- (D)22y x =-- (4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0(2,2)P -,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为tdπ2OA B C D(5)已知命题1p :函数22x x y -=-在R 为增函数, 2p :函数22x x y -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p ⌝∨和4q :()12p p ∧⌝中,真命题是(A )1q ,3q (B )2q ,3q (C )1q ,4q (D )2q ,4q(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为 (A)100 (B )200 (C)300 (D )400(7)如果执行右面的框图,输入5N =,则输出的数等于(A)54 (B )45(C)65 (D )56(8)设偶函数()f x 满足3()8(0)f x x x =-≥, 则{|(2)0}x f x ->=(A) {|24}x x x <->或 (B) {|04}x x x <>或 (C) {|06}x x x <>或 (D) {|22}x x x <->或(9)若4cos 5α=-,α是第三象限的角,则1tan21tan 2αα+=- (A) 12- (B) 12(C) 2 (D) 2-(10)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为 (A) 2a π(B)273a π (C)2113a π (D) 25a π (11)已知函数|lg |,010,()16,10.2x x f x x x <≤⎧⎪=⎨-+>⎪⎩若,,a b c 互不相等,且()()(),f a f b f c ==则abc的取值范围是(A) (1,10) (B) (5,6)(C) (10,12)(D) (20,24)(12)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为(A)22136x y -= (B) 22145x y -= (C) 22163x y -= (D) 22154x y -=第Ⅱ卷本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须做答,第(22)题~第(24)题为选考题,考试根据要求做答。

2010年普通高等学校招生全国统一考试数学理科试题(全国卷I)测验题精品解析

2010年普通高等学校招生全国统一考试数学理科试题(全国卷I)测验题精品解析

2010 年一般高等学校招生全国一致考试理科数学( 必修 +选修 II)本试卷分第 I 卷 ( 选择题 ) 和第Ⅱ卷 ( 非选择题 ) 两部分。

第 I 卷 1 至 2 页。

第Ⅱ卷 3 至 4 页。

考试结束后,将本试卷和答题卡一并交回。

第 I 卷注意事项:1.答题前,考生在答题卡上务必用直径 0.5 毫 M黑色墨水署名笔将自己的姓名、准考据号填写清楚,并贴好条形码。

请仔细批准条形码上的准考据号、姓名和科目。

2.每题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,如需变动,用橡皮擦洁净后,再选涂其余答案标号,在试卷卷上作答无效。

.........3.第 I 卷共 12 小题,每题 5 分,共 60 分。

在每题给出的四个选项中,只有一项为哪一项切合题目要求的。

参照公式:假如事件 A、 B互斥,那么球的表面积公式P(A B) P(A) P(B) S 4 R2假如事件 A、 B互相独立,那么此中 R 表示球的半径P( A B) P( A) P(B) 球的体积公式假如事件 A 在一次实验中发生的概率是p ,那么V3R3n 次独立重复实验中事件 A 恰巧发生 k 次的概率4此中 R 表示球的半径P n (k ) C n k p k (1 p)n k (k0,1,2, n)一.选择题(1)复数3 2i2 3i(A)i(B)i(C)12-13i(D) 12+13i【答案】 A【命题企图】本小题主要考察复数的基本运算, 要点考察分母实数化的转变技巧 .【解读】32i(32i )(23i ) 69i 4i 6i .23i(23i)(23i )13(2) 记cos( 80 )k ,那么 tan1001k 2 1 k2k kA. C.k k 1 k 2 1 k2【答案】 B【命题企图】本小题主要考察引诱公式、同角三角函数关系式等三角函数知识,并突出了弦切互化这一转变思想的应用 .【解读】 sin 80 1 cos2 80 1 cos2 ( 80 ) 1 k 2,所以 tan100tan80sin801k 2.cos80ky1,(3) 若变量x, y知足拘束条件x y0,则 z x 2 y 的最大值为x y20,(A)4(B)3(C)2(D)1( 4)已知各项均为正数的等比数列{ a n } ,a1a2a3 =5,a7a8a9 =10,则aaa45 6 =(A) 5 2 (B) 7 (C) 6 (D) 4 2【答案】 A【命题企图】本小题主要考察等比数列的性质、指数幂的运算、根式与指数式的互化等知识,侧重考察了转变与化归的数学思想 .【解读】由等比数列的性质知 a1a2 a3(a1a3 ) a2 a23 5 ,1a a a(a a ) a a310, 所以a a8503,789798821所以 a4a5a6(a4 a6 ) a5a53( a2 a8 )3(506 )3 5 2(5)(1 2 x )3 (1 3 x)5的睁开式中x的系数是(A) -4 (B) -2 (C) 2 (D) 4(6) 某校开设 A 类选修课 3 门, B 类选择课 4 门,一位同学从中共选 3 门,若要求两类课程中各起码选一门,则不一样的选法共有(A) 30种(B)35种(C)42种(D)48种(7)正方体 ABCD-A1B1C1D1中, B B1与平面 AC D1所成角的余弦值为A2B3C2D63333D1C1【答案】 D【命题企图】本小题主要考察正方体的性质、直线与平面所成的角、点A B11到平面的距离的求法,利用等体积转变求出 D 到平面 AC D1的距离是解OD决此题的要点所在 , 这也是转变思想的详细表现 .CA B1(8)设 a= log 3 2,b=In2,c=5 2 , 则A a<b<c Bb<c<a C c<a<b D c<b<a【答案】 C【命题企图】本小题以指数、对数为载体,主要考察指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法例的应用 .【解读】 a= log 3 2=113 log 2 e 1, 所以 a<b,, b=In2=, 而 log 2log 2 3log 2 e1c= 5 2 =1,而 52 log 2 4 log 2 3, 所以 c<a, 综上 c<a<b.5(9) 已知 F 1 、 F 2 为双曲线 C: x 2y 2 1的左、右焦点,点 p 在 C 上,∠ F 1 p F 2 = 600 ,则 P到 x 轴的距离为(A)3 6 3(D)6(B)(C)22【答案】 B【命题企图】本小题主要考察双曲线的几何性质、第二定义、 余弦定理,考察转变的数学思想,经过此题能够有效地考察考生的综合运用能力及运算能力.【 解 读 】 不 妨 设 点 P ( x 0 , y 0 ) 在 双 曲 线 的 右 支 , 由 双 曲 线 的 第 二 定 义 得| PF 1 | e[ x 0 (a 2)] a ex 01 2 x 0 ,| PF 2 | e[ x 0a 2)] ex 0 a2x 0 1. 由余cc弦定理得cos ∠ F P F =| PF 1 |2| PF 2 |2 | F 1F 2 |2 0(1 2x 0 )2 ( 2x 0 1)2 (2 2) 2, 即 cos 60,2010年普通高等学校招生全国统一考试数学理科试题(全国卷I)测验题精品解析解得 x025, 所以y02x0213,故 P 到 x 轴的距离为| y0 |6222(10)已知函数 F(x)=|lgx|,若 0<a<b, 且 f(a)=f(b),则 a+2b 的取值范围是(A) (2 2,) (B)[2 2,)(C) (3,) (D)[3,)(11)已知圆O的半径为1, PA、 PB 为该圆的两条切线,A、 B 为俩切点,那么PA PB 的最小值为(A)42(B) 3 2(C)422(D) 322【答案】 D【命题企图】本小题主要考察向量的数目积运算与圆的切线长定理,侧重考察最值的求法——鉴别式法 , 同时也考察了考生综合运用数学知识解题的能力及运算能力.【解读】如下图:设PA=PB=x ( x0),∠APO= ,则∠2,AAPB=PO= 1x2,sin12,OP1xPA PB| PA | | PB | cos2= x2(12sin2)= x2 (x21)= x4x2Bx21x21,令 PA PB y ,则y x4x2,即x4(1y)x2y0 ,由x2是实数,所以x21[ (1 y)]2 4 1(y)0 , y26y10 ,解得 y3 2 2 或 y 3 2 2 .故 (PA PB) min322 .此时 x21.(12)已知在半径为 2 的球面上有 A、 B、 C、 D 四点,若 AB=CD=2,则四周体 ABCD的体积的最大值为2 34 3(C)2383 (A)3 (B)3(D)3【答案】 B【命题企图】本小题主要考察几何体的体积的计算、球的性质、异面直线的距离 , 经过球这个载体考察考生的空间想象能力及推理运算能力.【解读】过CD 作平面 PCD ,使 AB ⊥平面 PCD,交 AB 与 P, 设点 P 到 CD 的距离为 h , 则有V四周体ABCD1 2 12h 2h , 当直径经过 AB 与 CD 的中点时 ,h max222 12 2 3,故323V max4 33.绝密★启用前2010 年一般高等学校招生全国一致考试理科数学 ( 必修 +选修 II)第Ⅱ卷注意事项:1 .答题前,考生先在答题卡上用直径 0.5 毫 M 黑色墨水署名笔将自己的姓名、准考据号填写清楚,而后贴好条形码。

高考试题数学(广东卷)(理)

高考试题数学(广东卷)(理)

2010年普通高等学校招生全国统一考试(广东A 卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若集合A={x -2<x <1},B={x 0<x <2}则集合A ∩ B=( )A. {x -1<x <1}B. {x -2<x <1}C. {x -2<x <2}D. {x 0<x <1} 1. D. {|21}{|02}{|01}AB x x x x x x =-<<<<=<<.2.若复数z 1=1+i ,z 2=3-i ,则z 1·z 2=( )A .4+2 i B. 2+ i C. 2+2 i D.3 2. A .12(1)(3)1311(31)42z z i i i i ⋅=+⋅-=⨯+⨯+-=+ 3.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则A .f (x )与g (x )均为偶函数 B. f (x )为偶函数,g (x )为奇函数 C .f (x )与g (x )均为奇函数 D. f (x )为奇函数,g (x )为偶函数 3.D .()33(),()33()xx x x f x f x g x g x ---=+=-=-=-.4. 已知{}n a 为等比数列,S n 是它的前n 项和。

若2312a a a ⋅=, 且4a 与27a 的等差中项为54,则5S = A .35 B.33 C.31 D.294.C .设{n a }的公比为q ,则由等比数列的性质知,231412a a a a a ⋅=⋅=,即42a =。

由4a 与27a 的等差中项为54知,475224a a +=⨯,即7415151(2)(22)24244a a =⨯-=⨯-=. ∴37418a q a ==,即12q =.3411128a a q a ==⨯=,即116a =.5. “14m <”是“一元二次方程20x x m ++=”有实数解的 A .充分非必要条件 B.充分必要条件 C .必要非充分条件 D.非充分必要条件5.A .由20x x m ++=知,2114()024m x -+=≥⇔14m ≤. 6.如图1,△ ABC 为三角形,AA '//BB ' //CC ' , CC ' ⊥平面ABC 且3AA '=32BB '=CC ' =AB,则多面体△ABC -A B C '''的正视图(也称主视图)是6.D .7.已知随机变量X 服从正态分布N(3.1),且(24)P X ≤≤=0.6826,则p (X>4)=( )A 、0.1588B 、0.1587C 、0.1586 D0.1585 7.B .1(34)(24)2P X P X ≤≤=≤≤=0.3413, (4)0.5(24)P X P X >=-≤≤=0.5-0.3413=0.1587.8.为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定,每个彩灯彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯所闪亮的颜色各不相同.记这5个彩灯有序地闪亮一次为一个闪烁,在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时.请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的.答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:锥体的体积公式V =13sh ,其中S 是锥体的底面积,h 是锥体的高.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x|-2<x <1},B=A={x|0<x <2},则集合A ∩B=A.{x|-1<x <1}B.{x|-2<x <1}C.{x|-2<x <2}D.{x|0<x <1} 1. 答案:D【命题意图】本题考查了集合的运算,考查了学生的计算能力。

【解析】本题考查了集合的运算。

结合数轴易得}10|{<<=x x B A .2.若复数z 1=1+i,z 2=3-i,则z1`z1= A.4+2i B.2+i C.2+2i D.3+i 2.答案:A【命题意图】本题考查复数的乘法运算,考查了学生的计算能力。

【解析】本题考查复数的乘法运算,考查了学生的计算能力。

计算得212(1)(3)3342z z i i i i i i ∙=+∙-=-+-=+.3.若函数f(x)=3x+3x -与g(x)=33x x--的定义域均为R ,则 A .f(x)与g(x)均为偶函数 B .f(x)为奇函数,g(x)为偶函数 C .f(x)与g(x)均为奇函数 D .f(x)为偶函数.g(x)为奇函数3.答案:B4.已知数列{n a }为等比数列,n s 5是它的前n 项和,若2a *3a =2a .,且4a 与27a 的等差中项为54,则5s = A .35 B .33 C .3l D .29 4.答案:C5. “14m <”是“一元二次方程20x x m ++=有实数解”的 A.充分非必要条件 B.充分必要条件 C.必要非充分条件 D.非充分非必要条件 5.答案:A 【命题意图】本题是在知识的文汇处命题,考查了充要条件的相关知识及一元二次方程有解的条件【解析】本题考查充要条件的相关知识及一元二次方程有解的条件。

一元二次方程02=++m x x 有实数解,等价为04142≥-=-=∆m ac b 得41≤m . ∴“14m <”是“一元二次方程02=++m x x 有实数解”的充分而不必要条件. 6.如图1,ABC V 为正三角形,'''////AA BB CC ,''''32CC BB CC AB ⊥===平面ABC 且3AA 则多面体'''ABC A B C -的正视图(也称主视图)是6.答案:D【命题意图】本题考查空间几何体的三视图,考查了考生的识图能力【解析】本题考查空间几何体的三视图,考查了同学们的识图能力。

画三视图时,从外向内看,看到AB 、A A '、B B '、C C '为虚线,C 为AB 的中点,则为D 选项.7.已知随机量X 服从正态分布N (3,1),且P (2≤X ≤4)=0.6826,则P(X >4)= A.0.1588 B.0.1587 C.0.1586 D.0.15857.答案:B8.为了迎接2010年广州亚运会,某大楼安装了5个彩灯,他们闪亮的顺序不固定,每个彩灯只能闪亮红橙黄绿蓝中的一种颜色,且这个5个彩灯所闪亮的颜色各不相同,记住5个彩灯有序地各闪亮一次为一个闪烁,在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒,如果要实现所有不同的闪烁,那么需要的时间至少是 A.1205秒 B.1200秒 C.1195秒 D.1190秒 8.答案:C二、填空题:本大题共7小题.考生作答6小题.每小题5分,满分30分 (一)必做题(9~13题)9.函数,f (x )=lg (x -2)的定义域是 9.答案:),2(+∞【命题意图】本题考查对数函数的定义域 【解析】本题考查对数函数的定义域。

对数函数中,真数须大于0,故有:02>-x ,得2>x ,即为),2(+∞.10.若向量a =(1,1,x),b =(1,2,1),c =(1,1,1)满足条件(c —a )·2b=-2,则x= 10.答案:2【命题意图】本题考查空间向量的坐标运算以及数乘运算,考查了同学们的计算能力 【解析】本题考查空间向量的数乘运算。

∵)1,1,1(=c ,),1,1(x a =,∴)1,0,0(x a c -=-,∴)2,4,2()1,0,0()2()(∙-=∙-x b a c 2)1(2-=-=x , ∴2=x .11.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则sin C = . 11.答案:112.若圆心在x 轴上、半径为2的圆O 位于y 轴左侧,且与直线x+y=0相切,则圆O 的方程是 .12.答案:2)2(22=++y x13.某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中n 位居民的月均用水量分别为1x ,…,4x (单位:吨).根据图2所示的程序框图,若1x ,2x ,分别为1,2,则输出的结果s 为 .13.答案:41【命题意图】本题考查算法中的循环结构和统计知识(二)选做题(14、15题,考生只能从中选做一题)14.(几何证明选讲选做题)如图3,AB,CD是半径为a的圆O的两条弦,他们相交于AB的中点P,23aPD=,∠OAP=30°则CP=14.答案:a 89【命题意图】本题考查了相交弦定理及弦的相关性质,考查了考生解决几何问题的能力 【解析】本题考查相交弦定理及弦的相关性质。

在△OPA 中,P 为AB 的中点,︒=∠30OAP ,所以a AP 23=, 又由相交弦定理得22239()328PC PD PA PC a a PC a ∙=⇒∙=⇒=. 15.(坐标系与参数方程选做题)在极坐标系(ρ,θ)(02θπ≤<)中,曲线2sin cos 1ρθρθ==-与的极坐标为 .15.答案:)43,2(π【命题意图】本题考查三角函数知识及极坐标系下的交点问题,考查了对极坐标方程的理解能力【解析】本题考查极坐标方程式下的交点问题,2sin 3sin 21cos 14ρθθθπρθ=⎧⇒=-⇒=⎨=-⎩, ∴222243sin 2=⨯=⨯=πρ,∴交点的极坐标为)43,2(π.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分l4分)()()()sin 3(0,0412212sin .3125f x A x A x x f f f πϕϕππαα=+∈-∞+∞=已知函数>,,<<),在时取得最大值。

(1)求(x)的最小周期(2)求(x)的解析式(3)若(+)=,求【命题意图】本题主要考查正弦型函数的周期、解析式的求解、已知三角函数数值求值及基本逻辑运算能力。

【参考答案】解:(1)23T π=,∴5sin 5α=±. 【点评】本类题型在历年高考中都出现,主要借助三角函数的性质及三角恒等变换求解问题,在高中数学中占重要地位,有时也与正弦、余弦定理相结合命题,在今后几年的高考中本类题型也将是重点考查内容.一般考查一个选择(填空)、一个解答题。

17.(12分)某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495】,(495,500】,……,(510,515】,由此得到样本的频率分布直方图,如图4(1)根据频率分布直方图,求重量超过505克的产品数量, (2)在上述抽取的40件产品中任取2件,设Y 为重量超过505克的产品数量,求Y 的分布列;(3)从该流水线上任取5件产品,求恰有2件产品的重量超过505克的概率。

【命题意图】本题主要考查频率分布直方图、离散型随机变量的分布列、古典概型求概率及应用概率知识解决实际问题的能力。

【参考答案】17.解:(1)根据频率分布直方图可知,重量超过505克的产品数量为[(0.010.05)5]4012+⨯⨯=(件).(2)Y 的可能取值为0,1,2.22824063(0)130C P Y C ===.件产品中重量超过505克的产品数量,则(5,0.3)B ξ ,故所求概率为18.(本小题满分14分)如图5, AEC 是半径为a 的半圆,AC 为直径,点E 为 AC 的中点,点B 和点C 为线段AD的三等分点,平面AEC 外一点F 满足FC =D F =,FE=6a (1)证明:EB FD ⊥;(2已知点,Q R 为线段,FE EB 上的点,23FQ FE =,23FR FB =,求平面BED 与平面RQD 所成的两面角的正弦值.【命题意图】本题是在解析几何与立体几何的交汇处命题,考查了圆的性质、空间中的线面垂直、二面角等知识,考查了同学们的空间想象能力以及空间思维能力。

【参考答案】 18.解法一: (1)证明:∵E 为 AC中点,AB=BC ,AC 为直径, ∴EB AD ⊥.222222EF =6(5)BF BE a a a =+=+ .∴EB FB ⊥.HD BD,HD RD ∴⊥⊥.RDB ∴∠为平面BED 与平面RQD 所成二面角的平面角.FB=FD,BC=CD,FC BD ∴⊥ . 5cos 55BC a FBC BF a∴∠===. 25sin FBC=5∴∠. 222255129RD=BD +BR 2BD BR cos FBC=4229335a a a a a ∴-∠+-= .5RB22293sin RDB=sin RD292953aFBC a ∴∠∠== .解法二: (1)证明:∵E 为 AC中点,AB=BC ,AC 为直径,∴EB AD ⊥.222222EF =6(5)BF BE a a a =+=+ .∴EB FB ⊥. 又BF BD=B ,EB BDF ∴⊥平面. FD BDF ⊂ 平面,∴EB FD ⊥.(2)解:如图,以B 为原点,BE 为x 轴正方向,BD为y 轴正方向,过B 作平面BEC 的垂线,建立空间直角坐标系,由此得1=(0,2,5)n ∴.∵平面BED 的法向量为2=(0,0,1)n,12529cos ,29n n ∴<>= .12229sin ,29n n ∴<>= .∴平面BED 与平面RQD 所成二面角正弦值为22929. 【点评】立体几何问题是每年必考的内容.一般考查一个选择(填空)、一个解答题.主要考查空间线面平行、垂直关系的证明,空间角、空间距离的求解.预计以后也是必考内容。

相关文档
最新文档