解析几何综合问题圆与椭圆双曲线抛物线等单元过关检测卷(五)带答案新教材高中数学艺考生专用

合集下载

解析几何综合问题圆与椭圆双曲线抛物线等强化训练专题练习(五)附答案人教版新高考分类汇编

解析几何综合问题圆与椭圆双曲线抛物线等强化训练专题练习(五)附答案人教版新高考分类汇编
高中数学专题复习
《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明评来自人得分一、选择题
1.(汇编福建理2)以抛物线 的焦点为圆心,且过坐标原点的圆的方程为( )
,消去x,
上述方程中判别式= ,
又 ,所以AB与DE平行.
6.(I) 为圆周的 点到直线 的距离为
设 的方程为
的方程为
(II)设椭圆方程为 ,半焦距为c,则
椭圆与圆O恰有两个不同的公共点,则 或
当 时, 所求椭圆方程为 ;
当 时, 所求椭圆方程为
(III)设切点为N,则由题意得,椭圆方程为
在 中, ,则 ,
(1)求椭圆的方程;
(2)若过C关于y轴对称的点D作椭圆的切线DE,则AB与DE有什么位置关系?证明你的结论.
6.已知直线l的方程为 ,且直线l与x轴交于点M,圆 与x轴交于 两点(如图).
(I)过M点的直线 交圆于 两点,且圆孤 恰为圆周的 ,求直线 的方程;
(II)求以l为准线,中心在原点,且与圆O恰有两个公共点的椭圆方程;
的方程为 ,代入椭圆 中,整理得
设 ,则
7.解:(1)由已知可设圆心坐标为 , 得 ,所以圆心坐标为 ,
所以圆的方程为 ………………………………
(2)设 ,由已知得 ,则 ,………………
……………………………
解之得: ……………………………………………
=1(0<b<2),
由椭圆的对称性知,|OC|=|OB|,

解析几何综合问题圆与椭圆双曲线抛物线等章节综合检测提升试卷(一)带答案新教材高中数学

解析几何综合问题圆与椭圆双曲线抛物线等章节综合检测提升试卷(一)带答案新教材高中数学

高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.以抛物线24y x 的焦点为圆心,且过坐标原点的圆的方程为( ) A .22x +y +2x=0 B .22x +y +x=0 C .22x +y -x=0D .22x +y -2x=0(汇编福建理)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.设椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为e =12,右焦点为F (c,0),方程ax 2-bx -c =0的两个实根分别为x 1和x 2,则点P (x 1,x 2)________. ①必在圆x 2+y 2=2上 ②必在圆x 2+y 2=2外O A 1A 2B 1B 2xy (第17③必在圆x 2+y 2=2内解析:由e =12=ca ,得a =2c ,b =3c .所以x 1+x 2=b a =32,x 1x 2=-c a =-12.于是,点P (x 1,x 2)到圆心(0,0)的距离为x 21+x 22=(x 1+x 2)2-2x 1x 2=34+1=74<2, 所以点P 在圆x 2+y 2=2内.3.已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称.直线4x -3y -2=0与圆C相交于A 、B 两点,且|AB |=6,则圆C 的方程为________.解析:抛物线y 2=4x ,焦点为F (1,0).∴圆心C (0,1),C 到直线4x -3y -2=0的距离d=55=1,且圆的半径r 满足r 2=12+32=10.∴圆的方程为x 2+(y -1)2=10. 评卷人得分三、解答题4.在平面直角坐标系xOy 中,如图,已知椭圆E :22221(0)y x a b a b+=>>的左、右顶点分别为1A 、2A ,上、下顶点分别为1B 、2B .设直线11A B 的倾斜角的正弦值为13,圆C 与以线段2OA 为直径的圆关于直线11A B 对称.(1)求椭圆E 的离心率;(2)判断直线11A B 与圆C 的位置关系,并说明理由; (3)若圆C 的面积为π,求圆C 的方程.5.已知抛物线:C 22(0)y px p =>的准线为l ,焦点为F .M e 的圆心在x 轴的正半轴上,且与y 轴相切.过原点O 作倾斜角为3π的直线n ,交l 于点A ,交M e 于另一点B ,且2AO OB ==.(Ⅰ)求M e 和抛物线C 的方程; (Ⅱ)若P 为抛物线C 上的动点,求PM PF ⋅u u u u r u u u r的最小值;(Ⅲ)过l 上的动点Q 向M e 作切线,切点为,S T ,求证:直线ST 恒过一个定点,并求该定点的坐标.6.已知直线l 的方程为2x =-,且直线l 与x 轴交于点M ,圆22:1O x y +=与x 轴交于,A B 两点(如图).(I )过M 点的直线1l 交圆于P Q 、两点,且圆孤PQ 恰为圆周的14,求直线1l 的方程;(II )求以l 为准线,中心在原点,且与圆O 恰有两个公共点的椭圆方程; (III )过M 点的圆的切线2l 交(II )中的一个椭圆于C D 、两点,其中C D 、两点在x 轴上方,求线段CD 的长.7.已知椭圆162422y x +=1,直线l :x =12.P 是直线l O lxyA B F · M第17题 ABOM P Qyxll 1上一点,射线OP 交椭圆于点R .又点Q 在OP 上且满足|OQ |·|OP |=|OR |2.当点P 在直线l 上移动时,求点Q 的轨迹方程,并说明轨迹是什么曲线. (汇编全国文,26)94.如图8—25,设点P 、Q 、R 的坐标分别为(12,y P ),(x ,y ),(x R ,y R ),由题设知x R >0,x >0.由点R 在椭圆上及点O 、Q 、R 共线,得方程组⎪⎪⎩⎪⎪⎨⎧==+xy x y y x R R R R 1162422 解得:⎪⎪⎩⎪⎪⎨⎧+=+=2222222232483248y x y x y x x x R R由点O 、Q 、R 共线,得x y y P =12,即xyy P 12= ③由题设|OQ |·|OP |=|OR |2,得2222222)(12R R P y x y y x +=+⋅+.将①、②、③代入上式,整理得点Q 的轨迹方程(x -1)2+322y=1(x >0).所以,点Q 的轨迹以(1,0)为中心,长、短半轴长分别为1和36且长轴在x 轴上的椭圆,去掉坐标原点.评述:本题主要考查直线、椭圆的方程和性质,曲线与方程的关系,轨迹的概念和求法等解析几何的基本思想及综合运用知识的能力.【参考答案】***试卷处理标记,请不要删除图8—25①③评卷人得分一、选择题1.D 抛物线的焦点为)0,1(F ,又圆过原点,所以1=R ,方程为021)1(2222=+-⇔=+-y x x y x 。

解析几何综合问题圆与椭圆双曲线抛物线等单元过关检测卷(三)带答案新教材高中数学

解析几何综合问题圆与椭圆双曲线抛物线等单元过关检测卷(三)带答案新教材高中数学

高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.以抛物线24y x 的焦点为圆心,且过坐标原点的圆的方程为( ) A .22x +y +2x=0 B .22x +y +x=0 C .22x +y -x=0D .22x +y -2x=0(汇编福建理)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称.直线4x -3y -2=0与圆C相交于A 、B 两点,且|AB |=6,则圆C 的方程为________.解析:抛物线y 2=4x ,焦点为F (1,0).∴圆心C (0,1),C 到直线4x -3y -2=0的距离d=55=1,且圆的半径r 满足r 2=12+32=10.∴圆的方程为x 2+(y -1)2=10.3.已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则p =_____.(汇编全国理,16)评卷人得分三、解答题4.在直角坐标系xOy 中,曲线C 1的点均在C 2:(x-5)2+y 2=9外,且对C 1上任意一点M ,M 到直线x=﹣2的距离等于该点与圆C 2上点的距离的最小值. (Ⅰ)求曲线C 1的方程;(Ⅱ)设P(x 0,y 0)(y 0≠±3)为圆C 2外一点,过P 作圆C 2的两条切线,分别与曲线C 1相交于点A ,B 和C ,D.证明:当P 在直线x=﹣4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值. 【汇编高考真题湖南理21】(本小题满分13分)5.已知椭圆1:C 22221(0)x y a b a b+=>>的右焦点为F ,上顶点为A ,P 为1C 上任一点,MN 是圆2:C 22(3)1x y +-=的一条直径.若与AF 平行且在y 轴上的截距为32-的直线l 恰好与圆2C 相切.(Ⅰ)求椭圆1C 的离心率;(7分)(Ⅱ)若PM PN ⋅的最大值为49,求椭圆1C 的方程.(8分)6.设顶点为P 的抛物线23(0)y ax x c a =-+≠交x 轴正半轴于A 、B 两点,交y轴正半轴于C 点,圆D (圆心为D )过A 、B 、C 三点,恰好与y 轴相切. 求证:PA DA ⊥.7.已知O (0,0),B (1,0),C (b ,c )是△OBC 的三个顶点.如图8—3. (Ⅰ)写出△OBC 的重心G ,外心F ,垂心H 的坐标,并证明G 、F 、H 三点共线;(Ⅱ)当直线FH 与OB 平行时,求顶点C 的轨迹.(汇编北京,21)【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.D 抛物线的焦点为)0,1(F ,又圆过原点,所以1=R ,方程为021)1(2222=+-⇔=+-y x x y x 。

解析几何综合问题圆与椭圆双曲线抛物线等一轮复习专题练习(五)带答案人教版高中数学新高考指导

解析几何综合问题圆与椭圆双曲线抛物线等一轮复习专题练习(五)带答案人教版高中数学新高考指导

高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、选择题1.(汇编陕西文数)9.已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则p的值为()(A)12(B)1(C)2 (D)4第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题2.已知圆C的圆心与抛物线y2=4x的焦点关于直线y=x对称.直线4x-3y-2=0与圆C相交于A 、B 两点,且|AB |=6,则圆C 的方程为________.解析:抛物线y 2=4x ,焦点为F (1,0).∴圆心C (0,1),C 到直线4x -3y -2=0的距离d=55=1,且圆的半径r 满足r 2=12+32=10.∴圆的方程为x 2+(y -1)2=10. 3.椭圆21)0,0(12222=>>=+e b a by ax 的离心率,右焦点F (c,0),方程02=-+c bx ax 的两个根分别为x 1,x 2,则点P (x 1,x 2)在与圆222=+y x 的位置关系是▲ . 评卷人得分三、解答题4.定义变换T :cos sin ,sin cos ,x y x x y y θθθθ'⋅+⋅=⎧⎨'⋅-⋅=⎩可把平面直角坐标系上的点(,)P x y 变换到这一平面上的点(,)P x y '''.特别地,若曲线M 上一点P 经变换公式T 变换后得到的点P '与点P 重合,则称点P 是曲线M 在变换T 下的不动点.(1)若椭圆C 的中心为坐标原点,焦点在x 轴上,且焦距为22,长轴顶点和短轴顶点间的距离为 2. 求该椭圆C 的标准方程. 并求出当3arctan 4θ=时,其两个焦点1F 、2F 经变换公式T 变换后得到的点1F '和2F '的坐标;(2)当3arctan 4θ=时,求(1)中的椭圆C 在变换T 下的所有不动点的坐标; (3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换T :cos sin ,sin cos ,x y x x y y θθθθ'⋅+⋅=⎧⎨'⋅-⋅=⎩(2k πθ≠,k Z ∈)下的不动点的存在情况和个数.5.平面直角坐标系xOy 中,已知⊙M 经过点F 1(0,-c ),F 2(0,c ),A (3c ,0)三点,其中c >0.(1)求⊙M 的标准方程(用含c 的式子表示);(2)已知椭圆22221(0)y x a b a b+=>>(其中222a b c -=)的左、右顶点分别为D 、B ,⊙M 与x 轴的两个交点分别为A 、C ,且A 点在B 点右侧,C 点在D 点右侧. ①求椭圆离心率的取值范围;②若A 、B 、M 、O 、C 、D (O 为坐标原点)依次均匀分布在x 轴上,问直线MF 1与直线DF 2的交点是否在一条定直线上?若是,请求出这条定直线的方程;若不是,请说明理由.6.若椭圆22221(0)x y a b a b+=>>的左右焦点分别为12,F F ,椭圆上的点到焦点的最短距离为1,椭圆的离心率为45,以原点为圆心、短轴长为直径作圆O ,过圆O 外一点P 作圆O 的两条切线,PA PB 。

解析几何综合问题圆与椭圆双曲线抛物线等章节综合检测提升试卷(五)带答案人教版高中数学高考真题汇编

解析几何综合问题圆与椭圆双曲线抛物线等章节综合检测提升试卷(五)带答案人教版高中数学高考真题汇编

高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编四川理)已知两定点()()2,0,1,0A B -,如果动点P 满足2PA PB =,则点P 的轨迹所包围的图形的面积等于(A )9π (B )8π (C )4π (D )π第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.已知椭圆()222210x y a b a b+=>>和圆O :222x y b +=,过椭圆上一点P 引圆O 的两条切线,切点分别为,A B .若90APB ∠=,则椭圆离心率e 的取值范围是▲ .3.若直线mx +ny =4和圆O :x 2+y 2=4没有公共点,则过点(m ,n )的直线与椭圆x 25+y 24=1的交点个数为________. 解析:由题意可知,圆心O 到直线mx +ny =4的距离大于半径,即得m 2+n 2<4,所以点(m ,n )在圆O 内,而圆O 是以原点为圆心,椭圆的短半轴长为半径的圆,故点(m ,n )在椭圆内,因此过点(m ,n )的直线与椭圆必有2个交点. 评卷人得分三、解答题4.在平面直角坐标系x O y 中,已知圆1C :22(1)16x y -+=,圆2C :22(1)1x y ++=,点S 为圆1C 上的一个动点,现将坐标平面折叠,使得圆心2(10)C -, 恰与点S 重合,折痕与直线1SC 交于点P .(1)求动点P 的轨迹方程;(2)过动点S 作圆2C 的两条切线,切点分别为M N 、,求MN 的最小值; (3)设过圆心2(10)C -, 的直线交圆1C 于点A B 、,以点A B 、分别为切点的两条切线交于点Q ,求证:点Q 在定直线上.5.已知正三角形OAB 的三个顶点都在抛物线y 2=2x 上,其中O 为坐标 原点,设圆C 是△OAB 的外接圆(点C 为圆心). (1)求圆C 的方程;(2)设圆M 的方程为(x -4-7cos θ)2+(y -7sin θ)2=1,过圆M 上任意一点P 分别作圆C的两条切线PE 、PF ,切点为E 、F ,求CE ·CF 的最大值和最小值.xNMOyA B l :x =t 6.已知椭圆)0(12222>>=+b a by a x 的离心率为23,椭圆的左、右两个顶点分别为A ,B ,AB=4,直线(22)x t t =-<<与椭圆相交于M ,N 两点,经过三点A ,M ,N 的圆与经过三点B ,M ,N 的圆分别记为圆C1与圆C2. (1)求椭圆的方程;(2)求证:无论t 如何变化,圆C1与圆C2的圆心距是定值; (3)当t 变化时,求圆C1与圆C2的面积的和S 的最小值.7.有如下结论:“圆222r y x =+上一点),(00y x P 处的切线方程为200r y y y x =+”,类比也有结论:“椭圆),()0(1002222y x P b a by a x 上一点>>=+处的切线方程为12020=+by y a x x ”,过椭圆C :1422=+y x 的右准线l 上任意一点M 引椭圆C 的两条切线,切点为 A .B.(1)求证:直线AB 恒过一定点;(2)当点M 在的纵坐标为1时,求△ABM 的面积【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.B第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2. 212e ≤< 3.2 评卷人得分三、解答题4.命题立意:本题主要考查直线、圆、椭圆基础知识,考查运算求解、综合应用能力.解:(1)由题意得121124PC PC PC PS C C +=+=>,故P 点的轨迹是以C 1、C 2为焦点,4为长轴长的椭圆,则24 1a c ==,,所以2a =,3b =, 故P 点的轨迹方程是22143y x +=.(5分) (2)法1(几何法) 四边形SMC 2N 的面积=211222SC MN SM MC SM ⋅=⋅⨯=,所以222222212cos 21sin 21SM MN MSC MSC SC SC ==∠=-∠=-,(9分)从而SC 2取得最小值时,MN 取得最小值, 显然当(3 0)S -,时,SC 2取得最大值2,所以m i n 12134MN =-=.(12分)法2(代数法) 设S (x 0,y 0),则以SC 2为直径的圆的标准方程为()()()()22220000112222x y x yx y -+-+-=+,该方程与圆C 2的方程相减得,()00010x x y y x +++=,(8分) 则圆心2C 到直线MN 的距离()220011d x y ==++22000121x y x +++,因为()2200116x y -+=,所以22000152x y x +=+, 从而01164d x =+,[]03 5x ∈-,,故当03x =-时d m a x 12=,因为221MN d =-,所以()2m i n 1212MN =-=3.(12分)(3)设( )Q m n ,,则“切点弦”AB 的方程为()1(1)16m x ny --+=,将点(-1,0)代入上式得7m =-, R n ∈, 故点Q 在定直线7x =-上.(16分)5.(1)解法一:设A 、B 两点坐标分别为⎝⎛⎭⎫y 212,y 1,⎝⎛⎭⎫y 222,y 2, 由题设知⎝⎛⎭⎫y 2122+y 21=⎝⎛⎭⎫y 2222+y 22=⎝⎛⎭⎫y 212-y 2222+(y 1-y 2)2,解得y 21=y 22=12. 所以A (6,23),B (6,-23)或A (6,-23),B (6,23). 设圆心C 的坐标为(r,0),则r =23×6=4.因此圆C 的方程为(x -4)2+y 2=16.解法二:设A 、B 两点坐标分别为(x 1,y 1),(x 2,y 2),由题设知x 21+y 21=x 22+y 22.又因为y 21=2x 1,y 22=2x 2,可得x 21+2x 1=x 22+2x 2,即(x 1-x 2)(x 1+x 2+2)=0.由x 1>0,x 2>0,可知x 1=x 2,故A 、B 两点关于x 轴对称,所以圆心C 在x 轴上.设C 点的坐标为(r,0),则A 点坐标为⎝⎛⎭⎫32r ,32r ,于是有⎝⎛⎭⎫32r 2=2×32r ,解得r=4,所以圆C 的方程为(x -4)2+y 2=16.(2)设∠ECF =2α,则CE ·CF =|CE |·|CF |·cos 2α=16cos 2α=32cos 2α-16. 在Rt △PCE 中,cos α=r |PC |=4|PC |.由圆的几何性质得 PC ≤MC +1=7+1=8, PC ≥MC -1=7-1=6.所以12≤cos α≤23,由此可得-8≤CE ·CF ≤-169.故CE ·CF 的最大值为-169,最小值为-8. 6.解:(1)由题意:42,23==a a c 可得:1,3,2222=-===c a b c a , 故所求椭圆方程为:=+224y x 1 ………………………3分 (2)易得A 的坐标(-2,0),B 的坐标(2,0),M 的坐标)24,(2t t -,N 的坐标)24,(2t t --,线段AM 的中点P )44,22(2t t --, 直线AM 的斜率t t t t k +-=+-=222122421 ………………………………………5分又AM PC ⊥1, ∴直线1PC 的斜率t tk -+-=2222∴直线1PC 的方程44)22(2222t t x t t y -+---+-=,∴1C 的坐标为)0,863(-t 同理2C 的坐标为)0,863(+t (8)分∴2321=C C ,即无论t 如何变化,为圆C1与圆C2的圆心距是定值.……………11分(2)圆1C 的半径为1AC 8103+=t ,圆2C 的半径为83102tBC -=, 则)1009(3222221+=+=t BC AC S πππ (2-<t <2)显然t 0=时,S 最小,825min π=S . ……………15分7.解:(1)设M 14),,(),(),)(,334(11221,1=+∈y y x x MA y x B y x A R t t 的方程为则 ∵点M 在MA 上∴13311=+ty x ①……………………3分 同理可得13322=+ty x ②…………………………5分 由①②知AB 的方程为)1(3,133ty x ty x -==+即............6分 易知右焦点F (0,3)满足③式,故AB 恒过椭圆C 的右焦点F (0,3) (8)分(2)把AB 的方程0167,14)1(322=--=+-=y y y x y x 化简得代入 ∴7167283631||=+⋅+=AB ……………………12分 又M 到AB 的距离33231|334|=+=d∴△ABM 的面积21316||21=⋅⋅=d AB S ……………………15分。

解析几何综合问题圆与椭圆双曲线抛物线等章节综合检测专题练习(五)带答案人教版高中数学考点大全

解析几何综合问题圆与椭圆双曲线抛物线等章节综合检测专题练习(五)带答案人教版高中数学考点大全

高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( ) A .22x +y +2x=0 B .22x +y +x=0 C .22x +y -x=0D .22x +y -2x=0(汇编福建理)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.已知121(0,0),m n m n+=>>当mn 取得最小值时,直线22y x =-+与曲线F(-c,0)A(-1,0)C(1,0)B(0,b)y xox x m+1y yn =的交点个数为 ▲3.若抛物线212y x =与圆222210x y ax a +-+-=有且只有两个不同的公共点,则实数a 的取值范围为___错 评卷人得分三、解答题4.(汇编年高考课标Ⅰ卷(文))已知圆22:(1)1M x y ++=,圆22:(1)9N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长是,求||AB .请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的 方框涂黑.5.在直角坐标系xOy 中,曲线C 1的点均在C 2:(x-5)2+y 2=9外,且对C 1上任意一点M ,M 到直线x=﹣2的距离等于该点与圆C 2上点的距离的最小值. (Ⅰ)求曲线C 1的方程;(Ⅱ)设P(x 0,y 0)(y 0≠±3)为圆C 2外一点,过P 作圆C 2的两条切线,分别与曲线C 1相交于点A ,B 和C ,D.证明:当P 在直线x=﹣4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值. 【汇编高考真题湖南理21】(本小题满分13分)6.已知椭圆2221(01)y x b b+=<<的左焦点为F ,左右顶点分别为A,C 上顶点为B ,过F,B,C 三点作⊙P ,其中圆心P 的坐标为(,)m n .(1) 若椭圆的离心率32e =,求⊙P 的方程;(2)若⊙P 的圆心在直线0x y +=上,求椭圆的方程.7. 如图,已知椭圆C :22221(0)x y a b a b+=>>的长轴AB 长为4,离心率32e =,O为坐标原点,过B 的直线l 与x 轴垂直.P 是椭圆上异于A 、B 的任意一点,PH x ⊥轴,H 为垂足,延长HP 到点Q 使得HP PQ =,连结AQ 延长交直线l 于点M ,N 为MB 的中点.(1)求椭圆C 的方程;(2)证明:Q 点在以AB 为直径的圆O 上;(3)试判断直线QN 与圆O 的位置关系.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.D 抛物线的焦点为)0,1(F ,又圆过原点,所以1=R ,方程为021)1(2222=+-⇔=+-y x x y x 。

解析几何综合问题圆与椭圆双曲线抛物线等课后限时作业(五)带答案人教版高中数学

解析几何综合问题圆与椭圆双曲线抛物线等课后限时作业(五)带答案人教版高中数学

高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编四川理)已知两定点()()2,0,1,0A B -,如果动点P 满足2PA PB =,则点P 的轨迹所包围的图形的面积等于(A )9π (B )8π (C )4π (D )π第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.已知121(0,0),m n m n+=>>当mn 取得最小值时,直线22y x =-+与曲线x x m+1y yn =的交点个数为 ▲3.若抛物线212y x =与圆222210x y ax a +-+-=有且只有两个不同的公共点,则实数a 的取值范围为___错 评卷人得分三、解答题4.如图,直角三角形ABC 的顶点坐标(2,0)A -,直角顶点(0,22)B -,顶点C 在x 轴上,点P 为线段OA 的中点. (1)求BC 边所在直线方程;(2)求三角形ABC 外接圆的方程;(3)若动圆N 过点P 且与ABC ∆的外接圆内切, 求动圆N 的圆心N 所在的曲线方程.5.已知椭圆2214y x +=的左,右两个顶点分别为A 、B .曲线C 是以A 、B 两点为顶点,离心率为5的双曲线.设点P 在第一象限且在曲线C 上,直线AP 与椭圆相交于另一点T .(1)求曲线C 的方程;(2)设P 、T 两点的横坐标分别为1x 、2x ,证明:121x x ⋅=;(本小题满分14分)6.中心在原点,焦点在x 轴上的椭圆C 的焦距为2,两准线间的距离为10.设A(5,0), B(1,0).(1)求椭圆C 的方程;(4分)(2)过点A 作直线与椭圆C 只有一个公共点D ,求过B ,D 两点,且以AD 为切线的圆的方程;(6分)(3)过点A 作直线l 交椭圆C 于P ,Q 两点,过点P 作x 轴的垂线交椭圆C 于另一点S .若→AP= t →AQ (t >1),求证:→SB= t →BQ (6分)7.已知椭圆162422y x +=1,直线l :x =12.P 是直线l 上一点,射线OP 交椭圆于点R .又点Q 在OP 上且满足|OQ |·|OP |=|OR |2.当点P 在直线l 上移动时,求点Q 的轨迹方程,并说明轨迹是什么曲线. (汇编全国文,26)94.如图8—25,设点P 、Q 、R 的坐标分别为(12,y P ),(x ,y ),(x R ,y R ),由题设知x R >0,x >0.由点R 在椭圆上及点O 、Q 、R 共线,得方程组⎪⎪⎩⎪⎪⎨⎧==+xy x y y x R R R R 1162422 解得:⎪⎪⎩⎪⎪⎨⎧+=+=2222222232483248y x y x y x x x R R由点O 、Q 、R 共线,得x y y P =12,即xyy P 12= ③图8—25①③由题设|OQ |·|OP |=|OR |2,得2222222)(12R R P y x y y x +=+⋅+.将①、②、③代入上式,整理得点Q 的轨迹方程(x -1)2+322y =1(x >0).所以,点Q 的轨迹以(1,0)为中心,长、短半轴长分别为1和36且长轴在x 轴上的椭圆,去掉坐标原点.评述:本题主要考查直线、椭圆的方程和性质,曲线与方程的关系,轨迹的概念和求法等解析几何的基本思想及综合运用知识的能力.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.B第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.23.由消去,得.故当,即当时,两曲线有且只有两个不同的公共点.分析:当时,圆的方程为,它与抛物线的公共点的个数为三个(如图1),而不是两个.,仅是其横坐标有两个不同的解的充要条件,而不是有两个公共点的解析:由222212210y x x y ax a ⎧=⎪⎨⎪+-+-=⎩,消去y ,得2212102x a x a ⎛⎫+-+-= ⎪⎝⎭. 故当22124(1)02a a ⎛⎫∆=---> ⎪⎝⎭,即当178a <时,两曲线有且只有两个不同的公共点.分析:当1a =时,圆的方程为22(1)1x y -+=,它与抛物线的公共点的个数为三个(如图1),而不是两个. 0∆>,仅是其横坐标有两个不同的解的充要条件,而不是有两个公共点的充要条件.正两曲线有且只有两个不同的公共点的充要条件是方程2212102x a x a ⎛⎫+-+-= ⎪⎝⎭有两个相等的正根或者有一个正根,一个负根,即22124(1)021202a a a ⎧⎛⎫∆=---=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪--> ⎪⎪⎝⎭⎩,,或222124(1)0210a a a ⎧⎛⎫∆=--->⎪ ⎪⎨⎝⎭⎪-<⎩,, 解得178a =或11a -<<. 综上可知,当178a =或11a -<<时,抛物线与圆有且只有两个不同的公共点.说明:“有且只有”、“当且仅当”等用语,都是指既有充分性,又有必要性. 评卷人得分三、解答题4.解:(1)∵k A B =-2,AB⊥BC,∴k C B =22,……………………………2分∴直线BC 方程为:y =22x -22. ……………………………4分(2)直线BC 与x 轴交于C,令y =0,得C (4,0),∴圆心M (1,0),……………7分又∵AM =3,∴外接圆的方程为22(1)9x y -+=. ……………………10分 (3)∵P (-1,0),M (1,0),∵圆N 过点P (-1,0),∴PN 是该圆的半径.又∵动圆N 与圆M 内切,∴MN =3-PN ,即MN + PN =3. ……………12分 ∴点N 的轨迹是以M 、P 为焦点,长轴长为3的椭圆, ……………14分 ∴a =32,c =1,b 2=a 2-c 2=54,∴轨迹方程为2219544x y +=. …………………16分 5.(本小题满分14分)(本小题主要考查椭圆与双曲线的方程、直线与圆锥曲线的位置关系、函数最值等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力)(1)解:依题意可得(1,0)A -,(1,0)B .……………………………………………1分设双曲线C 的方程为2221y x b-=()0b >,因为双曲线的离心率为5,所以2151b +=,即2b =. 所以双曲线C 的方程为2214y x -=.……………………………………………3分 (2)证法1:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),直线AP 的斜率为k (0k >),则直线AP 的方程为(1)y k x =+,………………………………………………4分联立方程组()221,1.4y k x y x ⎧=+⎪⎨+=⎪⎩…………………………………………………5分 整理,得()22224240kxk x k +++-=,解得1x =-或2244k x k -=+.所以22244k x k -=+.……………………………………6分 同理可得,21244k x k+=-.……………………………………………………………7分 所以121x x ⋅=.……………………………………………………………………8分 证法2:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =), 则111AP y k x =+,221AT y k x =+.…………………………………………………………………………4分因为A P A T k k =,所以121211y y x x =++,即()()2212221211y y x x =++.………………5分 因为点P 和点T 分别在双曲线和椭圆上,所以221114y x -=,222214y x +=. 即()221141y x =-,()222241y x =-.…………………………………………6分所以()()()()22122212414111x x x x --=++,即12121111x x x x --=++.…………………………………7分 所以121x x ⋅=.………………………………………………………………………8分证法3:设点11(,)P x y ,直线AP 的方程为11(1)1y y x x =++,……………………4分联立方程组()11221,11.4y y x x y x ⎧=+⎪+⎪⎨⎪+=⎪⎩………………………………………………5分整理,得222222111114(1)24(1)0x y x y x y x ⎡⎤++++-+=⎣⎦,解得1x =-或221122114(1)4(1)x y x x y +-=++.…………………………………………………………………6分将221144y x =-代入221122114(1)4(1)x y x x y +-=++,得11x x =,即211x x =. 所以121x x ⋅=.……………………………………………………………………8分 (3)解:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =), 则()111,PA x y =---,()111,PB x y =--.因为15PA PB ⋅≤,所以()()21111115x x y ---+≤,即221116x y +≤.…………9分因为点P 在双曲线上,则221114y x -=,所以22114416x x +-≤,即214x ≤. 因为点P 是双曲线在第一象限内的一点,所以112x <≤.………………………10分 因为1221||||||2S AB y y ==,21111||||||22S OB y y ==, 所以()()22222222122121121441544S S y y x x x x -=-=---=--.…………………11分由(2)知,121x x ⋅=,即211x x =. 设21t x =,则14t <≤,221245S S t t-=--. 设()45t tf t =--,则()()()222241t t f t t t -+'=-+=, 当12t <<时,()0f t '>,当24t <≤时,()0f t '<, 所以函数()f t 在()1,2上单调递增,在(]2,4上单调递减. 因为()21f =,()()140f f ==,所以当4t =,即12x =时,()()2212min40S S f -==.………………………12分当2t =,即12x =时,()()2212max21S S f -==.……………………………13分所以2212S S -的取值范围为[]0,1.…………………………………………14分说明:由()222212121254541S S x x x x -=-+≤-=,得()2212max1S S -=,给1分.6.(1)设椭圆的标准方程为22221(0)x y a b a b +=>>依题意得:222,210,c a c=⎧⎪⎨=⎪⎩,得1,5,c a =⎧⎪⎨=⎪⎩ ∴24b =所以,椭圆的标准方程为22154x y +=. ……………4分(2)设过点A 的直线方程为:(5)y k x =-,代入椭圆方程22154x y +=得;2222(45)50125200k x k x k +-+-= (*)依题意得:0∆=,即2222(50)4(450)(12520)0k k k -+-= 得:55k =±,且方程的根为1x = 45(1,)5D ∴± ……………7分 当点D 位于x 轴上方时,过点D 与AD 垂直的直线与x 轴交于点E , 直线DE 的方程是:455(1)5y x -=-, 1(,0)5E ∴ ……………8分 所求圆即为以线段DE为直径的圆,故方程为:232524()()5525x y -+-=……………9分 同理可得:当点D 位于x 轴下方时,圆的方程为:232524()()5525x y -++=.……10分 (3)设11(,)P x y ,22(,)Q x y 由AP =t AQ 得:12125(5)x t x y ty -=-⎧⎨=⎩, ……………12分代入22112222154154x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩122332x t t x t =-+⎧⎪∴⎨-=⎪⎩(**) ……………14分 要证SB =tBQ ,即证12121(1) 1 2x t x y ty -=-⎧⎨=⎩()()由方程组(**)可知方程组(1)成立,(2)显然成立.∴SB tBQ = ……………16分7.。

解析几何综合问题圆与椭圆双曲线抛物线等二轮复习专题练习(五)带答案新高考高中数学

解析几何综合问题圆与椭圆双曲线抛物线等二轮复习专题练习(五)带答案新高考高中数学

高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编福建理2)以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( ) A .22x +y +2x=0 B .22x +y +x=0C .22x +y -x=0D .22x +y -2x=0第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.已知实数0p >,直线3420x y p -+=与抛物线22x py =和圆222()24p p x y +-=从左到右的交点依次为,A B C D 、、、则ABCD的值为 ▲ .高考资源网w 。

w-w*k&s%5¥u3.椭圆21)0,0(12222=>>=+e b a by ax 的离心率,右焦点F (c,0),方程02=-+c bx ax 的两个根分别为x 1,x 2,则点P (x 1,x 2)在与圆222=+y x 的位置关系是▲ . 评卷人得分三、解答题4.如图,椭圆0C :22221(0x y a b a b +=>>,a ,b 为常数),动圆22211:C x y t +=,1b t a <<。

点12,A A 分别为0C 的左,右顶点,1C 与0C 相交于A ,B ,C ,D 四点。

(Ⅰ)求直线1AA 与直线2A B 交点M 的轨迹方程;(Ⅱ)设动圆22222:C x y t +=与0C 相交于////,,,A B C D 四点,其中2b t a <<, 12t t ≠。

若矩形ABCD 与矩形////A B C D 的面积相等,证明:2212t t +为定值。

【汇编高考真题辽宁理20】(本小题满分12分)5.在直角坐标系xOy 中,曲线C 1的点均在C 2:(x-5)2+y 2=9外,且对C 1上任意一点M ,M 到直线x=﹣2的距离等于该点与圆C 2上点的距离的最小值. (Ⅰ)求曲线C 1的方程;(Ⅱ)设P(x 0,y 0)(y 0≠±3)为圆C 2外一点,过P 作圆C 2的两条切线,分别与曲线C 1相交于点A ,B 和C ,D.证明:当P 在直线x=﹣4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值. 【汇编高考真题湖南理21】(本小题满分13分)6.已知椭圆162422y x +=1,直线l :x =12.P 是直线l 上一点,射线OP 交椭圆于点R .又点Q 在OP 上且满足|OQ |·|OP |=|OR |2.当点P 在直线l 上移动时,求点Q 的轨迹方程,并说明轨迹是什么曲线. (汇编全国文,26)94.如图8—25,设点P 、Q 、R 的坐标分别为(12,y P ),(x ,y ),(x R ,y R ),由题设知x R >0,x >0.图8—25由点R 在椭圆上及点O 、Q 、R 共线,得方程组⎪⎪⎩⎪⎪⎨⎧==+xy x y y x R R R R 1162422 解得:⎪⎪⎩⎪⎪⎨⎧+=+=2222222232483248y x y x y x x x R R由点O 、Q 、R 共线,得x y y P =12,即xyy P 12= ③由题设|OQ |·|OP |=|OR |2,得2222222)(12R R P y x y y x +=+⋅+.将①、②、③代入上式,整理得点Q 的轨迹方程(x -1)2+322y=1(x >0).所以,点Q 的轨迹以(1,0)为中心,长、短半轴长分别为1和36且长轴在x 轴上的椭圆,去掉坐标原点.评述:本题主要考查直线、椭圆的方程和性质,曲线与方程的关系,轨迹的概念和求法等解析几何的基本思想及综合运用知识的能力.7.已知O (0,0),B (1,0),C (b ,c )是△OBC 的三个顶点.如图8—3. (Ⅰ)写出△OBC 的重心G ,外心F ,垂心H 的坐标,并证明G 、F 、H 三点共线;(Ⅱ)当直线FH 与OB 平行时,求顶点C 的轨迹.(汇编北京,21)【参考答案】***试卷处理标记,请不要删除①③评卷人得分一、选择题1.DD【解析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原点,所以圆的半径为r=1,故所求圆的方程为22x-1)+y =1(,即22x -2x+y =0,选D 。

解析几何综合问题圆与椭圆双曲线抛物线等单元过关检测卷(二)带答案新教材高中数学艺考生专用

解析几何综合问题圆与椭圆双曲线抛物线等单元过关检测卷(二)带答案新教材高中数学艺考生专用

高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分 一、选择题1.以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( )A .22x +y +2x=0B .22x +y +x=0C .22x +y -x=0D .22x +y -2x=0(汇编福建理) 第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分 二、填空题2.已知圆22670x y x +--=与抛物线22(0)y px p =>的准线相切,则p 的值为 .3.已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称.直线4x -3y -2=0与圆C相交于A 、B 两点,且|AB |=6,则圆C 的方程为________.解析:抛物线y2=4x,焦点为F(1,0).∴圆心C(0,1),C到直线4x-3y-2=0的距离d=55=1,且圆的半径r满足r2=12+32=10.∴圆的方程为x2+(y-1)2=10.评卷人得分三、解答题4.(汇编年高考福建卷(文))如图,在抛物线2:4E y x=的焦点为F,准线l与x轴的交点为A.点C在抛物线E上,以C为圆心OC为半径作圆,设圆C与准线l 的交于不同的两点,M N.(1)若点C的纵坐标为2,求MN;(2)若2AF AM AN=⋅,求圆C的半径.5.已知椭圆C:x24+y2=1,过点(m,0)作圆x2+y2=1的切线l交椭圆G于A、B 两点.(1)求椭圆C的焦点坐标和离心率;(2)将|AB|表示为m的函数,并求|AB|的最大值.6.已知椭圆x2+22by=1(0<b<1)的左焦点为F,左、右顶点分别为A、C,上顶点为B.过F、B、C三点作圆P,其中圆心P的坐标为(m,n).(1)当m+n>0时,求椭圆离心率的取值范围;(2)直线AB与圆P能否相切?证明你的结论.O xy7.已知椭圆1:C 22221(0)x y a b a b+=>>的右焦点为F ,上顶点为A ,P 为1C 上任一点,MN 是圆2:C 22(3)1x y +-=的一条直径.若与AF 平行且在y 轴上的截距为32-的直线l 恰好与圆2C 相切.(Ⅰ)求椭圆1C 的离心率;(7分)(Ⅱ)若PM PN ⋅u u u u r u u u r 的最大值为49,求椭圆1C 的方程.(8分)【参考答案】***试卷处理标记,请不要删除评卷人得分 一、选择题1.D 抛物线的焦点为)0,1(F ,又圆过原点,所以1=R ,方程为021)1(2222=+-⇔=+-y x x y x 。

解析几何综合问题圆与椭圆双曲线抛物线等强化训练专题练习(五)附答案高中数学

解析几何综合问题圆与椭圆双曲线抛物线等强化训练专题练习(五)附答案高中数学
A. B. C. D. (汇编福建理)
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
2.如果以原点为圆心的圆经过双曲线 : 的顶点,并且被双曲线的右准线分成弧长之比为3:1的两段弧,则双曲线的离心率为________
3.圆心在抛物线 上,并且和抛物线的准线及 轴都相切的圆的标准方程为▲.
评卷人
得分
二、填空题
2.
3.
评卷人
得分
三、解答题
4.
5.(1)由 ,c=2,得a= ,b=2.
所求椭圆方程为 .…………………………………………………………4分
(2)设 ,则 ,
故 , .………………………………………………6分
①由题意,得 .
化简,得 ,所以点 在以原点为圆心,2为半径的圆上.…………8分
②设 ,则 .
将 , ,代入上式整理,得
.…………………………………………………………10分
因为 ,k2>0,所以 , .…………………………12分
所以 .化简,得
解之,得 , .
故离心率的取值范围是 .………………………………………………14分
(说明:不讨论 ,得 的扣2分)
6.
7.(1)设椭圆的标准方程为
评卷人
得分
三、解答题
4.已知椭圆 和圆 ,左顶点和下顶点分别为A,B,且F是椭圆 的右焦点.
(1)若点P是曲线 上位于第二象限的一点,且△ 的面积为
求证:
(2)点M和N分别是椭圆 和圆 上位于y轴右侧的动点,且直线BN的斜率是直线BM斜率的2倍,求证:直线MN恒过定点.
5.已知椭圆 的右焦点为 ,离心率为 .

圆锥曲线与方程椭圆双曲线抛物线单元过关检测卷(五)带答案新教材高中数学

圆锥曲线与方程椭圆双曲线抛物线单元过关检测卷(五)带答案新教材高中数学

高中数学专题复习
《圆锥曲线与方程椭圆双曲线抛物线》单元过关
检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.(汇编年高考江西卷(文))已知点A(2,0),抛物线C:x 2=4y 的焦点为F,射线FA 与抛物线C 相交于点M,与其准线相交于点N,则|FM|:|MN|=
( )
A .2:
B .1:2
C .1:
D .1:3 2.1 .(汇编年高考湖北卷(理))已知04π
θ<<,则双曲线
22122:1cos sin x y C θθ-=与22
2222:1sin sin tan y x C θθθ-=的 ( ) A .实轴长相等 B .虚轴长相等 C .焦距相等 D .离心率相等 3.(汇编全国卷2文数)(12)已知椭圆C :22
221x y a b +=(a>b>0)的离心率为32
,过右焦点F 且斜率为k (k>0)的直线于C 相交于A 、B 两点,若3AF FB =。

则k =( )
(A )1 (B )2 (C )3 (D )2。

解析几何综合问题圆与椭圆双曲线抛物线等单元过关检测卷(二)带答案新高考高中数学艺考生专用

解析几何综合问题圆与椭圆双曲线抛物线等单元过关检测卷(二)带答案新高考高中数学艺考生专用

高中数学专题复习
《解析几何综合问题圆与椭圆双曲线抛物线等》
单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( )
A .22x +y +2x=0
B .22x +y +x=0
C .22x +y -x=0
D .22x +y -2x=0(汇编福建理) 第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分 二、填空题
2. 如果以原点为圆心的圆经过双曲线C :)0,0(12222>>=-b a b
y a x 的顶点,并且被双曲线的右准线分成弧长之比为3:1的两段弧,则双曲线的离心率为________。

圆锥曲线与方程椭圆双曲线抛物线单元过关检测卷(五)含答案人教版新高考分类汇编艺考生专用

圆锥曲线与方程椭圆双曲线抛物线单元过关检测卷(五)含答案人教版新高考分类汇编艺考生专用

高中数学专题复习《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若0MA MB =,则k =( )A .12B .22C .2D .22.(汇编江西理)P 是双曲线22x y 1916-=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN|的最大值为( ) A . 6 B .7 C .8 D .93.(汇编辽宁理数) (9)设双曲线的—个焦点为F ;虚轴的—个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( ) (A) 2 (B)3 (C)312+ (D) 512+4.(汇编江西理)过椭圆22221x y a b+=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=,则椭圆的离心率为( ) A .22B .33C .12D .13【解析】因为2(,)b P c a -±,再由1260F PF ∠=有232,b a a=从而可得33c e a ==,故选B5.(汇编江西理7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是 ( ) A .(0,1) B .1(0,]2 C .2(0,)2D .2[,1)2 6.(汇编山东理13) 设双曲线)0(12222b a by a x <<=-的半焦距为c ,直线l 过),0)(0,(b a 两点,已知原点到直线l 的距离为c 43,则双曲线的离心率为 ( )A . 2B . 3C . 2D .332 7.(汇编安徽文)(2)椭圆1422=+y x 的离心率为( )A .23 B .43 C .22 D .32 8.在抛物线25(0)y x ax a==-≠上取横坐标为14x =-,22x =的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线顶点的坐标为( )(A )(2,9)-- (B )(0,5)- (C )(2,9)- (D )(1,6)- (汇编年高考四川卷理科10)9.已知双曲线22221(0b 0)x y a a b-=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为________________.22154x y -= 10.过抛物线y =ax 2(a >0)的焦点F 用一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则qp 11+等于( ) A .2a B .a21 C .4a D .a4(汇编全国,11)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题11.已知双曲线1422=-y x 的焦点分别为21,F F ,点),(y x P (0,0)x y >>在双曲线上,且9021=∠PF F ,则点P 的坐标为 ★ .12.点(3,1)P -在椭圆22221(0)x y a b a b +=>>的左准线上,过点P 沿斜率52-的直线入射的光线,经直线2y =-反射后通过椭圆的左焦点,则这个椭圆的离心率为 ▲13.若曲线22141x y k k+=+-表示双曲线,则k 的取值范围是 ▲ . 14.( 汇编年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部与边界).若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是__________.15.以抛物线y 2=4x 的焦点为圆心,且过坐标原点的圆的方程为 ________________.解析:∵抛物线y 2=4x 的焦点为(1,0),∴满足题意的圆的方程为(x -1)2+y 2=1,整理得x 2+y 2-2x =0.16.直线6340x y --=被抛物线26y x =所截得的线段长为__________________ 评卷人得分三、解答题17.B 是经过椭圆2222 1.x y a b+=(0)a b >> 右焦点的任一弦,若过椭圆中心O的弦//MN AB ,求证:2||MN :||AB 是定值18.(本题满分14分)在△ABC 中,设||BC m =,当内角满足条件|sin sin |C B -A sin 21=时,求动点A 的轨迹方程.19.(汇编年高考湖北卷(理))如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别为2m ,2n ()m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,BDM ∆和ABN ∆的面积分别为1S 和2S .(I)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(II)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.20.在平面直角坐标系xOy 中,已知圆C 的圆心在第二象限,在,y 轴上截得的弦长为4且与直线y=x 相切于坐标原点O .椭圆()019222 a y ax =+ 与圆C 的一个交点到椭圆两焦点的距离之和为10. (1)求圆C 的方程;(2)若圆C 上存在异于原点的点Q ,使点Q 到椭圆右焦点F 的距离等于线段OF 的长,请求出点Q 的坐标.OxyBA 第21题图CDMN【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.D2.F解析:D设双曲线的两个焦点分别是F1(-5,0)与F2(5,0),则这两点正好是两圆的圆心,当且仅当点P与M、F1三点共线以及P与N、F2三点共线时所求的值最大,此时|PM|-|PN|=(|PF1|-2)-(|PF2|-1)=10-1=9故选B3.ABCEF解析:D设双曲线方程为22221(0,0)x ya ba b-=>>,则F(c,0),B(0,b)直线FB:bx+cy-bc=0与渐近线y=bxa垂直,所以1b bc a-=-,即b2=ac所以c2-a2=ac,即e2-e-1=0,所以152e+=或152e-=(舍去)4. B 5.C 6.A 7.A 8.9.10.AF解析:C解析:抛物线y =ax 2的标准式为x 2=a1y , ∴焦点F (0,a41). 取特殊情况,即直线PQ 平行x 轴,则p =q .如图8—13,∵PF =PM ,∴p =a21,故a pp p q p 421111==+=+. 第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题11.; 12.; 13.14.⎥⎦⎤⎢⎣⎡-21,215.x2+y2-2x =0 16.552评卷人得分三、解答题17.对于本题,MN ,AB 分别为中心弦和焦点弦,可将其倾斜角退到0°,此时有22||4MN a =,||2AB a =,2||:||2MN AB a =(定值).下面再证明一般性.图8—13设平行弦MN 、AB 的倾斜角为α,则斜率tan k α=,MN 的方程为(tan )y x α= 代入椭圆方程,又∵212||(1)||MN k x x =+-即得2222224||sin a b MN b c α=+ ○1,另一方面,直线AB 方程为tan ()y x c α=-.同理可得222222||sin ab AB b c α=+ ○2 由○1○2可知2||:||2MN AB a =(定值)关于②式也可直接由焦点弦长公式得到. 18.19.解:(I)12S S λ=()m n m n λ⇒+=-,1111m n m n λλλ++∴==--解得:21λ=+(舍去小于1的根)(II)设椭圆()22122:1x y C a m a m +=>,22222:1x y C a n +=,直线l :ky x =22221ky x x y a m =⎧⎪⎨+=⎪⎩2222221a m k y a m +⇒=222A am y a m k ⇒=+ 同理可得,222B an y a n k=+又BDM ∆和ABN ∆的的高相等12B D B AA B A BS BD y y y y S AB y y y y -+∴===-- 如果存在非零实数k 使得12S S λ=,则有()()11A B y y λλ-=+,即:()()222222222211a n k a n k λλλλ-+=++,解得()()2222232114a k n λλλλ--+=∴当12λ>+时,20k >,存在这样的直线l ;当112λ<≤+时,20k ≤,不存在这样的直线l .20.解:(1)∵面C 的圆心在第二象限,且与直线y=x 相切与坐标原点O, 故可设圆心为(-m,m )(m >0)∴圆C 的半径为()()2222,2m m y m x C m =-++∴的方程为圆令x=0,得 y=0,或y=2m∵圆C 在y 轴上截得的弦长为4. ∴()()8222..40222=-++==-y x C m m 的方程为故圆(2)由条件可知()的中垂线上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学专题复习
《解析几何综合问题圆与椭圆双曲线抛物线等》
单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分
一、选择题
1.以抛物线2
4y x =的焦点为圆心,且过坐标原点的圆的方程为( ) A .2
2
x +y +2x=0 B .2
2
x +y +x=0 C .
22x +y -x=0
D .2
2
x +y -2x=0(汇编福建理)
第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分
二、填空题
2.已知圆22
670x y x +--=与抛物线2
2(0)y px p =>的准线相切,则p 的值
为 .
3.已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则p =_____.
(汇编全国理,16)
评卷人
得分
三、解答题
4.在平面直角坐标系xOy 中,已知双曲线1C :122
2
=-y x .
(1)过1C 的左顶点引1C 的一条渐进线的平行线,求该直线与另一条渐进线及x 轴围成的三角形的面积;
(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆12
2
=+y x 相切,求证:
OQ OP ⊥;
(3)设椭圆2C :142
2
=+y x ,若M 、N 分别是1C 、2C 上的动点,且
ON OM ⊥,求证:O 到直线MN 的距离是定值. 【汇编高考真题上海理22】
(4+6+6=16分)
5.已知椭圆C :x 2
4+y 2=1,过点(m ,0)作圆x 2+y 2=1的切线l 交椭圆G 于A 、B 两点.
(1)求椭圆C 的焦点坐标和离心率;
(2)将|AB |表示为m 的函数,并求|AB |的最大值.
6. 如图,已知椭圆C :22
221(0)x y a b a b
+=>>的长轴AB 长为4,离心率32e =,O
为坐标原点,过B 的直线l 与
x 轴垂直.P 是椭圆上异于
A 、
B 的任意一点,
PH x ⊥轴,H 为垂足,延长HP 到点Q 使得HP PQ =,连结AQ 延长交直线l 于点
M ,N 为MB 的中点.(1)求椭圆C 的方程;(2)证明:Q 点在以AB 为直径的
圆O 上;(3)试判断直线QN 与圆O 的位置关系.
O x y
A
B x
y
M N
Q
P
H l
O
7.已知双曲线()22
2210,0x y a b a b -=>>左右两焦点为12,F F ,P 是右支上一点,
2121,PF F F OH PF ⊥⊥于H , 111,,92OH OF λλ⎡⎤
=∈⎢⎥⎣⎦
.
(1)当1
3
λ=
时,求双曲线的渐近线方程; (2)求双曲线的离心率e 的取值范围;
(3)当e 取最大值时,过12,,F F P 的圆的截y 轴的线段长为8,求该圆的方程. 17-1
【参考答案】***试卷处理标记,请不要删除
评卷人
得分
一、选择题
1.D 抛物线的焦点为)0,1(F ,又圆过原点,所以1=R ,方程为
021)1(2222=+-⇔=+-y x x y x 。

第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分
二、填空题
2.
3.2解析:已知圆的方程为(x -3)2+y2=42,∴圆心为(3,0),半径r=4.∴与圆相切且垂直于x 轴的两条切线是x=-1,x=7(舍)而y2=2px (p >0)的准线方程是x=-.∴由-=-1,得 解析:2
解析:已知圆的方程为(x -3)2+y 2=42,∴圆心为(3,0),半径r =4. ∴与圆相切且垂直于x 轴的两条切线是x =-1,x =7(舍) 而y 2=2px (p >0)的准线方程是x =-
2
p . ∴由-
2
p
=-1,得p =2,∴p =2. 评卷人
得分
三、解答题
4

过点A 与渐近线x y 2=
平行的直线方程为22,2 1.2y x y x ⎛⎫
=+=+ ⎪ ⎪⎝
⎭即
1=ON ,22=
OM ,则O 到直线MN 的距离为33
. 设O 到直线MN 的距离为d .
【点评】本题主要考查双曲线的概念、标准方程、几何性质及其直线与双曲线的关系、椭圆的标准方程和圆的有关性质.特别要注意直线与双曲线的关系问题,在双曲线当中,最特殊的为等轴双曲线,它的离心率为
2,它的渐近线为
x y ±=,并且相互垂直,这些性质的运用可以大大节省解题时间,本题属于中档
题 .
5.解:(Ⅰ)由已知得,1,2==b a 所以.322--=
b a c
所以椭圆C 的焦点坐标为)0,3(),0,3(-,离心率为.2
3==
a c e (Ⅱ)由题意知,1||≥m .当1=m 时,切线l 的方程1=x ,
点A 、B 的坐标分别为),2
3
,1(),23,
1(-此时3||=AB 当m =-1时,同理可得3||=
AB
当1||>m 时,设切线l 的方程为),(m x k y -=
由0448)41(.14
),
(222222
2=-+-+⎪⎩⎪⎨⎧=+-=m k mx k x k y x m x k y 得;
设A 、B 两点的坐标分别为),)(,(2211y x y x ,则2
22212221414
4,418k m k x x k m
k x x +-=+=+;
又由l 与圆.1,11
||,122222
2
+==+=+k k m k km y x 即得
相切
∴2
122
12)()(||y y x x AB -+-=]41)44(4)41(64)[1(2222242
k
m k k m k k +--++=2.3||342+=m m
由于当3±=m 时,,3||=AB
因为,2|
|3
||343
|
|34||2≤+
=
+=
m m m m AB 且当3±=m 时,|AB |=2,
所以|AB |的最大值为2. 6.
7.由相似三角形知,
1
21
OF OH PF PF =,22
2b a b a a
λ=+

∴()2
2
2
2
2
2,21a b b a b λλλλ+==- ,2221b a λ
λ
=-.
(1)当1
3λ=时,221b a =,∴,a b y x ==±.
(2)
()222
22211211111c b e a a λλλλ
--⎡⎤⎣⎦==+=+=+--
=
221111λλ-=--
--,在11,92⎡⎤
⎢⎥⎣⎦
上单调递增函数. ∴12λ=
时,2e 最大3,19λ=时,2
e 最小54
, ∴
25
34
e ≤≤,∴532e ≤≤. (3)当3e =时,
3c
a
=,∴3c =,∴222b a =. ∵212PF F F ⊥,∴1PF 是圆的直径,圆心是1PF 的中点, ∴在y 轴上截得的弦长就是直径,∴1PF =8.
又22
12224b a PF a a a a a =+=+=,∴48,2,23,22a a c b ====. ∴2224b PF a a
===,圆心()0,2C ,半径为4,()2
2216x y +-=.。

相关文档
最新文档