数字温度计单片机总体设计方案

合集下载

单片机基于stm32的数字温度计设计

单片机基于stm32的数字温度计设计

单片机基于stm32的数字温度计设计
数字温度计是一种用于测量环境温度的设备。

在这个问题中,我们将使用基于STM32的单片机来设计一个数字温度计。

为了设计这个温度计,我们需要以下组件和步骤:
1. STM32单片机:STM32是一种基于ARM架构的单片机,它具有强大的计算能力和丰富的外设接口,适用于各种应用。

2. 温度传感器:我们需要选择一种适合的温度传感器,常用的有数字式温度传感器,如DS18B20。

3. 连接电路:将温度传感器连接到STM32单片机。

这通常需要使用一些电子元件,如电阻、电容和连接线等来建立电路连接。

4. 编程:使用适合STM32单片机的编程语言,如C语言,来编写程序。

程序将读取温度传感器的数据,并将其转换为数字值。

5. 温度显示:将温度数据显示在合适的显示设备上,如LCD显示屏或七段数码管。

可以使用STM32单片机的GPIO口控制这些显示设备。

6. 数据处理:可以对温度数据进行进一步处理,如计算平均温度、设定警报阈值等。

以上是一个基本的数字温度计设计的流程。

具体的实现细节和代码编写可能需要根据具体的硬件和软件平台进行调整。

单片机的数字温度计设计方案(附代码与仿真)

单片机的数字温度计设计方案(附代码与仿真)

基于STC89C52的数字温度计目录1、简介....... .......... ..... 3 _ _2、计划选择2.1。

主控片选 (3)2.2.显示模块.............................. (3)2.3、温度检测模块………………………………… .. 43、系统硬件设计3.1。

51单片机最小系统设计………………………… .4 .电源电路设计…………………… .. 5.液晶显示电路设计……………………………… ..63.4.温度检测电路设计………… . . . 74.系统软件设计4.1。

温度传感器数据读取流程图......... .. (9)4.2.系统编程………………… .105. 编程与仿真5.1、Keil编程软件………………… .. .. 115.2.变形杆菌 (11)5.3.模拟界面……………………… ..116.总结........ .......... ........ 12 _ _ _ _ _七、附录附录 1. 原理图........ .......... (12)附录 2. 程序清单…………………………………………………………………… ..131 简介进入信息飞速发展的21世纪,科学技术的发展日新月异。

科学技术的进步带动了测量技术的发展,现代控制设备的性能和结构发生了翻天覆地的变化。

我们已经进入高速发展的信息时代,测量技术也成为当今技术的主流,已经渗透到研究和应用工程的各个领域。

温度与人们的生活息息相关,温度的测量变得非常重要。

2.系统方案选择2.1 主控芯片选型方案一:STC89C52RCSTC89C52RC是8051内核的ISP在线可编程芯片,最高工作时钟频率为80MHz,芯片内含8KB Flash ROM,可反复擦写1000次。

该器件兼容MCS-51指令系统和8051引脚结构。

该芯片集成了通用8位中央处理器和ISP Flash存储单元,具有在线可编程特性,在PC端有控制程序,用户程序代码可下载到单片机部门,无需购买通用编程器,速度更快。

51单片机数字温度计设计与实现

51单片机数字温度计设计与实现

51单片机数字温度计设计与实现温度计是一种常见的电子测量设备,用于测量环境或物体的温度。

而数字温度计基于单片机的设计与实现,能够更准确地测量温度并提供数字化的显示,具备更多功能。

一、设计原理数字温度计的设计原理基于温度传感器和单片机。

温度传感器用于感测温度,而单片机负责将传感器读取的模拟信号转化为数字信号,并进行温度计算及显示。

二、所需材料1. 51单片机2. 温度传感器(例如DS18B20)3. 数码管或液晶显示屏4. 连接线5. 电源电路电容、电阻等元件三、设计步骤1. 连接电路:按照电路原理图将51单片机、温度传感器和显示器等元件进行连接。

注意正确连接引脚,以及电源电路的设计和连接。

2. 编写程序:利用汇编语言或C语言编写51单片机的程序,实现温度读取、计算和显示功能。

3. 温度传感器设置:根据温度传感器的型号和数据手册,配置单片机相应的输入输出口、温度转换方式等参数。

4. 读取温度:通过单片机对温度传感器进行读取,获取传感器采集的温度数据。

5. 温度计算:根据传感器输出的数据和转换方法,进行温度计算,得到更准确的温度数值。

6. 数字显示:将计算得到的温度数值通过数码管或液晶显示屏进行数字显示。

可以选择合适的显示格式和单位。

7. 添加附加功能:可以根据实际需求,增加其他功能,如报警功能、数据记录、温度曲线显示等。

8. 系统测试与优化:将设计的数字温度计进行系统测试,确保其正常运行和准确显示温度。

根据测试结果进行可能的优化或改进。

四、注意事项1. 连接线应牢固可靠,避免出现松动或接触不良的情况。

2. 选择合适的温度传感器,并正确设置传感器的相关参数。

3. 程序设计时应注意算法的准确性和优化性,以确保测量的准确性和实时性。

4. 温度传感器的安装和环境选择也会影响温度计的准确性,应避免与外部环境干扰和热源过近的情况。

五、应用领域1. 家庭和工业温度监测:数字温度计可以广泛应用于室内、室外温度监测,工业生产中的温度控制等。

数字温度计(基于51单片机的设计思路)

数字温度计(基于51单片机的设计思路)

一.设计目的
1.理解掌握MCS-51系列单片机的功能和实际应用。

2.掌握仿真开发软件的使用。

3.掌握数字式温度计电路的设计、组装与调试方法。

二.设计要求
1.以MCS-51系列单片机为核心器件,组成一个数字式温度计。

2.采用数字式温度传感器为检测器件,进行单点温度检测,检测精度为0.4 C
3.温度显示采用4位LED数码管显示,三位整数,一位小数。

三.设计思路
1.根据设计要求,选择AT89C52单片机为核心器件。

2.温度检测器件采用DS18B20数字式温度传感器。

与单片机的接口为
P3.6引脚。

硬件电路设计总体框图为图4.1:
四、系统的硬件构成及功能
1.主控制器
图5.1
2.显示电路
显示电路采用四位共阳LED数码管,从P3口RXD,TXD串口输出段码。

LED数码管在仿真软件中如图5.2
图5.2
3.温度传感器
图5.3. 五.系统整体硬件电路
六.技术难点
1.程序设计
2.电路设计
3.电路焊接
4.硬件调试。

单片机课程设计(数字温度计)

单片机课程设计(数字温度计)

单片机课程设计说明书1 引言随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。

2 总体设计方案2.1 方案论证根据系统的设计要求,选择DS18B20作为本系统的温度传感器,选择单片机AT89C51为测控系统的核心来完成数据采集、处理、显示、报警等功能。

选用数字温度传感器DS18B20,省却了采样/保持电路、运放、数/模转换电路以及进行长距离传输时的串/并转换电路,简化了电路,缩短了系统的工作时间,降低了系统的硬件成本。

该系统的总体设计思路如下:温度传感器DS18B20把所测得的温度发送到AT89C51单片机上,经过51单片机处理,将把温度在显示电路上显示,本系统显示器用4位共阳LED 数码管以动态扫描法实现。

检测范围-55摄氏度到125摄氏度。

按照系统设计功能的要求,确定系统由3个模块组成:主控制器、测温电路和显示电路。

数字温度计总体电路结构框图如图1所示。

图1 数字温度计总体电路结构框图AT89C51 主 控 制 器显示电路温度传感器 DS18B20扫描驱动2.2 系统硬件电路的设计温度计电路设计原理图如图2所示,控制器使用单片机AT89C51,温度传感器使用DS18B20,用4位共阳LED数码管实现温度显示。

图2 数字温度计设计电路原理图2.2.1 主控制器AT89C51是一种带4K字节闪烁可编程可擦除只读存储器的低电压,高性能CMOS8位微处理器。

该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。

由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。

单片机课程设计方案—数字温度计

单片机课程设计方案—数字温度计

1 课题任务、功能要求说明及总体方案介绍1.1 课题目的随着社会的发展,温度的测量及控制变得越来越重要。

本文采用单片机STC89S52设计了温度实时测量及控制系统。

单片机STC89S52 能够根据温度传感器DS18B20 所采集的温度在数码管上实时显示,通过控制从而把温度控制在设定的范围之内。

所有温度数据均通过4位数码管LED显示出来。

系统可以根据时钟存储相关的数据。

通过该课程的学习使我们对计算机控制系统有一个全面的了解、掌握常规控制算法的使用方法、掌握简单微型计算机应用系统软硬的设计方法,进一步锻炼同学们在微型计算机应用方面的实际工作能力。

1.2 功能要求说明设计一个具有特定功能的数字温度计。

该数字温度计上电或按键复位后能自动显示系统提示符“P.”,进入准备工作状态。

测量温度范围0℃~99℃,测量精度小数点后两位,可以通过开始和结束键控制数字温度计的工作状态。

1.3 设计课题总体方案介绍及工作原理说明1.3.1设计课题总体方案(1>根据设计要求,选择AT89C52单片机为核心器件。

(2>温度检测器件采用DS18B20数字式温度传感器。

与单片机的接口为P3.6引脚。

(3>键盘采用独立式按键,由三个按键组成,分别是:设置键<SET),加一建<+1),确认键<RET)。

(4>SET键<上下限温度设置键):当该键按下时,进入上下限温度设置功能。

通过P0.1引脚接入。

(5>+1键<加一调整键):在输入上下限温度时,该键按下一次,被调整位加一。

通过P0.2引脚接入。

(6>RET键<确认键):当该键按下时,指向下一个要调整的位。

通过P0.3引脚接入。

1.3.2 工作原理说明本课题以是80S52单片机为核心设计的一种数字温度控制系统,利用温度传感器DS18B20可以直接读取被测温度值,进行转换的特性,模拟温度值经过DS18B20处理后转换为数字值,然后送到单片机中进行数据处理,并与设置的温度报警限比较,超过限度后通过扬声器报警。

51单片机数字温度计的设计与实现

51单片机数字温度计的设计与实现

51单片机数字温度计的设计与实现温度计是一种广泛使用的电子测量仪器,它能够通过感知温度的变化来提供精准的温度数值。

本文将介绍如何使用51单片机设计并实现一款数字温度计。

一、硬件设计1. 采集温度传感器温度传感器是用来感知环境温度的关键器件。

常见的温度传感器有DS18B20、LM35等。

在本次设计中,我们选择DS18B20温度传感器。

通过电路连接将温度传感器与51单片机相连,使51单片机能够读取温度传感器的数值。

2. 单片机选型与连接选择适合的51单片机型号,并根据其引脚功能图对单片机进行合理的引脚连接。

确保温度传感器与单片机之间的数据传输通畅,同时保证电源和地线的正确连接。

3. 显示模块选型与连接选择合适的数字显示模块,如数码管、液晶显示屏等。

将显示模块与51单片机相连,使温度数值能够通过显示模块展示出来。

4. 电源供应为电路提供稳定的电源,保证整个系统的正常运行。

选择合适的电源模块,并根据其规格连接电路。

二、软件设计1. 温度传感器读取程序编写程序代码,使用单片机GPIO口将温度传感器与单片机连接,并通过相应的通信协议读取温度数值。

例如,DS18B20采用一线制通信协议,需要使用单总线协议来读取温度数值。

2. 数字显示模块驱动程序编写程序代码,通过单片机的GPIO口控制数字显示模块的数码管或液晶显示屏进行温度数值显示。

根据显示模块的规格,编写合适的驱动程序。

3. 温度转换算法将温度传感器读取到的模拟数值转换为实际温度数值。

以DS18B20为例,它输出的温度数值是一个16位带符号的数,需要进行相应的转换操作才能得到实际的温度数值。

4. 系统控制程序整合以上各部分代码,编写系统控制程序。

该程序通过循环读取温度数值并进行数据处理,然后将处理后的数据送到数字显示模块进行实时显示。

三、实现步骤1. 硬件连接按照前文所述的硬件设计,将温度传感器、51单片机和数字显示模块进行正确的连接。

确保连接无误,并进行必要的电源接入。

单片机的数字温度计设计方案6

单片机的数字温度计设计方案6

U8引脚封装TO-92封装图3 温度传感器4设计步骤:1温度传感器与单片机的连接温度传感器的单总线(1-Wire>与单片机的P2.0连接,P2.0是单片机的高位地址线A8。

P2端口是一个带内部上拉电阻的8位双向I/O,其输出缓冲级可驱动(吸收或输出电流>4个TTL逻辑门电路。

对该端口写“1”,可通过内部上拉电阻将其端口拉至高电平,此时可作为输入口使用,这是因为内部存在上拉电阻,某一引脚被外部信号拉低时会输出一个电流。

在访问外部程序存储器或16位地址的外部数据存储器时。

如执行MOVX DPTR指令,则表示P2端口送出高8位的地址数据。

在访问8位地址的外部数据存储器时,可执行MOVX RI指令,P2端口内容即为特殊功能寄存器(SFR>区中R2寄存器内容,整个访问期间不改变。

在Flash编程和程序校验时,P2端口也接收高位地址和其他控制信号。

图4为DSl8820内部结构。

图5为DSl8820与单片机的接口电路。

图4 DS18B20内部结构图图5 DS18B20和单片机的接口连接4.2复位信号及外部复位电路单片机的P1.6端口是MAX813看门狗电路中喂狗信号的输入端,即单片机每执行一次程序就设置一次喂狗信号,清零看门狗器件。

若程序出现异常,单片机引脚RST将出现两个机器周期以上的高电平,使其复位。

该复位信号高电平有效,其有效时间应持续24个振荡脉冲周期即两个机器周期以上。

若使用频率为12 MHz的晶体振荡器,则复位信号持续时间应超过2μs才完成复位操作。

4.3单片机与报警电路系统中的报警电路是由发光二极管和限流电阻组成,并与单片机的P1.2端口连接。

P1端口的作用和接法与P2端口相同,不同的是在Flash编程和程序校验期间,P1接收低8位地址数据。

4.4电源电路由于该系统需要稳定的5 V电源,因此设计时必须采用能满足电压、电流和稳定性要求的电源。

该电源采用三端集成稳压器LM7805。

51单片机数字温度计的设计与实现方法论

51单片机数字温度计的设计与实现方法论

51单片机数字温度计的设计与实现方法论1.引言温度计是一种常见的电子设备,用于测量温度并将其转化为数字显示。

本文将介绍在51单片机上设计与实现数字温度计的方法论。

2.硬件设计2.1 温度传感器选择温度传感器是数字温度计的核心组件,常用的温度传感器有热敏电阻、热敏电容和数字温度传感器等。

需要根据实际需求选择合适的温度传感器,并根据其特性调整硬件设计。

2.2 温度传感器接口电路设计温度传感器需要与51单片机进行通信,因此需要设计相应的接口电路来连接传感器与单片机。

根据传感器的通信协议选择合适的接口设计方案,例如I2C、SPI等。

2.3 数字显示模块选型数字温度计需要将测量到的温度以数字形式显示出来,因此需要选择合适的数码管、液晶显示屏或其他数字显示模块。

根据实际需求选择合适的显示模块,并考虑与51单片机的接口兼容性。

3.软件设计3.1 接口通信协议根据温度传感器的通信协议选择合适的接口设计方案,并在软件中实现相应的协议处理算法。

其中包括数据传输的初始化、发送和接收等功能。

3.2 温度测量与转换算法根据选用的温度传感器,编写软件算法将传感器采集到的模拟温度值转换为数字温度值。

具体算法根据传感器的特性来设计,可能需要使用模拟转数字转换技术、纠偏算法等。

3.3 数字温度值显示算法编写显示算法,在数码管、液晶屏或其他数字显示模块上将转换后的数字温度值进行显示。

可以根据具体需求设计温度的显示格式和精度。

4.系统实现4.1 硬件连接根据硬件设计的要求,按照相应的电路连接方式将温度传感器、51单片机和数字显示模块进行硬件连接。

4.2 软件编程利用汇编语言或高级编程语言(如C语言)编写相应的软件程序,分别实现接口通信、温度测量与转换、数字温度值显示等功能。

4.3 调试与测试对整个系统进行调试和测试,确保温度传感器能够准确采集温度、转换算法正确运行并实现数字温度值的显示等功能。

5.总结本文介绍了51单片机数字温度计的设计与实现方法论。

基于51单片机数字温度计系统设计与实现

基于51单片机数字温度计系统设计与实现

基于51单片机数字温度计系统设计与实现数字温度计是一种可以测量环境温度并将结果以数字方式显示的设备。

在本次任务中,我们将基于51单片机设计和实现一个数字温度计系统。

本文将介绍数字温度计的原理、硬件设计、软件设计以及系统的实施过程。

首先,让我们来了解一下数字温度计的工作原理。

数字温度计通过传感器获取环境温度的模拟信号,然后将其转换为数字信号进行处理,并最终在数字显示器上显示温度值。

通常,我们使用的传感器是温度敏感电阻或数字温度传感器。

接下来,我们将讨论硬件设计。

在本次任务中,我们使用的是51单片机作为主控制器。

我们需要连接一个温度传感器来测量温度,并将温度值转换为数字信号。

同时,我们还需要连接一个数字显示器,用于显示温度值。

为了实现这些功能,我们需要设计一个电路板,并正确布局电子元件。

另外,我们还需要通过键盘或按钮来控制系统的操作,例如切换温度单位等。

在软件设计方面,我们需要编写程序来完成以下任务:首先,我们需要初始化51单片机的引脚和中断。

然后,我们需要编写一个温度转换的函数,将传感器输出的模拟信号转换为数字信号。

接下来,我们需要编写一个显示函数,将转换后的数字温度值显示在数字显示器上。

最后,我们还可以添加一些功能,例如设置温度单位(摄氏度或华氏度)和存储温度数据等。

在系统实施过程中,我们需要按照以下步骤进行操作:首先,进行硬件的连接和组装。

确保所有电子元件正确连接并固定在电路板上。

然后,烧录编写好的程序到51单片机中。

接下来,我们可以通过设置开关或按键来控制系统的操作。

最后,我们可以测试系统的功能和性能,确保数字温度计正常工作。

值得注意的是,在设计和实现数字温度计系统时,我们需要考虑一些问题。

例如,温度传感器的精度和响应时间,数字显示器的显示精度和分辨率,以及系统的稳定性和可靠性等。

通过合理的设计和选择高质量的元件,我们可以提高系统的性能和可靠性。

总结起来,本次任务中我们基于51单片机设计和实现了一个数字温度计系统。

基于单片机的数字温度计设计

基于单片机的数字温度计设计

基于单片机的数字温度计设计
基于单片机的数字温度计设计可以包括以下几个步骤:
1. 选择合适的单片机:根据项目需求选择一款适合的单片机,常用的有8051、PIC、AVR等。

2. 温度传感器的选择:选择一款合适的温度传感器,如
DS18B20、LM35等。

这些传感器通常具有数字接口,方便与单片机通信。

3. 连接和布线:根据传感器和单片机的接口要求,进行连接和布线。

通常需要连接传感器的电源、地线和数据线。

如果需要更长的传输距离,可以考虑使用一些传感器扩展模块,如
DS18B20模块。

4. 编程:使用单片机编程语言,如C语言,编写代码来实现与传感器的通信和温度的测量。

通常需要使用单片机提供的GPIO口或者串口来与传感器进行数据交互,读取传感器输出的数字温度值,并将其转换为实际温度。

5. 显示和输出:根据项目要求,选择合适的显示设备来展示温度数值,如液晶显示屏、数码管等。

可以通过单片机的IO口来控制显示设备的输入。

同时,还可以根据需要选择合适的输出设备,如蜂鸣器、继电器等,实现温度超过或低于设定阈值时的报警或控制功能。

6. 测试和优化:完成代码编写和硬件连接后,进行测试,确保
温度计能够准确测量温度,并进行必要的优化和调试。

总结:
基于单片机的数字温度计设计主要涉及选择单片机、传感器、连线布局、编程、显示和输出设备的选择与控制,以及测试和优化。

通过以上步骤,可以实现一个简单的数字温度计。

基于51单片机的数字温度计设计

基于51单片机的数字温度计设计

基于51单片机的数字温度计设计数字温度计是一种广泛使用的电子测量设备,通过传感器将温度转化为数字信号,并显示出来。

本文将介绍基于51单片机的数字温度计的设计。

该设计将使得使用者能够准确、方便地测量温度,并实时显示在液晶显示屏上。

1. 硬件设计:- 传感器选择:在设计数字温度计时,我们可以选择使用NTC(负温度系数)热敏电阻或者DS18B20数字温度传感器作为温度传感器。

这里我们选择DS18B20。

- 信号转换:DS18B20传感器是一种数字传感器,需要通过单总线协议与51单片机进行通信。

因此,我们需要使用DS18B20专用的驱动电路,将模拟信号转换为数字信号。

- 51单片机的选择:根据设计要求选择合适的51单片机,如STC89C52、AT89S52等型号。

单片机应具备足够的IO口来与传感器和液晶显示屏进行通信,并具备足够的计算和存储能力。

- 显示屏选择:为了实时显示温度,我们可以选择使用1602型字符液晶显示屏。

该显示屏能够显示2行16个字符,足够满足我们的需求。

通过与51单片机的IO口连接,我们可以将温度数据显示在屏幕上。

2. 软件设计:- 采集温度数据:通过51单片机与DS18B20传感器进行通信,采集传感器传输的数字温度数据。

通过解析传感器发送的数据,我们可以获得当前的温度数值。

- 数据处理:获得温度数据后,我们需要对其进行处理。

例如,可以进行单位转换,从摄氏度到华氏度或者开尔文度。

同时,根据用户需求,我们还可以对数据进行滤波、校准等处理。

- 显示数据:通过与液晶显示屏的连接,我们可以将温度数据显示在屏幕上。

可以使用51单片机内部的LCD模块库来控制液晶显示屏,显示温度数据以及相应的单位信息。

- 用户交互:可以设置一些按键,通过与51单片机的IO口连接,来实现用户与数字温度计的交互。

例如,可以设置一个按钮来进行温度单位的切换,或者设置一个按钮来启动数据保存等功能。

3. 功能拓展:- 数据存储:除了实时显示当前温度,我们还可以考虑增加数据存储功能。

基于51单片机数字温度计的设计与实现

基于51单片机数字温度计的设计与实现

基于51单片机数字温度计的设计与实现数字温度计是一种能够测量环境温度并显示数值的设备。

基于51单片机的数字温度计设计与实现是指利用51单片机作为核心,结合温度传感器和其他辅助电路,实现一个能够测量温度并通过数码管显示温度数值的系统。

本文将从硬件设计和软件实现两个方面介绍基于51单片机数字温度计的具体设计与实现过程。

一、硬件设计1. 温度传感器选取在设计数字温度计时,首先需要选取合适的温度传感器。

市面上常用的温度传感器有热敏电阻、功率型温度传感器(如PT100)、数字温度传感器(如DS18B20)等。

根据设计需求和成本考虑,我们选择使用DS18B20数字温度传感器。

2. 电路设计基于51单片机的数字温度计的电路设计主要包括单片机与温度传感器的连接、数码管显示电路和电源电路。

(1)单片机与温度传感器的连接在电路中将51单片机与DS18B20数字温度传感器相连接,可采用一线总线的方式。

通过引脚的连接,实现单片机对温度传感器的读取控制。

(2)数码管显示电路为了能够显示温度数值,我们需要设计一个数码管显示电路。

根据温度传感器测得的温度值,通过数字转换和数码管驱动,将温度数值显示在数码管上。

(3)电源电路电源电路采用稳压电源设计,保证整个系统的稳定供电。

根据实际需求选择合适的电源电压,并添加滤波电容和稳压芯片,以稳定电源输出。

3. PCB设计根据电路设计的原理图,进行PCB设计。

根据电路元件的布局和连线的走向,绘制PCB板的线路、元件和连接之间。

二、软件实现1. 单片机的编程语言选择对于基于51单片机的数字温度计的软件实现,我们可以选择汇编语言或者C语言进行编程。

汇编语言的效率高,但编写难度大;C语言的可读性好,开发效率高。

根据实际情况,我们选择使用C语言进行编程。

2. 温度传感器数据获取利用单片机的IO口与温度传感器相连,通过一线总线协议进行数据的读取。

根据温度传感器的通信规则,编写相应的代码实现数据的读取。

数字温度计单片机总体设计方案

数字温度计单片机总体设计方案

数字温度计单片机总体设计方案1. 引言数字温度计是一种使用单片机进行温度测量和显示的设备。

它通过传感器测量环境温度,并将数据转换成数字信号进行处理,最后在数码管上显示温度值。

本文将详细介绍数字温度计的总体设计方案。

2. 硬件设计2.1 单片机选择在设计数字温度计时,我们需要选择一款适合的单片机作为主控芯片。

根据要求,单片机应具备较高的计算能力和外围接口数量。

此外,选用的单片机应具备模拟转换功能,以便测量模拟传感器输出的电压值。

根据以上需求,我们选择了XX 系列单片机作为主控芯片。

2.2 温度传感器选择温度传感器是数字温度计的核心部件,它负责将环境温度转换成电压信号。

在本设计中,我们选择了RTD(Resistance Temperature Detector)温度传感器。

RTD传感器具有较高的精度和稳定性,适合精确测量温度。

2.3 数码管显示为了实现温度值的直观显示,我们选择了数码管作为温度计的显示装置。

数码管可以通过数码管驱动芯片进行控制,以实现数字的显示。

2.4 电源电路设计电源电路设计是数字温度计设计中的重要环节。

在设计中,我们需要保证稳定的电源供应,并对单片机和其他模块进行合理的电源分配。

3. 软件设计3.1 程序结构数字温度计的软件设计主要包括初始化设置、温度读取、温度转换以及数码管显示等功能。

可以采用模块化设计的方式,将各个功能模块分开编写,以提高代码的可读性和维护性。

3.2 温度读取和转换算法温度读取和转换是数字温度计的核心功能之一。

在程序中,我们可以使用单片机的模拟转换功能,读取RTD传感器输出的电压值,并将其转换成温度值。

3.3 数码管显示控制数码管显示控制是数字温度计的另一个重要功能。

在程序中,我们可以使用数码管驱动芯片的引脚控制功能,实现对数码管的控制。

通过将温度值拆分成个位数、十位数和百位数,然后依次在数码管上显示,实现温度值的显示功能。

4. 总结本文介绍了数字温度计的总体设计方案。

基于51单片机数字温度计设计与实现

基于51单片机数字温度计设计与实现

基于51单片机数字温度计设计与实现数字温度计是一种常见的电子仪器,用于测量和显示温度。

本文将介绍如何基于51单片机设计和实现一个数字温度计。

首先,我们需要了解51单片机的基本原理和工作方式。

51单片机是一款广泛应用于嵌入式系统中的微控制器,具有低成本、易编程、可扩展等特点。

它由中央处理器、存储器、输入输出端口和定时器等组成,可以实现各种功能。

接下来,我们可以开始设计数字温度计的硬件部分。

首先,我们需要一个温度传感器,如DS18B20数字温度传感器。

该传感器具有高精度和数字输出的特点,可以直接与51单片机进行通信。

然后,将传感器与51单片机的引脚相连,通过读取传感器输出的温度值,即可得到实时的温度数据。

为了方便用户查看温度,我们可以通过数码管或LCD显示屏显示温度值。

数码管是一种7段显示器件,可以显示数字0-9的字符。

我们可以通过将温度值拆分成各个位数,然后将对应的数字发送到数码管上,实现温度的显示。

此外,我们还可以为温度计添加一些附加功能。

例如,可以通过按键切换温度的单位,从摄氏度切换到华氏度。

还可以设置温度报警功能,当温度超过一定阈值时,触发蜂鸣器或LED灯进行报警。

在软件设计方面,我们需要编写51单片机的固件程序来实现温度计的功能。

首先,我们需要初始化51单片机的引脚和定时器。

然后,可以设置一个定时器中断,用于定时读取温度传感器的数值。

在定时器中断的处理函数中,读取温度传感器的数值,并将其转换为摄氏度或华氏度,然后发送到数码管或LCD显示屏上。

此外,我们还可以添加一些交互功能,例如按键实现温度单位切换或报警阈值的设置功能。

通过按键检测的方式,可以在主循环中判断按键的按下和释放,并根据按键的状态进行相应的操作。

最后,我们需要将编写好的固件程序下载到51单片机的存储器中。

可以使用ISP编程器或者串口下载方式进行下载。

下载完成后,将51单片机与硬件连接好,就可以通过操作按键和观察数码管或LCD显示屏来实现数字温度计的功能了。

数字温度计单片机总体设计方案

数字温度计单片机总体设计方案

数字温度计单片机总体设计方案数字温度计是一种测量温度的设备,它通过将温度转化为数字信号进行测量,具有精度高、稳定性好、使用方便等优点。

单片机是数字温度计中的重要组成部分,可以实现数据采集、处理、显示等功能。

因此,本文将介绍数字温度计单片机总体设计方案。

一、硬件设计数字温度计的硬件设计主要包括传感器、A/D转换器、单片机和显示器等部分。

1.传感器选择由于温度传感器种类繁多,不同的温度范围适用不同的传感器,因此需要根据实际需要选择合适的传感器。

对于室内温度测量,一般可以选择NTC热敏电阻、热电偶等传感器。

2.A/D转换器A/D转换器是将模拟量信号转化为数字量信号的重要组成部分,它的精度直接影响到数字温度计的测量精度。

一般选择16位或以上精度的A/D转换器。

3.单片机选择单片机是数字温度计的核心部分,负责采集、处理和显示数据。

选择单片机时需要考虑采样速度、处理能力和低功耗等因素。

一般选择低功耗的MSP430系列单片机。

4.显示器选择数字温度计的显示器一般选择7段LED数码管或LCD液晶显示器。

对于室内温度测量,可以选择4位7段LED数码管进行显示。

二、软件设计数字温度计的软件设计主要包括采集、处理和显示等部分。

1.采集程序单片机需要采集传感器输出的模拟量信号,并将其转化为数字信号。

采集程序需要对A/D转换器进行初始化,并在适当的时间间隔内转换模拟量信号。

2.处理程序单片机需要对采集到的数字信号进行处理,将其转化为温度值,并进行滤波和校准等处理。

处理程序需要实现高精度测量和数据稳定。

3.显示程序单片机需要将处理后的温度值显示在数码管上。

显示程序需要实现数码管扫描、数值转换和位数控制等功能。

三、总体设计数字温度计单片机的总体设计可以采用分层结构,将硬件和软件部分分开设计。

在硬件设计方面,需要根据实际需求选择合适的信号处理电路和显示器等部分,并按照要求进行布线和连接。

在软件设计方面,需要按照功能分别编写采集程序、处理程序和显示程序,实现数字温度计的所有功能。

简易数字温度计单片机设计方案

简易数字温度计单片机设计方案

《单片微机原理及应用》课程设计任务书目录1 引言12 开发和仿真软件简介22.1 开发软件Keil C51 uVision222.2 仿真软件Proteus ISIS33 总体设计方案论证53.1 开发方案举例53.1.1 热敏电阻53.1.2 数字温度芯片DS162153.2 数据通信技术64 系统各部分电路的选择和设计74.1 系统的工作原理74.2 AT89C51简介74.2.1 概述74.2.2 AT89C51引脚功能84.2.3 复位电路的设计94.3数字温度传感器104.3.1 DS1621的技术指标104.3.2 DS1621的工作原理114.4 单片机和DS1621接口电路114.5 七段LED数码显示电路125 系统软件设计145.1 编程语言选择145.2 主程序的设计145.3 温度采集模块设计155.4 温度计算模块设计155.5 串行总线编程166 软硬件调试结果分析177 总结18参考文献19附录A 多点温度采集系统电路原理图20附录B C语言源代码211 引言随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。

在信息采集<传感器技术)、信息传输<通信技术)和信息处理<计算机技术)三大信息技术中,传感器属于信息技术的前沿尖端产品,尤其是温度传感器技术,在我国各领域已经引用的非常广泛,可以说是渗透到社会的每一个领域,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。

测量温度的关键是温度传感器,温度传感器的发展经历了三个发展阶段:①传统的分立式温度传感器,②模拟集成温度传感器,③智能集成温度传感器。

单片机的数字温度计设计方案

单片机的数字温度计设计方案

基于单片机的数字温度计设计引言随着现代信息技术的飞速发展和传统工业改造的逐步实现.能够独立工作的温度检测和显示系统应用于诸多领域。

传统的温度检测以热敏电阻为温度敏感元件。

热敏电阻的成本低,但需后续信号处理电路,而且可靠性相对较差,测温准确度低,检测系统也有一定的误差。

与传统的温度计相比,这里设计的数字温度计具有读数方便,测温范围广,测温精确,数字显示,适用范围宽等特点。

选用AT89C51型单片机作为主控制器件,DSl8B20作为测温传感器通过4位共阳极LED数码管串口传送数据,实现温度显示。

通过DSl8B20直接读取被测温度值,进行数据转换,该器件的物理化学性能稳定,线性度较好,在0℃~100℃最大线性偏差小于0.1℃。

该器件可直接向单片机传输数字信号,便于单片机处理及控制。

另外,该温度计还能直接采用测温器件测量温度,从而简化数据传输与处理过程。

2系统硬件设计方案根据系统功能要求,构造图1所示的系统原理结构框图。

图1 系统原理结构框图2.1单片机的选择AT89C51作为温度测试系统设计的核心器件。

该器件是INTEL公司生产的MCS一5l系列单片机中图2 单片机小系统电路AT89C51单片机的主要特性:(1>与MCS-51 兼容,4K字节可编程闪烁存储器;(2>灵活的在线系统编程,掉电标识和快速编程特性;(3>寿命为1000次写/擦周期,数据保留时间可10年以上;(4>全静态工作模式:0Hz-33Hz;(5>三级程序存储器锁定;(6>128*8位内部RAM,32可编程I/O线;(7>两个16位定时器/计数器,6个中断源;(8>全双工串行UART通道,低功耗的闲置和掉电模式;(9>看门狗<WDT)及双数据指针;(9>片内振荡器和时钟电路;2.2 温度传感器介绍DS18B20可以程序设定9~12位的分辨率,精度为±0.5°C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单片机课程设计报告数字温度计专业班级应教022班姓名李世朋时间 16 周~ 18 周指导教师李国厚苗青林邵峰20005 年 12 月 29 日1 设计要求■基本范围-50℃-110℃■精度误差小于0.5℃■LED数码直读显示2 扩展功能■实现语音报数■可以任意设定温度的上下限报警功能数字温度计应教022 李世朋摘要:随着时代的进步和发展,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,本文将介绍一种基于单片机控制的数字温度计,本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。

关键词:单片机,数字控制,温度计,DS18B20,A T89S511 引言随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。

本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,该设计控制器使用单片机AT89S51,测温传感器使用DS18B20,用3位共阳极LED数码管以串口传送数据,实现温度显示,能准确达到以上要求。

2 总体设计方案2.1数字温度计设计方案论证2.1.1方案一由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。

2.1.2 方案二进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。

从以上两种方案,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。

2.2方案二的总体设计框图温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用3位LED数码管以串口传送数据实现温度显示。

图1总体设计方框图2.2.1 主控制器单片机AT89S51具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用系统可用二节电池供电。

2.2.2 显示电路显示电路采用3位共阳LED数码管,从P3口RXD,TXD串口输出段码。

2.2.3温度传感器DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。

DS18B20的性能特点如下:●独特的单线接口仅需要一个端口引脚进行通信;●多个DS18B20可以并联在惟一的三线上,实现多点组网功能;●无须外部器件;●可通过数据线供电,电压范围为3.0~5.5V;●零待机功耗;●温度以9或12位数字;●用户可定义报警设置;●报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件;●负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作;DS18B20采用3脚PR-35封装或8脚SOIC封装,其内部结构框图如图2所示。

图2 DS18B20内部结构64位ROM的结构开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后8位是前面56位的CRC检验码,这也是多个DS18B20可以采用一线进行通信的原因。

温度报警触发器TH和TL,可通过软件写入户报警上下限。

DS18B20温度传感器的内部存储器还包括一个高速暂存RAM和一个非易失性的可电擦除的EERAM。

高速暂存RAM的结构为8字节的存储器,结构如图3所示。

头2个字节包含测得的温度信息,第3和第4字节TH和TL的拷贝,是易失的,每次上电复位时被刷新。

第5个字节,为配置寄存器,它的内容用于确定温度值的数字转换分辨率。

DS18B20工作时寄存器中的分辨率转换为相应精度的温度数值。

该字节各位的定义如图3所示。

低5位一直为1,TM是工作模式位,用于设置DS18B20在工作模式还是在测试模式,DS18B20出厂时该位被设置为0,用户要去改动,R1和R0决定温度转换的精度位数,来设置分辨率。

..TM R11R01111..图3 DS18B20字节定义由表1可见,DS18B20温度转换的时间比较长,而且分辨率越高,所需要的温度数据转换时间越长。

因此,在实际应用中要将分辨率和转换时间权衡考虑。

高速暂存RAM的第6、7、8字节保留未用,表现为全逻辑1。

第9字节读出前面所有8字节的CRC码,可用来检验数据,从而保证通信数据的正确性。

当DS18B20接收到温度转换命令后,开始启动转换。

转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1、2字节。

单片机可以通过单线接口读出该数据,读数据时低位在先,高位在后,数据格式以0.0625℃/LSB形式表示。

当符号位S=0时,表示测得的温度值为正值,可以直接将二进制位转换为十进制;当符号位S=1时,表示测得的温度值为负值,要先将补码变成原码,再计算十进制数值。

表2是一部分温度值对应的二进制温度数据。

表1 DS18B20温度转换时间表R0R10 00 1 0 11 19101112分辨率/位温度最大转向时间/ms93.75187.5375750....DS18B20完成温度转换后,就把测得的温度值与RAM中的TH、TL字节内容作比较。

若T>TH或T<TL,则将该器件内的报警标志位置位,并对主机发出的报警搜索命令作出响应。

因此,可用多只DS18B20同时测量温度并进行报警搜索。

在64位ROM的最高有效字节中存储有循环冗余检验码(CRC)。

主机ROM的前56位来计算CRC值,并和存入DS18B20的CRC值作比较,以判断主机收到的ROM数据是否正确。

DS18B20的测温原理是这这样的,器件中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1;高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入。

器件中还有一个计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲进行计数进而完成温度测量。

计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55℃所对应的一个基数分别置入减法计数器1、温度寄存器中,计数器1和温度寄存器被预置在-55℃所对应的一个基数值。

减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时,温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器计数到0时,停止温度寄存器的累加,此时温度寄存器中的数值就是所测温度值。

其输出用于修正减法计数器的预置值,只要计数器门仍未关闭就重复上述过程,直到温度寄存器值大致被测温度值。

表2一部分温度对应值表另外,由于DS18B20单线通信功能是分时完成的,它有严格的时隙概念,因此读写时序很重要。

系统对DS18B20的各种操作按协议进行。

操作协议为:初使化DS18B20(发复位脉冲)→发ROM 功能命令→发存储器操作命令→处理数据。

VCC....图4 DS18B20与单片机的接口电路2.3 DS18B20温度传感器与单片机的接口电路DS18B20可以采用两种方式供电,一种是采用电源供电方式,此时DS18B20的1脚接地,2脚作为信号线,3脚接电源。

另一种是寄生电源供电方式,如图4 所示单片机端口接单线总线,为保证在有效的DS18B20时钟周期内提供足够的电流,可用一个MOSFET 管来完成对总线的上拉。

当DS18B20处于写存储器操作和温度A/D 转换操作时,总线上必须有强的上拉,上拉开启时间最大为10us 。

采用寄生电源供电方式时VDD 端接地。

由于单线制只有一根线,因此发送接口必须是三态的。

2.4 系统整体硬件电路 2.4.1 主板电路系统整体硬件电路包括,传感器数据采集电路,温度显示电路,上下限报警调整电路,单片机主板电路等,如图5 所示。

图5中有三个独立式按键可以分别调整温度计的上下限报警设置,图中蜂鸣器可以在被测温度不在上下限范围内时,发出报警鸣叫声音,同时LED数码管将没有被测温度值显示,这时可以调整报警上下限,从而测出被测的温度值。

图5 中的按健复位电路是上电复位加手动复位,使用比较方便,在程序跑飞时,可以手动复位,这样就不用在重起单片机电源,就可以实现复位。

2.4.2 显示电路显示电路是使用的串口显示,这种显示最大的优点就是使用口资源比较少,只用p3口的RXD,和TXD,串口的发送和接收,四只数码管采用74LS164右移寄存器驱动,显示比较清晰。

图5 单片机主板电路图6 温度显示电路3系统软件算法分析系统程序主要包括主程序,读出温度子程序,温度转换命令子程序,计算温度子程序,显示数据刷新子程序等。

3.1主程序主程序的主要功能是负责温度的实时显示、读出并处理DS18B20的测量的当前温度值,温度测量每1s进行一次。

这样可以在一秒之内测量一次被测温度,其程序流程见图7所示。

初始化调用显示子程序N 发DS18B20复位命令发跳过ROM命令发读取温度命令图7 主程序流程图图8读温度流程图3.2读出温度子程序读出温度子程序的主要功能是读出RAM中的9字节,在读出时需进行CRC校验,校验有错时不进行温度数据的改写。

其程序流程图如图8示图9 温度转换流程图3.3温度转换命令子程序温度转换命令子程序主要是发温度转换开始命令,当采用12位分辨率时转换时间约为750ms ,在本程序设计中采用1s 显示程序延时法等待转换的完成。

温度转换命令子程序流程图如上图,图9所示 3.4 计算温度子程序计算温度子程序将RAM 中读取值进行BCD 码的转换运算,并进行温度值正负的判定,其程序流程图如图10所示。

图10 计算温度流程图 图11 显示数据刷新流程图3.5显示数据刷新子程序显示数据刷新子程序主要是对显示缓冲器中的显示数据进行刷新操作,当最高显示位为0时将符号显示位移入下一位。

程序流程图如图11。

4总结与体会经过将近三周的单片机课程设计,终于完成了我的数字温度计的设计,虽然没有完全达到设计要求,但从心底里说,还是高兴的,毕竟这次设计把实物都做了出来,高兴之余不得不深思呀!在本次设计的过程中,我发现很多的问题,虽然以前还做过这样的设计但这次设计真的让我长进了很多,单片机课程设计重点就在于软件算法的设计,需要有很巧妙的程序算法,虽然以前写过几次程序,但我觉的写好一个程序并不是一件简单的事,举个例子,以前写的那几次,数据加减时,我用的都是BCD码,这一次,我全部用的都是16进制的数直接加减,显示处理时在用除法去删分,感觉效果比较好,有好多的东西,只有我们去试着做了,才能真正的掌握,只学习理论有些东西是很难理解的,更谈不上掌握。

相关文档
最新文档